这是一篇来自已证抗体库的有关人类 KRT8的综述,是根据211篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合KRT8 抗体。
KRT8 同义词: CARD2; CK-8; CK8; CYK8; K2C8; K8; KO

赛默飞世尔
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
赛默飞世尔 KRT8抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Nat Cell Biol (2020) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 人类; 图 s1b
赛默飞世尔 KRT8抗体(Thermo Fischer, MA5-13203)被用于被用于免疫细胞化学在人类样本上 (图 s1b). Sci Rep (2017) ncbi
小鼠 单克隆(5D3)
  • 其他; 人类; 图 s1
赛默飞世尔 KRT8抗体(Thermo Fisher, MA5-14088)被用于被用于其他在人类样本上 (图 s1). Cell Chem Biol (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 2
赛默飞世尔 KRT8抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 2). Hum Pathol (2017) ncbi
小鼠 单克隆(AE3)
  • 流式细胞仪; 人类
赛默飞世尔 KRT8抗体(eBioscience, 14-900-80)被用于被用于流式细胞仪在人类样本上. F1000Res (2016) ncbi
小鼠 单克隆(K8.8 + DC10)
  • 免疫细胞化学; 小鼠; 1:2000
  • 免疫细胞化学; 人类; 1:2000; 图 ED1g
  • 免疫印迹; 人类; 1:1000; 图 2c, ED4b
赛默飞世尔 KRT8抗体(Thermo Scientific, MS-142)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000, 被用于免疫细胞化学在人类样本上浓度为1:2000 (图 ED1g) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2c, ED4b). Nature (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 3d
赛默飞世尔 KRT8抗体(Thermo Scientific, AE1-AE3)被用于被用于免疫组化在人类样本上 (图 3d). Case Rep Pathol (2016) ncbi
小鼠 单克隆(TS1)
  • 免疫印迹; 人类; 图 2e
赛默飞世尔 KRT8抗体(Thermo Fisher, TS1)被用于被用于免疫印迹在人类样本上 (图 2e). Sci Rep (2016) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 3d
赛默飞世尔 KRT8抗体(Thermo Scientific, MA5-13203)被用于被用于免疫细胞化学在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 3d). Oncogene (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 5b
赛默飞世尔 KRT8抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5b). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(TS1)
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 图 3h
赛默飞世尔 KRT8抗体(Thermo Scientific, TS1)被用于被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 3h). Sci Rep (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:50; 图 1
赛默飞世尔 KRT8抗体(ThermoFisher Scientific, MA5-13156)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). Future Oncol (2016) ncbi
小鼠 单克隆(TS1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔 KRT8抗体(Thermo Fisher Scientific, MS-997-P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Genes Cancer (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 s3
赛默飞世尔 KRT8抗体(分子探针, 985542A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3). Microbiome (2015) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 人类; 图 4
赛默飞世尔 KRT8抗体(Thermo Fisher Scientific, EP1628Y)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Biomed Res Int (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 s3
赛默飞世尔 KRT8抗体(Neomarkers, MS-343-P)被用于被用于免疫组化在人类样本上 (图 s3). Mol Cancer (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔 KRT8抗体(Thermo Scientific, MA5-13203)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
赛默飞世尔 KRT8抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Pathol Res Pract (2015) ncbi
小鼠 单克隆(5D3)
  • 免疫细胞化学; 人类; 1:50; 图 5
赛默飞世尔 KRT8抗体(Thermo Scientific, MS-743-S)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 小鼠; 1:100; 表 2
赛默飞世尔 KRT8抗体(eBioscience, 41-9003)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (表 2). J Cell Physiol (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 2
赛默飞世尔 KRT8抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 2). Diagn Cytopathol (2015) ncbi
小鼠 单克隆(5D3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s1
赛默飞世尔 KRT8抗体(Thermo Scientific, 5D3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s1). Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 鲤
赛默飞世尔 KRT8抗体(生活技术, MA5-13156)被用于被用于免疫细胞化学在鲤样本上. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类; 1 ul
赛默飞世尔 KRT8抗体(eBioscience, 53-9003-82)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上浓度为1 ul. Nanomedicine (2015) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 KRT8抗体(Thermo Scientific, 4545)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫印迹; 人类
赛默飞世尔 KRT8抗体(Thermo Fisher Scientific, MA5-13203)被用于被用于免疫印迹在人类样本上. Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(AE1/AE3)
赛默飞世尔 KRT8抗体(Invitrogen, AE1/AE3)被用于. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 国内马; 1:100
赛默飞世尔 KRT8抗体(Fisher Scientific, MA1-82041)被用于被用于免疫细胞化学在国内马样本上浓度为1:100. Equine Vet J (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 10-20 ug/ml
赛默飞世尔 KRT8抗体(Lab.Vision, Ab-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为10-20 ug/ml. Asian Pac J Cancer Prev (2015) ncbi
小鼠 单克隆(5D3)
  • 免疫组化; 人类; 1:100
赛默飞世尔 KRT8抗体(Neomarkers, MS 743-S)被用于被用于免疫组化在人类样本上浓度为1:100. Histopathology (2015) ncbi
小鼠 单克隆(AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔 KRT8抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔 KRT8抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔 KRT8抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 斑马鱼; 1:100; 图 5
赛默飞世尔 KRT8抗体(Thermo Fisher Scientific, MA1-82041)被用于被用于流式细胞仪在斑马鱼样本上浓度为1:100 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
赛默飞世尔 KRT8抗体(ThermoFisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Development (2015) ncbi
小鼠 单克隆(AE1)
  • 免疫组化; 人类; ready-to-use
赛默飞世尔 KRT8抗体(Thermo Scientific, AE1)被用于被用于免疫组化在人类样本上浓度为ready-to-use. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(TS1)
  • 免疫组化; 人类; 1:300
赛默飞世尔 KRT8抗体(Thermo Scientific, TS1)被用于被用于免疫组化在人类样本上浓度为1:300. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT8抗体(Neo Markers, MS343)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Comp Med (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔 KRT8抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(8A5D12)
  • 免疫细胞化学; 人类
赛默飞世尔 KRT8抗体(Thermo Fisher Scientific, MA5-15460)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT8抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Hum Pathol (2014) ncbi
小鼠 单克隆(K8.8 + DC10)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT8抗体(Neomarker, K8.8 + DC10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Hum Pathol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT8抗体(Thermo Fisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔 KRT8抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Histopathology (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类
赛默飞世尔 KRT8抗体(Thermo, AE1/AE3)被用于被用于免疫组化在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔 KRT8抗体(Thermo Fisher, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Biomed Mater (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 KRT8抗体(Thermoelectron, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔 KRT8抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Sci Rep (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:100; 图 1
赛默飞世尔 KRT8抗体(eBioscience, AE1/AE3)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 1
赛默飞世尔 KRT8抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 1). Head Face Med (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 1:200; 图 4
赛默飞世尔 KRT8抗体(Zymed, AE1-AE3)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Surg Neurol Int (2013) ncbi
domestic rabbit 单克隆(SP102)
赛默飞世尔 KRT8抗体(Thermo Scientific, RM-2107-R7)被用于. Cell Death Differ (2013) ncbi
domestic rabbit 单克隆(SP102)
  • 流式细胞仪; 人类; 1:200; 图 s2
  • 免疫细胞化学; 人类; 1:200; 图 6
赛默飞世尔 KRT8抗体(Thermo Scientific, RM-2107-S0)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s2) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 6). PLoS ONE (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 2
赛默飞世尔 KRT8抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (图 2). Diagn Pathol (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 大西洋鲑鱼; 1:50; 图 2
赛默飞世尔 KRT8抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在大西洋鲑鱼样本上浓度为1:50 (图 2). Virol J (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT8抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Med Sci Monit (2012) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 KRT8抗体(Thermo Scientific, MS-343)被用于被用于免疫组化-石蜡切片在小鼠样本上. Anat Cell Biol (2011) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔 KRT8抗体(Labvision, MS-149)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:100. Br J Cancer (2012) ncbi
小鼠 单克隆(5D3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 KRT8抗体(Neomarkers, MS 743-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. PLoS ONE (2011) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 KRT8抗体(Neomarkers, MS 343-P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. PLoS ONE (2011) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 0.4 ug/ul; 图 1
赛默飞世尔 KRT8抗体(NeoMarkers, MS-343)被用于被用于免疫组化在人类样本上浓度为0.4 ug/ul (图 1). Eur J Oral Sci (2010) ncbi
小鼠 单克隆(6B10)
  • 免疫组化; 人类; 图 2
赛默飞世尔 KRT8抗体(Lab Vision, 6B10)被用于被用于免疫组化在人类样本上 (图 2). J Cell Physiol (2010) ncbi
小鼠 单克隆(AE3)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔 KRT8抗体(Zymed, AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(AE1)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔 KRT8抗体(Zymed, AE1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT8抗体(Invitrogen, C-11)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT8抗体(Invitrogen, C-11)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 KRT8抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Cancer (2008) ncbi
小鼠 单克隆(TS1)
  • 免疫印迹; 人类; 1:200; 图 6
赛默飞世尔 KRT8抗体(Neomarkers, MS-997)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6). Toxicol Sci (2007) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 KRT8抗体(Lab Vision, MS-343-P)被用于被用于免疫印迹在人类样本上 (图 5). Int J Cancer (2005) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT8抗体(NeoMarkers, C-11)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2004) ncbi
小鼠 单克隆(TS1)
  • 免疫印迹基因敲除验证; 小鼠; 图 3
赛默飞世尔 KRT8抗体(NeoMarkers, TS1)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3). Mol Cell Biol (2004) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 小鼠
赛默飞世尔 KRT8抗体(NeoMarkers, C-11)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:80; 表 1
赛默飞世尔 KRT8抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (表 1). Pathol Int (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 KRT8抗体(Zymed, AE1/AE3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Gynecol Oncol (2003) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab59400)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Biol Res (2019) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫印迹; 人类; 图 s4b
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫印迹在人类样本上 (图 s4b). Cell (2019) ncbi
domestic rabbit 单克隆(E431-2)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 3
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab32579)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 3). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化; 小鼠; 1:100; 图 4b
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab192467)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4b). Cell Rep (2018) ncbi
小鼠 单克隆(M20)
  • 免疫细胞化学; 人类; 1:200; 图 4d
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, Ab9023)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4d). PLoS ONE (2018) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化在小鼠样本上 (图 2a). Nature (2017) ncbi
小鼠 单克隆(C-43)
  • 免疫细胞化学; 人类; 图 5d
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab2530)被用于被用于免疫细胞化学在人类样本上 (图 5d). J Exp Med (2017) ncbi
小鼠 单克隆(M20)
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 KRT8抗体(abcam, 9023)被用于被用于免疫印迹在人类样本上 (图 2a). Science (2017) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5a). Am J Pathol (2016) ncbi
小鼠 单克隆(M20)
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, M20)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 5g
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, 53280)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 5g). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫印迹; 人类; 图 s3
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫印迹在人类样本上 (图 s3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab59400)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(E431-2)
  • 免疫印迹; 人类; 图 s8a
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, E431-2)被用于被用于免疫印迹在人类样本上 (图 s8a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 6
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 4
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 2
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, EP16284)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 2). Prostate (2016) ncbi
小鼠 单克隆(M20)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab9023)被用于被用于免疫组化-石蜡切片在人类样本上. BMJ Open Gastroenterol (2015) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5). Oncotarget (2015) ncbi
domestic rabbit 单克隆(EP1628Y)
  • 免疫组化-石蜡切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab53280)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Mol Cell Endocrinol (2015) ncbi
domestic rabbit 单克隆(E431-2)
  • 免疫组化; 人类; 图 s3
  • 免疫印迹; 人类; 1:1000; 图  1
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab32579)被用于被用于免疫组化在人类样本上 (图 s3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图  1). Cell Signal (2015) ncbi
小鼠 单克隆(M20)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab9023)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(C-43)
  • 免疫细胞化学; 人类; 1:50; 图 4b
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, Ab2530)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Biochimie (2014) ncbi
小鼠 单克隆(5D3)
  • 流式细胞仪; 人类; 1:200
  • 免疫组化; 小鼠; 1:50
艾博抗(上海)贸易有限公司 KRT8抗体(Abcam, ab17139)被用于被用于流式细胞仪在人类样本上浓度为1:200 和 被用于免疫组化在小鼠样本上浓度为1:50. Cell Transplant (2014) ncbi
BioLegend
小鼠 单克隆(1E8)
  • 免疫组化; 小鼠; 图 5e
BioLegend KRT8抗体(Covance, MMS-162P)被用于被用于免疫组化在小鼠样本上 (图 5e). Cell (2019) ncbi
小鼠 单克隆(1E8)
  • 免疫细胞化学; 小鼠; 图 2f
BioLegend KRT8抗体(BioLegend, 904801)被用于被用于免疫细胞化学在小鼠样本上 (图 2f). Breast Cancer Res (2019) ncbi
小鼠 单克隆(1E8)
  • 免疫组化; 小鼠; 图 s6a
BioLegend KRT8抗体(Covance, MMS-162P)被用于被用于免疫组化在小鼠样本上 (图 s6a). Cell Rep (2018) ncbi
小鼠 单克隆(1E8)
  • 免疫组化; 人类; 1:1000; 图 2g
BioLegend KRT8抗体(Covance, 1E8-MMS-162P)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 2g). Nat Commun (2018) ncbi
小鼠 单克隆(1E8)
  • 免疫细胞化学; 人类; 1:1000; 图 3b
BioLegend KRT8抗体(Covance, MMS-162P-250)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3b). Nature (2017) ncbi
小鼠 单克隆(1E8)
  • 免疫组化-石蜡切片; 小鼠; 图 s1h
BioLegend KRT8抗体(Covance, MMS-162P)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1h). Nature (2017) ncbi
小鼠 单克隆(1E8)
  • 免疫组化; 小鼠; 图 4c
BioLegend KRT8抗体(Covance, MMS-162P)被用于被用于免疫组化在小鼠样本上 (图 4c). J Clin Invest (2017) ncbi
小鼠 单克隆(1E8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4b
BioLegend KRT8抗体(Covance, MMS-162P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4b). Nat Commun (2017) ncbi
小鼠 单克隆(1E8)
  • 免疫组化-石蜡切片; 小鼠
BioLegend KRT8抗体(Covance, MMS-162P)被用于被用于免疫组化-石蜡切片在小鼠样本上. Oncogene (2017) ncbi
小鼠 单克隆(1E8)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3c
BioLegend KRT8抗体(Covance, MMS-162P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3c). Oncogene (2017) ncbi
小鼠 单克隆(1E8)
  • 免疫细胞化学; 人类; 1:500; 图 s1
  • 免疫印迹; 人类; 1:1000; 图 2b
BioLegend KRT8抗体(Covance, MMS-162P)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Science (2016) ncbi
小鼠 单克隆(1E8)
  • 免疫组化-冰冻切片; 小鼠; 图 2
BioLegend KRT8抗体(covance, MMS-162P)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). Stem Cell Reports (2016) ncbi
小鼠 单克隆(1E8)
  • 免疫细胞化学; 人类; 1:300; 图 2b
BioLegend KRT8抗体(BioLegend, 1E8)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 2b). Cell Cycle (2016) ncbi
小鼠 单克隆(1E8)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1
BioLegend KRT8抗体(Covance, MMS-162P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(1E8)
  • 免疫组化; 小鼠; 1:500; 图 7
BioLegend KRT8抗体(Biolegend, MMS-162P)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7). Oncogene (2016) ncbi
小鼠 单克隆(1E8)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
  • 免疫细胞化学; 人类; 1:100; 图 4
BioLegend KRT8抗体(Covance, MMS-162P-250)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(1E8)
  • 免疫组化-冰冻切片; 小鼠; 1:2500; 图 1
BioLegend KRT8抗体(covance, MMS-162P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2500 (图 1). Stem Cells (2015) ncbi
小鼠 单克隆(1E8)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2
BioLegend KRT8抗体(Covance, MMS-162P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(1E8)
  • 免疫组化-石蜡切片; 小鼠; 图 s2
BioLegend KRT8抗体(Covance, MMS-162P)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2). Cancer Res (2015) ncbi
小鼠 单克隆(1E8)
  • 免疫细胞化学; 小鼠; 1:1000
BioLegend KRT8抗体(Covance, MMS-162P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Stem Cell Reports (2015) ncbi
小鼠 单克隆(1E8)
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 4
BioLegend KRT8抗体(Covance, MMS-162P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(1E8)
  • 免疫组化-石蜡切片; 小鼠
BioLegend KRT8抗体(Covance, MMS-162P)被用于被用于免疫组化-石蜡切片在小鼠样本上. Cancer Res (2014) ncbi
小鼠 单克隆(1E8)
  • 免疫印迹; 小鼠; 1:1000; 图 3
BioLegend KRT8抗体(Covance, MMS-162P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2014) ncbi
小鼠 单克隆(1E8)
  • 免疫组化-石蜡切片; 小鼠
BioLegend KRT8抗体(Covance, MMS-162P)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Pathol (2014) ncbi
小鼠 单克隆(1E8)
  • 免疫组化-冰冻切片; 小鼠; 图 3
BioLegend KRT8抗体(Covance, MMS-162P)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). Biomed Res Int (2013) ncbi
小鼠 单克隆(1E8)
  • 免疫组化-石蜡切片; 小鼠; 1:200
BioLegend KRT8抗体(Covance, MMS-162P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. J Cell Biol (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(M20)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, M20)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(M20)
  • 免疫组化-冰冻切片; 人类; 图 6c
圣克鲁斯生物技术 KRT8抗体(SantaCruz, sc-52324)被用于被用于免疫组化-冰冻切片在人类样本上 (图 6c). Cell (2017) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 KRT8抗体(SantaCruz, sc-8018)被用于被用于免疫印迹在人类样本上 (图 3b). Eur J Pharmacol (2017) ncbi
小鼠 单克隆(M20)
  • 免疫印迹; 小鼠; 1:500; 图 3a
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, M-20)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). J Physiol (2017) ncbi
小鼠 单克隆(M20)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 KRT8抗体(Santa Cruz Biotechnologies, M20)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Cell Adh Migr (2017) ncbi
小鼠 单克隆(M20)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, sc-52324)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(C11)
  • 免疫组化-冰冻切片; 人类; 图 2
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, sc-8018)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(C11)
  • 免疫细胞化学; 大鼠; 1:10; 图 3
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, sc-8018)被用于被用于免疫细胞化学在大鼠样本上浓度为1:10 (图 3). Front Physiol (2016) ncbi
小鼠 单克隆(C11)
  • 免疫组化-石蜡切片; 小鼠; 图 1d
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, sc-8018)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1d). Int J Biol Sci (2016) ncbi
小鼠 单克隆(C11)
  • 免疫细胞化学; 大鼠; 1:50; 图 6
圣克鲁斯生物技术 KRT8抗体(Santa Cruz Biotechnology, sc-8018)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 6). Cell Med (2015) ncbi
小鼠 单克隆(C51)
  • 免疫细胞化学; 人类; 图 1
圣克鲁斯生物技术 KRT8抗体(Santa Cruz Biotechnology, C51)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 图 1
圣克鲁斯生物技术 KRT8抗体(Santa Cruz Biotechnology, C51)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(KS8.7)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 2
圣克鲁斯生物技术 KRT8抗体(Santa Cruz Biotechnology, sc-101459)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 2). J Ethnopharmacol (2015) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 人类; 图 s1
圣克鲁斯生物技术 KRT8抗体(Santa, sc-8018)被用于被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(E-12)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, sc-374274)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2015) ncbi
小鼠 单克隆(M20)
  • 免疫组化; 大鼠; 1:100; 图 6a
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, M-20)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 6a). Cardiovasc Pathol (2015) ncbi
小鼠 单克隆(C50)
  • 免疫组化; 小鼠; 1:200; 图 8e
圣克鲁斯生物技术 KRT8抗体(Santa Cruz Biotechnology, C50)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 8e). Oncogene (2015) ncbi
小鼠 单克隆(C11)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 KRT8抗体(Santa, sc-8018)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Ovarian Res (2014) ncbi
小鼠 单克隆(KS8.7)
  • 免疫组化; 大鼠; 1:20
圣克鲁斯生物技术 KRT8抗体(Santa Cruz Biotechnology, sc-101459)被用于被用于免疫组化在大鼠样本上浓度为1:20. Arthritis Res Ther (2014) ncbi
小鼠 单克隆(KS8.7)
  • 免疫组化-石蜡切片; 大鼠; 1:20
圣克鲁斯生物技术 KRT8抗体(Santa Cruz Biotech., sc-101459)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:20. J Orthop Res (2014) ncbi
小鼠 单克隆(5F295)
  • 免疫组化-石蜡切片; 小鼠; 图 3
圣克鲁斯生物技术 KRT8抗体(Santa Cruz, sc-70928)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). PLoS ONE (2013) ncbi
LifeSpan Biosciences
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 s3a
LifeSpan Biosciences KRT8抗体(LifeSpan, LS-B12422)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). J Cell Biol (2018) ncbi
安迪生物R&D
小鼠 单克隆(LP3K)
  • 免疫组化; 大鼠; 1:100; 图 2
安迪生物R&D KRT8抗体(R&D Systems, MAB3165)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2). Int J Mol Med (2016) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(TS1)
  • 免疫印迹; 人类; 1:500
亚诺法生技股份有限公司 KRT8抗体(Abnova, TS106)被用于被用于免疫印迹在人类样本上浓度为1:500. J Proteome Res (2014) ncbi
西格玛奥德里奇
小鼠 单克隆(M20)
  • 免疫印迹; 人类; 1:10; 图 2a
西格玛奥德里奇 KRT8抗体(Sigma, C5301)被用于被用于免疫印迹在人类样本上浓度为1:10 (图 2a). Nat Commun (2017) ncbi
小鼠 单克隆(M20)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5c
  • 免疫细胞化学; 人类; 1:250; 图 1c
西格玛奥德里奇 KRT8抗体(Sigma, C5301)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5c) 和 被用于免疫细胞化学在人类样本上浓度为1:250 (图 1c). Oncotarget (2016) ncbi
小鼠 单克隆(K8.13)
  • 免疫组化-石蜡切片; 人类; 图 4
西格玛奥德里奇 KRT8抗体(Sigma, C6909)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Eur J Rheumatol (2016) ncbi
小鼠 单克隆(M20)
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 KRT8抗体(Sigma, C5301)被用于被用于免疫沉淀在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2016) ncbi
小鼠 单克隆(M20)
  • 免疫细胞化学; 人类; 1:1000; 图 5b
西格玛奥德里奇 KRT8抗体(Sigma, C5301)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 5b). Nat Commun (2016) ncbi
小鼠 单克隆(M20)
  • 免疫细胞化学; 人类
西格玛奥德里奇 KRT8抗体(Sigma Aldrich, C5301)被用于被用于免疫细胞化学在人类样本上. J Invest Dermatol (2015) ncbi
小鼠 单克隆(M20)
  • 免疫印迹; 人类
西格玛奥德里奇 KRT8抗体(Sigma Aldrich, C5301)被用于被用于免疫印迹在人类样本上. Acta Biomater (2014) ncbi
小鼠 单克隆(M20)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100
西格玛奥德里奇 KRT8抗体(Sigma-Aldrich, M-20)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100. Biomaterials (2014) ncbi
Fitzgerald Industries
  • 免疫组化; 人类; 图 1f
Fitzgerald Industries KRT8抗体(Fitzgerald Industries, 20R-CP004)被用于被用于免疫组化在人类样本上 (图 1f). Mol Biol Cell (2017) ncbi
  • 免疫细胞化学; 小鼠; 1:500
Fitzgerald Industries KRT8抗体(Fitzgerald, 20R-CP004)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Nature (2017) ncbi
  • 免疫组化-石蜡切片; 小鼠; 图 3
Fitzgerald Industries KRT8抗体(Fitzgerald, 20R-CP004)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Oncogene (2016) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2
Fitzgerald Industries KRT8抗体(Fitzgerald, 20R-CP004)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2). Oncotarget (2015) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:500
Fitzgerald Industries KRT8抗体(Fitzgerald, 20R-CP004)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:500. Nature (2015) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(C51)
  • mass cytometry; 人类; 图 3a
赛信通(上海)生物试剂有限公司 KRT8抗体(Cell Signaling Technologies, 4546)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
小鼠 单克隆(C51)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 KRT8抗体(Cell Signaling, 4546)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
Progen
小鼠 单克隆(KS8.7)
  • 免疫组化-石蜡切片; 大鼠; 图 st6
Progen KRT8抗体(Progen, 61038)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 st6). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(KS8.7)
  • 免疫印迹; 小鼠; 图 s4b
Progen KRT8抗体(Progen Biotechnik, 61038)被用于被用于免疫印迹在小鼠样本上 (图 s4b). J Clin Invest (2016) ncbi
丹科医疗器械技术服务(上海)有限公司
domestic rabbit 单克隆(EP17/EP30)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4c
丹科医疗器械技术服务(上海)有限公司 KRT8抗体(Dako, M3652)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4c). Oncotarget (2017) ncbi
Developmental Studies Hybridoma Bank
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:500; 图 1b
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank (DSHB), Troma-I)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). elife (2019) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 2a
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 2a). Science (2019) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:100; 图 5a
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5a). elife (2019) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫细胞化学; 小鼠; 1:10; 图 1a
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10 (图 1a). Nat Cell Biol (2019) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:20,000; 图 2c
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, AB 531826)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20,000 (图 2c). J Clin Invest (2019) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:30; 图 4a
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化在小鼠样本上浓度为1:30 (图 4a). Breast Cancer Res (2018) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:100; 图 1i
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1s)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1i). Science (2018) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2e
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-I)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2e). Genes Dev (2018) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 图 2j
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化在小鼠样本上 (图 2j). Sci Rep (2017) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, Troma-I)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Development (2017) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:500; 图 s5a
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s5a). Nat Cell Biol (2017) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-冰冻切片; 人类; 1:20; 图 6b
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:20 (图 6b). Cell (2017) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:50; 图 s3
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s3). Cell (2017) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 图 6c
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-I)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c). Breast Cancer Res (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:500
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-1)被用于被用于免疫组化在小鼠样本上浓度为1:500. Dis Model Mech (2017) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 图 6e
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化在小鼠样本上 (图 6e). J Exp Med (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 3b
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 3b). Oncogene (2017) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1b
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-I)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1b). Nat Commun (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). PLoS Genet (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s4h
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, Troma-I)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s4h). Genes Dev (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫印迹基因敲除验证; 小鼠; 图 3
  • 免疫印迹基因敲除验证; 人类; 图 5
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, unknown)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3) 和 被用于免疫印迹基因敲除验证在人类样本上 (图 5). Carcinogenesis (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 图 s1
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, Troma-I)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1). Oncotarget (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:100; 图 3
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫细胞化学; 小鼠; 图 2
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, Troma I)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Dev Dyn (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:100; 图 3
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3). Oncogene (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:50; 图 5
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5). PLoS Genet (2015) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 s2
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 s2). Stem Cell Reports (2015) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-自由浮动切片; 小鼠; 1:20; 图 2
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA1)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:20 (图 2). Development (2015) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:200; 图 1a
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, Troma-I)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1a). Oncogene (2016) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 人类
  • 免疫组化; 小鼠
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, Troma-1)被用于被用于免疫组化在人类样本上 和 被用于免疫组化在小鼠样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:100
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMAI)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Nat Commun (2015) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-冰冻切片; 小鼠; 1:20; 图 1
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20 (图 1). J Cell Biol (2015) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 4
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 4). J Cell Biol (2015) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫细胞化学; 小鼠; 图 3
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-1)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Cytometry A (2015) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:100
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-I)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2
  • 免疫组化基因敲除验证; 小鼠; 1:50; 图 1
  • 免疫印迹; 小鼠; 1:500; 图 s3
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, Troma I)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2), 被用于免疫组化基因敲除验证在小鼠样本上浓度为1:50 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 s3). PLoS ONE (2014) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 人类
Developmental Studies Hybridoma Bank KRT8抗体(Hybridoma Bank, Troma-1)被用于被用于免疫组化-石蜡切片在人类样本上. Breast Cancer Res (2014) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫印迹; 人类; 图 2
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Sci (2014) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:100
Developmental Studies Hybridoma Bank KRT8抗体(DSHB, TROMA-I)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Mol Endocrinol (2014) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-冰冻切片; 小鼠; 1:100
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, Troma-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Dev Biol (2014) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠; 1:250
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-I)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. Breast Cancer Res (2013) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫细胞化学; 小鼠; 1:100
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-I)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Mol Endocrinol (2013) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化-石蜡切片; 小鼠
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1)被用于被用于免疫组化-石蜡切片在小鼠样本上. Biol Reprod (2013) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:200
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1)被用于被用于免疫组化在小鼠样本上浓度为1:200. Oncogene (2014) ncbi
大鼠 单克隆(TROMA-I)
  • 免疫组化; 小鼠; 1:100
Developmental Studies Hybridoma Bank KRT8抗体(Developmental Studies Hybridoma Bank, TROMA-1)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Comp Neurol (2010) ncbi
默克密理博中国
小鼠 单克隆(AE1)
  • mass cytometry; 人类; 图 3a
默克密理博中国 KRT8抗体(Millipore, MAB1612)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
小鼠 单克隆(4.1.18)
  • 免疫印迹; 人类; 1:2000; 图 4
默克密理博中国 KRT8抗体(Merck KGaA, MAB3414)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Oncol Lett (2017) ncbi
小鼠 单克隆(AE3)
  • 免疫细胞化学; domestic water buffalo; 1:500; 图 6
默克密理博中国 KRT8抗体(millipore, MAB1611)被用于被用于免疫细胞化学在domestic water buffalo样本上浓度为1:500 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(E432)
  • 其他; 小鼠; 图 s4
默克密理博中国 KRT8抗体(Merck Millipore, 04-588)被用于被用于其他在小鼠样本上 (图 s4). Cell Death Differ (2016) ncbi
小鼠 单克隆(AE1)
  • 免疫细胞化学; domestic water buffalo; 1:500
默克密理博中国 KRT8抗体(Millipore, MAB1612)被用于被用于免疫细胞化学在domestic water buffalo样本上浓度为1:500. Reprod Fertil Dev (2016) ncbi
小鼠 单克隆(4.1.18)
  • 免疫印迹; 人类
默克密理博中国 KRT8抗体(Millipore, MAB3414)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2015) ncbi
domestic rabbit 单克隆(E432)
  • 免疫细胞化学; 人类; 1:200
默克密理博中国 KRT8抗体(Millipore, 04-588)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Acta Naturae (2014) ncbi
小鼠 单克隆(AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:50
默克密理博中国 KRT8抗体(EMD Millipore, AE3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. PLoS ONE (2014) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆(5D3)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 6a
徕卡显微系统(上海)贸易有限公司 KRT8抗体(Novocastra, 5D3-L-CE)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 6a). Nat Commun (2018) ncbi
单克隆(TS1)
  • 免疫细胞化学; 人类; 1:25; 图 2
徕卡显微系统(上海)贸易有限公司 KRT8抗体(Novocastra, TS1)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 2). Oncotarget (2017) ncbi
单克隆(5D3)
  • 免疫组化-石蜡切片; 人类; 图 1A
  • 免疫细胞化学; 人类; 图 S2B
徕卡显微系统(上海)贸易有限公司 KRT8抗体(Leica, 5D3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1A) 和 被用于免疫细胞化学在人类样本上 (图 S2B). Oncotarget (2016) ncbi
单克隆(5D3)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 3
徕卡显微系统(上海)贸易有限公司 KRT8抗体(Leica Biosystems, 5D3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 3). Virchows Arch (2016) ncbi
单克隆(TS1)
  • 免疫组化-石蜡切片; 人类; 1:50
徕卡显微系统(上海)贸易有限公司 KRT8抗体(Leica Biosystems, TS1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Endocr Pathol (2016) ncbi
文章列表
  1. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed 出版商
  2. Fan D, Chettouh Z, Consalez G, Brunet J. Taste bud formation depends on taste nerves. elife. 2019;8: pubmed 出版商
  3. Abdo H, Calvo Enrique L, Lopez J, Song J, Zhang M, Usoskin D, et al. Specialized cutaneous Schwann cells initiate pain sensation. Science. 2019;365:695-699 pubmed 出版商
  4. Wang H, Xiang D, Liu B, He A, Randle H, Zhang K, et al. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell. 2019;178:135-151.e19 pubmed 出版商
  5. Gao Y, Wei L, Wang C, Huang Y, Li W, Li T, et al. Chronic prostatitis alters the prostatic microenvironment and accelerates preneoplastic lesions in C57BL/6 mice. Biol Res. 2019;52:30 pubmed 出版商
  6. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  7. Jeppesen D, Fenix A, Franklin J, Higginbotham J, Zhang Q, Zimmerman L, et al. Reassessment of Exosome Composition. Cell. 2019;177:428-445.e18 pubmed 出版商
  8. Saykali B, Mathiah N, Nahaboo W, Racu M, Hammou L, Defrance M, et al. Distinct mesoderm migration phenotypes in extra-embryonic and embryonic regions of the early mouse embryo. elife. 2019;8: pubmed 出版商
  9. Jung H, Fattet L, Tsai J, Kajimoto T, Chang Q, Newton A, et al. Apical-basal polarity inhibits epithelial-mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation. Nat Cell Biol. 2019;21:359-371 pubmed 出版商
  10. Chen X, He Y, Xu A, Deng Z, Feng J, Lu F, et al. Increase of glandular epithelial cell clusters by an external volume expansion device promotes adipose tissue regeneration by recruiting macrophages. Biosci Rep. 2019;39: pubmed 出版商
  11. Chiche A, Di Cicco A, Sesma Sanz L, Bresson L, de la Grange P, Glukhova M, et al. p53 controls the plasticity of mammary luminal progenitor cells downstream of Met signaling. Breast Cancer Res. 2019;21:13 pubmed 出版商
  12. Barros Silva J, Linn D, Steiner I, Guo G, Ali A, Pakula H, et al. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep. 2018;25:3504-3518.e6 pubmed 出版商
  13. Abeln M, Albers I, Peters Bernard U, Flächsig Schulz K, Kats E, Kispert A, et al. Sialic acid is a critical fetal defense against maternal complement attack. J Clin Invest. 2019;129:422-436 pubmed 出版商
  14. Mao S, Park M, Cabrera R, Christin J, Karagiannis G, Oktay M, et al. Loss of amphiregulin reduces myoepithelial cell coverage of mammary ducts and alters breast tumor growth. Breast Cancer Res. 2018;20:131 pubmed 出版商
  15. Casey A, Sinha A, Singhania R, Livingstone J, Waterhouse P, Tharmapalan P, et al. Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities. J Cell Biol. 2018;217:2951-2974 pubmed 出版商
  16. Chakrabarti R, Celià Terrassa T, Kumar S, Hang X, Wei Y, Choudhury A, et al. Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science. 2018;360: pubmed 出版商
  17. Poli V, Fagnocchi L, Fasciani A, Cherubini A, Mazzoleni S, Ferrillo S, et al. MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nat Commun. 2018;9:1024 pubmed 出版商
  18. Takai K, Drain A, Lawson D, Littlepage L, Karpuj M, Kessenbrock K, et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev. 2018;32:244-257 pubmed 出版商
  19. Hsieh W, Ramadesikan S, FEKETE D, Aguilar R. Kidney-differentiated cells derived from Lowe Syndrome patient's iPSCs show ciliogenesis defects and Six2 retention at the Golgi complex. PLoS ONE. 2018;13:e0192635 pubmed 出版商
  20. Subhasitanont P, Chokchaichamnankit D, Chiablaem K, Keeratichamroen S, Ngiwsara L, Paricharttanakul N, et al. Apigenin inhibits growth and induces apoptosis in human cholangiocarcinoma cells. Oncol Lett. 2017;14:4361-4371 pubmed 出版商
  21. Aprile F, Källstig E, Limorenko G, Vendruscolo M, Ron D, Hansen C. The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress α-synuclein aggregation. Sci Rep. 2017;7:9039 pubmed 出版商
  22. Shah F, Stepan A, O Mahony A, Velichko S, Folias A, Houle C, et al. Mechanisms of Skin Toxicity Associated with Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. Cell Chem Biol. 2017;24:858-869.e5 pubmed 出版商
  23. Yeh Y, Gunasekharan V, Manuelidis L. A prokaryotic viral sequence is expressed and conserved in mammalian brain. Proc Natl Acad Sci U S A. 2017;114:7118-7123 pubmed 出版商
  24. Bose R, Karthaus W, Armenia J, Abida W, Iaquinta P, Zhang Z, et al. ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature. 2017;546:671-675 pubmed 出版商
  25. Watanabe Y, Miyasaka K, Kubo A, Kida Y, Nakagawa O, Hirate Y, et al. Notch and Hippo signaling converge on Strawberry Notch 1 (Sbno1) to synergistically activate Cdx2 during specification of the trophectoderm. Sci Rep. 2017;7:46135 pubmed 出版商
  26. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, et al. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell. 2017;169:243-257.e25 pubmed 出版商
  27. Mekhdjian A, Kai F, Rubashkin M, Prahl L, Przybyla L, McGregor A, et al. Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix. Mol Biol Cell. 2017;28:1467-1488 pubmed 出版商
  28. Sinkala E, Sollier Christen E, Renier C, Rosàs Canyelles E, Che J, Heirich K, et al. Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat Commun. 2017;8:14622 pubmed 出版商
  29. Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed 出版商
  30. Lu X, Horner J, Paul E, Shang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543:728-732 pubmed 出版商
  31. Li N, Xue W, Yuan H, Dong B, Ding Y, Liu Y, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284-1302 pubmed 出版商
  32. Wang X, Xia Q, Ni H, Ye S, Li R, Wang X, et al. SFPQ/PSF-TFE3 renal cell carcinoma: a clinicopathologic study emphasizing extended morphology and reviewing the differences between SFPQ-TFE3 RCC and the corresponding mesenchymal neoplasm despite an identical gene fusion. Hum Pathol. 2017;63:190-200 pubmed 出版商
  33. Hennenberg M, Tamalunas A, Wang Y, Keller P, Schott M, Strittmatter F, et al. Inhibition of agonist-induced smooth muscle contraction by picotamide in the male human lower urinary tract outflow region. Eur J Pharmacol. 2017;803:39-47 pubmed 出版商
  34. Saarela U, Akram S, Desgrange A, Rak Raszewska A, Shan J, Cereghini S, et al. Novel fixed z-direction (FiZD) kidney primordia and an organoid culture system for time-lapse confocal imaging. Development. 2017;144:1113-1117 pubmed 出版商
  35. Tao L, Xiang D, Xie Y, Bronson R, Li Z. Induced p53 loss in mouse luminal cells causes clonal expansion and development of mammary tumours. Nat Commun. 2017;8:14431 pubmed 出版商
  36. Fu N, Rios A, Pal B, Law C, Jamieson P, Liu R, et al. Identification of quiescent and spatially restricted mammary stem cells that are hormone responsive. Nat Cell Biol. 2017;19:164-176 pubmed 出版商
  37. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  38. Volpi S, Yamazaki Y, Brauer P, van Rooijen E, Hayashida A, Slavotinek A, et al. EXTL3 mutations cause skeletal dysplasia, immune deficiency, and developmental delay. J Exp Med. 2017;214:623-637 pubmed 出版商
  39. Wu J, Platero Luengo A, Sakurai M, Sugawara A, Gil M, Yamauchi T, et al. Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell. 2017;168:473-486.e15 pubmed 出版商
  40. Abboud Jarrous G, Priya S, Maimon A, Fischman S, Cohen Elisha M, Czerninski R, et al. Protein S drives oral squamous cell carcinoma tumorigenicity through regulation of AXL. Oncotarget. 2017;8:13986-14002 pubmed 出版商
  41. Kwon Y, Stanciu C, Philpott M, Ehrhardt C. Flow cytometry dataset for cells collected from touched surfaces. F1000Res. 2016;5:390 pubmed 出版商
  42. Hopkinson B, Klitgaard M, Petersen O, Villadsen R, Rønnov Jessen L, Kim J. Establishment of a normal-derived estrogen receptor-positive cell line comparable to the prevailing human breast cancer subtype. Oncotarget. 2017;8:10580-10593 pubmed 出版商
  43. Britschgi A, Duss S, Kim S, Couto J, Brinkhaus H, Koren S, et al. The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature. 2017;541:541-545 pubmed 出版商
  44. Mu P, Zhang Z, Benelli M, Karthaus W, Hoover E, Chen C, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017;355:84-88 pubmed 出版商
  45. Abraira V, Kuehn E, Chirila A, Springel M, Toliver A, Zimmerman A, et al. The Cellular and Synaptic Architecture of the Mechanosensory Dorsal Horn. Cell. 2017;168:295-310.e19 pubmed 出版商
  46. Fu Q, Hu Y, Wang Q, Liu Y, Li N, Xu B, et al. High-fat diet induces protein kinase A and G-protein receptor kinase phosphorylation of β2 -adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts. J Physiol. 2017;595:1973-1986 pubmed 出版商
  47. De Luca Johnson J, Zenali M. A Previously Undescribed Presentation of Mixed Adenoneuroendocrine Carcinoma. Case Rep Pathol. 2016;2016:9063634 pubmed
  48. Lloyd Lewis B, Davis F, Harris O, Hitchcock J, Lourenco F, Pasche M, et al. Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods. Breast Cancer Res. 2016;18:127 pubmed
  49. Yang Z, Peng Y, Gopalan A, Gao D, Chen Y, Joyner A. Stromal hedgehog signaling maintains smooth muscle and hampers micro-invasive prostate cancer. Dis Model Mech. 2017;10:39-52 pubmed 出版商
  50. Kugler D, Flomerfelt F, Costa D, Laky K, Kamenyeva O, Mittelstadt P, et al. Systemic toxoplasma infection triggers a long-term defect in the generation and function of naive T lymphocytes. J Exp Med. 2016;213:3041-3056 pubmed
  51. Bizzarro V, Belvedere R, Migliaro V, Romano E, Parente L, Petrella A. Hypoxia regulates ANXA1 expression to support prostate cancer cell invasion and aggressiveness. Cell Adh Migr. 2017;11:247-260 pubmed 出版商
  52. Strietz J, Stepputtis S, Preca B, Vannier C, Kim M, Castro D, et al. ERN1 and ALPK1 inhibit differentiation of bi-potential tumor-initiating cells in human breast cancer. Oncotarget. 2016;7:83278-83293 pubmed 出版商
  53. Sizemore G, Balakrishnan S, Hammer A, Thies K, Trimboli A, Wallace J, et al. Stromal PTEN inhibits the expansion of mammary epithelial stem cells through Jagged-1. Oncogene. 2017;36:2297-2308 pubmed 出版商
  54. Sheen M, Marotti J, Allegrezza M, Rutkowski M, Conejo Garcia J, Fiering S. Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis. 2016;5:e267 pubmed 出版商
  55. Davis F, Lloyd Lewis B, Harris O, Kozar S, Winton D, Muresan L, et al. Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny. Nat Commun. 2016;7:13053 pubmed 出版商
  56. Chiche A, Moumen M, Romagnoli M, Petit V, Lasla H, Jézéquel P, et al. p53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors. Oncogene. 2017;36:2355-2365 pubmed 出版商
  57. Badillo Soto M, Rodríguez Rodríguez M, Pérez Pérez M, Daza Benítez L, Bollain Y Goytia J, Carrillo Jiménez M, et al. Potential protein targets of the peptidylarginine deiminase 2 and peptidylarginine deiminase 4 enzymes in rheumatoid synovial tissue and its possible meaning. Eur J Rheumatol. 2016;3:44-49 pubmed
  58. Kuga T, Kume H, Adachi J, Kawasaki N, Shimizu M, Hoshino I, et al. Casein kinase 1 is recruited to nuclear speckles by FAM83H and SON. Sci Rep. 2016;6:34472 pubmed 出版商
  59. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  60. Hubbs A, Fluharty K, Edwards R, Barnabei J, Grantham J, Palmer S, et al. Accumulation of Ubiquitin and Sequestosome-1 Implicate Protein Damage in Diacetyl-Induced Cytotoxicity. Am J Pathol. 2016;186:2887-2908 pubmed 出版商
  61. Di Franco S, Turdo A, Benfante A, Colorito M, Gaggianesi M, Apuzzo T, et al. ?Np63 drives metastasis in breast cancer cells via PI3K/CD44v6 axis. Oncotarget. 2016;7:54157-54173 pubmed 出版商
  62. Lesina M, Wörmann S, Morton J, Diakopoulos K, Korneeva O, Wimmer M, et al. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. J Clin Invest. 2016;126:2919-32 pubmed 出版商
  63. Perdigoto C, Dauber K, Bar C, Tsai P, Valdes V, Cohen I, et al. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development. PLoS Genet. 2016;12:e1006151 pubmed 出版商
  64. Belvedere R, Bizzarro V, Forte G, Dal Piaz F, Parente L, Petrella A. Annexin A1 contributes to pancreatic cancer cell phenotype, behaviour and metastatic potential independently of Formyl Peptide Receptor pathway. Sci Rep. 2016;6:29660 pubmed 出版商
  65. Berens E, Sharif G, Schmidt M, Yan G, Shuptrine C, Weiner L, et al. Keratin-associated protein 5-5 controls cytoskeletal function and cancer cell vascular invasion. Oncogene. 2017;36:593-605 pubmed 出版商
  66. Stock K, Estrada M, Vidic S, Gjerde K, Rudisch A, Santo V, et al. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery. Sci Rep. 2016;6:28951 pubmed 出版商
  67. Madureira P, Bharadwaj A, Bydoun M, Garant K, O Connell P, Lee P, et al. Cell surface protease activation during RAS transformation: Critical role of the plasminogen receptor, S100A10. Oncotarget. 2016;7:47720-47737 pubmed 出版商
  68. Su Q, Zhang B, Zhang L, Dang T, Rowley D, Ittmann M, et al. Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene. 2017;36:618-627 pubmed 出版商
  69. Dutta A, Le Magnen C, Mitrofanova A, Ouyang X, Califano A, Abate Shen C. Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science. 2016;352:1576-80 pubmed 出版商
  70. Dai Y, Miao Y, Wu W, Li Y, D Errico F, Su W, et al. Ablation of Liver X receptors ? and ? leads to spontaneous peripheral squamous cell lung cancer in mice. Proc Natl Acad Sci U S A. 2016;113:7614-9 pubmed 出版商
  71. Wuidart A, Ousset M, Rulands S, Simons B, Van Keymeulen A, Blanpain C. Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells. Genes Dev. 2016;30:1261-77 pubmed 出版商
  72. Szalayova G, Ogrodnik A, Spencer B, Wade J, Bunn J, Ambaye A, et al. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation. Breast Cancer Res Treat. 2016;157:461-74 pubmed 出版商
  73. Misiorek J, Lähdeniemi I, Nyström J, Paramonov V, Gullmets J, Saarento H, et al. Keratin 8-deletion induced colitis predisposes to murine colorectal cancer enforced by the inflammasome and IL-22 pathway. Carcinogenesis. 2016;37:777-786 pubmed 出版商
  74. Kuga T, Sasaki M, Mikami T, Miake Y, Adachi J, Shimizu M, et al. FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes. Sci Rep. 2016;6:26557 pubmed 出版商
  75. Leo F, Bartels S, Mägel L, Framke T, Büsche G, Jonigk D, et al. Prognostic factors in the myoepithelial-like spindle cell type of metaplastic breast cancer. Virchows Arch. 2016;469:191-201 pubmed 出版商
  76. Fabbri R, Macciocca M, Vicenti R, Paradisi R, Klinger F, Pasquinelli G, et al. Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol. 2016;12:1699-711 pubmed 出版商
  77. Giovannini C, Minguzzi M, Genovese F, Baglioni M, Gualandi A, Ravaioli M, et al. Molecular and proteomic insight into Notch1 characterization in hepatocellular carcinoma. Oncotarget. 2016;7:39609-39626 pubmed 出版商
  78. Wang N, Dong B, Quan Y, Chen Q, Chu M, Xu J, et al. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status. Stem Cell Reports. 2016;6:668-678 pubmed 出版商
  79. Stewart M, Plante I, Penuela S, Laird D. Loss of Panx1 Impairs Mammary Gland Development at Lactation: Implications for Breast Tumorigenesis. PLoS ONE. 2016;11:e0154162 pubmed 出版商
  80. E L, Xu W, Feng L, Liu Y, Cai D, Wen N, et al. Estrogen enhances the bone regeneration potential of periodontal ligament stem cells derived from osteoporotic rats and seeded on nano-hydroxyapatite/collagen/poly(L-lactide). Int J Mol Med. 2016;37:1475-86 pubmed 出版商
  81. Wang Y, Gratzke C, Tamalunas A, Wiemer N, Ciotkowska A, Rutz B, et al. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate. PLoS ONE. 2016;11:e0153312 pubmed 出版商
  82. El Mourabit H, Loeuillard E, Lemoinne S, Cadoret A, Housset C. Culture Model of Rat Portal Myofibroblasts. Front Physiol. 2016;7:120 pubmed 出版商
  83. Kakade P, Budnar S, Kalraiya R, Vaidya M. Functional Implications of O-GlcNAcylation-dependent Phosphorylation at a Proximal Site on Keratin 18. J Biol Chem. 2016;291:12003-13 pubmed 出版商
  84. Holloway K, Sinha V, Bu W, Toneff M, Dong J, Peng Y, et al. Targeting Oncogenes into a Defined Subset of Mammary Cells Demonstrates That the Initiating Oncogenic Mutation Defines the Resulting Tumor Phenotype. Int J Biol Sci. 2016;12:381-8 pubmed 出版商
  85. Mancini M, Lien E, Toker A. Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis. Oncotarget. 2016;7:17301-13 pubmed 出版商
  86. Dhar S, Kumar A, Zhang L, Rimando A, Lage J, Lewin J, et al. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget. 2016;7:18469-84 pubmed 出版商
  87. Nair S, Zhang X, Chiang H, Jahid M, Wang Y, Garza P, et al. Genetic suppression reveals DNA repair-independent antagonism between BRCA1 and COBRA1 in mammary gland development. Nat Commun. 2016;7:10913 pubmed 出版商
  88. Fogl C, Mohammed F, Al Jassar C, Jeeves M, Knowles T, Rodriguez Zamora P, et al. Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin. Nat Commun. 2016;7:10827 pubmed 出版商
  89. Du L, Chen X, Cao Y, Lu L, Zhang F, Bornstein S, et al. Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling. Oncogene. 2016;35:4641-52 pubmed 出版商
  90. Haikala H, Klefström J, Eilers M, Wiese K. MYC-induced apoptosis in mammary epithelial cells is associated with repression of lineage-specific gene signatures. Cell Cycle. 2016;15:316-23 pubmed 出版商
  91. Johnson D, Hooker E, Luong R, Yu E, He Y, Gonzalgo M, et al. Conditional Expression of the Androgen Receptor Increases Susceptibility of Bladder Cancer in Mice. PLoS ONE. 2016;11:e0148851 pubmed 出版商
  92. Raredon M, Ghaedi M, Calle E, Niklason L. A Rotating Bioreactor for Scalable Culture and Differentiation of Respiratory Epithelium. Cell Med. 2015;7:109-21 pubmed 出版商
  93. Ruiz A, Rockfield S, Taran N, Haller E, Engelman R, Flores I, et al. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis. Cell Death Dis. 2016;7:e2059 pubmed 出版商
  94. Schneck H, Gierke B, Uppenkamp F, Behrens B, Niederacher D, Stoecklein N, et al. EpCAM-Independent Enrichment of Circulating Tumor Cells in Metastatic Breast Cancer. PLoS ONE. 2015;10:e0144535 pubmed 出版商
  95. Zhang H, Zheng T, Chua C, Shen M, Gelmann E. Nkx3.1 controls the DNA repair response in the mouse prostate. Prostate. 2016;76:402-8 pubmed 出版商
  96. Fleury H, Communal L, Carmona E, Portelance L, Arcand S, Rahimi K, et al. Novel high-grade serous epithelial ovarian cancer cell lines that reflect the molecular diversity of both the sporadic and hereditary disease. Genes Cancer. 2015;6:378-398 pubmed
  97. Shin H, Pei Z, Martinez K, Rivera Viñas J, Méndez K, Cavallin H, et al. The first microbial environment of infants born by C-section: the operating room microbes. Microbiome. 2015;3:59 pubmed 出版商
  98. Rogojanu R, Thalhammer T, Thiem U, Heindl A, Mesteri I, Seewald A, et al. Quantitative Image Analysis of Epithelial and Stromal Area in Histological Sections of Colorectal Cancer: An Emerging Diagnostic Tool. Biomed Res Int. 2015;2015:569071 pubmed 出版商
  99. van Jaarsveld M, van Kuijk P, Boersma A, Helleman J, Van Ijcken W, Mathijssen R, et al. miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol Cancer. 2015;14:196 pubmed 出版商
  100. Manojlović Gacić E, Skender Gazibara M, Popovic V, Soldatovic I, Boricic N, Raičević S, et al. Oncogene-Induced Senescence in Pituitary Adenomas--an Immunohistochemical Study. Endocr Pathol. 2016;27:1-11 pubmed 出版商
  101. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed 出版商
  102. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed 出版商
  103. Boiko E, Maltsev D, Savicheva A, Shalepo K, Khusnutdinova T, Pozniak A, et al. Infection of Human Retinal Pigment Epithelium with Chlamydia trachomatis. PLoS ONE. 2015;10:e0141754 pubmed 出版商
  104. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  105. Wang Z, Kim J, Teng Y, Ding H, Zhang J, Hai T, et al. Loss of ATF3 promotes hormone-induced prostate carcinogenesis and the emergence of CK5(+)CK8(+) epithelial cells. Oncogene. 2016;35:3555-64 pubmed 出版商
  106. Pajoohesh Ganji A, Pal Ghosh S, Tadvalkar G, Stepp M. K14 + compound niches are present on the mouse cornea early after birth and expand after debridement wounds. Dev Dyn. 2016;245:132-43 pubmed 出版商
  107. Manda K, Tripathi P, Hsi A, Ning J, Ruzinova M, Liapis H, et al. NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence. Oncogene. 2016;35:3282-92 pubmed 出版商
  108. Evans C, Rosser R, Waby J, Noirel J, Lai D, Wright P, et al. Reduced keratin expression in colorectal neoplasia and associated fields is reversible by diet and resection. BMJ Open Gastroenterol. 2015;2:e000022 pubmed 出版商
  109. Stewart M, Bechberger J, Welch I, Naus C, Laird D. Cx26 knockout predisposes the mammary gland to primary mammary tumors in a DMBA-induced mouse model of breast cancer. Oncotarget. 2015;6:37185-99 pubmed 出版商
  110. Abou Kheir W, Eid A, El Merahbi R, Assaf R, Daoud G. A Unique Expression of Keratin 14 in a Subset of Trophoblast Cells. PLoS ONE. 2015;10:e0139939 pubmed 出版商
  111. Davila J, Laws M, Kannan A, Li Q, Taylor R, Bagchi M, et al. Rac1 Regulates Endometrial Secretory Function to Control Placental Development. PLoS Genet. 2015;11:e1005458 pubmed 出版商
  112. Chang C, Zhang M, Rajapakshe K, Coarfa C, Edwards D, Huang S, et al. Mammary Stem Cells and Tumor-Initiating Cells Are More Resistant to Apoptosis and Exhibit Increased DNA Repair Activity in Response to DNA Damage. Stem Cell Reports. 2015;5:378-91 pubmed 出版商
  113. Pickup M, Hover L, Guo Y, Gorska A, Chytil A, Novitskiy S, et al. Deletion of the BMP receptor BMPR1a impairs mammary tumor formation and metastasis. Oncotarget. 2015;6:22890-904 pubmed
  114. Koren S, Reavie L, Couto J, De Silva D, Stadler M, Roloff T, et al. PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours. Nature. 2015;525:114-8 pubmed 出版商
  115. Lee S, Johnson D, Luong R, Yu E, Cunha G, Nusse R, et al. Wnt/β-Catenin-Responsive Cells in Prostatic Development and Regeneration. Stem Cells. 2015;33:3356-67 pubmed 出版商
  116. Sauter J, Ambaye A, Mount S. Increased utilization, verification, and clinical implications of immunocytochemistry: Experience in a northern New England hospital. Diagn Cytopathol. 2015;43:688-95 pubmed 出版商
  117. Ostrowski S, Wright M, Bolock A, Geng X, Maricich S. Ectopic Atoh1 expression drives Merkel cell production in embryonic, postnatal and adult mouse epidermis. Development. 2015;142:2533-44 pubmed 出版商
  118. Hein S, Haricharan S, Johnston A, Toneff M, Reddy J, Dong J, et al. Luminal epithelial cells within the mammary gland can produce basal cells upon oncogenic stress. Oncogene. 2016;35:1461-7 pubmed 出版商
  119. Lokody I, Francis J, Gardiner J, Erler J, Swain A. Pten Regulates Epithelial Cytodifferentiation during Prostate Development. PLoS ONE. 2015;10:e0129470 pubmed 出版商
  120. Scalia C, Gendusa R, Cattoretti G. A 2-Step Laemmli and Antigen Retrieval Method Improves Immunodetection. Appl Immunohistochem Mol Morphol. 2016;24:436-46 pubmed 出版商
  121. Mohapatra S, Sandhu A, Singh K, Singla S, Chauhan M, Manik R, et al. Establishment of Trophectoderm Cell Lines from Buffalo (Bubalus bubalis) Embryos of Different Sources and Examination of In Vitro Developmental Competence, Quality, Epigenetic Status and Gene Expression in Cloned Embryos Derived from Them. PLoS ONE. 2015;10:e0129235 pubmed 出版商
  122. Schuler F, Baumgartner F, Klepsch V, Chamson M, Müller Holzner E, Watson C, et al. The BH3-only protein BIM contributes to late-stage involution in the mouse mammary gland. Cell Death Differ. 2016;23:41-51 pubmed 出版商
  123. Abbasi A, Khalaj M, Akiyama K, Mukai Y, Matsumoto H, Acosta T, et al. Lack of Rev7 function results in development of tubulostromal adenomas in mouse ovary. Mol Cell Endocrinol. 2015;412:19-25 pubmed 出版商
  124. Swaminathan T, Basheer V, Kumar R, Kathirvelpandian A, Sood N, Jena J. Establishment and characterization of fin-derived cell line from ornamental carp, Cyprinus carpio koi, for virus isolation in India. In Vitro Cell Dev Biol Anim. 2015;51:705-13 pubmed 出版商
  125. Muhanna N, Mepham A, Mohamadi R, Chan H, Khan T, Akens M, et al. Nanoparticle-based sorting of circulating tumor cells by epithelial antigen expression during disease progression in an animal model. Nanomedicine. 2015;11:1613-20 pubmed 出版商
  126. Kershaw S, Cummings J, Morris K, Tugwood J, Dive C. Optimisation of immunofluorescence methods to determine MCT1 and MCT4 expression in circulating tumour cells. BMC Cancer. 2015;15:387 pubmed 出版商
  127. Ruscetti M, Quach B, Dadashian E, Mulholland D, Wu H. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells during Prostate Cancer Metastasis. Cancer Res. 2015;75:2749-59 pubmed 出版商
  128. Wang B, Wang X, Long J, Eastham Anderson J, Firestein R, Junttila M. Castration-resistant Lgr5(+) cells are long-lived stem cells required for prostatic regeneration. Stem Cell Reports. 2015;4:768-79 pubmed 出版商
  129. Katanov C, Lerrer S, Liubomirski Y, Leider Trejo L, Meshel T, Bar J, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-? and the NF-?B pathway. Stem Cell Res Ther. 2015;6:87 pubmed 出版商
  130. Yongping M, Zhang X, Xuewei L, Fan W, Chen J, Zhang H, et al. Astragaloside prevents BDL-induced liver fibrosis through inhibition of notch signaling activation. J Ethnopharmacol. 2015;169:200-9 pubmed 出版商
  131. Lee S, Luong R, Johnson D, Cunha G, Rivina L, Gonzalgo M, et al. Androgen signaling is a confounding factor for β-catenin-mediated prostate tumorigenesis. Oncogene. 2016;35:702-14 pubmed 出版商
  132. Sood N, Chaudhary D, Pradhan P, Verma D, Raja Swaminathan T, Kushwaha B, et al. Establishment and characterization of a continuous cell line from thymus of striped snakehead, Channa striatus (Bloch 1793). In Vitro Cell Dev Biol Anim. 2015;51:787-96 pubmed 出版商
  133. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed 出版商
  134. Aguiar C, Therrien J, Lemire P, Segura M, Smith L, Theoret C. Differentiation of equine induced pluripotent stem cells into a keratinocyte lineage. Equine Vet J. 2016;48:338-45 pubmed 出版商
  135. Tanaka T, Iino M. Sec8 regulates cytokeratin8 phosphorylation and cell migration by controlling the ERK and p38 MAPK signalling pathways. Cell Signal. 2015;27:1110-9 pubmed 出版商
  136. Ahmed H, Abdul Gader Suliman R, Abd El Aziz M, Alshammari F. Immunohistochemical expression of cytokeratins and epithelial membrane protein 2 in nasopharyngeal carcinoma and its potential implications. Asian Pac J Cancer Prev. 2015;16:653-6 pubmed
  137. Kap M, Lam K, Ewing Graham P, Riegman P. A reference image-based method for optimization of clinical immunohistochemistry. Histopathology. 2015;67:193-205 pubmed 出版商
  138. Franckaert D, Schlenner S, Heirman N, Gill J, Skogberg G, Ekwall O, et al. Premature thymic involution is independent of structural plasticity of the thymic stroma. Eur J Immunol. 2015;45:1535-47 pubmed 出版商
  139. Chandler R, Damrauer J, Raab J, Schisler J, Wilkerson M, Didion J, et al. Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat Commun. 2015;6:6118 pubmed 出版商
  140. Wright M, Reed Geaghan E, Bolock A, Fujiyama T, Hoshino M, Maricich S. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice. J Cell Biol. 2015;208:367-79 pubmed 出版商
  141. Roarty K, Shore A, Creighton C, Rosen J. Ror2 regulates branching, differentiation, and actin-cytoskeletal dynamics within the mammary epithelium. J Cell Biol. 2015;208:351-66 pubmed 出版商
  142. Zheng L, Cardaci S, Jerby L, MacKenzie E, Sciacovelli M, Johnson T, et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat Commun. 2015;6:6001 pubmed 出版商
  143. Petrosyan A, Ali M, Cheng P. Keratin 1 plays a critical role in golgi localization of core 2 N-acetylglucosaminyltransferase M via interaction with its cytoplasmic tail. J Biol Chem. 2015;290:6256-69 pubmed 出版商
  144. Richardson G, Lannigan J, Macara I. Does FACS perturb gene expression?. Cytometry A. 2015;87:166-75 pubmed 出版商
  145. Progatzky F, Sangha N, Yoshida N, McBrien M, Cheung J, Shia A, et al. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation. Nat Commun. 2014;5:5864 pubmed 出版商
  146. Suzuki D, Sahu R, Leu N, Senoo M. The carboxy-terminus of p63 links cell cycle control and the proliferative potential of epidermal progenitor cells. Development. 2015;142:282-90 pubmed 出版商
  147. BaÅŸak K, KiroÄŸlu K. Multiple oncocytic cystadenoma with intraluminal crystalloids in parotid gland: case report. Medicine (Baltimore). 2014;93:e246 pubmed 出版商
  148. Mata K, Tefé Silva C, Floriano E, Fernandes C, Rizzi E, Gerlach R, et al. Interference of doxycycline pretreatment in a model of abdominal aortic aneurysms. Cardiovasc Pathol. 2015;24:110-20 pubmed 出版商
  149. Sicoli D, Jiao X, Ju X, Velasco Velázquez M, Ertel A, Addya S, et al. CCR5 receptor antagonists block metastasis to bone of v-Src oncogene-transformed metastatic prostate cancer cell lines. Cancer Res. 2014;74:7103-14 pubmed 出版商
  150. Saini M, Selokar N, Agrawal H, Singla S, Chauhan M, Manik R, et al. Treatment of buffalo (Bubalus bubalis) donor cells with trichostatin A and 5-aza-2'-deoxycytidine alters their growth characteristics, gene expression and epigenetic status and improves the in vitro developmental competence, quality and epigenetic st. Reprod Fertil Dev. 2016;28:824-37 pubmed 出版商
  151. Easter S, Mitchell E, Baxley S, Desmond R, Frost A, Serra R. Wnt5a suppresses tumor formation and redirects tumor phenotype in MMTV-Wnt1 tumors. PLoS ONE. 2014;9:e113247 pubmed 出版商
  152. Kunasegaran K, Ho V, Chang T, De Silva D, Bakker M, Christoffels V, et al. Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium. PLoS ONE. 2014;9:e110191 pubmed 出版商
  153. Zhuang Y, Nguyen H, Burow M, Zhuo Y, El Dahr S, Yao X, et al. Elevated expression of long intergenic non-coding RNA HOTAIR in a basal-like variant of MCF-7 breast cancer cells. Mol Carcinog. 2015;54:1656-67 pubmed 出版商
  154. Beck A, Brooks A, Zeiss C. Invasive ductular carcinoma in 2 rhesus macaques (Macaca mulatta). Comp Med. 2014;64:314-22 pubmed
  155. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  156. Wögenstein K, Szabo S, Lunova M, Wiche G, Haybaeck J, Strnad P, et al. Epiplakin deficiency aggravates murine caerulein-induced acute pancreatitis and favors the formation of acinar keratin granules. PLoS ONE. 2014;9:e108323 pubmed 出版商
  157. Wrzesinski K, Rogowska Wrzesinska A, Kanlaya R, Borkowski K, Schwämmle V, Dai J, et al. The cultural divide: exponential growth in classical 2D and metabolic equilibrium in 3D environments. PLoS ONE. 2014;9:e106973 pubmed 出版商
  158. Li L, Fan X, Xia Q, Rao Q, Liu B, Yu B, et al. Concurrent loss of INI1, PBRM1, and BRM expression in epithelioid sarcoma: implications for the cocontributions of multiple SWI/SNF complex members to pathogenesis. Hum Pathol. 2014;45:2247-54 pubmed 出版商
  159. Genovese F, Gualandi A, Taddia L, Marverti G, Pirondi S, Marraccini C, et al. Mass spectrometric/bioinformatic identification of a protein subset that characterizes the cellular activity of anticancer peptides. J Proteome Res. 2014;13:5250-61 pubmed 出版商
  160. Sackmann Sala L, Chiche A, Mosquera Garrote N, Boutillon F, Cordier C, Pourmir I, et al. Prolactin-induced prostate tumorigenesis links sustained Stat5 signaling with the amplification of basal/stem cells and emergence of putative luminal progenitors. Am J Pathol. 2014;184:3105-19 pubmed 出版商
  161. Costache M, Pătraşcu O, Dumitru A, Costache D, Voinea L, Simionescu O, et al. Histopathological findings concerning ocular melanomas. Rom J Morphol Embryol. 2014;55:649-53 pubmed
  162. Guan H, Tan J, Zhang F, Gao L, Bai L, Qi D, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12. Histopathology. 2015;66:781-90 pubmed 出版商
  163. Crespi A, Bertoni A, Ferrari I, Padovano V, Della Mina P, Berti E, et al. POF1B localizes to desmosomes and regulates cell adhesion in human intestinal and keratinocyte cell lines. J Invest Dermatol. 2015;135:192-201 pubmed 出版商
  164. McLane J, Rivet C, Gilbert R, Ligon L. A biomaterial model of tumor stromal microenvironment promotes mesenchymal morphology but not epithelial to mesenchymal transition in epithelial cells. Acta Biomater. 2014;10:4811-4821 pubmed 出版商
  165. Yun E, Baek S, Xie D, Tseng S, Dobin T, Hernandez E, et al. DAB2IP regulates cancer stem cell phenotypes through modulating stem cell factor receptor and ZEB1. Oncogene. 2015;34:2741-52 pubmed 出版商
  166. Sato M, Kadota M, Tang B, Yang H, Yang Y, Shan M, et al. An integrated genomic approach identifies persistent tumor suppressive effects of transforming growth factor-? in human breast cancer. Breast Cancer Res. 2014;16:R57 pubmed 出版商
  167. Mashukova A, Kozhekbaeva Z, Forteza R, Dulam V, Figueroa Y, Warren R, et al. The BAG-1 isoform BAG-1M regulates keratin-associated Hsp70 chaperoning of aPKC in intestinal cells during activation of inflammatory signaling. J Cell Sci. 2014;127:3568-77 pubmed 出版商
  168. Muchkaeva I, Dashinimaev E, Artyuhov A, Myagkova E, Vorotelyak E, Yegorov Y, et al. Generation of iPS Cells from Human Hair Follice Dermal Papilla Cells. Acta Naturae. 2014;6:45-53 pubmed
  169. Kabaroff L, Gupta A, Menezes S, Babichev Y, Kandel R, Swallow C, et al. Development of genetically flexible mouse models of sarcoma using RCAS-TVA mediated gene delivery. PLoS ONE. 2014;9:e94817 pubmed 出版商
  170. Zhang C, Guo Y, Cui J, Zhu H, Gao W. Cytokeratin 18 is not required for morphogenesis of developing prostates but contributes to adult prostate regeneration. Biomed Res Int. 2013;2013:576472 pubmed 出版商
  171. Gao Y, Bayless K, Li Q. TGFBR1 is required for mouse myometrial development. Mol Endocrinol. 2014;28:380-94 pubmed 出版商
  172. Brueggmann D, Templeman C, Starzinski Powitz A, Rao N, Gayther S, Lawrenson K. Novel three-dimensional in vitro models of ovarian endometriosis. J Ovarian Res. 2014;7:17 pubmed 出版商
  173. Yurube T, Hirata H, Kakutani K, Maeno K, Takada T, Zhang Z, et al. Notochordal cell disappearance and modes of apoptotic cell death in a rat tail static compression-induced disc degeneration model. Arthritis Res Ther. 2014;16:R31 pubmed 出版商
  174. Liu Z, Yu N, Holz F, Yang F, Stanzel B. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837-50 pubmed 出版商
  175. Wang S, Huang S, Zhao X, Zhang Q, Wu M, Sun F, et al. Enrichment of prostate cancer stem cells from primary prostate cancer cultures of biopsy samples. Int J Clin Exp Pathol. 2014;7:184-93 pubmed
  176. Huang T, Krimm R. BDNF and NT4 play interchangeable roles in gustatory development. Dev Biol. 2014;386:308-20 pubmed 出版商
  177. Motomura K, Sumino H, Noguchi A, Horinouchi T, Nakanishi K. Sentinel nodes identified by computed tomography-lymphography accurately stage the axilla in patients with breast cancer. BMC Med Imaging. 2013;13:42 pubmed 出版商
  178. Hirata H, Yurube T, Kakutani K, Maeno K, Takada T, Yamamoto J, et al. A rat tail temporary static compression model reproduces different stages of intervertebral disc degeneration with decreased notochordal cell phenotype. J Orthop Res. 2014;32:455-63 pubmed 出版商
  179. Elakoum R, Gauchotte G, Oussalah A, Wissler M, Clément Duchêne C, Vignaud J, et al. CARM1 and PRMT1 are dysregulated in lung cancer without hierarchical features. Biochimie. 2014;97:210-8 pubmed 出版商
  180. Xu D, Nishimura T, Zheng M, Wu M, Su H, Sato N, et al. Enabling autologous human liver regeneration with differentiated adipocyte stem cells. Cell Transplant. 2014;23:1573-84 pubmed 出版商
  181. Lafkas D, Rodilla V, Huyghe M, Mourao L, Kiaris H, Fre S. Notch3 marks clonogenic mammary luminal progenitor cells in vivo. J Cell Biol. 2013;203:47-56 pubmed 出版商
  182. Bray K, Gillette M, Young J, Loughran E, Hwang M, Sears J, et al. Cdc42 overexpression induces hyperbranching in the developing mammary gland by enhancing cell migration. Breast Cancer Res. 2013;15:R91 pubmed
  183. Bulysheva A, Bowlin G, Petrova S, Yeudall W. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds. Biomed Mater. 2013;8:055009 pubmed 出版商
  184. Motomura K, Izumi T, Tateishi S, Sumino H, Noguchi A, Horinouchi T, et al. Correlation between the area of high-signal intensity on SPIO-enhanced MR imaging and the pathologic size of sentinel node metastases in breast cancer patients with positive sentinel nodes. BMC Med Imaging. 2013;13:32 pubmed 出版商
  185. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  186. Stewart C, Wang Y, Bonilla Claudio M, Martin J, Gonzalez G, Taketo M, et al. CTNNB1 in mesenchyme regulates epithelial cell differentiation during Müllerian duct and postnatal uterine development. Mol Endocrinol. 2013;27:1442-54 pubmed 出版商
  187. Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T, et al. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS ONE. 2013;8:e67466 pubmed 出版商
  188. Ohta K, Taki M, Ogawa I, Ono S, Mizuta K, Fujimoto S, et al. Malignant ossifying fibromyxoid tumor of the tongue: case report and review of the literature. Head Face Med. 2013;9:16 pubmed 出版商
  189. Nassiri F, Scheithauer B, Corwin D, Kaplan H, Mayberg M, Cusimano M, et al. Invasive thymoma metastatic to the cavernous sinus. Surg Neurol Int. 2013;4:74 pubmed 出版商
  190. Okumura N, Akutsu H, Sugawara T, Miura T, Takezawa Y, Hosoda A, et al. ?-catenin functions pleiotropically in differentiation and tumorigenesis in mouse embryo-derived stem cells. PLoS ONE. 2013;8:e63265 pubmed 出版商
  191. Sizemore G, Sizemore S, Pal B, Booth C, Seachrist D, Abdul Karim F, et al. FOXC1 is enriched in the mammary luminal progenitor population, but is not necessary for mouse mammary ductal morphogenesis. Biol Reprod. 2013;89:10 pubmed 出版商
  192. Parsons M, McCormick L, Janke L, Howard A, Bouchier Hayes L, Green D. Genetic deletion of caspase-2 accelerates MMTV/c-neu-driven mammary carcinogenesis in mice. Cell Death Differ. 2013;20:1174-82 pubmed 出版商
  193. Tripathi P, Wang Y, Coussens M, Manda K, Casey A, Lin C, et al. Activation of NFAT signaling establishes a tumorigenic microenvironment through cell autonomous and non-cell autonomous mechanisms. Oncogene. 2014;33:1840-9 pubmed 出版商
  194. Lian X, Selekman J, Bao X, Hsiao C, Zhu K, Palecek S. A small molecule inhibitor of SRC family kinases promotes simple epithelial differentiation of human pluripotent stem cells. PLoS ONE. 2013;8:e60016 pubmed 出版商
  195. Yang G, Li J, Jin H, Ding H. Is mammary not otherwise specified-type sarcoma with CD10 expression a distinct entity? A rare case report with immunohistochemical and ultrastructural study. Diagn Pathol. 2013;8:14 pubmed 出版商
  196. Weli S, Aamelfot M, Dale O, Koppang E, Falk K. Infectious salmon anaemia virus infection of Atlantic salmon gill epithelial cells. Virol J. 2013;10:5 pubmed 出版商
  197. Lv S, Song Y, Xu J, Shu H, Zhou Z, An N, et al. A novel TP53 somatic mutation involved in the pathogenesis of pediatric choroid plexus carcinoma. Med Sci Monit. 2012;18:CS37-41 pubmed
  198. Sohn W, Gwon G, An C, Moon C, Bae Y, Yamamoto H, et al. Morphological evidences in circumvallate papilla and von Ebners' gland development in mice. Anat Cell Biol. 2011;44:274-83 pubmed 出版商
  199. Khoja L, Backen A, Sloane R, Menasce L, Ryder D, Krebs M, et al. A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer. 2012;106:508-16 pubmed 出版商
  200. Kap M, Smedts F, Oosterhuis W, Winther R, Christensen N, Reischauer B, et al. Histological assessment of PAXgene tissue fixation and stabilization reagents. PLoS ONE. 2011;6:e27704 pubmed 出版商
  201. Patel A, Huang T, Krimm R. Lingual and palatal gustatory afferents each depend on both BDNF and NT-4, but the dependence is greater for lingual than palatal afferents. J Comp Neurol. 2010;518:3290-301 pubmed 出版商
  202. Brusevold I, Husvik C, Schreurs O, Schenck K, Bryne M, Søland T. Induction of invasion in an organotypic oral cancer model by CoCl2, a hypoxia mimetic. Eur J Oral Sci. 2010;118:168-76 pubmed 出版商
  203. Qi H, Zheng X, Yuan X, Pflugfelder S, Li D. Potential localization of putative stem/progenitor cells in human bulbar conjunctival epithelium. J Cell Physiol. 2010;225:180-5 pubmed 出版商
  204. Gil da Costa R, Santos M, Amorim I, Lopes C, Pereira P, Faustino A. An immunohistochemical study of feline endometrial adenocarcinoma. J Comp Pathol. 2009;140:254-9 pubmed 出版商
  205. Rhee K, Wu S, Wu X, Huso D, Karim B, Franco A, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009;77:1708-18 pubmed 出版商
  206. Rodriguez F, Scheithauer B, Giannini C, Bryant S, Jenkins R. Epithelial and pseudoepithelial differentiation in glioblastoma and gliosarcoma: a comparative morphologic and molecular genetic study. Cancer. 2008;113:2779-89 pubmed 出版商
  207. Page J, Johnson M, Olsavsky K, Strom S, Zarbl H, Omiecinski C. Gene expression profiling of extracellular matrix as an effector of human hepatocyte phenotype in primary cell culture. Toxicol Sci. 2007;97:384-97 pubmed
  208. Lu S, Yu G, Zhu Y, Archer M. Cyclooxygenase-2 overexpression in MCF-10F human breast epithelial cells inhibits proliferation, apoptosis and differentiation, and causes partial transformation. Int J Cancer. 2005;116:847-52 pubmed
  209. Gilbert S, Loranger A, Marceau N. Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol Cell Biol. 2004;24:7072-81 pubmed
  210. Song S, Park S, Kim S, Suh Y. Oncocytic adrenocortical carcinomas: a pathological and immunohistochemical study of four cases in comparison with conventional adrenocortical carcinomas. Pathol Int. 2004;54:603-10 pubmed
  211. Kokenyesi R, Murray K, Benshushan A, Huntley E, Kao M. Invasion of interstitial matrix by a novel cell line from primary peritoneal carcinosarcoma, and by established ovarian carcinoma cell lines: role of cell-matrix adhesion molecules, proteinases, and E-cadherin expression. Gynecol Oncol. 2003;89:60-72 pubmed