这是一篇来自已证抗体库的有关人类 KRT8的综述,是根据233篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合KRT8 抗体。
KRT8 同义词: CARD2; CK-8; CK8; CYK8; K2C8; K8; KO

赛默飞世尔
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6b
赛默飞世尔 KRT8抗体(eBioscience, 53-9003-82)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6b). Commun Biol (2022) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2, 4a, 4b
赛默飞世尔 KRT8抗体(InVitrogen, MA5-13156)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2, 4a, 4b). Mol Oncol (2022) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2b
赛默飞世尔 KRT8抗体(Lab Vision, MS-343-P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2b). Sci Adv (2021) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 人类
赛默飞世尔 KRT8抗体(eBioscience, 53-9003-82)被用于被用于流式细胞仪在人类样本上. Nat Commun (2021) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 4a
赛默飞世尔 KRT8抗体(eBioscience, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4a). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 猕猴; 0.2 ug/ml; 图 4g
赛默飞世尔 KRT8抗体(Thermo Fisher, 41-9003-82)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为0.2 ug/ml (图 4g). Science (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
赛默飞世尔 KRT8抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Nat Cell Biol (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 图 4, 5
赛默飞世尔 KRT8抗体(eBioscience, AE1/AE3)被用于被用于免疫细胞化学在人类样本上 (图 4, 5). Breast Cancer Res (2019) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 人类; 图 s1b
赛默飞世尔 KRT8抗体(Thermo Fischer, MA5-13203)被用于被用于免疫细胞化学在人类样本上 (图 s1b). Sci Rep (2017) ncbi
小鼠 单克隆(5D3)
  • 其他; 人类; 图 s1
赛默飞世尔 KRT8抗体(Thermo Fisher, MA5-14088)被用于被用于其他在人类样本上 (图 s1). Cell Chem Biol (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 2
赛默飞世尔 KRT8抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 2). Hum Pathol (2017) ncbi
小鼠 单克隆(AE3)
  • 流式细胞仪; 人类
赛默飞世尔 KRT8抗体(eBioscience, 14-900-80)被用于被用于流式细胞仪在人类样本上. F1000Res (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 3d
赛默飞世尔 KRT8抗体(Thermo Scientific, AE1-AE3)被用于被用于免疫组化在人类样本上 (图 3d). Case Rep Pathol (2016) ncbi
小鼠 单克隆(TS1)
  • 免疫印迹; 人类; 图 2e
赛默飞世尔 KRT8抗体(Thermo Fisher, TS1)被用于被用于免疫印迹在人类样本上 (图 2e). Sci Rep (2016) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 3d
赛默飞世尔 KRT8抗体(Thermo Scientific, MA5-13203)被用于被用于免疫细胞化学在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 3d). Oncogene (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 5b
赛默飞世尔 KRT8抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5b). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(TS1)
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 图 3h
赛默飞世尔 KRT8抗体(Thermo Scientific, TS1)被用于被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 3h). Sci Rep (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:50; 图 1
赛默飞世尔 KRT8抗体(ThermoFisher Scientific, MA5-13156)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). Future Oncol (2016) ncbi
小鼠 单克隆(TS1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔 KRT8抗体(Thermo Fisher Scientific, MS-997-P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Genes Cancer (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 s3
赛默飞世尔 KRT8抗体(分子探针, 985542A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3). Microbiome (2015) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 人类; 图 4
赛默飞世尔 KRT8抗体(Thermo Fisher Scientific, EP1628Y)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Biomed Res Int (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔 KRT8抗体(Thermo Scientific, MA5-13203)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
赛默飞世尔 KRT8抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Pathol Res Pract (2015) ncbi
小鼠 单克隆(5D3)
  • 免疫细胞化学; 人类; 1:50; 图 5
赛默飞世尔 KRT8抗体(Thermo Scientific, MS-743-S)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 小鼠; 1:100; 表 2
赛默飞世尔 KRT8抗体(eBioscience, 41-9003)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (表 2). J Cell Physiol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 KRT8抗体(Thermo Scientific, PA5-28985)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 2
赛默飞世尔 KRT8抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 2). Diagn Cytopathol (2015) ncbi
小鼠 单克隆(5D3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s1
赛默飞世尔 KRT8抗体(Thermo Scientific, 5D3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s1). Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 鲤
赛默飞世尔 KRT8抗体(生活技术, MA5-13156)被用于被用于免疫细胞化学在鲤样本上. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类; 1 ul
赛默飞世尔 KRT8抗体(eBioscience, 53-9003-82)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上浓度为1 ul. Nanomedicine (2015) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 KRT8抗体(Thermo Scientific, 4545)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫印迹; 人类
赛默飞世尔 KRT8抗体(Thermo Fisher Scientific, MA5-13203)被用于被用于免疫印迹在人类样本上. Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(AE1/AE3)
赛默飞世尔 KRT8抗体(Invitrogen, AE1/AE3)被用于. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 10-20 ug/ml
赛默飞世尔 KRT8抗体(Lab.Vision, Ab-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为10-20 ug/ml. Asian Pac J Cancer Prev (2015) ncbi
小鼠 单克隆(5D3)
  • 免疫组化; 人类; 1:100
赛默飞世尔 KRT8抗体(Neomarkers, MS 743-S)被用于被用于免疫组化在人类样本上浓度为1:100. Histopathology (2015) ncbi
小鼠 单克隆(AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔 KRT8抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔 KRT8抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔 KRT8抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 KRT8抗体(Thermo Fisher Scientific, PA532469)被用于. Fertil Steril (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
赛默飞世尔 KRT8抗体(ThermoFisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Development (2015) ncbi
小鼠 单克隆(AE-1)
  • 免疫组化; 人类; ready-to-use
赛默飞世尔 KRT8抗体(Thermo Scientific, AE1)被用于被用于免疫组化在人类样本上浓度为ready-to-use. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(AE1)
  • 免疫组化; 人类; ready-to-use
赛默飞世尔 KRT8抗体(Thermo Scientific, AE1)被用于被用于免疫组化在人类样本上浓度为ready-to-use. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(TS1)
  • 免疫组化; 人类; 1:300
赛默飞世尔 KRT8抗体(Thermo Scientific, TS1)被用于被用于免疫组化在人类样本上浓度为1:300. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT8抗体(Neo Markers, MS343)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Comp Med (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔 KRT8抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(8A5D12)
  • 免疫细胞化学; 人类
赛默飞世尔 KRT8抗体(Thermo Fisher Scientific, MA5-15460)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT8抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Hum Pathol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT8抗体(Thermo Fisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔 KRT8抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Histopathology (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类
赛默飞世尔 KRT8抗体(Thermo, AE1/AE3)被用于被用于免疫组化在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔 KRT8抗体(Thermo Fisher, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Biomed Mater (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 KRT8抗体(Thermoelectron, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔 KRT8抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Sci Rep (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:100; 图 1
赛默飞世尔 KRT8抗体(eBioscience, AE1/AE3)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 1
赛默飞世尔 KRT8抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 1). Head Face Med (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 1:200; 图 4
赛默飞世尔 KRT8抗体(Zymed, AE1-AE3)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Surg Neurol Int (2013) ncbi
domestic rabbit 单克隆(SP102)
赛默飞世尔 KRT8抗体(Thermo Scientific, RM-2107-R7)被用于. Cell Death Differ (2013) ncbi
domestic rabbit 单克隆(SP102)
  • 流式细胞仪; 人类; 1:200; 图 s2
  • 免疫细胞化学; 人类; 1:200; 图 6
赛默飞世尔 KRT8抗体(Thermo Scientific, RM-2107-S0)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s2) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 6). PLoS ONE (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 2
赛默飞世尔 KRT8抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (图 2). Diagn Pathol (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 大西洋鲑鱼; 1:50; 图 2
赛默飞世尔 KRT8抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在大西洋鲑鱼样本上浓度为1:50 (图 2). Virol J (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT8抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Med Sci Monit (2012) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 KRT8抗体(Thermo Scientific, MS-343)被用于被用于免疫组化-石蜡切片在小鼠样本上. Anat Cell Biol (2011) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔 KRT8抗体(Labvision, MS-149)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:100. Br J Cancer (2012) ncbi
小鼠 单克隆(5D3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT8抗体(Neomarkers, MS 743-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. PLoS ONE (2011) ncbi
小鼠 单克隆(6B10)
  • 免疫组化; 人类; 图 2
赛默飞世尔 KRT8抗体(Lab Vision, 6B10)被用于被用于免疫组化在人类样本上 (图 2). J Cell Physiol (2010) ncbi
小鼠 单克隆(AE3)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔 KRT8抗体(Zymed, AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(AE1)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔 KRT8抗体(Zymed, AE1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(AE-1)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔 KRT8抗体(Zymed, AE1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT8抗体(Invitrogen, C-11)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT8抗体(Invitrogen, C-11)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 KRT8抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Cancer (2008) ncbi
小鼠 单克隆(TS1)
  • 免疫印迹; 人类; 1:200; 图 6
赛默飞世尔 KRT8抗体(Neomarkers, MS-997)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6). Toxicol Sci (2007) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 KRT8抗体(Lab Vision, MS-343-P)被用于被用于免疫印迹在人类样本上 (图 5). Int J Cancer (2005) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT8抗体(NeoMarkers, C-11)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2004) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT8抗体(NeoMarkers, C-11)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2004) ncbi
小鼠 单克隆(TS1)
  • 免疫印迹基因敲除验证; 小鼠; 图 3
赛默飞世尔 KRT8抗体(NeoMarkers, TS1)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3). Mol Cell Biol (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:80; 表 1
赛默飞世尔 KRT8抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (表 1). Pathol Int (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 KRT8抗体(Zymed, AE1/AE3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Gynecol Oncol (2003) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s1e
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab59400)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1e). Cell Death Dis (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab59400)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1g
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2d
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1g) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2d). Cell Prolif (2021) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, 192467)被用于被用于免疫组化在人类样本上. elife (2021) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫细胞化学; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5a). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-冰冻切片; 人类; 1:20; 图 s1a
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab192467)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:20 (图 s1a). Cancer Res (2021) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化; 小鼠; 1:400; 图 4f
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4f). elife (2020) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-冰冻切片; 小鼠; 图 8e
艾博抗(上海)贸易有限公司 KRT8抗体(abcam, ab53280)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8e). Nat Commun (2020) ncbi
小鼠 单克隆(C-43)
  • 免疫细胞化学; 人类; 1:200; 图 s12
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab2530)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s12). Sci Immunol (2020) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Cancer Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab59400)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Biol Res (2019) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫印迹; 人类; 图 s4b
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫印迹在人类样本上 (图 s4b). Cell (2019) ncbi
domestic rabbit 单克隆(E431-2)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 3
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab32579)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 3). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化; 小鼠; 1:100; 图 4b
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab192467)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4b). Cell Rep (2018) ncbi
小鼠 单克隆(M20)
  • 免疫细胞化学; 人类; 1:200; 图 4d
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, Ab9023)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4d). PLoS ONE (2018) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化在小鼠样本上 (图 2a). Nature (2017) ncbi
小鼠 单克隆(C-43)
  • 免疫细胞化学; 人类; 图 5d
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab2530)被用于被用于免疫细胞化学在人类样本上 (图 5d). J Exp Med (2017) ncbi
小鼠 单克隆(M20)
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 KRT8抗体(abcam, 9023)被用于被用于免疫印迹在人类样本上 (图 2a). Science (2017) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5a). Am J Pathol (2016) ncbi
小鼠 单克隆(M20)
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, M20)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 5g
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, 53280)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 5g). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫印迹; 人类; 图 s3
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫印迹在人类样本上 (图 s3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab59400)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(E431-2)
  • 免疫印迹; 人类; 图 s8a
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, E431-2)被用于被用于免疫印迹在人类样本上 (图 s8a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 6
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 4
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 2
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, EP16284)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 2). Prostate (2016) ncbi
小鼠 单克隆(M20)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab9023)被用于被用于免疫组化-石蜡切片在人类样本上. BMJ Open Gastroenterol (2015) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5). Oncotarget (2015) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Mol Cell Endocrinol (2015) ncbi
domestic rabbit 单克隆(E431-2)
  • 免疫组化; 人类; 图 s3
  • 免疫印迹; 人类; 1:1000; 图  1
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab32579)被用于被用于免疫组化在人类样本上 (图 s3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图  1). Cell Signal (2015) ncbi
小鼠 单克隆(M20)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab9023)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(C-43)
  • 免疫细胞化学; 人类; 1:50; 图 4b
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, Ab2530)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Biochimie (2014) ncbi
小鼠 单克隆(5D3)
  • 流式细胞仪; 人类; 1:200
  • 免疫组化; 小鼠; 1:50
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab17139)被用于被用于流式细胞仪在人类样本上浓度为1:200 和 被用于免疫组化在小鼠样本上浓度为1:50. Cell Transplant (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(0.N.352)
  • 免疫印迹; 人类; 1:1000; 图 3a
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, sc-70939)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Sci Rep (2021) ncbi
小鼠 单克隆(NCL-5D3)
  • 免疫组化; 人类; 图 7e
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, sc-52325)被用于被用于免疫组化在人类样本上 (图 7e). EMBO J (2021) ncbi
小鼠 单克隆(M20)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, M20)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(M20)
  • 免疫组化-冰冻切片; 人类; 图 6c
圣克鲁斯生物技术 KRT8抗体(SantaCruz, sc-52324)被用于被用于免疫组化-冰冻切片在人类样本上 (图 6c). Cell (2017) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 KRT8抗体(SantaCruz, sc-8018)被用于被用于免疫印迹在人类样本上 (图 3b). Eur J Pharmacol (2017) ncbi
小鼠 单克隆(M20)
  • 免疫印迹; 小鼠; 1:500; 图 3a
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, M-20)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). J Physiol (2017) ncbi
小鼠 单克隆(M20)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 KRT8抗体(Santa Cruz Biotechnologies, M20)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Cell Adh Migr (2017) ncbi
小鼠 单克隆(M20)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, sc-52324)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(C11)
  • 免疫组化-冰冻切片; 人类; 图 2
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, sc-8018)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(C11)
  • 免疫细胞化学; 大鼠; 1:10; 图 3
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, sc-8018)被用于被用于免疫细胞化学在大鼠样本上浓度为1:10 (图 3). Front Physiol (2016) ncbi
小鼠 单克隆(C11)
  • 免疫组化-石蜡切片; 小鼠; 图 1d
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, sc-8018)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1d). Int J Biol Sci (2016) ncbi
小鼠 单克隆(C11)
  • 免疫细胞化学; 大鼠; 1:50; 图 6
圣克鲁斯生物技术 KRT8抗体(Santa Cruz Biotechnology, sc-8018)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 6). Cell Med (2015) ncbi
小鼠 单克隆(C51)
  • 免疫细胞化学; 人类; 图 1
圣克鲁斯生物技术 KRT8抗体(Santa Cruz Biotechnology, C51)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 图 1
圣克鲁斯生物技术 KRT8抗体(Santa Cruz Biotechnology, C51)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(KS8.7)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 2
圣克鲁斯生物技术 KRT8抗体(Santa Cruz Biotechnology, sc-101459)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 2). J Ethnopharmacol (2015) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 人类; 图 s1
圣克鲁斯生物技术 KRT8抗体(Santa, sc-8018)被用于被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(E-12)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, sc-374274)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2015) ncbi
小鼠 单克隆(M20)
  • 免疫组化; 大鼠; 1:100; 图 6a
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, M-20)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 6a). Cardiovasc Pathol (2015) ncbi
小鼠 单克隆(C50)
  • 免疫组化; 小鼠; 1:200; 图 8e
圣克鲁斯生物技术 KRT8抗体(Santa Cruz Biotechnology, C50)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 8e). Oncogene (2015) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 KRT8抗体(Santa, sc-8018)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Ovarian Res (2014) ncbi
小鼠 单克隆(KS8.7)
  • 免疫组化; 大鼠; 1:20
圣克鲁斯生物技术 KRT8抗体(Santa Cruz Biotechnology, sc-101459)被用于被用于免疫组化在大鼠样本上浓度为1:20. Arthritis Res Ther (2014) ncbi
小鼠 单克隆(KS8.7)
  • 免疫组化-石蜡切片; 大鼠; 1:20
圣克鲁斯生物技术 KRT8抗体(Santa Cruz Biotech., sc-101459)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:20. J Orthop Res (2014) ncbi
小鼠 单克隆(5F295)
  • 免疫组化-石蜡切片; 小鼠; 图 3
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, sc-70928)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). PLoS ONE (2013) ncbi
美天旎
小鼠 单克隆(CK3-6H5)
  • 流式细胞仪; 人类
美天旎 KRT8抗体(Miltenyi Biotec, 130-118-964)被用于被用于流式细胞仪在人类样本上. Front Immunol (2022) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(TS1)
  • 免疫印迹; 人类; 1:500
亚诺法生技股份有限公司 KRT8抗体(Abnova, TS106)被用于被用于免疫印迹在人类样本上浓度为1:500. J Proteome Res (2014) ncbi
Fitzgerald Industries
  • 免疫组化; 人类; 图 1f
Fitzgerald Industries KRT8抗体(Fitzgerald Industries, 20R-CP004)被用于被用于免疫组化在人类样本上 (图 1f). Mol Biol Cell (2017) ncbi
  • 免疫细胞化学; 小鼠; 1:500
Fitzgerald Industries KRT8抗体(Fitzgerald, 20R-CP004)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Nature (2017) ncbi
  • 免疫组化-石蜡切片; 小鼠; 图 3
Fitzgerald Industries KRT8抗体(Fitzgerald, 20R-CP004)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Oncogene (2016) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2
Fitzgerald Industries KRT8抗体(Fitzgerald, 20R-CP004)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2). Oncotarget (2015) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:500
Fitzgerald Industries KRT8抗体(Fitzgerald, 20R-CP004)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:500. Nature (2015) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(C51)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1b
  • 免疫印迹; 人类; 1:1000; 图 s1b
赛信通(上海)生物试剂有限公司 KRT8抗体(Cell Signaling, 4546)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s1b). Cell Death Dis (2020) ncbi
小鼠 单克隆(C51)
  • mass cytometry; 人类; 图 3a
赛信通(上海)生物试剂有限公司 KRT8抗体(Cell Signaling Technologies, 4546)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
小鼠 单克隆(C51)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 KRT8抗体(Cell Signaling, 4546)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
Progen
小鼠 单克隆(KS8.7)
  • 免疫组化-石蜡切片; 大鼠; 图 st6
Progen KRT8抗体(Progen, 61038)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 st6). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(KS8.7)
  • 免疫印迹; 小鼠; 图 s4b
Progen KRT8抗体(Progen Biotechnik, 61038)被用于被用于免疫印迹在小鼠样本上 (图 s4b). J Clin Invest (2016) ncbi
丹科医疗器械技术服务(上海)有限公司
domestic rabbit 单克隆(EP17/EP30)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4c
丹科医疗器械技术服务(上海)有限公司 KRT8抗体(Dako, M3652)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4c). Oncotarget (2017) ncbi
Developmental Studies Hybridoma Bank
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:50; 图 5c
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5c). Sci Transl Med (2022) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫细胞化学; 小鼠; 1:300; 图 3a
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMAIc)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 3a). Commun Biol (2022) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 1b
  • 免疫细胞化学; 小鼠; 1:250; 图 1s2b
  • 免疫组化; 小鼠; 1:250; 图 1a
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 1b), 被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 1s2b) 和 被用于免疫组化在小鼠样本上浓度为1:250 (图 1a). elife (2022) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:600; 图 2c
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMAI)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:600 (图 2c). Mol Oncol (2022) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 7c
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 7c). elife (2021) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 图 4e
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMAI)被用于被用于免疫组化在小鼠样本上 (图 4e). Cell Rep (2021) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 s1e
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 s1e). Nat Commun (2021) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:1000; 图 5e
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-I)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5e). Dev Cell (2021) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a, 3i
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a, 3i). Sci Rep (2021) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 图 s3b
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化在小鼠样本上 (图 s3b). Cell Rep (2021) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 图 4c
  • 免疫组化-石蜡切片; 人类; 图 1a
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, Troma I)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a), 被用于免疫印迹在小鼠样本上 (图 4c) 和 被用于免疫组化-石蜡切片在人类样本上 (图 1a). Mucosal Immunol (2021) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-I)被用于被用于免疫组化在小鼠样本上. Cell Rep (2020) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 3c
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, Troma I)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 3c). Aging Cell (2020) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1a
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1a). Science (2020) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:1000; 图 4a
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4a). elife (2020) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:500; 图 1b
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank (DSHB), Troma-I)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). elife (2019) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 2a
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 2a). Science (2019) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:100; 图 5a
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5a). elife (2019) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫细胞化学; 小鼠; 1:10; 图 1a
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10 (图 1a). Nat Cell Biol (2019) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:20,000; 图 2c
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, AB 531826)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20,000 (图 2c). J Clin Invest (2019) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:30; 图 4a
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化在小鼠样本上浓度为1:30 (图 4a). Breast Cancer Res (2018) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:100; 图 1i
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1s)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1i). Science (2018) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2e
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-I)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2e). Genes Dev (2018) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 图 2j
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化在小鼠样本上 (图 2j). Sci Rep (2017) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, Troma-I)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Development (2017) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:500; 图 s5a
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s5a). Nat Cell Biol (2017) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-冰冻切片; 人类; 1:20; 图 6b
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:20 (图 6b). Cell (2017) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:50; 图 s3
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s3). Cell (2017) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 图 6c
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-I)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c). Breast Cancer Res (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:500
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-1)被用于被用于免疫组化在小鼠样本上浓度为1:500. Dis Model Mech (2017) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 图 6e
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化在小鼠样本上 (图 6e). J Exp Med (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 3b
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 3b). Oncogene (2017) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1b
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-I)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1b). Nat Commun (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). PLoS Genet (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s4h
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, Troma-I)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s4h). Genes Dev (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫印迹基因敲除验证; 人类; 图 5
  • 免疫印迹基因敲除验证; 小鼠; 图 3
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, unknown)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 5) 和 被用于免疫印迹基因敲除验证在小鼠样本上 (图 3). Carcinogenesis (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 图 s1
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, Troma-I)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1). Oncotarget (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:100; 图 3
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫细胞化学; 小鼠; 图 2
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, Troma I)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Dev Dyn (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:100; 图 3
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3). Oncogene (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:50; 图 5
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5). PLoS Genet (2015) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 s2
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 s2). Stem Cell Reports (2015) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-自由浮动切片; 小鼠; 1:20; 图 2
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA1)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:20 (图 2). Development (2015) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:200; 图 1a
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, Troma-I)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1a). Oncogene (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠
  • 免疫组化; 人类
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, Troma-1)被用于被用于免疫组化在小鼠样本上 和 被用于免疫组化在人类样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:100
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMAI)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Nat Commun (2015) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-冰冻切片; 小鼠; 1:20; 图 1
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20 (图 1). J Cell Biol (2015) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 4
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 4). J Cell Biol (2015) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫细胞化学; 小鼠; 图 3
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-1)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Cytometry A (2015) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:100
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-I)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2
  • 免疫组化基因敲除验证; 小鼠; 1:50; 图 1
  • 免疫印迹; 小鼠; 1:500; 图 s3
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, Troma I)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2), 被用于免疫组化基因敲除验证在小鼠样本上浓度为1:50 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 s3). PLoS ONE (2014) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 人类
Developmental Studies Hybridoma Bank KRT8抗体(Hybridoma Bank, Troma-1)被用于被用于免疫组化-石蜡切片在人类样本上. Breast Cancer Res (2014) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫印迹; 人类; 图 2
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Sci (2014) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:100
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Mol Endocrinol (2014) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-冰冻切片; 小鼠; 1:100
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, Troma-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Dev Biol (2014) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:250
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-I)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. Breast Cancer Res (2013) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫细胞化学; 小鼠; 1:100
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-I)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Mol Endocrinol (2013) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1)被用于被用于免疫组化-石蜡切片在小鼠样本上. Biol Reprod (2013) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:200
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1)被用于被用于免疫组化在小鼠样本上浓度为1:200. Oncogene (2014) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:100
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Comp Neurol (2010) ncbi
西格玛奥德里奇
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2h
西格玛奥德里奇 KRT8抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2h). J Clin Invest (2021) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 大鼠; 1:200; 图 2d
  • 免疫组化; 人类; 1:200; 图 7f, s4
西格玛奥德里奇 KRT8抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 2d) 和 被用于免疫组化在人类样本上浓度为1:200 (图 7f, s4). Nat Commun (2021) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
西格玛奥德里奇 KRT8抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Cancer Immunol Immunother (2020) ncbi
小鼠 单克隆(C-11)
  • 免疫组化; 人类; 图 7a
西格玛奥德里奇 KRT8抗体(Sigma, C2931)被用于被用于免疫组化在人类样本上 (图 7a). Cell Rep (2018) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
西格玛奥德里奇 KRT8抗体(Sigma, C-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). PLoS ONE (2018) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:50; 图 3a
西格玛奥德里奇 KRT8抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3a). Science (2018) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s4a
西格玛奥德里奇 KRT8抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s4a). Am J Respir Cell Mol Biol (2017) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 人类; 1:100; 图 6a
西格玛奥德里奇 KRT8抗体(Sigma, C-11)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6a). Nat Commun (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 小鼠; 图 6
西格玛奥德里奇 KRT8抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Am J Pathol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2a
西格玛奥德里奇 KRT8抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 图 s5a
西格玛奥德里奇 KRT8抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5a). Nature (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; pigs ; 1:100; 图 5h
西格玛奥德里奇 KRT8抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:100 (图 5h). Biotechnol J (2017) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:200
西格玛奥德里奇 KRT8抗体(Sigma, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 人类; 图 2b
西格玛奥德里奇 KRT8抗体(Sigma, c2562)被用于被用于免疫组化在人类样本上 (图 2b). Nat Biotechnol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 人类; 1:200; 图 5
西格玛奥德里奇 KRT8抗体(Sigma, C2562)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). BMC Biol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 人类; 1:4000; 表 2
西格玛奥德里奇 KRT8抗体(Sigma, C2562)被用于被用于免疫组化在人类样本上浓度为1:4000 (表 2). PLoS ONE (2016) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 人类; 1:1000; 图 1
西格玛奥德里奇 KRT8抗体(Sigma, C-2931)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠; 图 2
西格玛奥德里奇 KRT8抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
西格玛奥德里奇 KRT8抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Fluids Barriers CNS (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 2
西格玛奥德里奇 KRT8抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 2). Clin Cancer Res (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 KRT8抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:800; 图 5
西格玛奥德里奇 KRT8抗体(Sigma, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 5). Dis Model Mech (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 大鼠
西格玛奥德里奇 KRT8抗体(Sigma-Aldrich, clone C-11)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 家羊; 10 ug/ml
西格玛奥德里奇 KRT8抗体(Sigma, C2931)被用于被用于免疫细胞化学在家羊样本上浓度为10 ug/ml. Cell Reprogram (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 非洲爪蛙
西格玛奥德里奇 KRT8抗体(Sigma, C2931)被用于被用于免疫细胞化学在非洲爪蛙样本上. Zygote (2015) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:2000
西格玛奥德里奇 KRT8抗体(Sigma-Aldrich, #C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. Am J Pathol (2014) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫印迹; 大鼠
西格玛奥德里奇 KRT8抗体(Sigma, C2562)被用于被用于免疫印迹在大鼠样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100
西格玛奥德里奇 KRT8抗体(Sigma-Aldrich, C-11)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100. Biomaterials (2014) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫印迹; 人类; 1:10,000
  • 免疫印迹; pigs
西格玛奥德里奇 KRT8抗体(Sigma-Aldrich, C 2562)被用于被用于免疫印迹在人类样本上浓度为1:10,000 和 被用于免疫印迹在pigs 样本上. Mol Oncol (2014) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; Gallot's lizard; 1:400
西格玛奥德里奇 KRT8抗体(Sigma-Aldrich, C2931)被用于被用于免疫组化-石蜡切片在Gallot's lizard样本上浓度为1:400. J Comp Neurol (2012) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆(5D3)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 6a
徕卡显微系统(上海)贸易有限公司 KRT8抗体(Novocastra, 5D3-L-CE)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 6a). Nat Commun (2018) ncbi
单克隆(TS1)
  • 免疫细胞化学; 人类; 1:25; 图 2
徕卡显微系统(上海)贸易有限公司 KRT8抗体(Novocastra, TS1)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 2). Oncotarget (2017) ncbi
单克隆(5D3)
  • 免疫组化-石蜡切片; 人类; 图 1A
  • 免疫细胞化学; 人类; 图 S2B
徕卡显微系统(上海)贸易有限公司 KRT8抗体(Leica, 5D3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1A) 和 被用于免疫细胞化学在人类样本上 (图 S2B). Oncotarget (2016) ncbi
单克隆(5D3)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 3
徕卡显微系统(上海)贸易有限公司 KRT8抗体(Leica Biosystems, 5D3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 3). Virchows Arch (2016) ncbi
单克隆(TS1)
  • 免疫组化-石蜡切片; 人类; 1:50
徕卡显微系统(上海)贸易有限公司 KRT8抗体(Leica Biosystems, TS1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Endocr Pathol (2016) ncbi
文章列表
  1. Dinnon K, Leist S, Okuda K, Dang H, Fritch E, Gully K, et al. SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Sci Transl Med. 2022;14:eabo5070 pubmed 出版商
  2. Wu T, Wang W, Shi G, Hao M, Wang Y, Yao M, et al. Targeting HIC1/TGF-β axis-shaped prostate cancer microenvironment restrains its progression. Cell Death Dis. 2022;13:624 pubmed 出版商
  3. Eikmans M, van der Keur C, Anholts J, Drabbels J, van Beelen E, de Sousa Lopes S, et al. Primary Trophoblast Cultures: Characterization of HLA Profiles and Immune Cell Interactions. Front Immunol. 2022;13:814019 pubmed 出版商
  4. Kimura Yoshida C, Mochida K, Kanno S, Matsuo I. USP39 is essential for mammalian epithelial morphogenesis through upregulation of planar cell polarity components. Commun Biol. 2022;5:378 pubmed 出版商
  5. Wang J, Liu C, He L, Xie Z, Bai L, Yu W, et al. Selective YAP activation in Procr cells is essential for ovarian stem/progenitor expansion and epithelium repair. elife. 2022;11: pubmed 出版商
  6. Rodriguez E, Boelaars K, Brown K, Madunić K, van Ee T, Dijk F, et al. Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Commun Biol. 2022;5:41 pubmed 出版商
  7. Heitink L, Whittle J, Vaillant F, Capaldo B, Dekkers J, Dawson C, et al. In vivo genome-editing screen identifies tumor suppressor genes that cooperate with Trp53 loss during mammary tumorigenesis. Mol Oncol. 2022;16:1119-1131 pubmed 出版商
  8. Bruun J, Eide P, Bergsland C, Brück O, Svindland A, Arjama M, et al. E-cadherin is a robust prognostic biomarker in colorectal cancer and low expression is associated with sensitivity to inhibitors of topoisomerase, aurora, and HSP90 in preclinical models. Mol Oncol. 2022;16:2312-2329 pubmed 出版商
  9. Jung S, Kim D, Choi Y, Kim S, Park H, Lee H, et al. Contribution of p53 in sensitivity to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Sci Rep. 2021;11:19667 pubmed 出版商
  10. Shao C, Lou P, Liu R, Bi X, Li G, Yang X, et al. Hormone-Responsive BMP Signaling Expands Myoepithelial Cell Lineages and Prevents Alveolar Precocity in Mammary Gland. Front Cell Dev Biol. 2021;9:691050 pubmed 出版商
  11. Ide S, Kobayashi Y, Ide K, Strausser S, Abe K, Herbek S, et al. Ferroptotic stress promotes the accumulation of pro-inflammatory proximal tubular cells in maladaptive renal repair. elife. 2021;10: pubmed 出版商
  12. Molina L, Zhu J, Li Q, Pradhan Sundd T, Krutsenko Y, Sayed K, et al. Compensatory hepatic adaptation accompanies permanent absence of intrahepatic biliary network due to YAP1 loss in liver progenitors. Cell Rep. 2021;36:109310 pubmed 出版商
  13. Brady N, Bagadion A, Singh R, Conteduca V, Van Emmenis L, Arceci E, et al. Temporal evolution of cellular heterogeneity during the progression to advanced AR-negative prostate cancer. Nat Commun. 2021;12:3372 pubmed 出版商
  14. Barthet V, Brucoli M, Ladds M, Nössing C, Kiourtis C, Baudot A, et al. Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver. Sci Adv. 2021;7: pubmed 出版商
  15. Carter P, Schnell U, Chaney C, TONG B, Pan X, ye J, et al. Deletion of Lats1/2 in adult kidney epithelia leads to renal cell carcinoma. J Clin Invest. 2021;131: pubmed 出版商
  16. Liu K, Jing N, Wang D, Xu P, Wang J, Chen X, et al. A novel mouse model for liver metastasis of prostate cancer reveals dynamic tumour-immune cell communication. Cell Prolif. 2021;54:e13056 pubmed 出版商
  17. Hendley A, Rao A, Leonhardt L, Ashe S, Smith J, Giacometti S, et al. Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. elife. 2021;10: pubmed 出版商
  18. Benítez S, Cordero A, Santamaria P, Redondo Pedraza J, Rocha A, Collado Solé A, et al. RANK links senescence to stemness in the mammary epithelia, delaying tumor onset but increasing tumor aggressiveness. Dev Cell. 2021;56:1727-1741.e7 pubmed 出版商
  19. Repenning A, Happel D, Bouchard C, Meixner M, Verel Yilmaz Y, Raifer H, et al. PRMT1 promotes the tumor suppressor function of p14ARF and is indicative for pancreatic cancer prognosis. EMBO J. 2021;40:e106777 pubmed 出版商
  20. Ni N, Fang X, Li Q. Functional similarity between TGF-beta type 2 and type 1 receptors in the female reproductive tract. Sci Rep. 2021;11:9294 pubmed 出版商
  21. Gao H, Liu Y, Zheng M, Zhao F, Wang H, Yu J, et al. Characterization of murine mammary stem/progenitor cells in a D-galactose-induced aging model. Aging (Albany NY). 2021;13:11762-11773 pubmed 出版商
  22. Carstens J, Yang S, Correa de Sampaio P, Zheng X, Barua S, McAndrews K, et al. Stabilized epithelial phenotype of cancer cells in primary tumors leads to increased colonization of liver metastasis in pancreatic cancer. Cell Rep. 2021;35:108990 pubmed 出版商
  23. Krausová A, Buresova P, Sarnova L, Oyman Eyrilmez G, Skarda J, Wohl P, et al. Plectin ensures intestinal epithelial integrity and protects colon against colitis. Mucosal Immunol. 2021;14:691-702 pubmed 出版商
  24. Rodriguez E, Boelaars K, Brown K, Eveline Li R, Kruijssen L, Bruijns S, et al. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat Commun. 2021;12:1270 pubmed 出版商
  25. Singh S, Sutcliffe M, Repich K, Atkins K, Harvey J, Janes K. Pan-Cancer Drivers Are Recurrent Transcriptional Regulatory Heterogeneities in Early-Stage Luminal Breast Cancer. Cancer Res. 2021;81:1840-1852 pubmed 出版商
  26. McGuire J, Frieling J, Lo C, Li T, Muhammad A, Lawrence H, et al. Mesenchymal stem cell-derived interleukin-28 drives the selection of apoptosis resistant bone metastatic prostate cancer. Nat Commun. 2021;12:723 pubmed 出版商
  27. Wilson M, Reske J, Holladay J, Neupane S, Ngo J, Cuthrell N, et al. ARID1A Mutations Promote P300-Dependent Endometrial Invasion through Super-Enhancer Hyperacetylation. Cell Rep. 2020;33:108366 pubmed 出版商
  28. Biasci D, Smoragiewicz M, Connell C, Wang Z, Gao Y, Thaventhiran J, et al. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proc Natl Acad Sci U S A. 2020;117:28960-28970 pubmed 出版商
  29. Mevel R, Steiner I, Mason S, Galbraith L, Patel R, Fadlullah M, et al. RUNX1 marks a luminal castration-resistant lineage established at the onset of prostate development. elife. 2020;9: pubmed 出版商
  30. Hall B, Gleiberman A, Strom E, Krasnov P, Frescas D, Vujcic S, et al. Immune checkpoint protein VSIG4 as a biomarker of aging in murine adipose tissue. Aging Cell. 2020;19:e13219 pubmed 出版商
  31. Neubarth N, Emanuel A, Liu Y, Springel M, Handler A, Zhang Q, et al. Meissner corpuscles and their spatially intermingled afferents underlie gentle touch perception. Science. 2020;368: pubmed 出版商
  32. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed 出版商
  33. Pein M, Insua Rodríguez J, Hongu T, Riedel A, Meier J, Wiedmann L, et al. Metastasis-initiating cells induce and exploit a fibroblast niche to fuel malignant colonization of the lungs. Nat Commun. 2020;11:1494 pubmed 出版商
  34. Sun X, Are A, Annusver K, Sivan U, Jacob T, Dalessandri T, et al. Coordinated hedgehog signaling induces new hair follicles in adult skin. elife. 2020;9: pubmed 出版商
  35. Costanzo Garvey D, Keeley T, Case A, Watson G, Alsamraae M, Yu Y, et al. Neutrophils are mediators of metastatic prostate cancer progression in bone. Cancer Immunol Immunother. 2020;69:1113-1130 pubmed 出版商
  36. Yamazaki Y, Urrutia R, Franco L, Giliani S, Zhang K, Alazami A, et al. PAX1 is essential for development and function of the human thymus. Sci Immunol. 2020;5: pubmed 出版商
  37. Dragan M, Nguyen M, Guzman S, Goertzen C, Brackstone M, Dhillo W, et al. G protein-coupled kisspeptin receptor induces metabolic reprograming and tumorigenesis in estrogen receptor-negative breast cancer. Cell Death Dis. 2020;11:106 pubmed 出版商
  38. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed 出版商
  39. Fan D, Chettouh Z, Consalez G, Brunet J. Taste bud formation depends on taste nerves. elife. 2019;8: pubmed 出版商
  40. Ramani V, Lemaire C, Triboulet M, Casey K, Heirich K, Renier C, et al. Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer. Breast Cancer Res. 2019;21:98 pubmed 出版商
  41. Abdo H, Calvo Enrique L, Lopez J, Song J, Zhang M, Usoskin D, et al. Specialized cutaneous Schwann cells initiate pain sensation. Science. 2019;365:695-699 pubmed 出版商
  42. Dangaj D, Bruand M, Grimm A, Ronet C, Barras D, Duttagupta P, et al. Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors. Cancer Cell. 2019;35:885-900.e10 pubmed 出版商
  43. Gao Y, Wei L, Wang C, Huang Y, Li W, Li T, et al. Chronic prostatitis alters the prostatic microenvironment and accelerates preneoplastic lesions in C57BL/6 mice. Biol Res. 2019;52:30 pubmed 出版商
  44. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  45. Jeppesen D, Fenix A, Franklin J, Higginbotham J, Zhang Q, Zimmerman L, et al. Reassessment of Exosome Composition. Cell. 2019;177:428-445.e18 pubmed 出版商
  46. Saykali B, Mathiah N, Nahaboo W, Racu M, Hammou L, Defrance M, et al. Distinct mesoderm migration phenotypes in extra-embryonic and embryonic regions of the early mouse embryo. elife. 2019;8: pubmed 出版商
  47. Jung H, Fattet L, Tsai J, Kajimoto T, Chang Q, Newton A, et al. Apical-basal polarity inhibits epithelial-mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation. Nat Cell Biol. 2019;21:359-371 pubmed 出版商
  48. Chen X, He Y, Xu A, Deng Z, Feng J, Lu F, et al. Increase of glandular epithelial cell clusters by an external volume expansion device promotes adipose tissue regeneration by recruiting macrophages. Biosci Rep. 2019;39: pubmed 出版商
  49. Barros Silva J, Linn D, Steiner I, Guo G, Ali A, Pakula H, et al. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep. 2018;25:3504-3518.e6 pubmed 出版商
  50. Abeln M, Albers I, Peters Bernard U, Flächsig Schulz K, Kats E, Kispert A, et al. Sialic acid is a critical fetal defense against maternal complement attack. J Clin Invest. 2019;129:422-436 pubmed 出版商
  51. Mao S, Park M, Cabrera R, Christin J, Karagiannis G, Oktay M, et al. Loss of amphiregulin reduces myoepithelial cell coverage of mammary ducts and alters breast tumor growth. Breast Cancer Res. 2018;20:131 pubmed 出版商
  52. Thyagarajan H, Lancaster J, Lira S, Ehrlich L. CCR8 is expressed by post-positive selection CD4-lineage thymocytes but is dispensable for central tolerance induction. PLoS ONE. 2018;13:e0200765 pubmed 出版商
  53. Chakrabarti R, Celià Terrassa T, Kumar S, Hang X, Wei Y, Choudhury A, et al. Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science. 2018;360: pubmed 出版商
  54. Pereira E, Kedrin D, Seano G, Gautier O, Meijer E, Jones D, et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science. 2018;359:1403-1407 pubmed 出版商
  55. Poli V, Fagnocchi L, Fasciani A, Cherubini A, Mazzoleni S, Ferrillo S, et al. MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nat Commun. 2018;9:1024 pubmed 出版商
  56. Takai K, Drain A, Lawson D, Littlepage L, Karpuj M, Kessenbrock K, et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev. 2018;32:244-257 pubmed 出版商
  57. Hsieh W, Ramadesikan S, FEKETE D, Aguilar R. Kidney-differentiated cells derived from Lowe Syndrome patient's iPSCs show ciliogenesis defects and Six2 retention at the Golgi complex. PLoS ONE. 2018;13:e0192635 pubmed 出版商
  58. Aprile F, Källstig E, Limorenko G, Vendruscolo M, Ron D, Hansen C. The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress α-synuclein aggregation. Sci Rep. 2017;7:9039 pubmed 出版商
  59. Shah F, Stepan A, O Mahony A, Velichko S, Folias A, Houle C, et al. Mechanisms of Skin Toxicity Associated with Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. Cell Chem Biol. 2017;24:858-869.e5 pubmed 出版商
  60. Yeh Y, Gunasekharan V, Manuelidis L. A prokaryotic viral sequence is expressed and conserved in mammalian brain. Proc Natl Acad Sci U S A. 2017;114:7118-7123 pubmed 出版商
  61. Bose R, Karthaus W, Armenia J, Abida W, Iaquinta P, Zhang Z, et al. ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature. 2017;546:671-675 pubmed 出版商
  62. Watanabe Y, Miyasaka K, Kubo A, Kida Y, Nakagawa O, Hirate Y, et al. Notch and Hippo signaling converge on Strawberry Notch 1 (Sbno1) to synergistically activate Cdx2 during specification of the trophectoderm. Sci Rep. 2017;7:46135 pubmed 出版商
  63. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, et al. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell. 2017;169:243-257.e25 pubmed 出版商
  64. Mekhdjian A, Kai F, Rubashkin M, Prahl L, Przybyla L, McGregor A, et al. Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix. Mol Biol Cell. 2017;28:1467-1488 pubmed 出版商
  65. Wang X, Xia Q, Ni H, Ye S, Li R, Wang X, et al. SFPQ/PSF-TFE3 renal cell carcinoma: a clinicopathologic study emphasizing extended morphology and reviewing the differences between SFPQ-TFE3 RCC and the corresponding mesenchymal neoplasm despite an identical gene fusion. Hum Pathol. 2017;63:190-200 pubmed 出版商
  66. Hennenberg M, Tamalunas A, Wang Y, Keller P, Schott M, Strittmatter F, et al. Inhibition of agonist-induced smooth muscle contraction by picotamide in the male human lower urinary tract outflow region. Eur J Pharmacol. 2017;803:39-47 pubmed 出版商
  67. Saarela U, Akram S, Desgrange A, Rak Raszewska A, Shan J, Cereghini S, et al. Novel fixed z-direction (FiZD) kidney primordia and an organoid culture system for time-lapse confocal imaging. Development. 2017;144:1113-1117 pubmed 出版商
  68. Fu N, Rios A, Pal B, Law C, Jamieson P, Liu R, et al. Identification of quiescent and spatially restricted mammary stem cells that are hormone responsive. Nat Cell Biol. 2017;19:164-176 pubmed 出版商
  69. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  70. Volpi S, Yamazaki Y, Brauer P, van Rooijen E, Hayashida A, Slavotinek A, et al. EXTL3 mutations cause skeletal dysplasia, immune deficiency, and developmental delay. J Exp Med. 2017;214:623-637 pubmed 出版商
  71. Wu J, Platero Luengo A, Sakurai M, Sugawara A, Gil M, Yamauchi T, et al. Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell. 2017;168:473-486.e15 pubmed 出版商
  72. Anderson P, Lynch T, Engelhardt J. Multipotent Myoepithelial Progenitor Cells Are Born Early during Airway Submucosal Gland Development. Am J Respir Cell Mol Biol. 2017;56:716-726 pubmed 出版商
  73. Abboud Jarrous G, Priya S, Maimon A, Fischman S, Cohen Elisha M, Czerninski R, et al. Protein S drives oral squamous cell carcinoma tumorigenicity through regulation of AXL. Oncotarget. 2017;8:13986-14002 pubmed 出版商
  74. Kwon Y, Stanciu C, Philpott M, Ehrhardt C. Flow cytometry dataset for cells collected from touched surfaces. F1000Res. 2016;5:390 pubmed 出版商
  75. Hopkinson B, Klitgaard M, Petersen O, Villadsen R, Rønnov Jessen L, Kim J. Establishment of a normal-derived estrogen receptor-positive cell line comparable to the prevailing human breast cancer subtype. Oncotarget. 2017;8:10580-10593 pubmed 出版商
  76. Britschgi A, Duss S, Kim S, Couto J, Brinkhaus H, Koren S, et al. The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature. 2017;541:541-545 pubmed 出版商
  77. Mu P, Zhang Z, Benelli M, Karthaus W, Hoover E, Chen C, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017;355:84-88 pubmed 出版商
  78. Abraira V, Kuehn E, Chirila A, Springel M, Toliver A, Zimmerman A, et al. The Cellular and Synaptic Architecture of the Mechanosensory Dorsal Horn. Cell. 2017;168:295-310.e19 pubmed 出版商
  79. Fu Q, Hu Y, Wang Q, Liu Y, Li N, Xu B, et al. High-fat diet induces protein kinase A and G-protein receptor kinase phosphorylation of β2 -adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts. J Physiol. 2017;595:1973-1986 pubmed 出版商
  80. De Luca Johnson J, Zenali M. A Previously Undescribed Presentation of Mixed Adenoneuroendocrine Carcinoma. Case Rep Pathol. 2016;2016:9063634 pubmed
  81. Lloyd Lewis B, Davis F, Harris O, Hitchcock J, Lourenco F, Pasche M, et al. Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods. Breast Cancer Res. 2016;18:127 pubmed
  82. Yang Z, Peng Y, Gopalan A, Gao D, Chen Y, Joyner A. Stromal hedgehog signaling maintains smooth muscle and hampers micro-invasive prostate cancer. Dis Model Mech. 2017;10:39-52 pubmed 出版商
  83. Kugler D, Flomerfelt F, Costa D, Laky K, Kamenyeva O, Mittelstadt P, et al. Systemic toxoplasma infection triggers a long-term defect in the generation and function of naive T lymphocytes. J Exp Med. 2016;213:3041-3056 pubmed
  84. Bizzarro V, Belvedere R, Migliaro V, Romano E, Parente L, Petrella A. Hypoxia regulates ANXA1 expression to support prostate cancer cell invasion and aggressiveness. Cell Adh Migr. 2017;11:247-260 pubmed 出版商
  85. Williamson S, Metcalf R, Trapani F, Mohan S, Antonello J, Abbott B, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun. 2016;7:13322 pubmed 出版商
  86. Sizemore G, Balakrishnan S, Hammer A, Thies K, Trimboli A, Wallace J, et al. Stromal PTEN inhibits the expansion of mammary epithelial stem cells through Jagged-1. Oncogene. 2017;36:2297-2308 pubmed 出版商
  87. Sheen M, Marotti J, Allegrezza M, Rutkowski M, Conejo Garcia J, Fiering S. Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis. 2016;5:e267 pubmed 出版商
  88. Davis F, Lloyd Lewis B, Harris O, Kozar S, Winton D, Muresan L, et al. Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny. Nat Commun. 2016;7:13053 pubmed 出版商
  89. Ren S, Luo Y, Chen H, Warburton D, Lam H, Wang L, et al. Inactivation of Tsc2 in Mesoderm-Derived Cells Causes Polycystic Kidney Lesions and Impairs Lung Alveolarization. Am J Pathol. 2016;186:3261-3272 pubmed 出版商
  90. Takai K, Le A, Weaver V, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889-82901 pubmed 出版商
  91. Kuga T, Kume H, Adachi J, Kawasaki N, Shimizu M, Hoshino I, et al. Casein kinase 1 is recruited to nuclear speckles by FAM83H and SON. Sci Rep. 2016;6:34472 pubmed 出版商
  92. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  93. Hubbs A, Fluharty K, Edwards R, Barnabei J, Grantham J, Palmer S, et al. Accumulation of Ubiquitin and Sequestosome-1 Implicate Protein Damage in Diacetyl-Induced Cytotoxicity. Am J Pathol. 2016;186:2887-2908 pubmed 出版商
  94. Thienpont B, Steinbacher J, Zhao H, D Anna F, Kuchnio A, Ploumakis A, et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature. 2016;537:63-68 pubmed 出版商
  95. Di Franco S, Turdo A, Benfante A, Colorito M, Gaggianesi M, Apuzzo T, et al. ?Np63 drives metastasis in breast cancer cells via PI3K/CD44v6 axis. Oncotarget. 2016;7:54157-54173 pubmed 出版商
  96. Schuerlein S, Schwarz T, Krziminski S, Gätzner S, Hoppensack A, Schwedhelm I, et al. A versatile modular bioreactor platform for Tissue Engineering. Biotechnol J. 2017;12: pubmed 出版商
  97. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed 出版商
  98. Lesina M, Wörmann S, Morton J, Diakopoulos K, Korneeva O, Wimmer M, et al. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. J Clin Invest. 2016;126:2919-32 pubmed 出版商
  99. Perdigoto C, Dauber K, Bar C, Tsai P, Valdes V, Cohen I, et al. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development. PLoS Genet. 2016;12:e1006151 pubmed 出版商
  100. Belvedere R, Bizzarro V, Forte G, Dal Piaz F, Parente L, Petrella A. Annexin A1 contributes to pancreatic cancer cell phenotype, behaviour and metastatic potential independently of Formyl Peptide Receptor pathway. Sci Rep. 2016;6:29660 pubmed 出版商
  101. Chen H, Wei Z, Sun J, Bhattacharya A, Savage D, Serda R, et al. A recellularized human colon model identifies cancer driver genes. Nat Biotechnol. 2016;34:845-51 pubmed 出版商
  102. Berens E, Sharif G, Schmidt M, Yan G, Shuptrine C, Weiner L, et al. Keratin-associated protein 5-5 controls cytoskeletal function and cancer cell vascular invasion. Oncogene. 2017;36:593-605 pubmed 出版商
  103. Stock K, Estrada M, Vidic S, Gjerde K, Rudisch A, Santo V, et al. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery. Sci Rep. 2016;6:28951 pubmed 出版商
  104. Madureira P, Bharadwaj A, Bydoun M, Garant K, O Connell P, Lee P, et al. Cell surface protease activation during RAS transformation: Critical role of the plasminogen receptor, S100A10. Oncotarget. 2016;7:47720-47737 pubmed 出版商
  105. Dai Y, Miao Y, Wu W, Li Y, D Errico F, Su W, et al. Ablation of Liver X receptors ? and ? leads to spontaneous peripheral squamous cell lung cancer in mice. Proc Natl Acad Sci U S A. 2016;113:7614-9 pubmed 出版商
  106. Toneff M, Sreekumar A, Tinnirello A, Hollander P, Habib S, Li S, et al. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol. 2016;14:47 pubmed 出版商
  107. Wuidart A, Ousset M, Rulands S, Simons B, Van Keymeulen A, Blanpain C. Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells. Genes Dev. 2016;30:1261-77 pubmed 出版商
  108. Szalayova G, Ogrodnik A, Spencer B, Wade J, Bunn J, Ambaye A, et al. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation. Breast Cancer Res Treat. 2016;157:461-74 pubmed 出版商
  109. Misiorek J, Lähdeniemi I, Nyström J, Paramonov V, Gullmets J, Saarento H, et al. Keratin 8-deletion induced colitis predisposes to murine colorectal cancer enforced by the inflammasome and IL-22 pathway. Carcinogenesis. 2016;37:777-786 pubmed 出版商
  110. Rigden H, Alias A, Havelock T, O Donnell R, Djukanovic R, Davies D, et al. Squamous Metaplasia Is Increased in the Bronchial Epithelium of Smokers with Chronic Obstructive Pulmonary Disease. PLoS ONE. 2016;11:e0156009 pubmed 出版商
  111. Kuga T, Sasaki M, Mikami T, Miake Y, Adachi J, Shimizu M, et al. FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes. Sci Rep. 2016;6:26557 pubmed 出版商
  112. Leo F, Bartels S, Mägel L, Framke T, Büsche G, Jonigk D, et al. Prognostic factors in the myoepithelial-like spindle cell type of metaplastic breast cancer. Virchows Arch. 2016;469:191-201 pubmed 出版商
  113. Fabbri R, Macciocca M, Vicenti R, Paradisi R, Klinger F, Pasquinelli G, et al. Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol. 2016;12:1699-711 pubmed 出版商
  114. Giovannini C, Minguzzi M, Genovese F, Baglioni M, Gualandi A, Ravaioli M, et al. Molecular and proteomic insight into Notch1 characterization in hepatocellular carcinoma. Oncotarget. 2016;7:39609-39626 pubmed 出版商
  115. Alaee M, Danesh G, Pasdar M. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53. PLoS ONE. 2016;11:e0154323 pubmed 出版商
  116. Kobayashi K, Tsugami Y, Matsunaga K, Oyama S, Kuki C, Kumura H. Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with ?-casein expression in mammary epithelial cells. Biochim Biophys Acta. 2016;1863:2006-16 pubmed 出版商
  117. Stewart M, Plante I, Penuela S, Laird D. Loss of Panx1 Impairs Mammary Gland Development at Lactation: Implications for Breast Tumorigenesis. PLoS ONE. 2016;11:e0154162 pubmed 出版商
  118. Wang Y, Gratzke C, Tamalunas A, Wiemer N, Ciotkowska A, Rutz B, et al. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate. PLoS ONE. 2016;11:e0153312 pubmed 出版商
  119. El Mourabit H, Loeuillard E, Lemoinne S, Cadoret A, Housset C. Culture Model of Rat Portal Myofibroblasts. Front Physiol. 2016;7:120 pubmed 出版商
  120. Holloway K, Sinha V, Bu W, Toneff M, Dong J, Peng Y, et al. Targeting Oncogenes into a Defined Subset of Mammary Cells Demonstrates That the Initiating Oncogenic Mutation Defines the Resulting Tumor Phenotype. Int J Biol Sci. 2016;12:381-8 pubmed 出版商
  121. Mancini M, Lien E, Toker A. Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis. Oncotarget. 2016;7:17301-13 pubmed 出版商
  122. Dhar S, Kumar A, Zhang L, Rimando A, Lage J, Lewin J, et al. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget. 2016;7:18469-84 pubmed 出版商
  123. Nair S, Zhang X, Chiang H, Jahid M, Wang Y, Garza P, et al. Genetic suppression reveals DNA repair-independent antagonism between BRCA1 and COBRA1 in mammary gland development. Nat Commun. 2016;7:10913 pubmed 出版商
  124. Du L, Chen X, Cao Y, Lu L, Zhang F, Bornstein S, et al. Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling. Oncogene. 2016;35:4641-52 pubmed 出版商
  125. Raredon M, Ghaedi M, Calle E, Niklason L. A Rotating Bioreactor for Scalable Culture and Differentiation of Respiratory Epithelium. Cell Med. 2015;7:109-21 pubmed 出版商
  126. Lazarevic I, Engelhardt B. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier. Fluids Barriers CNS. 2016;13:2 pubmed 出版商
  127. Ruiz A, Rockfield S, Taran N, Haller E, Engelman R, Flores I, et al. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis. Cell Death Dis. 2016;7:e2059 pubmed 出版商
  128. Schneck H, Gierke B, Uppenkamp F, Behrens B, Niederacher D, Stoecklein N, et al. EpCAM-Independent Enrichment of Circulating Tumor Cells in Metastatic Breast Cancer. PLoS ONE. 2015;10:e0144535 pubmed 出版商
  129. Zhang H, Zheng T, Chua C, Shen M, Gelmann E. Nkx3.1 controls the DNA repair response in the mouse prostate. Prostate. 2016;76:402-8 pubmed 出版商
  130. Fleury H, Communal L, Carmona E, Portelance L, Arcand S, Rahimi K, et al. Novel high-grade serous epithelial ovarian cancer cell lines that reflect the molecular diversity of both the sporadic and hereditary disease. Genes Cancer. 2015;6:378-398 pubmed
  131. Shin H, Pei Z, Martinez K, Rivera Viñas J, Méndez K, Cavallin H, et al. The first microbial environment of infants born by C-section: the operating room microbes. Microbiome. 2015;3:59 pubmed 出版商
  132. Rogojanu R, Thalhammer T, Thiem U, Heindl A, Mesteri I, Seewald A, et al. Quantitative Image Analysis of Epithelial and Stromal Area in Histological Sections of Colorectal Cancer: An Emerging Diagnostic Tool. Biomed Res Int. 2015;2015:569071 pubmed 出版商
  133. Manojlović Gacić E, Skender Gazibara M, Popovic V, Soldatovic I, Boricic N, Raičević S, et al. Oncogene-Induced Senescence in Pituitary Adenomas--an Immunohistochemical Study. Endocr Pathol. 2016;27:1-11 pubmed 出版商
  134. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed 出版商
  135. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed 出版商
  136. Boiko E, Maltsev D, Savicheva A, Shalepo K, Khusnutdinova T, Pozniak A, et al. Infection of Human Retinal Pigment Epithelium with Chlamydia trachomatis. PLoS ONE. 2015;10:e0141754 pubmed 出版商
  137. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  138. Pajoohesh Ganji A, Pal Ghosh S, Tadvalkar G, Stepp M. K14 + compound niches are present on the mouse cornea early after birth and expand after debridement wounds. Dev Dyn. 2016;245:132-43 pubmed 出版商
  139. Manda K, Tripathi P, Hsi A, Ning J, Ruzinova M, Liapis H, et al. NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence. Oncogene. 2016;35:3282-92 pubmed 出版商
  140. Evans C, Rosser R, Waby J, Noirel J, Lai D, Wright P, et al. Reduced keratin expression in colorectal neoplasia and associated fields is reversible by diet and resection. BMJ Open Gastroenterol. 2015;2:e000022 pubmed 出版商
  141. Hurley P, Sundi D, Shinder B, Simons B, Hughes R, Miller R, et al. Germline Variants in Asporin Vary by Race, Modulate the Tumor Microenvironment, and Are Differentially Associated with Metastatic Prostate Cancer. Clin Cancer Res. 2016;22:448-58 pubmed 出版商
  142. Stewart M, Bechberger J, Welch I, Naus C, Laird D. Cx26 knockout predisposes the mammary gland to primary mammary tumors in a DMBA-induced mouse model of breast cancer. Oncotarget. 2015;6:37185-99 pubmed 出版商
  143. Davila J, Laws M, Kannan A, Li Q, Taylor R, Bagchi M, et al. Rac1 Regulates Endometrial Secretory Function to Control Placental Development. PLoS Genet. 2015;11:e1005458 pubmed 出版商
  144. Chang C, Zhang M, Rajapakshe K, Coarfa C, Edwards D, Huang S, et al. Mammary Stem Cells and Tumor-Initiating Cells Are More Resistant to Apoptosis and Exhibit Increased DNA Repair Activity in Response to DNA Damage. Stem Cell Reports. 2015;5:378-91 pubmed 出版商
  145. Pickup M, Hover L, Guo Y, Gorska A, Chytil A, Novitskiy S, et al. Deletion of the BMP receptor BMPR1a impairs mammary tumor formation and metastasis. Oncotarget. 2015;6:22890-904 pubmed
  146. Koren S, Reavie L, Couto J, De Silva D, Stadler M, Roloff T, et al. PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours. Nature. 2015;525:114-8 pubmed 出版商
  147. Chavez J, Schweppe D, Eng J, Zheng C, Taipale A, Zhang Y, et al. Quantitative interactome analysis reveals a chemoresistant edgotype. Nat Commun. 2015;6:7928 pubmed 出版商
  148. Sauter J, Ambaye A, Mount S. Increased utilization, verification, and clinical implications of immunocytochemistry: Experience in a northern New England hospital. Diagn Cytopathol. 2015;43:688-95 pubmed 出版商
  149. Ostrowski S, Wright M, Bolock A, Geng X, Maricich S. Ectopic Atoh1 expression drives Merkel cell production in embryonic, postnatal and adult mouse epidermis. Development. 2015;142:2533-44 pubmed 出版商
  150. Hein S, Haricharan S, Johnston A, Toneff M, Reddy J, Dong J, et al. Luminal epithelial cells within the mammary gland can produce basal cells upon oncogenic stress. Oncogene. 2016;35:1461-7 pubmed 出版商
  151. Yuri S, Nishikawa M, Yanagawa N, Jo O, Yanagawa N. Maintenance of Mouse Nephron Progenitor Cells in Aggregates with Gamma-Secretase Inhibitor. PLoS ONE. 2015;10:e0129242 pubmed 出版商
  152. Scalia C, Gendusa R, Cattoretti G. A 2-Step Laemmli and Antigen Retrieval Method Improves Immunodetection. Appl Immunohistochem Mol Morphol. 2016;24:436-46 pubmed 出版商
  153. Berry R, Ozdemir D, Aronow B, Lindström N, Dudnakova T, Thornburn A, et al. Deducing the stage of origin of Wilms' tumours from a developmental series of Wt1-mutant mice. Dis Model Mech. 2015;8:903-17 pubmed 出版商
  154. Abbasi A, Khalaj M, Akiyama K, Mukai Y, Matsumoto H, Acosta T, et al. Lack of Rev7 function results in development of tubulostromal adenomas in mouse ovary. Mol Cell Endocrinol. 2015;412:19-25 pubmed 出版商
  155. Swaminathan T, Basheer V, Kumar R, Kathirvelpandian A, Sood N, Jena J. Establishment and characterization of fin-derived cell line from ornamental carp, Cyprinus carpio koi, for virus isolation in India. In Vitro Cell Dev Biol Anim. 2015;51:705-13 pubmed 出版商
  156. Muhanna N, Mepham A, Mohamadi R, Chan H, Khan T, Akens M, et al. Nanoparticle-based sorting of circulating tumor cells by epithelial antigen expression during disease progression in an animal model. Nanomedicine. 2015;11:1613-20 pubmed 出版商
  157. Kershaw S, Cummings J, Morris K, Tugwood J, Dive C. Optimisation of immunofluorescence methods to determine MCT1 and MCT4 expression in circulating tumour cells. BMC Cancer. 2015;15:387 pubmed 出版商
  158. Katanov C, Lerrer S, Liubomirski Y, Leider Trejo L, Meshel T, Bar J, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-? and the NF-?B pathway. Stem Cell Res Ther. 2015;6:87 pubmed 出版商
  159. Yongping M, Zhang X, Xuewei L, Fan W, Chen J, Zhang H, et al. Astragaloside prevents BDL-induced liver fibrosis through inhibition of notch signaling activation. J Ethnopharmacol. 2015;169:200-9 pubmed 出版商
  160. Sood N, Chaudhary D, Pradhan P, Verma D, Raja Swaminathan T, Kushwaha B, et al. Establishment and characterization of a continuous cell line from thymus of striped snakehead, Channa striatus (Bloch 1793). In Vitro Cell Dev Biol Anim. 2015;51:787-96 pubmed 出版商
  161. Fausther M, Goree J, Lavoie Ã, Graham A, Sévigny J, Dranoff J. Establishment and characterization of rat portal myofibroblast cell lines. PLoS ONE. 2015;10:e0121161 pubmed 出版商
  162. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed 出版商
  163. Tanaka T, Iino M. Sec8 regulates cytokeratin8 phosphorylation and cell migration by controlling the ERK and p38 MAPK signalling pathways. Cell Signal. 2015;27:1110-9 pubmed 出版商
  164. Ahmed H, Abdul Gader Suliman R, Abd El Aziz M, Alshammari F. Immunohistochemical expression of cytokeratins and epithelial membrane protein 2 in nasopharyngeal carcinoma and its potential implications. Asian Pac J Cancer Prev. 2015;16:653-6 pubmed
  165. Kap M, Lam K, Ewing Graham P, Riegman P. A reference image-based method for optimization of clinical immunohistochemistry. Histopathology. 2015;67:193-205 pubmed 出版商
  166. Franckaert D, Schlenner S, Heirman N, Gill J, Skogberg G, Ekwall O, et al. Premature thymic involution is independent of structural plasticity of the thymic stroma. Eur J Immunol. 2015;45:1535-47 pubmed 出版商
  167. Chandler R, Damrauer J, Raab J, Schisler J, Wilkerson M, Didion J, et al. Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat Commun. 2015;6:6118 pubmed 出版商
  168. Wright M, Reed Geaghan E, Bolock A, Fujiyama T, Hoshino M, Maricich S. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice. J Cell Biol. 2015;208:367-79 pubmed 出版商
  169. Roarty K, Shore A, Creighton C, Rosen J. Ror2 regulates branching, differentiation, and actin-cytoskeletal dynamics within the mammary epithelium. J Cell Biol. 2015;208:351-66 pubmed 出版商
  170. Zheng L, Cardaci S, Jerby L, MacKenzie E, Sciacovelli M, Johnson T, et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat Commun. 2015;6:6001 pubmed 出版商
  171. Petrosyan A, Ali M, Cheng P. Keratin 1 plays a critical role in golgi localization of core 2 N-acetylglucosaminyltransferase M via interaction with its cytoplasmic tail. J Biol Chem. 2015;290:6256-69 pubmed 出版商
  172. Richardson G, Lannigan J, Macara I. Does FACS perturb gene expression?. Cytometry A. 2015;87:166-75 pubmed 出版商
  173. Leir S, Browne J, Eggener S, Harris A. Characterization of primary cultures of adult human epididymis epithelial cells. Fertil Steril. 2015;103:647-54.e1 pubmed 出版商
  174. German S, Campbell K, Thornton E, McLachlan G, Sweetman D, Alberio R. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer. Cell Reprogram. 2015;17:19-27 pubmed 出版商
  175. Suzuki D, Sahu R, Leu N, Senoo M. The carboxy-terminus of p63 links cell cycle control and the proliferative potential of epidermal progenitor cells. Development. 2015;142:282-90 pubmed 出版商
  176. BaÅŸak K, KiroÄŸlu K. Multiple oncocytic cystadenoma with intraluminal crystalloids in parotid gland: case report. Medicine (Baltimore). 2014;93:e246 pubmed 出版商
  177. Mata K, Tefé Silva C, Floriano E, Fernandes C, Rizzi E, Gerlach R, et al. Interference of doxycycline pretreatment in a model of abdominal aortic aneurysms. Cardiovasc Pathol. 2015;24:110-20 pubmed 出版商
  178. Kunasegaran K, Ho V, Chang T, De Silva D, Bakker M, Christoffels V, et al. Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium. PLoS ONE. 2014;9:e110191 pubmed 出版商
  179. Beck A, Brooks A, Zeiss C. Invasive ductular carcinoma in 2 rhesus macaques (Macaca mulatta). Comp Med. 2014;64:314-22 pubmed
  180. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  181. Wögenstein K, Szabo S, Lunova M, Wiche G, Haybaeck J, Strnad P, et al. Epiplakin deficiency aggravates murine caerulein-induced acute pancreatitis and favors the formation of acinar keratin granules. PLoS ONE. 2014;9:e108323 pubmed 出版商
  182. Chierchia L, Tussellino M, Guarino D, Carotenuto R, DeMarco N, Campanella C, et al. Cytoskeletal proteins associate with components of the ribosomal maturation and translation apparatus in Xenopus stage I oocytes. Zygote. 2015;23:669-82 pubmed 出版商
  183. Wrzesinski K, Rogowska Wrzesinska A, Kanlaya R, Borkowski K, Schwämmle V, Dai J, et al. The cultural divide: exponential growth in classical 2D and metabolic equilibrium in 3D environments. PLoS ONE. 2014;9:e106973 pubmed 出版商
  184. Li L, Fan X, Xia Q, Rao Q, Liu B, Yu B, et al. Concurrent loss of INI1, PBRM1, and BRM expression in epithelioid sarcoma: implications for the cocontributions of multiple SWI/SNF complex members to pathogenesis. Hum Pathol. 2014;45:2247-54 pubmed 出版商
  185. Genovese F, Gualandi A, Taddia L, Marverti G, Pirondi S, Marraccini C, et al. Mass spectrometric/bioinformatic identification of a protein subset that characterizes the cellular activity of anticancer peptides. J Proteome Res. 2014;13:5250-61 pubmed 出版商
  186. Costache M, Pătraşcu O, Dumitru A, Costache D, Voinea L, Simionescu O, et al. Histopathological findings concerning ocular melanomas. Rom J Morphol Embryol. 2014;55:649-53 pubmed
  187. Guan H, Tan J, Zhang F, Gao L, Bai L, Qi D, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12. Histopathology. 2015;66:781-90 pubmed 出版商
  188. Yun E, Baek S, Xie D, Tseng S, Dobin T, Hernandez E, et al. DAB2IP regulates cancer stem cell phenotypes through modulating stem cell factor receptor and ZEB1. Oncogene. 2015;34:2741-52 pubmed 出版商
  189. Greaves E, Cousins F, Murray A, Esnal Zufiaurre A, Fassbender A, Horne A, et al. A novel mouse model of endometriosis mimics human phenotype and reveals insights into the inflammatory contribution of shed endometrium. Am J Pathol. 2014;184:1930-9 pubmed 出版商
  190. Sato M, Kadota M, Tang B, Yang H, Yang Y, Shan M, et al. An integrated genomic approach identifies persistent tumor suppressive effects of transforming growth factor-? in human breast cancer. Breast Cancer Res. 2014;16:R57 pubmed 出版商
  191. Mashukova A, Kozhekbaeva Z, Forteza R, Dulam V, Figueroa Y, Warren R, et al. The BAG-1 isoform BAG-1M regulates keratin-associated Hsp70 chaperoning of aPKC in intestinal cells during activation of inflammatory signaling. J Cell Sci. 2014;127:3568-77 pubmed 出版商
  192. Gao Y, Bayless K, Li Q. TGFBR1 is required for mouse myometrial development. Mol Endocrinol. 2014;28:380-94 pubmed 出版商
  193. Ryszawy D, Sarna M, Rak M, Szpak K, Kedracka Krok S, Michalik M, et al. Functional links between Snail-1 and Cx43 account for the recruitment of Cx43-positive cells into the invasive front of prostate cancer. Carcinogenesis. 2014;35:1920-30 pubmed 出版商
  194. Brueggmann D, Templeman C, Starzinski Powitz A, Rao N, Gayther S, Lawrenson K. Novel three-dimensional in vitro models of ovarian endometriosis. J Ovarian Res. 2014;7:17 pubmed 出版商
  195. Yurube T, Hirata H, Kakutani K, Maeno K, Takada T, Zhang Z, et al. Notochordal cell disappearance and modes of apoptotic cell death in a rat tail static compression-induced disc degeneration model. Arthritis Res Ther. 2014;16:R31 pubmed 出版商
  196. Liu Z, Yu N, Holz F, Yang F, Stanzel B. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837-50 pubmed 出版商
  197. Wang S, Huang S, Zhao X, Zhang Q, Wu M, Sun F, et al. Enrichment of prostate cancer stem cells from primary prostate cancer cultures of biopsy samples. Int J Clin Exp Pathol. 2014;7:184-93 pubmed
  198. Stratmann A, Fecher D, Wangorsch G, Göttlich C, Walles T, Walles H, et al. Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Mol Oncol. 2014;8:351-65 pubmed 出版商
  199. Huang T, Krimm R. BDNF and NT4 play interchangeable roles in gustatory development. Dev Biol. 2014;386:308-20 pubmed 出版商
  200. Motomura K, Sumino H, Noguchi A, Horinouchi T, Nakanishi K. Sentinel nodes identified by computed tomography-lymphography accurately stage the axilla in patients with breast cancer. BMC Med Imaging. 2013;13:42 pubmed 出版商
  201. Hirata H, Yurube T, Kakutani K, Maeno K, Takada T, Yamamoto J, et al. A rat tail temporary static compression model reproduces different stages of intervertebral disc degeneration with decreased notochordal cell phenotype. J Orthop Res. 2014;32:455-63 pubmed 出版商
  202. Elakoum R, Gauchotte G, Oussalah A, Wissler M, Clément Duchêne C, Vignaud J, et al. CARM1 and PRMT1 are dysregulated in lung cancer without hierarchical features. Biochimie. 2014;97:210-8 pubmed 出版商
  203. Xu D, Nishimura T, Zheng M, Wu M, Su H, Sato N, et al. Enabling autologous human liver regeneration with differentiated adipocyte stem cells. Cell Transplant. 2014;23:1573-84 pubmed 出版商
  204. Bray K, Gillette M, Young J, Loughran E, Hwang M, Sears J, et al. Cdc42 overexpression induces hyperbranching in the developing mammary gland by enhancing cell migration. Breast Cancer Res. 2013;15:R91 pubmed
  205. Bulysheva A, Bowlin G, Petrova S, Yeudall W. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds. Biomed Mater. 2013;8:055009 pubmed 出版商
  206. Motomura K, Izumi T, Tateishi S, Sumino H, Noguchi A, Horinouchi T, et al. Correlation between the area of high-signal intensity on SPIO-enhanced MR imaging and the pathologic size of sentinel node metastases in breast cancer patients with positive sentinel nodes. BMC Med Imaging. 2013;13:32 pubmed 出版商
  207. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  208. Stewart C, Wang Y, Bonilla Claudio M, Martin J, Gonzalez G, Taketo M, et al. CTNNB1 in mesenchyme regulates epithelial cell differentiation during Müllerian duct and postnatal uterine development. Mol Endocrinol. 2013;27:1442-54 pubmed 出版商
  209. Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T, et al. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS ONE. 2013;8:e67466 pubmed 出版商
  210. Ohta K, Taki M, Ogawa I, Ono S, Mizuta K, Fujimoto S, et al. Malignant ossifying fibromyxoid tumor of the tongue: case report and review of the literature. Head Face Med. 2013;9:16 pubmed 出版商
  211. Nassiri F, Scheithauer B, Corwin D, Kaplan H, Mayberg M, Cusimano M, et al. Invasive thymoma metastatic to the cavernous sinus. Surg Neurol Int. 2013;4:74 pubmed 出版商
  212. Okumura N, Akutsu H, Sugawara T, Miura T, Takezawa Y, Hosoda A, et al. ?-catenin functions pleiotropically in differentiation and tumorigenesis in mouse embryo-derived stem cells. PLoS ONE. 2013;8:e63265 pubmed 出版商
  213. Sizemore G, Sizemore S, Pal B, Booth C, Seachrist D, Abdul Karim F, et al. FOXC1 is enriched in the mammary luminal progenitor population, but is not necessary for mouse mammary ductal morphogenesis. Biol Reprod. 2013;89:10 pubmed 出版商
  214. Parsons M, McCormick L, Janke L, Howard A, Bouchier Hayes L, Green D. Genetic deletion of caspase-2 accelerates MMTV/c-neu-driven mammary carcinogenesis in mice. Cell Death Differ. 2013;20:1174-82 pubmed 出版商
  215. Tripathi P, Wang Y, Coussens M, Manda K, Casey A, Lin C, et al. Activation of NFAT signaling establishes a tumorigenic microenvironment through cell autonomous and non-cell autonomous mechanisms. Oncogene. 2014;33:1840-9 pubmed 出版商
  216. Lian X, Selekman J, Bao X, Hsiao C, Zhu K, Palecek S. A small molecule inhibitor of SRC family kinases promotes simple epithelial differentiation of human pluripotent stem cells. PLoS ONE. 2013;8:e60016 pubmed 出版商
  217. Yang G, Li J, Jin H, Ding H. Is mammary not otherwise specified-type sarcoma with CD10 expression a distinct entity? A rare case report with immunohistochemical and ultrastructural study. Diagn Pathol. 2013;8:14 pubmed 出版商
  218. Weli S, Aamelfot M, Dale O, Koppang E, Falk K. Infectious salmon anaemia virus infection of Atlantic salmon gill epithelial cells. Virol J. 2013;10:5 pubmed 出版商
  219. Lv S, Song Y, Xu J, Shu H, Zhou Z, An N, et al. A novel TP53 somatic mutation involved in the pathogenesis of pediatric choroid plexus carcinoma. Med Sci Monit. 2012;18:CS37-41 pubmed
  220. Sohn W, Gwon G, An C, Moon C, Bae Y, Yamamoto H, et al. Morphological evidences in circumvallate papilla and von Ebners' gland development in mice. Anat Cell Biol. 2011;44:274-83 pubmed 出版商
  221. Khoja L, Backen A, Sloane R, Menasce L, Ryder D, Krebs M, et al. A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer. 2012;106:508-16 pubmed 出版商
  222. Romero Alemán M, Monzon Mayor M, Santos E, Lang D, Yanes C. Neuronal and glial differentiation during lizard (Gallotia galloti) visual system ontogeny. J Comp Neurol. 2012;520:2163-84 pubmed 出版商
  223. Kap M, Smedts F, Oosterhuis W, Winther R, Christensen N, Reischauer B, et al. Histological assessment of PAXgene tissue fixation and stabilization reagents. PLoS ONE. 2011;6:e27704 pubmed 出版商
  224. Patel A, Huang T, Krimm R. Lingual and palatal gustatory afferents each depend on both BDNF and NT-4, but the dependence is greater for lingual than palatal afferents. J Comp Neurol. 2010;518:3290-301 pubmed 出版商
  225. Qi H, Zheng X, Yuan X, Pflugfelder S, Li D. Potential localization of putative stem/progenitor cells in human bulbar conjunctival epithelium. J Cell Physiol. 2010;225:180-5 pubmed 出版商
  226. Gil da Costa R, Santos M, Amorim I, Lopes C, Pereira P, Faustino A. An immunohistochemical study of feline endometrial adenocarcinoma. J Comp Pathol. 2009;140:254-9 pubmed 出版商
  227. Rhee K, Wu S, Wu X, Huso D, Karim B, Franco A, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009;77:1708-18 pubmed 出版商
  228. Rodriguez F, Scheithauer B, Giannini C, Bryant S, Jenkins R. Epithelial and pseudoepithelial differentiation in glioblastoma and gliosarcoma: a comparative morphologic and molecular genetic study. Cancer. 2008;113:2779-89 pubmed 出版商
  229. Page J, Johnson M, Olsavsky K, Strom S, Zarbl H, Omiecinski C. Gene expression profiling of extracellular matrix as an effector of human hepatocyte phenotype in primary cell culture. Toxicol Sci. 2007;97:384-97 pubmed
  230. Lu S, Yu G, Zhu Y, Archer M. Cyclooxygenase-2 overexpression in MCF-10F human breast epithelial cells inhibits proliferation, apoptosis and differentiation, and causes partial transformation. Int J Cancer. 2005;116:847-52 pubmed
  231. Gilbert S, Loranger A, Marceau N. Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol Cell Biol. 2004;24:7072-81 pubmed
  232. Song S, Park S, Kim S, Suh Y. Oncocytic adrenocortical carcinomas: a pathological and immunohistochemical study of four cases in comparison with conventional adrenocortical carcinomas. Pathol Int. 2004;54:603-10 pubmed
  233. Kokenyesi R, Murray K, Benshushan A, Huntley E, Kao M. Invasion of interstitial matrix by a novel cell line from primary peritoneal carcinosarcoma, and by established ovarian carcinoma cell lines: role of cell-matrix adhesion molecules, proteinases, and E-cadherin expression. Gynecol Oncol. 2003;89:60-72 pubmed