这是一篇来自已证抗体库的有关人类 KRT5的综述,是根据243篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合KRT5 抗体。
KRT5 同义词: CK5; DDD; DDD1; EBS2; K5; KRT5A

赛默飞世尔
小鼠 单克隆(2C2)
  • 免疫印迹; 人类; 1:100; 图 3c
赛默飞世尔 KRT5抗体(Thermo-Fisher, MA5-17057)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3c). Am J Cancer Res (2022) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6b
赛默飞世尔 KRT5抗体(eBioscience, 53-9003-82)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6b). Commun Biol (2022) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2, 4a, 4b
赛默飞世尔 KRT5抗体(InVitrogen, MA5-13156)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2, 4a, 4b). Mol Oncol (2022) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2b
赛默飞世尔 KRT5抗体(Lab Vision, MS-343-P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2b). Sci Adv (2021) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化; 犬; 图 2g
赛默飞世尔 KRT5抗体(Zymed, D5/16B4)被用于被用于免疫组化在犬样本上 (图 2g). Animals (Basel) (2021) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 人类
赛默飞世尔 KRT5抗体(eBioscience, 53-9003-82)被用于被用于流式细胞仪在人类样本上. Nat Commun (2021) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 4a
赛默飞世尔 KRT5抗体(eBioscience, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4a). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 猕猴; 0.2 ug/ml; 图 4g
赛默飞世尔 KRT5抗体(Thermo Fisher, 41-9003-82)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为0.2 ug/ml (图 4g). Science (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
赛默飞世尔 KRT5抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Nat Cell Biol (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 图 4, 5
赛默飞世尔 KRT5抗体(eBioscience, AE1/AE3)被用于被用于免疫细胞化学在人类样本上 (图 4, 5). Breast Cancer Res (2019) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 人类; 图 s1b
赛默飞世尔 KRT5抗体(Thermo Fischer, MA5-13203)被用于被用于免疫细胞化学在人类样本上 (图 s1b). Sci Rep (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 2
赛默飞世尔 KRT5抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 2). Hum Pathol (2017) ncbi
小鼠 单克隆(AE3)
  • 流式细胞仪; 人类
赛默飞世尔 KRT5抗体(eBioscience, 14-900-80)被用于被用于流式细胞仪在人类样本上. F1000Res (2016) ncbi
小鼠 单克隆(XM26)
  • 免疫组化-石蜡切片; 人类; 图 1a
赛默飞世尔 KRT5抗体(ThermoFisher Scientific, MA5-12596)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Stem Cell Rev (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1c
赛默飞世尔 KRT5抗体(ThermoFisher Scientific, PA1-37974)被用于被用于免疫细胞化学在人类样本上 (图 1c). Stem Cell Rev (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 3d
赛默飞世尔 KRT5抗体(Thermo Scientific, AE1-AE3)被用于被用于免疫组化在人类样本上 (图 3d). Case Rep Pathol (2016) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:75; 表 2
赛默飞世尔 KRT5抗体(Thermo Scientific, D5/16 B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:75 (表 2). Hum Pathol (2017) ncbi
小鼠 单克隆(34betaE12)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔 KRT5抗体(Thermo Scientific, 34betaE12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Hum Pathol (2017) ncbi
小鼠 单克隆(2C2)
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔 KRT5抗体(Thermo Fisher, MA5-17057)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 3d
赛默飞世尔 KRT5抗体(Thermo Scientific, MA5-13203)被用于被用于免疫细胞化学在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 3d). Oncogene (2017) ncbi
小鼠 单克隆(XM26)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3a
赛默飞世尔 KRT5抗体(ThermoFisher, XM-26)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3a). Oncotarget (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 5b
赛默飞世尔 KRT5抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5b). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(XM26)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 3h
赛默飞世尔 KRT5抗体(Thermo Scientific, XM26)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 3h). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 2 ug/ml; 图 2e
赛默飞世尔 KRT5抗体(ThermoFisher Scientific, PA1-37974)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml (图 2e). Stem Cell Rev (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:50; 图 1
赛默飞世尔 KRT5抗体(ThermoFisher Scientific, MA5-13156)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). Future Oncol (2016) ncbi
小鼠 单克隆(XM26)
  • 免疫组化-石蜡切片; 小鼠; 1:20; 图 1
赛默飞世尔 KRT5抗体(NeoMarkers, XM26)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20 (图 1). Breast Cancer Res (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 s3
赛默飞世尔 KRT5抗体(分子探针, 985542A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3). Microbiome (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔 KRT5抗体(Thermo Scientific, MA5-13203)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
赛默飞世尔 KRT5抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Pathol Res Pract (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 小鼠; 1:100; 表 2
赛默飞世尔 KRT5抗体(eBioscience, 41-9003)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (表 2). J Cell Physiol (2016) ncbi
小鼠 单克隆(D5/I6 B4)
  • 免疫组化; 人类; ready to use
赛默飞世尔 KRT5抗体(Thermo Scientific, MS-1814-R7)被用于被用于免疫组化在人类样本上浓度为ready to use. Pathol Res Pract (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 2
赛默飞世尔 KRT5抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 2). Diagn Cytopathol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 KRT5抗体(Thermo Scientific, PA1-37974)被用于. J Cell Sci (2015) ncbi
小鼠 单克隆(XM26)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔 KRT5抗体(Thermo Scientific, MS-1896-S)被用于被用于免疫细胞化学在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化; 人类; 图 2
赛默飞世尔 KRT5抗体(Thermo Scientific, EP1601Y)被用于被用于免疫组化在人类样本上 (图 2). BMC Med Genomics (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 鲤
赛默飞世尔 KRT5抗体(生活技术, MA5-13156)被用于被用于免疫细胞化学在鲤样本上. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类; 1 ul
赛默飞世尔 KRT5抗体(eBioscience, 53-9003-82)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上浓度为1 ul. Nanomedicine (2015) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 KRT5抗体(Thermo Scientific, 4545)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫印迹; 人类
赛默飞世尔 KRT5抗体(Thermo Fisher Scientific, MA5-13203)被用于被用于免疫印迹在人类样本上. Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(XM26)
  • 免疫组化-石蜡切片; 人类; 图 s9
赛默飞世尔 KRT5抗体(Thermo Scientific, MS-1896)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s9). Oncotarget (2015) ncbi
小鼠 单克隆(AE1/AE3)
赛默飞世尔 KRT5抗体(Invitrogen, AE1/AE3)被用于. In Vitro Cell Dev Biol Anim (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 KRT5抗体(Thermo Scientific, PA1-37974)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 10-20 ug/ml
赛默飞世尔 KRT5抗体(Lab.Vision, Ab-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为10-20 ug/ml. Asian Pac J Cancer Prev (2015) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 猫; 1:100
  • 免疫组化-石蜡切片; 犬; 1:100
赛默飞世尔 KRT5抗体(Zymed, D5/16B4)被用于被用于免疫组化-石蜡切片在猫样本上浓度为1:100 和 被用于免疫组化-石蜡切片在犬样本上浓度为1:100. J Comp Pathol (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔 KRT5抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔 KRT5抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 KRT5抗体(Thermo Scientific, clone D5/16 B4)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Surg Pathol (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
赛默飞世尔 KRT5抗体(ThermoFisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Development (2015) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 KRT5抗体(Thermo, EP1601Y)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nature (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT5抗体(Neo Markers, MS343)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Comp Med (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔 KRT5抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT5抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Hum Pathol (2014) ncbi
小鼠 单克隆(34betaE12)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 KRT5抗体(Thermo Fisher Scientific, 34betaE12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT5抗体(Thermo Fisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔 KRT5抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Histopathology (2015) ncbi
小鼠 单克隆(XM26)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔 KRT5抗体(Thermo Scientific, M26)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). PLoS ONE (2014) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 KRT5抗体(Thermo Scientific, D5/16 B4)被用于被用于免疫组化-石蜡切片在人类样本上. Biomed Res Int (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类
赛默飞世尔 KRT5抗体(Thermo, AE1/AE3)被用于被用于免疫组化在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔 KRT5抗体(Thermo Fisher, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Biomed Mater (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 KRT5抗体(Thermoelectron, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化; 人类; 1:100
赛默飞世尔 KRT5抗体(Zymed Laboratories, Clone D5/16B4)被用于被用于免疫组化在人类样本上浓度为1:100. Clin Transl Oncol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔 KRT5抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Sci Rep (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:100; 图 1
赛默飞世尔 KRT5抗体(eBioscience, AE1/AE3)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
赛默飞世尔 KRT5抗体(Zymed, clone D5/16B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). Int J Clin Exp Pathol (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 1
赛默飞世尔 KRT5抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 1). Head Face Med (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 1:200; 图 4
赛默飞世尔 KRT5抗体(Zymed, AE1-AE3)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Surg Neurol Int (2013) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化; 人类; 表 3
赛默飞世尔 KRT5抗体(生活技术, D5/16B4)被用于被用于免疫组化在人类样本上 (表 3). BMC Cancer (2013) ncbi
小鼠 单克隆(XM26)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 3
赛默飞世尔 KRT5抗体(Neomarkers, XM26)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 3). Oncol Rep (2013) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化; 人类; 图 2
赛默飞世尔 KRT5抗体(Invitrogen, D5/16B4)被用于被用于免疫组化在人类样本上 (图 2). Diagn Pathol (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 2
赛默飞世尔 KRT5抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (图 2). Diagn Pathol (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 大西洋鲑鱼; 1:50; 图 2
赛默飞世尔 KRT5抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在大西洋鲑鱼样本上浓度为1:50 (图 2). Virol J (2013) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 犬; 1:100
赛默飞世尔 KRT5抗体(Zymed, D5/16B4)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:100. BMC Vet Res (2012) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 犬; 1:100; 表 2
赛默飞世尔 KRT5抗体(Zymed, D5/16B4)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:100 (表 2). ScientificWorldJournal (2012) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT5抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Med Sci Monit (2012) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 KRT5抗体(Thermo Scientific, MS-343)被用于被用于免疫组化-石蜡切片在小鼠样本上. Anat Cell Biol (2011) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔 KRT5抗体(Labvision, MS-149)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:100. Br J Cancer (2012) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 KRT5抗体(Invitrogen, D5/16B4)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Surg Pathol (2014) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫细胞化学; 人类; 表 1
赛默飞世尔 KRT5抗体(Zymed, D5/16B4)被用于被用于免疫细胞化学在人类样本上 (表 1). In Vitro Cell Dev Biol Anim (2011) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2, 3, 4
赛默飞世尔 KRT5抗体(Invitrogen, D5/16B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2, 3, 4). Int J Surg Pathol (2011) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化; 人类; 1:50
赛默飞世尔 KRT5抗体(Zymed, D5)被用于被用于免疫组化在人类样本上浓度为1:50. Eur J Cancer (2010) ncbi
小鼠 单克隆(D5/I6 B4)
  • 免疫组化; 人类; 1:50
赛默飞世尔 KRT5抗体(Zymed, D5)被用于被用于免疫组化在人类样本上浓度为1:50. Eur J Cancer (2010) ncbi
小鼠 单克隆(AE3)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔 KRT5抗体(Zymed, AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT5抗体(Invitrogen, C-11)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT5抗体(Invitrogen, C-11)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 KRT5抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Cancer (2008) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
赛默飞世尔 KRT5抗体(Zymed, D5/16B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 1). J Clin Pathol (2008) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 KRT5抗体(Lab Vision, MS-343-P)被用于被用于免疫印迹在人类样本上 (图 5). Int J Cancer (2005) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT5抗体(NeoMarkers, C-11)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2004) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT5抗体(NeoMarkers, C-11)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:80; 表 1
赛默飞世尔 KRT5抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (表 1). Pathol Int (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 KRT5抗体(Zymed, AE1/AE3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Gynecol Oncol (2003) ncbi
BioLegend
domestic rabbit 多克隆(Poly19055)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2b
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2b). Front Oncol (2022) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化-石蜡切片; 小鼠; 图 2b
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b). Cancers (Basel) (2022) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化; 人类; 1:1200; 图 3b
BioLegend KRT5抗体(Biolegend, PRB-160P)被用于被用于免疫组化在人类样本上浓度为1:1200 (图 3b). Cancers (Basel) (2021) ncbi
鸡 多克隆(Poly9059)
  • 免疫组化; 小鼠; 1:500; 图 2a
BioLegend KRT5抗体(Biologend, 905901)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a). Curr Res Toxicol (2021) ncbi
鸡 多克隆(Poly9059)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 s3d
BioLegend KRT5抗体(Biolegend, 905903)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 s3d). PLoS Genet (2021) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化; 人类; 1:50; 图 1f
BioLegend KRT5抗体(Covance Biologicals, PRB-160P)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1f). JCI Insight (2021) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 e4a
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 e4a). Nat Metab (2021) ncbi
鸡 多克隆(Poly9059)
  • 免疫组化; 人类; 图 4f
BioLegend KRT5抗体(Biolegend, 905904)被用于被用于免疫组化在人类样本上 (图 4f). Commun Biol (2020) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫细胞化学; 人类; 1:50; 图 2c
BioLegend KRT5抗体(Biolegend, PRB-160P)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2c). Cancers (Basel) (2020) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化; 小鼠; 1:500; 图 s2e
BioLegend KRT5抗体(BioLegend, PRB-160P)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s2e). J Exp Med (2020) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化; 小鼠
BioLegend KRT5抗体(Biolegend, Poly 19055)被用于被用于免疫组化在小鼠样本上. Oncogene (2020) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化; 小鼠; 1:500; 图 2s1a
BioLegend KRT5抗体(Biolegend, 905501)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2s1a). elife (2019) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化; 小鼠; 1:800; 图 1f, 4e
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 1f, 4e). Cell Stem Cell (2019) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化; 小鼠; 图 5e
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化在小鼠样本上 (图 5e). Cell (2019) ncbi
domestic rabbit 多克隆(Poly19055)
BioLegend KRT5抗体(BioLegend, Poly19055)被用于. Stem Cell Reports (2019) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2
BioLegend KRT5抗体(Covance Babco, PRB-160P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2). Nat Commun (2019) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫细胞化学; 小鼠; 图 1a
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫细胞化学在小鼠样本上 (图 1a). Nat Cell Biol (2019) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫细胞化学; 小鼠; 图 3d
BioLegend KRT5抗体(BioLegend, 905501)被用于被用于免疫细胞化学在小鼠样本上 (图 3d). Breast Cancer Res (2019) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化; 人类; 图 1c
BioLegend KRT5抗体(Covance, PRB 160P-100)被用于被用于免疫组化在人类样本上 (图 1c). EMBO J (2019) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 3c
BioLegend KRT5抗体(BioLegend, PRB-160P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 3c). Immunity (2018) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫印迹; 小鼠; 1:200; 图 6e
BioLegend KRT5抗体(Covance, 905501)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 6e). Development (2018) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3k
BioLegend KRT5抗体(Covance, PRB-160P-100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3k). PLoS Genet (2017) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化; 小鼠; 1:250; 图 1
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 1). Hum Mol Genet (2017) ncbi
鸡 多克隆(Poly9059)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2s1c
  • 免疫组化-冰冻切片; 人类; 1:500; 图 3s1b, 4c
BioLegend KRT5抗体(BioLegend, 905901)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2s1c) 和 被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 3s1b, 4c). elife (2017) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化-石蜡切片; 小鼠; 图 s1h
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1h). Nature (2017) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2c
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2c). Nat Commun (2017) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫印迹; 人类; 图 5b
BioLegend KRT5抗体(Covance, PRB160P)被用于被用于免疫印迹在人类样本上 (图 5b). J Proteome Res (2017) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3c
BioLegend KRT5抗体(BioLegend, 905501)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3c). Breast Cancer Res (2016) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化-石蜡切片; 人类; 图 4b
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化; 小鼠; 1:2000
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化在小鼠样本上浓度为1:2000. Dis Model Mech (2017) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5c
  • 免疫细胞化学; 人类; 1:250; 图 1c
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5c) 和 被用于免疫细胞化学在人类样本上浓度为1:250 (图 1c). Oncotarget (2016) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1b
BioLegend KRT5抗体(Covance, PRB160P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1b). Nat Commun (2016) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Oncogene (2017) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化; 小鼠; 1:4000; 图 7
BioLegend KRT5抗体(Covance, AF138)被用于被用于免疫组化在小鼠样本上浓度为1:4000 (图 7). Nat Commun (2016) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 3c
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 3c). Oncogene (2017) ncbi
鸡 多克隆(Poly9059)
  • 免疫细胞化学; 人类; 1:1000; 图 2e
BioLegend KRT5抗体(Covance, SIG-3475)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2e). Science (2016) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫细胞化学; 人类; 1:1000; 图 2b
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2b). Science (2016) ncbi
domestic rabbit 多克隆(Poly19055)
BioLegend KRT5抗体(Biolegend, 905501)被用于. Nat Commun (2016) ncbi
domestic rabbit 多克隆(Poly19055)
  • 流式细胞仪; 小鼠; 图 2
BioLegend KRT5抗体(covance, PRB-160P)被用于被用于流式细胞仪在小鼠样本上 (图 2). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化; 小鼠; 1:500; 图 4
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4). Dev Cell (2016) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化-石蜡切片; 小鼠; 图 1f
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1f). Int J Biol Sci (2016) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2). Development (2016) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫细胞化学; 小鼠; 1:100; 图 3
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化; 小鼠; 1:500; 图 7
BioLegend KRT5抗体(Biolegend, PRB-160P)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7). Oncogene (2016) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化; 小鼠; 1:200; 图 1b
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1b). Oncogene (2016) ncbi
domestic rabbit 多克隆(Poly19055)
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 4
BioLegend KRT5抗体(Covance, PRB-160P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 4). Oncogene (2016) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR1600Y)
  • 免疫细胞化学; 小鼠; 1:100
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab75869)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Cell Mol Life Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4m
  • 免疫组化; 人类; 1:100; 图 3h
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, Ab53121)被用于被用于免疫组化在小鼠样本上 (图 4m) 和 被用于免疫组化在人类样本上浓度为1:100 (图 3h). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆
  • 流式细胞仪; 人类; 图 2e
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab193895)被用于被用于流式细胞仪在人类样本上 (图 2e). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化; 小鼠; 1:500; 图 3e
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab52635)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3e). Cell Rep (2021) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化-石蜡切片; 人类; 图 3c
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab52635)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3c). Commun Biol (2020) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化; 小鼠; 1:400; 图 4f
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab52635)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4f). elife (2020) ncbi
domestic rabbit 单克隆(EPR1600Y)
  • 免疫组化; 小鼠; 1:800
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab75869)被用于被用于免疫组化在小鼠样本上浓度为1:800. Cell Res (2020) ncbi
domestic rabbit 单克隆
  • 流式细胞仪; 人类; 图 1c
  • 免疫细胞化学; 人类; 图 3c
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab193895)被用于被用于流式细胞仪在人类样本上 (图 1c) 和 被用于免疫细胞化学在人类样本上 (图 3c). Cell Stem Cell (2020) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化; 小鼠; 1:100; 图 1f
艾博抗(上海)贸易有限公司 KRT5抗体(abcam, ab52635)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1f). Nature (2019) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3b
  • 免疫印迹; 小鼠; 1:500; 图 4a
  • 免疫印迹; 人类; 1:500; 图 4b
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab52635)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3b), 被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 4b). Biomol Ther (Seoul) (2019) ncbi
domestic rabbit 单克隆(EP1601Y)
  • mass cytometry; 人类; 图 3a
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab52635)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化-石蜡切片; 大鼠; 1:250; 图 3
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab52635)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (图 3). Biosci Rep (2019) ncbi
domestic rabbit 单克隆
  • 免疫组化; 小鼠; 1:100; 图 4b
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab193895)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4b). Cell Rep (2018) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 流式细胞仪; 人类; 图 s1b
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab52635)被用于被用于流式细胞仪在人类样本上 (图 s1b). Cell Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4i
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab53121)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4i). Cell Rep (2018) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化-石蜡切片; 人类; 图 2a
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, 52635)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; domestic rabbit; 图 86
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab53121)被用于被用于免疫组化在domestic rabbit样本上 (图 86). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(XM26)
  • 免疫细胞化学; 人类; 图 4A
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab17130)被用于被用于免疫细胞化学在人类样本上 (图 4A). Biomaterials (2017) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab17133)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab52635)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). Oncogenesis (2016) ncbi
小鼠 单克隆(XM26)
  • 免疫组化-石蜡切片; 人类; 图 2b
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, XM26)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). Clin Cancer Res (2017) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化; 人类; 图 s3
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab52635)被用于被用于免疫组化在人类样本上 (图 s3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EPR1600Y)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab75869)被用于被用于免疫印迹在人类样本上 (图 5). Breast Cancer Res Treat (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, Ab53121)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EPR1600Y)
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司 KRT5抗体(abcam, ab75869)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, ab53121)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(XM26)
  • 免疫细胞化学; 人类; 图 s2
艾博抗(上海)贸易有限公司 KRT5抗体(Abcam, XM26)被用于被用于免疫细胞化学在人类样本上 (图 s2). Biomaterials (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 KRT5抗体(abcam, ab53121)被用于被用于免疫细胞化学在小鼠样本上 (图 5a). Cell Tissue Res (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(XM26)
  • 流式细胞仪; 人类; 1:20; 图 s3a
圣克鲁斯生物技术 KRT5抗体(Santa Cruz, sc-58732)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s3a). Sci Adv (2019) ncbi
小鼠 单克隆(RCK103)
  • 免疫组化-石蜡切片; 小鼠; 图 2e
圣克鲁斯生物技术 KRT5抗体(Santa Cruz Biotechnology Inc, sc-32721)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). Carcinogenesis (2018) ncbi
小鼠 单克隆(RCK103)
  • 流式细胞仪; 人类; 图 5
圣克鲁斯生物技术 KRT5抗体(Santa Cruz, sc-32721)被用于被用于流式细胞仪在人类样本上 (图 5). Oncogene (2016) ncbi
小鼠 单克隆(RCK103)
  • 免疫细胞化学; 人类; 图 6a
圣克鲁斯生物技术 KRT5抗体(Santa Cruz Biotechnology, sc-32721)被用于被用于免疫细胞化学在人类样本上 (图 6a). Biores Open Access (2014) ncbi
小鼠 单克隆(C50)
  • 免疫组化; 小鼠; 1:200; 图 8e
圣克鲁斯生物技术 KRT5抗体(Santa Cruz Biotechnology, C50)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 8e). Oncogene (2015) ncbi
小鼠 单克隆(5F295)
  • 免疫组化-石蜡切片; 小鼠; 图 3
圣克鲁斯生物技术 KRT5抗体(Santa Cruz, sc-70928)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). PLoS ONE (2013) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3d
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, M7237)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3d). J Clin Med (2021) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, Agilent, M7237)被用于被用于免疫组化在人类样本上浓度为1:100. Nat Commun (2021) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 猫; 图 st2
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16B4)被用于被用于免疫组化-石蜡切片在猫样本上 (图 st2). Sci Rep (2020) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2b, 2f, 2n
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, M7237)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2b, 2f, 2n). Tissue Eng Part A (2020) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 6a
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, M723729)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 6a). Nat Commun (2018) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化; 人类; 1:250; 表 3
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, M7237)被用于被用于免疫组化在人类样本上浓度为1:250 (表 3). PLoS ONE (2017) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化; 犬; 1:50; 图 S1a,S2a,S3a,S4a
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16 B4)被用于被用于免疫组化在犬样本上浓度为1:50 (图 S1a,S2a,S3a,S4a). J Vet Med Sci (2017) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16B4)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Rev Bras Ginecol Obstet (2016) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5 16/B4)被用于被用于免疫组化在人类样本上浓度为1:50. Rare Tumors (2016) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫细胞化学; 犬; 1:100; 表 5
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16B4)被用于被用于免疫细胞化学在犬样本上浓度为1:100 (表 5). Int J Mol Sci (2016) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:25; 表 1
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16 B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (表 1). Histopathology (2017) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, M7237)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:80; 表 3
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, M7237)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (表 3). Oncol Lett (2016) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, M7237)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4). Oncol Lett (2016) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16 B4)被用于被用于免疫组化在人类样本上 (图 1). Br J Cancer (2016) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Hum Pathol (2016) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(DakoCytomation, D5/16B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Am J Surg Pathol (2016) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:25
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. Oncotarget (2016) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(DAKO, D5/16B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Ann Surg Oncol (2016) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, M7237)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. PLoS ONE (2016) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-自由浮动切片; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16 B4)被用于被用于免疫组化-自由浮动切片在人类样本上 (图 1). Prostate (2016) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16B4/)被用于被用于免疫组化在人类样本上浓度为1:100. Breast (2015) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16B4)被用于被用于免疫组化-石蜡切片在人类样本上. World J Surg Oncol (2015) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16 B4)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫细胞化学; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16 B4)被用于被用于免疫细胞化学在人类样本上 (图 1). Immunol Cell Biol (2015) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Hum Pathol (2015) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 5
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 5). PLoS ONE (2014) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化; 人类; 1:25
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16 B4)被用于被用于免疫组化在人类样本上浓度为1:25. Head Neck Pathol (2015) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16B4)被用于被用于免疫组化-石蜡切片在人类样本上. Virchows Arch (2014) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(DakoCytomation, M7237)被用于被用于免疫组化-石蜡切片在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, M7237)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). PLoS ONE (2014) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化; 人类; 1:25
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16 B4)被用于被用于免疫组化在人类样本上浓度为1:25. Pathol Res Pract (2014) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, M7237)被用于被用于免疫组化在人类样本上浓度为1:100. Endocr Relat Cancer (2014) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:25
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(DakoCytomation, D5/16 B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. Exp Hematol Oncol (2014) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako Corporation, D5/16B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Hum Pathol (2014) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化; 人类; ready-to-use
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16B4)被用于被用于免疫组化在人类样本上浓度为ready-to-use. Pathol Res Pract (2014) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16 B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Mod Pathol (2014) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化; 人类; 1:300
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16 B4)被用于被用于免疫组化在人类样本上浓度为1:300. Breast Cancer Res Treat (2014) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16 B4)被用于被用于免疫组化在人类样本上浓度为1:50. Hum Pathol (2013) ncbi
小鼠 单克隆(D5/16 B4)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 KRT5抗体(Dako, D5/16 B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. World Neurosurg (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(E2T4B)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 e2f
赛信通(上海)生物试剂有限公司 KRT5抗体(CST, 71536)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 e2f). Nature (2021) ncbi
domestic rabbit 单克隆(E2T4B)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6c
赛信通(上海)生物试剂有限公司 KRT5抗体(Cell Signaling, 71536)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6c). Cell Biosci (2021) ncbi
domestic rabbit 单克隆(E2T4B)
  • 免疫组化; 人类; 1:2000; 图 s1-3
赛信通(上海)生物试剂有限公司 KRT5抗体(Cell Signaling Technology, 71536)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 s1-3). elife (2020) ncbi
domestic rabbit 单克隆(E2T4B)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 KRT5抗体(Cell Signaling, 71536)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1b). Cell Death Dis (2020) ncbi
Agilent Technologies
单克隆(D5/16 B4)
  • 免疫组化; 人类; 1:200; 图 2d
Agilent Technologies KRT5抗体(Agilent Technologies, M723729-2)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2d). Breast Cancer Res (2019) ncbi
西格玛奥德里奇
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2h
西格玛奥德里奇 KRT5抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2h). J Clin Invest (2021) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 人类; 1:200; 图 7f, s4
  • 免疫组化; 大鼠; 1:200; 图 2d
西格玛奥德里奇 KRT5抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化在人类样本上浓度为1:200 (图 7f, s4) 和 被用于免疫组化在大鼠样本上浓度为1:200 (图 2d). Nat Commun (2021) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
西格玛奥德里奇 KRT5抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Cancer Immunol Immunother (2020) ncbi
小鼠 单克隆(C-11)
  • 免疫组化; 人类; 图 7a
西格玛奥德里奇 KRT5抗体(Sigma, C2931)被用于被用于免疫组化在人类样本上 (图 7a). Cell Rep (2018) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
西格玛奥德里奇 KRT5抗体(Sigma, C-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). PLoS ONE (2018) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:50; 图 3a
西格玛奥德里奇 KRT5抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3a). Science (2018) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s4a
西格玛奥德里奇 KRT5抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s4a). Am J Respir Cell Mol Biol (2017) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 人类; 1:100; 图 6a
西格玛奥德里奇 KRT5抗体(Sigma, C-11)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6a). Nat Commun (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 小鼠; 图 6
西格玛奥德里奇 KRT5抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Am J Pathol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2a
西格玛奥德里奇 KRT5抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 图 s5a
西格玛奥德里奇 KRT5抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5a). Nature (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; pigs ; 1:100; 图 5h
西格玛奥德里奇 KRT5抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:100 (图 5h). Biotechnol J (2017) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:200
西格玛奥德里奇 KRT5抗体(Sigma, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 人类; 图 2b
西格玛奥德里奇 KRT5抗体(Sigma, c2562)被用于被用于免疫组化在人类样本上 (图 2b). Nat Biotechnol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 人类; 1:200; 图 5
西格玛奥德里奇 KRT5抗体(Sigma, C2562)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). BMC Biol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 人类; 1:4000; 表 2
西格玛奥德里奇 KRT5抗体(Sigma, C2562)被用于被用于免疫组化在人类样本上浓度为1:4000 (表 2). PLoS ONE (2016) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 人类; 1:1000; 图 1
西格玛奥德里奇 KRT5抗体(Sigma, C-2931)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠; 图 2
西格玛奥德里奇 KRT5抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
西格玛奥德里奇 KRT5抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Fluids Barriers CNS (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 2
西格玛奥德里奇 KRT5抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 2). Clin Cancer Res (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 KRT5抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:800; 图 5
西格玛奥德里奇 KRT5抗体(Sigma, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 5). Dis Model Mech (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 大鼠
西格玛奥德里奇 KRT5抗体(Sigma-Aldrich, clone C-11)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 家羊; 10 ug/ml
西格玛奥德里奇 KRT5抗体(Sigma, C2931)被用于被用于免疫细胞化学在家羊样本上浓度为10 ug/ml. Cell Reprogram (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 非洲爪蛙
西格玛奥德里奇 KRT5抗体(Sigma, C2931)被用于被用于免疫细胞化学在非洲爪蛙样本上. Zygote (2015) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:2000
西格玛奥德里奇 KRT5抗体(Sigma-Aldrich, #C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. Am J Pathol (2014) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫印迹; 大鼠
西格玛奥德里奇 KRT5抗体(Sigma, C2562)被用于被用于免疫印迹在大鼠样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100
西格玛奥德里奇 KRT5抗体(Sigma-Aldrich, C-11)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100. Biomaterials (2014) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫印迹; 人类; 1:10,000
  • 免疫印迹; pigs
西格玛奥德里奇 KRT5抗体(Sigma-Aldrich, C 2562)被用于被用于免疫印迹在人类样本上浓度为1:10,000 和 被用于免疫印迹在pigs 样本上. Mol Oncol (2014) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; Gallot's lizard; 1:400
西格玛奥德里奇 KRT5抗体(Sigma-Aldrich, C2931)被用于被用于免疫组化-石蜡切片在Gallot's lizard样本上浓度为1:400. J Comp Neurol (2012) ncbi
徕卡显微系统(上海)贸易有限公司
  • 免疫细胞化学; 人类; 1:200; 图 4c
  • 免疫印迹; 人类; 1:1500; 图 2e
徕卡显微系统(上海)贸易有限公司 KRT5抗体(Leica Biosystems, NCL-L-CK5)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4c) 和 被用于免疫印迹在人类样本上浓度为1:1500 (图 2e). Oncogene (2020) ncbi
  • 免疫组化; 人类; 图 3c
徕卡显微系统(上海)贸易有限公司 KRT5抗体(Leica Biosystems, NCL-L-CK5)被用于被用于免疫组化在人类样本上 (图 3c). BMC Cancer (2019) ncbi
  • 免疫组化; 人类; 1:200; 图 6b
  • 免疫印迹; 人类; 图 2c
徕卡显微系统(上海)贸易有限公司 KRT5抗体(Leica Biosystems, NCL-L-CK5)被用于被用于免疫组化在人类样本上浓度为1:200 (图 6b) 和 被用于免疫印迹在人类样本上 (图 2c). Oncogene (2017) ncbi
单克隆(XM26)
  • 免疫组化-石蜡切片; 人类; 图 1A
  • 免疫细胞化学; 人类; 图 S1B
徕卡显微系统(上海)贸易有限公司 KRT5抗体(Leica, XM26)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1A) 和 被用于免疫细胞化学在人类样本上 (图 S1B). Oncotarget (2016) ncbi
单克隆(XM26)
  • 免疫组化; 人类; 1:400; 表 1
徕卡显微系统(上海)贸易有限公司 KRT5抗体(Novocastra, XM26)被用于被用于免疫组化在人类样本上浓度为1:400 (表 1). Oral Surg Oral Med Oral Pathol Oral Radiol (2016) ncbi
单克隆(XM26)
  • 免疫组化-石蜡切片; 人类; 1:800
徕卡显微系统(上海)贸易有限公司 KRT5抗体(Novocastra, XM26)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800. Virchows Arch (2014) ncbi
单克隆(XM26)
  • 免疫组化; 人类
徕卡显微系统(上海)贸易有限公司 KRT5抗体(Novocastra, XM26)被用于被用于免疫组化在人类样本上. PLoS ONE (2014) ncbi
碧迪BD
小鼠 单克隆(RCK102)
  • 免疫细胞化学; 人类; 1:100; 图 s3c
碧迪BD KRT5抗体(BD Biosciences, 550505)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s3c). Sci Adv (2019) ncbi
小鼠 单克隆(RCK102)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
碧迪BD KRT5抗体(BD, 550505)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(RCK102)
  • 免疫印迹; 人类; 图 2b
碧迪BD KRT5抗体(BD Biosciences, 550505)被用于被用于免疫印迹在人类样本上 (图 2b). Oncol Lett (2016) ncbi
文章列表
  1. Wakao S, Oguma Y, Kushida Y, Kuroda Y, Tatsumi K, Dezawa M. Phagocytosing differentiated cell-fragments is a novel mechanism for controlling somatic stem cell differentiation within a short time frame. Cell Mol Life Sci. 2022;79:542 pubmed 出版商
  2. Mart xed nez Nieto G, Teppo H, Petrelius N, Izzi V, Devarajan R, Pet xe4 ist xf6 T, et al. Upregulated integrin α11 in the stroma of cutaneous squamous cell carcinoma promotes skin carcinogenesis. Front Oncol. 2022;12:981009 pubmed 出版商
  3. Malanga D, Laudanna C, Mirante T, Colelli F, Migliozzi S, Zoppoli P, et al. The AKT1E17K Allele Promotes Breast Cancer in Mice. Cancers (Basel). 2022;14: pubmed 出版商
  4. Castillo P, Aisagbonhi O, Saenz C, ElShamy W. Novel insights linking BRCA1-IRIS role in mammary gland development to formation of aggressive PABCs: the case for longer breastfeeding. Am J Cancer Res. 2022;12:396-426 pubmed
  5. Rodriguez E, Boelaars K, Brown K, Madunić K, van Ee T, Dijk F, et al. Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Commun Biol. 2022;5:41 pubmed 出版商
  6. Bruun J, Eide P, Bergsland C, Brück O, Svindland A, Arjama M, et al. E-cadherin is a robust prognostic biomarker in colorectal cancer and low expression is associated with sensitivity to inhibitors of topoisomerase, aurora, and HSP90 in preclinical models. Mol Oncol. 2022;16:2312-2329 pubmed 出版商
  7. Sekino Y, Pham Q, Kobatake K, Kitano H, Ikeda K, Goto K, et al. KIFC1 Is Associated with Basal Type, Cisplatin Resistance, PD-L1 Expression and Poor Prognosis in Bladder Cancer. J Clin Med. 2021;10: pubmed 出版商
  8. Tu N, Inoue K, Chen E, Anderson B, Sawicki C, Scheff N, et al. Cathepsin S Evokes PAR2-Dependent Pain in Oral Squamous Cell Carcinoma Patients and Preclinical Mouse Models. Cancers (Basel). 2021;13: pubmed 出版商
  9. Zhang X, Tao J, Yu J, Hu N, Zhang X, Wang G, et al. Inhibition of Notch activity promotes pancreatic cytokeratin 5-positive cell differentiation to beta cells and improves glucose homeostasis following acute pancreatitis. Cell Death Dis. 2021;12:867 pubmed 出版商
  10. Keil Stietz K, Kennedy C, Sethi S, Valenzuela A, Nunez A, Wang K, et al. In utero and lactational PCB exposure drives anatomic changes in the juvenile mouse bladder. Curr Res Toxicol. 2021;2:1-18 pubmed 出版商
  11. Wohnhaas C, Gindele J, Kiechle T, Shen Y, Leparc G, Stierstorfer B, et al. Cigarette Smoke Specifically Affects Small Airway Epithelial Cell Populations and Triggers the Expansion of Inflammatory and Squamous Differentiation Associated Basal Cells. Int J Mol Sci. 2021;22: pubmed 出版商
  12. Barthet V, Brucoli M, Ladds M, Nössing C, Kiourtis C, Baudot A, et al. Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver. Sci Adv. 2021;7: pubmed 出版商
  13. Keshvari S, Caruso M, Teakle N, Batoon L, Sehgal A, Patkar O, et al. CSF1R-dependent macrophages control postnatal somatic growth and organ maturation. PLoS Genet. 2021;17:e1009605 pubmed 出版商
  14. Carter P, Schnell U, Chaney C, TONG B, Pan X, ye J, et al. Deletion of Lats1/2 in adult kidney epithelia leads to renal cell carcinoma. J Clin Invest. 2021;131: pubmed 出版商
  15. Liberti D, Kremp M, Liberti W, Penkala I, Li S, Zhou S, et al. Alveolar epithelial cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury. Cell Rep. 2021;35:109092 pubmed 出版商
  16. Lindskrog S, Prip F, Lamy P, Taber A, Groeneveld C, Birkenkamp Demtroder K, et al. An integrated multi-omics analysis identifies prognostic molecular subtypes of non-muscle-invasive bladder cancer. Nat Commun. 2021;12:2301 pubmed 出版商
  17. Levi M, Muscatello L, Brunetti B, Benazzi C, Parenti F, Gobbo F, et al. High Intrinsic Expression of P-glycoprotein and Breast Cancer Resistance Protein in Canine Mammary Carcinomas Regardless of Immunophenotype and Outcome. Animals (Basel). 2021;11: pubmed 出版商
  18. DePianto D, Heiden J, Morshead K, Sun K, Modrusan Z, Teng G, et al. Molecular mapping of interstitial lung disease reveals a phenotypically distinct senescent basal epithelial cell population. JCI Insight. 2021;6: pubmed 出版商
  19. Rodriguez E, Boelaars K, Brown K, Eveline Li R, Kruijssen L, Bruijns S, et al. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat Commun. 2021;12:1270 pubmed 出版商
  20. Choi J, Sebastian C, Ferrer C, Lewis C, Sade Feldman M, LaSalle T, et al. A unique subset of glycolytic tumour-propagating cells drives squamous cell carcinoma. Nat Metab. 2021;3:182-195 pubmed 出版商
  21. Yuan G, Flores N, Hausmann S, Lofgren S, Kharchenko V, Angulo Ibáñez M, et al. Elevated NSD3 histone methylation activity drives squamous cell lung cancer. Nature. 2021;590:504-508 pubmed 出版商
  22. McGuire J, Frieling J, Lo C, Li T, Muhammad A, Lawrence H, et al. Mesenchymal stem cell-derived interleukin-28 drives the selection of apoptosis resistant bone metastatic prostate cancer. Nat Commun. 2021;12:723 pubmed 出版商
  23. Xu L, Zhang M, Shi L, Yang X, Chen L, Cao N, et al. Neural stemness contributes to cell tumorigenicity. Cell Biosci. 2021;11:21 pubmed 出版商
  24. Dong B, Miao J, Wang Y, Luo W, Ji Z, Lai H, et al. Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer. Commun Biol. 2020;3:778 pubmed 出版商
  25. Biasci D, Smoragiewicz M, Connell C, Wang Z, Gao Y, Thaventhiran J, et al. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proc Natl Acad Sci U S A. 2020;117:28960-28970 pubmed 出版商
  26. Mevel R, Steiner I, Mason S, Galbraith L, Patel R, Fadlullah M, et al. RUNX1 marks a luminal castration-resistant lineage established at the onset of prostate development. elife. 2020;9: pubmed 出版商
  27. Pan L, Lemieux M, Thomas T, Rogers J, Lipper C, Lee W, et al. IER5, a DNA damage response gene, is required for Notch-mediated induction of squamous cell differentiation. elife. 2020;9: pubmed 出版商
  28. Pseftogas A, Xanthopoulos K, Poutahidis T, Ainali C, Dafou D, Panteris E, et al. The Tumor Suppressor CYLD Inhibits Mammary Epithelial to Mesenchymal Transition by the Coordinated Inhibition of YAP/TAZ and TGF Signaling. Cancers (Basel). 2020;12: pubmed 出版商
  29. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed 出版商
  30. Luo P, Yan H, Chen X, Zhang Y, Zhao Z, Cao J, et al. s-HBEGF/SIRT1 circuit-dictated crosstalk between vascular endothelial cells and keratinocytes mediates sorafenib-induced hand-foot skin reaction that can be reversed by nicotinamide. Cell Res. 2020;30:779-793 pubmed 出版商
  31. Hermanova I, Z iga Garc a P, Caro Maldonado A, Fernandez Ruiz S, Salvador F, Mart n Mart n N, et al. Genetic manipulation of LKB1 elicits lethal metastatic prostate cancer. J Exp Med. 2020;217: pubmed 出版商
  32. Costanzo Garvey D, Keeley T, Case A, Watson G, Alsamraae M, Yu Y, et al. Neutrophils are mediators of metastatic prostate cancer progression in bone. Cancer Immunol Immunother. 2020;69:1113-1130 pubmed 出版商
  33. Kluz P, Kolb R, Xie Q, Borcherding N, Liu Q, Luo Y, et al. Cancer cell-intrinsic function of CD177 in attenuating β-catenin signaling. Oncogene. 2020;39:2877-2889 pubmed 出版商
  34. Dragan M, Nguyen M, Guzman S, Goertzen C, Brackstone M, Dhillo W, et al. G protein-coupled kisspeptin receptor induces metabolic reprograming and tumorigenesis in estrogen receptor-negative breast cancer. Cell Death Dis. 2020;11:106 pubmed 出版商
  35. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed 出版商
  36. McGinn O, Ward A, Fettig L, Riley D, Ivie J, Paul K, et al. Cytokeratin 5 alters β-catenin dynamics in breast cancer cells. Oncogene. 2020;39:2478-2492 pubmed 出版商
  37. Granados Soler J, Bornemann Kolatzki K, Beck J, Brenig B, Schütz E, Betz D, et al. Analysis of Copy-Number Variations and Feline Mammary Carcinoma Survival. Sci Rep. 2020;10:1003 pubmed 出版商
  38. Vaidyanathan S, Salahudeen A, Sellers Z, Bravo D, Choi S, Batish A, et al. High-Efficiency, Selection-free Gene Repair in Airway Stem Cells from Cystic Fibrosis Patients Rescues CFTR Function in Differentiated Epithelia. Cell Stem Cell. 2020;26:161-171.e4 pubmed 出版商
  39. Davaadelger B, Choi M, Singhal H, Clare S, Khan S, Kim J. BRCA1 mutation influences progesterone response in human benign mammary organoids. Breast Cancer Res. 2019;21:124 pubmed 出版商
  40. Lodes N, Seidensticker K, Perniss A, Nietzer S, Oberwinkler H, May T, et al. Investigation on Ciliary Functionality of Different Airway Epithelial Cell Lines in Three-Dimensional Cell Culture. Tissue Eng Part A. 2020;26:432-440 pubmed 出版商
  41. Momcilovic M, Jones A, Bailey S, Waldmann C, Li R, Lee J, et al. In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer. Nature. 2019;575:380-384 pubmed 出版商
  42. Stupnikov M, Yang Y, Mori M, LU J, Cardoso W. Jagged and Delta-like ligands control distinct events during airway progenitor cell differentiation. elife. 2019;8: pubmed 出版商
  43. Jeong H, Lim K, Goldenring J, Nam K. Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice. Biomol Ther (Seoul). 2019;27:553-561 pubmed 出版商
  44. Chen M, Reed R, Lane A. Chronic Inflammation Directs an Olfactory Stem Cell Functional Switch from Neuroregeneration to Immune Defense. Cell Stem Cell. 2019;25:501-513.e5 pubmed 出版商
  45. Ramani V, Lemaire C, Triboulet M, Casey K, Heirich K, Renier C, et al. Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer. Breast Cancer Res. 2019;21:98 pubmed 出版商
  46. Wang H, Xiang D, Liu B, He A, Randle H, Zhang K, et al. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell. 2019;178:135-151.e19 pubmed 出版商
  47. Ling C, Nishimoto K, Rolfs Z, Smith L, Frey B, Welham N. Differentiated fibrocytes assume a functional mesenchymal phenotype with regenerative potential. Sci Adv. 2019;5:eaav7384 pubmed 出版商
  48. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  49. Katsura H, Kobayashi Y, Tata P, Hogan B. IL-1 and TNFα Contribute to the Inflammatory Niche to Enhance Alveolar Regeneration. Stem Cell Reports. 2019;12:657-666 pubmed 出版商
  50. Krimpenfort P, Snoek M, Lambooij J, Song J, van der Weide R, Bhaskaran R, et al. A natural WNT signaling variant potently synergizes with Cdkn2ab loss in skin carcinogenesis. Nat Commun. 2019;10:1425 pubmed 出版商
  51. Forslund O, Sugiyama N, Wu C, Ravi N, Jin Y, Swoboda S, et al. A novel human in vitro papillomavirus type 16 positive tonsil cancer cell line with high sensitivity to radiation and cisplatin. BMC Cancer. 2019;19:265 pubmed 出版商
  52. Jung H, Fattet L, Tsai J, Kajimoto T, Chang Q, Newton A, et al. Apical-basal polarity inhibits epithelial-mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation. Nat Cell Biol. 2019;21:359-371 pubmed 出版商
  53. Chen X, He Y, Xu A, Deng Z, Feng J, Lu F, et al. Increase of glandular epithelial cell clusters by an external volume expansion device promotes adipose tissue regeneration by recruiting macrophages. Biosci Rep. 2019;39: pubmed 出版商
  54. Chiche A, Di Cicco A, Sesma Sanz L, Bresson L, de la Grange P, Glukhova M, et al. p53 controls the plasticity of mammary luminal progenitor cells downstream of Met signaling. Breast Cancer Res. 2019;21:13 pubmed 出版商
  55. Sachs N, Papaspyropoulos A, Zomer van Ommen D, Heo I, Böttinger L, Klay D, et al. Long-term expanding human airway organoids for disease modeling. EMBO J. 2019;38: pubmed 出版商
  56. Barros Silva J, Linn D, Steiner I, Guo G, Ali A, Pakula H, et al. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep. 2018;25:3504-3518.e6 pubmed 出版商
  57. Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, et al. Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep. 2018;25:3059-3073.e10 pubmed 出版商
  58. Mollaoglu G, Jones A, Wait S, Mukhopadhyay A, Jeong S, Arya R, et al. The Lineage-Defining Transcription Factors SOX2 and NKX2-1 Determine Lung Cancer Cell Fate and Shape the Tumor Immune Microenvironment. Immunity. 2018;49:764-779.e9 pubmed 出版商
  59. Thyagarajan H, Lancaster J, Lira S, Ehrlich L. CCR8 is expressed by post-positive selection CD4-lineage thymocytes but is dispensable for central tolerance induction. PLoS ONE. 2018;13:e0200765 pubmed 出版商
  60. Pereira E, Kedrin D, Seano G, Gautier O, Meijer E, Jones D, et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science. 2018;359:1403-1407 pubmed 出版商
  61. Poli V, Fagnocchi L, Fasciani A, Cherubini A, Mazzoleni S, Ferrillo S, et al. MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nat Commun. 2018;9:1024 pubmed 出版商
  62. Tucker A, Dyer C, Fons Romero J, Teshima T, Fuchs J, Thompson H. Mapping the distribution of stem/progenitor cells across the mouse middle ear during homeostasis and inflammation. Development. 2018;145: pubmed 出版商
  63. Chen L, Hayden M, Gilmore E, Alexander Savino C, Oleksyn D, Gillespie K, et al. PKK deletion in basal keratinocytes promotes tumorigenesis after chemical carcinogenesis. Carcinogenesis. 2018;39:418-428 pubmed 出版商
  64. Blom S, Paavolainen L, Bychkov D, Turkki R, Mäki Teeri P, Hemmes A, et al. Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis. Sci Rep. 2017;7:15580 pubmed 出版商
  65. He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet. 2017;13:e1006992 pubmed 出版商
  66. Aprile F, Källstig E, Limorenko G, Vendruscolo M, Ron D, Hansen C. The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress α-synuclein aggregation. Sci Rep. 2017;7:9039 pubmed 出版商
  67. Fettig L, McGinn O, Finlay Schultz J, LaBarbera D, Nordeen S, Sartorius C. Cross talk between progesterone receptors and retinoic acid receptors in regulation of cytokeratin 5-positive breast cancer cells. Oncogene. 2017;36:6074-6084 pubmed 出版商
  68. Mamo T, Wittern A, Kleppa M, Bohnenpoll T, Weiss A, Kispert A. BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse ureter. Hum Mol Genet. 2017;26:3553-3563 pubmed 出版商
  69. Ku A, Shaver T, Rao A, Howard J, Rodriguez C, Miao Q, et al. TCF7L1 promotes skin tumorigenesis independently of β-catenin through induction of LCN2. elife. 2017;6: pubmed 出版商
  70. Lu X, Horner J, Paul E, Shang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543:728-732 pubmed 出版商
  71. Wang X, Xia Q, Ni H, Ye S, Li R, Wang X, et al. SFPQ/PSF-TFE3 renal cell carcinoma: a clinicopathologic study emphasizing extended morphology and reviewing the differences between SFPQ-TFE3 RCC and the corresponding mesenchymal neoplasm despite an identical gene fusion. Hum Pathol. 2017;63:190-200 pubmed 出版商
  72. Egashira A, Morita M, Kumagai R, Taguchi K, Ueda M, Yamaguchi S, et al. Neuroendocrine carcinoma of the esophagus: Clinicopathological and immunohistochemical features of 14 cases. PLoS ONE. 2017;12:e0173501 pubmed 出版商
  73. Tao L, Xiang D, Xie Y, Bronson R, Li Z. Induced p53 loss in mouse luminal cells causes clonal expansion and development of mammary tumours. Nat Commun. 2017;8:14431 pubmed 出版商
  74. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  75. Butler C, Hynds R, Crowley C, Gowers K, Partington L, Hamilton N, et al. Vacuum-assisted decellularization: an accelerated protocol to generate tissue-engineered human tracheal scaffolds. Biomaterials. 2017;124:95-105 pubmed 出版商
  76. Watanabe K, Chambers J, Uchida K, Nibe K, Ushio N, Horiuchi N, et al. A cutaneous mixed tumor in a dog. J Vet Med Sci. 2017;79:670-673 pubmed 出版商
  77. Anderson P, Lynch T, Engelhardt J. Multipotent Myoepithelial Progenitor Cells Are Born Early during Airway Submucosal Gland Development. Am J Respir Cell Mol Biol. 2017;56:716-726 pubmed 出版商
  78. Kwon Y, Stanciu C, Philpott M, Ehrhardt C. Flow cytometry dataset for cells collected from touched surfaces. F1000Res. 2016;5:390 pubmed 出版商
  79. Fasano M, Della Corte C, Vicidomini G, Scotti V, Rambaldi P, Fiorelli A, et al. Small bowel metastasis from pancreatic cancer in a long-term survival patient with synchronous advanced malignant pleural mesothelioma: A case report and literature review. Oncol Lett. 2016;12:4505-4509 pubmed 出版商
  80. Gomi K, Tang Y, Arbelaez V, Crystal R, Walters M. Endothelial Cell Mediated Promotion of Ciliated Cell Differentiation of Human Airway Basal Cells via Insulin and Insulin-Like Growth Factor 1 Receptor Mediated Signaling. Stem Cell Rev. 2017;13:309-317 pubmed 出版商
  81. Foster M, Gwinn W, Kelly F, Brass D, Valente A, Moseley M, et al. Proteomic Analysis of Primary Human Airway Epithelial Cells Exposed to the Respiratory Toxicant Diacetyl. J Proteome Res. 2017;16:538-549 pubmed 出版商
  82. De Luca Johnson J, Zenali M. A Previously Undescribed Presentation of Mixed Adenoneuroendocrine Carcinoma. Case Rep Pathol. 2016;2016:9063634 pubmed
  83. Lloyd Lewis B, Davis F, Harris O, Hitchcock J, Lourenco F, Pasche M, et al. Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods. Breast Cancer Res. 2016;18:127 pubmed
  84. Bhagirath D, Zhao X, Mirza S, West W, Band H, Band V. Mutant PIK3CA Induces EMT in a Cell Type Specific Manner. PLoS ONE. 2016;11:e0167064 pubmed 出版商
  85. Yang Z, Peng Y, Gopalan A, Gao D, Chen Y, Joyner A. Stromal hedgehog signaling maintains smooth muscle and hampers micro-invasive prostate cancer. Dis Model Mech. 2017;10:39-52 pubmed 出版商
  86. Strietz J, Stepputtis S, Preca B, Vannier C, Kim M, Castro D, et al. ERN1 and ALPK1 inhibit differentiation of bi-potential tumor-initiating cells in human breast cancer. Oncotarget. 2016;7:83278-83293 pubmed 出版商
  87. Williamson S, Metcalf R, Trapani F, Mohan S, Antonello J, Abbott B, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun. 2016;7:13322 pubmed 出版商
  88. Masili Oku S, Bacchi C, Fernandes F, Filassi J, Baracat E, Carvalho F. The Apocrine Profile of Triple-negative Breast Carcinomas in Patients Aged 45 Years or Younger: favorable but rare features. Rev Bras Ginecol Obstet. 2016;38:512-517 pubmed
  89. Sheen M, Marotti J, Allegrezza M, Rutkowski M, Conejo Garcia J, Fiering S. Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis. 2016;5:e267 pubmed 出版商
  90. Davis F, Lloyd Lewis B, Harris O, Kozar S, Winton D, Muresan L, et al. Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny. Nat Commun. 2016;7:13053 pubmed 出版商
  91. Chiche A, Moumen M, Romagnoli M, Petit V, Lasla H, Jézéquel P, et al. p53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors. Oncogene. 2017;36:2355-2365 pubmed 出版商
  92. Hsieh M, Wang H, Lee Y, Ko J, Chang Y. Reevaluation of MAML2 fusion-negative mucoepidermoid carcinoma: a subgroup being actually hyalinizing clear cell carcinoma of the salivary gland with EWSR1 translocation. Hum Pathol. 2017;61:9-18 pubmed 出版商
  93. Ren S, Luo Y, Chen H, Warburton D, Lam H, Wang L, et al. Inactivation of Tsc2 in Mesoderm-Derived Cells Causes Polycystic Kidney Lesions and Impairs Lung Alveolarization. Am J Pathol. 2016;186:3261-3272 pubmed 出版商
  94. Takai K, Le A, Weaver V, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889-82901 pubmed 出版商
  95. Chamberland F, Maurina T, Degano Valmary S, Spicarolen T, Chaigneau L. Angiosarcoma: A Case Report of Gingival Disease with Both Palatine Tonsils Localization. Rare Tumors. 2016;8:5907 pubmed
  96. Hammer S, Becker A, Rateitschak K, Mohr A, Lüder Ripoli F, Hennecke S, et al. Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines. Int J Mol Sci. 2016;17: pubmed
  97. Nielsen T, Jensen M, Burugu S, Gao D, Jørgensen C, Balslev E, et al. High-Risk Premenopausal Luminal A Breast Cancer Patients Derive no Benefit from Adjuvant Cyclophosphamide-based Chemotherapy: Results from the DBCG77B Clinical Trial. Clin Cancer Res. 2017;23:946-953 pubmed 出版商
  98. Kushitani K, Amatya V, Okada Y, Katayama Y, Mawas A, Miyata Y, et al. Utility and pitfalls of immunohistochemistry in the differential diagnosis between epithelioid mesothelioma and poorly differentiated lung squamous cell carcinoma. Histopathology. 2017;70:375-384 pubmed 出版商
  99. Cammareri P, Rose A, Vincent D, Wang J, Nagano A, Libertini S, et al. Inactivation of TGFβ receptors in stem cells drives cutaneous squamous cell carcinoma. Nat Commun. 2016;7:12493 pubmed 出版商
  100. Thienpont B, Steinbacher J, Zhao H, D Anna F, Kuchnio A, Ploumakis A, et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature. 2016;537:63-68 pubmed 出版商
  101. Di Franco S, Turdo A, Benfante A, Colorito M, Gaggianesi M, Apuzzo T, et al. ?Np63 drives metastasis in breast cancer cells via PI3K/CD44v6 axis. Oncotarget. 2016;7:54157-54173 pubmed 出版商
  102. Schuerlein S, Schwarz T, Krziminski S, Gätzner S, Hoppensack A, Schwedhelm I, et al. A versatile modular bioreactor platform for Tissue Engineering. Biotechnol J. 2017;12: pubmed 出版商
  103. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed 出版商
  104. Liu Y, Wang K, Xing H, Zhai X, Wang L, Wang W. Attempt towards a novel classification of triple-negative breast cancer using immunohistochemical markers. Oncol Lett. 2016;12:1240-1256 pubmed
  105. Ocón B, Aranda C, Gámez Belmonte R, Suárez M, Zarzuelo A, Martinez Augustin O, et al. The glucocorticoid budesonide has protective and deleterious effects in experimental colitis in mice. Biochem Pharmacol. 2016;116:73-88 pubmed 出版商
  106. Chen H, Wei Z, Sun J, Bhattacharya A, Savage D, Serda R, et al. A recellularized human colon model identifies cancer driver genes. Nat Biotechnol. 2016;34:845-51 pubmed 出版商
  107. Liang Y, Zhu F, Zhang H, Chen D, Zhang X, Gao Q, et al. Conditional ablation of TGF-? signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model. Sci Rep. 2016;6:29479 pubmed 出版商
  108. Berens E, Sharif G, Schmidt M, Yan G, Shuptrine C, Weiner L, et al. Keratin-associated protein 5-5 controls cytoskeletal function and cancer cell vascular invasion. Oncogene. 2017;36:593-605 pubmed 出版商
  109. Hatem R, El Botty R, Chateau Joubert S, Servely J, Labiod D, de Plater L, et al. Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget. 2016;7:48206-48219 pubmed 出版商
  110. Frohwitter G, Buerger H, van Diest P, Korsching E, Kleinheinz J, Fillies T. Cytokeratin and protein expression patterns in squamous cell carcinoma of the oral cavity provide evidence for two distinct pathogenetic pathways. Oncol Lett. 2016;12:107-113 pubmed
  111. Su Q, Zhang B, Zhang L, Dang T, Rowley D, Ittmann M, et al. Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene. 2017;36:618-627 pubmed 出版商
  112. Dutta A, Le Magnen C, Mitrofanova A, Ouyang X, Califano A, Abate Shen C. Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science. 2016;352:1576-80 pubmed 出版商
  113. Papafotiou G, Paraskevopoulou V, Vasilaki E, Kanaki Z, Paschalidis N, Klinakis A. KRT14 marks a subpopulation of bladder basal cells with pivotal role in regeneration and tumorigenesis. Nat Commun. 2016;7:11914 pubmed 出版商
  114. Toneff M, Sreekumar A, Tinnirello A, Hollander P, Habib S, Li S, et al. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol. 2016;14:47 pubmed 出版商
  115. Kim J, Jeong J, Park S, Jeong J, Ryu Y, Song S. Recurrent renal cell carcinoma manifesting as a large intrathoracic fibrotic mass: A case report. Oncol Lett. 2016;11:3835-3838 pubmed
  116. Fang W, Yao M, Brummer G, Acevedo D, Alhakamy N, Berkland C, et al. Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment. Oncotarget. 2016;7:49349-49367 pubmed 出版商
  117. Szalayova G, Ogrodnik A, Spencer B, Wade J, Bunn J, Ambaye A, et al. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation. Breast Cancer Res Treat. 2016;157:461-74 pubmed 出版商
  118. Rigden H, Alias A, Havelock T, O Donnell R, Djukanovic R, Davies D, et al. Squamous Metaplasia Is Increased in the Bronchial Epithelium of Smokers with Chronic Obstructive Pulmonary Disease. PLoS ONE. 2016;11:e0156009 pubmed 出版商
  119. Kuga T, Sasaki M, Mikami T, Miake Y, Adachi J, Shimizu M, et al. FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes. Sci Rep. 2016;6:26557 pubmed 出版商
  120. Gomi K, Staudt M, Salit J, Kaner R, Heldrich J, Rogalski A, et al. JAG1-Mediated Notch Signaling Regulates Secretory Cell Differentiation of the Human Airway Epithelium. Stem Cell Rev. 2016;12:454-63 pubmed 出版商
  121. Fabbri R, Macciocca M, Vicenti R, Paradisi R, Klinger F, Pasquinelli G, et al. Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol. 2016;12:1699-711 pubmed 出版商
  122. Wang N, Dong B, Quan Y, Chen Q, Chu M, Xu J, et al. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status. Stem Cell Reports. 2016;6:668-678 pubmed 出版商
  123. Alaee M, Danesh G, Pasdar M. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53. PLoS ONE. 2016;11:e0154323 pubmed 出版商
  124. Kobayashi K, Tsugami Y, Matsunaga K, Oyama S, Kuki C, Kumura H. Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with ?-casein expression in mammary epithelial cells. Biochim Biophys Acta. 2016;1863:2006-16 pubmed 出版商
  125. Thakkar A, Wang B, Picon Ruiz M, Buchwald P, Ince T. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat. 2016;157:77-90 pubmed 出版商
  126. Seo A, Lee H, Kim E, Jang M, Kim Y, Kim J, et al. Expression of breast cancer stem cell markers as predictors of prognosis and response to trastuzumab in HER2-positive breast cancer. Br J Cancer. 2016;114:1109-16 pubmed 出版商
  127. Zhu M, Bakhru P, Conley B, Nelson J, Free M, Martin A, et al. Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator. Nat Commun. 2016;7:11350 pubmed 出版商
  128. Liang L, Huang H, Dadhania V, Zhang J, Zhang M, Liu J. Renal cell carcinoma metastatic to the ovary or fallopian tube: a clinicopathological study of 9 cases. Hum Pathol. 2016;51:96-102 pubmed 出版商
  129. Balasooriya G, Johnson J, Basson M, Rawlins E. An FGFR1-SPRY2 Signaling Axis Limits Basal Cell Proliferation in the Steady-State Airway Epithelium. Dev Cell. 2016;37:85-97 pubmed 出版商
  130. Holloway K, Sinha V, Bu W, Toneff M, Dong J, Peng Y, et al. Targeting Oncogenes into a Defined Subset of Mammary Cells Demonstrates That the Initiating Oncogenic Mutation Defines the Resulting Tumor Phenotype. Int J Biol Sci. 2016;12:381-8 pubmed 出版商
  131. Hes O, Condom Mundo E, Peckova K, Lopez J, Martinek P, Vanecek T, et al. Biphasic Squamoid Alveolar Renal Cell Carcinoma: A Distinctive Subtype of Papillary Renal Cell Carcinoma?. Am J Surg Pathol. 2016;40:664-75 pubmed 出版商
  132. Park S, Kim J, Kim N, Yang K, Shim J, Heo K. Estradiol, TGF-?1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration. Oncol Lett. 2016;11:1895-1902 pubmed
  133. Ananthula S, Sinha A, El Gassim M, Batth S, Marshall G, Gardner L, et al. Geminin overexpression-dependent recruitment and crosstalk with mesenchymal stem cells enhance aggressiveness in triple negative breast cancers. Oncotarget. 2016;7:20869-89 pubmed 出版商
  134. Cammas A, Lacroix Triki M, Pierredon S, Le Bras M, Iacovoni J, Teulade Fichou M, et al. hnRNP A1-mediated translational regulation of the G quadruplex-containing RON receptor tyrosine kinase mRNA linked to tumor progression. Oncotarget. 2016;7:16793-805 pubmed 出版商
  135. Kim S, Kim E, Lee H, Kim M, Yoon J, Koo J, et al. Asymptomatic Benign Papilloma Without Atypia Diagnosed at Ultrasonography-Guided 14-Gauge Core Needle Biopsy: Which Subgroup can be Managed by Observation?. Ann Surg Oncol. 2016;23:1860-6 pubmed 出版商
  136. Roy J, Kim B, Hill E, Visconti P, Krapf D, Vinegoni C, et al. Tyrosine kinase-mediated axial motility of basal cells revealed by intravital imaging. Nat Commun. 2016;7:10666 pubmed 出版商
  137. Johnson D, Hooker E, Luong R, Yu E, He Y, Gonzalgo M, et al. Conditional Expression of the Androgen Receptor Increases Susceptibility of Bladder Cancer in Mice. PLoS ONE. 2016;11:e0148851 pubmed 出版商
  138. Lazarevic I, Engelhardt B. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier. Fluids Barriers CNS. 2016;13:2 pubmed 出版商
  139. Tadokoro T, Gao X, Hong C, Hotten D, Hogan B. BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors. Development. 2016;143:764-73 pubmed 出版商
  140. Crowley C, Klanrit P, Butler C, Varanou A, Platé M, Hynds R, et al. Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold. Biomaterials. 2016;83:283-93 pubmed 出版商
  141. Wang S, Liu J, Kim D, Datti A, Zacksenhaus E. Targeted Pten deletion plus p53-R270H mutation in mouse mammary epithelium induces aggressive claudin-low and basal-like breast cancer. Breast Cancer Res. 2016;18:9 pubmed 出版商
  142. Nalwoga H, Ahmed L, Arnes J, Wabinga H, Akslen L. Strong Expression of Hypoxia-Inducible Factor-1α (HIF-1α) Is Associated with Axl Expression and Features of Aggressive Tumors in African Breast Cancer. PLoS ONE. 2016;11:e0146823 pubmed 出版商
  143. Maimets M, Rocchi C, Bron R, Pringle S, Kuipers J, Giepmans B, et al. Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals. Stem Cell Reports. 2016;6:150-62 pubmed 出版商
  144. Martínez Martínez M, Mosqueda Taylor A, Delgado Azañero W, Rumayor Piña A, de Almeida O. Primary intraosseous squamous cell carcinoma arising in an odontogenic keratocyst previously treated with marsupialization: case report and immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:e87-95 pubmed 出版商
  145. Shin H, Pei Z, Martinez K, Rivera Viñas J, Méndez K, Cavallin H, et al. The first microbial environment of infants born by C-section: the operating room microbes. Microbiome. 2015;3:59 pubmed 出版商
  146. Bonkhoff H. Significance of prostate cancer missed on needle biopsy tools for retrieving missed cancer. Prostate. 2016;76:369-75 pubmed 出版商
  147. Yoshie S, Imaizumi M, Nakamura R, Otsuki K, Ikeda M, Nomoto Y, et al. Generation of airway epithelial cells with native characteristics from mouse induced pluripotent stem cells. Cell Tissue Res. 2016;364:319-30 pubmed 出版商
  148. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed 出版商
  149. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed 出版商
  150. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  151. Wang Z, Kim J, Teng Y, Ding H, Zhang J, Hai T, et al. Loss of ATF3 promotes hormone-induced prostate carcinogenesis and the emergence of CK5(+)CK8(+) epithelial cells. Oncogene. 2016;35:3555-64 pubmed 出版商
  152. Hurley P, Sundi D, Shinder B, Simons B, Hughes R, Miller R, et al. Germline Variants in Asporin Vary by Race, Modulate the Tumor Microenvironment, and Are Differentially Associated with Metastatic Prostate Cancer. Clin Cancer Res. 2016;22:448-58 pubmed 出版商
  153. KapucuoÄŸlu N, Bozkurt K, BaÅŸpınar Å, Koçer M, EroÄŸlu H, Akdeniz R, et al. The clinicopathological and prognostic significance of CD24, CD44, CD133, ALDH1 expressions in invasive ductal carcinoma of the breast: CD44/CD24 expression in breast cancer. Pathol Res Pract. 2015;211:740-7 pubmed 出版商
  154. Sauter J, Ambaye A, Mount S. Increased utilization, verification, and clinical implications of immunocytochemistry: Experience in a northern New England hospital. Diagn Cytopathol. 2015;43:688-95 pubmed 出版商
  155. Ding B, Gomi K, Rafii S, Crystal R, Walters M. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells. J Cell Sci. 2015;128:2983-8 pubmed 出版商
  156. Goodman C, Sato T, Peck A, Girondo M, Yang N, Liu C, et al. Steroid induction of therapy-resistant cytokeratin-5-positive cells in estrogen receptor-positive breast cancer through a BCL6-dependent mechanism. Oncogene. 2016;35:1373-85 pubmed 出版商
  157. Hein S, Haricharan S, Johnston A, Toneff M, Reddy J, Dong J, et al. Luminal epithelial cells within the mammary gland can produce basal cells upon oncogenic stress. Oncogene. 2016;35:1461-7 pubmed 出版商
  158. Yuri S, Nishikawa M, Yanagawa N, Jo O, Yanagawa N. Maintenance of Mouse Nephron Progenitor Cells in Aggregates with Gamma-Secretase Inhibitor. PLoS ONE. 2015;10:e0129242 pubmed 出版商
  159. Berry R, Ozdemir D, Aronow B, Lindström N, Dudnakova T, Thornburn A, et al. Deducing the stage of origin of Wilms' tumours from a developmental series of Wt1-mutant mice. Dis Model Mech. 2015;8:903-17 pubmed 出版商
  160. Eriksson P, Aine M, Veerla S, Liedberg F, Sjödahl G, Höglund M. Molecular subtypes of urothelial carcinoma are defined by specific gene regulatory systems. BMC Med Genomics. 2015;8:25 pubmed 出版商
  161. de Deus Moura R, Carvalho F, Bacchi C. Breast cancer in very young women: Clinicopathological study of 149 patients ≤25 years old. Breast. 2015;24:461-7 pubmed 出版商
  162. Swaminathan T, Basheer V, Kumar R, Kathirvelpandian A, Sood N, Jena J. Establishment and characterization of fin-derived cell line from ornamental carp, Cyprinus carpio koi, for virus isolation in India. In Vitro Cell Dev Biol Anim. 2015;51:705-13 pubmed 出版商
  163. Muhanna N, Mepham A, Mohamadi R, Chan H, Khan T, Akens M, et al. Nanoparticle-based sorting of circulating tumor cells by epithelial antigen expression during disease progression in an animal model. Nanomedicine. 2015;11:1613-20 pubmed 出版商
  164. Kershaw S, Cummings J, Morris K, Tugwood J, Dive C. Optimisation of immunofluorescence methods to determine MCT1 and MCT4 expression in circulating tumour cells. BMC Cancer. 2015;15:387 pubmed 出版商
  165. Katanov C, Lerrer S, Liubomirski Y, Leider Trejo L, Meshel T, Bar J, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-? and the NF-?B pathway. Stem Cell Res Ther. 2015;6:87 pubmed 出版商
  166. Liu H, Du L, Wang R, Wei C, Liu B, Zhu L, et al. High frequency of loss of PTEN expression in human solid salivary adenoid cystic carcinoma and its implication for targeted therapy. Oncotarget. 2015;6:11477-91 pubmed
  167. Lee S, Luong R, Johnson D, Cunha G, Rivina L, Gonzalgo M, et al. Androgen signaling is a confounding factor for β-catenin-mediated prostate tumorigenesis. Oncogene. 2016;35:702-14 pubmed 出版商
  168. Sanguinetti A, Santini D, Bonafè M, Taffurelli M, Avenia N. Interleukin-6 and pro inflammatory status in the breast tumor microenvironment. World J Surg Oncol. 2015;13:129 pubmed 出版商
  169. Sood N, Chaudhary D, Pradhan P, Verma D, Raja Swaminathan T, Kushwaha B, et al. Establishment and characterization of a continuous cell line from thymus of striped snakehead, Channa striatus (Bloch 1793). In Vitro Cell Dev Biol Anim. 2015;51:787-96 pubmed 出版商
  170. Fausther M, Goree J, Lavoie Ã, Graham A, Sévigny J, Dranoff J. Establishment and characterization of rat portal myofibroblast cell lines. PLoS ONE. 2015;10:e0121161 pubmed 出版商
  171. Savci Heijink C, Halfwerk H, Hooijer G, Horlings H, Wesseling J, van de Vijver M. Retrospective analysis of metastatic behaviour of breast cancer subtypes. Breast Cancer Res Treat. 2015;150:547-57 pubmed 出版商
  172. Skogberg G, Lundberg V, Berglund M, Gudmundsdottir J, Telemo E, Lindgren S, et al. Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens. Immunol Cell Biol. 2015;93:727-34 pubmed 出版商
  173. Gomi K, Arbelaez V, Crystal R, Walters M. Activation of NOTCH1 or NOTCH3 signaling skews human airway basal cell differentiation toward a secretory pathway. PLoS ONE. 2015;10:e0116507 pubmed 出版商
  174. Ahmed H, Abdul Gader Suliman R, Abd El Aziz M, Alshammari F. Immunohistochemical expression of cytokeratins and epithelial membrane protein 2 in nasopharyngeal carcinoma and its potential implications. Asian Pac J Cancer Prev. 2015;16:653-6 pubmed
  175. Muscatello L, Sarli G, Beha G, Asproni P, Millanta F, Poli A, et al. Validation of tissue microarray for molecular profiling of canine and feline mammary tumours. J Comp Pathol. 2015;152:153-60 pubmed 出版商
  176. Zheng L, Cardaci S, Jerby L, MacKenzie E, Sciacovelli M, Johnson T, et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat Commun. 2015;6:6001 pubmed 出版商
  177. Weissferdt A, Rodriguez Canales J, Liu H, Fujimoto J, Wistuba I, Moran C. Primary mediastinal seminomas: a comprehensive immunohistochemical study with a focus on novel markers. Hum Pathol. 2015;46:376-83 pubmed 出版商
  178. Moser B, Schiefer A, Janik S, Marx A, Prosch H, Pohl W, et al. Adenocarcinoma of the thymus, enteric type: report of 2 cases, and proposal for a novel subtype of thymic carcinoma. Am J Surg Pathol. 2015;39:541-8 pubmed 出版商
  179. German S, Campbell K, Thornton E, McLachlan G, Sweetman D, Alberio R. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer. Cell Reprogram. 2015;17:19-27 pubmed 出版商
  180. Tozbikian G, Brogi E, Kadota K, Catalano J, Akram M, Patil S, et al. Mesothelin expression in triple negative breast carcinomas correlates significantly with basal-like phenotype, distant metastases and decreased survival. PLoS ONE. 2014;9:e114900 pubmed 出版商
  181. Suzuki D, Sahu R, Leu N, Senoo M. The carboxy-terminus of p63 links cell cycle control and the proliferative potential of epidermal progenitor cells. Development. 2015;142:282-90 pubmed 出版商
  182. Sivan U, Jayakumar K, Krishnan L. Constitution of fibrin-based niche for in vitro differentiation of adipose-derived mesenchymal stem cells to keratinocytes. Biores Open Access. 2014;3:339-47 pubmed 出版商
  183. Zuo W, Zhang T, Wu D, Guan S, Liew A, Yamamoto Y, et al. p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration. Nature. 2015;517:616-20 pubmed 出版商
  184. Beck A, Brooks A, Zeiss C. Invasive ductular carcinoma in 2 rhesus macaques (Macaca mulatta). Comp Med. 2014;64:314-22 pubmed
  185. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  186. Chierchia L, Tussellino M, Guarino D, Carotenuto R, DeMarco N, Campanella C, et al. Cytoskeletal proteins associate with components of the ribosomal maturation and translation apparatus in Xenopus stage I oocytes. Zygote. 2015;23:669-82 pubmed 出版商
  187. Li L, Fan X, Xia Q, Rao Q, Liu B, Yu B, et al. Concurrent loss of INI1, PBRM1, and BRM expression in epithelioid sarcoma: implications for the cocontributions of multiple SWI/SNF complex members to pathogenesis. Hum Pathol. 2014;45:2247-54 pubmed 出版商
  188. Sajin M, Luchian M, Hodorogea Prisăcaru A, Dumitru A, Pătraşcu O, Costache D, et al. Trichilemmal carcinoma - a rare cutaneous malignancy: report of two cases. Rom J Morphol Embryol. 2014;55:687-91 pubmed
  189. Costache M, Pătraşcu O, Dumitru A, Costache D, Voinea L, Simionescu O, et al. Histopathological findings concerning ocular melanomas. Rom J Morphol Embryol. 2014;55:649-53 pubmed
  190. Thompson L, Bauer J, Chiosea S, McHugh J, Seethala R, Miettinen M, et al. Canalicular adenoma: a clinicopathologic and immunohistochemical analysis of 67 cases with a review of the literature. Head Neck Pathol. 2015;9:181-95 pubmed 出版商
  191. Jeon Y, Moon K, Park S, Chung D. Primary pulmonary myxoid sarcomas with EWSR1-CREB1 translocation might originate from primitive peribronchial mesenchymal cells undergoing (myo)fibroblastic differentiation. Virchows Arch. 2014;465:453-61 pubmed 出版商
  192. Guan H, Tan J, Zhang F, Gao L, Bai L, Qi D, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12. Histopathology. 2015;66:781-90 pubmed 出版商
  193. Yun E, Baek S, Xie D, Tseng S, Dobin T, Hernandez E, et al. DAB2IP regulates cancer stem cell phenotypes through modulating stem cell factor receptor and ZEB1. Oncogene. 2015;34:2741-52 pubmed 出版商
  194. Skogberg G, Lundberg V, Lindgren S, Gudmundsdottir J, Sandström K, Kämpe O, et al. Altered expression of autoimmune regulator in infant down syndrome thymus, a possible contributor to an autoimmune phenotype. J Immunol. 2014;193:2187-95 pubmed 出版商
  195. Syed B, Green A, Nolan C, Morgan D, Ellis I, Cheung K. Biological characteristics and clinical outcome of triple negative primary breast cancer in older women - comparison with their younger counterparts. PLoS ONE. 2014;9:e100573 pubmed 出版商
  196. Abdelzaher E, Abdallah D. Expression of mesothelioma-related markers in meningiomas: an immunohistochemical study. Biomed Res Int. 2014;2014:968794 pubmed 出版商
  197. Greaves E, Cousins F, Murray A, Esnal Zufiaurre A, Fassbender A, Horne A, et al. A novel mouse model of endometriosis mimics human phenotype and reveals insights into the inflammatory contribution of shed endometrium. Am J Pathol. 2014;184:1930-9 pubmed 出版商
  198. Rito M, Schmitt F, Pinto A, André S. Fibromatosis-like metaplastic carcinoma of the breast has a claudin-low immunohistochemical phenotype. Virchows Arch. 2014;465:185-91 pubmed 出版商
  199. Oishi N, Kondo T, Nakazawa T, Mochizuki K, Kasai K, Inoue T, et al. Thyroid-like low-grade nasopharyngeal papillary adenocarcinoma: case report and literature review. Pathol Res Pract. 2014;210:1142-5 pubmed 出版商
  200. Castilla M, Lopez Garcia M, Atienza M, Rosa Rosa J, Díaz Martín J, Pecero M, et al. VGLL1 expression is associated with a triple-negative basal-like phenotype in breast cancer. Endocr Relat Cancer. 2014;21:587-99 pubmed 出版商
  201. Zhang L, Frank R, Furth E, Ziober A, LiVolsi V, Zhang P. Expression and diagnostic values of calretinin and CK5/6 in cholangiocarcinoma. Exp Hematol Oncol. 2014;3:12 pubmed 出版商
  202. Ordonez N, Sahin A. Diagnostic utility of immunohistochemistry in distinguishing between epithelioid pleural mesotheliomas and breast carcinomas: a comparative study. Hum Pathol. 2014;45:1529-40 pubmed 出版商
  203. Uchoa D, Graudenz M, Callegari Jacques S, Hartmann C, Ferreira B, Fitarelli Kiehl M, et al. Expression of cancer stem cell markers in basal and penta-negative breast carcinomas--a study of a series of triple-negative tumors. Pathol Res Pract. 2014;210:432-9 pubmed 出版商
  204. Mountzios G, Aivazi D, Kostopoulos I, Kourea H, Kouvatseas G, Timotheadou E, et al. Differential expression of the insulin-like growth factor receptor among early breast cancer subtypes. PLoS ONE. 2014;9:e91407 pubmed 出版商
  205. Ryszawy D, Sarna M, Rak M, Szpak K, Kedracka Krok S, Michalik M, et al. Functional links between Snail-1 and Cx43 account for the recruitment of Cx43-positive cells into the invasive front of prostate cancer. Carcinogenesis. 2014;35:1920-30 pubmed 出版商
  206. Liu Z, Yu N, Holz F, Yang F, Stanzel B. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837-50 pubmed 出版商
  207. Park H, Jang M, Kim E, Kim H, Lee H, Kim Y, et al. High EGFR gene copy number predicts poor outcome in triple-negative breast cancer. Mod Pathol. 2014;27:1212-22 pubmed 出版商
  208. Stratmann A, Fecher D, Wangorsch G, Göttlich C, Walles T, Walles H, et al. Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Mol Oncol. 2014;8:351-65 pubmed 出版商
  209. Motomura K, Sumino H, Noguchi A, Horinouchi T, Nakanishi K. Sentinel nodes identified by computed tomography-lymphography accurately stage the axilla in patients with breast cancer. BMC Med Imaging. 2013;13:42 pubmed 出版商
  210. Tilch E, Seidens T, Cocciardi S, Reid L, Byrne D, Simpson P, et al. Mutations in EGFR, BRAF and RAS are rare in triple-negative and basal-like breast cancers from Caucasian women. Breast Cancer Res Treat. 2014;143:385-92 pubmed 出版商
  211. Bulysheva A, Bowlin G, Petrova S, Yeudall W. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds. Biomed Mater. 2013;8:055009 pubmed 出版商
  212. Yousem S. Immunohistochemical and molecular characterization of clear cell carcinoma of the lung. Hum Pathol. 2013;44:2467-74 pubmed 出版商
  213. Motomura K, Izumi T, Tateishi S, Sumino H, Noguchi A, Horinouchi T, et al. Correlation between the area of high-signal intensity on SPIO-enhanced MR imaging and the pathologic size of sentinel node metastases in breast cancer patients with positive sentinel nodes. BMC Med Imaging. 2013;13:32 pubmed 出版商
  214. Andres R, Pajares I, Balmana J, Llort G, Ramon Y Cajal T, Chirivella I, et al. Association of BRCA1 germline mutations in young onset triple-negative breast cancer (TNBC). Clin Transl Oncol. 2014;16:280-4 pubmed 出版商
  215. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  216. Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T, et al. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS ONE. 2013;8:e67466 pubmed 出版商
  217. Zhang J, Wang Y, Yin Q, Zhang W, Zhang T, Niu Y. An associated classification of triple negative breast cancer: the risk of relapse and the response to chemotherapy. Int J Clin Exp Pathol. 2013;6:1380-91 pubmed
  218. Ohta K, Taki M, Ogawa I, Ono S, Mizuta K, Fujimoto S, et al. Malignant ossifying fibromyxoid tumor of the tongue: case report and review of the literature. Head Face Med. 2013;9:16 pubmed 出版商
  219. Nassiri F, Scheithauer B, Corwin D, Kaplan H, Mayberg M, Cusimano M, et al. Invasive thymoma metastatic to the cavernous sinus. Surg Neurol Int. 2013;4:74 pubmed 出版商
  220. Blanchard A, Ma X, Dueck K, Penner C, Cooper S, Mulhall D, et al. Claudin 1 expression in basal-like breast cancer is related to patient age. BMC Cancer. 2013;13:268 pubmed 出版商
  221. Okumura N, Akutsu H, Sugawara T, Miura T, Takezawa Y, Hosoda A, et al. ?-catenin functions pleiotropically in differentiation and tumorigenesis in mouse embryo-derived stem cells. PLoS ONE. 2013;8:e63265 pubmed 出版商
  222. Yakkioui Y, Temel Y, Creytens D, Jahanshahi A, Fleischeuer R, Santegoeds R, et al. A comparison of cell-cycle markers in skull base and sacral chordomas. World Neurosurg. 2014;82:e311-8 pubmed 出版商
  223. Corrêa N, Kuasne H, Faria J, Seixas C, Santos I, Abreu F, et al. Genomic and phenotypic profiles of two Brazilian breast cancer cell lines derived from primary human tumors. Oncol Rep. 2013;29:1299-307 pubmed 出版商
  224. Yang G, Li J, Jin H, Ding H. Is mammary not otherwise specified-type sarcoma with CD10 expression a distinct entity? A rare case report with immunohistochemical and ultrastructural study. Diagn Pathol. 2013;8:14 pubmed 出版商
  225. Weli S, Aamelfot M, Dale O, Koppang E, Falk K. Infectious salmon anaemia virus infection of Atlantic salmon gill epithelial cells. Virol J. 2013;10:5 pubmed 出版商
  226. Beha G, Brunetti B, Asproni P, Muscatello L, Millanta F, Poli A, et al. Molecular portrait-based correlation between primary canine mammary tumor and its lymph node metastasis: possible prognostic-predictive models and/or stronghold for specific treatments?. BMC Vet Res. 2012;8:219 pubmed 出版商
  227. Beha G, Sarli G, Brunetti B, Sassi F, Ferrara D, Benazzi C. Morphology of the myoepithelial cell: immunohistochemical characterization from resting to motile phase. ScientificWorldJournal. 2012;2012:252034 pubmed 出版商
  228. Lv S, Song Y, Xu J, Shu H, Zhou Z, An N, et al. A novel TP53 somatic mutation involved in the pathogenesis of pediatric choroid plexus carcinoma. Med Sci Monit. 2012;18:CS37-41 pubmed
  229. Sohn W, Gwon G, An C, Moon C, Bae Y, Yamamoto H, et al. Morphological evidences in circumvallate papilla and von Ebners' gland development in mice. Anat Cell Biol. 2011;44:274-83 pubmed 出版商
  230. Khoja L, Backen A, Sloane R, Menasce L, Ryder D, Krebs M, et al. A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer. 2012;106:508-16 pubmed 出版商
  231. Romero Alemán M, Monzon Mayor M, Santos E, Lang D, Yanes C. Neuronal and glial differentiation during lizard (Gallotia galloti) visual system ontogeny. J Comp Neurol. 2012;520:2163-84 pubmed 出版商
  232. Petrilli G, Lorenzi L, Paracchini R, Ubiali A, Schumacher R, Cabassa P, et al. Epstein-Barr virus-associated adrenal smooth muscle tumors and disseminated diffuse large B-cell lymphoma in a child with common variable immunodeficiency: a case report and review of the literature. Int J Surg Pathol. 2014;22:712-21 pubmed 出版商
  233. Ingthorsson S, Halldorsson T, Sigurdsson V, Friðriksdottir A, Bodvarsdottir S, Steinarsdottir M, et al. Selection for EGFR gene amplification in a breast epithelial cell line with basal-like phenotype and hereditary background. In Vitro Cell Dev Biol Anim. 2011;47:139-48 pubmed 出版商
  234. Baydar D, Kulac I, Gurel B, De Marzo A. A case of prostatic adenocarcinoma with aberrant p63 expression: presentation with detailed immunohistochemical study and FISH analysis. Int J Surg Pathol. 2011;19:131-6 pubmed 出版商
  235. Perrone F, Jocollè G, Pennati M, Deraco M, Baratti D, Brich S, et al. Receptor tyrosine kinase and downstream signalling analysis in diffuse malignant peritoneal mesothelioma. Eur J Cancer. 2010;46:2837-48 pubmed 出版商
  236. Gil da Costa R, Santos M, Amorim I, Lopes C, Pereira P, Faustino A. An immunohistochemical study of feline endometrial adenocarcinoma. J Comp Pathol. 2009;140:254-9 pubmed 出版商
  237. Rhee K, Wu S, Wu X, Huso D, Karim B, Franco A, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009;77:1708-18 pubmed 出版商
  238. Rodriguez F, Scheithauer B, Giannini C, Bryant S, Jenkins R. Epithelial and pseudoepithelial differentiation in glioblastoma and gliosarcoma: a comparative morphologic and molecular genetic study. Cancer. 2008;113:2779-89 pubmed 出版商
  239. Blind C, Koepenik A, Pacyna Gengelbach M, Fernahl G, Deutschmann N, Dietel M, et al. Antigenicity testing by immunohistochemistry after tissue oxidation. J Clin Pathol. 2008;61:79-83 pubmed
  240. Lu S, Yu G, Zhu Y, Archer M. Cyclooxygenase-2 overexpression in MCF-10F human breast epithelial cells inhibits proliferation, apoptosis and differentiation, and causes partial transformation. Int J Cancer. 2005;116:847-52 pubmed
  241. Gilbert S, Loranger A, Marceau N. Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol Cell Biol. 2004;24:7072-81 pubmed
  242. Song S, Park S, Kim S, Suh Y. Oncocytic adrenocortical carcinomas: a pathological and immunohistochemical study of four cases in comparison with conventional adrenocortical carcinomas. Pathol Int. 2004;54:603-10 pubmed
  243. Kokenyesi R, Murray K, Benshushan A, Huntley E, Kao M. Invasion of interstitial matrix by a novel cell line from primary peritoneal carcinosarcoma, and by established ovarian carcinoma cell lines: role of cell-matrix adhesion molecules, proteinases, and E-cadherin expression. Gynecol Oncol. 2003;89:60-72 pubmed