这是一篇来自已证抗体库的有关人类 Ki67抗原 (Ki 67) 的综述,是根据1280篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ki67抗原 抗体。
Ki67抗原 同义词: KIA; MIB-; MIB-1; PPP1R105; proliferation marker protein Ki-67; antigen Ki67; antigen identified by monoclonal antibody Ki-67; proliferation-related Ki-67 antigen; protein phosphatase 1, regulatory subunit 105

艾博抗(上海)贸易有限公司
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 3c). Cell Death Differ (2019) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4b
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 4b). elife (2019) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s9c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s9c). Science (2018) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 5g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:150 (图 5g). Front Immunol (2018) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 2c). Nat Commun (2018) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 6c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 6c). J Clin Invest (2018) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3k
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 3k). Cell Death Dis (2018) ncbi
兔 单克隆(EPR3610)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 1b). J Pathol (2018) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:300 (图 1b). J Exp Med (2018) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 3d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样品上 (图 3d). J Cell Biochem (2018) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s14f, s15g, s17d
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 s17b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 s14f, s15g, s17d) 和 被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 s17b). Nat Med (2018) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4c). Oncogene (2018) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 1:800; 图 1b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:800 (图 1b). Science (2018) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 4a). J Comp Neurol (2019) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4e). Nucleic Acids Res (2018) ncbi
小鼠 单克隆(B126.1)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
  • 免疫细胞化学; 小鼠; 图 3c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab8191)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3a) 和 被用于免疫细胞化学在小鼠样品上 (图 3c). Mol Cancer Res (2018) ncbi
小鼠 单克隆(B126.1)
  • 免疫组化-石蜡切片; 人类; 图 3d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab8191)被用于被用于免疫组化-石蜡切片在人类样品上 (图 3d). Proc Natl Acad Sci U S A (2018) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:500; 图 1f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 1f). Nature (2018) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 5e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 5e). Cell Mol Immunol (2018) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 s1f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上浓度为1:50 (图 s1f). Nat Commun (2018) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 s6a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上 (图 s6a). J Clin Invest (2018) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 e2k
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50 (图 e2k). Nature (2018) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 1h
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样品上 (图 1h). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 3a). Oncogene (2018) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1e
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 1e). EMBO J (2018) ncbi
兔 单克隆(EPR3610)
  • 免疫组化-石蜡切片; 人类; 图 1a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 92742)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1a). Sci Rep (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 15c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 15c). J Clin Invest (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:500; 图 3c
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, SP6)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 3c). Sci Rep (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 1b). J Clin Invest (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s6a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 s6a). Nature (2017) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 6e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab833)被用于被用于免疫组化在人类样品上 (图 6e). J Biol Chem (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 7f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化-冰冻切片在大鼠样品上 (图 7f). Development (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4i
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 4i). Diabetologia (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 s2c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上浓度为1:300 (图 s2c). Cell (2017) ncbi
兔 单克隆(EPR3610)
  • 免疫细胞化学; 小鼠; 图 1a, 1b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫细胞化学在小鼠样品上 (图 1a, 1b). J Biol Chem (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3i
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 3i). Development (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 6c). Oncotarget (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 图 10k
  • 免疫组化; 小鼠; 1:100; 图 7a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在人类样品上 (图 10k) 和 被用于免疫组化在小鼠样品上浓度为1:100 (图 7a). Development (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 1a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 1a). J Clin Invest (2017) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 人类; 图 6d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫细胞化学在人类样品上 (图 6d). Mol Biol Cell (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 6e). J Clin Invest (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s1d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 s1d). J Cell Biol (2017) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 1:100; 图 1c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫细胞化学在小鼠样品上浓度为1:100 (图 1c). J Pineal Res (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 1c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上 (图 1c). Sci Rep (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 s8c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:100 (图 s8c). Nature (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:5000; 图 3d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样品上浓度为1:5000 (图 3d). Int J Oncol (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 8a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab-15580)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 8a). Mol Cell Biol (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1d
  • 免疫细胞化学; 小鼠; 1:1000; 图 s8b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 1d) 和 被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图 s8b). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50 (图 s4a). Arterioscler Thromb Vasc Biol (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2h
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 2h). Sci Signal (2017) ncbi
兔 多克隆
  • 免疫组化; 兔; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在兔样品上 (图 4). Int J Mol Med (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:50; 图 2a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化在小鼠样品上浓度为1:50 (图 2a). Development (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s3d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s3d). Nature (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4e). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 1f). Breast Cancer Res (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 2a). J Biol Chem (2017) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 人类; 图 s7d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在人类样品上 (图 s7d). Mol Cancer (2017) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 大鼠; 1:100; 图 2b
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 7f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在大鼠样品上浓度为1:100 (图 2b) 和 被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 7f). Theranostics (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1d). Int J Clin Oncol (2017) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 图 1b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在小鼠样品上 (图 1b). Int J Mol Med (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 st10
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 st10
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 st10) 和 被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200 (图 st10). J Toxicol Pathol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 3). PLoS ONE (2017) ncbi
兔 单克隆(EPR3610)
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4a). Arthritis Res Ther (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3h
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 s3h). Genes Dev (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 5a). Sci Adv (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4h
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 4h). J Cell Biol (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 6b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500 (图 6b). BMC Genomics (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 6d). Oncogene (2017) ncbi
兔 单克隆(EPR3610)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400 (图 4c). Nat Commun (2017) ncbi
小鼠 单克隆(B126.1)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab8191)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400 (图 4b). Exp Ther Med (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 6d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 6d). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s7a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样品上浓度为1:1000 (图 s7a). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上 (图 4a). PLoS Genet (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2a
  • 免疫组化; 大鼠; 1:100; 图 4g
  • 免疫印迹; 大鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图 2a), 被用于免疫组化在大鼠样品上浓度为1:100 (图 4g) 和 被用于免疫印迹在大鼠样品上浓度为1:1000 (图 4d). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 4g). EMBO Mol Med (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 3a). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 5b). Nat Commun (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 大鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在大鼠样品上. Tissue Cell (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 图 4d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 16,667)被用于被用于免疫组化在小鼠样品上 (图 4d). Atherosclerosis (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 s3k
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 s3k). Development (2017) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 图 4d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在大鼠样品上 (图 4d). J Tissue Eng Regen Med (2018) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 S2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上 (图 S2). J Clin Invest (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 s8d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250 (图 s8d). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 3a). Oncogene (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 3a). Nat Commun (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5a
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 5a) 和 被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 5b). Oncogene (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 7a
  • 免疫细胞化学; 小鼠; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 7a) 和 被用于免疫细胞化学在小鼠样品上 (图 3). Biotechnol Prog (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上 (图 s3). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化在小鼠样品上 (图 3a). Cell Death Dis (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5c
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 5c). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400; 表 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:400 (表 2). Mol Neurobiol (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 5a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 5a). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 3d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:300 (图 3d). Nature (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:2500; 图 4e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在人类样品上浓度为1:2500 (图 4e). Nat Cell Biol (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 6a). Am J Physiol Heart Circ Physiol (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 5f). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 s3a). Sci Rep (2016) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:50; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在人类样品上浓度为1:50 (图 3a). Oncotarget (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 4). Mol Cell Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 3b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上 (图 3b). Science (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 5b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样品上 (图 5b). Cell Cycle (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:800; 图 2a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:800 (图 2a). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 1
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化在人类样品上 (图 1) 和 被用于免疫印迹在人类样品上 (图 1). Laryngoscope (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 s2). Transl Oncol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 6a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500. Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 8n
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 8n). PLoS ONE (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 图 7
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化在人类样品上 (图 7). PLoS ONE (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 4). J Comp Neurol (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s6
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, 15580)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s6). PLoS Genet (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 s2). Nat Commun (2016) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:200; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB16667)被用于被用于免疫细胞化学在人类样品上浓度为1:200 (图 3a). Fertil Steril (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 10 mg/ml; 图 5a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为10 mg/ml (图 5a). Biol Reprod (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:200; 图 3e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在人类样品上浓度为1:200 (图 3e). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 2). Sci Rep (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 表 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (表 1). World J Nephrol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 7a). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 6c). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 猪; 1:10,000; 图 6
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫组化-石蜡切片在猪样品上浓度为1:10,000 (图 6). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6k
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 6k). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图 6d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab833)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 6d). Nat Med (2016) ncbi
兔 单克隆(EPR3610)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 5e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, EPR3610)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:4000 (图 5e). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 6
  • 免疫细胞化学; 大鼠; 1:50; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图 6) 和 被用于免疫细胞化学在大鼠样品上浓度为1:50 (图 4). Physiol Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 兔; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在兔样品上 (图 3). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(AbCam, Ab15580)被用于被用于免疫细胞化学在人类样品上浓度为1:500. Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:150 (图 4). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, Ab15580)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 5). FASEB J (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 1). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 7
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样品上 (图 7). J Cell Biol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 st1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 st1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab833)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 3). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 4). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 1e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫细胞化学在小鼠样品上 (图 1e). Nat Biotechnol (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 大鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500 (图 2). J Neurochem (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 6B
  • 免疫组化; 小鼠; 1:100; 图 5C
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样品上 (图 6B) 和 被用于免疫组化在小鼠样品上浓度为1:100 (图 5C). PLoS ONE (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4g
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4g). J Biol Chem (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 4c). Dev Growth Differ (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上 (图 2). PLoS ONE (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 图 s3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样品上 (图 s3a). Carcinogenesis (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫细胞化学在人类样品上 (图 1). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 s6c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上 (图 s6c). Nat Med (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 7
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 7). Sci Rep (2016) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (图 1). Mol Brain (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上 (图 1). elife (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
  • 免疫细胞化学; 人类; 1:100; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 5) 和 被用于免疫细胞化学在人类样品上浓度为1:100 (图 5). Tissue Eng Part C Methods (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 2b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250 (图 2b). Dev Growth Differ (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫组化在大鼠样品上浓度为1:500 (图 4). Sci Rep (2016) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 大鼠; 1:50; 图 1b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在大鼠样品上浓度为1:50 (图 1b). Lab Invest (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 3g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上 (图 3g). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab155580)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:300 (图 5). Mol Cancer (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s3
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 s3). BMC Mol Biol (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4c). Oncogene (2016) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 4). Hepatology (2016) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 人类; 图 1f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在人类样品上 (图 1f). Exp Cell Res (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 6
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上 (图 6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上浓度为1:200 (图 2). Exp Ther Med (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100 (图 1). Fertil Steril (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; scFv; 1:200; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫印迹在scFv样品上浓度为1:200 (图 5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫细胞化学在人类样品上 (图 3). Oncogenesis (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:20,000; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:20,000 (图 4). Peptides (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫细胞化学在人类样品上 (图 4). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上 (图 5). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s15b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 s15b). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 2). Breast Cancer Res (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3j
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 3j). Nat Immunol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化-石蜡切片在人类样品上 (图 5). Oncogene (2016) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 1:300; 图 s4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在小鼠样品上浓度为1:300 (图 s4). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 6
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:300 (图 6). PLoS ONE (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 2). J Cell Sci (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上浓度为1:200 (图 2). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:2000 (图 3a). Endocrinology (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 表 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上 (表 2). Breast Cancer Res (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400 (图 5b). Development (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化基因敲除验证; 小鼠; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫组化基因敲除验证在小鼠样品上 (图 3). elife (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图 7a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 7a). J Neuropathol Exp Neurol (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 7). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 1). Cell Cycle (2016) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:500; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 2). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上 (图 3). elife (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:100; 图 6
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫组化在人类样品上浓度为1:100 (图 6). Oncotarget (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s1). Oncogene (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 6). Cell Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 6b). Mol Cancer Ther (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 6). EBioMedicine (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 5 ug/ml; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化在人类样品上浓度为5 ug/ml (图 4). J Transl Med (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 3g). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在人类样品上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s7a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 s7a). Nat Commun (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s4). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 1j-m
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上 (图 1j-m). Oncotarget (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 4). Neoplasia (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 2). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:250; 图 4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样品上浓度为1:250 (图 4a). Exp Neurol (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上 (图 3). Tissue Eng Part C Methods (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:300; 图 s3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样品上浓度为1:300 (图 s3). Biol Open (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 图 1
  • 免疫组化-冰冻切片; 小鼠; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(ABCAM, ab15580)被用于被用于免疫组化-冰冻切片在人类样品上 (图 1) 和 被用于免疫组化-冰冻切片在小鼠样品上 (图 5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上. J Neurosci (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样品上浓度为1:50. J Clin Invest (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100. J Transl Med (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 1). J Cell Biol (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 7
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 2), 被用于免疫印迹在小鼠样品上 (图 7) 和 被用于免疫组化-石蜡切片在人类样品上 (图 1). Int J Mol Med (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 狗; 1:200; 图 1
  • 免疫细胞化学; 人类; 1:200; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Sigma, ab15580)被用于被用于免疫细胞化学在狗样品上浓度为1:200 (图 1) 和 被用于免疫细胞化学在人类样品上浓度为1:200 (图 1). Stem Cells Int (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 5b). Oncol Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫印迹在人类样品上浓度为1:100. Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫印迹在小鼠样品上 (图 s1). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化在人类样品上浓度为1:500 (图 4). Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1000; 图 3g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, abl5580)被用于被用于免疫组化在人类样品上浓度为1:1000 (图 3g). Methods (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 2d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上 (图 2d). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:250
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上浓度为1:250. elife (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 图 6e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在人类样品上 (图 6e). Nat Methods (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 4d). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 人类; 图 1d
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫细胞化学在人类样品上 (图 1d). Int J Mol Sci (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 3a). Ophthalmology (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 7
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB16667)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:300 (图 7). Nat Commun (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 16667)被用于被用于免疫组化在小鼠样品上浓度为1:500. PLoS ONE (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:1000; 图 4 A-ii
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在人类样品上浓度为1:1000 (图 4 A-ii). J Appl Physiol (1985) (2015) ncbi
兔 单克隆(SP6)
  • immunohistochemistry - free floating section; 大鼠; 1:1000; 图 s3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000 (图 s3). Development (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 8b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样品上 (图 8b). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:50; 图 6
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:50 (图 6). Stem Cells (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 6
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上 (图 6). Am J Physiol Lung Cell Mol Physiol (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 6
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab833)被用于被用于免疫组化-石蜡切片在人类样品上 (图 6). Regen Med (2015) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:200; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫细胞化学在人类样品上浓度为1:200 (图 4). Biomolecules (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 1). Sci Rep (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3). J Physiol Sci (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 7c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 7c). PLoS ONE (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 1e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 1e). Proc Natl Acad Sci U S A (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab1558)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 s3). PLoS ONE (2015) ncbi
兔 单克隆(EPR3610)
  • 免疫细胞化学; 人类; 1:300
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫细胞化学在人类样品上浓度为1:300. J Cell Mol Med (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样品上 (图 3). Lab Invest (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫印迹在人类样品上. Cardiovasc Res (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 狗; 1:100; 图 1g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在狗样品上浓度为1:100 (图 1g). Mol Biol Cell (2015) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 1:300; 图 2
  • 免疫细胞化学; 人类; 1:300; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在小鼠样品上浓度为1:300 (图 2) 和 被用于免疫细胞化学在人类样品上浓度为1:300 (图 2). PLoS Biol (2015) ncbi
兔 多克隆
  • 流式细胞仪; 人类; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于流式细胞仪在人类样品上浓度为1:500. Stem Cell Reports (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, a16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 s3a). Carcinogenesis (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1500; 图 4b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上浓度为1:1500 (图 4b). Cell Cycle (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Dig Dis Sci (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫组化在小鼠样品上浓度为1:1000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500 ; 表 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:500 (表 2). Dev Biol (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 ed6g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 ed6g). Nature (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 4c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上 (图 4c). Oncotarget (2015) ncbi
兔 单克隆(SP6)
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 2). Am J Physiol Renal Physiol (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 s3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上浓度为1:200 (图 s3). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. Biomed Res Int (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 7). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 5). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上. Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上. Invest Ophthalmol Vis Sci (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500 (图 3). Stem Cell Res Ther (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s13
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s13). Nat Med (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. PLoS ONE (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 6a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 6a). PLoS ONE (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 (图 3). Lab Invest (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 狗
艾博抗(上海)贸易有限公司Ki67抗原抗体(ABCAM, ab833)被用于被用于免疫组化-石蜡切片在狗样品上. Int J Oncol (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Mol Cancer Ther (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样品上 (图 3a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:250; 图 6
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化在人类样品上浓度为1:250 (图 6). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100; 图 7
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 7). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:200. Stem Cell Res (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 2.5 ug/ml; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为2.5 ug/ml (图 3). Endocrinology (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 4). BMC Nephrol (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 6). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200. Cell Signal (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:400
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab833)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 S6
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 S6). Proc Natl Acad Sci U S A (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:300; 图 5f.5g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样品上浓度为1:300 (图 5f.5g). Cancer Res (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1 ug/ml; 图 s2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1 ug/ml (图 s2). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5s1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 5s1). elife (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s7
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 s7). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:300; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:300 (图 5). J Clin Invest (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图 5). J Toxicol Environ Health A (2015) ncbi
兔 多克隆
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在人类样品上. Ann Biomed Eng (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫印迹在人类样品上. Oncotarget (2015) ncbi
兔 单克隆(SP6)
  • 流式细胞仪; 人类; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam;, ab16667)被用于被用于流式细胞仪在人类样品上浓度为1:50. Protoplasma (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-石蜡切片在人类样品上. J Invest Dermatol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:100. PLoS ONE (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:400
艾博抗(上海)贸易有限公司Ki67抗原抗体(AbCam, AB16667)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400. J Control Release (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:150
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化在小鼠样品上浓度为1:150. Lab Invest (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 2b). Nat Biotechnol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 2). Sci Rep (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:150
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在人类样品上浓度为1:150. Breast Cancer Res Treat (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫细胞化学在人类样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab-15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 1e). Clin Sci (Lond) (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上浓度为1:200. Exp Cell Res (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:400
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在人类样品上浓度为1:400. Nat Cell Biol (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Analyst (2015) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫细胞化学在人类样品上浓度为1:200. Ann Clin Transl Neurol (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 人类; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab833)被用于被用于immunohistochemistry - free floating section在人类样品上浓度为1:50. J Cell Physiol (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 2b). J Am Heart Assoc (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 3). Br J Cancer (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 5 ug/ml
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样品上浓度为5 ug/ml. Biomaterials (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上 (图 4). EMBO J (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 表 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (表 2). Physiol Rep (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500. Endocrinology (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 2). FASEB J (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. J Pediatr Surg (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在人类样品上浓度为1:500. J Control Release (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 5
  • 免疫组化; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (图 5) 和 被用于免疫组化在人类样品上浓度为1:1000 (图 4). Nat Cell Biol (2015) ncbi
小鼠 单克隆(B126.1)
  • 流式细胞仪; 兔; 1:100
  • 免疫细胞化学; 兔; 1:100
  • 流式细胞仪; 小鼠; 1:100
  • 免疫细胞化学; 小鼠; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab8191)被用于被用于流式细胞仪在兔样品上浓度为1:100, 被用于免疫细胞化学在兔样品上浓度为1:100, 被用于流式细胞仪在小鼠样品上浓度为1:100 和 被用于免疫细胞化学在小鼠样品上浓度为1:100. Tissue Eng Part C Methods (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:300
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在人类样品上浓度为1:300. Eukaryot Cell (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫组化在小鼠样品上浓度为1:50. PLoS ONE (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样品上 (图 5). Development (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100. J Pineal Res (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 3b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上浓度为1:300 (图 3b). Mol Oncol (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 3). Stem Cell Reports (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在大鼠样品上 (图 3). Sci Rep (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 2 ug/ml; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为2 ug/ml (图 4). Gastric Cancer (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在人类样品上. Br J Cancer (2014) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫细胞化学在人类样品上浓度为1:50. Proc Natl Acad Sci U S A (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 5580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 1). Development (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 7
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上 (图 7). Cardiovasc Res (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100. Am J Physiol Heart Circ Physiol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上. Cancer Res (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上. Mar Drugs (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化在小鼠样品上 (图 3). Nat Med (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上. Biol Cell (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2-s1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 2-s1). elife (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 3). Oncogene (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样品上浓度为1:200. Mol Endocrinol (2014) ncbi
小鼠 单克隆(B126.1)
  • 免疫组化; 小鼠
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab8191)被用于被用于免疫组化在小鼠样品上 和 被用于免疫组化在人类样品上. J Cell Physiol (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2000. Carcinogenesis (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
  • 免疫细胞化学; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 3) 和 被用于免疫细胞化学在人类样品上浓度为1:100 (图 3). Nature (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250. Neurosci Lett (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50. J Control Release (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:500. Cereb Cortex (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫印迹在小鼠样品上 (图 s4). PLoS Genet (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:800; 图 1d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:800 (图 1d). Nat Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在人类样品上. Hum Gene Ther Methods (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Alzheimers Dis (2014) ncbi
兔 单克隆(SP6)
  • 免疫印迹; 小鼠; 1:200; 图 2g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫印迹在小鼠样品上浓度为1:200 (图 2g). J Cell Mol Med (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab833)被用于被用于免疫组化-石蜡切片在人类样品上. FASEB J (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上浓度为1:200. Sci Rep (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 大鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250. J Mol Neurosci (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 大鼠; 1:1,000
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB16667)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1,000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500. Cell Res (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Mol Pharm (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上. Mol Cell Biol (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫组化-石蜡切片在人类样品上. Arch Toxicol (2014) ncbi
兔 多克隆
  • 流式细胞仪; 小鼠; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于流式细胞仪在小鼠样品上浓度为1:200. Nat Commun (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:250
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化在人类样品上浓度为1:250. Gut (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上 (图 4). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab833)被用于被用于免疫组化-石蜡切片在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50. Lab Invest (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上. Exp Toxicol Pathol (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上浓度为1:100. PLoS ONE (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Biomaterials (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫组化; 羊; 5 ug/ml
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在羊样品上浓度为5 ug/ml. Tissue Eng Part A (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:250
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB833)被用于被用于免疫印迹在小鼠样品上浓度为1:250. Brain Res (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(AbCam, ab16667)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Mol Oncol (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 猪; 1:1000
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-石蜡切片在猪样品上浓度为1:1000. Am J Physiol Cell Physiol (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Cancer Res (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化; 大鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在大鼠样品上. Reprod Toxicol (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200. Respir Investig (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上. Br J Cancer (2013) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在小鼠样品上. Mol Cell Biol (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于immunohistochemistry - free floating section在小鼠样品上. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab833)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:50. Glia (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 10 ug/mL
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为10 ug/mL. Int J Med Sci (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:300. Cancer Res (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:300. J Cell Biol (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样品上浓度为1:100. Virology (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:5000
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:5000. Breast Cancer Res (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Acta Biomater (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 16667)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Clin Cancer Res (2013) ncbi
兔 单克隆(SP6)
  • 免疫印迹; 大鼠
  • 抑制或激活实验; 人类
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫印迹在大鼠样品上, 被用于抑制或激活实验在人类样品上 和 被用于免疫印迹在人类样品上 (图 4). J Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200
  • 免疫沉淀; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 和 被用于免疫沉淀在人类样品上. Front Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 4). Gastroenterology (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab1558)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. Front Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. J Neurosci (2013) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在人类样品上 和 被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Mol Carcinog (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:50. Int J Oral Sci (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. Angiogenesis (2013) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200
  • 免疫组化-石蜡切片; 大鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 和 被用于免疫组化-石蜡切片在大鼠样品上. J Diabetes Res (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上. Am J Respir Cell Mol Biol (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:300
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在大鼠样品上浓度为1:300. Aging Cell (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:5000
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:5000. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:000
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫组化在小鼠样品上浓度为1:000. Cancer Res (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上. Exp Toxicol Pathol (2013) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样品上浓度为1:200. Front Cell Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:300. Development (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab833)被用于被用于免疫组化-石蜡切片在人类样品上 和 被用于免疫组化-冰冻切片在小鼠样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500. BMC Biol (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Arthritis Res Ther (2013) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1000
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580-100)被用于被用于免疫组化在人类样品上浓度为1:1000. Stem Cells Dev (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500. Biochem Biophys Res Commun (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫印迹在小鼠样品上浓度为1:200. Dev Biol (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在人类样品上. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 0.5 ug/ml
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样品上浓度为0.5 ug/ml. Am J Pathol (2012) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200. Histochem Cell Biol (2012) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫组化在小鼠样品上浓度为1:500. J Comp Neurol (2009) ncbi
赛默飞世尔
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
  • 免疫细胞化学; 小鼠; 图 1b
赛默飞世尔Ki67抗原抗体(Thermo Fisher, MA5-14520)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 2a) 和 被用于免疫细胞化学在小鼠样品上 (图 1b). J Comp Neurol (2019) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:50; 图 3s1d
赛默飞世尔Ki67抗原抗体(eBioscience, 50-5698-82)被用于被用于免疫组化在小鼠样品上浓度为1:50 (图 3s1d). elife (2019) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:400; 图 1c
赛默飞世尔Ki67抗原抗体(Thermo Fisher, 25-5698-80)被用于被用于流式细胞仪在小鼠样品上浓度为1:400 (图 1c). Front Immunol (2018) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 图 4d
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-80)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 4d). Nat Commun (2018) ncbi
大鼠 单克隆(SolA15)
  • 免疫细胞化学; 小鼠; 图 3e
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, SolA15)被用于被用于免疫细胞化学在小鼠样品上 (图 3e). J Cell Physiol (2019) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s7g
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, 25-5698-82)被用于被用于流式细胞仪在小鼠样品上 (图 s7g). Immunity (2018) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:100; 图 3b
赛默飞世尔Ki67抗原抗体(eBiosciences, 14-5698-82)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 3b). Invest Ophthalmol Vis Sci (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s3c
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, SolA15)被用于被用于流式细胞仪在小鼠样品上 (图 s3c). Eur J Immunol (2018) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类; 图 4c
赛默飞世尔Ki67抗原抗体(eBioscience, 20Raj1)被用于被用于流式细胞仪在人类样品上 (图 4c). Clin Exp Immunol (2018) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 3i
赛默飞世尔Ki67抗原抗体(Thermo Fischer Scientific, Sp6)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 3i). Nature (2018) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 图 s5a
  • 免疫组化-石蜡切片; 小鼠; 图 s5a
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 s5a) 和 被用于免疫组化-石蜡切片在小鼠样品上 (图 s5a). J Cell Biol (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上 (图 2c). Cell Death Dis (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔Ki67抗原抗体(eBioscience, 25-5698-82)被用于被用于流式细胞仪在小鼠样品上 (图 4a). Cell Death Dis (2018) ncbi
大鼠 单克隆(SolA15)
  • 免疫细胞化学; 小鼠; 1:200; 图 s5a
赛默飞世尔Ki67抗原抗体(eBioscience, 50-245-56)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 s5a). Science (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 7a
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上 (图 7a). J Clin Invest (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:200; 图 3a
赛默飞世尔Ki67抗原抗体(Affymetrix/eBioscience, SOIA15)被用于被用于流式细胞仪在小鼠样品上浓度为1:200 (图 3a). J Clin Invest (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上 (图 1d). Front Immunol (2018) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
赛默飞世尔Ki67抗原抗体(eBiosciences, 48-5698-82)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 5a). Cell (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔Ki67抗原抗体(eBiosciences, 11-5698-82)被用于被用于流式细胞仪在小鼠样品上 (图 s1a). Cell (2018) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 1c
赛默飞世尔Ki67抗原抗体(ThermoFisher, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 1c). Cell (2017) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 小鼠; 图 s3b
赛默飞世尔Ki67抗原抗体(eBioscience, 48-5699-41)被用于被用于流式细胞仪在小鼠样品上 (图 s3b). Immunity (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔Ki67抗原抗体(Invitrogen, SolA15)被用于被用于流式细胞仪在小鼠样品上 (图 2b). J Immunol (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:400; 图 e6a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, MA5-14520)被用于被用于免疫组化在小鼠样品上浓度为1:400 (图 e6a). Nature (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4c
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 4c). Development (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 图 4f
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化在小鼠样品上 (图 4f). Nature (2017) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3f
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 3f). Dev Biol (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 5e
赛默飞世尔Ki67抗原抗体(eBioscience, SOLA15)被用于被用于流式细胞仪在小鼠样品上 (图 5e). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-80)被用于被用于流式细胞仪在小鼠样品上 (图 s1). J Immunol (2017) ncbi
小鼠 单克隆(20Raj1)
  • mass cytometry; 人类; 图 2a
赛默飞世尔Ki67抗原抗体(eBiosciences, 20Raj1)被用于被用于mass cytometry在人类样品上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔Ki67抗原抗体(eBiosciences, SolA15)被用于被用于流式细胞仪在小鼠样品上 (图 3d). Proc Natl Acad Sci U S A (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 s14c
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, MA5-14520)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (图 s14c). J Clin Invest (2017) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:500; 图 8c
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 8c). PLoS Biol (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔Ki67抗原抗体(eBiosciences, 12-5698-82)被用于被用于流式细胞仪在小鼠样品上 (图 1e). J Exp Med (2017) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 大鼠; 图 s2
赛默飞世尔Ki67抗原抗体(Thermo Fisher, MA5-15690)被用于被用于免疫组化-石蜡切片在大鼠样品上 (图 s2). Mol Ther Oncolytics (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4d
赛默飞世尔Ki67抗原抗体(Pierce, MA5-14520)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 4d). Sci Rep (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 2g
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S0)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 2g). Sci Rep (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
赛默飞世尔Ki67抗原抗体(Thermo scientific, RM-9106)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3a). PLoS ONE (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 6h
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S0)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 6h). Nat Commun (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:100; 图 S2f
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 S2f). Nat Commun (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 6c
赛默飞世尔Ki67抗原抗体(Thermo, MA5-14520)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:150 (图 6c). Cell Cycle (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 s1c
赛默飞世尔Ki67抗原抗体(Thermo Fisher, RM-9106)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 s1c). Cell (2016) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:25; 图 6
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM 9106-S)被用于被用于免疫细胞化学在人类样品上浓度为1:25 (图 6). Oncotarget (2017) ncbi
小鼠 单克隆(20Raj1)
  • 免疫细胞化学; 人类; 图 2b
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5699-82)被用于被用于免疫细胞化学在人类样品上 (图 2b). Sci Rep (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2e
赛默飞世尔Ki67抗原抗体(Thermo, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 2e). Mol Cell Biol (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2e
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50 (图 2e). Arterioscler Thromb Vasc Biol (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 1d). Tuberculosis (Edinb) (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 6b
赛默飞世尔Ki67抗原抗体(Thermoscientific, RM-9106S1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (图 6b). PLoS ONE (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 s9i
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 s9i). Nature (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 大鼠; 图 1f
赛默飞世尔Ki67抗原抗体(eBiosciences, SolA15)被用于被用于流式细胞仪在大鼠样品上 (图 1f). Eur J Immunol (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:400; 图 s1c
赛默飞世尔Ki67抗原抗体(eBioscience, SOLA15)被用于被用于流式细胞仪在小鼠样品上浓度为1:400 (图 s1c). Nat Commun (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 人类; 图 1d
赛默飞世尔Ki67抗原抗体(Invitrogen, MA5?\14520)被用于被用于免疫组化-冰冻切片在人类样品上 (图 1d). EMBO Mol Med (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3e
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3e). Oncotarget (2017) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:400; 图 2h
赛默飞世尔Ki67抗原抗体(Ebioscience, 11-5698-80)被用于被用于免疫组化在小鼠样品上浓度为1:400 (图 2h). Development (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
赛默飞世尔Ki67抗原抗体(Lab Vision, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 2d). Nat Commun (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S1)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3). Acta Histochem (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:400; 图 st4
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106-S1)被用于被用于免疫组化在人类样品上浓度为1:400 (图 st4). Development (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 图 3b
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM9106)被用于被用于免疫组化在小鼠样品上 (图 3b). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1e
赛默飞世尔Ki67抗原抗体(Thermo, PA1-21520)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 1e). Respir Res (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:400; 表 1
赛默飞世尔Ki67抗原抗体(eBioscience, 11-5698-82)被用于被用于免疫组化在小鼠样品上浓度为1:400 (表 1). Brain Struct Funct (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s7a
赛默飞世尔Ki67抗原抗体(lab vision, RM-9106-F1)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 s7a). Nat Commun (2016) ncbi
小鼠 单克隆(7B11)
  • 流式细胞仪; 人类; 图 4b
赛默飞世尔Ki67抗原抗体(ThermoFisher Scientific, MHKI6701)被用于被用于流式细胞仪在人类样品上 (图 4b). J Immunol Methods (2017) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2B
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-80)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50 (图 2B). J Clin Invest (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 猪; 1:200; 图 5e
赛默飞世尔Ki67抗原抗体(Lab Vision, SP6)被用于被用于免疫组化-石蜡切片在猪样品上浓度为1:200 (图 5e). Biomed Res Int (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2f
赛默飞世尔Ki67抗原抗体(Labvision, RM9106)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 2f). Oncogene (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 3
赛默飞世尔Ki67抗原抗体(Neo Markers, RM-9106-S)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (表 3). Pituitary (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 3b
赛默飞世尔Ki67抗原抗体(Lab-Vision, RM-9106-S)被用于被用于免疫组化-石蜡切片在人类样品上 (图 3b). Kaohsiung J Med Sci (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔Ki67抗原抗体(eBioscience, 41-5698-80)被用于被用于免疫细胞化学在人类样品上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔Ki67抗原抗体(eBioscience, 11-5699-42)被用于被用于流式细胞仪在人类样品上 (图 1b). J Virol (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔Ki67抗原抗体(eBiosciences, 48-5698-80)被用于被用于流式细胞仪在小鼠样品上 (图 s1a). Nat Immunol (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛默飞世尔Ki67抗原抗体(Thermo, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. Sci Rep (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 6j
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S 0)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250 (图 6j). Nat Cell Biol (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6d
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM9106-SO)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 6d). Nat Commun (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:500; 图 4e
赛默飞世尔Ki67抗原抗体(Lab Vision, SP6)被用于被用于免疫组化在人类样品上浓度为1:500 (图 4e). Nat Med (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 3b
赛默飞世尔Ki67抗原抗体(Thermo Fisher, RM-9106-S0)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400 (图 3b). Front Cell Neurosci (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上 (图 s2a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:100; 表 1
  • 免疫细胞化学; 小鼠; 1:100; 表 1
赛默飞世尔Ki67抗原抗体(eBiosciences, SolA15)被用于被用于流式细胞仪在小鼠样品上浓度为1:100 (表 1) 和 被用于免疫细胞化学在小鼠样品上浓度为1:100 (表 1). Nat Commun (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 s4a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP-6)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 s4a). JCI Insight (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 7b
赛默飞世尔Ki67抗原抗体(eBiosciences, 11-5698-82)被用于被用于流式细胞仪在小鼠样品上 (图 7b). J Clin Invest (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:300; 图 s3
赛默飞世尔Ki67抗原抗体(eBiosciences, 25-5698-82)被用于被用于流式细胞仪在小鼠样品上浓度为1:300 (图 s3). Nat Commun (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s1a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9601-S)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s1a). Sci Rep (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 表 2
赛默飞世尔Ki67抗原抗体(Thermo Fisher, RM9106-S1)被用于被用于免疫组化-石蜡切片在人类样品上 (表 2). Mol Diagn Ther (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上 (图 s2). J Clin Invest (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 8b
赛默飞世尔Ki67抗原抗体(Affymetrix eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上 (图 8b). J Exp Med (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 2B
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM9106)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 2B). Toxicol Lett (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上 (图 6). Clin Cancer Res (2017) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:250; 图 2d
赛默飞世尔Ki67抗原抗体(Lab Vision, SP6)被用于被用于免疫组化在人类样品上浓度为1:250 (图 2d). Kaohsiung J Med Sci (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:200; 图 4b
赛默飞世尔Ki67抗原抗体(ThermoFisher Scientific, RM-9106)被用于被用于免疫组化在人类样品上浓度为1:200 (图 4b). JCI Insight (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔Ki67抗原抗体(Neomarkers, SP6)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (表 2). Oncol Lett (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 3
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (表 3). Ann Surg Oncol (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 5d
赛默飞世尔Ki67抗原抗体(LabVision, RM-9128-R1)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:400 (图 5d). Acta Histochem (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔Ki67抗原抗体(Thermo Fisher, PA5-19462)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 1). Sci Rep (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:300
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S)被用于被用于免疫组化在小鼠样品上浓度为1:300. Nat Med (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:2000; 图 s1
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698)被用于被用于免疫组化在小鼠样品上浓度为1:2000 (图 s1). Sci Rep (2016) ncbi
兔 单克隆(SP6)
  • 免疫印迹; 小鼠; 图 S5
赛默飞世尔Ki67抗原抗体(Thermo Fisher, MA5-14520)被用于被用于免疫印迹在小鼠样品上 (图 S5). Sci Rep (2016) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, MA5-15690)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 2). Oncol Lett (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫细胞化学; 人类; 1:500
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-82)被用于被用于免疫细胞化学在人类样品上浓度为1:500. Science (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 6a). Cancer Res (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s4d
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 s4d). Nature (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:100; 图 1d
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化在人类样品上浓度为1:100 (图 1d). Cell Death Dis (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 5a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样品上 (图 5a). Breast Cancer Res Treat (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1d
赛默飞世尔Ki67抗原抗体(Affymetrix E-bioscience, 14-5698)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 1d). Cell Res (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4d
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 4d). Acta Neuropathol (2016) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类; 图 9h
赛默飞世尔Ki67抗原抗体(eBiosciences, 20Raj1)被用于被用于流式细胞仪在人类样品上 (图 9h). J Immunol (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 4
赛默飞世尔Ki67抗原抗体(eBiosciences, A15)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250 (图 4). Development (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 3
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (表 3). Virchows Arch (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 s3i
赛默飞世尔Ki67抗原抗体(Thermo Scientific, MA5-14520)被用于被用于免疫组化-石蜡切片在人类样品上 (图 s3i). Nat Cell Biol (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 图 6f
赛默飞世尔Ki67抗原抗体(Lab Vision, RT-9106-R7)被用于被用于免疫组化在人类样品上 (图 6f). Cancer Res (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 人类
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-82)被用于被用于免疫组化在人类样品上. Nat Commun (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s14a
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-82)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 s14a). Circ Res (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 s3
赛默飞世尔Ki67抗原抗体(Thermo Scientific, PA5-16785)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 s3). Nat Med (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2
赛默飞世尔Ki67抗原抗体(NeoMarkers, RM9106-S)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图 6
赛默飞世尔Ki67抗原抗体(Thermo scientific, RB-1510)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 6). Front Cell Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 图 3
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RB-90-43-P)被用于被用于免疫组化-冰冻切片在人类样品上 (图 3). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1
赛默飞世尔Ki67抗原抗体(Pierce, PA5-19462)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50 (图 1). Oncotarget (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 4c
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样品上 (图 4c). Clin Cancer Res (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫印迹基因敲除验证; 小鼠; 1:300; 图 3
  • 免疫细胞化学; 小鼠; 1:300; 图 2
赛默飞世尔Ki67抗原抗体(Ebioscience, 14-5698-80)被用于被用于免疫印迹基因敲除验证在小鼠样品上浓度为1:300 (图 3) 和 被用于免疫细胞化学在小鼠样品上浓度为1:300 (图 2). elife (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
赛默飞世尔Ki67抗原抗体(Thermo Fischer, SP 6)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 5). Oncotarget (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上 (图 2). elife (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔Ki67抗原抗体(eBioscience, 5698)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 1). Cell Cycle (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:100; 图 3h
赛默飞世尔Ki67抗原抗体(Lab Vision, RM-9106-F1)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 3h). Development (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:500; 图 s4c
赛默飞世尔Ki67抗原抗体(eBioscience, 50-5698- 80)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 s4c). Cell (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于免疫组化在小鼠样品上. Nature (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:50; 图 4
赛默飞世尔Ki67抗原抗体(Pierce, PA5-16785)被用于被用于免疫组化在人类样品上浓度为1:50 (图 4). Histochem Cell Biol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s3
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, PA5-19462)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 s3). PLoS ONE (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:30; 表 1
赛默飞世尔Ki67抗原抗体(Thermo, SP6)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:30 (表 1). Am J Dermatopathol (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 6
赛默飞世尔Ki67抗原抗体(Thermo Fisher, RM-9106-R7)被用于被用于免疫组化-石蜡切片在人类样品上 (图 6). Tissue Eng Part C Methods (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔Ki67抗原抗体(eBioscience, solA15)被用于被用于流式细胞仪在小鼠样品上 (图 5b). Arthritis Rheumatol (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 猕猴; 图 3
赛默飞世尔Ki67抗原抗体(ThermoFisher Scientific, SP6)被用于被用于免疫组化-石蜡切片在猕猴样品上 (图 3). J Immunol (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔Ki67抗原抗体(Neomarkers, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上. EMBO Mol Med (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4c
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 4c). PLoS ONE (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s1c
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上 (图 s1c). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100; 图 5
赛默飞世尔Ki67抗原抗体(Thermo, PA5-19462)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 5). Cereb Cortex (2017) ncbi
兔 单克隆(SP6)
  • 流式细胞仪; 小鼠; 图 s2b
  • 免疫组化; 小鼠; 图 s2a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于流式细胞仪在小鼠样品上 (图 s2b) 和 被用于免疫组化在小鼠样品上 (图 s2a). Nat Med (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s8
赛默飞世尔Ki67抗原抗体(eBioscience, 48-5698)被用于被用于流式细胞仪在小鼠样品上 (图 s8). Nat Neurosci (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上 (图 4). J Immunol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 1c
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RB-9043-P0)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:300 (图 1c). Endocr Relat Cancer (2016) ncbi
小鼠 单克隆(4A1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛默飞世尔Ki67抗原抗体(Lab Vision, MA5-15525)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 1). Tumour Biol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, PA5-19462)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3). Sci Rep (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s2
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s2). Nat Immunol (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 大鼠; 1:500; 图 8a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化在大鼠样品上浓度为1:500 (图 8a). Exp Eye Res (2016) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:500; 图 2c
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 2c). Gastric Cancer (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:100; 图 4
赛默飞世尔Ki67抗原抗体(Thermo Scientific Lab Vision, SP6)被用于被用于免疫组化在人类样品上浓度为1:100 (图 4). Nat Med (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200-1:500; 图 4i
赛默飞世尔Ki67抗原抗体(Thermo Scientific, PA5-16785)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200-1:500 (图 4i). Mol Cell (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:5000; 图 4c
赛默飞世尔Ki67抗原抗体(Pierce, PA5-19462)被用于被用于免疫组化在小鼠样品上浓度为1:5000 (图 4c). Oncotarget (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔Ki67抗原抗体(Lab Vision, SP6)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (表 1). Biomed Res Int (2015) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类; 图 5b
赛默飞世尔Ki67抗原抗体(eBioscience, 20Raj1)被用于被用于流式细胞仪在人类样品上 (图 5b). J Allergy Clin Immunol (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:200; 图 13
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, SP6)被用于被用于免疫组化在人类样品上浓度为1:200 (图 13). Rom J Morphol Embryol (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
赛默飞世尔Ki67抗原抗体(Thermo Fisher, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4b). FASEB J (2016) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 大鼠; 图 7e
赛默飞世尔Ki67抗原抗体(Thermo fisher Scientific, 9106)被用于被用于免疫细胞化学在大鼠样品上 (图 7e). Diabetes (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔Ki67抗原抗体(Thermo, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上. J Clin Invest (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 3b
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM9106)被用于被用于免疫组化-石蜡切片在人类样品上 (图 3b). Reprod Sci (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 2). PLoS Pathog (2015) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:500; 图 3e
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-82)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 3e). J Cell Sci (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:200; 图 2
赛默飞世尔Ki67抗原抗体(eBioscience, 12-5698)被用于被用于流式细胞仪在小鼠样品上浓度为1:200 (图 2). Stem Cell Reports (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:400; 图 s5a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S)被用于被用于免疫组化在人类样品上浓度为1:400 (图 s5a). Glia (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RB-1510-P)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(7B11)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔Ki67抗原抗体(生活技术, MHKI6701)被用于被用于流式细胞仪在人类样品上 (图 2). PLoS ONE (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 1e
赛默飞世尔Ki67抗原抗体(Thermo Fisher, SP6)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1e). Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆(8D5)
  • 免疫印迹; 人类; 图 9c
赛默飞世尔Ki67抗原抗体(Pierce, MA5-15690)被用于被用于免疫印迹在人类样品上 (图 9c). FASEB J (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100; 图 7
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, PA5-19462)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 7). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 猪; 1:1000; 图 8
赛默飞世尔Ki67抗原抗体(ThermoFisher Scientific, Ab-4)被用于被用于免疫组化在猪样品上浓度为1:1000 (图 8). BMC Cancer (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 4). Cell Rep (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:300; 图 5a
赛默飞世尔Ki67抗原抗体(ThermoFisher Scientific, RM-9106)被用于被用于免疫组化在小鼠样品上浓度为1:300 (图 5a). Brain Struct Funct (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛默飞世尔Ki67抗原抗体(eBioscience, 42-5698)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3). Nat Commun (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 6
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-R7)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 6). PLoS Genet (2015) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫细胞化学在小鼠样品上浓度为1:100 (图 2). Development (2015) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类; 1:200; 图 s4
赛默飞世尔Ki67抗原抗体(eBiosciences, 20Raj1)被用于被用于流式细胞仪在人类样品上浓度为1:200 (图 s4). Nat Commun (2015) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s8b
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-82)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:50 (图 s8b). Nature (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上. J Immunol (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 1). Appl Immunohistochem Mol Morphol (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:150
赛默飞世尔Ki67抗原抗体(Thermo Fisher, SP6)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:150. Biomark Cancer (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 4). Oncotarget (2015) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200. Stem Cell Reports (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 5
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RB-9043-P)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:300 (图 5). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:100
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, PA5-19462)被用于被用于免疫组化在大鼠样品上浓度为1:100. J Magn Reson Imaging (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔Ki67抗原抗体(NeoMarker, sp6)被用于被用于免疫组化-石蜡切片在人类样品上. Invest Clin (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上 (图 1c). J Exp Med (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔Ki67抗原抗体(Thermo Scientific, clone SP6)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Cell Death Differ (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类
赛默飞世尔Ki67抗原抗体(Lab Vision, clone SP6)被用于被用于免疫组化在人类样品上. Brain Tumor Pathol (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 1). Genome Biol (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(Lab Vision, Sp6)被用于被用于免疫组化-石蜡切片在小鼠样品上 和 被用于流式细胞仪在小鼠样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100
赛默飞世尔Ki67抗原抗体(Thermo Scientific, PA5-19462)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100. J Physiol (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
赛默飞世尔Ki67抗原抗体(NEOmarkers, SP6)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔Ki67抗原抗体(Thermo scientific, RM-9106)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. PLoS ONE (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 表 2
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样品上 (表 2). Breast Cancer Res Treat (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔Ki67抗原抗体(eBioscience, SOlA15)被用于被用于流式细胞仪在小鼠样品上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上 (图 s1). PLoS ONE (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔Ki67抗原抗体(LabVision, RM-9106-S)被用于被用于免疫组化-石蜡切片在小鼠样品上. Toxicol Sci (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔Ki67抗原抗体(THERMO, SP6)被用于被用于免疫组化-石蜡切片在人类样品上. Int J Clin Exp Pathol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠
赛默飞世尔Ki67抗原抗体(Thermo Scientific, PA5-19462)被用于被用于免疫组化在小鼠样品上. Prostate (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 图 4a
  • 免疫细胞化学; 人类; 图 s3a
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106-s1)被用于被用于免疫组化在小鼠样品上 (图 4a) 和 被用于免疫细胞化学在人类样品上 (图 s3a). Nat Med (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 4
赛默飞世尔Ki67抗原抗体(Thermo scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 4). Neurobiol Dis (2015) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类; 图 s3
赛默飞世尔Ki67抗原抗体(eBioscience, 20Raj1)被用于被用于流式细胞仪在人类样品上 (图 s3). J Immunol (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, SP6)被用于被用于免疫组化在小鼠样品上. J Neurosci (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(Thermo Scientific, 9106)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200. J Clin Invest (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Tumour Biol (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 大鼠; 1:200
赛默飞世尔Ki67抗原抗体(NeoMarkers, RM-9106-S0)被用于被用于免疫组化在大鼠样品上浓度为1:200. Nanomedicine (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:300
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:300. Mol Cancer Ther (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 3). J Cell Biol (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔Ki67抗原抗体(Thermo Fischer Scientific, RM-9106)被用于被用于免疫组化-石蜡切片在大鼠样品上. Prostate (2015) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔Ki67抗原抗体(eBioscience, 20Raj1)被用于被用于流式细胞仪在人类样品上 (图 4). J Virol (2015) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:100; 图 5
赛默飞世尔Ki67抗原抗体(Affymetrix eBioscience, 14-5698-80)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 5). Nat Commun (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔Ki67抗原抗体(LabVisio, SP6)被用于被用于免疫组化-石蜡切片在人类样品上. APMIS (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 狗; 1:50; 图 2
赛默飞世尔Ki67抗原抗体(LabVision, SP6)被用于被用于免疫组化-石蜡切片在狗样品上浓度为1:50 (图 2). BMC Vet Res (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3b
赛默飞世尔Ki67抗原抗体(Neomarkers, SP6)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 3b). Oral Surg Oral Med Oral Pathol Oral Radiol (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上. J Immunol (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM-9106-R7)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 5). PLoS ONE (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:300
赛默飞世尔Ki67抗原抗体(Labvision, SP6)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:300. Int J Gynecol Pathol (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:400
赛默飞世尔Ki67抗原抗体(ThermoScientific, SP6)被用于被用于免疫组化在人类样品上浓度为1:400. Pathol Res Pract (2015) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S0)被用于被用于免疫细胞化学在人类样品上 (图 4). Neuromuscul Disord (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔Ki67抗原抗体(Lab Vision, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上. Am J Physiol Gastrointest Liver Physiol (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔Ki67抗原抗体(Labvision/Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. AIDS (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106)被用于被用于免疫组化在小鼠样品上浓度为1:200. Nature (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:500; 图 6
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化在人类样品上浓度为1:500 (图 6). Mol Cancer Ther (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100
赛默飞世尔Ki67抗原抗体(Lab Vision, RB-9043-R7)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100. Tumour Biol (2015) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于免疫组化在小鼠样品上. Immunology (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 大鼠; 1:200
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM9106-S)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. J Neurosci (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106-S1)被用于被用于免疫组化-石蜡切片在小鼠样品上. Oncotarget (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, PA5-19462)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 2). J Exp Med (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化; 大鼠; 1:1000; 图 4a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S)被用于被用于免疫组化在大鼠样品上浓度为1:1000 (图 4a). Brain Struct Funct (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔Ki67抗原抗体(Lab Vision, Ab-4)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Mol Carcinog (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:200
赛默飞世尔Ki67抗原抗体(LabVision, SP6)被用于被用于免疫组化在人类样品上浓度为1:200. Arch Dermatol Res (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 图 1
赛默飞世尔Ki67抗原抗体(Thermo, SP6)被用于被用于免疫组化在人类样品上 (图 1). Genes Dev (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上. J Immunol (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(NeoMarkers, RM-9106-S0)被用于被用于免疫组化在小鼠样品上浓度为1:200. Am J Pathol (2014) ncbi
兔 单克隆(SP6)
赛默飞世尔Ki67抗原抗体(Lab Vision, RM-9106-S)被用于. Front Aging Neurosci (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM-9106-S0)被用于被用于免疫组化-石蜡切片在小鼠样品上. Am J Pathol (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上浓度为1:200. Nat Commun (2014) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:100
赛默飞世尔Ki67抗原抗体(eBioscience, solA15)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100. Mol Pharm (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Rom J Morphol Embryol (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:200; 图 3
赛默飞世尔Ki67抗原抗体(Neo Markers, SP6)被用于被用于免疫组化在人类样品上浓度为1:200 (图 3). J Gastroenterol (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔Ki67抗原抗体(Thermoscientific, PA1-21520)被用于被用于免疫细胞化学在人类样品上浓度为1:100. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(Thermo, PA5-19462)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200. Mol Cancer (2014) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类
赛默飞世尔Ki67抗原抗体(eBioscience, 20Raj1)被用于被用于流式细胞仪在人类样品上. J Immunol (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上. Proc Natl Acad Sci U S A (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:250
赛默飞世尔Ki67抗原抗体(LabVision/Thermo Scientific, #RM-9106, clone SP6)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:250. Aging (Albany NY) (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上. J Immunol (2014) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 小鼠
赛默飞世尔Ki67抗原抗体(Lab Vision, SP6)被用于被用于免疫细胞化学在小鼠样品上. Cancer Res (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛默飞世尔Ki67抗原抗体(Thermo Fisher, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 2). J Am Soc Nephrol (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 人类; 1:200
赛默飞世尔Ki67抗原抗体(Thermoscientific, SP6)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类
赛默飞世尔Ki67抗原抗体(eBioscience, 20Raj1)被用于被用于流式细胞仪在人类样品上. Blood (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上. Dev Cell (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠
赛默飞世尔Ki67抗原抗体(Lab Vision/Thermo Scientific, Clone SP6)被用于被用于免疫组化在小鼠样品上. Mol Psychiatry (2015) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔Ki67抗原抗体(Fisher/Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(SP6)
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106-s1)被用于. Clin Cancer Res (2014) ncbi
兔 单克隆(SP6)
  • immunohistochemistry - free floating section; 小鼠; 1:200
  • 免疫组化; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(LabVision Corporation, SP6)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:200 和 被用于免疫组化在小鼠样品上浓度为1:200. Front Cell Neurosci (2014) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔Ki67抗原抗体(eBioscience, solA15)被用于被用于免疫组化在小鼠样品上浓度为1:100. PLoS ONE (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. PLoS ONE (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. Nat Genet (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化; 大鼠; 1:300
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化在大鼠样品上浓度为1:300. Neurochem Int (2014) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:25
  • 免疫组化; 人类; 1:25
赛默飞世尔Ki67抗原抗体(Thermo Scientific, Sp6)被用于被用于免疫细胞化学在人类样品上浓度为1:25 和 被用于免疫组化在人类样品上浓度为1:25. Am J Pathol (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔Ki67抗原抗体(Neomarkers, SP6)被用于被用于免疫组化-石蜡切片在人类样品上. Gastroenterology (2014) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 小鼠
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106-F)被用于被用于免疫细胞化学在小鼠样品上. PLoS Genet (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上. Virol Sin (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM910 6S0)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200. Anat Rec (Hoboken) (2014) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化; 小鼠
赛默飞世尔Ki67抗原抗体(LabVision, SP6)被用于被用于免疫组化-冰冻切片在小鼠样品上 和 被用于免疫组化在小鼠样品上. PLoS ONE (2013) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:300
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM9106)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:300. Cell Stem Cell (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上. J Exp Med (2013) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔Ki67抗原抗体(Neomarkers, Sp6)被用于被用于免疫组化-石蜡切片在人类样品上 (图 2). Acta Neuropathol Commun (2013) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:500; 图 2
赛默飞世尔Ki67抗原抗体(Neomarkers, M-9106-S1)被用于被用于免疫组化在人类样品上浓度为1:500 (图 2). Cancers (Basel) (2012) ncbi
兔 单克隆(SP6)
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM9106)被用于. J Control Release (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 瓶鼻海豚; 1:500
赛默飞世尔Ki67抗原抗体(Thermo Scientific, PA5-19462)被用于被用于免疫组化-冰冻切片在瓶鼻海豚样品上浓度为1:500. Front Endocrinol (Lausanne) (2013) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106-S1)被用于被用于免疫组化-石蜡切片在小鼠样品上. PLoS ONE (2013) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化在小鼠样品上浓度为1:200. Cell Reprogram (2013) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样品上. Stem Cells (2014) ncbi
小鼠 单克隆(20Raj1)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5699-82)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500. Stem Cells (2013) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:300
赛默飞世尔Ki67抗原抗体(Neomarkers, RM-9106-S)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:300. Mol Endocrinol (2013) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:300
赛默飞世尔Ki67抗原抗体(NeoMarkers, RM-9106)被用于被用于免疫组化在小鼠样品上浓度为1:300. Glia (2013) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:200
  • 免疫细胞化学; 小鼠; 1:200; 图 5
  • 免疫组化; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(LabVision Corporation, SP6)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200, 被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 5) 和 被用于免疫组化在小鼠样品上浓度为1:200. Neurobiol Aging (2013) ncbi
兔 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 1:200
  • 免疫组化; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(Neomarkers / LabVision, SP6)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 和 被用于免疫组化在小鼠样品上浓度为1:200. Genes Dev (2013) ncbi
兔 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 5). PLoS ONE (2013) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(Thermo Fisher, RM9106_S0)被用于被用于免疫组化在小鼠样品上浓度为1:200. PLoS ONE (2013) ncbi
兔 单克隆(SP6)
赛默飞世尔Ki67抗原抗体(ThermoScientific, RM-9106-S)被用于. Biol Reprod (2013) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 图 6
赛默飞世尔Ki67抗原抗体(thermo scientific, rm-9106-s1)被用于被用于免疫组化在小鼠样品上 (图 6). BMC Cancer (2012) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化在小鼠样品上. Am J Pathol (2012) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 4
赛默飞世尔Ki67抗原抗体(LabVision Corporation, SP6)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 4). Front Neurosci (2012) ncbi
兔 单克隆(SP6)
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于. J Comp Neurol (2013) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:15,000; 图 3
赛默飞世尔Ki67抗原抗体(Thermo Fisher, RM-9106-s1)被用于被用于免疫组化在小鼠样品上浓度为1:15,000 (图 3). PLoS ONE (2012) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:200
赛默飞世尔Ki67抗原抗体(Neomarkers, RM-9106-S1)被用于被用于免疫组化在人类样品上浓度为1:200. PLoS Pathog (2012) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔Ki67抗原抗体(Labvision, RM-9106-S1)被用于被用于免疫组化-石蜡切片在大鼠样品上. Med Sci Monit (2011) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 图 4
赛默飞世尔Ki67抗原抗体(Thermoscientific, RM-9106-S1)被用于被用于免疫组化在小鼠样品上 (图 4). BMC Cancer (2011) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1g
赛默飞世尔Ki67抗原抗体(Neomarkers, RB1510P0)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 1g). PLoS ONE (2011) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:1000; 图 1
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 1). Cancer Res (2011) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠
赛默飞世尔Ki67抗原抗体(Lab Vision Corporation, Clone SP6)被用于被用于免疫组化在小鼠样品上. J Pathol (2011) ncbi
兔 单克隆(SP6)
  • immunohistochemistry - free floating section; 小鼠; 1:100; 图 3
  • 免疫组化; 小鼠; 1:100
赛默飞世尔Ki67抗原抗体(LabVision, SP6)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:100 (图 3) 和 被用于免疫组化在小鼠样品上浓度为1:100. PLoS ONE (2009) ncbi
兔 单克隆(SP6)
  • 免疫组化; 人类; 1:50; 图 5
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S0)被用于被用于免疫组化在人类样品上浓度为1:50 (图 5). Prostate (2009) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 4
  • 免疫组化; 人类; 1:300
赛默飞世尔Ki67抗原抗体(LabVision, Sp6)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:300 (图 4) 和 被用于免疫组化在人类样品上浓度为1:300. Cancer Res (2008) ncbi
圣克鲁斯生物技术
小鼠 单克隆(Ki-67)
  • 免疫印迹; 人类; 图 s4
圣克鲁斯生物技术Ki67抗原抗体(SantaCruz, sc-23900)被用于被用于免疫印迹在人类样品上 (图 s4). Biomed Pharmacother (2018) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 图 1a
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1a). Oncol Lett (2017) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 图 2a
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样品上 (图 2a). Int J Mol Med (2017) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2b
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 2b). Exp Ther Med (2017) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4g
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 4g). Oncotarget (2017) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 图 3a
圣克鲁斯生物技术Ki67抗原抗体(SantaCruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样品上 (图 3a). Cell Prolif (2016) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Oncol Lett (2016) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化; 人类; 图 8d
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化在人类样品上 (图 8d). Oncotarget (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:200; 图 8
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-101861)被用于被用于免疫组化在人类样品上浓度为1:200 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(Ki-67)
  • 免疫细胞化学; 人类; 1:100; 图 3
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(Ki-67)
  • 免疫细胞化学; 人类; 图 s1
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc23900)被用于被用于免疫细胞化学在人类样品上 (图 s1). Mol Cell Biol (2016) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 4
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(Ki-67)
  • 免疫细胞化学; 人类; 1:100; 图 3
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, SC23900)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 图 3
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc101861)被用于被用于免疫组化在人类样品上浓度为1:100 (图 3). Oncogene (2015) ncbi
小鼠 单克隆(Ki-67)
  • 免疫细胞化学; 人类; 1:200
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, SC23900)被用于被用于免疫细胞化学在人类样品上浓度为1:200. Cell Death Dis (2014) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Int J Ophthalmol (2014) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类
圣克鲁斯生物技术Ki67抗原抗体(Santa, sc-23900)被用于被用于免疫组化-石蜡切片在人类样品上. Cancer Res (2014) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz Biotechnology, sc-23900)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 和 被用于免疫细胞化学在人类样品上. Carcinogenesis (2013) ncbi
BioLegend
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 小鼠; 图 3a
BioLegendKi67抗原抗体(BioLegend, Ki-67)被用于被用于流式细胞仪在小鼠样品上 (图 3a). Front Immunol (2018) ncbi
大鼠 单克隆(11F6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1e
BioLegendKi67抗原抗体(Biolegend, 151202)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 1e). Acta Neuropathol Commun (2018) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 图 3a
BioLegendKi67抗原抗体(BioLegend, Ki-67)被用于被用于流式细胞仪在人类样品上 (图 3a). Int J Infect Dis (2018) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 图 1b
BioLegendKi67抗原抗体(Biolegend, Ki-67)被用于被用于流式细胞仪在人类样品上 (图 1b). J Immunol (2018) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 图 4e
BioLegendKi67抗原抗体(BioLegend, 350510)被用于被用于流式细胞仪在人类样品上 (图 4e). Oncoimmunology (2016) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 图 2a
BioLegendKi67抗原抗体(Biolegend, Ki67)被用于被用于流式细胞仪在人类样品上 (图 2a). Exp Hematol Oncol (2017) ncbi
小鼠 单克隆(Ki-67)
BioLegendKi67抗原抗体(BioLegend, 350504)被用于. Stem Cell Reports (2016) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 图 3b
BioLegendKi67抗原抗体(BioLegend, Ki-67)被用于被用于流式细胞仪在人类样品上 (图 3b). Clin Cancer Res (2017) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 图 s2
BioLegendKi67抗原抗体(Biolegend, Ki-67)被用于被用于流式细胞仪在人类样品上 (图 s2). PLoS Pathog (2015) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 小鼠; 图 4
BioLegendKi67抗原抗体(Biolegend, Ki67)被用于被用于流式细胞仪在小鼠样品上 (图 4). Stem Cells (2015) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类
BioLegendKi67抗原抗体(BioLegend, 350504)被用于被用于流式细胞仪在人类样品上. J Inflamm (Lond) (2014) ncbi
Novus Biologicals
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 s12a
  • 免疫细胞化学; 小鼠; 1:100; 图 5a
Novus BiologicalsKi67抗原抗体(Novus, NB110-89717)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 s12a) 和 被用于免疫细胞化学在小鼠样品上浓度为1:100 (图 5a). Science (2018) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1e
Novus BiologicalsKi67抗原抗体(Novus, NB500-170)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 1e). Science (2018) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 7b
Novus BiologicalsKi67抗原抗体(Novus Biologicals, NB600-1252)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 7b). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 4
Novus BiologicalsKi67抗原抗体(Novus Biologicals, NB500-170)被用于被用于免疫组化在小鼠样品上 (图 4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 9f
Novus BiologicalsKi67抗原抗体(Novus Biologicals, NB110-89719)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 9f). J Exp Med (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
Novus BiologicalsKi67抗原抗体(Novus Biologicals, NB110-89717)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 3). J Pathol (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:750; 图 s6
Novus BiologicalsKi67抗原抗体(Novus Biologicals, NB110-89717)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:750 (图 s6). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:100; 图 1
Novus BiologicalsKi67抗原抗体(Novus, NB110-89719)被用于被用于免疫组化在人类样品上浓度为1:100 (图 1). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
  • 免疫组化; 小鼠
Novus BiologicalsKi67抗原抗体(Novus, NB110-89717)被用于被用于免疫组化-石蜡切片在小鼠样品上 和 被用于免疫组化在小鼠样品上. Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2
Novus BiologicalsKi67抗原抗体(Novus Biologicals, NB110-89717)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 2). J Hepatol (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 2
Novus BiologicalsKi67抗原抗体(Novus, NB500-170)被用于被用于免疫细胞化学在人类样品上 (图 2). Mol Biol Cell (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
Novus BiologicalsKi67抗原抗体(Novus Biologicals, NB110-89719)被用于被用于免疫组化-石蜡切片在小鼠样品上. Mol Vis (2013) ncbi
GeneTex
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
GeneTexKi67抗原抗体(GeneTex, SP6)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 2a). J Cancer (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4
GeneTexKi67抗原抗体(Genetex, GTX16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4). Sci Rep (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3
GeneTexKi67抗原抗体(GeneTex, GTX16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3). Nat Commun (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 3
GeneTexKi67抗原抗体(GeneTex, GTX16667)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 3). Nat Commun (2016) ncbi
兔 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 1
GeneTexKi67抗原抗体(GeneTex, GTX16667)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 1). Proc Natl Acad Sci U S A (2015) ncbi
北京傲锐东源
小鼠 单克隆(OTI3D11)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 7d
北京傲锐东源Ki67抗原抗体(ZSGB-Bio, TA500265)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 7d). Nat Commun (2017) ncbi
小鼠 单克隆(UMAB107)
  • 免疫组化-石蜡切片; 人类; 1:500
北京傲锐东源Ki67抗原抗体(Origene Technologies, UM800033)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Oncol Lett (2016) ncbi
LifeSpan Biosciences
大鼠 单克隆(5B10)
  • 免疫组化-石蜡切片; 猕猴; 1:50; 图 6
  • 免疫细胞化学; 猕猴
  • 免疫细胞化学; 灵长类动物
LifeSpan BiosciencesKi67抗原抗体(LifeSpan, LS-C175347)被用于被用于免疫组化-石蜡切片在猕猴样品上浓度为1:50 (图 6), 被用于免疫细胞化学在猕猴样品上 和 被用于免疫细胞化学在灵长类动物样品上. J Neuroinflammation (2016) ncbi
北京义翘神州
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 7
北京义翘神州Ki67抗原抗体(Sino Biological, 100130-RP02)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 7). Cancer Lett (2016) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 1c). Life Sci Alliance (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 图 1f
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫细胞化学在人类样品上 (图 1f). J Stem Cells Regen Med (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 4a). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 图 7a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫细胞化学在人类样品上 (图 7a). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 小鼠; 1:200; 图 8g
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M724001-2)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 8g). J Neurosci (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 6a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 6a). Nat Commun (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, IS626)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 1c). Anticancer Res (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 图 3b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化在人类样品上 (图 3b). Oncogene (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; domestic ferret; 1:500; 图 7a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在domestic ferret样品上浓度为1:500 (图 7a). Am J Pathol (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1j
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 1j). Arch Dermatol Res (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:800; 表 s18
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:800 (表 s18). Science (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:300
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化在人类样品上浓度为1:300. Breast Cancer Res (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 图 s1b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dakocytomation, MIB-1)被用于被用于免疫组化在人类样品上 (图 s1b). Front Immunol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化在人类样品上浓度为1:100. Nature (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2;
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, 7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 2;). Oncol Lett (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 表 3
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在人类样品上浓度为1:100 (表 3). PLoS ONE (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; African green monkey; 1:2; 图 st9
  • 免疫组化-石蜡切片; 人类; 1:2; 图 st9
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, IR626)被用于被用于免疫组化-石蜡切片在African green monkey样品上浓度为1:2 (图 st9) 和 被用于免疫组化-石蜡切片在人类样品上浓度为1:2 (图 st9). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7h
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 7h). Sci Rep (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 狗; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在狗样品上浓度为1:50. Vet Pathol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 6c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 6c). Biochim Biophys Acta Mol Cell Res (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上 (表 1). Clin Breast Cancer (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上 (表 1). Endocr Relat Cancer (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:40; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:40 (表 2). Am J Dermatopathol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, Mib-1)被用于被用于免疫组化-石蜡切片在人类样品上. Am J Cancer Res (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4f
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 4f). J Cell Mol Med (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 5b). Mol Cell Biol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 图 2g
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在人类样品上浓度为1:100 (图 2g). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:200; 图 2e
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上浓度为1:200 (图 2e). Brain Pathol (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上 (表 1). Oncotarget (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 4). Acta Derm Venereol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表 1). Glia (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:75; 图 6e
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:75 (图 6e). J Pathol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4D
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50 (图 4D). Gene Ther (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 图 2c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化在人类样品上 (图 2c). Biochem Biophys Res Commun (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:500; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (表 2). Rev Bras Ginecol Obstet (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6d
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 6d). Cancer Res (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:25; 图 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, Mib-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:25 (图 2). Taiwan J Obstet Gynecol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 1). J Clin Pathol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (图 1c). Contemp Oncol (Pozn) (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, Mib-1)被用于被用于免疫组化在人类样品上. Hum Pathol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上 (表 2). Ann Diagn Pathol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 2b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上 (图 2b). Clin Cancer Res (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 小鼠; 1:200; 图 e1f
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, IR-626)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 e1f). Nature (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 图 st1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上浓度为1:100 (图 st1). Gastroenterology (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在人类样品上 (表 2). Cytometry B Clin Cytom (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 2c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, Mib-1)被用于被用于免疫组化-石蜡切片在人类样品上 (图 2c). J Allergy Clin Immunol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 流式细胞仪; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(BD Pharmigen, M7240)被用于被用于流式细胞仪在人类样品上 (图 4). Oncoimmunology (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上 (表 1). Histopathology (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1h
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 1h). Virchows Arch (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 1). Mol Clin Oncol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 图 4f
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上 (图 4f). Nat Commun (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 7f
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:2000 (图 7f). Oncol Lett (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 1a). Nat Commun (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 图 s1b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在人类样品上 (图 s1b). Sci Rep (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:400; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化在人类样品上浓度为1:400 (图 1). Diagn Pathol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 0.102 ug/ml; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在人类样品上浓度为0.102 ug/ml (表 2). PLoS ONE (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 1a). J Clin Pathol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 2). Virchows Arch (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 3a). Medicine (Baltimore) (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 4j-l
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MiB-1)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:100 (图 4j-l). Biomed Res Int (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上浓度为1:100 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 3). Clin Cancer Res (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:200. PLoS ONE (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表 1). Rom J Morphol Embryol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 1:100; 图 5
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 1). Arch Gynecol Obstet (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (表 2). Am J Surg Pathol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 5a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 1b). J Oral Pathol Med (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上浓度为1:100 (表 2). Am J Surg Pathol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在人类样品上 (表 2). PLoS ONE (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 人类; 图 7
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-冰冻切片在人类样品上 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4g
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 4g). Nat Med (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1d
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 1d). J Hematop (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 4). Nat Med (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在人类样品上浓度为1:50. Nat Med (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在人类样品上浓度为1:100 (图 4). Cell Death Dis (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 羊; 1:100; 图 7
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化-石蜡切片在羊样品上浓度为1:100 (图 7). J Neuroinflammation (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:10; 图 s5t
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:10 (图 s5t). Nat Commun (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 1). J Immunol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 狗; 1:50; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在狗样品上浓度为1:50 (表 1). Vet Comp Oncol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 图 s2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫细胞化学在人类样品上 (图 s2). Biomaterials (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 图 5
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫细胞化学在人类样品上 (图 5). Mol Vis (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化在人类样品上浓度为1:200. Clin Cancer Res (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50. PLoS ONE (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 3c). Mol Cancer (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 图 2b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上 (图 2b). Exp Dermatol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 s1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:300 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫细胞化学在人类样品上 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:50; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上浓度为1:50 (表 1). Pathol Int (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上浓度为1:100 (表 1). Oral Surg Oral Med Oral Pathol Oral Radiol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3e
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 3e). Oncotarget (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 图 7
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上 (图 7). BMC Cancer (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, Mib1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Ann Clin Lab Res (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:20
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:20. Endocr J (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 2b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上 (图 2b). J Pediatr Urol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. J Pathol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 5a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上 (图 5a). Oncol Rep (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4D
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 4D). Am J Pathol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400. Oncotarget (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 小鼠; 1:75; 图 5a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, MIB-1)被用于被用于免疫组化在小鼠样品上浓度为1:75 (图 5a). Oncotarget (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 1:150; 图 2c1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB1)被用于被用于免疫细胞化学在人类样品上浓度为1:150 (图 2c1). PLoS ONE (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:20; 图 3f
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在人类样品上浓度为1:20 (图 3f). Endocr Pathol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化在人类样品上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:150 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在人类样品上. Oncotarget (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 3
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (表 3). PLoS ONE (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 牛; 1:100; 图 1c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在牛样品上浓度为1:100 (图 1c). Transbound Emerg Dis (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上 (图 4). Nat Cell Biol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化在人类样品上 (表 1). Nat Commun (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化在人类样品上 (表 1). PLoS ONE (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Clin Cancer Res (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 1). Cancer Res Treat (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 1:200; 图 st1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M724029-2)被用于被用于免疫细胞化学在人类样品上浓度为1:200 (图 st1). Sci Rep (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:400; 图 3
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化在人类样品上浓度为1:400 (图 3). Nature (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, M7240)被用于被用于免疫组化在人类样品上浓度为1:200. Mol Clin Oncol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化在人类样品上. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 0.23 mg/ml; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB 1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为0.23 mg/ml (图 1). Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上 (图 4). Breast Cancer Res (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化在人类样品上. Mol Oncol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MiB1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 3). Ann Diagn Pathol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:20
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, clone MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:20. BMC Cancer (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:3
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, Mib1)被用于被用于免疫组化在人类样品上浓度为1:3. Int Urol Nephrol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 图 3c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上浓度为1:100 (图 3c). Exp Dermatol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 s4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (图 s4). J Clin Endocrinol Metab (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Oncogene (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:1000; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上浓度为1:1000 (图 4). Mol Cancer (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Leuk Lymphoma (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, clone: Mib1)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:50 (图 1). J Immunol Res (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 0.5 ug/ml; 图 5
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为0.5 ug/ml (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Cell Tissue Res (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:250
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:250. Cancer Res Treat (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上. Pathol Oncol Res (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:150 (表 4). PLoS ONE (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. J Pediatr Surg (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 2). Onco Targets Ther (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, clone MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Exp Dermatol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化在人类样品上. Oncotarget (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Int J Gynecol Pathol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:100. J Nucl Med (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. J Hematol Oncol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, M7240)被用于被用于免疫组化在人类样品上浓度为1:200. Histopathology (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 6
  • 免疫组化-石蜡切片; 小鼠; 图 6
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, 7240)被用于被用于免疫组化-石蜡切片在人类样品上 (图 6) 和 被用于免疫组化-石蜡切片在小鼠样品上 (图 6). Cell Cycle (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:80; 图 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:80 (图 2). Oncol Rep (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化-石蜡切片在人类样品上. J Clin Pathol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫印迹; 人类; 图 7
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫印迹在人类样品上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 狗; 图 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在狗样品上 (图 2). J Vet Sci (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, MIB1)被用于被用于免疫组化在人类样品上. Exp Oncol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 小鼠
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在小鼠样品上. Am J Pathol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB1)被用于被用于免疫组化在人类样品上浓度为1:50. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:5000; 图 3
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:5000 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(MIB-1)
  • 流式细胞仪; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于流式细胞仪在人类样品上. Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 羊
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation A / S, MIB-1)被用于被用于免疫组化-石蜡切片在羊样品上. Int J Nanomedicine (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 小鼠
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在小鼠样品上. Nat Med (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上. J Cutan Pathol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上浓度为1:200. J Cutan Pathol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上浓度为1:400. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 3
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:300 (表 3). BMC Cancer (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1). Mol Cancer Res (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKOCytomation, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Anticancer Res (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 兔
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在兔样品上. Exp Neurol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Endocr Pathol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 人类; 1:75
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:75. PLoS ONE (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:600
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化在人类样品上浓度为1:600. BMC Womens Health (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化在人类样品上浓度为1:100. Head Neck Pathol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上. Virchows Arch (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; ready-to-use
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为ready-to-use. Histopathology (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:150
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:150. Int J Clin Exp Med (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上. Int J Cancer (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M724001)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Nature (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, M7240)被用于被用于免疫组化-石蜡切片在人类样品上. Transl Res (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, MIB-1)被用于被用于免疫组化在人类样品上. Pathol Int (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫细胞化学在人类样品上浓度为1:200. Cancer Cytopathol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 大鼠; 1:150
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M 7240)被用于被用于免疫组化在大鼠样品上浓度为1:150. Respir Physiol Neurobiol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50. Oncotarget (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Am J Clin Pathol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表 2). Oncotarget (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M 7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (表 2). PLoS ONE (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-冰冻切片在人类样品上. Cardiovasc Pathol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 流式细胞仪; African green monkey; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于流式细胞仪在African green monkey样品上 (图 4). PLoS Pathog (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 7
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上 (图 7). Nat Commun (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 1:100; 图 5a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 5a). Biomolecules (2012) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 1:50
  • 免疫印迹; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫细胞化学在人类样品上浓度为1:50 和 被用于免疫印迹在人类样品上浓度为1:1000. BMC Cancer (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:300
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:300. Ann Surg Oncol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Virchows Arch (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上. Andrology (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上浓度为1:50. Pathol Res Pract (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 5). Reprod Domest Anim (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50. PLoS ONE (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Cell Res (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Pathol Res Pract (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Mol Hum Reprod (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫印迹; 人类; 1 ug/mL
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫印迹在人类样品上浓度为1 ug/mL. Mediators Inflamm (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 兔
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-冰冻切片在兔样品上. Neuroscience (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Hum Pathol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; ready-to-use 1:2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为ready-to-use 1:2. Virchows Arch (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50
  • 免疫细胞化学; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 和 被用于免疫细胞化学在人类样品上浓度为1:50. J Clin Invest (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; African green monkey
  • 免疫组化-石蜡切片; 猕猴
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在African green monkey样品上 和 被用于免疫组化-石蜡切片在猕猴样品上. Blood (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上. Urol Oncol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 小鼠; 1:5000
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫细胞化学在小鼠样品上浓度为1:5000. PLoS ONE (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Neuropathology (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. World J Gastroenterol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Gut (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 狗; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在狗样品上浓度为1:50. Pak J Biol Sci (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. APMIS (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 羊; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在羊样品上浓度为1:100. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MTB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (表 1). Virchows Arch (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 4). Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Pathol Res Pract (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:250
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:250. Mod Pathol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化在人类样品上浓度为1:50. Pathol Res Pract (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; scFv; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在scFv样品上浓度为1:50. Cells Tissues Organs (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, Mib-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Biomed Res Int (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, m7240)被用于被用于免疫组化在人类样品上. Cancer Discov (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上. Int J Gynecol Pathol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 1:200; 图 3c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫细胞化学在人类样品上浓度为1:200 (图 3c). Biochimie (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Prostate Cancer Prostatic Dis (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样品上浓度为1:50. Fetal Pediatr Pathol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 9a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (图 9a). Cereb Cortex (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, MIB-1)被用于被用于免疫组化在人类样品上. Head Neck (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Dev Neurobiol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 流式细胞仪; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, clone MIB1)被用于被用于流式细胞仪在人类样品上 (表 1). Cytopathology (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, mib-1)被用于被用于免疫组化在人类样品上浓度为1:100. Clin Neuropathol (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400. World Neurosurg (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 大鼠; 1:200
  • 免疫组化-石蜡切片; 人类; 1:40
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200 和 被用于免疫组化-石蜡切片在人类样品上浓度为1:40. Hum Reprod (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. Nat Genet (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 狗; 1:200
  • 免疫细胞化学; 狗; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako Cytomation, M7240)被用于被用于免疫组化-冰冻切片在狗样品上浓度为1:200 和 被用于免疫细胞化学在狗样品上浓度为1:200. Histochem Cell Biol (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKOCytomation, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500. Oncology (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MiB1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Histopathology (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Nucl Med Biol (2012) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:20
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:20. Appl Immunohistochem Mol Morphol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:100. J Comp Neurol (2012) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1). Br J Cancer (2012) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako Cytomation, MIB-1)被用于被用于免疫组化在人类样品上浓度为1:100. Pathol Int (2011) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:40
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:40. Eur J Cancer (2012) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上. Int J Surg Pathol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO Baar, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Hum Pathol (2011) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 小鼠
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在小鼠样品上. Hepatology (2009) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Oncogene (2009) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Placenta (2009) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MiB-1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Virchows Arch (2008) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3f). Cell (2018) ncbi
兔 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 6c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (图 6c). Biomed Pharmacother (2019) ncbi
单克隆(D3B5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s5n
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12075)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 s5n). Science (2018) ncbi
兔 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129s)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 6a). J Cell Mol Med (2018) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 4a). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 3g
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (图 3g). Nat Cell Biol (2018) ncbi
小鼠 单克隆(8D5)
  • 免疫组化; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 9449)被用于被用于免疫组化在小鼠样品上 (图 2c). Nat Commun (2018) ncbi
兔 单克隆(D3B5)
  • 免疫组化; 小鼠; 1:500; 图 s6a
  • 免疫印迹; 小鼠; 图 s6c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 s6a) 和 被用于免疫印迹在小鼠样品上 (图 s6c). Sci Adv (2018) ncbi
兔 单克隆(D3B5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1e
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129S)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 1e). J Clin Invest (2018) ncbi
兔 单克隆(D2H10)
  • 免疫组化; 人类; 图 1d
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signaling, 9027)被用于被用于免疫组化在人类样品上 (图 1d). Cell Death Dis (2018) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 7b). Cancer Cell (2018) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 图 3f
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449S)被用于被用于免疫细胞化学在人类样品上 (图 3f). Cell Death Dis (2018) ncbi
兔 单克隆(D3B5)
  • 免疫细胞化学; 人类; 1:200; 图 5a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technologies, 9129)被用于被用于免疫细胞化学在人类样品上浓度为1:200 (图 5a). J Cell Biol (2018) ncbi
兔 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 5c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (图 5c). Cancer Res (2018) ncbi
小鼠 单克隆(8D5)
  • 免疫组化; 人类; 图 5c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signalling, 9449)被用于被用于免疫组化在人类样品上 (图 5c). Nat Commun (2017) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5f
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 12202)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400 (图 5f). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 3d
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 12202)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400 (图 3d). J Cell Biol (2017) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 图 1d, 1c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 9449)被用于被用于免疫细胞化学在人类样品上 (图 1d, 1c). Oncotarget (2017) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化在小鼠样品上 (图 4a). J Clin Invest (2017) ncbi
兔 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 图 4d
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样品上 (图 4d). FEBS Open Bio (2016) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 4F
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (图 4F). Oncotarget (2017) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 1:400; 图 s5b
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449)被用于被用于免疫细胞化学在人类样品上浓度为1:400 (图 s5b). Mol Syst Biol (2017) ncbi
兔 单克隆(D3B5)
  • 免疫细胞化学; 小鼠; 图 s2b
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signaling, 9129)被用于被用于免疫细胞化学在小鼠样品上 (图 s2b). Arterioscler Thromb Vasc Biol (2017) ncbi
兔 单克隆(D3B5)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 5a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400 (图 5a). Neural Dev (2016) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signalling, 12202)被用于被用于免疫组化在小鼠样品上 (图 3a). Neural Dev (2016) ncbi
兔 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 4c). FASEB J (2017) ncbi
兔 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 6
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Tech, 9027)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (图 6). Int J Oncol (2016) ncbi
兔 单克隆(D2H10)
  • 免疫组化; 人类; 图 s6a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化在人类样品上 (图 s6a). Nat Biotechnol (2016) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠; 图 3s1
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signaling, 12202)被用于被用于免疫组化在小鼠样品上 (图 3s1). elife (2016) ncbi
兔 单克隆(D2H10)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 7
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signaling, 9027)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 7). EMBO Mol Med (2016) ncbi
兔 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 10
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 10). Autophagy (2016) ncbi
兔 单克隆(D3B5)
  • 流式细胞仪; 人类; 1:200; 图 4
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signaling, 9129)被用于被用于流式细胞仪在人类样品上浓度为1:200 (图 4) 和 被用于免疫细胞化学在人类样品上. Sci Rep (2016) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s2
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 s2). Nature (2016) ncbi
兔 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 图 8
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样品上 (图 8). Oncotarget (2016) ncbi
兔 单克隆(D2H10)
  • 免疫组化; 小鼠; 1:100; 图 6
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 9027)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 6). Nat Commun (2016) ncbi
兔 单克隆(D3B5)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129)被用于被用于免疫细胞化学在人类样品上 (图 4). Hum Mol Genet (2016) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 1:400; 图 4a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449S)被用于被用于免疫细胞化学在人类样品上浓度为1:400 (图 4a). Biomaterials (2016) ncbi
兔 单克隆(D3B5)
  • 免疫组化; 小鼠; 1:400; 图 4
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129)被用于被用于免疫组化在小鼠样品上浓度为1:400 (图 4). Development (2016) ncbi
兔 单克隆(D2H10)
  • 免疫组化-石蜡切片; 小鼠; 1:400
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400. Nature (2015) ncbi
兔 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 9
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signaling, 9449)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 9). Oncotarget (2015) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400 (图 2a). Oncogenesis (2015) ncbi
兔 单克隆(D2H10)
  • 免疫印迹; 人类; 图 8c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 9027)被用于被用于免疫印迹在人类样品上 (图 8c). Oncogene (2016) ncbi
兔 单克隆(D3B5)
  • 免疫细胞化学; 人类; 1:400; 图 7a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technologies, 9129)被用于被用于免疫细胞化学在人类样品上浓度为1:400 (图 7a). PLoS ONE (2015) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 图 s2
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Tech, 9449)被用于被用于免疫细胞化学在人类样品上 (图 s2). BMC Cancer (2015) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 1:400; 图 5
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 9449S)被用于被用于免疫细胞化学在人类样品上浓度为1:400 (图 5). Mol Syst Biol (2015) ncbi
兔 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1f
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 9129)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 1f). Nat Commun (2015) ncbi
兔 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, D3B5)被用于被用于免疫组化-石蜡切片在小鼠样品上. Stem Cells (2015) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 3). Nat Med (2015) ncbi
兔 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s9
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, D3B5)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 s9). Proc Natl Acad Sci U S A (2015) ncbi
兔 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 图 4
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样品上 (图 4). Int J Mol Sci (2015) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. PLoS ONE (2015) ncbi
兔 单克隆(D3B5)
  • 免疫细胞化学; 人类; 图 2
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129)被用于被用于免疫细胞化学在人类样品上 (图 2). Mol Cancer Res (2015) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200. PLoS ONE (2014) ncbi
兔 单克隆(D2H10)
  • 免疫组化; 人类; 1:20
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化在人类样品上浓度为1:20. Cell Death Dis (2014) ncbi
兔 单克隆(D2H10)
  • 免疫组化; 人类; 1:150
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signalling, 9027)被用于被用于免疫组化在人类样品上浓度为1:150. Org Biomol Chem (2014) ncbi
兔 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 1:400
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400. Mol Cancer (2014) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:400
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 12202)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400. J Biol Chem (2014) ncbi
兔 单克隆(D2H10)
  • 免疫细胞化学; 人类; 1:100
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫细胞化学在人类样品上浓度为1:100 和 被用于免疫组化在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:400
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400. PLoS ONE (2014) ncbi
兔 单克隆(D2H10)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化在人类样品上. Mol Cancer Ther (2014) ncbi
碧迪BD
单克隆(B56)
  • 流式细胞仪; 小鼠; 图 s6h
碧迪BDKi67抗原抗体(BD Biosciences, 566109)被用于被用于流式细胞仪在小鼠样品上 (图 s6h). Cell (2019) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 大鼠; 图 s4g
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在大鼠样品上 (图 s4g). Nature (2019) ncbi
小鼠 单克隆(B56)
  • immunohistochemistry - free floating section; 小鼠; 1:200; 图 3a
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:200 (图 3a). J Comp Neurol (2019) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 3e, 3f
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在小鼠样品上 (图 3e, 3f). JCI Insight (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:66; 图 s3e
碧迪BDKi67抗原抗体(BD Biosciences, 558615)被用于被用于流式细胞仪在小鼠样品上浓度为1:66 (图 s3e). Nat Commun (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 图 4a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于免疫组化-冰冻切片在人类样品上 (图 4a). J Infect Dis (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s6
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在人类样品上 (图 s6). J Clin Invest (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样品上 (图 4b). Sci Rep (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 6i
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在人类样品上 (图 6i). Cancer Res (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 人类; 图 7h
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于免疫组化-石蜡切片在人类样品上 (图 7h). J Clin Invest (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 图 2a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于免疫组化-冰冻切片在人类样品上 (图 2a). J Exp Med (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; ; 图 s2d
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样品上浓度为 (图 s2d). Nat Commun (2018) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; African green monkey; 图 1c
碧迪BDKi67抗原抗体(BD Biosciences, 561277)被用于被用于免疫细胞化学在African green monkey样品上 (图 1c). J Clin Invest (2018) ncbi
小鼠 单克隆(35/Ki-67)
  • 免疫细胞化学; 人类; 图 s5a
碧迪BDKi67抗原抗体(BD Biosciences, 610968)被用于被用于免疫细胞化学在人类样品上 (图 s5a). J Biol Chem (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 s1d
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在小鼠样品上 (图 s1d). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:1000; 图 s10
碧迪BDKi67抗原抗体(Becton Dickinson, 556003)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 s10). Development (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 1g
碧迪BDKi67抗原抗体(eBioscience, B56)被用于被用于流式细胞仪在小鼠样品上 (图 1g). Science (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BDKi67抗原抗体(BD Bioscience, B56)被用于被用于流式细胞仪在小鼠样品上 (图 1a). EMBO J (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 人类; 图 1a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于免疫组化在人类样品上 (图 1a). J Immunol (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 兔; 图 5d
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫组化在兔样品上 (图 5d). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:500; 图 4i
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 4i). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 3c
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在小鼠样品上 (图 3c). Nat Immunol (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2e
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 2e). Diabetes (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 3c
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样品上 (图 3c). J Immunol (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 1b
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在人类样品上 (图 1b). Nature (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s1d
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在人类样品上 (图 s1d). J Immunol (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 8a
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 8a). Acta Neuropathol Commun (2017) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 1:150; 图 3B
碧迪BDKi67抗原抗体(BD, 556003)被用于被用于免疫细胞化学在人类样品上浓度为1:150 (图 3B). Oncol Lett (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在小鼠样品上 (图 4a). Front Immunol (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 人类; 1:200; 图 s3d
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化在人类样品上浓度为1:200 (图 s3d). Nature (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 s1g
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s1g). PLoS Genet (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:200; 表 1
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样品上浓度为1:200 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s1a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样品上 (图 s1a). Immun Ageing (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:50; 图 7a
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫组化在小鼠样品上浓度为1:50 (图 7a). Sci Rep (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:50; 图 5i
碧迪BDKi67抗原抗体(BD Pharmingen, 561165)被用于被用于流式细胞仪在小鼠样品上浓度为1:50 (图 5i). Nat Commun (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 3b
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在人类样品上 (图 3b). Stem Cells Int (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:20; 图 4a
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于流式细胞仪在小鼠样品上浓度为1:20 (图 4a). Stem Cell Reports (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:50; 图 7a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样品上浓度为1:50 (图 7a). Nat Commun (2017) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 图 1f
碧迪BDKi67抗原抗体(BD PharMingen, 550609)被用于被用于免疫细胞化学在人类样品上 (图 1f). Cell Stem Cell (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 2
碧迪BDKi67抗原抗体(BD Bioscience, 550609)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 2). Oncoscience (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 2C;2D
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 2C;2D). Oncoscience (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:1000; 图 7h
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 7h). Nat Commun (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 s2d
碧迪BDKi67抗原抗体(BD, 558615)被用于被用于流式细胞仪在小鼠样品上 (图 s2d). Stem Cell Reports (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:50; 图 5a
碧迪BDKi67抗原抗体(BD Pharmigen, 550609)被用于被用于免疫组化在小鼠样品上浓度为1:50 (图 5a). Sci Rep (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 1e
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样品上 (图 1e). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BDKi67抗原抗体(BD Bioscience, B56)被用于被用于流式细胞仪在猕猴样品上. PLoS Pathog (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴; 图 4a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样品上 (图 4a). Vaccine (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:160; 图 5g
碧迪BDKi67抗原抗体(BD Biosciences, 561126)被用于被用于流式细胞仪在小鼠样品上浓度为1:160 (图 5g). Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 3a
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 3a). Development (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1a
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 1a). BMC Biol (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:500; 图 3b
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 3b). Neoplasia (2016) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 小鼠; 1:400; 图 2d
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于免疫细胞化学在小鼠样品上浓度为1:400 (图 2d). Oncotarget (2016) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 1:100
碧迪BDKi67抗原抗体(BD Biosciences, 550,609)被用于被用于免疫细胞化学在人类样品上浓度为1:100. Cancer Microenviron (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 4-s1
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4-s1). elife (2016) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 1:250; 图 2
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫细胞化学在人类样品上浓度为1:250 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 1:50
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样品上浓度为1:50. Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:100; 表 1
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在小鼠样品上浓度为1:100 (表 1). Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 5d
碧迪BDKi67抗原抗体(BD Pharmingen, 561126)被用于被用于流式细胞仪在人类样品上 (图 5d). Stem Cell Reports (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 图 5
  • 免疫印迹; 人类; 图 1
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样品上 (图 5) 和 被用于免疫印迹在人类样品上 (图 1). Neoplasia (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 3a
碧迪BDKi67抗原抗体(BD, 558615)被用于被用于流式细胞仪在人类样品上 (图 3a). Oncotarget (2016) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 1:1000
碧迪BDKi67抗原抗体(BD, 556003)被用于被用于免疫细胞化学在人类样品上浓度为1:1000. Sci Rep (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 2a
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图 2a). J Comp Neurol (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 1a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样品上 (图 1a). Cytometry B Clin Cytom (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 5a
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在小鼠样品上 (图 5a). J Exp Med (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴; 图 2a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样品上 (图 2a). J Immunol (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 3g
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 3g). Science (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 5
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(B56)
  • immunohistochemistry - free floating section; 人类; 1:500; 图 4
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于immunohistochemistry - free floating section在人类样品上浓度为1:500 (图 4). Nat Neurosci (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 6f
碧迪BDKi67抗原抗体(BD Bioscience, 550609)被用于被用于流式细胞仪在小鼠样品上 (图 6f). Science (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 3
碧迪BDKi67抗原抗体(BD Bioscience, B56)被用于被用于流式细胞仪在小鼠样品上 (图 3). J Clin Invest (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s7e
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在人类样品上 (图 s7e). J Clin Invest (2016) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 小鼠; 图 1e
碧迪BDKi67抗原抗体(BD, 558615)被用于被用于免疫细胞化学在小鼠样品上 (图 1e). Nat Biotechnol (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; African green monkey; 图 s1
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在African green monkey样品上 (图 s1). J Med Primatol (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:200; 图 4
碧迪BDKi67抗原抗体(BD Pharmingen Biosciences, 556003)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:150; 图 1e
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于免疫组化在小鼠样品上浓度为1:150 (图 1e). Development (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 图 2
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于免疫组化在小鼠样品上 (图 2). Cell Mol Immunol (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 2
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 图 4b
碧迪BDKi67抗原抗体(Becton Dickinson, 556003)被用于被用于免疫细胞化学在人类样品上 (图 4b). EMBO Rep (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:200; 图 3c
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样品上浓度为1:200 (图 3c). Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 st1
碧迪BDKi67抗原抗体(BD Pharmigen, B56)被用于被用于流式细胞仪在小鼠样品上 (图 st1). Nature (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:200; 图 5
碧迪BDKi67抗原抗体(Becton Dickinson, 550609)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 5). Dev Cell (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴; 图 1h
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样品上 (图 1h). J Immunol (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 s18e
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在小鼠样品上 (图 s18e). Science (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 兔; 图 3e
碧迪BDKi67抗原抗体(BD科学, 550609)被用于被用于免疫组化在兔样品上 (图 3e). Nature (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 3c
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样品上 (图 3c). Science (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 s4c
碧迪BDKi67抗原抗体(BD biosciences, 558615)被用于被用于流式细胞仪在小鼠样品上 (图 s4c). Cell (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 3
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 2
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样品上 (图 2). Int Immunol (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
碧迪BDKi67抗原抗体(BD Pharmingen, 556003)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 5c). Cell Metab (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 5h
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样品上 (图 5h). Stem Cells (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:100; 图 4
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样品上浓度为1:100 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 2 ug/ml; 图 1
碧迪BDKi67抗原抗体(BD Pharmingen, 556 003)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为2 ug/ml (图 1). Endocrinology (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
碧迪BDKi67抗原抗体(BD Pharmingen, 556003)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 1). Neoplasia (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; African green monkey; 图 4
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在African green monkey样品上 (图 4). J Immunol (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 1:20; 图 s1
碧迪BDKi67抗原抗体(BD, 561126)被用于被用于流式细胞仪在人类样品上浓度为1:20 (图 s1). Diabetes (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 4b
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样品上 (图 4b). PLoS ONE (2015) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 小鼠; 图 1d
碧迪BDKi67抗原抗体(BD Biosciences PharMingen, 556003)被用于被用于免疫细胞化学在小鼠样品上 (图 1d). J Neurosci (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 人类; 图 6e
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在人类样品上 (图 6e). Oncotarget (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 图 2s1
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样品上 (图 2s1). elife (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴; 图 s2b
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样品上 (图 s2b). PLoS ONE (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 1
碧迪BDKi67抗原抗体(Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 7
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 图 6e
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于免疫组化-冰冻切片在人类样品上 (图 6e). Nat Methods (2016) ncbi
小鼠 单克隆(35/Ki-67)
  • 免疫细胞化学; 人类; 图 4
碧迪BDKi67抗原抗体(BD Biosciences, 610969)被用于被用于免疫细胞化学在人类样品上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 2a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样品上 (图 2a). J Immunol (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在小鼠样品上. J Immunol (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 s11h
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s12c
碧迪BDKi67抗原抗体(BD Bioscience, 550609)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 s11h) 和 被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图 s12c). Nat Med (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在小鼠样品上 (图 s3). Mucosal Immunol (2016) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 图 2
碧迪BDKi67抗原抗体(BD Bioscience, B56)被用于被用于免疫细胞化学在人类样品上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5a
碧迪BDKi67抗原抗体(Becton Dickinson, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 5a). Front Neuroanat (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 s3
碧迪BDKi67抗原抗体(BD biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 s3). Int J Biol Sci (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 大鼠; 1:50
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化在大鼠样品上浓度为1:50. Neuroscience (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 s2). elife (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:100
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. Dev Biol (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 狗
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在狗样品上. PLoS ONE (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样品上. Vaccine (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 5
碧迪BDKi67抗原抗体(BD PharMingen, B56)被用于被用于流式细胞仪在小鼠样品上 (图 5). J Immunol (2015) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 1:100
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫细胞化学在人类样品上浓度为1:100. Pancreas (2015) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 小鼠; 1:500; 图 4e
碧迪BDKi67抗原抗体(BD, 556003)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 (图 4e). PLoS ONE (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 5
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在人类样品上 (图 5). Nat Cell Biol (2015) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 小鼠; 1:50; 图 s3a
  • 免疫组化; 小鼠; 1:50; 图 1a
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫细胞化学在小鼠样品上浓度为1:50 (图 s3a) 和 被用于免疫组化在小鼠样品上浓度为1:50 (图 1a). Nat Neurosci (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 4
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在小鼠样品上 (图 4). Stem Cell Res (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s4
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在人类样品上 (图 s4). Infect Immun (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 1 ul/test
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样品上浓度为1 ul/test. J Immunol Methods (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类
碧迪BDKi67抗原抗体(BD, BD558615)被用于被用于流式细胞仪在人类样品上. Stem Cell Reports (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 表 s3
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样品上 (表 s3). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 3
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样品上 (图 3). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 1:500
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于免疫细胞化学在人类样品上浓度为1:500. Curr Protoc Stem Cell Biol (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 6
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样品上 (图 6). Am J Hum Genet (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 表 s5
碧迪BDKi67抗原抗体(BD Bioscience, B56)被用于被用于流式细胞仪在人类样品上 (表 s5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 5
碧迪BDKi67抗原抗体(BD Bioscience, 550609)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 大鼠; 图 2
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于免疫组化-冰冻切片在大鼠样品上 (图 2). Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 1:250
碧迪BDKi67抗原抗体(BD, 556003)被用于被用于免疫细胞化学在人类样品上浓度为1:250. Ann Clin Transl Neurol (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:400
碧迪BDKi67抗原抗体(Pharmingen, 556003)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400. J Biol Chem (2015) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 小鼠; 1:400; 图 4
碧迪BDKi67抗原抗体(BD-PharMingen, 550609)被用于被用于免疫细胞化学在小鼠样品上浓度为1:400 (图 4). J Neurosci (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 图 3
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于免疫组化在小鼠样品上 (图 3). Cancer Cell (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样品上. J Immunol (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样品上. J Infect Dis (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BDKi67抗原抗体(BD Bioscience, 550 609)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200. Endocrinology (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 5
碧迪BDKi67抗原抗体(BD PharMingen, B56)被用于被用于流式细胞仪在小鼠样品上 (图 5). Cell Cycle (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猪
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猪样品上. Mol Immunol (2015) ncbi
小鼠 单克隆(35/Ki-67)
  • 免疫细胞化学; 小鼠
碧迪BDKi67抗原抗体(BD Bioscience, 610968)被用于被用于免疫细胞化学在小鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 食蟹猴; 图 6
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在食蟹猴样品上 (图 6). J Autoimmun (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:100
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. Nucl Recept Signal (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在人类样品上. J Immunol (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样品上. J Immunol (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4b
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50 (图 4b). Development (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 4
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 4). Int J Biol Sci (2014) ncbi
小鼠 单克隆(B56)
  • immunohistochemistry - free floating section; 小鼠; 1:200
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:200. Cereb Cortex (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:50; 图 2
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化在小鼠样品上浓度为1:50 (图 2). Glia (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 4). J Urol (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 1:200
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:200. J Comp Neurol (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:500
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化在小鼠样品上浓度为1:500. J Comp Neurol (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 7). Nat Cell Biol (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样品上. J Immunol (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在小鼠样品上. J Exp Med (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 1
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样品上 (图 1). J Infect Dis (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000. Endocrinology (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 人类; 图 1
碧迪BDKi67抗原抗体(BD BioSciences, 550609)被用于被用于免疫组化在人类样品上 (图 1). Nature (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图 3). Oncogene (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于免疫组化在小鼠样品上. Ann Neurol (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠
碧迪BDKi67抗原抗体(BD Pharmingen, 556003)被用于被用于免疫组化-冰冻切片在小鼠样品上. Dev Biol (2014) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; African green monkey; 1:200
  • 免疫组化-冰冻切片; 小鼠; 1:200
碧迪BDKi67抗原抗体(BD Pharmingen, 556003)被用于被用于免疫细胞化学在African green monkey样品上浓度为1:200 和 被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. Nat Neurosci (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BDKi67抗原抗体(BD Bioscience, B56)被用于被用于流式细胞仪在猕猴样品上. Clin Immunol (2014) ncbi
小鼠 单克隆(35/Ki-67)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
碧迪BDKi67抗原抗体(BD Bioscience, 35/Ki-67)被用于被用于流式细胞仪在人类样品上 和 被用于免疫细胞化学在人类样品上. Mol Oncol (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上. Cancer Discov (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样品上. J Immunol (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 1
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在小鼠样品上 (图 1). PLoS Pathog (2014) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 图 4a
碧迪BDKi67抗原抗体(bd, 550609)被用于被用于免疫细胞化学在人类样品上 (图 4a). J Cell Mol Med (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠
碧迪BDKi67抗原抗体(BD, 556003)被用于被用于免疫组化在小鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类
碧迪BDKi67抗原抗体(BD Bioscience, clone B56)被用于被用于流式细胞仪在人类样品上. Mol Ther (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:50
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50. PLoS Genet (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 1:25; 图 4b
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:25 (图 4b). Nature (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在人类样品上. Cancer Res (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:200
碧迪BDKi67抗原抗体(BD, 556003)被用于被用于免疫组化在小鼠样品上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(B56)
  • immunohistochemistry - free floating section; 大鼠; 1:50
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:50. Hippocampus (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样品上. J Immunol (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 人类; 图 3
碧迪BDKi67抗原抗体(BD, 556003)被用于被用于免疫组化在人类样品上 (图 3). Oncogene (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:400
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400. J Pediatr Surg (2013) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样品上. J Infect Dis (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样品上. Am J Pathol (2013) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样品上. Neural Dev (2013) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠
碧迪BDKi67抗原抗体(BD Biosciences, 558616)被用于被用于免疫组化-冰冻切片在小鼠样品上. Nature (2013) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样品上. J Immunol (2013) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:100
  • 免疫组化-冰冻切片; 大鼠
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 和 被用于免疫组化-冰冻切片在大鼠样品上. Stem Cells Transl Med (2013) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:20
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样品上浓度为1:20. Cancer Res (2013) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:500
碧迪BDKi67抗原抗体(BD Pharm, 550609)被用于被用于免疫组化在小鼠样品上浓度为1:500. PLoS ONE (2012) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠
碧迪BDKi67抗原抗体(BD-Biosciences, 556003)被用于被用于免疫组化-冰冻切片在小鼠样品上. J Comp Neurol (2013) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 斑马鱼
碧迪BDKi67抗原抗体(BD Biosciences, 561165)被用于被用于免疫细胞化学在斑马鱼样品上. Nucleic Acids Res (2012) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 大鼠; 1:600
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:600. J Comp Neurol (2007) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:300
碧迪BDKi67抗原抗体(BD Bioscience, 556003)被用于被用于免疫组化在小鼠样品上浓度为1:300. J Comp Neurol (2007) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆(K2)
  • 免疫细胞化学; 小鼠; 1:200; 图 3c
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Biosystems, PA0230)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 3c). Stem Cell Reports (2017) ncbi
小鼠 单克隆(K2)
  • 免疫组化; 人类; 图 4c
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, K2)被用于被用于免疫组化在人类样品上 (图 4c). Case Rep Pathol (2016) ncbi
小鼠 单克隆(K2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4a
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, ACK02)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图 4a). Dis Model Mech (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1a
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, KI67P-CE)被用于被用于免疫组化在小鼠样品上浓度为1:500 (图 1a). Exp Dermatol (2017) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (表 2). J Exp Clin Cancer Res (2016) ncbi
小鼠 单克隆(MM1)
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于. elife (2016) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Biosystems, KI67-MM1-L-CE)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 1). Development (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 4
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, Ki67P-CE)被用于被用于免疫组化-石蜡切片在人类样品上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-石蜡切片; 小鼠; 图 3d
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, KI67-MM1-CE-S)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3d). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novacastra, NCL-Ki67p)被用于被用于免疫组化在小鼠样品上浓度为1:500. Neurobiol Dis (2015) ncbi
小鼠 单克隆(MM1)
  • 免疫组化; 小鼠; 1:50-1:100; 图 6
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化在小鼠样品上浓度为1:50-1:100 (图 6). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 1:1000
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Microsystems, NCL-Ki67p)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:1000. J Comp Neurol (2015) ncbi
小鼠 单克隆(bcl-2/100/D5)
  • 免疫组化; African green monkey
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra-Vector Laboratories, NCL-L-Ki67-MM1)被用于被用于免疫组化在African green monkey样品上. Endocrinology (2014) ncbi
小鼠 单克隆(MM1)
  • 免疫组化; African green monkey
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra-Vector Laboratories, NCL-L-Ki67-MM1)被用于被用于免疫组化在African green monkey样品上. Endocrinology (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠
  • 免疫细胞化学; 小鼠
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra Laboratories, NCL-Ki67p)被用于被用于immunohistochemistry - free floating section在小鼠样品上 和 被用于免疫细胞化学在小鼠样品上. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67p)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-石蜡切片; 人类; 1:200
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Oncogene (2015) ncbi
小鼠 单克隆(bcl-2/100/D5)
  • 免疫组化-石蜡切片; 人类; 1:200
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Oncogene (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67p)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500. Cancer Res (2014) ncbi
小鼠 单克隆(MM1)
  • immunohistochemistry - free floating section; 人类; 1:500
  • immunohistochemistry - free floating section; 猕猴; 1:500
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-L-Ki67-MM1)被用于被用于immunohistochemistry - free floating section在人类样品上浓度为1:500 和 被用于immunohistochemistry - free floating section在猕猴样品上浓度为1:500. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, KI67P-CE)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500. Dev Biol (2014) ncbi
兔 多克隆
  • 流式细胞仪; 人类; 图 1
  • 免疫组化; 人类; 1:500
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67p)被用于被用于流式细胞仪在人类样品上 (图 1) 和 被用于免疫组化在人类样品上浓度为1:500. Cancer Res (2014) ncbi
小鼠 单克隆(MM1)
  • 免疫组化; 小鼠; 1:100
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化在小鼠样品上浓度为1:100. Stem Cells (2014) ncbi
小鼠 单克隆(bcl-2/100/D5)
  • 免疫组化; 小鼠; 1:100
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化在小鼠样品上浓度为1:100. Stem Cells (2014) ncbi
小鼠 单克隆(MM1)
  • 免疫组化; 羊; 1:200
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Microsystems, NCL-Ki67-MM1)被用于被用于免疫组化在羊样品上浓度为1:200. Ann Neurol (2014) ncbi
小鼠 单克隆(K2)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Microsystems, ACK02)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 6a). J Immunol (2014) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-石蜡切片; 小鼠; 1:150
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-L-Ki67-MM1)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:150. Transl Stroke Res (2013) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:2000
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, Ki67p)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:2000. J Comp Neurol (2014) ncbi
小鼠 单克隆(bcl-2/100/D5)
  • 免疫组化-石蜡切片; 人类; 1:200
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Korean J Pathol (2013) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-石蜡切片; 人类; 1:200
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Korean J Pathol (2013) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-石蜡切片; 人类; 1:25
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:25. Appl Immunohistochem Mol Morphol (2014) ncbi
小鼠 单克隆(bcl-2/100/D5)
  • 免疫组化-石蜡切片; 人类; 1:25
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:25. Appl Immunohistochem Mol Morphol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67p)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-石蜡切片; 人类; 1:200
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra Laboratories Ltd, NCL-Ki67-MM1)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200. Reprod Biol Endocrinol (2008) ncbi
默克密理博中国
兔 多克隆
  • 流式细胞仪; 人类; 图 4b
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于流式细胞仪在人类样品上 (图 4b). Cell Rep (2018) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3f
  • 免疫印迹; 小鼠; 1:1000
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 3f) 和 被用于免疫印迹在小鼠样品上浓度为1:1000. Stem Cell Res Ther (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 表 1c
默克密理博中国Ki67抗原抗体(Merck Millipore, AB9260)被用于被用于免疫组化-石蜡切片在人类样品上 (表 1c). EJNMMI Res (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 2d
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 2d). Development (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 3a
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于免疫组化在小鼠样品上 (图 3a). Oncogene (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s5
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 s5). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 9
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 9). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:300; 图 2
默克密理博中国Ki67抗原抗体(Millipore, ab9260)被用于被用于免疫组化在小鼠样品上浓度为1:300 (图 2). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 图 1
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于免疫组化在大鼠样品上 (图 1). Nat Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 1:100; 图 1
默克密理博中国Ki67抗原抗体(millipore, AB9260)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:100 (图 1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于免疫印迹在人类样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图 5
默克密理博中国Ki67抗原抗体(Chemicon, AB9260)被用于被用于免疫印迹在大鼠样品上浓度为1:5000 (图 5). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 1f
默克密理博中国Ki67抗原抗体(EMD Millipore, AB9260)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2000 (图 1f). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 S2
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于免疫细胞化学在人类样品上 (图 S2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100; 图 3
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 3). Mol Brain (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 尼罗河罗非鱼
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于免疫组化-石蜡切片在尼罗河罗非鱼样品上. Int Wound J (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:200; 图 s1d
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于免疫组化在人类样品上浓度为1:200 (图 s1d). Breast Cancer Res (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:300
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:300. J Anat (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 斑马鱼
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于免疫组化-石蜡切片在斑马鱼样品上. Fish Shellfish Immunol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:400
默克密理博中国Ki67抗原抗体(Chemicon International, Ab9260)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:400. Biomed Res Int (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100. Neurosci Lett (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100
默克密理博中国Ki67抗原抗体(Chemicon, AB9260)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100. Neurosci Lett (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100
默克密理博中国Ki67抗原抗体(Chemicon, AB9260)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. BMC Nephrol (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于immunohistochemistry - free floating section在小鼠样品上. Brain Behav (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 1). Endocrinology (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于免疫细胞化学在人类样品上浓度为1:100. Biomaterials (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500
默克密理博中国Ki67抗原抗体(Millipore, AB9260)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500. Stem Cells (2013) ncbi
小鼠 单克隆(Ki-S5)
  • 免疫组化-石蜡切片; 人类; 1:100
默克密理博中国Ki67抗原抗体(Millipore, Ki-S5)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Exp Eye Res (2013) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(AFFN-KI67-3E6)
  • 免疫细胞化学; 人类; 1:100; 图 s5
Developmental Studies Hybridoma BankKi67抗原抗体(DSHB, AFFN-KI67-3E6)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 s5). Sci Rep (2016) ncbi
文章列表
  1. Poggio M, Hu T, Pai C, Chu B, BELAIR C, Chang A, et al. Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory. Cell. 2019;177:414-427.e13 pubmed 出版商
  2. Liu J, Liu Y, Shao J, Li Y, Qin L, Shen H, et al. Zeb1 is important for proper cleavage plane orientation of dividing progenitors and neuronal migration in the mouse neocortex. Cell Death Differ. 2019;: pubmed 出版商
  3. Lodygin D, Hermann M, Schweingruber N, Flügel Koch C, Watanabe T, Schlosser C, et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature. 2019;566:503-508 pubmed 出版商
  4. Fousse J, Gautier E, Patti D, Dehay C. Developmental changes in interkinetic nuclear migration dynamics with respect to cell-cycle progression in the mouse cerebral cortex ventricular zone. J Comp Neurol. 2019;527:1545-1557 pubmed 出版商
  5. Ma W, Silverman S, Zhao L, Villasmil R, Campos M, Amaral J, et al. Absence of TGFβ signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. elife. 2019;8: pubmed 出版商
  6. Gerber D, Ghidinelli M, Tinelli E, Somandin C, Gerber J, Pereira J, et al. Schwann cells, but not Oligodendrocytes, Depend Strictly on Dynamin 2 Function. elife. 2019;8: pubmed 出版商
  7. Angelova A, Platel J, B clin C, Cremer H, Cor N. Characterization of perinatally born glutamatergic neurons of the mouse olfactory bulb based on NeuroD6 expression reveals their resistance to sensory deprivation. J Comp Neurol. 2019;527:1245-1260 pubmed 出版商
  8. Ruscetti M, Leibold J, Bott M, Fennell M, Kulick A, Salgado N, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science. 2018;362:1416-1422 pubmed 出版商
  9. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  10. Bainor A, Saini S, Calderon A, Casado Polanco R, Giner Ramirez B, Moncada C, et al. The HDAC-Associated Sin3B Protein Represses DREAM Complex Targets and Cooperates with APC/C to Promote Quiescence. Cell Rep. 2018;25:2797-2807.e8 pubmed 出版商
  11. Muscate F, Stetter N, Schramm C, Schulze zur Wiesch J, Bosurgi L, Jacobs T. HVEM and CD160: Regulators of Immunopathology During Malaria Blood-Stage. Front Immunol. 2018;9:2611 pubmed 出版商
  12. Coover R, Healy T, Guo L, Chaney K, Hennigan R, Thomson C, et al. Tonic ATP-mediated growth suppression in peripheral nerve glia requires arrestin-PP2 and is evaded in NF1. Acta Neuropathol Commun. 2018;6:127 pubmed 出版商
  13. Zhuang L, Lawlor K, Schlueter H, Pieterse Z, Yu Y, Kaur P. Pericytes promote skin regeneration by inducing epidermal cell polarity and planar cell divisions. Life Sci Alliance. 2018;1:e201700009 pubmed 出版商
  14. Glal D, Sudhakar J, Lu H, Liu M, Chiang H, Liu Y, et al. ATF3 Sustains IL-22-Induced STAT3 Phosphorylation to Maintain Mucosal Immunity Through Inhibiting Phosphatases. Front Immunol. 2018;9:2522 pubmed 出版商
  15. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  16. Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E, et al. Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat Commun. 2018;9:4845 pubmed 出版商
  17. Wang F, Meng M, Mo B, Yang Y, Ji Y, Huang P, et al. Crosstalks between mTORC1 and mTORC2 variagate cytokine signaling to control NK maturation and effector function. Nat Commun. 2018;9:4874 pubmed 出版商
  18. Lou C, Lu H, Ma Z, Liu C, Zhang Y. Ginkgolide B enhances gemcitabine sensitivity in pancreatic cancer cell lines via inhibiting PAFR/NF-кB pathway. Biomed Pharmacother. 2019;109:563-572 pubmed 出版商
  19. Koren E, Yosefzon Y, Ankawa R, Soteriou D, Jacob A, Nevelsky A, et al. ARTS mediates apoptosis and regeneration of the intestinal stem cell niche. Nat Commun. 2018;9:4582 pubmed 出版商
  20. Zhang C, Jiang M, Zhou H, Liu W, Wang C, Kang Z, et al. TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation. J Clin Invest. 2018;128:5399-5412 pubmed 出版商
  21. Goldie S, Cottle D, Tan F, Roslan S, Srivastava S, Brady R, et al. Loss of GRHL3 leads to TARC/CCL17-mediated keratinocyte proliferation in the epidermis. Cell Death Dis. 2018;9:1072 pubmed 出版商
  22. Albrengues J, Shields M, Ng D, Park C, Ambrico A, Poindexter M, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361: pubmed 出版商
  23. Patel N, Vukmanovic Stejic M, Suárez Fariñas M, Chambers E, Sandhu D, Fuentes Duculan J, et al. Impact of Zostavax Vaccination on T-Cell Accumulation and Cutaneous Gene Expression in the Skin of Older Humans After Varicella Zoster Virus Antigen-Specific Challenge. J Infect Dis. 2018;218:S88-S98 pubmed 出版商
  24. Petrelli A, Mijnheer G, Hoytema van Konijnenburg D, van der Wal M, Giovannone B, Mocholí E, et al. PD-1+CD8+ T cells are clonally expanding effectors in human chronic inflammation. J Clin Invest. 2018;128:4669-4681 pubmed 出版商
  25. Takemoto Y, Inaba S, Zhang L, Tsujikawa K, Uezumi A, Fukada S. Implication of basal lamina dependency in survival of Nrf2-null muscle stem cells via an antioxidative-independent mechanism. J Cell Physiol. 2019;234:1689-1698 pubmed 出版商
  26. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  27. Kiang L, Ross B, Yao J, Shanmugam S, Andrews C, Hansen S, et al. Vitreous Cytokine Expression and a Murine Model Suggest a Key Role of Microglia in the Inflammatory Response to Retinal Detachment. Invest Ophthalmol Vis Sci. 2018;59:3767-3778 pubmed 出版商
  28. Heshmati Y, Kharazi S, Türköz G, Chang D, Kamali Dolatabadi E, Boström J, et al. The histone chaperone NAP1L3 is required for haematopoietic stem cell maintenance and differentiation. Sci Rep. 2018;8:11202 pubmed 出版商
  29. Morin E, Sjöberg E, Tjomsland V, Testini C, Lindskog C, Franklin O, et al. VEGF receptor-2/neuropilin 1 trans-complex formation between endothelial and tumor cells is an independent predictor of pancreatic cancer survival. J Pathol. 2018;246:311-322 pubmed 出版商
  30. Baens M, Stirparo R, Lampi Y, Verbeke D, Vandepoel R, Cools J, et al. Malt1 self-cleavage is critical for regulatory T cell homeostasis and anti-tumor immunity in mice. Eur J Immunol. 2018;48:1728-1738 pubmed 出版商
  31. Playne R, Jones K, Connor B. Generation of dopamine neuronal-like cells from induced neural precursors derived from adult human cells by non-viral expression of lineage factors. J Stem Cells Regen Med. 2018;14:34-44 pubmed
  32. Hartana C, Ahlén Bergman E, Broome A, Berglund S, Johansson M, Alamdari F, et al. Tissue-resident memory T cells are epigenetically cytotoxic with signs of exhaustion in human urinary bladder cancer. Clin Exp Immunol. 2018;194:39-53 pubmed 出版商
  33. Kim J, Villadsen R. Expression of Luminal Progenitor Marker CD117 in the Human Breast Gland. J Histochem Cytochem. 2018;66:879-888 pubmed 出版商
  34. Xie H, Wang Y, Zhang H, Fan Q, Dai D, Zhuang L, et al. Tubular epithelial C1orf54 mediates protection and recovery from acute kidney injury. J Cell Mol Med. 2018;22:4985-4996 pubmed 出版商
  35. Pinzon Guzman C, Meyer A, Wise R, Choi E, Muthupalani S, Wang T, et al. Evaluation of Lineage Changes in the Gastric Mucosa Following Infection With Helicobacter pylori and Specified Intestinal Flora in INS-GAS Mice. J Histochem Cytochem. 2018;:22155418785621 pubmed 出版商
  36. Jung I, Kim Y, Yu H, Lee M, Kim S, Lee J. CRISPR/Cas9-Mediated Knockout of DGK Improves Antitumor Activities of Human T Cells. Cancer Res. 2018;78:4692-4703 pubmed 出版商
  37. Nusse Y, Savage A, Marangoni P, Rosendahl Huber A, Landman T, De Sauvage F, et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature. 2018;559:109-113 pubmed 出版商
  38. Norris G, Smirnov I, Filiano A, Shadowen H, Cody K, Thompson J, et al. Neuronal integrity and complement control synaptic material clearance by microglia after CNS injury. J Exp Med. 2018;215:1789-1801 pubmed 出版商
  39. Casey A, Sinha A, Singhania R, Livingstone J, Waterhouse P, Tharmapalan P, et al. Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities. J Cell Biol. 2018;217:2951-2974 pubmed 出版商
  40. Chhipa R, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, et al. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol. 2018;20:823-835 pubmed 出版商
  41. Natsumi A, Sugawara K, Yasumizu M, Mizukami Y, Sano S, Morita A, et al. Re-investigating the Basement Membrane Zone of Psoriatic Epidermal Lesions: Is Laminin-511 a New Player in Psoriasis Pathogenesis?. J Histochem Cytochem. 2018;66:847-862 pubmed 出版商
  42. Song J, Zhang X, Ge Q, Yuan C, Chu L, Liang H, et al. CRISPR/Cas9-mediated knockout of HBsAg inhibits proliferation and tumorigenicity of HBV-positive hepatocellular carcinoma cells. J Cell Biochem. 2018;119:8419-8431 pubmed 出版商
  43. Liu T, Kong W, Tang X, Xu M, Wang Q, Zhang B, et al. The transcription factor Zfp90 regulates the self-renewal and differentiation of hematopoietic stem cells. Cell Death Dis. 2018;9:677 pubmed 出版商
  44. Appel J, Ye S, Tang F, Sun D, Zhang H, Mei L, et al. Increased Microglial Activity, Impaired Adult Hippocampal Neurogenesis, and Depressive-like Behavior in Microglial VPS35-Depleted Mice. J Neurosci. 2018;38:5949-5968 pubmed 出版商
  45. Ruess D, Heynen G, Ciecielski K, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med. 2018;24:954-960 pubmed 出版商
  46. Vera Ramirez L, Vodnala S, Nini R, Hunter K, Green J. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat Commun. 2018;9:1944 pubmed 出版商
  47. Kityo C, Makamdop K, Rothenberger M, Chipman J, Hoskuldsson T, Beilman G, et al. Lymphoid tissue fibrosis is associated with impaired vaccine responses. J Clin Invest. 2018;128:2763-2773 pubmed 出版商
  48. Rossow L, Veitl S, Vorlova S, Wax J, Kuhn A, Maltzahn V, et al. LOX-catalyzed collagen stabilization is a proximal cause for intrinsic resistance to chemotherapy. Oncogene. 2018;37:4921-4940 pubmed 出版商
  49. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  50. Sayin I, Radtke A, Vella L, Jin W, Wherry E, Buggert M, et al. Spatial distribution and function of T follicular regulatory cells in human lymph nodes. J Exp Med. 2018;215:1531-1542 pubmed 出版商
  51. Barwick B, Scharer C, Martinez R, Price M, Wein A, Haines R, et al. B cell activation and plasma cell differentiation are inhibited by de novo DNA methylation. Nat Commun. 2018;9:1900 pubmed 出版商
  52. Marcucci F, Soares C, Mason C. Distinct timing of neurogenesis of ipsilateral and contralateral retinal ganglion cells. J Comp Neurol. 2019;527:212-224 pubmed 出版商
  53. Li M, Yang X, LU X, Dai N, Zhang S, Cheng Y, et al. APE1 deficiency promotes cellular senescence and premature aging features. Nucleic Acids Res. 2018;46:5664-5677 pubmed 出版商
  54. Miyamoto Y, Torii T, Tago K, Tanoue A, Takashima S, Yamauchi J. BIG1/Arfgef1 and Arf1 regulate the initiation of myelination by Schwann cells in mice. Sci Adv. 2018;4:eaar4471 pubmed 出版商
  55. Park J, Kim I, Choi J, Lim H, Shin J, Kim Y, et al. AHNAK Loss in Mice Promotes Type II Pneumocyte Hyperplasia and Lung Tumor Development. Mol Cancer Res. 2018;16:1287-1298 pubmed 出版商
  56. Fan L, Zhang F, Xu S, Cui X, Hussain A, Fazli L, et al. Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells. Proc Natl Acad Sci U S A. 2018;115:E4584-E4593 pubmed 出版商
  57. Salomè M, Magee A, Yalla K, Chaudhury S, Sarrou E, Carmody R, et al. A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death Dis. 2018;9:443 pubmed 出版商
  58. Ferrando Martinez S, Moysi E, Pegu A, Andrews S, Nganou Makamdop K, Ambrozak D, et al. Accumulation of follicular CD8+ T cells in pathogenic SIV infection. J Clin Invest. 2018;128:2089-2103 pubmed 出版商
  59. Fu X, Khalil H, Kanisicak O, Boyer J, Vagnozzi R, Maliken B, et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest. 2018;128:2127-2143 pubmed 出版商
  60. Liakath Ali K, Mills E, Sequeira I, Lichtenberger B, Pisco A, Sipilä K, et al. An evolutionarily conserved ribosome-rescue pathway maintains epidermal homeostasis. Nature. 2018;556:376-380 pubmed 出版商
  61. Huang Y, Gu L, Li G. H3K36me3-mediated mismatch repair preferentially protects actively transcribed genes from mutation. J Biol Chem. 2018;293:7811-7823 pubmed 出版商
  62. Leeman D, Hebestreit K, Ruetz T, Webb A, McKay A, Pollina E, et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science. 2018;359:1277-1283 pubmed 出版商
  63. Qiang L, Wang J, Zhang Y, Ge P, Chai Q, Li B, et al. Mycobacterium tuberculosis Mce2E suppresses the macrophage innate immune response and promotes epithelial cell proliferation. Cell Mol Immunol. 2018;: pubmed 出版商
  64. Kawano Y, Zavidij O, Park J, Moschetta M, Kokubun K, Mouhieddine T, et al. Blocking IFNAR1 inhibits multiple myeloma-driven Treg expansion and immunosuppression. J Clin Invest. 2018;128:2487-2499 pubmed 出版商
  65. Li M, Zhang W, Liu J, Li M, Zhang Y, Xiong Y, et al. Dynamic changes in the immunological characteristics of T lymphocytes in surviving patients with severe fever with thrombocytopenia syndrome (SFTS). Int J Infect Dis. 2018;70:72-80 pubmed 出版商
  66. Lee C, Moon S, Jeong J, Lee S, Lee M, Yoo S, et al. Kaempferol targeting on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis prevents the development of rheumatoid arthritis. Cell Death Dis. 2018;9:401 pubmed 出版商
  67. Andricovich J, Perkail S, Kai Y, Casasanta N, Peng W, Tzatsos A. Loss of KDM6A Activates Super-Enhancers to Induce Gender-Specific Squamous-like Pancreatic Cancer and Confers Sensitivity to BET Inhibitors. Cancer Cell. 2018;33:512-526.e8 pubmed 出版商
  68. Poli V, Fagnocchi L, Fasciani A, Cherubini A, Mazzoleni S, Ferrillo S, et al. MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nat Commun. 2018;9:1024 pubmed 出版商
  69. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed 出版商
  70. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  71. Zacharias W, Frank D, Zepp J, Morley M, Alkhaleel F, Kong J, et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature. 2018;555:251-255 pubmed 出版商
  72. Hailemichael Y, Woods A, Fu T, He Q, Nielsen M, Hasan F, et al. Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. J Clin Invest. 2018;128:1338-1354 pubmed 出版商
  73. Panduro M, Benoist C, Mathis D. Treg cells limit IFN-? production to control macrophage accrual and phenotype during skeletal muscle regeneration. Proc Natl Acad Sci U S A. 2018;115:E2585-E2593 pubmed 出版商
  74. Yu Y, Shang R, Chen Y, Li J, Liang Z, Hu J, et al. Tumor suppressive ZBTB4 inhibits cell growth by regulating cell cycle progression and apoptosis in Ewing sarcoma. Biomed Pharmacother. 2018;100:108-115 pubmed 出版商
  75. Ellestad K, Thangavelu G, Haile Y, Lin J, Boon L, Anderson C. Prior to Peripheral Tolerance, Newly Generated CD4 T Cells Maintain Dangerous Autoimmune Potential: Fas- and Perforin-Independent Autoimmunity Controlled by Programmed Death-1. Front Immunol. 2018;9:12 pubmed 出版商
  76. Le Duff M, Gouju J, Jonchère B, Guillon J, Toutain B, Boissard A, et al. Regulation of senescence escape by the cdk4-EZH2-AP2M1 pathway in response to chemotherapy. Cell Death Dis. 2018;9:199 pubmed 出版商
  77. Rogerson C, Gissen P. VPS33B and VIPAR are essential for epidermal lamellar body biogenesis and function. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1609-1621 pubmed 出版商
  78. Glatzel Plucińska N, Piotrowska A, Grzegrzolka J, Olbromski M, Rzechonek A, Dziegiel P, et al. SATB1 Level Correlates with Ki-67 Expression and Is a Positive Prognostic Factor in Non-small Cell Lung Carcinoma. Anticancer Res. 2018;38:723-736 pubmed
  79. Ireland L, Santos A, Campbell F, Figueiredo C, Hammond D, Ellies L, et al. Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer. Oncogene. 2018;37:2022-2036 pubmed 出版商
  80. Browne A, Charmsaz S, Varešlija D, Fagan A, Cosgrove N, Cocchiglia S, et al. Network analysis of SRC-1 reveals a novel transcription factor hub which regulates endocrine resistant breast cancer. Oncogene. 2018;37:2008-2021 pubmed 出版商
  81. Rotti P, Xie W, Poudel A, Yi Y, Sun X, Tyler S, et al. Pancreatic and Islet Remodeling in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Knockout Ferrets. Am J Pathol. 2018;188:876-890 pubmed 出版商
  82. Linehan J, Harrison O, Han S, Byrd A, Vujkovic Cvijin I, Villarino A, et al. Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell. 2018;172:784-796.e18 pubmed 出版商
  83. Panaliappan T, Wittmann W, Jidigam V, Mercurio S, Bertolini J, Sghari S, et al. Sox2 is required for olfactory pit formation and olfactory neurogenesis through BMP restriction and Hes5 upregulation. Development. 2018;145: pubmed 出版商
  84. Mitroulis I, Ruppova K, Wang B, Chen L, Grzybek M, Grinenko T, et al. Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell. 2018;172:147-161.e12 pubmed 出版商
  85. Huang Y, Mao K, Chen X, Sun M, Kawabe T, Li W, et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science. 2018;359:114-119 pubmed 出版商
  86. Fontaine M, Vogel I, Van Eycke Y, Galuppo A, Ajouaou Y, Decaestecker C, et al. Regulatory T cells constrain the TCR repertoire of antigen-stimulated conventional CD4 T cells. EMBO J. 2018;37:398-412 pubmed 出版商
  87. Pleiner T, Bates M, Gorlich D. A toolbox of anti-mouse and anti-rabbit IgG secondary nanobodies. J Cell Biol. 2018;217:1143-1154 pubmed 出版商
  88. Amodio D, Cotugno N, Macchiarulo G, Rocca S, Dimopoulos Y, Castrucci M, et al. Quantitative Multiplexed Imaging Analysis Reveals a Strong Association between Immunogen-Specific B Cell Responses and Tonsillar Germinal Center Immune Dynamics in Children after Influenza Vaccination. J Immunol. 2018;200:538-550 pubmed 出版商
  89. Ziegler Waldkirch S, d Errico P, Sauer J, Erny D, Savanthrapadian S, Loreth D, et al. Seed-induced Aβ deposition is modulated by microglia under environmental enrichment in a mouse model of Alzheimer's disease. EMBO J. 2018;37:167-182 pubmed 出版商
  90. Wu Y, Zhang Z, Cenciarini M, Proietti C, Amasino M, Hong T, et al. Tamoxifen Resistance in Breast Cancer Is Regulated by the EZH2-ERα-GREB1 Transcriptional Axis. Cancer Res. 2018;78:671-684 pubmed 出版商
  91. Kortlever R, Sodir N, Wilson C, Burkhart D, Pellegrinet L, Brown Swigart L, et al. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell. 2017;171:1301-1315.e14 pubmed 出版商
  92. Kishore M, Cheung K, Fu H, Bonacina F, Wang G, Coe D, et al. Regulatory T Cell Migration Is Dependent on Glucokinase-Mediated Glycolysis. Immunity. 2017;47:875-889.e10 pubmed 出版商
  93. Blom S, Paavolainen L, Bychkov D, Turkki R, Mäki Teeri P, Hemmes A, et al. Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis. Sci Rep. 2017;7:15580 pubmed 出版商
  94. Li Y, Yang Y, Yang L, Zeng Y, Gao X, Xu H. Poly(ethylene glycol)-modified silk fibroin membrane as a carrier for limbal epithelial stem cell transplantation in a rabbit LSCD model. Stem Cell Res Ther. 2017;8:256 pubmed 出版商
  95. Wasiuk A, Testa J, Weidlick J, Sisson C, Vitale L, Widger J, et al. CD27-Mediated Regulatory T Cell Depletion and Effector T Cell Costimulation Both Contribute to Antitumor Efficacy. J Immunol. 2017;199:4110-4123 pubmed 出版商
  96. Escamilla C, Filonova I, Walker A, Xuan Z, Holehonnur R, Espinosa F, et al. Kctd13 deletion reduces synaptic transmission via increased RhoA. Nature. 2017;551:227-231 pubmed 出版商
  97. Kannan M, Bayam E, Wagner C, Rinaldi B, Kretz P, Tilly P, et al. WD40-repeat 47, a microtubule-associated protein, is essential for brain development and autophagy. Proc Natl Acad Sci U S A. 2017;114:E9308-E9317 pubmed 出版商
  98. Berrout J, Kyriakopoulou E, Moparthi L, Hogea A, Berrout L, Ivan C, et al. TRPA1-FGFR2 binding event is a regulatory oncogenic driver modulated by miRNA-142-3p. Nat Commun. 2017;8:947 pubmed 出版商
  99. Paikari A, D Belair C, Saw D, Blelloch R. The eutheria-specific miR-290 cluster modulates placental growth and maternal-fetal transport. Development. 2017;144:3731-3743 pubmed 出版商
  100. Otto T, Candido S, Pilarz M, Sicinska E, Bronson R, Bowden M, et al. Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proc Natl Acad Sci U S A. 2017;114:10660-10665 pubmed 出版商
  101. Kim J, Park D, Bae H, Park D, Kim D, Lee C, et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. J Clin Invest. 2017;127:3877-3896 pubmed 出版商
  102. Matsuyama K, Mizutani Y, Takahashi T, Shu E, Kanoh H, Miyazaki T, et al. Enhanced dendritic cells and regulatory T cells in the dermis of porokeratosis. Arch Dermatol Res. 2017;309:749-756 pubmed 出版商
  103. Yanai H, Atsumi N, Tanaka T, Nakamura N, Komai Y, Omachi T, et al. Intestinal stem cells contribute to the maturation of the neonatal small intestine and colon independently of digestive activity. Sci Rep. 2017;7:9891 pubmed 出版商
  104. Kuroda M, Muramatsu R, Maedera N, Koyama Y, Hamaguchi M, Fujimura H, et al. Peripherally derived FGF21 promotes remyelination in the central nervous system. J Clin Invest. 2017;127:3496-3509 pubmed 出版商
  105. Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357: pubmed 出版商
  106. Goel S, Decristo M, Watt A, BrinJones H, Sceneay J, Li B, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548:471-475 pubmed 出版商
  107. Guo H, Kazadaeva Y, Ortega F, Manjunath N, Desai T. Trinucleotide repeat containing 6c (TNRC6c) is essential for microvascular maturation during distal airspace sacculation in the developing lung. Dev Biol. 2017;430:214-223 pubmed 出版商
  108. Minguet S, Kläsener K, Schaffer A, Fiala G, Osteso Ibanez T, Raute K, et al. Caveolin-1-dependent nanoscale organization of the BCR regulates B cell tolerance. Nat Immunol. 2017;18:1150-1159 pubmed 出版商
  109. Brown S, Pineda C, Xin T, Boucher J, Suozzi K, Park S, et al. Correction of aberrant growth preserves tissue homeostasis. Nature. 2017;548:334-337 pubmed 出版商
  110. Liu Z, Li H, Liu J, Wu M, Chen X, Liu L, et al. Inactivated Wnt signaling in resveratrol-treated epidermal squamous cancer cells and its biological implication. Oncol Lett. 2017;14:2239-2243 pubmed 出版商
  111. Luo W, Tan P, Rodriguez M, He L, Tan K, Zeng L, et al. Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is necessary for prostate cancer metastasis via epithelial-mesenchymal transition. J Biol Chem. 2017;292:15525-15537 pubmed 出版商
  112. Roberts S, Dun X, Doddrell R, Mindos T, Drake L, Onaitis M, et al. Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve. Development. 2017;144:3114-3125 pubmed 出版商
  113. Nikolaidis N, Noel J, Pitstick L, Gardner J, Uehara Y, Wu H, et al. Mitogenic stimulation accelerates influenza-induced mortality by increasing susceptibility of alveolar type II cells to infection. Proc Natl Acad Sci U S A. 2017;114:E6613-E6622 pubmed 出版商
  114. Spaeth J, Gupte M, Perelis M, Yang Y, CYPHERT H, Guo S, et al. Defining a Novel Role for the Pdx1 Transcription Factor in Islet β-Cell Maturation and Proliferation During Weaning. Diabetes. 2017;66:2830-2839 pubmed 出版商
  115. Sitrin J, Suto E, Wuster A, Eastham Anderson J, Kim J, Austin C, et al. The Ox40/Ox40 Ligand Pathway Promotes Pathogenic Th Cell Responses, Plasmablast Accumulation, and Lupus Nephritis in NZB/W F1 Mice. J Immunol. 2017;199:1238-1249 pubmed 出版商
  116. Capurro M, Izumikawa T, Suarez P, Shi W, Cydzik M, Kaneiwa T, et al. Glypican-6 promotes the growth of developing long bones by stimulating Hedgehog signaling. J Cell Biol. 2017;216:2911-2926 pubmed 出版商
  117. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  118. Lee S, Park H, Suh Y, Yoon E, Kim J, Jang W, et al. Inhibition of acute lethal pulmonary inflammation by the IDO-AhR pathway. Proc Natl Acad Sci U S A. 2017;114:E5881-E5890 pubmed 出版商
  119. Ida S, Morino K, Sekine O, Ohashi N, Kume S, Chano T, et al. Diverse metabolic effects of O-GlcNAcylation in the pancreas but limited effects in insulin-sensitive organs in mice. Diabetologia. 2017;60:1761-1769 pubmed 出版商
  120. Sakurai M, Miki Y, Takagi K, Suzuki T, Ishida T, Ohuchi N, et al. Interaction with adipocyte stromal cells induces breast cancer malignancy via S100A7 upregulation in breast cancer microenvironment. Breast Cancer Res. 2017;19:70 pubmed 出版商
  121. Xu P, Tao X, Zhao C, Huang Q, Chang H, Ban N, et al. DTX3L is upregulated in glioma and is associated with glioma progression. Int J Mol Med. 2017;40:491-498 pubmed 出版商
  122. Guo T, Zhao S, Wang P, Xue X, Zhang Y, Yang M, et al. YB-1 regulates tumor growth by promoting MACC1/c-Met pathway in human lung adenocarcinoma. Oncotarget. 2017;8:48110-48125 pubmed 出版商
  123. Nozawa R, Boteva L, Soares D, Naughton C, Dun A, Buckle A, et al. SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs. Cell. 2017;169:1214-1227.e18 pubmed 出版商
  124. Kokabu S, Nakatomi C, Matsubara T, Ono Y, Addison W, Lowery J, et al. The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor. J Biol Chem. 2017;292:12885-12894 pubmed 出版商
  125. Feng J, Jing J, Li J, Zhao H, Punj V, Zhang T, et al. BMP signaling orchestrates a transcriptional network to control the fate of mesenchymal stem cells in mice. Development. 2017;144:2560-2569 pubmed 出版商
  126. Nielsen C, van Putten S, Lund I, Melander M, Nørregaard K, Jürgensen H, et al. The collagen receptor uPARAP/Endo180 as a novel target for antibody-drug conjugate mediated treatment of mesenchymal and leukemic cancers. Oncotarget. 2017;8:44605-44624 pubmed 出版商
  127. Shi Y, Ping Y, Zhou W, He Z, Chen C, Bian B, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun. 2017;8:15080 pubmed 出版商
  128. Garcia Hernandez M, Uribe Uribe N, Espinosa González R, Kast W, Khader S, Rangel Moreno J. A Unique Cellular and Molecular Microenvironment Is Present in Tertiary Lymphoid Organs of Patients with Spontaneous Prostate Cancer Regression. Front Immunol. 2017;8:563 pubmed 出版商
  129. Xia H, Gilbertsen A, Herrera J, Racila E, Smith K, Peterson M, et al. Calcium-binding protein S100A4 confers mesenchymal progenitor cell fibrogenicity in idiopathic pulmonary fibrosis. J Clin Invest. 2017;127:2586-2597 pubmed 出版商
  130. Haston S, Pozzi S, Carreno G, Manshaei S, Panousopoulos L, González Meljem J, et al. MAPK pathway control of stem cell proliferation and differentiation in the embryonic pituitary provides insights into the pathogenesis of papillary craniopharyngioma. Development. 2017;144:2141-2152 pubmed 出版商
  131. Arumugakani G, Stephenson S, Newton D, Rawstron A, Emery P, Doody G, et al. Early Emergence of CD19-Negative Human Antibody-Secreting Cells at the Plasmablast to Plasma Cell Transition. J Immunol. 2017;198:4618-4628 pubmed 出版商
  132. Barazzuol L, Ju L, Jeggo P. A coordinated DNA damage response promotes adult quiescent neural stem cell activation. PLoS Biol. 2017;15:e2001264 pubmed 出版商
  133. Miao T, Symonds A, Singh R, Symonds J, Ogbe A, Omodho B, et al. Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med. 2017;214:1787-1808 pubmed 出版商
  134. Giroux V, Lento A, Islam M, Pitarresi J, Kharbanda A, Hamilton K, et al. Long-lived keratin 15+ esophageal progenitor cells contribute to homeostasis and regeneration. J Clin Invest. 2017;127:2378-2391 pubmed 出版商
  135. Marsboom G, Chen Z, Yuan Y, Zhang Y, Tiruppathi C, Loyd J, et al. Aberrant caveolin-1-mediated Smad signaling and proliferation identified by analysis of adenine 474 deletion mutation (c.474delA) in patient fibroblasts: a new perspective on the mechanism of pulmonary hypertension. Mol Biol Cell. 2017;28:1177-1185 pubmed 出版商
  136. Olvedy M, Tisserand J, Luciani F, Boeckx B, Wouters J, Lopez S, et al. Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma. J Clin Invest. 2017;127:2310-2325 pubmed 出版商
  137. Abbosh C, Birkbak N, Wilson G, Jamal Hanjani M, Constantin T, Salari R, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545:446-451 pubmed 出版商
  138. Riemer P, Rydenfelt M, Marks M, van Eunen K, Thedieck K, Herrmann B, et al. Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. J Cell Biol. 2017;216:1567-1577 pubmed 出版商
  139. Mendivil Perez M, Soto Mercado V, Guerra Librero A, Fernandez Gil B, Florido J, Shen Y, et al. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J Pineal Res. 2017;63: pubmed 出版商
  140. Huang A, Postow M, Orlowski R, Mick R, Bengsch B, Manne S, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017;545:60-65 pubmed 出版商
  141. Melis D, Carbone F, Minopoli G, La Rocca C, Perna F, De Rosa V, et al. Cutting Edge: Increased Autoimmunity Risk in Glycogen Storage Disease Type 1b Is Associated with a Reduced Engagement of Glycolysis in T Cells and an Impaired Regulatory T Cell Function. J Immunol. 2017;198:3803-3808 pubmed 出版商
  142. Cong Q, Jia H, Li P, Qiu S, Yeh J, Wang Y, et al. p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Sci Rep. 2017;7:45964 pubmed 出版商
  143. Sosunov A, McKhann G, Goldman J. The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease. Acta Neuropathol Commun. 2017;5:27 pubmed 出版商
  144. Mitsunari K, Miyata Y, Watanabe S, Asai A, Yasuda T, Kanda S, et al. Stromal expression of Fer suppresses tumor progression in renal cell carcinoma and is a predictor of survival. Oncol Lett. 2017;13:834-840 pubmed 出版商
  145. Song M, Kim Y, Bae J, Lee C, Lee S. Effect of cancer/testis antigen NY-SAR-35 on the proliferation, migration and invasion of cancer cells. Oncol Lett. 2017;13:784-790 pubmed 出版商
  146. Shimokawa M, Ohta Y, Nishikori S, Matano M, Takano A, Fujii M, et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature. 2017;545:187-192 pubmed 出版商
  147. Ji L, Gong C, Ge L, Song L, Chen F, Jin C, et al. Orphan nuclear receptor Nurr1 as a potential novel marker for progression in human pancreatic ductal adenocarcinoma. Exp Ther Med. 2017;13:551-559 pubmed 出版商
  148. Li X, Liu F, Lin B, Luo H, Liu M, Wu J, et al. miR?150 inhibits proliferation and tumorigenicity via retarding G1/S phase transition in nasopharyngeal carcinoma. Int J Oncol. 2017;: pubmed 出版商
  149. Mehta N, Lyon J, Patil K, Mokarram N, Kim C, Bellamkonda R. Bacterial Carriers for Glioblastoma Therapy. Mol Ther Oncolytics. 2017;4:1-17 pubmed 出版商
  150. González Pérez G, Lamousé Smith E. Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8+ T Cell Receptor Signaling. Front Immunol. 2017;8:265 pubmed 出版商
  151. Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed 出版商
  152. Ohgaki R, Ohmori T, Hara S, Nakagomi S, Kanai Azuma M, Kaneda Nakashima K, et al. Essential Roles of L-Type Amino Acid Transporter 1 in Syncytiotrophoblast Development by Presenting Fusogenic 4F2hc. Mol Cell Biol. 2017;37: pubmed 出版商
  153. Li N, Xue W, Yuan H, Dong B, Ding Y, Liu Y, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284-1302 pubmed 出版商
  154. Feng W, Kawauchi D, Körkel Qu H, Deng H, Serger E, Sieber L, et al. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat Commun. 2017;8:14758 pubmed 出版商
  155. Riascos Bernal D, Chinnasamy P, Gross J, Almonte V, Egaña Gorroño L, Parikh D, et al. Inhibition of Smooth Muscle ?-Catenin Hinders Neointima Formation After Vascular Injury. Arterioscler Thromb Vasc Biol. 2017;37:879-888 pubmed 出版商
  156. Jin Z, Liang F, Yang J, Mei W. hnRNP I regulates neonatal immune adaptation and prevents colitis and colorectal cancer. PLoS Genet. 2017;13:e1006672 pubmed 出版商
  157. Chen K, Harris L, Lim J, Harvey T, Piper M, Gronostajski R, et al. Differential neuronal and glial expression of nuclear factor I proteins in the cerebral cortex of adult mice. J Comp Neurol. 2017;525:2465-2483 pubmed 出版商
  158. CAROMILE L, Dortche K, Rahman M, Grant C, Stoddard C, Ferrer F, et al. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10: pubmed 出版商
  159. Liu J, Hu F, Tang J, Tang S, Xia K, Wu S, et al. Homemade-device-induced negative pressure promotes wound healing more efficiently than VSD-induced positive pressure by regulating inflammation, proliferation and remodeling. Int J Mol Med. 2017;39:879-888 pubmed 出版商
  160. Martín Ibáñez R, Pardo M, Giralt A, Miguez A, Guardia I, Marion Poll L, et al. Helios expression coordinates the development of a subset of striatopallidal medium spiny neurons. Development. 2017;144:1566-1577 pubmed 出版商
  161. Egashira A, Morita M, Kumagai R, Taguchi K, Ueda M, Yamaguchi S, et al. Neuroendocrine carcinoma of the esophagus: Clinicopathological and immunohistochemical features of 14 cases. PLoS ONE. 2017;12:e0173501 pubmed 出版商
  162. Coni S, Mancuso A, Di Magno L, Sdruscia G, Manni S, Serrao S, et al. Selective targeting of HDAC1/2 elicits anticancer effects through Gli1 acetylation in preclinical models of SHH Medulloblastoma. Sci Rep. 2017;7:44079 pubmed 出版商
  163. Mosialou I, Shikhel S, Liu J, Maurizi A, Luo N, He Z, et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature. 2017;543:385-390 pubmed 出版商
  164. Sgourdou P, Mishra Gorur K, Saotome I, Henagariu O, Tuysuz B, Campos C, et al. Disruptions in asymmetric centrosome inheritance and WDR62-Aurora kinase B interactions in primary microcephaly. Sci Rep. 2017;7:43708 pubmed 出版商
  165. Fumagalli A, Drost J, Suijkerbuijk S, van Boxtel R, de Ligt J, Offerhaus G, et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc Natl Acad Sci U S A. 2017;114:E2357-E2364 pubmed 出版商
  166. Ubellacker J, Haider M, Decristo M, Allocca G, Brown N, Silver D, et al. Zoledronic acid alters hematopoiesis and generates breast tumor-suppressive bone marrow cells. Breast Cancer Res. 2017;19:23 pubmed 出版商
  167. Itakura G, Kawabata S, Ando M, Nishiyama Y, Sugai K, Ozaki M, et al. Fail-Safe System against Potential Tumorigenicity after Transplantation of iPSC Derivatives. Stem Cell Reports. 2017;8:673-684 pubmed 出版商
  168. Obeid S, Wankell M, Charrez B, Sternberg J, Kreuter R, Esmaili S, et al. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J Biol Chem. 2017;292:6569-6582 pubmed 出版商
  169. Liu Y, Liu R, Yang F, Cheng R, Chen X, Cui S, et al. miR-19a promotes colorectal cancer proliferation and migration by targeting TIA1. Mol Cancer. 2017;16:53 pubmed 出版商
  170. Zhang H, Wang Y, Liu Z, Yao B, Dou C, Xu M, et al. Lymphocyte-specific protein 1 inhibits the growth of hepatocellular carcinoma by suppressing ERK1/2 phosphorylation. FEBS Open Bio. 2016;6:1227-1237 pubmed 出版商
  171. Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, et al. miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics. 2017;7:664-676 pubmed 出版商
  172. van der Geest K, Wang Q, Eijsvogels T, Koenen H, Joosten I, Brouwer E, et al. Changes in peripheral immune cell numbers and functions in octogenarian walkers - an acute exercise study. Immun Ageing. 2017;14:5 pubmed 出版商
  173. Malchenko S, Sredni S, Bi Y, Margaryan N, Boyineni J, Mohanam I, et al. Stabilization of HIF-1α and HIF-2α, up-regulation of MYCC and accumulation of stabilized p53 constitute hallmarks of CNS-PNET animal model. PLoS ONE. 2017;12:e0173106 pubmed 出版商
  174. Cai Z, Zhang C, Zou Y, Lu C, Hu H, Qian J, et al. Tissue thioredoxin-interacting protein expression predicted recurrence in patients with meningiomas. Int J Clin Oncol. 2017;22:660-666 pubmed 出版商
  175. Ju H, Ying H, Tian T, Ling J, Fu J, Lu Y, et al. Mutant Kras- and p16-regulated NOX4 activation overcomes metabolic checkpoints in development of pancreatic ductal adenocarcinoma. Nat Commun. 2017;8:14437 pubmed 出版商
  176. Vallejo A, Perurena N, Guruceaga E, Mazur P, Martínez Canarias S, Zandueta C, et al. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nat Commun. 2017;8:14294 pubmed 出版商
  177. Subashini C, Dhanesh S, Chen C, Riya P, Meera V, Divya T, et al. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep. 2017;7:42523 pubmed 出版商
  178. Cen M, Hu P, Cai Z, Fang T, Zhang J, Lu M. TIEG1 deficiency confers enhanced myocardial protection in the infarcted heart by mediating the Pten/Akt signalling pathway. Int J Mol Med. 2017;39:569-578 pubmed 出版商
  179. Zamarin D, Holmgaard R, Ricca J, Plitt T, Palese P, Sharma P, et al. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nat Commun. 2017;8:14340 pubmed 出版商
  180. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  181. Chierico L, Rizzello L, Guan L, Joseph A, Lewis A, Battaglia G. The role of the two splice variants and extranuclear pathway on Ki-67 regulation in non-cancer and cancer cells. PLoS ONE. 2017;12:e0171815 pubmed 出版商
  182. Wu Q, Yan H, Tao S, Wang X, Mou L, Chen P, et al. XIAP 3'-untranslated region as a ceRNA promotes FSCN1 function in inducing the progression of breast cancer by binding endogenous miR-29a-5p. Oncotarget. 2017;8:16784-16800 pubmed 出版商
  183. Mazzotta C, Manetti M, Rosa I, Romano E, Blagojevic J, Bellando Randone S, et al. Proangiogenic effects of soluble ?-Klotho on systemic sclerosis dermal microvascular endothelial cells. Arthritis Res Ther. 2017;19:27 pubmed 出版商
  184. Watanabe N, Bajgain P, Sukumaran S, Ansari S, Heslop H, Rooney C, et al. Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology. 2016;5:e1253656 pubmed 出版商
  185. Xu K, Chen G, Li X, Wu X, Chang Z, Xu J, et al. MFN2 suppresses cancer progression through inhibition of mTORC2/Akt signaling. Sci Rep. 2017;7:41718 pubmed 出版商
  186. Gautam J, Nirwane A, Yao Y. Laminin differentially regulates the stemness of type I and type II pericytes. Stem Cell Res Ther. 2017;8:28 pubmed 出版商
  187. Duelen R, Gilbert G, Patel A, de Schaetzen N, de Waele L, Roderick L, et al. Activin A Modulates CRIPTO-1/HNF4?+ Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells. Stem Cells Int. 2017;2017:4651238 pubmed 出版商
  188. Ritschka B, Storer M, Mas A, Heinzmann F, Ortells M, Morton J, et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 2017;31:172-183 pubmed 出版商
  189. Chen W, Wang Z, Missinato M, Park D, Long D, Liu H, et al. Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration. Sci Adv. 2016;2:e1600844 pubmed 出版商
  190. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  191. Beaumont M, Andriamihaja M, Armand L, Grauso M, Jaffrézic F, Laloë D, et al. Epithelial response to a high-protein diet in rat colon. BMC Genomics. 2017;18:116 pubmed 出版商
  192. He Y, Northey J, Pelletier A, Kos Z, Meunier L, Haibe Kains B, et al. The Cdc42/Rac1 regulator CdGAP is a novel E-cadherin transcriptional co-repressor with Zeb2 in breast cancer. Oncogene. 2017;36:3490-3503 pubmed 出版商
  193. Dall G, Vieusseux J, Korach K, Arao Y, Hewitt S, Hamilton K, et al. SCA-1 Labels a Subset of Estrogen-Responsive Bipotential Repopulating Cells within the CD24+ CD49fhi Mammary Stem Cell-Enriched Compartment. Stem Cell Reports. 2017;8:417-431 pubmed 出版商
  194. Halsey C, Thamm D, Weishaar K, Burton J, Charles J, Gustafson D, et al. Expression of Phosphorylated KIT in Canine Mast Cell Tumor. Vet Pathol. 2017;54:387-394 pubmed 出版商
  195. Liu W, Wang F, Xu Q, Shi J, Zhang X, Lu X, et al. BCAS2 is involved in alternative mRNA splicing in spermatogonia and the transition to meiosis. Nat Commun. 2017;8:14182 pubmed 出版商
  196. Liu J, Wang Y, Song L, Zeng L, Yi W, Liu T, et al. A critical role of DDRGK1 in endoplasmic reticulum homoeostasis via regulation of IRE1α stability. Nat Commun. 2017;8:14186 pubmed 出版商
  197. Che L, Pilo M, Cigliano A, Latte G, Simile M, Ribback S, et al. Oncogene dependent requirement of fatty acid synthase in hepatocellular carcinoma. Cell Cycle. 2017;16:499-507 pubmed 出版商
  198. Bershteyn M, Nowakowski T, Pollen A, Di Lullo E, Nene A, Wynshaw Boris A, et al. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell. 2017;20:435-449.e4 pubmed 出版商
  199. Dong J, Aulestia F, Assad Kahn S, Zeniou M, Dubois L, El Habr E, et al. Bisacodyl and its cytotoxic activity on human glioblastoma stem-like cells. Implication of inositol 1,4,5-triphosphate receptor dependent calcium signaling. Biochim Biophys Acta Mol Cell Res. 2017;1864:1018-1027 pubmed 出版商
  200. Marquez Vilendrer S, Rai S, Gramling S, Lu L, Reisman D. BRG1 and BRM loss selectively impacts RB and P53, respectively: BRG1 and BRM have differential functions in vivo. Oncoscience. 2016;3:337-350 pubmed 出版商
  201. Marquez Vilendrer S, Rai S, Gramling S, Lu L, Reisman D. Loss of the SWI/SNF ATPase subunits BRM and BRG1 drives lung cancer development. Oncoscience. 2016;3:322-336 pubmed 出版商
  202. Huang Y, Chen N, Miao D. Radioprotective effects of pyrroloquinoline quinone on parotid glands in C57BL/6J mice. Exp Ther Med. 2016;12:3685-3693 pubmed 出版商
  203. Dalmo J, Spetz J, Montelius M, Langen B, Arvidsson Y, Johansson H, et al. Priming increases the anti-tumor effect and therapeutic window of 177Lu-octreotate in nude mice bearing human small intestine neuroendocrine tumor GOT1. EJNMMI Res. 2017;7:6 pubmed 出版商
  204. Kawakami K, Takeshita A, Furushima K, Miyajima M, Hatamura I, Kuro O M, et al. Persistent fibroblast growth factor 23 signalling in the parathyroid glands for secondary hyperparathyroidism in mice with chronic kidney disease. Sci Rep. 2017;7:40534 pubmed 出版商
  205. Yue F, Bi P, Wang C, Shan T, Nie Y, Ratliff T, et al. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat Commun. 2017;8:14328 pubmed 出版商
  206. Xu J, Zhou W, Yang F, Chen G, Li H, Zhao Y, et al. The β-TrCP-FBXW2-SKP2 axis regulates lung cancer cell growth with FBXW2 acting as a tumour suppressor. Nat Commun. 2017;8:14002 pubmed 出版商
  207. Lo Nigro A, de Jaime Soguero A, Khoueiry R, Cho D, Ferlazzo G, Perini I, et al. PDGFR?+ Cells in Embryonic Stem Cell Cultures Represent the In Vitro Equivalent of the Pre-implantation Primitive Endoderm Precursors. Stem Cell Reports. 2017;8:318-333 pubmed 出版商
  208. Pereira C, Leal M, Abdelhay E, Demachki S, Assumpcao P, de Souza M, et al. MYC Amplification as a Predictive Factor of Complete Pathologic Response to Docetaxel-based Neoadjuvant Chemotherapy for Breast Cancer. Clin Breast Cancer. 2017;17:188-194 pubmed 出版商
  209. Herrtwich L, Nanda I, Evangelou K, Nikolova T, Horn V, Sagar -, et al. DNA Damage Signaling Instructs Polyploid Macrophage Fate in Granulomas. Cell. 2016;167:1264-1280.e18 pubmed 出版商
  210. Vanegas N, Vernot J. Loss of quiescence and self-renewal capacity of hematopoietic stem cell in an in vitro leukemic niche. Exp Hematol Oncol. 2017;6:2 pubmed 出版商
  211. Hopkinson B, Klitgaard M, Petersen O, Villadsen R, Rønnov Jessen L, Kim J. Establishment of a normal-derived estrogen receptor-positive cell line comparable to the prevailing human breast cancer subtype. Oncotarget. 2017;8:10580-10593 pubmed 出版商
  212. Jiang C, Diao F, Sang Y, Xu N, Zhu R, Wang X, et al. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet. 2017;13:e1006535 pubmed 出版商
  213. Christoforou N, Chakraborty S, Kirkton R, Adler A, Addis R, Leong K. Core Transcription Factors, MicroRNAs, and Small Molecules Drive Transdifferentiation of Human Fibroblasts Towards The Cardiac Cell Lineage. Sci Rep. 2017;7:40285 pubmed 出版商
  214. Benevento M, Oomen C, Horner A, Amiri H, Jacobs T, Pauwels C, et al. Haploinsufficiency of EHMT1 improves pattern separation and increases hippocampal cell proliferation. Sci Rep. 2017;7:40284 pubmed 出版商
  215. Bai H, Lee J, Chen E, Wang M, Xing Y, Fahmy T, et al. Covalent modification of pericardial patches for sustained rapamycin delivery inhibits venous neointimal hyperplasia. Sci Rep. 2017;7:40142 pubmed 出版商
  216. Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed 出版商
  217. Fallahi Sichani M, Becker V, Izar B, Baker G, Lin J, Boswell S, et al. Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de-differentiated state. Mol Syst Biol. 2017;13:905 pubmed 出版商
  218. Morandi L, Righi A, Maletta F, Rucci P, Pagni F, Gallo M, et al. Somatic mutation profiling of hobnail variant of papillary thyroid carcinoma. Endocr Relat Cancer. 2017;24:107-117 pubmed 出版商
  219. de Jong R, Paulin N, Lemnitzer P, Viola J, Winter C, Ferraro B, et al. Protective Aptitude of Annexin A1 in Arterial Neointima Formation in Atherosclerosis-Prone Mice-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:312-315 pubmed 出版商
  220. Niu X, Pi S, Baral S, Xia Y, He Q, Li Y, et al. P2Y12 Promotes Migration of Vascular Smooth Muscle Cells Through Cofilin Dephosphorylation During Atherogenesis. Arterioscler Thromb Vasc Biol. 2017;37:515-524 pubmed 出版商
  221. Linge I, Dyatlov A, Kondratieva E, Avdienko V, Apt A, Kondratieva T. B-lymphocytes forming follicle-like structures in the lung tissue of tuberculosis-infected mice: Dynamics, phenotypes and functional activity. Tuberculosis (Edinb). 2017;102:16-23 pubmed 出版商
  222. Malek Mohammadi M, Kattih B, Grund A, Froese N, Korf Klingebiel M, Gigina A, et al. The transcription factor GATA4 promotes myocardial regeneration in neonatal mice. EMBO Mol Med. 2017;9:265-279 pubmed 出版商
  223. Hennika T, Hu G, Olaciregui N, Barton K, Ehteda A, Chitranjan A, et al. Pre-Clinical Study of Panobinostat in Xenograft and Genetically Engineered Murine Diffuse Intrinsic Pontine Glioma Models. PLoS ONE. 2017;12:e0169485 pubmed 出版商
  224. Monaghan C, Nechiporuk T, Jeng S, McWeeney S, Wang J, Rosenfeld M, et al. REST corepressors RCOR1 and RCOR2 and the repressor INSM1 regulate the proliferation-differentiation balance in the developing brain. Proc Natl Acad Sci U S A. 2017;114:E406-E415 pubmed 出版商
  225. Engler J, Kursawe N, Solano M, Patas K, Wehrmann S, Heckmann N, et al. Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy. Proc Natl Acad Sci U S A. 2017;114:E181-E190 pubmed 出版商
  226. Cullen D, Diaz Recuero J, Cullen R, Rodriguez Peralto J, Kutzner H, Requena L. Superficial Acral Fibromyxoma: Report of 13 Cases With New Immunohistochemical Findings. Am J Dermatopathol. 2017;39:14-22 pubmed 出版商
  227. Tang J, Shen D, Caranasos T, Wang Z, Vandergriff A, Allen T, et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun. 2017;8:13724 pubmed 出版商
  228. Giunti L, Buccoliero A, Pantaleo M, Lucchesi M, Provenzano A, Palazzo V, et al. Molecular characterization of paediatric glioneuronal tumours with neuropil-like islands: a genome-wide copy number analysis. Am J Cancer Res. 2016;6:2910-2918 pubmed
  229. Dergilev K, Makarevich P, Tsokolaeva Z, Boldyreva M, Beloglazova I, Zubkova E, et al. Comparison of cardiac stem cell sheets detached by Versene solution and from thermoresponsive dishes reveals similar properties of constructs. Tissue Cell. 2017;49:64-71 pubmed 出版商
  230. Roberts E, Carnathan D, Li H, Shaw G, Silvestri G, Betts M. Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques. PLoS Pathog. 2016;12:e1006135 pubmed 出版商
  231. Penna I, Gigoni A, Costa D, Vella S, Russo D, Poggi A, et al. The inhibition of 45A ncRNA expression reduces tumor formation, affecting tumor nodules compactness and metastatic potential in neuroblastoma cells. Oncotarget. 2017;8:8189-8205 pubmed 出版商
  232. Jostes S, Nettersheim D, Fellermeyer M, Schneider S, Hafezi F, Honecker F, et al. The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo. J Cell Mol Med. 2017;21:1300-1314 pubmed 出版商
  233. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 2017;541:228-232 pubmed 出版商
  234. Stanfield B, Pahar B, Chouljenko V, Veazey R, Kousoulas K. Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies. Vaccine. 2017;35:536-543 pubmed 出版商
  235. Baumer Y, McCurdy S, Alcala M, Mehta N, Lee B, Ginsberg M, et al. CD98 regulates vascular smooth muscle cell proliferation in atherosclerosis. Atherosclerosis. 2017;256:105-114 pubmed 出版商
  236. Tuncel J, Haag S, Holmdahl R. MHC class II alleles associated with Th1 rather than Th17 type immunity drive the onset of early arthritis in a rat model of rheumatoid arthritis. Eur J Immunol. 2017;47:563-574 pubmed 出版商
  237. Aguilera T, Rafat M, Castellini L, Shehade H, Kariolis M, Hui A, et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun. 2016;7:13898 pubmed 出版商
  238. Wang C, Wang M, Arrington J, Shan T, Yue F, Nie Y, et al. Ascl2 inhibits myogenesis by antagonizing the transcriptional activity of myogenic regulatory factors. Development. 2017;144:235-247 pubmed 出版商
  239. Ohs I, Van Den Broek M, Nussbaum K, MUNZ C, Arnold S, Quezada S, et al. Interleukin-12 bypasses common gamma-chain signalling in emergency natural killer cell lymphopoiesis. Nat Commun. 2016;7:13708 pubmed 出版商
  240. Comunanza V, Cora D, Orso F, Consonni F, Middonti E, Di Nicolantonio F, et al. VEGF blockade enhances the antitumor effect of BRAFV600E inhibition. EMBO Mol Med. 2017;9:219-237 pubmed 出版商
  241. Lazaro S, Perez Crespo M, Enguita A, Hernandez P, Martínez Palacio J, Oteo M, et al. Ablating all three retinoblastoma family members in mouse lung leads to neuroendocrine tumor formation. Oncotarget. 2017;8:4373-4386 pubmed 出版商
  242. De Luca Johnson J, Zenali M. A Previously Undescribed Presentation of Mixed Adenoneuroendocrine Carcinoma. Case Rep Pathol. 2016;2016:9063634 pubmed
  243. Harris L, Zalucki O, Gobius I, McDonald H, Osinki J, Harvey T, et al. Transcriptional regulation of intermediate progenitor cell generation during hippocampal development. Development. 2016;143:4620-4630 pubmed
  244. Liu L, Guan H, Li Y, Ying Z, Wu J, Zhu X, et al. Astrocyte Elevated Gene 1 Interacts with Acetyltransferase p300 and c-Jun To Promote Tumor Aggressiveness. Mol Cell Biol. 2017;37: pubmed 出版商
  245. Phelps M, Bailey J, Vleeshouwer Neumann T, Chen E. CRISPR screen identifies the NCOR/HDAC3 complex as a major suppressor of differentiation in rhabdomyosarcoma. Proc Natl Acad Sci U S A. 2016;113:15090-15095 pubmed 出版商
  246. Scarritt M, Pashos N, Motherwell J, Eagle Z, Burkett B, Gregory A, et al. Re-endothelialization of rat lung scaffolds through passive, gravity-driven seeding of segment-specific pulmonary endothelial cells. J Tissue Eng Regen Med. 2018;12:e786-e806 pubmed 出版商
  247. Revandkar A, Perciato M, Toso A, Alajati A, Chen J, Gerber H, et al. Inhibition of Notch pathway arrests PTEN-deficient advanced prostate cancer by triggering p27-driven cellular senescence. Nat Commun. 2016;7:13719 pubmed 出版商
  248. Burnett L, LeDuc C, Sulsona C, Paull D, Rausch R, Eddiry S, et al. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome. J Clin Invest. 2017;127:293-305 pubmed 出版商
  249. Jung J, Jung H, Neupane S, Kim K, Kim J, Yamamoto H, et al. Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem. 2017;119:92-98 pubmed 出版商
  250. Kahn B, Corman T, Lovelace K, Hong M, Krauss R, Epstein D. Prenatal ethanol exposure in mice phenocopies Cdon mutation by impeding Shh function in the etiology of optic nerve hypoplasia. Dis Model Mech. 2017;10:29-37 pubmed 出版商
  251. Ronellenfitsch M, Oh J, Satomi K, Sumi K, Harter P, Steinbach J, et al. CASP9 germline mutation in a family with multiple brain tumors. Brain Pathol. 2018;28:94-102 pubmed 出版商
  252. Cai H, Liu A. Spop promotes skeletal development and homeostasis by positively regulating Ihh signaling. Proc Natl Acad Sci U S A. 2016;113:14751-14756 pubmed 出版商
  253. Tsai Y, Nattiv R, Dedhia P, Nagy M, Chin A, Thomson M, et al. In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development. 2017;144:1045-1055 pubmed 出版商
  254. Weyandt J, Carney J, Pavlisko E, Xu M, Counter C. Isoform-Specific Effects of Wild-Type Ras Genes on Carcinogen-Induced Lung Tumorigenesis in Mice. PLoS ONE. 2016;11:e0167205 pubmed 出版商
  255. Gerber T, Willscher E, Loeffler Wirth H, Hopp L, Schadendorf D, Schartl M, et al. Mapping heterogeneity in patient-derived melanoma cultures by single-cell RNA-seq. Oncotarget. 2017;8:846-862 pubmed 出版商
  256. Burgy O, Bellaye P, Causse S, Beltramo G, Wettstein G, Boutanquoi P, et al. Pleural inhibition of the caspase-1/IL-1? pathway diminishes profibrotic lung toxicity of bleomycin. Respir Res. 2016;17:162 pubmed
  257. Goreczny G, Ouderkirk Pecone J, Olson E, Krendel M, Turner C. Hic-5 remodeling of the stromal matrix promotes breast tumor progression. Oncogene. 2017;36:2693-2703 pubmed 出版商
  258. Fraser J, Essebier A, Gronostajski R, Boden M, Wainwright B, Harvey T, et al. Cell-type-specific expression of NFIX in the developing and adult cerebellum. Brain Struct Funct. 2017;222:2251-2270 pubmed 出版商
  259. Rebo J, Mehdipour M, Gathwala R, Causey K, Liu Y, Conboy M, et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun. 2016;7:13363 pubmed 出版商
  260. Bosch P, Fuller L, Sleeth C, Weiner J. Akirin2 is essential for the formation of the cerebral cortex. Neural Dev. 2016;11:21 pubmed
  261. Lu W, Liu S, Li B, Xie Y, Izban M, Ballard B, et al. SKP2 loss destabilizes EZH2 by promoting TRAF6-mediated ubiquitination to suppress prostate cancer. Oncogene. 2017;36:1364-1373 pubmed 出版商
  262. Nygaard U, van den Bogaard E, Niehues H, Hvid M, Deleuran M, Johansen C, et al. The "Alarmins" HMBG1 and IL-33 Downregulate Structural Skin Barrier Proteins and Impair Epidermal Growth. Acta Derm Venereol. 2017;97:305-312 pubmed 出版商
  263. Yang S, Ji Q, Chang B, Wang Y, Zhu Y, Li D, et al. STC2 promotes head and neck squamous cell carcinoma metastasis through modulating the PI3K/AKT/Snail signaling. Oncotarget. 2017;8:5976-5991 pubmed 出版商
  264. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65:375-387 pubmed 出版商
  265. Sharp J, Vermette P. An In-situ glucose-stimulated insulin secretion assay under perfusion bioreactor conditions. Biotechnol Prog. 2017;33:454-462 pubmed 出版商
  266. Corda G, Sala G, Lattanzio R, Iezzi M, Sallese M, Fragassi G, et al. Functional and prognostic significance of the genomic amplification of frizzled 6 (FZD6) in breast cancer. J Pathol. 2017;241:350-361 pubmed 出版商
  267. Kostrzak A, Caval V, Escande M, Pliquet E, Thalmensi J, Bestetti T, et al. APOBEC3A intratumoral DNA electroporation in mice. Gene Ther. 2017;24:74-83 pubmed 出版商
  268. Pu W, Zhang H, Huang X, Tian X, He L, Wang Y, et al. Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nat Commun. 2016;7:13369 pubmed 出版商
  269. Qiu X, Jiao J, Li Y, Tian T. Overexpression of FZD7 promotes glioma cell proliferation by upregulating TAZ. Oncotarget. 2016;7:85987-85999 pubmed 出版商
  270. Weingartner E, Courneya J, Keegan A, Golding A. A novel method for assaying human regulatory T cell direct suppression of B cell effector function. J Immunol Methods. 2017;441:1-7 pubmed 出版商
  271. Kim S, Kim Y, Choi M, Kim M, Yang J, Park H, et al. O-linked-N-acetylglucosamine transferase is associated with metastatic spread of human papillomavirus E6 and E7 oncoproteins to the lungs of mice. Biochem Biophys Res Commun. 2017;483:793-802 pubmed 出版商
  272. Shatirishvili M, Burk A, Franz C, Pace G, Kastilan T, Breuhahn K, et al. Epidermal-specific deletion of CD44 reveals a function in keratinocytes in response to mechanical stress. Cell Death Dis. 2016;7:e2461 pubmed 出版商
  273. Strietz J, Stepputtis S, Preca B, Vannier C, Kim M, Castro D, et al. ERN1 and ALPK1 inhibit differentiation of bi-potential tumor-initiating cells in human breast cancer. Oncotarget. 2016;7:83278-83293 pubmed 出版商
  274. Lacaille H, Duterte Boucher D, Vaudry H, Zerdoumi Y, Flaman J, Hashimoto H, et al. PACAP Protects the Adolescent and Adult Mice Brain from Ethanol Toxicity and Modulates Distinct Sets of Genes Regulating Similar Networks. Mol Neurobiol. 2017;54:7534-7548 pubmed 出版商
  275. Marichal T, Gaudenzio N, El Abbas S, Sibilano R, Zurek O, Starkl P, et al. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. J Clin Invest. 2016;126:4497-4515 pubmed 出版商
  276. Masili Oku S, Bacchi C, Fernandes F, Filassi J, Baracat E, Carvalho F. The Apocrine Profile of Triple-negative Breast Carcinomas in Patients Aged 45 Years or Younger: favorable but rare features. Rev Bras Ginecol Obstet. 2016;38:512-517 pubmed
  277. Pamarthy S, Mao L, Katara G, Fleetwood S, Kulshreshta A, Gilman Sachs A, et al. The V-ATPase a2 isoform controls mammary gland development through Notch and TGF-β signaling. Cell Death Dis. 2016;7:e2443 pubmed 出版商
  278. Tirosh I, Venteicher A, Hebert C, Escalante L, Patel A, Yizhak K, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;539:309-313 pubmed 出版商
  279. Day K, Lorenzatti Hiles G, Kozminsky M, Dawsey S, Paul A, Broses L, et al. HER2 and EGFR Overexpression Support Metastatic Progression of Prostate Cancer to Bone. Cancer Res. 2017;77:74-85 pubmed 出版商
  280. Lian G, Dettenhofer M, Lu J, Downing M, Chenn A, Wong T, et al. Filamin A- and formin 2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development. 2016;143:4509-4520 pubmed
  281. Junge H, Yung A, Goodrich L, Chen Z. Netrin1/DCC signaling promotes neuronal migration in the dorsal spinal cord. Neural Dev. 2016;11:19 pubmed
  282. Reinfeldt Engberg G, Chamorro C, Nordenskjold A, Fossum M. Expansion of Submucosal Bladder Wall Tissue In Vitro and In Vivo. Biomed Res Int. 2016;2016:5415012 pubmed
  283. Konstantinidou C, Taraviras S, Pachnis V. Geminin prevents DNA damage in vagal neural crest cells to ensure normal enteric neurogenesis. BMC Biol. 2016;14:94 pubmed
  284. Parrales A, Ranjan A, Iyer S, Padhye S, Weir S, Roy A, et al. DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat Cell Biol. 2016;18:1233-1243 pubmed 出版商
  285. Chiche A, Moumen M, Romagnoli M, Petit V, Lasla H, Jézéquel P, et al. p53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors. Oncogene. 2017;36:2355-2365 pubmed 出版商
  286. Omiya S, Omori Y, Taneike M, Protti A, Yamaguchi O, Akira S, et al. Toll-like receptor 9 prevents cardiac rupture after myocardial infarction in mice independently of inflammation. Am J Physiol Heart Circ Physiol. 2016;311:H1485-H1497 pubmed 出版商
  287. Fielitz K, Althoff K, De Preter K, Nonnekens J, Ohli J, Elges S, et al. Characterization of pancreatic glucagon-producing tumors and pituitary gland tumors in transgenic mice overexpressing MYCN in hGFAP-positive cells. Oncotarget. 2016;7:74415-74426 pubmed 出版商
  288. Zhang Q, Zhang Y, Parsels J, Lohse I, Lawrence T, Pasca di Magliano M, et al. Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation. Neoplasia. 2016;18:666-673 pubmed 出版商
  289. Loverro G, Resta L, Dellino M, Edoardo D, Cascarano M, Loverro M, et al. Uterine and ovarian changes during testosterone administration in young female-to-male transsexuals. Taiwan J Obstet Gynecol. 2016;55:686-691 pubmed 出版商
  290. Hagel C, Buslei R, Buchfelder M, Fahlbusch R, Bergmann M, Giese A, et al. Immunoprofiling of glial tumours of the neurohypophysis suggests a common pituicytic origin of neoplastic cells. Pituitary. 2017;20:211-217 pubmed 出版商
  291. Barut F, Udul P, Kokturk F, Kandemir N, Keser S, Ozdamar S. Clinicopathological features and pituitary homeobox 1 gene expression in the progression and prognosis of cutaneous malignant melanoma. Kaohsiung J Med Sci. 2016;32:494-500 pubmed 出版商
  292. Andriani G, Almeida V, Faggioli F, Mauro M, Tsai W, Santambrogio L, et al. Whole Chromosome Instability induces senescence and promotes SASP. Sci Rep. 2016;6:35218 pubmed 出版商
  293. Busch A, Bauer L, Wardelmann E, Rudack C, Grünewald I, Stenner M. Prognostic relevance of epithelial-mesenchymal transition and proliferation in surgically treated primary parotid gland cancer. J Clin Pathol. 2017;70:403-409 pubmed 出版商
  294. Parween S, Kostromina E, Nord C, Eriksson M, Lindstrom P, Ahlgren U. Intra-islet lesions and lobular variations in ?-cell mass expansion in ob/ob mice revealed by 3D imaging of intact pancreas. Sci Rep. 2016;6:34885 pubmed 出版商
  295. Zhang C, Wang H, Bao Q, Wang L, Guo T, Chen W, et al. NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction. Oncotarget. 2016;7:73593-73606 pubmed 出版商
  296. Chandele A, Sewatanon J, Gunisetty S, Singla M, Onlamoon N, Akondy R, et al. Characterization of Human CD8 T Cell Responses in Dengue Virus-Infected Patients from India. J Virol. 2016;90:11259-11278 pubmed
  297. Figueroa González G, García Castillo V, Coronel Hernández J, López Urrutia E, León Cabrera S, Arias Romero L, et al. Anti-inflammatory and Antitumor Activity of a Triple Therapy for a Colitis-Related Colorectal Cancer. J Cancer. 2016;7:1632-1644 pubmed
  298. Gerriets V, Kishton R, Johnson M, Cohen S, Siska P, Nichols A, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol. 2016;17:1459-1466 pubmed 出版商
  299. Zhou L, Dai H, Wu J, Zhou M, Yuan H, Du J, et al. Role of FEN1 S187 phosphorylation in counteracting oxygen-induced stress and regulating postnatal heart development. FASEB J. 2017;31:132-147 pubmed 出版商
  300. Deng Y, Chen X, Ye Y, Shi X, Zhu K, Huang L, et al. Histological characterisation and prognostic evaluation of 62 gastric neuroendocrine carcinomas. Contemp Oncol (Pozn). 2016;20:311-9 pubmed 出版商
  301. Dubail J, Vasudevan D, Wang L, Earp S, Jenkins M, Haltiwanger R, et al. Impaired ADAMTS9 secretion: A potential mechanism for eye defects in Peters Plus Syndrome. Sci Rep. 2016;6:33974 pubmed 出版商
  302. Gago Fuentes R, Bechberger J, Varela Eirin M, Varela Vazquez A, Acea B, Fonseca E, et al. The C-terminal domain of connexin43 modulates cartilage structure via chondrocyte phenotypic changes. Oncotarget. 2016;7:73055-73067 pubmed 出版商
  303. Truong D, Puleo J, Llave A, Mouneimne G, Kamm R, Nikkhah M. Breast Cancer Cell Invasion into a Three Dimensional Tumor-Stroma Microenvironment. Sci Rep. 2016;6:34094 pubmed 出版商
  304. Tuncel D, Roa J, Araya J, Bellolio E, Villaseca M, Tapia O, et al. Poorly cohesive cell (diffuse-infiltrative/signet ring cell) carcinomas of the gallbladder: clinicopathological analysis of 24 cases identified in 628 gallbladder carcinomas. Hum Pathol. 2017;60:24-31 pubmed 出版商
  305. Fogarty L, Song B, Suppiah Y, Hasan S, Martin H, Hogan S, et al. Bcl-xL dependency coincides with the onset of neurogenesis in the developing mammalian spinal cord. Mol Cell Neurosci. 2016;77:34-46 pubmed 出版商
  306. Xiong J, Zhou M, Wang Y, Chen L, Xu W, Wang Y, et al. Protein Kinase D2 Protects against Acute Colitis Induced by Dextran Sulfate Sodium in Mice. Sci Rep. 2016;6:34079 pubmed 出版商
  307. McLane J, Ligon L. Stiffened Extracellular Matrix and Signaling from Stromal Fibroblasts via Osteoprotegerin Regulate Tumor Cell Invasion in a 3-D Tumor in Situ Model. Cancer Microenviron. 2016;9:127-139 pubmed 出版商
  308. Chen Y, Wang X, Duan C, Chen J, Su M, Jin Y, et al. Loss of TAB3 expression by shRNA exhibits suppressive bioactivity and increased chemical sensitivity of ovarian cancer cell lines via the NF-?B pathway. Cell Prolif. 2016;49:657-668 pubmed 出版商
  309. Soon G, Ow G, Chan H, Ng S, Wang S. Primary cardiac diffuse large B-cell lymphoma in immunocompetent patients: clinical, histologic, immunophenotypic, and genotypic features of 3 cases. Ann Diagn Pathol. 2016;24:40-6 pubmed 出版商
  310. Dragich J, Kuwajima T, Hirose Ikeda M, Yoon M, Eenjes E, Bosco J, et al. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. elife. 2016;5: pubmed 出版商
  311. Johnson R, Finger E, Olcina M, Vilalta M, Aguilera T, Miao Y, et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol. 2016;18:1078-1089 pubmed 出版商
  312. Sugita S, Iwasaki Y, Makabe K, Kimura T, Futagami T, Suegami S, et al. Lack of T Cell Response to iPSC-Derived Retinal Pigment Epithelial Cells from HLA Homozygous Donors. Stem Cell Reports. 2016;7:619-634 pubmed 出版商
  313. Borgs L, Peyre E, Alix P, Hanon K, Grobarczyk B, Godin J, et al. Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects. Sci Rep. 2016;6:33377 pubmed 出版商
  314. Lopez C, Miller B, Rivera Chávez F, Velazquez E, Byndloss M, Chávez Arroyo A, et al. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration. Science. 2016;353:1249-53 pubmed 出版商
  315. Drelon C, Berthon A, Sahut Barnola I, Mathieu M, Dumontet T, Rodriguez S, et al. PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development. Nat Commun. 2016;7:12751 pubmed 出版商
  316. Tavana O, Li D, Dai C, Lopez G, Banerjee D, Kon N, et al. HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat Med. 2016;22:1180-1186 pubmed 出版商
  317. Czerwinska A, Nowacka J, Aszer M, Gawrzak S, Archacka K, Fogtman A, et al. Cell cycle regulation of embryonic stem cells and mouse embryonic fibroblasts lacking functional Pax7. Cell Cycle. 2016;15:2931-2942 pubmed
  318. Wang L, Xu D, Qiao Z, Shen L, Dai H, Ji Y. Follicular dendritic cell sarcoma of the spleen: A case report and review of the literature. Oncol Lett. 2016;12:2062-2064 pubmed
  319. Nielsen T, Jensen M, Burugu S, Gao D, Jørgensen C, Balslev E, et al. High-Risk Premenopausal Luminal A Breast Cancer Patients Derive no Benefit from Adjuvant Cyclophosphamide-based Chemotherapy: Results from the DBCG77B Clinical Trial. Clin Cancer Res. 2017;23:946-953 pubmed 出版商
  320. Schmidt A, Kannan P, Chougnet C, Danzer S, Miller L, Jobe A, et al. Intra-amniotic LPS causes acute neuroinflammation in preterm rhesus macaques. J Neuroinflammation. 2016;13:238 pubmed 出版商
  321. Lu X, Chen Q, Rong Y, Yang G, Li C, Xu N, et al. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun. 2016;7:12719 pubmed 出版商
  322. Chen W, Hill H, Christie A, Kim M, Holloman E, Pavía Jiménez A, et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature. 2016;539:112-117 pubmed 出版商
  323. Huang H, Huang Q, Wang F, Milner R, Li L. Cerebral ischemia-induced angiogenesis is dependent on tumor necrosis factor receptor 1-mediated upregulation of α5β1 and αVβ3 integrins. J Neuroinflammation. 2016;13:227 pubmed 出版商
  324. Magalhães A, Rivera C. NKCC1-Deficiency Results in Abnormal Proliferation of Neural Progenitor Cells of the Lateral Ganglionic Eminence. Front Cell Neurosci. 2016;10:200 pubmed 出版商
  325. Ladle B, Li K, Phillips M, Pucsek A, Haile A, Powell J, et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A. 2016;113:10631-6 pubmed 出版商
  326. Jackson Jones L, Duncan S, Magalhaes M, Campbell S, Maizels R, McSorley H, et al. Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nat Commun. 2016;7:12651 pubmed 出版商
  327. Jiang L, Wang L, Chen C, Li M, Liao X. Lgr6 is dispensable for epidermal cell proliferation and wound repair. Exp Dermatol. 2017;26:105-107 pubmed 出版商
  328. Sweeny L, Prince A, Patel N, Moore L, Rosenthal E, Hughley B, et al. Antiangiogenic antibody improves melanoma detection by fluorescently labeled therapeutic antibodies. Laryngoscope. 2016;126:E387-E395 pubmed 出版商
  329. Josowitz R, Mulero Navarro S, Rodriguez N, Falce C, Cohen N, Ullian E, et al. Autonomous and Non-autonomous Defects Underlie Hypertrophic Cardiomyopathy in BRAF-Mutant hiPSC-Derived Cardiomyocytes. Stem Cell Reports. 2016;7:355-369 pubmed 出版商
  330. Waters A, Stafman L, Garner E, Mruthyunjayappa S, Stewart J, Mroczek Musulman E, et al. Targeting Focal Adhesion Kinase Suppresses the Malignant Phenotype in Rhabdomyosarcoma Cells. Transl Oncol. 2016;9:263-73 pubmed 出版商
  331. Hinsenkamp I, Schulz S, Roscher M, Suhr A, Meyer B, Munteanu B, et al. Inhibition of Rho-Associated Kinase 1/2 Attenuates Tumor Growth in Murine Gastric Cancer. Neoplasia. 2016;18:500-11 pubmed 出版商
  332. Manzini C, Venè R, Cossu I, Gualco M, Zupo S, Dono M, et al. Cytokines can counteract the inhibitory effect of MEK-i on NK-cell function. Oncotarget. 2016;7:60858-60871 pubmed 出版商
  333. Lan A, Blais A, Coelho D, Capron J, Maarouf M, Benamouzig R, et al. Dual effects of a high-protein diet on DSS-treated mice during colitis resolution phase. Am J Physiol Gastrointest Liver Physiol. 2016;311:G624-G633 pubmed 出版商
  334. Yoon J, Leyva Castillo J, Wang G, Galand C, Oyoshi M, Kumar L, et al. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. J Exp Med. 2016;213:2147-66 pubmed 出版商
  335. Klose R, Krzywinska E, Castells M, Gotthardt D, Putz E, Kantari Mimoun C, et al. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nat Commun. 2016;7:12528 pubmed 出版商
  336. Fang D, Yan S, Yu Q, Chen D, Yan S. Mfn2 is Required for Mitochondrial Development and Synapse Formation in Human Induced Pluripotent Stem Cells/hiPSC Derived Cortical Neurons. Sci Rep. 2016;6:31462 pubmed 出版商
  337. Belinson H, Savage A, Fadrosh D, Kuo Y, Lin D, Valladares R, et al. Dual epithelial and immune cell function of Dvl1 regulates gut microbiota composition and intestinal homeostasis. JCI Insight. 2016;1: pubmed 出版商
  338. Yamaguchi J, Mino Kenudson M, Liss A, Chowdhury S, Wang T, Fernández Del Castillo C, et al. Loss of Trefoil Factor 2 From Pancreatic Duct Glands Promotes Formation of Intraductal Papillary Mucinous Neoplasms in Mice. Gastroenterology. 2016;151:1232-1244.e10 pubmed 出版商
  339. Gallini R, Huusko J, Yla Herttuala S, Betsholtz C, Andrae J. Isoform-Specific Modulation of Inflammation Induced by Adenoviral Mediated Delivery of Platelet-Derived Growth Factors in the Adult Mouse Heart. PLoS ONE. 2016;11:e0160930 pubmed 出版商
  340. Khanom R, Nguyen C, Kayamori K, Zhao X, Morita K, Miki Y, et al. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth. PLoS ONE. 2016;11:e0161163 pubmed 出版商
  341. Chrenek R, Magnotti L, Herrera G, Jha R, Cardozo D. Characterization of the Filum terminale as a neural progenitor cell niche in both rats and humans. J Comp Neurol. 2017;525:661-675 pubmed 出版商
  342. Alexovič Matiašová A, Sevc J, Tomori Z, Gombalová Z, Gedrová S, Daxnerova Z. Quantitative analyses of cellularity and proliferative activity reveals the dynamics of the central canal lining during postnatal development of the rat. J Comp Neurol. 2017;525:693-707 pubmed 出版商
  343. Saatcioglu H, Cuevas I, Castrillon D. Control of Oocyte Reawakening by Kit. PLoS Genet. 2016;12:e1006215 pubmed 出版商
  344. You L, Li L, Zou J, Yan K, Belle J, Nijnik A, et al. BRPF1 is essential for development of fetal hematopoietic stem cells. J Clin Invest. 2016;126:3247-62 pubmed 出版商
  345. Riascos Bernal D, Chinnasamy P, Cao L, Dunaway C, Valenta T, Basler K, et al. β-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nat Commun. 2016;7:12389 pubmed 出版商
  346. Liou A, Wu S, Liao C, Chang Y, Chang C, Shih C. A new animal model containing human SCARB2 and lacking stat-1 is highly susceptible to EV71. Sci Rep. 2016;6:31151 pubmed 出版商
  347. Qin S, Yang C, Zhang B, Li X, Sun X, Li G, et al. XIAP inhibits mature Smac-induced apoptosis by degrading it through ubiquitination in NSCLC. Int J Oncol. 2016;49:1289-96 pubmed 出版商
  348. Shi L, Fu T, Guan B, Chen J, Blando J, Allison J, et al. Interdependent IL-7 and IFN-? signalling in T-cell controls tumour eradication by combined ?-CTLA-4+?-PD-1 therapy. Nat Commun. 2016;7:12335 pubmed 出版商
  349. Johansson E, Rönö B, Johansson M, Lindgren D, Möller C, Axelson H, et al. Simultaneous targeted activation of Notch1 and Vhl-disruption in the kidney proximal epithelial tubular cells in mice. Sci Rep. 2016;6:30739 pubmed 出版商
  350. Medrano J, Rombaut C, Simon C, Pellicer A, Goossens E. Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions. Fertil Steril. 2016;106:1539-1549.e8 pubmed 出版商
  351. Petrovic N, Davidovic R, Jovanovic Cupic S, Krajnovic M, Lukic S, Petrovic M, et al. Changes in miR-221/222 Levels in Invasive and In Situ Carcinomas of the Breast: Differences in Association with Estrogen Receptor and TIMP3 Expression Levels. Mol Diagn Ther. 2016;20:603-615 pubmed
  352. Agrimson K, Onken J, Mitchell D, Topping T, Chiarini Garcia H, Hogarth C, et al. Characterizing the Spermatogonial Response to Retinoic Acid During the Onset of Spermatogenesis and Following Synchronization in the Neonatal Mouse Testis. Biol Reprod. 2016;95:81 pubmed
  353. Cheng H, Gaddis D, Wu R, McSkimming C, Haynes L, Taylor A, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J Clin Invest. 2016;126:3236-46 pubmed 出版商
  354. Hwang S, Cobb D, Bhadra R, Youngblood B, Khan I. Blimp-1-mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis. J Exp Med. 2016;213:1799-818 pubmed 出版商
  355. Debliquis A, Voirin J, Harzallah I, Maurer M, Lerintiu F, Drenou B, et al. Cytomorphology and flow cytometry of brain biopsy rinse fluid enables faster and multidisciplinary diagnosis of large B-cell lymphoma of the central nervous system. Cytometry B Clin Cytom. 2018;94:182-188 pubmed 出版商
  356. Chen H, Händel N, Ngeow J, Muller J, Huhn M, Yang H, et al. Immune dysregulation in patients with PTEN hamartoma tumor syndrome: Analysis of FOXP3 regulatory T cells. J Allergy Clin Immunol. 2017;139:607-620.e15 pubmed 出版商
  357. Komada M, Gendai Y, Kagawa N, Nagao T. Prenatal exposure to di(2-ethylhexyl) phthalate impairs development of the mouse neocortex. Toxicol Lett. 2016;259:69-79 pubmed 出版商
  358. Liu H, Li W, Yu X, Gao F, Duan Z, Ma X, et al. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis. Oncotarget. 2016;7:56338-56354 pubmed 出版商
  359. Wiley L, Burnight E, DeLuca A, Anfinson K, Cranston C, Kaalberg E, et al. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness. Sci Rep. 2016;6:30742 pubmed 出版商
  360. Seifert A, Zeng S, Zhang J, Kim T, Cohen N, Beckman M, et al. PD-1/PD-L1 Blockade Enhances T-cell Activity and Antitumor Efficacy of Imatinib in Gastrointestinal Stromal Tumors. Clin Cancer Res. 2017;23:454-465 pubmed 出版商
  361. Franzese O, Palermo B, Di Donna C, Sperduti I, Ferraresi V, Stabile H, et al. Polyfunctional Melan-A-specific tumor-reactive CD8(+) T cells elicited by dacarbazine treatment before peptide-vaccination depends on AKT activation sustained by ICOS. Oncoimmunology. 2016;5:e1114203 pubmed 出版商
  362. Fujimoto M, Yoshizawa A, Sumiyoshi S, Sonobe M, Menju T, Hirata M, et al. Adipophilin expression in lung adenocarcinoma is associated with apocrine-like features and poor clinical prognosis: an immunohistochemical study of 328 cases. Histopathology. 2017;70:232-241 pubmed 出版商
  363. Ta M, Schwensen K, Liuwantara D, Huso D, Watnick T, Rangan G. Constitutive renal Rel/nuclear factor-?B expression in Lewis polycystic kidney disease rats. World J Nephrol. 2016;5:339-57 pubmed 出版商
  364. Ashizawa T, Iizuka A, Nonomura C, Kondou R, Maeda C, Miyata H, et al. Antitumor Effect of Programmed Death-1 (PD-1) Blockade in Humanized the NOG-MHC Double Knockout Mouse. Clin Cancer Res. 2017;23:149-158 pubmed 出版商
  365. Kurita D, Takeuchi K, Kobayashi S, Hojo A, Uchino Y, Sakagami M, et al. A cyclin D1-negative mantle cell lymphoma with an IGL-CCND2 translocation that relapsed with blastoid morphology and aggressive clinical behavior. Virchows Arch. 2016;469:471-6 pubmed 出版商
  366. Lesina M, Wörmann S, Morton J, Diakopoulos K, Korneeva O, Wimmer M, et al. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. J Clin Invest. 2016;126:2919-32 pubmed 出版商
  367. Ugras N, Yerci O, Coşkun S, Ocakoglu G, Sarkut P, Dündar H. Retrospective analysis of clinicopathological features of solid pseudopapillary neoplasm of the pancreas. Kaohsiung J Med Sci. 2016;32:356-61 pubmed 出版商
  368. Zhou Y, Xu H, Ding Y, Lu Q, Zou M, Song P. AMPK?1 deletion in fibroblasts promotes tumorigenesis in athymic nude mice by p52-mediated elevation of erythropoietin and CDK2. Oncotarget. 2016;7:53654-53667 pubmed 出版商
  369. Stergiopoulos A, Politis P. Nuclear receptor NR5A2 controls neural stem cell fate decisions during development. Nat Commun. 2016;7:12230 pubmed 出版商
  370. Deléage C, Schuetz A, Alvord W, Johnston L, Hao X, Morcock D, et al. Impact of early cART in the gut during acute HIV infection. JCI Insight. 2016;1: pubmed
  371. Takasaki C, Kobayashi M, Ishibashi H, Akashi T, Okubo K. Expression of hypoxia-inducible factor-1? affects tumor proliferation and antiapoptosis in surgically resected lung cancer. Mol Clin Oncol. 2016;5:295-300 pubmed
  372. Liu Y, Wang K, Xing H, Zhai X, Wang L, Wang W. Attempt towards a novel classification of triple-negative breast cancer using immunohistochemical markers. Oncol Lett. 2016;12:1240-1256 pubmed
  373. Sauter K, Waddell L, Lisowski Z, Young R, Lefèvre L, Davis G, et al. Macrophage colony-stimulating factor (CSF1) controls monocyte production and maturation and the steady-state size of the liver in pigs. Am J Physiol Gastrointest Liver Physiol. 2016;311:G533-47 pubmed 出版商
  374. Choi J, Park S, Khang S, Suh Y, Kim S, Lee Y, et al. Hemangiopericytomas in the Central Nervous System: A Multicenter Study of Korean Cases with Validation of the Usage of STAT6 Immunohistochemistry for Diagnosis of Disease. Ann Surg Oncol. 2016;23:954-961 pubmed
  375. Metz H, Kargl J, Busch S, Kim K, Kurland B, Abberbock S, et al. Insulin receptor substrate-1 deficiency drives a proinflammatory phenotype in KRAS mutant lung adenocarcinoma. Proc Natl Acad Sci U S A. 2016;113:8795-800 pubmed 出版商
  376. Parsa R, Lund H, Georgoudaki A, Zhang X, Ortlieb Guerreiro Cacais A, Grommisch D, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med. 2016;213:1537-53 pubmed 出版商
  377. DeGottardi M, Okoye A, Vaidya M, Talla A, Konfe A, Reyes M, et al. Effect of Anti-IL-15 Administration on T Cell and NK Cell Homeostasis in Rhesus Macaques. J Immunol. 2016;197:1183-98 pubmed 出版商
  378. Urbán N, van den Berg D, Forget A, Andersen J, Demmers J, Hunt C, et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science. 2016;353:292-5 pubmed 出版商
  379. Cox A, Barrandon O, Cai E, Rios J, Chavez J, Bonnyman C, et al. Resolving Discrepant Findings on ANGPTL8 in ?-Cell Proliferation: A Collaborative Approach to Resolving the Betatrophin Controversy. PLoS ONE. 2016;11:e0159276 pubmed 出版商
  380. Chen H, Wei Z, Sun J, Bhattacharya A, Savage D, Serda R, et al. A recellularized human colon model identifies cancer driver genes. Nat Biotechnol. 2016;34:845-51 pubmed 出版商
  381. Bigot P, Colli L, Machiela M, Jessop L, Myers T, Carrouget J, et al. Functional characterization of the 12p12.1 renal cancer-susceptibility locus implicates BHLHE41. Nat Commun. 2016;7:12098 pubmed 出版商
  382. Huang Z, Hu J, Pan J, Wang Y, Hu G, Zhou J, et al. YAP stabilizes SMAD1 and promotes BMP2-induced neocortical astrocytic differentiation. Development. 2016;143:2398-409 pubmed 出版商
  383. Nooh H, Nour Eldien N. The dual anti-inflammatory and antioxidant activities of natural honey promote cell proliferation and neural regeneration in a rat model of colitis. Acta Histochem. 2016;118:588-595 pubmed 出版商
  384. Liang Y, Zhu F, Zhang H, Chen D, Zhang X, Gao Q, et al. Conditional ablation of TGF-? signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model. Sci Rep. 2016;6:29479 pubmed 出版商
  385. Lukjanenko L, Jung M, Hegde N, Perruisseau Carrier C, Migliavacca E, Rozo M, et al. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat Med. 2016;22:897-905 pubmed 出版商
  386. Adriaens C, Standaert L, Barra J, Latil M, Verfaillie A, Kalev P, et al. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med. 2016;22:861-8 pubmed 出版商
  387. Zhang Q, Liu S, Parajuli K, Zhang W, Zhang K, Mo Z, et al. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene. 2017;36:687-699 pubmed 出版商
  388. Stock K, Estrada M, Vidic S, Gjerde K, Rudisch A, Santo V, et al. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery. Sci Rep. 2016;6:28951 pubmed 出版商
  389. Li Y, Jalili R, Ghahary A. Accelerating skin wound healing by M-CSF through generating SSEA-1 and -3 stem cells in the injured sites. Sci Rep. 2016;6:28979 pubmed 出版商
  390. Bai H, Wang M, Foster T, Hu H, He H, Hashimoto T, et al. Pericardial patch venoplasty heals via attraction of venous progenitor cells. Physiol Rep. 2016;4: pubmed 出版商
  391. Gulhane M, Murray L, Lourie R, Tong H, Sheng Y, Wang R, et al. High Fat Diets Induce Colonic Epithelial Cell Stress and Inflammation that is Reversed by IL-22. Sci Rep. 2016;6:28990 pubmed 出版商
  392. Li Y, Zhang J, Xu Y, Han Y, Jiang B, Huang L, et al. The Histopathological Investigation of Red and Blue Light Emitting Diode on Treating Skin Wounds in Japanese Big-Ear White Rabbit. PLoS ONE. 2016;11:e0157898 pubmed 出版商
  393. Gao S, Fan C, Huang H, Zhu C, Su M, Zhang Y. Effects of HCG on human epithelial ovarian cancer vasculogenic mimicry formation in vivo. Oncol Lett. 2016;12:459-466 pubmed
  394. Guan C, Zhang J, Zhang J, Shi H, Ni R. Enhanced expression of early mitotic inhibitor-1 predicts a poor prognosis in esophageal squamous cell carcinoma patients. Oncol Lett. 2016;12:114-120 pubmed
  395. Barcus C, Keely P, Eliceiri K, Schuler L. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget. 2016;7:48093-48106 pubmed 出版商
  396. Dutta A, Le Magnen C, Mitrofanova A, Ouyang X, Califano A, Abate Shen C. Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science. 2016;352:1576-80 pubmed 出版商
  397. Dai Y, Miao Y, Wu W, Li Y, D Errico F, Su W, et al. Ablation of Liver X receptors ? and ? leads to spontaneous peripheral squamous cell lung cancer in mice. Proc Natl Acad Sci U S A. 2016;113:7614-9 pubmed 出版商
  398. Hall Z, Ament Z, Wilson C, Burkhart D, Ashmore T, Koulman A, et al. Myc Expression Drives Aberrant Lipid Metabolism in Lung Cancer. Cancer Res. 2016;76:4608-18 pubmed 出版商
  399. Wu J, Hussaini S, Bastille I, Rodriguez G, Mrejeru A, Rilett K, et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci. 2016;19:1085-92 pubmed 出版商
  400. Papafotiou G, Paraskevopoulou V, Vasilaki E, Kanaki Z, Paschalidis N, Klinakis A. KRT14 marks a subpopulation of bladder basal cells with pivotal role in regeneration and tumorigenesis. Nat Commun. 2016;7:11914 pubmed 出版商
  401. Borowiec A, Sion B, Chalmel F, D Rolland A, Lemonnier L, De Clerck T, et al. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation. FASEB J. 2016;30:3155-70 pubmed 出版商
  402. Fu T, Yang W, Zhang X, Xu X. Peripheral T-cell lymphoma unspecified type presenting with a pneumothorax as the initial manifestation: A case report and literature review. Oncol Lett. 2016;11:4069-4076 pubmed
  403. Arbore G, West E, Spolski R, Robertson A, Klos A, Rheinheimer C, et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4⁺ T cells. Science. 2016;352:aad1210 pubmed 出版商
  404. Fame R, MacDonald J, Dunwoodie S, Takahashi E, Macklis J. Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity. J Neurosci. 2016;36:6403-19 pubmed 出版商
  405. Muroyama A, Seldin L, Lechler T. Divergent regulation of functionally distinct γ-tubulin complexes during differentiation. J Cell Biol. 2016;213:679-92 pubmed 出版商
  406. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  407. Xu Y, Chaudhury A, Zhang M, Savoldo B, Metelitsa L, Rodgers J, et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Invest. 2016;126:2678-88 pubmed 出版商
  408. Hoefflin R, Lahrmann B, Warsow G, Hübschmann D, Spath C, Walter B, et al. Spatial niche formation but not malignant progression is a driving force for intratumoural heterogeneity. Nat Commun. 2016;7:ncomms11845 pubmed 出版商
  409. Huber M, Falkenberg N, Hauck S, Priller M, Braselmann H, Feuchtinger A, et al. Cyr61 and YB-1 are novel interacting partners of uPAR and elevate the malignancy of triple-negative breast cancer. Oncotarget. 2016;7:44062-44075 pubmed 出版商
  410. Bergler T, Jung B, Bourier F, Kühne L, Banas M, Rümmele P, et al. Infiltration of Macrophages Correlates with Severity of Allograft Rejection and Outcome in Human Kidney Transplantation. PLoS ONE. 2016;11:e0156900 pubmed 出版商
  411. Oktay Y, Ãœlgen E, Can Ã, Akyerli C, Yüksel Å, Erdemgil Y, et al. IDH-mutant glioma specific association of rs55705857 located at 8q24.21 involves MYC deregulation. Sci Rep. 2016;6:27569 pubmed 出版商
  412. Bouchard G, Therriault H, Geha S, Bérubé Lauzière Y, Bujold R, Saucier C, et al. Stimulation of triple negative breast cancer cell migration and metastases formation is prevented by chloroquine in a pre-irradiated mouse model. BMC Cancer. 2016;16:361 pubmed 出版商
  413. Fox R, Lytle N, Jaquish D, Park F, Ito T, Bajaj J, et al. Image-based detection and targeting of therapy resistance in pancreatic adenocarcinoma. Nature. 2016;534:407-411 pubmed 出版商
  414. Hanna J, Garcia M, Go J, Finkelstein D, Kodali K, Pagala V, et al. PAX7 is a required target for microRNA-206-induced differentiation of fusion-negative rhabdomyosarcoma. Cell Death Dis. 2016;7:e2256 pubmed 出版商
  415. Lu B, Chen Q, Zhang X, Cheng L. Serous carcinoma arising from uterine adenomyosis/adenomyotic cyst of the cervical stump: a report of 3 cases. Diagn Pathol. 2016;11:46 pubmed 出版商
  416. Szalayova G, Ogrodnik A, Spencer B, Wade J, Bunn J, Ambaye A, et al. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation. Breast Cancer Res Treat. 2016;157:461-74 pubmed 出版商
  417. Sigl V, Owusu Boaitey K, Joshi P, Kavirayani A, Wirnsberger G, Novatchkova M, et al. RANKL/RANK control Brca1 mutation- . Cell Res. 2016;26:761-74 pubmed 出版商
  418. Quarta M, Brett J, DiMarco R, de Morrée A, Boutet S, Chacon R, et al. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol. 2016;34:752-9 pubmed 出版商
  419. Schulz A, Büttner R, Hagel C, Baader S, Kluwe L, Salamon J, et al. The importance of nerve microenvironment for schwannoma development. Acta Neuropathol. 2016;132:289-307 pubmed 出版商
  420. Goodier M, Rodríguez Galán A, Lusa C, Nielsen C, Darboe A, Moldoveanu A, et al. Influenza Vaccination Generates Cytokine-Induced Memory-like NK Cells: Impact of Human Cytomegalovirus Infection. J Immunol. 2016;197:313-25 pubmed 出版商
  421. Morales I, Sánchez A, Rodriguez Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016;139:81-95 pubmed 出版商
  422. Rigden H, Alias A, Havelock T, O Donnell R, Djukanovic R, Davies D, et al. Squamous Metaplasia Is Increased in the Bronchial Epithelium of Smokers with Chronic Obstructive Pulmonary Disease. PLoS ONE. 2016;11:e0156009 pubmed 出版商
  423. Kanda M, Nagai T, Takahashi T, Liu M, Kondou N, Naito A, et al. Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction. PLoS ONE. 2016;11:e0156562 pubmed 出版商
  424. Nooij L, Dreef E, Smit V, van Poelgeest M, Bosse T. Stathmin is a highly sensitive and specific biomarker for vulvar high-grade squamous intraepithelial lesions. J Clin Pathol. 2016;69:1070-1075 pubmed 出版商
  425. Roth Flach R, Danai L, DiStefano M, Kelly M, Menendez L, Jurczyk A, et al. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia. J Biol Chem. 2016;291:16221-30 pubmed 出版商
  426. Elbaz B, Traka M, Kunjamma R, Dukala D, Brosius Lutz A, Anton E, et al. Adenomatous polyposis coli regulates radial axonal sorting and myelination in the PNS. Development. 2016;143:2356-66 pubmed 出版商
  427. Yajima H, Kawakami K. Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. Dev Growth Differ. 2016;58:546-61 pubmed 出版商
  428. Roy A, Femel J, Huijbers E, Spillmann D, Larsson E, Ringvall M, et al. Targeting Serglycin Prevents Metastasis in Murine Mammary Carcinoma. PLoS ONE. 2016;11:e0156151 pubmed 出版商
  429. Leggere J, Saito Y, Darnell R, Tessier Lavigne M, Junge H, Chen Z. NOVA regulates Dcc alternative splicing during neuronal migration and axon guidance in the spinal cord. elife. 2016;5: pubmed 出版商
  430. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  431. Piton N, Wason J, Colasse É, Cornic M, Lemoine F, Le Pessot F, et al. Endoplasmic reticulum stress, unfolded protein response and development of colon adenocarcinoma. Virchows Arch. 2016;469:145-54 pubmed 出版商
  432. Leo F, Bartels S, Mägel L, Framke T, Büsche G, Jonigk D, et al. Prognostic factors in the myoepithelial-like spindle cell type of metaplastic breast cancer. Virchows Arch. 2016;469:191-201 pubmed 出版商
  433. Torrano V, Valcarcel Jimenez L, Cortazar A, Liu X, Urosevic J, Castillo Martin M, et al. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat Cell Biol. 2016;18:645-656 pubmed 出版商
  434. Sun F, Zhang Z, Tan E, Lim Z, Li Y, Wang X, et al. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice. Carcinogenesis. 2016;37:701-711 pubmed 出版商
  435. Albino D, Civenni G, Dallavalle C, Roos M, Jahns H, Curti L, et al. Activation of the Lin28/let-7 Axis by Loss of ESE3/EHF Promotes a Tumorigenic and Stem-like Phenotype in Prostate Cancer. Cancer Res. 2016;76:3629-43 pubmed 出版商
  436. Chung M, Lee J, Kim S, Suh Y, Choi H. Simple Prediction Model of Axillary Lymph Node Positivity After Analyzing Molecular and Clinical Factors in Early Breast Cancer. Medicine (Baltimore). 2016;95:e3689 pubmed 出版商
  437. Jensen L, Jørgensen L, Bech R, Frandsen U, Schrøder H. Skeletal Muscle Remodelling as a Function of Disease Progression in Amyotrophic Lateral Sclerosis. Biomed Res Int. 2016;2016:5930621 pubmed 出版商
  438. El Maassarani M, Barbarin A, Fromont G, Kaissi O, Lebbe M, Vannier B, et al. Integrated and Functional Genomics Analysis Validates the Relevance of the Nuclear Variant ErbB380kDa in Prostate Cancer Progression. PLoS ONE. 2016;11:e0155950 pubmed 出版商
  439. Chen P, Qin L, Li G, Tellides G, Simons M. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med. 2016;8:712-28 pubmed 出版商
  440. Zhang H, Prado K, Zhang K, Peek E, Lee J, Wang X, et al. Biased Expression of the FOXP3Δ3 Isoform in Aggressive Bladder Cancer Mediates Differentiation and Cisplatin Chemotherapy Resistance. Clin Cancer Res. 2016;22:5349-5361 pubmed
  441. Zhang X, Ye C, Sun F, Wei W, Hu B, Wang J. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation. PLoS ONE. 2016;11:e0155725 pubmed 出版商
  442. de Jong P, Taniguchi K, Harris A, Bertin S, Takahashi N, Duong J, et al. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nat Commun. 2016;7:11551 pubmed 出版商
  443. Cherepanova O, Gomez D, Shankman L, Swiatlowska P, Williams J, Sarmento O, et al. Activation of the pluripotency factor OCT4 in smooth muscle cells is atheroprotective. Nat Med. 2016;22:657-65 pubmed 出版商
  444. Oishi S, Premarathne S, Harvey T, Iyer S, Dixon C, Alexander S, et al. Usp9x-deficiency disrupts the morphological development of the postnatal hippocampal dentate gyrus. Sci Rep. 2016;6:25783 pubmed 出版商
  445. Zhang Z, Meng G, Wang L, Ma Y, Guan Z. The prognostic role and reduced expression of FOXJ2 in human hepatocellular carcinoma. Mol Med Rep. 2016;14:254-62 pubmed 出版商
  446. Kriegbaum M, Jacobsen B, Füchtbauer A, Hansen G, Christensen I, Rundsten C, et al. C4.4A gene ablation is compatible with normal epidermal development and causes modest overt phenotypes. Sci Rep. 2016;6:25833 pubmed 出版商
  447. Schuster C, Akslen L, Straume O. Expression of Heat Shock Protein 27 in Melanoma Metastases Is Associated with Overall Response to Bevacizumab Monotherapy: Analyses of Predictive Markers in a Clinical Phase II Study. PLoS ONE. 2016;11:e0155242 pubmed 出版商
  448. Xue H, Yuan G, Guo X, Liu Q, Zhang J, Gao X, et al. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy. 2016;12:1129-52 pubmed 出版商
  449. De Filippis L, Halikere A, McGowan H, Moore J, Tischfield J, Hart R, et al. Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells. Mol Brain. 2016;9:51 pubmed 出版商
  450. Tuşaliu M, Zainea V, Mogoantă C, Dragu A, GoanŢă C, Niţescu M, et al. Diagnostic and therapeutic aspects in malignant sinonasal lymphoma. Rom J Morphol Embryol. 2016;57:233-6 pubmed
  451. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385 pubmed 出版商
  452. Wang L, Lee K, Malonis R, SANCHEZ I, Dynlacht B. Tethering of an E3 ligase by PCM1 regulates the abundance of centrosomal KIAA0586/Talpid3 and promotes ciliogenesis. elife. 2016;5: pubmed 出版商
  453. Chen P, Hsiao J, Sirois C, Chamberlain S. RBFOX1 and RBFOX2 are dispensable in iPSCs and iPSC-derived neurons and do not contribute to neural-specific paternal UBE3A silencing. Sci Rep. 2016;6:25368 pubmed 出版商
  454. Kam J, Dumontier E, Baim C, Brignall A, Mendes da Silva D, Cowan M, et al. RGMB and neogenin control cell differentiation in the developing olfactory epithelium. Development. 2016;143:1534-46 pubmed 出版商
  455. Yao Y, Norris E, Mason C, Strickland S. Laminin regulates PDGFR?(+) cell stemness and muscle development. Nat Commun. 2016;7:11415 pubmed 出版商
  456. Nietzer S, Baur F, Sieber S, Hansmann J, Schwarz T, Stoffer C, et al. Mimicking Metastases Including Tumor Stroma: A New Technique to Generate a Three-Dimensional Colorectal Cancer Model Based on a Biological Decellularized Intestinal Scaffold. Tissue Eng Part C Methods. 2016;22:621-35 pubmed 出版商
  457. Xu X, Meng Q, Erben U, Wang P, Glauben R, Kuhl A, et al. Myeloid-derived suppressor cells promote B-cell production of IgA in a TNFR2-dependent manner. Cell Mol Immunol. 2017;14:597-606 pubmed 出版商
  458. Li D, Xie K, Zhang L, Yao X, Li H, Xu Q, et al. Dual blockade of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) exhibits potent anti-angiogenic effects. Cancer Lett. 2016;377:164-73 pubmed 出版商
  459. Nakamura R, Koshiba Takeuchi K, Tsuchiya M, Kojima M, Miyazawa A, Ito K, et al. Expression analysis of Baf60c during heart regeneration in axolotls and neonatal mice. Dev Growth Differ. 2016;58:367-82 pubmed 出版商
  460. Lombardi R, Chen S, Ruggiero A, Gurha P, Czernuszewicz G, Willerson J, et al. Cardiac Fibro-Adipocyte Progenitors Express Desmosome Proteins and Preferentially Differentiate to Adipocytes Upon Deletion of the Desmoplakin Gene. Circ Res. 2016;119:41-54 pubmed 出版商
  461. Noda K, Kitami M, Kitami K, Kaku M, Komatsu Y. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A. 2016;113:E2589-97 pubmed 出版商
  462. Sánchez A, Urrego D, Pardo L. Cyclic expression of the voltage-gated potassium channel KV10.1 promotes disassembly of the primary cilium. EMBO Rep. 2016;17:708-23 pubmed 出版商
  463. Ren M, Du C, Herrero Acero E, Tang Schomer M, Ozkucur N. A biofidelic 3D culture model to study the development of brain cellular systems. Sci Rep. 2016;6:24953 pubmed 出版商
  464. Kishimoto Y, Kishimoto A, Ye S, Kendziorski C, Welham N. Modeling fibrosis using fibroblasts isolated from scarred rat vocal folds. Lab Invest. 2016;96:807-16 pubmed 出版商
  465. Yasuda T, Fukada T, Nishida K, Nakayama M, Matsuda M, Miura I, et al. Hyperactivation of JAK1 tyrosine kinase induces stepwise, progressive pruritic dermatitis. J Clin Invest. 2016;126:2064-76 pubmed 出版商
  466. Heilmann T, Dittmann L, van Mackelenbergh M, Mundhenke C, Weimer J, Arnold N, et al. Head-to-head comparison of the impact of Aurora A, Aurora B, Repp86, CDK1, CDK2 and Ki67 expression in two of the most relevant gynaecological tumor entities. Arch Gynecol Obstet. 2016;294:813-23 pubmed 出版商
  467. Titmarsh D, Glass N, Mills R, Hidalgo A, Wolvetang E, Porrello E, et al. Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays. Sci Rep. 2016;6:24637 pubmed 出版商
  468. Wilkinson R, Young A, Burden R, Williams R, Scott C. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development. Mol Cancer. 2016;15:29 pubmed 出版商
  469. Bartram M, Amendola E, Benzing T, Schermer B, De Vita G, Muller R. Mice lacking microRNAs in Pax8-expressing cells develop hypothyroidism and end-stage renal failure. BMC Mol Biol. 2016;17:11 pubmed 出版商
  470. Burridge P, Li Y, Matsa E, Wu H, Ong S, Sharma A, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med. 2016;22:547-56 pubmed 出版商
  471. O Leary C, Riling C, Spruce L, Ding H, Kumar S, Deng G, et al. Ndfip-mediated degradation of Jak1 tunes cytokine signalling to limit expansion of CD4+ effector T cells. Nat Commun. 2016;7:11226 pubmed 出版商
  472. Lu C, Thoeni C, Connor A, Kawabe H, Gallinger S, Rotin D. Intestinal knockout of Nedd4 enhances growth of Apcmin tumors. Oncogene. 2016;35:5839-5849 pubmed 出版商
  473. Waisbourd Zinman O, Koh H, Tsai S, Lavrut P, Dang C, Zhao X, et al. The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17. Hepatology. 2016;64:880-93 pubmed 出版商
  474. Timraz S, Farhat I, Alhussein G, Christoforou N, Teo J. In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering. Exp Cell Res. 2016;343:168-176 pubmed 出版商
  475. Wang S, Gao X, Shen G, Wang W, Li J, Zhao J, et al. Interleukin-10 deficiency impairs regulatory T cell-derived neuropilin-1 functions and promotes Th1 and Th17 immunity. Sci Rep. 2016;6:24249 pubmed 出版商
  476. Itkin T, Gur Cohen S, Spencer J, Schajnovitz A, Ramasamy S, Kusumbe A, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532:323-8 pubmed 出版商
  477. Ma Z, Shou K, Li Z, Jian C, Qi B, Yu A. Negative pressure wound therapy promotes vessel destabilization and maturation at various stages of wound healing and thus influences wound prognosis. Exp Ther Med. 2016;11:1307-1317 pubmed
  478. Dührsen L, Emami P, Matschke J, Abboud T, Westphal M, Regelsberger J. Meninigiomas of the Craniocervical Junction--A Distinctive Subgroup of Meningiomas. PLoS ONE. 2016;11:e0153405 pubmed 出版商
  479. Hellstrom M, Moreno Moya J, Bandstein S, Bom E, Akouri R, Miyazaki K, et al. Bioengineered uterine tissue supports pregnancy in a rat model. Fertil Steril. 2016;106:487-496.e1 pubmed 出版商
  480. Huang G, Yang X, Chen K, Xing J, Guo L, Zhu L, et al. Porf-2 Inhibits Neural Stem Cell Proliferation Through Wnt/?-Catenin Pathway by Its GAP Domain. Front Cell Neurosci. 2016;10:85 pubmed 出版商
  481. Haemmerle M, Bottsford Miller J, Pradeep S, Taylor M, Choi H, Hansen J, et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest. 2016;126:1885-96 pubmed 出版商
  482. Wezel A, De Vries M, Maassen J, Kip P, Peters E, Karper J, et al. Deficiency of the TLR4 analogue RP105 aggravates vein graft disease by inducing a pro-inflammatory response. Sci Rep. 2016;6:24248 pubmed 出版商
  483. Chen G, Luo Y, Eriksson D, Meng X, Qian C, Bauerle T, et al. High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6. Oncotarget. 2016;7:26653-69 pubmed 出版商
  484. Balasooriya G, Johnson J, Basson M, Rawlins E. An FGFR1-SPRY2 Signaling Axis Limits Basal Cell Proliferation in the Steady-State Airway Epithelium. Dev Cell. 2016;37:85-97 pubmed 出版商
  485. Rhee M, Lee S, Kim J, Ham D, Park H, Yang H, et al. Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells. Sci Rep. 2016;6:23960 pubmed 出版商
  486. Papadakis E, Barker C, Syed H, Reeves T, Schwaiger S, Stuppner H, et al. The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ. Oncogenesis. 2016;5:e215 pubmed 出版商
  487. Fossmark R, Rao S, Mjønes P, Munkvold B, Flatberg A, Varro A, et al. PAI-1 deficiency increases the trophic effects of hypergastrinemia in the gastric corpus mucosa. Peptides. 2016;79:83-94 pubmed 出版商
  488. Rueda C, Presicce P, Jackson C, Miller L, Kallapur S, Jobe A, et al. Lipopolysaccharide-Induced Chorioamnionitis Promotes IL-1-Dependent Inflammatory FOXP3+ CD4+ T Cells in the Fetal Rhesus Macaque. J Immunol. 2016;196:3706-15 pubmed 出版商
  489. Lee J, Han A, Lee S, Min W, Kim H. Co-culture with podoplanin+ cells protects leukemic blast cells with leukemia-associated antigens in the tumor microenvironment. Mol Med Rep. 2016;13:3849-57 pubmed 出版商
  490. Lian Y, Yuan J, Cui Q, Feng Q, Xu M, Bei J, et al. Upregulation of KLHDC4 Predicts a Poor Prognosis in Human Nasopharyngeal Carcinoma. PLoS ONE. 2016;11:e0152820 pubmed 出版商
  491. Li C, Jiang W, Hu Q, Li L, Dong L, Chen R, et al. Enhancing DPYSL3 gene expression via a promoter-targeted small activating RNA approach suppresses cancer cell motility and metastasis. Oncotarget. 2016;7:22893-910 pubmed 出版商
  492. Nagao M, Ogata T, Sawada Y, Gotoh Y. Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun. 2016;7:11102 pubmed 出版商
  493. Esbona K, Inman D, Saha S, Jeffery J, Schedin P, Wilke L, et al. COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Res. 2016;18:35 pubmed 出版商
  494. Carbognin L, Sperduti I, Brunelli M, Marcolini L, Nortilli R, Pilotto S, et al. Subpopulation Treatment Effect Pattern Plot (STEPP) analysis of Ki67 assay according to histology: prognostic relevance for resected early stage 'pure' and 'mixed' lobular breast cancer. J Exp Clin Cancer Res. 2016;35:50 pubmed 出版商
  495. Hes O, Condom Mundo E, Peckova K, Lopez J, Martinek P, Vanecek T, et al. Biphasic Squamoid Alveolar Renal Cell Carcinoma: A Distinctive Subtype of Papillary Renal Cell Carcinoma?. Am J Surg Pathol. 2016;40:664-75 pubmed 出版商
  496. Martin B, Wang C, Zhang C, Kang Z, Gulen M, Zepp J, et al. T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol. 2016;17:583-92 pubmed 出版商
  497. Lee I, Maniar K, Lydon J, Kim J. Akt regulates progesterone receptor B-dependent transcription and angiogenesis in endometrial cancer cells. Oncogene. 2016;35:5191-201 pubmed 出版商
  498. Yuan X, Cao J, He X, Serra R, Qu J, Cao X, et al. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nat Commun. 2016;7:11024 pubmed 出版商
  499. Destouches D, Sader M, Terry S, Marchand C, Maillé P, Soyeux P, et al. Implication of NPM1 phosphorylation and preclinical evaluation of the nucleoprotein antagonist N6L in prostate cancer. Oncotarget. 2016;7:69397-69411 pubmed 出版商
  500. Fonseca F, Bingle L, Santos Silva A, Lopes M, Coletta R, de Andrade B, et al. Immunoexpression of hoxb7 and hoxb9 in salivary gland tumours. J Oral Pathol Med. 2016;45:672-681 pubmed 出版商
  501. Liang L, Olar A, Niu N, Jiang Y, Cheng W, Bian X, et al. Primary Glial and Neuronal Tumors of the Ovary or Peritoneum: A Clinicopathologic Study of 11 Cases. Am J Surg Pathol. 2016;40:847-56 pubmed 出版商
  502. Mohammad G, Olde Damink S, Malago M, Dhar D, Pereira S. Pyruvate Kinase M2 and Lactate Dehydrogenase A Are Overexpressed in Pancreatic Cancer and Correlate with Poor Outcome. PLoS ONE. 2016;11:e0151635 pubmed 出版商
  503. Gomez de Agüero M, Ganal Vonarburg S, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351:1296-302 pubmed 出版商
  504. Panousopoulou E, Hobbs C, Mason I, Green J, Formstone C. Epiboly generates the epidermal basal monolayer and spreads the nascent mammalian skin to enclose the embryonic body. J Cell Sci. 2016;129:1915-27 pubmed 出版商
  505. Ravindran R, Loebbermann J, Nakaya H, Khan N, Ma H, Gama L, et al. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature. 2016;531:523-527 pubmed 出版商
  506. Ye L, Qiu L, Zhang H, Chen H, Jiang C, Hong H, et al. Cardiomyocytes in Young Infants With Congenital Heart Disease: a Three-Month Window of Proliferation. Sci Rep. 2016;6:23188 pubmed 出版商
  507. Murai K, Sun G, Ye P, Tian E, Yang S, Cui Q, et al. The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model. Nat Commun. 2016;7:10965 pubmed 出版商
  508. Simitsidellis I, Gibson D, Cousins F, Esnal Zufiaurre A, Saunders P. A Role for Androgens in Epithelial Proliferation and Formation of Glands in the Mouse Uterus. Endocrinology. 2016;157:2116-28 pubmed 出版商
  509. Alkner S, Bendahl P, Ehinger A, Lövgren K, Rydén L, Fernö M. Prior Adjuvant Tamoxifen Treatment in Breast Cancer Is Linked to Increased AIB1 and HER2 Expression in Metachronous Contralateral Breast Cancer. PLoS ONE. 2016;11:e0150977 pubmed 出版商
  510. Beaumatin F, El Dhaybi M, Lasserre J, Salin B, Moyer M, Verdier M, et al. N52 monodeamidated Bcl‑xL shows impaired oncogenic properties in vivo and in vitro. Oncotarget. 2016;7:17129-43 pubmed 出版商
  511. Lin H, Ouyang H, Zhu J, Huang S, Liu Z, Chen S, et al. Lens regeneration using endogenous stem cells with gain of visual function. Nature. 2016;531:323-8 pubmed 出版商
  512. Dadiani M, Bossel Ben Moshe N, Paluch Shimon S, Perry G, Balint N, Marin I, et al. Tumor Evolution Inferred by Patterns of microRNA Expression through the Course of Disease, Therapy, and Recurrence in Breast Cancer. Clin Cancer Res. 2016;22:3651-62 pubmed 出版商
  513. Luque R, Villa Osaba A, L López F, Pozo Salas A, Sánchez Sánchez R, Ortega Salas R, et al. Lack of cortistatin or somatostatin differentially influences DMBA-induced mammary gland tumorigenesis in mice in an obesity-dependent mode. Breast Cancer Res. 2016;18:29 pubmed 出版商
  514. Tomann P, Paus R, Millar S, Scheidereit C, Schmidt Ullrich R. Lhx2 is a direct NF-κB target gene that promotes primary hair follicle placode down-growth. Development. 2016;143:1512-22 pubmed 出版商
  515. Shukla P, Chaudhry K, Mir H, Gangwar R, Yadav N, Manda B, et al. Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation. BMC Cancer. 2016;16:189 pubmed 出版商
  516. Camarda R, Zhou A, Kohnz R, Balakrishnan S, Mahieu C, Anderton B, et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med. 2016;22:427-32 pubmed 出版商
  517. van den Brand M, Balagué O, van Cleef P, Groenen P, Hebeda K, de Jong D, et al. A subset of low-grade B cell lymphomas with a follicular growth pattern but without a BCL2 translocation shows features suggestive of nodal marginal zone lymphoma. J Hematop. 2016;9:3-8 pubmed
  518. Sobecki M, Mrouj K, Camasses A, Parisis N, Nicolas E, Llères D, et al. The cell proliferation antigen Ki-67 organises heterochromatin. elife. 2016;5:e13722 pubmed 出版商
  519. Loewen J, Barker Haliski M, Dahle E, White H, Wilcox K. Neuronal Injury, Gliosis, and Glial Proliferation in Two Models of Temporal Lobe Epilepsy. J Neuropathol Exp Neurol. 2016;75:366-78 pubmed 出版商
  520. Dhar S, Kumar A, Zhang L, Rimando A, Lage J, Lewin J, et al. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget. 2016;7:18469-84 pubmed 出版商
  521. McGranahan N, Furness A, Rosenthal R, Ramskov S, Lyngaa R, Saini S, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463-9 pubmed 出版商
  522. Wang W, Jossin Y, Chai G, Lien W, Tissir F, Goffinet A. Feedback regulation of apical progenitor fate by immature neurons through Wnt7-Celsr3-Fzd3 signalling. Nat Commun. 2016;7:10936 pubmed 出版商
  523. Lee E, Oh J, Selvaraj S, Park S, Choi M, Spanel R, et al. Immunogenomics reveal molecular circuits of diclofenac induced liver injury in mice. Oncotarget. 2016;7:14983-5017 pubmed 出版商
  524. Kumar A, Coleman I, Morrissey C, Zhang X, True L, Gulati R, et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med. 2016;22:369-78 pubmed 出版商
  525. Kai T, Tsukamoto Y, Hijiya N, Tokunaga A, Nakada C, Uchida T, et al. Kidney-specific knockout of Sav1 in the mouse promotes hyperproliferation of renal tubular epithelium through suppression of the Hippo pathway. J Pathol. 2016;239:97-108 pubmed 出版商
  526. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  527. Lanza D, Dawson E, Rao P, Heaney J. Misexpression of cyclin D1 in embryonic germ cells promotes testicular teratoma initiation. Cell Cycle. 2016;15:919-30 pubmed 出版商
  528. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  529. Ji C, Zhou M, Gan W, Zheng J, Yan X, Guo H. Advanced prostatic ductal carcinoma in a patient with a long survival time following a total pelvis exenteration: A case report. Oncol Lett. 2016;11:1509-1511 pubmed
  530. Kan H, Huang Y, Li X, Liu D, Chen J, Shu M. Zinc finger protein ZBTB20 is an independent prognostic marker and promotes tumor growth of human hepatocellular carcinoma by repressing FoxO1. Oncotarget. 2016;7:14336-49 pubmed 出版商
  531. Yu W, Huang X, Tian X, Zhang H, He L, Wang Y, et al. GATA4 regulates Fgf16 to promote heart repair after injury. Development. 2016;143:936-49 pubmed 出版商
  532. Zhang W, Kim P, Chen Z, Lokman H, Qiu L, Zhang K, et al. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. elife. 2016;5: pubmed 出版商
  533. Liang H, Li X, Wang B, Chen B, Zhao Y, Sun J, et al. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix. Sci Rep. 2016;6:18205 pubmed 出版商
  534. Li X, Wu J, Li Q, Shigemura K, Chung L, Huang W. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer. Oncotarget. 2016;7:12869-84 pubmed 出版商
  535. Oyewumi M, Manickavasagam D, Novak K, Wehrung D, Paulic N, Moussa F, et al. Osteoactivin (GPNMB) ectodomain protein promotes growth and invasive behavior of human lung cancer cells. Oncotarget. 2016;7:13932-44 pubmed 出版商
  536. Du L, Chen X, Cao Y, Lu L, Zhang F, Bornstein S, et al. Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling. Oncogene. 2016;35:4641-52 pubmed 出版商
  537. Passer D, van de Vrugt A, Atmanli A, Domian I. Atypical Protein Kinase C-Dependent Polarized Cell Division Is Required for Myocardial Trabeculation. Cell Rep. 2016;14:1662-1672 pubmed 出版商
  538. Waters A, Stewart J, Atigadda V, Mroczek Musulman E, Muccio D, Grubbs C, et al. Preclinical Evaluation of UAB30 in Pediatric Renal and Hepatic Malignancies. Mol Cancer Ther. 2016;15:911-21 pubmed 出版商
  539. Scognamiglio R, Cabezas Wallscheid N, Thier M, Altamura S, Reyes A, Prendergast Ã, et al. Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell. 2016;164:668-80 pubmed 出版商
  540. Singh N, Kotla S, Kumar R, Rao G. Cyclic AMP Response Element Binding Protein Mediates Pathological Retinal Neovascularization via Modulating DLL4-NOTCH1 Signaling. EBioMedicine. 2015;2:1767-84 pubmed 出版商
  541. Farin H, Jordens I, Mosa M, Basak O, Korving J, Tauriello D, et al. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature. 2016;530:340-3 pubmed 出版商
  542. Gerashchenko B, Salmina K, Eglitis J, Huna A, Grjunberga V, Erenpreisa J. Disentangling the aneuploidy and senescence paradoxes: a study of triploid breast cancers non-responsive to neoadjuvant therapy. Histochem Cell Biol. 2016;145:497-508 pubmed 出版商
  543. Malanga D, Belmonte S, Colelli F, Scarfò M, De Marco C, Oliveira D, et al. AKT1E¹⁷K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer. PLoS ONE. 2016;11:e0147334 pubmed 出版商
  544. Su R, Strug M, Jeong J, Miele L, Fazleabas A. Aberrant activation of canonical Notch1 signaling in the mouse uterus decreases progesterone receptor by hypermethylation and leads to infertility. Proc Natl Acad Sci U S A. 2016;113:2300-5 pubmed 出版商
  545. Setoguchi R. IL-15 boosts the function and migration of human terminally differentiated CD8+ T cells by inducing a unique gene signature. Int Immunol. 2016;28:293-305 pubmed 出版商
  546. Nakagawa A, Adams C, Huang Y, Hamarneh S, Liu W, Von Alt K, et al. Selective and reversible suppression of intestinal stem cell differentiation by pharmacological inhibition of BET bromodomains. Sci Rep. 2016;6:20390 pubmed 出版商
  547. Beltran H, Prandi D, Mosquera J, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22:298-305 pubmed 出版商
  548. Davidson S, Papagiannakopoulos T, Olenchock B, Heyman J, Keibler M, Luengo A, et al. Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer. Cell Metab. 2016;23:517-28 pubmed 出版商
  549. Lu K, Nakagawa M, Thummar K, RATHINAM C. Slicer Endonuclease Argonaute 2 Is a Negative Regulator of Hematopoietic Stem Cell Quiescence. Stem Cells. 2016;34:1343-53 pubmed 出版商
  550. Ha D, Carpenter L, Koutakis P, Swanson S, Zhu Z, Hanna M, et al. Transforming growth factor-beta 1 produced by vascular smooth muscle cells predicts fibrosis in the gastrocnemius of patients with peripheral artery disease. J Transl Med. 2016;14:39 pubmed 出版商
  551. Flanagan L, Meyer M, Fay J, Curry S, Bacon O, Duessmann H, et al. Low levels of Caspase-3 predict favourable response to 5FU-based chemotherapy in advanced colorectal cancer: Caspase-3 inhibition as a therapeutic approach. Cell Death Dis. 2016;7:e2087 pubmed 出版商
  552. Sundarkrishnan L, Bradish J, Oliai B, Hosler G. Cutaneous Cellular Pseudoglandular Schwannoma: An Unusual Histopathologic Variant. Am J Dermatopathol. 2016;38:315-8 pubmed 出版商
  553. Wang X, Jung Y, Jun S, Lee S, Wang W, Schneider A, et al. PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun. 2016;7:10633 pubmed 出版商
  554. Ophelders D, Gussenhoven R, Lammens M, Küsters B, Kemp M, Newnham J, et al. Neuroinflammation and structural injury of the fetal ovine brain following intra-amniotic Candida albicans exposure. J Neuroinflammation. 2016;13:29 pubmed 出版商
  555. Sun H, Luo L, Lal B, Ma X, Chen L, Hann C, et al. A monoclonal antibody against KCNK9 K(+) channel extracellular domain inhibits tumour growth and metastasis. Nat Commun. 2016;7:10339 pubmed 出版商
  556. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  557. Llanos S, García Pedrero J, Morgado Palacin L, Rodrigo J, Serrano M. Stabilization of p21 by mTORC1/4E-BP1 predicts clinical outcome of head and neck cancers. Nat Commun. 2016;7:10438 pubmed 出版商
  558. Ramasamy S, Saez B, Mukhopadhyay S, Ding D, Ahmed A, Chen X, et al. Tle1 tumor suppressor negatively regulates inflammation in vivo and modulates NF-κB inflammatory pathway. Proc Natl Acad Sci U S A. 2016;113:1871-6 pubmed 出版商
  559. Ware M, Colbert K, Keshishian V, Ho J, Corr S, Curley S, et al. Generation of Homogenous Three-Dimensional Pancreatic Cancer Cell Spheroids Using an Improved Hanging Drop Technique. Tissue Eng Part C Methods. 2016;22:312-21 pubmed 出版商
  560. Llibre A, López Macías C, Marafioti T, Mehta H, Partridge A, Kanzig C, et al. LLT1 and CD161 Expression in Human Germinal Centers Promotes B Cell Activation and CXCR4 Downregulation. J Immunol. 2016;196:2085-94 pubmed 出版商
  561. Wang Y, Cui R, Zhang X, Qiao Y, Liu X, Chang Y, et al. SIRT1 increases YAP- and MKK3-dependent p38 phosphorylation in mouse liver and human hepatocellular carcinoma. Oncotarget. 2016;7:11284-98 pubmed 出版商
  562. Chandrasekaran U, Yi W, Gupta S, Weng C, Giannopoulou E, Chinenov Y, et al. Regulation of Effector Treg Cells in Murine Lupus. Arthritis Rheumatol. 2016;68:1454-66 pubmed 出版商
  563. Scott C, Zheng F, De Baetselier P, Martens L, Saeys Y, De Prijck S, et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun. 2016;7:10321 pubmed 出版商
  564. Gaide Chevronnay H, Janssens V, Van Der Smissen P, Rocca C, Liao X, Refetoff S, et al. Hematopoietic Stem Cells Transplantation Can Normalize Thyroid Function in a Cystinosis Mouse Model. Endocrinology. 2016;157:1363-71 pubmed 出版商
  565. Misuraca K, Hu G, Barton K, Chung A, Becher O. A Novel Mouse Model of Diffuse Intrinsic Pontine Glioma Initiated in Pax3-Expressing Cells. Neoplasia. 2016;18:60-70 pubmed 出版商
  566. Chung S, Moon H, Ju H, Kim D, Cho K, Ribback S, et al. Comparison of liver oncogenic potential among human RAS isoforms. Oncotarget. 2016;7:7354-66 pubmed 出版商
  567. Wang Y, Wu Q, Yang P, Wang C, Liu J, Ding W, et al. LSD1 co-repressor Rcor2 orchestrates neurogenesis in the developing mouse brain. Nat Commun. 2016;7:10481 pubmed 出版商
  568. Carvalho M, Pires I, Prada J, Raposo T, Gregório H, Lobo L, et al. High COX-2 expression is associated with increased angiogenesis, proliferation and tumoural inflammatory infiltrate in canine malignant mammary tumours: a multivariate survival study. Vet Comp Oncol. 2017;15:619-631 pubmed 出版商
  569. Crowley C, Klanrit P, Butler C, Varanou A, Platé M, Hynds R, et al. Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold. Biomaterials. 2016;83:283-93 pubmed 出版商
  570. Forest F, Thuret G, Gain P, Dumollard J, Peoc h M, Perrache C, et al. Optimization of immunostaining on flat-mounted human corneas. Mol Vis. 2015;21:1345-56 pubmed
  571. Iyer N, Huettner J, Butts J, Brown C, Sakiyama Elbert S. Generation of highly enriched V2a interneurons from mouse embryonic stem cells. Exp Neurol. 2016;277:305-316 pubmed 出版商
  572. Vargas Inchaustegui D, Demers A, Shaw J, Kang G, Ball D, Tuero I, et al. Vaccine Induction of Lymph Node-Resident Simian Immunodeficiency Virus Env-Specific T Follicular Helper Cells in Rhesus Macaques. J Immunol. 2016;196:1700-10 pubmed 出版商
  573. Baptista P, Moran E, Vyas D, Ribeiro M, Atala A, Sparks J, et al. Fluid Flow Regulation of Revascularization and Cellular Organization in a Bioengineered Liver Platform. Tissue Eng Part C Methods. 2016;22:199-207 pubmed 出版商
  574. Loebel D, Plageman T, Tang T, Jones V, Muccioli M, Tam P. Thyroid bud morphogenesis requires CDC42- and SHROOM3-dependent apical constriction. Biol Open. 2016;5:130-9 pubmed 出版商
  575. Catarinella M, Monestiroli A, Escobar G, Fiocchi A, Tran N, Aiolfi R, et al. IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment. EMBO Mol Med. 2016;8:155-70 pubmed 出版商
  576. Chen X, Wei S, Li J, Zhang Q, Wang Y, Zhao S, et al. Overexpression of Heme Oxygenase-1 Prevents Renal Interstitial Inflammation and Fibrosis Induced by Unilateral Ureter Obstruction. PLoS ONE. 2016;11:e0147084 pubmed 出版商
  577. Varešlija D, McBryan J, Fagan A, Redmond A, Hao Y, Sims A, et al. Adaptation to AI Therapy in Breast Cancer Can Induce Dynamic Alterations in ER Activity Resulting in Estrogen-Independent Metastatic Tumors. Clin Cancer Res. 2016;22:2765-77 pubmed 出版商
  578. Zhao C, Zhang W, Zhao Y, Yang Y, Luo H, Ji G, et al. Endothelial Cords Promote Tumor Initial Growth prior to Vascular Function through a Paracrine Mechanism. Sci Rep. 2016;6:19404 pubmed 出版商
  579. Nalwoga H, Ahmed L, Arnes J, Wabinga H, Akslen L. Strong Expression of Hypoxia-Inducible Factor-1α (HIF-1α) Is Associated with Axl Expression and Features of Aggressive Tumors in African Breast Cancer. PLoS ONE. 2016;11:e0146823 pubmed 出版商
  580. Kim Y, Nam H, Lee J, Park D, Kim C, Yu Y, et al. Methylation-dependent regulation of HIF-1α stability restricts retinal and tumour angiogenesis. Nat Commun. 2016;7:10347 pubmed 出版商
  581. Lalli M, Jang J, Park J, Wang Y, Guzman E, Zhou H, et al. Haploinsufficiency of BAZ1B contributes to Williams syndrome through transcriptional dysregulation of neurodevelopmental pathways. Hum Mol Genet. 2016;25:1294-306 pubmed 出版商
  582. Carabalona A, Hu D, Vallee R. KIF1A inhibition immortalizes brain stem cells but blocks BDNF-mediated neuronal migration. Nat Neurosci. 2016;19:253-62 pubmed 出版商
  583. Nechiporuk T, MCGANN J, Mullendorff K, Hsieh J, Wurst W, Floss T, et al. The REST remodeling complex protects genomic integrity during embryonic neurogenesis. elife. 2016;5:e09584 pubmed 出版商
  584. Leiva M, Quintana J, Ligos J, Hidalgo A. Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGFβ availability. Nat Commun. 2016;7:10222 pubmed 出版商
  585. Rooney G, Goodwin A, Depeille P, Sharir A, Schofield C, Yeh E, et al. Human iPS Cell-Derived Neurons Uncover the Impact of Increased Ras Signaling in Costello Syndrome. J Neurosci. 2016;36:142-52 pubmed 出版商
  586. Bruin J, Saber N, O Dwyer S, Fox J, Mojibian M, Arora P, et al. Hypothyroidism Impairs Human Stem Cell-Derived Pancreatic Progenitor Cell Maturation in Mice. Diabetes. 2016;65:1297-309 pubmed 出版商
  587. Wu Z, Li D, Huang Y, Chen X, Huang W, Liu C, et al. Caspr Controls the Temporal Specification of Neural Progenitor Cells through Notch Signaling in the Developing Mouse Cerebral Cortex. Cereb Cortex. 2017;27:1369-1385 pubmed 出版商
  588. Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, et al. PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Mol Cancer. 2016;15:3 pubmed 出版商
  589. Tsianakas A, Brunner P, Ghoreschi K, Berger C, Loser K, Röcken M, et al. The single-chain anti-TNF-α antibody DLX105 induces clinical and biomarker responses upon local administration in patients with chronic plaque-type psoriasis. Exp Dermatol. 2016;25:428-33 pubmed 出版商
  590. Kim T, Jin F, Shin S, Oh S, Lightfoot S, Grande J, et al. Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1. J Clin Invest. 2016;126:706-20 pubmed 出版商
  591. Martínez Iglesias O, Alonso Merino E, Gómez Rey S, Velasco Martín J, Martín Orozco R, Luengo E, et al. Autoregulatory loop of nuclear corepressor 1 expression controls invasion, tumor growth, and metastasis. Proc Natl Acad Sci U S A. 2016;113:E328-37 pubmed 出版商
  592. Kindy M, Yu J, Zhu H, Smith M, Gattoni Celli S. A therapeutic cancer vaccine against GL261 murine glioma. J Transl Med. 2016;14:1 pubmed 出版商
  593. Arai S, Kitada K, Yamazaki T, Takai R, Zhang X, Tsugawa Y, et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat Med. 2016;22:183-93 pubmed 出版商
  594. Yin P, Shah S, Pasquale N, Garbuzenko O, Minko T, Lee K. Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer. Biomaterials. 2016;81:46-57 pubmed 出版商
  595. García Castro I, Garcia Lopez G, Avila González D, Flores Herrera H, Molina Hernández A, Portillo W, et al. Markers of Pluripotency in Human Amniotic Epithelial Cells and Their Differentiation to Progenitor of Cortical Neurons. PLoS ONE. 2015;10:e0146082 pubmed 出版商
  596. Mardaryev A, Liu B, Rapisarda V, Poterlowicz K, Malashchuk I, Rudolf J, et al. Cbx4 maintains the epithelial lineage identity and cell proliferation in the developing stratified epithelium. J Cell Biol. 2016;212:77-89 pubmed 出版商
  597. Jia H, Shi Y, Luo L, Jiang G, Zhou Q, Xu S, et al. Asymmetric stem-cell division ensures sustained keratinocyte hyperproliferation in psoriatic skin lesions. Int J Mol Med. 2016;37:359-68 pubmed 出版商
  598. Joseph J, van Roosmalen I, Busschers E, Tomar T, Conroy S, Eggens Meijer E, et al. Serum-Induced Differentiation of Glioblastoma Neurospheres Leads to Enhanced Migration/Invasion Capacity That Is Associated with Increased MMP9. PLoS ONE. 2015;10:e0145393 pubmed 出版商
  599. Palazzolo G, Quattrocelli M, Toelen J, Dominici R, Anastasia L, Tettamenti G, et al. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells. Stem Cells Int. 2016;2016:4969430 pubmed 出版商
  600. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  601. Paris R, Petrovas C, Ferrando Martinez S, Moysi E, Boswell K, Archer E, et al. Selective Loss of Early Differentiated, Highly Functional PD1high CD4 T Cells with HIV Progression. PLoS ONE. 2015;10:e0144767 pubmed 出版商
  602. Márquez J, Mena J, Hernandez Unzueta I, Benedicto A, Sanz E, Arteta B, et al. Ocoxin® oral solution slows down tumor growth in an experimental model of colorectal cancer metastasis to the liver in Balb/c mice. Oncol Rep. 2016;35:1265-72 pubmed 出版商
  603. Ulaganathan V, Sperl B, Rapp U, Ullrich A. Germline variant FGFR4  p.G388R exposes a membrane-proximal STAT3 binding site. Nature. 2015;528:570-4 pubmed 出版商
  604. Chen Y, Tsou B, Hu S, Ma H, Liu X, Yen Y, et al. Autophagy induction causes a synthetic lethal sensitization to ribonucleotide reductase inhibition in breast cancer cells. Oncotarget. 2016;7:1984-99 pubmed 出版商
  605. Monaghan M, Linneweh M, Liebscher S, Van Handel B, Layland S, Schenke Layland K. Endocardial-to-mesenchymal transformation and mesenchymal cell colonization at the onset of human cardiac valve development. Development. 2016;143:473-82 pubmed 出版商
  606. Lagarrigue S, Lopez Mejia I, Denechaud P, Escoté X, Castillo Armengol J, Jimenez V, et al. CDK4 is an essential insulin effector in adipocytes. J Clin Invest. 2016;126:335-48 pubmed 出版商
  607. Traka M, Podojil J, McCarthy D, Miller S, Popko B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci. 2016;19:65-74 pubmed 出版商
  608. Osorio L, Farfán N, Castellón E, Contreras H. SNAIL transcription factor increases the motility and invasive capacity of prostate cancer cells. Mol Med Rep. 2016;13:778-86 pubmed 出版商
  609. Grandy R, Whitfield T, Wu H, Fitzgerald M, VanOudenhove J, Zaidi S, et al. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation. Mol Cell Biol. 2016;36:615-27 pubmed 出版商
  610. Yamaguchi M, Komori T, Nakata Y, Yagishita A, Morino M, Isozaki E. Multinodular and vacuolating neuronal tumor affecting amygdala and hippocampus: A quasi-tumor?. Pathol Int. 2016;66:34-41 pubmed 出版商
  611. Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015;6:8989 pubmed 出版商
  612. Martínez Martínez M, Mosqueda Taylor A, Delgado Azañero W, Rumayor Piña A, de Almeida O. Primary intraosseous squamous cell carcinoma arising in an odontogenic keratocyst previously treated with marsupialization: case report and immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:e87-95 pubmed 出版商
  613. Seidensaal K, Nollert A, Feige A, Muller M, Fleming T, Gunkel N, et al. Impaired aldehyde dehydrogenase 1 subfamily member 2A-dependent retinoic acid signaling is related with a mesenchymal-like phenotype and an unfavorable prognosis of head and neck squamous cell carcinoma. Mol Cancer. 2015;14:204 pubmed 出版商
  614. Ho S, Hartley B, TCW J, Beaumont M, Stafford K, Slesinger P, et al. Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods. 2016;101:113-24 pubmed 出版商
  615. Mayr C, Wagner A, Loeffelberger M, Brückner D, Jakab M, Berr F, et al. The BMI1 inhibitor PTC-209 is a potential compound to halt cellular growth in biliary tract cancer cells. Oncotarget. 2016;7:745-58 pubmed 出版商
  616. Gravina G, Mancini A, Sanità P, Vitale F, Marampon F, Ventura L, et al. KPT-330, a potent and selective exportin-1 (XPO-1) inhibitor, shows antitumor effects modulating the expression of cyclin D1 and survivin [corrected] in prostate cancer models. BMC Cancer. 2015;15:941 pubmed 出版商
  617. Amadei G, Zander M, Yang G, Dumelie J, Vessey J, Lipshitz H, et al. A Smaug2-Based Translational Repression Complex Determines the Balance between Precursor Maintenance versus Differentiation during Mammalian Neurogenesis. J Neurosci. 2015;35:15666-81 pubmed 出版商
  618. Moretto M, Khan I. IL-21 Is Important for Induction of KLRG1+ Effector CD8 T Cells during Acute Intracellular Infection. J Immunol. 2016;196:375-84 pubmed 出版商
  619. Lai J, Lee C, Crocker M, Najmuddin M, Lange E, Merino M, et al. Isolated Large Cell Calcifying Sertoli Cell Tumor in a Young Boy, not Associated with Peutz-Jeghers Syndrome or Carney Complex. Ann Clin Lab Res. 2015;3:2 pubmed
  620. Li G, Guo W, Zhang Y, Seng J, Zhang H, Ma X, et al. Suppression of BRD4 inhibits human hepatocellular carcinoma by repressing MYC and enhancing BIM expression. Oncotarget. 2016;7:2462-74 pubmed 出版商
  621. Nakamura A, Mitsuhashi T, Takano Y, Miyoshi H, Kameda H, Nomoto H, et al. Usefulness of the octreotide test in Japanese patients for predicting the presence/absence of somatostatin receptor 2 expression in insulinomas. Endocr J. 2016;63:135-42 pubmed 出版商
  622. Shao H, Kong R, Ferrari M, Radtke F, Capobianco A, Liu Z. Notch1 Pathway Activity Determines the Regulatory Role of Cancer-Associated Fibroblasts in Melanoma Growth and Invasion. PLoS ONE. 2015;10:e0142815 pubmed 出版商
  623. Kumar N, Richter J, Cutts J, Bush K, Trujillo C, Nigam S, et al. Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells. elife. 2015;4: pubmed 出版商
  624. Park J, Han C, Zhao L, Willingham M, Cheng S. Inhibition of STAT3 activity delays obesity-induced thyroid carcinogenesis in a mouse model. Endocr Relat Cancer. 2016;23:53-63 pubmed 出版商
  625. Zylicz J, Dietmann S, Günesdogan U, Hackett J, Cougot D, Lee C, et al. Chromatin dynamics and the role of G9a in gene regulation and enhancer silencing during early mouse development. elife. 2015;4: pubmed 出版商
  626. Javed A, Leuchte N, Neumann B, Sopper S, Sauermann U. Noncytolytic CD8+ Cell Mediated Antiviral Response Represents a Strong Element in the Immune Response of Simian Immunodeficiency Virus-Infected Long-Term Non-Progressing Rhesus Macaques. PLoS ONE. 2015;10:e0142086 pubmed 出版商
  627. Trikha P, Sharma N, Pena C, Reyes A, Pécot T, Khurshid S, et al. E2f3 in tumor macrophages promotes lung metastasis. Oncogene. 2016;35:3636-46 pubmed 出版商
  628. Bhate A, Parker D, Bebee T, Ahn J, Arif W, Rashan E, et al. ESRP2 controls an adult splicing programme in hepatocytes to support postnatal liver maturation. Nat Commun. 2015;6:8768 pubmed 出版商
  629. Hasby E. Mammary serine protease inhibitor and CD138 immunohistochemical expression in ovarian serous and clear cell carcinomas. Tumour Biol. 2016;37:4889-900 pubmed 出版商
  630. Thomsen E, Mich J, Yao Z, Hodge R, Doyle A, Jang S, et al. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat Methods. 2016;13:87-93 pubmed 出版商
  631. Castillo Martin M, Collazo Lorduy A, Gladoun N, Hyun G, Cordon Cardo C. H-RAS mutation is a key molecular feature of pediatric urothelial bladder cancer. A detailed report of three cases. J Pediatr Urol. 2016;12:91.e1-7 pubmed 出版商
  632. Lin C, Chen Y, Lin C, Chen Y, Lo G, Lee P, et al. Amiodarone as an autophagy promoter reduces liver injury and enhances liver regeneration and survival in mice after partial hepatectomy. Sci Rep. 2015;5:15807 pubmed 出版商
  633. Judd L, Heine R, Menheniott T, Buzzelli J, O Brien Simpson N, Pavlic D, et al. Elevated IL-33 expression is associated with pediatric eosinophilic esophagitis, and exogenous IL-33 promotes eosinophilic esophagitis development in mice. Am J Physiol Gastrointest Liver Physiol. 2016;310:G13-25 pubmed 出版商
  634. Wu Y, Zhao H, Zhou L, Zhao C, Wu Y, Zhen L, et al. miR-134 Modulates the Proliferation of Human Cardiomyocyte Progenitor Cells by Targeting Meis2. Int J Mol Sci. 2015;16:25199-213 pubmed 出版商
  635. Antonucci L, Fagman J, Kim J, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A. 2015;112:E6166-74 pubmed 出版商
  636. McCart Reed A, Kutasovic J, Vargas A, Jayanthan J, Al Murrani A, Reid L, et al. An epithelial to mesenchymal transition programme does not usually drive the phenotype of invasive lobular carcinomas. J Pathol. 2016;238:489-94 pubmed 出版商
  637. Small K, DeLuca A, Whitmore S, Rosenberg T, Silva Garcia R, Udar N, et al. North Carolina Macular Dystrophy Is Caused by Dysregulation of the Retinal Transcription Factor PRDM13. Ophthalmology. 2016;123:9-18 pubmed 出版商
  638. Zhou X, Wei J, Chen F, Xiao X, Huang T, He Q, et al. Epigenetic downregulation of the ISG15-conjugating enzyme UbcH8 impairs lipolysis and correlates with poor prognosis in nasopharyngeal carcinoma. Oncotarget. 2015;6:41077-91 pubmed 出版商
  639. Cifuentes F, Valenzuela R, Contreras H, Castellón E. Surgical cytoreduction of the primary tumor reduces metastatic progression in a mouse model of prostate cancer. Oncol Rep. 2015;34:2837-44 pubmed
  640. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  641. Nakano A, Nakahara T, Mori A, Ushikubo H, Sakamoto K, Ishii K. Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats. Exp Eye Res. 2016;143:120-31 pubmed 出版商
  642. Mikami J, Kurokawa Y, Takahashi T, Miyazaki Y, Yamasaki M, Miyata H, et al. Antitumor effect of antiplatelet agents in gastric cancer cells: an in vivo and in vitro study. Gastric Cancer. 2016;19:817-26 pubmed 出版商
  643. Fujino K, Motooka Y, Hassan W, Ali Abdalla M, Sato Y, Kudoh S, et al. Insulinoma-Associated Protein 1 Is a Crucial Regulator of Neuroendocrine Differentiation in Lung Cancer. Am J Pathol. 2015;185:3164-77 pubmed 出版商
  644. Adachi T, Kobayashi T, Sugihara E, Yamada T, Ikuta K, Pittaluga S, et al. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat Med. 2015;21:1272-9 pubmed 出版商
  645. Minas T, Han J, Javaheri T, Hong S, Schlederer M, SaygideÄŸer Kont Y, et al. YK-4-279 effectively antagonizes EWS-FLI1 induced leukemia in a transgenic mouse model. Oncotarget. 2015;6:37678-94 pubmed 出版商
  646. Schulz A, Mälzer J, Domingo C, Jürchott K, Grützkau A, Babel N, et al. Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans. J Immunol. 2015;195:4699-711 pubmed 出版商
  647. Liu F, Hon G, Villa G, Turner K, Ikegami S, Yang H, et al. EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling. Mol Cell. 2015;60:307-18 pubmed 出版商
  648. Witalison E, Cui X, Causey C, Thompson P, Hofseth L. Molecular targeting of protein arginine deiminases to suppress colitis and prevent colon cancer. Oncotarget. 2015;6:36053-62 pubmed 出版商
  649. Gautier H, Evans K, Volbracht K, James R, Sitnikov S, Lundgaard I, et al. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors. Nat Commun. 2015;6:8518 pubmed 出版商
  650. Payne S, Maher M, Tran N, Van De Hey D, Foley T, Yueh A, et al. PIK3CA mutations can initiate pancreatic tumorigenesis and are targetable with PI3K inhibitors. Oncogenesis. 2015;4:e169 pubmed 出版商
  651. Panvichian R, Tantiwetrueangdet A, Sornmayura P, Leelaudomlipi S. Missense Mutations in Exons 18-24 of EGFR in Hepatocellular Carcinoma Tissues. Biomed Res Int. 2015;2015:171845 pubmed 出版商
  652. Mitson Salazar A, Yin Y, Wansley D, Young M, Bolan H, Arceo S, et al. Hematopoietic prostaglandin D synthase defines a proeosinophilic pathogenic effector human T(H)2 cell subpopulation with enhanced function. J Allergy Clin Immunol. 2016;137:907-18.e9 pubmed 出版商
  653. Basu S, Combe K, Kwiatkowski F, Caldefie Chézet F, Penault Llorca F, Bignon Y, et al. Cellular Expression of Cyclooxygenase, Aromatase, Adipokines, Inflammation and Cell Proliferation Markers in Breast Cancer Specimen. PLoS ONE. 2015;10:e0138443 pubmed 出版商
  654. Costache M, Dumitru A, Pătraşcu O, Popa Cherecheanu D, Bădilă P, Miu J, et al. A challenging case of ocular melanoma. Rom J Morphol Embryol. 2015;56:817-22 pubmed
  655. Gamat M, Malinowski R, Parkhurst L, Steinke L, Marker P. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate. PLoS ONE. 2015;10:e0139522 pubmed 出版商
  656. Ladell K, Hazenberg M, Fitch M, Emson C, McEvoy Hein Asgarian B, Mold J, et al. Continuous Antigenic Stimulation of DO11.10 TCR Transgenic Mice in the Presence or Absence of IL-1?: Possible Implications for Mechanisms of T Cell Depletion in HIV Disease. J Immunol. 2015;195:4096-105 pubmed 出版商
  657. Perez Aso M, Mediero A, Low Y, Levine J, Cronstein B. Adenosine A2A receptor plays an important role in radiation-induced dermal injury. FASEB J. 2016;30:457-65 pubmed 出版商
  658. Farup J, De Lisio M, Rahbek S, Bjerre J, Vendelbo M, Boppart M, et al. Pericyte response to contraction mode-specific resistance exercise training in human skeletal muscle. J Appl Physiol (1985). 2015;119:1053-63 pubmed 出版商
  659. Chen F, Rosiene J, Che A, Becker A, LoTurco J. Tracking and transforming neocortical progenitors by CRISPR/Cas9 gene targeting and piggyBac transposase lineage labeling. Development. 2015;142:3601-11 pubmed 出版商
  660. Xu Y, Zheng Y, Sun X, Yu X, Gu J, Wu W, et al. Concurrent radiotherapy with gefitinib in elderly patients with esophageal squamous cell carcinoma: Preliminary results of a phase II study. Oncotarget. 2015;6:38429-39 pubmed 出版商
  661. Martin E, Buzza M, Driesbaugh K, Liu S, Fortenberry Y, Leppla S, et al. Targeting the membrane-anchored serine protease testisin with a novel engineered anthrax toxin prodrug to kill tumor cells and reduce tumor burden. Oncotarget. 2015;6:33534-53 pubmed 出版商
  662. Mazur P, Herner A, Mello S, Wirth M, Hausmann S, Sánchez Rivera F, et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21:1163-71 pubmed 出版商
  663. Baligar P, Mukherjee S, Kochat V, Rastogi A, Mukhopadhyay A. Molecular and Cellular Functions Distinguish Superior Therapeutic Efficiency of Bone Marrow CD45 Cells Over Mesenchymal Stem Cells in Liver Cirrhosis. Stem Cells. 2016;34:135-47 pubmed 出版商
  664. Yokdang N, Hatakeyama J, Wald J, Simion C, Tellez J, Chang D, et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene. 2016;35:2932-47 pubmed 出版商
  665. Birch J, Anderson R, Correia Melo C, Jurk D, Hewitt G, Marques F, et al. DNA damage response at telomeres contributes to lung aging and chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2015;309:L1124-37 pubmed 出版商
  666. Zhang P, Kumar A, Katz L, Li L, Paulynice M, Herman M, et al. Induction of the ChREBPβ Isoform Is Essential for Glucose-Stimulated β-Cell Proliferation. Diabetes. 2015;64:4158-70 pubmed 出版商
  667. Skrzypek K, Kusienicka A, Szewczyk B, Adamus T, Lukasiewicz E, Miekus K, et al. Constitutive activation of MET signaling impairs myogenic differentiation of rhabdomyosarcoma and promotes its development and progression. Oncotarget. 2015;6:31378-98 pubmed 出版商
  668. Koukourakis M, Kalamida D, Giatromanolaki A, Zois C, Sivridis E, Pouliliou S, et al. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines. PLoS ONE. 2015;10:e0137675 pubmed 出版商
  669. Brasseit J, Althaus Steiner E, Faderl M, Dickgreber N, Saurer L, Genitsch V, et al. CD4 T cells are required for both development and maintenance of disease in a new mouse model of reversible colitis. Mucosal Immunol. 2016;9:689-701 pubmed 出版商
  670. Lee N, Kwon J, Kim Y, Kim S, Park S, Xu W, et al. Vaccinia-related kinase 1 promotes hepatocellular carcinoma by controlling the levels of cell cycle regulators associated with G1/S transition. Oncotarget. 2015;6:30130-48 pubmed 出版商
  671. Wei S, Baloch Z, LiVolsi V. Pathology of Struma Ovarii: A Report of 96 Cases. Endocr Pathol. 2015;26:342-8 pubmed 出版商
  672. Rodríguez C, Reidel S, Bal de Kier Joffé E, Jasnis M, Fiszman G. Autophagy Protects from Trastuzumab-Induced Cytotoxicity in HER2 Overexpressing Breast Tumor Spheroids. PLoS ONE. 2015;10:e0137920 pubmed 出版商
  673. Machado Neto J, de Melo Campos P, Favaro P, Lazarini M, da Silva Santos Duarte A, Lorand Metze I, et al. Stathmin 1 inhibition amplifies ruxolitinib-induced apoptosis in JAK2V617F cells. Oncotarget. 2015;6:29573-84 pubmed 出版商
  674. Mu X, Español Suñer R, Mederacke I, Affò S, Manco R, Sempoux C, et al. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest. 2015;125:3891-903 pubmed 出版商
  675. Priest C, Manley N, Denham J, Wirth E, Lebkowski J. Preclinical safety of human embryonic stem cell-derived oligodendrocyte progenitors supporting clinical trials in spinal cord injury. Regen Med. 2015;10:939-58 pubmed 出版商
  676. Sobolewski C, Sanduja S, Blanco F, Hu L, Dixon D. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1) in Colorectal Cancer Cells. Biomolecules. 2015;5:2035-55 pubmed 出版商
  677. Lan M, Li H, Bao L, Li M, Lye S, Dong X. In Vivo Evidence of the Androgen Receptor in Association With Myometrial Cell Proliferation and Apoptosis. Reprod Sci. 2016;23:264-71 pubmed 出版商
  678. Jung Y, Kim H, Koo J. Expression of Lipid Metabolism-Related Proteins in Metastatic Breast Cancer. PLoS ONE. 2015;10:e0137204 pubmed 出版商
  679. Zehendner C, Sebastiani A, Hugonnet A, Bischoff F, Luhmann H, Thal S. Traumatic brain injury results in rapid pericyte loss followed by reactive pericytosis in the cerebral cortex. Sci Rep. 2015;5:13497 pubmed 出版商
  680. Yoshida S, Yamamoto H, Tetsui T, Kobayakawa Y, Hatano R, Mukaisho K, et al. Effects of ezrin knockdown on the structure of gastric glandular epithelia. J Physiol Sci. 2016;66:53-65 pubmed 出版商
  681. Sin S, Kim Y, Eason A, Dittmer D. KSHV Latency Locus Cooperates with Myc to Drive Lymphoma in Mice. PLoS Pathog. 2015;11:e1005135 pubmed 出版商
  682. Heide M, Zhang Y, Zhou X, Zhao T, Miquelajáuregui A, Varela Echavarría A, et al. Lhx5 controls mamillary differentiation in the developing hypothalamus of the mouse. Front Neuroanat. 2015;9:113 pubmed 出版商
  683. Coelho R, Calaça I, Celestrini D, Correia Carneiro A, Costa M, Zancan P, et al. Hexokinase and phosphofructokinase activity and intracellular distribution correlate with aggressiveness and invasiveness of human breast carcinoma. Oncotarget. 2015;6:29375-87 pubmed 出版商
  684. Ramirez H, Liang L, Pastar I, Rosa A, Stojadinovic O, Zwick T, et al. Comparative Genomic, MicroRNA, and Tissue Analyses Reveal Subtle Differences between Non-Diabetic and Diabetic Foot Skin. PLoS ONE. 2015;10:e0137133 pubmed 出版商
  685. Schmidt L, Kümmel A, Görlich D, Mohr M, Bröckling S, Mikesch J, et al. PD-1 and PD-L1 Expression in NSCLC Indicate a Favorable Prognosis in Defined Subgroups. PLoS ONE. 2015;10:e0136023 pubmed 出版商
  686. Khiati S, Baechler S, Factor V, Zhang H, Huang S, Dalla Rosa I, et al. Lack of mitochondrial topoisomerase I (TOP1mt) impairs liver regeneration. Proc Natl Acad Sci U S A. 2015;112:11282-7 pubmed 出版商
  687. Romero Palomo F, Risalde M, Gómez Villamandos J. Immunopathologic Changes in the Thymus of Calves Pre-infected with BVDV and Challenged with BHV-1. Transbound Emerg Dis. 2017;64:574-584 pubmed 出版商
  688. Barazzuol L, Rickett N, Ju L, Jeggo P. Low levels of endogenous or X-ray-induced DNA double-strand breaks activate apoptosis in adult neural stem cells. J Cell Sci. 2015;128:3597-606 pubmed 出版商
  689. Cardaci S, Zheng L, Mackay G, van den Broek N, MacKenzie E, Nixon C, et al. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat Cell Biol. 2015;17:1317-26 pubmed 出版商
  690. Chang C, Zhang M, Rajapakshe K, Coarfa C, Edwards D, Huang S, et al. Mammary Stem Cells and Tumor-Initiating Cells Are More Resistant to Apoptosis and Exhibit Increased DNA Repair Activity in Response to DNA Damage. Stem Cell Reports. 2015;5:378-91 pubmed 出版商
  691. Leeansyah E, Svärd J, Dias J, Buggert M, Nyström J, Quigley M, et al. Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection. PLoS Pathog. 2015;11:e1005072 pubmed 出版商
  692. Zhang P, Haidet Phillips A, Pham J, Lee Y, Huo Y, Tienari P, et al. Generation of GFAP::GFP astrocyte reporter lines from human adult fibroblast-derived iPS cells using zinc-finger nuclease technology. Glia. 2016;64:63-75 pubmed 出版商
  693. Lizarraga F, Ceballos Cancino G, Espinosa M, Vazquez Santillan K, Maldonado V, Melendez Zajgla J. Tissue Inhibitor of Metalloproteinase-4 Triggers Apoptosis in Cervical Cancer Cells. PLoS ONE. 2015;10:e0135929 pubmed 出版商
  694. Fu Y, Cruz Monserrate Z, Helen Lin H, Chung Y, Ji B, Lin S, et al. Ductal activation of oncogenic KRAS alone induces sarcomatoid phenotype. Sci Rep. 2015;5:13347 pubmed 出版商
  695. Qu D, Weygant N, May R, Chandrakesan P, Madhoun M, Ali N, et al. Ablation of Doublecortin-Like Kinase 1 in the Colonic Epithelium Exacerbates Dextran Sulfate Sodium-Induced Colitis. PLoS ONE. 2015;10:e0134212 pubmed 出版商
  696. Barbone D, Follo C, Echeverry N, Gerbaudo V, Klabatsa A, Bueno R, et al. Autophagy Correlates with the Therapeutic Responsiveness of Malignant Pleural Mesothelioma in 3D Models. PLoS ONE. 2015;10:e0134825 pubmed 出版商
  697. Li J, Wang Q, Wen R, Liang J, Zhong X, Yang W, et al. MiR-138 inhibits cell proliferation and reverses epithelial-mesenchymal transition in non-small cell lung cancer cells by targeting GIT1 and SEMA4C. J Cell Mol Med. 2015;19:2793-805 pubmed 出版商
  698. Pajoohesh Ganji A, Pal Ghosh S, Tadvalkar G, Kyne B, Saban D, Stepp M. Partial denervation of sub-basal axons persists following debridement wounds to the mouse cornea. Lab Invest. 2015;95:1305-18 pubmed 出版商
  699. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed 出版商
  700. Zeniou M, Fève M, Mameri S, Dong J, Salomé C, Chen W, et al. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells. PLoS ONE. 2015;10:e0134793 pubmed 出版商
  701. Archibald A, Al Masri M, Liew Spilger A, McCaffrey L. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Mol Biol Cell. 2015;26:3578-95 pubmed 出版商
  702. Wang D, Pang Z, Clarke G, Nofech Mozes S, Liu K, Cheung A, et al. Ki-67 Membranous Staining: Biologically Relevant or an Artifact of Multiplexed Immunofluorescent Staining. Appl Immunohistochem Mol Morphol. 2016;24:447-52 pubmed 出版商
  703. Wong F, Fei J, Mora Bermúdez F, Taverna E, Haffner C, Fu J, et al. Sustained Pax6 Expression Generates Primate-like Basal Radial Glia in Developing Mouse Neocortex. PLoS Biol. 2015;13:e1002217 pubmed 出版商
  704. Tzenaki N, Aivaliotis M, Papakonstanti E. Focal adhesion kinase phosphorylates the phosphatase and tensin homolog deleted on chromosome 10 under the control of p110δ phosphoinositide-3 kinase. FASEB J. 2015;29:4840-52 pubmed 出版商
  705. Coutinho de Souza P, Mallory S, Smith N, Saunders D, Li X, McNall Knapp R, et al. Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts. PLoS ONE. 2015;10:e0134276 pubmed 出版商
  706. Rocha Caldas G, Oliveira A, Araújo A, Lafayette S, Albuquerque G, Silva Neto J, et al. Gastroprotective Mechanisms of the Monoterpene 1,8-Cineole (Eucalyptol). PLoS ONE. 2015;10:e0134558 pubmed 出版商
  707. Meunier S, Shvedunova M, Van Nguyen N, Avila L, Vernos I, Akhtar A. An epigenetic regulator emerges as microtubule minus-end binding and stabilizing factor in mitosis. Nat Commun. 2015;6:7889 pubmed 出版商
  708. Lee S, Bae S, Lee J, Lee H, Yi H, Kil W, et al. Distinguishing Low-Risk Luminal A Breast Cancer Subtypes with Ki-67 and p53 Is More Predictive of Long-Term Survival. PLoS ONE. 2015;10:e0124658 pubmed 出版商
  709. Velarde M, Demaria M, Melov S, Campisi J. Pleiotropic age-dependent effects of mitochondrial dysfunction on epidermal stem cells. Proc Natl Acad Sci U S A. 2015;112:10407-12 pubmed 出版商
  710. McBryan J, Fagan A, McCartan D, Bane F, VareÅ¡lija D, Cocchiglia S, et al. Transcriptomic Profiling of Sequential Tumors from Breast Cancer Patients Provides a Global View of Metastatic Expression Changes Following Endocrine Therapy. Clin Cancer Res. 2015;21:5371-9 pubmed 出版商
  711. Laperle A, Hsiao C, Lampe M, Mortier J, Saha K, Palecek S, et al. α-5 Laminin Synthesized by Human Pluripotent Stem Cells Promotes Self-Renewal. Stem Cell Reports. 2015;5:195-206 pubmed 出版商
  712. He S, Zhao Z, Yang Y, O Connell D, Zhang X, Oh S, et al. Truncating mutation in the autophagy gene UVRAG confers oncogenic properties and chemosensitivity in colorectal cancers. Nat Commun. 2015;6:7839 pubmed 出版商
  713. Rowson Hodel A, Manjarin R, Trott J, Cardiff R, Borowsky A, Hovey R. Neoplastic transformation of porcine mammary epithelial cells in vitro and tumor formation in vivo. BMC Cancer. 2015;15:562 pubmed 出版商
  714. Chen X, Qin L, Liu Z, Liao L, Martin J, Xu J. Knockout of SRC-1 and SRC-3 in Mice Decreases Cardiomyocyte Proliferation and Causes a Noncompaction Cardiomyopathy Phenotype. Int J Biol Sci. 2015;11:1056-72 pubmed 出版商
  715. Massey A. Multiparametric Cell Cycle Analysis Using the Operetta High-Content Imager and Harmony Software with PhenoLOGIC. PLoS ONE. 2015;10:e0134306 pubmed 出版商
  716. Parchem R, Moore N, Fish J, Parchem J, Braga T, Shenoy A, et al. miR-302 Is Required for Timing of Neural Differentiation, Neural Tube Closure, and Embryonic Viability. Cell Rep. 2015;12:760-73 pubmed 出版商
  717. Brown A, Simmen R, Raj V, Van T, MacLeod S, Simmen F. Krüppel-like factor 9 (KLF9) prevents colorectal cancer through inhibition of interferon-related signaling. Carcinogenesis. 2015;36:946-55 pubmed 出版商
  718. Restall I, Parolin D, Daneshmand M, Hanson J, Simard M, Fitzpatrick M, et al. PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma. Cell Cycle. 2015;14:2938-48 pubmed 出版商
  719. Park S, Nam S, Keam B, Kim T, Jeon Y, Lee S, et al. VEGF and Ki-67 Overexpression in Predicting Poor Overall Survival in Adenoid Cystic Carcinoma. Cancer Res Treat. 2016;48:518-26 pubmed 出版商
  720. Zheng Y, Smithies H, Aitken P, Gliddon C, Stiles L, Darlington C, et al. Cell proliferation in the cochlear nucleus following acoustic trauma in rat. Neuroscience. 2015;303:524-34 pubmed 出版商
  721. Jiao L, Inhoffen J, Gan Schreier H, Tuma Kellner S, Stremmel W, Sun Z, et al. Deficiency of Group VIA Phospholipase A2 (iPLA2β) Renders Susceptibility for Chemical-Induced Colitis. Dig Dis Sci. 2015;60:3590-602 pubmed 出版商
  722. Chen Y, Huang W, Séjourné J, Clipperton Allen A, Page D. Pten Mutations Alter Brain Growth Trajectory and Allocation of Cell Types through Elevated β-Catenin Signaling. J Neurosci. 2015;35:10252-67 pubmed 出版商
  723. Jones A, Gokhale P, Allison T, Sampson B, Athwal S, Grant S, et al. Evidence for bystander signalling between human trophoblast cells and human embryonic stem cells. Sci Rep. 2015;5:11694 pubmed 出版商
  724. Yanagida A, Chikada H, Ito K, Umino A, Kato Itoh M, Yamazaki Y, et al. Liver maturation deficiency in p57(Kip2)-/- mice occurs in a hepatocytic p57(Kip2) expression-independent manner. Dev Biol. 2015;407:331-43 pubmed 出版商
  725. Garcia Calero E, Botella Lopez A, Bahamonde O, Perez Balaguer A, Martinez S. FoxP2 protein levels regulate cell morphology changes and migration patterns in the vertebrate developing telencephalon. Brain Struct Funct. 2016;221:2905-17 pubmed 出版商
  726. Mohammed H, Russell I, Stark R, Rueda O, Hickey T, Tarulli G, et al. Progesterone receptor modulates ERα action in breast cancer. Nature. 2015;523:313-7 pubmed 出版商
  727. Krah N, De La O J, Swift G, Hoang C, Willet S, Chen Pan F, et al. The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma. elife. 2015;4: pubmed 出版商
  728. Pardo Saganta A, Tata P, Law B, Saez B, Chow R, Prabhu M, et al. Parent stem cells can serve as niches for their daughter cells. Nature. 2015;523:597-601 pubmed 出版商
  729. Yan S, Xu Z, Lou F, Zhang L, Ke F, Bai J, et al. NF-κB-induced microRNA-31 promotes epidermal hyperplasia by repressing protein phosphatase 6 in psoriasis. Nat Commun. 2015;6:7652 pubmed 出版商
  730. Mundim F, Pasini F, Brentani M, Soares F, Nonogaki S, Waitzberg A. MYC is expressed in the stromal and epithelial cells of primary breast carcinoma and paired nodal metastases. Mol Clin Oncol. 2015;3:506-514 pubmed
  731. Pulito C, Mori F, Sacconi A, Casadei L, Ferraiuolo M, Valerio M, et al. Cynara scolymus affects malignant pleural mesothelioma by promoting apoptosis and restraining invasion. Oncotarget. 2015;6:18134-50 pubmed
  732. Evason K, Francisco M, Juric V, Balakrishnan S, Lopez Pazmino M, Gordan J, et al. Identification of Chemical Inhibitors of β-Catenin-Driven Liver Tumorigenesis in Zebrafish. PLoS Genet. 2015;11:e1005305 pubmed 出版商
  733. O Shaughnessy Kirwan A, Signolet J, Costello I, Gharbi S, Hendrich B. Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification. Development. 2015;142:2586-97 pubmed 出版商
  734. Noda K, Mishina Y, Komatsu Y. Constitutively active mutation of ACVR1 in oral epithelium causes submucous cleft palate in mice. Dev Biol. 2016;415:306-313 pubmed 出版商
  735. Liu K, Chuang S, Long C, Lee Y, Wang C, Lu M, et al. Ketamine-induced ulcerative cystitis and bladder apoptosis involve oxidative stress mediated by mitochondria and the endoplasmic reticulum. Am J Physiol Renal Physiol. 2015;309:F318-31 pubmed 出版商
  736. Adoro S, Cubillos Ruiz J, Chen X, Deruaz M, Vrbanac V, Song M, et al. IL-21 induces antiviral microRNA-29 in CD4 T cells to limit HIV-1 infection. Nat Commun. 2015;6:7562 pubmed 出版商
  737. Sedic M, Skibinski A, Brown N, Gallardo M, Mulligan P, Martinez P, et al. Haploinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence. Nat Commun. 2015;6:7505 pubmed 出版商
  738. Michaelidou K, Ardavanis A, Scorilas A. Clinical relevance of the deregulated kallikrein-related peptidase 8 mRNA expression in breast cancer: a novel independent indicator of disease-free survival. Breast Cancer Res Treat. 2015;152:323-36 pubmed 出版商
  739. Kimura W, Xiao F, Canseco D, Muralidhar S, Thet S, Zhang H, et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature. 2015;523:226-30 pubmed 出版商
  740. Evonuk K, Baker B, Doyle R, Moseley C, Sestero C, Johnston B, et al. Inhibition of System Xc(-) Transporter Attenuates Autoimmune Inflammatory Demyelination. J Immunol. 2015;195:450-463 pubmed 出版商
  741. Scalia C, Gendusa R, Cattoretti G. A 2-Step Laemmli and Antigen Retrieval Method Improves Immunodetection. Appl Immunohistochem Mol Morphol. 2016;24:436-46 pubmed 出版商
  742. Götze S, Schumacher E, Kordes C, Häussinger D. Epigenetic Changes during Hepatic Stellate Cell Activation. PLoS ONE. 2015;10:e0128745 pubmed 出版商
  743. Gulino R, Parenti R, Gulisano M. Novel Mechanisms of Spinal Cord Plasticity in a Mouse Model of Motoneuron Disease. Biomed Res Int. 2015;2015:654637 pubmed 出版商
  744. Shields E, Lam C, Cox A, Rankin M, Van Winkle T, Hess R, et al. Extreme Beta-Cell Deficiency in Pancreata of Dogs with Canine Diabetes. PLoS ONE. 2015;10:e0129809 pubmed 出版商
  745. Koumarianou A, Economopoulou P, Katsaounis P, Laschos K, Arapantoni Dadioti P, Martikos G, et al. Gastrointestinal Stromal Tumors (GIST): A Prospective Analysis and an Update on Biomarkers and Current Treatment Concepts. Biomark Cancer. 2015;7:1-7 pubmed 出版商
  746. Xie C, Wei D, Zhao L, Marchetto S, Mei L, Borg J, et al. Erbin is a novel substrate of the Sag-βTrCP E3 ligase that regulates KrasG12D-induced skin tumorigenesis. J Cell Biol. 2015;209:721-37 pubmed 出版商
  747. Soares A, Müller T, Chege G, Williamson A, Burgers W. Transient global T cell activation after vaccination of rhesus macaques with a DNA-poxvirus vaccine regimen for HIV. Vaccine. 2015;33:3435-9 pubmed 出版商
  748. Mandriota S, Valentijn L, Lesne L, Betts D, Marino D, Boudal Khoshbeen M, et al. Ataxia-telangiectasia mutated (ATM) silencing promotes neuroblastoma progression through a MYCN independent mechanism. Oncotarget. 2015;6:18558-76 pubmed
  749. Jäger W, Xue H, Hayashi T, Janssen C, Awrey S, Wyatt A, et al. Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget. 2015;6:21522-32 pubmed
  750. Huo C, Chew G, Hill P, Huang D, Ingman W, Hodson L, et al. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res. 2015;17:79 pubmed 出版商
  751. Wang L, Liang J, Leung P. The ACE2/Ang-(1-7)/Mas Axis Regulates the Development of Pancreatic Endocrine Cells in Mouse Embryos. PLoS ONE. 2015;10:e0128216 pubmed 出版商
  752. Liebl J, Zhang S, Moser M, Agalarov Y, Demir C, Hager B, et al. Cdk5 controls lymphatic vessel development and function by phosphorylation of Foxc2. Nat Commun. 2015;6:7274 pubmed 出版商
  753. Gromova I, Gromov P, Honma N, Kumar S, Rimm D, Talman M, et al. High level PHGDH expression in breast is predominantly associated with keratin 5-positive cell lineage independently of malignancy. Mol Oncol. 2015;9:1636-54 pubmed 出版商
  754. Adomako A, Calvo V, Biran N, Osman K, Chari A, Paton J, et al. Identification of markers that functionally define a quiescent multiple myeloma cell sub-population surviving bortezomib treatment. BMC Cancer. 2015;15:444 pubmed 出版商
  755. Coulson Thomas V, Chang S, Yeh L, Coulson Thomas Y, Yamaguchi Y, Esko J, et al. Loss of corneal epithelial heparan sulfate leads to corneal degeneration and impaired wound healing. Invest Ophthalmol Vis Sci. 2015;56:3004-14 pubmed 出版商
  756. Rabenstein M, Hucklenbroich J, Willuweit A, Ladwig A, Fink G, Schroeter M, et al. Osteopontin mediates survival, proliferation and migration of neural stem cells through the chemokine receptor CXCR4. Stem Cell Res Ther. 2015;6:99 pubmed 出版商
  757. Liang X, Ding Y, Zhang Y, Chai Y, He J, Chiu S, et al. Activation of NRG1-ERBB4 signaling potentiates mesenchymal stem cell-mediated myocardial repairs following myocardial infarction. Cell Death Dis. 2015;6:e1765 pubmed 出版商
  758. Ohlmann C, Brecht I, Junker K, van der Zee J, Nistor A, Bohle R, et al. Sclerosing epithelioid fibrosarcoma of the kidney: clinicopathologic and molecular study of a rare neoplasm at a novel location. Ann Diagn Pathol. 2015;19:221-5 pubmed 出版商
  759. Shankman L, Gomez D, Cherepanova O, Salmon M, Alencar G, Haskins R, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21:628-37 pubmed 出版商
  760. Hamilton A, Basic V, Andersson S, Abrink M, Ringvall M. Loss of Serglycin Promotes Primary Tumor Growth and Vessel Functionality in the RIP1-Tag2 Mouse Model for Spontaneous Insulinoma Formation. PLoS ONE. 2015;10:e0126688 pubmed 出版商
  761. Chen Q, Arai D, Kawakami K, Sawada T, Jing X, Miyajima M, et al. EphA4 Regulates the Balance between Self-Renewal and Differentiation of Radial Glial Cells and Intermediate Neuronal Precursors in Cooperation with FGF Signaling. PLoS ONE. 2015;10:e0126942 pubmed 出版商
  762. Li W, Zhang C, Ren A, Li T, Jin R, Li G, et al. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation. PLoS ONE. 2015;10:e0126459 pubmed 出版商
  763. Tsuneki M, Hardee S, Michaud M, Morotti R, Lavik E, Madri J. A hydrogel-endothelial cell implant mimics infantile hemangioma: modulation by survivin and the Hippo pathway. Lab Invest. 2015;95:765-80 pubmed 出版商
  764. Robl B, Pauli C, Botter S, Bode Lesniewska B, Fuchs B. Prognostic value of tumor suppressors in osteosarcoma before and after neoadjuvant chemotherapy. BMC Cancer. 2015;15:379 pubmed 出版商
  765. Andersen N, Boguslawski E, Kuk C, Chambers C, Duesbery N. Combined inhibition of MEK and mTOR has a synergic effect on angiosarcoma tumorgrafts. Int J Oncol. 2015;47:71-80 pubmed 出版商
  766. Bánfi G, Teleki I, Nyirády P, Keszthelyi A, Romics I, Fintha A, et al. Changes of protein expression in prostate cancer having lost its androgen sensitivity. Int Urol Nephrol. 2015;47:1149-54 pubmed 出版商
  767. Abdayem R, Callejon S, Portes P, Kirilov P, Demarne F, Pirot F, et al. Modulation of transepithelial electric resistance (TEER) in reconstructed human epidermis by excipients known to permeate intestinal tight junctions. Exp Dermatol. 2015;24:686-91 pubmed 出版商
  768. Waters A, Stewart J, Atigadda V, Mroczek Musulman E, Muccio D, Grubbs C, et al. Preclinical Evaluation of a Novel RXR Agonist for the Treatment of Neuroblastoma. Mol Cancer Ther. 2015;14:1559-69 pubmed 出版商
  769. Yan Y, Wladyka C, Fujii J, Sockanathan S. Prdx4 is a compartment-specific H2O2 sensor that regulates neurogenesis by controlling surface expression of GDE2. Nat Commun. 2015;6:7006 pubmed 出版商
  770. Wang B, Wang X, Long J, Eastham Anderson J, Firestein R, Junttila M. Castration-resistant Lgr5(+) cells are long-lived stem cells required for prostatic regeneration. Stem Cell Reports. 2015;4:768-79 pubmed 出版商
  771. Brindle N, Joyce J, Rostker F, Lawlor E, Swigart Brown L, Evan G, et al. Deficiency for the cysteine protease cathepsin L impairs Myc-induced tumorigenesis in a mouse model of pancreatic neuroendocrine cancer. PLoS ONE. 2015;10:e0120348 pubmed 出版商
  772. Pei B, Zhao M, Miller B, Véla J, Bruinsma M, Virgin H, et al. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation. J Immunol. 2015;194:5872-84 pubmed 出版商
  773. Park J, Zhao L, Willingham M, Cheng S. Oncogenic mutations of thyroid hormone receptor β. Oncotarget. 2015;6:8115-31 pubmed
  774. De Souza P, Balasubramanian K, Njoku C, Smith N, Gillespie D, Schwager A, et al. OKN-007 decreases tumor necrosis and tumor cell proliferation and increases apoptosis in a preclinical F98 rat glioma model. J Magn Reson Imaging. 2015;42:1582-91 pubmed 出版商
  775. Gültekin S, Sengüven B, Klussmann J, Dienes H. P16(INK 4a) and Ki-67 expression in human papilloma virus-related head and neck mucosal lesions. Invest Clin. 2015;56:47-59 pubmed
  776. Mendonsa A, Chalfant M, Gorden L, VanSaun M. Modulation of the leptin receptor mediates tumor growth and migration of pancreatic cancer cells. PLoS ONE. 2015;10:e0126686 pubmed 出版商
  777. Tate C, Mc Entire J, Pallini R, Vakana E, Wyss L, Blosser W, et al. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology. PLoS ONE. 2015;10:e0125697 pubmed 出版商
  778. Moguche A, Shafiani S, Clemons C, Larson R, Dinh C, Higdon L, et al. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med. 2015;212:715-28 pubmed 出版商
  779. Shaikh L, Zhou J, Teo A, Garg S, Neogi S, Figg N, et al. LGR5 Activates Noncanonical Wnt Signaling and Inhibits Aldosterone Production in the Human Adrenal. J Clin Endocrinol Metab. 2015;100:E836-44 pubmed 出版商
  780. Caruso M, Ferranti F, Corano Scheri K, Dobrowolny G, Ciccarone F, Grammatico P, et al. R-spondin 1/dickkopf-1/beta-catenin machinery is involved in testicular embryonic angiogenesis. PLoS ONE. 2015;10:e0124213 pubmed 出版商
  781. Aghababaei M, Hogg K, Perdu S, Robinson W, Beristain A. ADAM12-directed ectodomain shedding of E-cadherin potentiates trophoblast fusion. Cell Death Differ. 2015;22:1970-84 pubmed 出版商
  782. Kim S, Lahmy R, Riha C, Yang C, Jakubison B, van Niekerk J, et al. The basic helix-loop-helix transcription factor E47 reprograms human pancreatic cancer cells to a quiescent acinar state with reduced tumorigenic potential. Pancreas. 2015;44:718-27 pubmed 出版商
  783. Nakada S, Minato H, Takegami T, Kurose N, Ikeda H, Kobayashi M, et al. NAB2-STAT6 fusion gene analysis in two cases of meningeal solitary fibrous tumor/hemangiopericytoma with late distant metastases. Brain Tumor Pathol. 2015;32:268-74 pubmed 出版商
  784. Lodillinsky C, Infante E, Guichard A, Chaligné R, Fuhrmann L, Cyrta J, et al. p63/MT1-MMP axis is required for in situ to invasive transition in basal-like breast cancer. Oncogene. 2016;35:344-57 pubmed 出版商
  785. Gupta J, Igea A, Papaioannou M, López Casas P, Llonch E, Hidalgo M, et al. Pharmacological inhibition of p38 MAPK reduces tumor growth in patient-derived xenografts from colon tumors. Oncotarget. 2015;6:8539-51 pubmed
  786. Zhang P, Yang X, Ma X, Ingram D, Lazar A, Torres K, et al. Antitumor effects of pharmacological EZH2 inhibition on malignant peripheral nerve sheath tumor through the miR-30a and KPNB1 pathway. Mol Cancer. 2015;14:55 pubmed 出版商
  787. Gebara E, Udry F, Sultan S, Toni N. Taurine increases hippocampal neurogenesis in aging mice. Stem Cell Res. 2015;14:369-79 pubmed 出版商
  788. Vong K, Leung C, Behringer R, Kwan K. Sox9 is critical for suppression of neurogenesis but not initiation of gliogenesis in the cerebellum. Mol Brain. 2015;8:25 pubmed 出版商
  789. Sommer F, Nookaew I, Sommer N, Fogelstrand P, Bäckhed F. Site-specific programming of the host epithelial transcriptome by the gut microbiota. Genome Biol. 2015;16:62 pubmed 出版商
  790. Cookman C, Belcher S. Estrogen Receptor-β Up-Regulates IGF1R Expression and Activity to Inhibit Apoptosis and Increase Growth of Medulloblastoma. Endocrinology. 2015;156:2395-408 pubmed 出版商
  791. Bartram M, Dafinger C, Habbig S, Benzing T, Schermer B, Müller R. Loss of Dgcr8-mediated microRNA expression in the kidney results in hydronephrosis and renal malformation. BMC Nephrol. 2015;16:55 pubmed 出版商
  792. Stroo I, Claessen N, Teske G, Butter L, Florquin S, Leemans J. Deficiency for the chemokine monocyte chemoattractant protein-1 aggravates tubular damage after renal ischemia/reperfusion injury. PLoS ONE. 2015;10:e0123203 pubmed 出版商
  793. Deleyrolle L, Sabourin J, Rothhut B, Fujita H, Guichet P, Teigell M, et al. OCAM regulates embryonic spinal cord stem cell proliferation by modulating ErbB2 receptor. PLoS ONE. 2015;10:e0122337 pubmed 出版商
  794. Ross J, Huh D, Noble L, Tavazoie S. Identification of molecular determinants of primary and metastatic tumour re-initiation in breast cancer. Nat Cell Biol. 2015;17:651-64 pubmed 出版商
  795. Figeac N, Zammit P. Coordinated action of Axin1 and Axin2 suppresses β-catenin to regulate muscle stem cell function. Cell Signal. 2015;27:1652-65 pubmed 出版商
  796. Tandon B, Swerdlow S, Hasserjian R, Surti U, Gibson S. Chronic lymphocytic leukemia/small lymphocytic lymphoma: another neoplasm related to the B-cell follicle?. Leuk Lymphoma. 2015;56:3378-86 pubmed 出版商
  797. Hsiao C, Wu Y, Nan F, Huang S, Chen L, Chen S. Immunomodulator 'mushroom beta glucan' induces Wnt/β catenin signalling and improves wound recovery in tilapia and rat skin: a histopathological study. Int Wound J. 2016;13:1116-1128 pubmed 出版商
  798. Cohen T, Kollias H, Liu N, Ward C, Wagner K. Genetic disruption of Smad7 impairs skeletal muscle growth and regeneration. J Physiol. 2015;593:2479-97 pubmed 出版商
  799. Frank C, Liu F, Wijayatunge R, Song L, Biegler M, Yang M, et al. Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat Neurosci. 2015;18:647-56 pubmed 出版商
  800. Li Y, Drabsch Y, Pujuguet P, Ren J, van Laar T, Zhang L, et al. Genetic depletion and pharmacological targeting of αv integrin in breast cancer cells impairs metastasis in zebrafish and mouse xenograft models. Breast Cancer Res. 2015;17:28 pubmed 出版商
  801. Buchholz M, Honstein T, Kirchhoff S, Kreider R, Schmidt H, Sipos B, et al. A multistep high-content screening approach to identify novel functionally relevant target genes in pancreatic cancer. PLoS ONE. 2015;10:e0122946 pubmed 出版商
  802. Maneix L, Antonson P, Humire P, Rochel Maia S, Castañeda J, Omoto Y, et al. Estrogen receptor β exon 3-deleted mouse: The importance of non-ERE pathways in ERβ signaling. Proc Natl Acad Sci U S A. 2015;112:5135-40 pubmed 出版商
  803. Sadok A, McCarthy A, Caldwell J, Collins I, Garrett M, Yeo M, et al. Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer Res. 2015;75:2272-84 pubmed 出版商
  804. Rao T, Marks Bluth J, Sullivan J, Gupta M, Chandrakanthan V, Fitch S, et al. High-level Gpr56 expression is dispensable for the maintenance and function of hematopoietic stem and progenitor cells in mice. Stem Cell Res. 2015;14:307-22 pubmed 出版商
  805. Dodbiba L, Teichman J, Fleet A, Thai H, Starmans M, Navab R, et al. Appropriateness of using patient-derived xenograft models for pharmacologic evaluation of novel therapies for esophageal/gastro-esophageal junction cancers. PLoS ONE. 2015;10:e0121872 pubmed 出版商
  806. Malchenko S, Sredni S, Hashimoto H, Kasai A, Nagayasu K, Xie J, et al. A mouse model of human primitive neuroectodermal tumors resulting from microenvironmentally-driven malignant transformation of orthotopically transplanted radial glial cells. PLoS ONE. 2015;10:e0121707 pubmed 出版商
  807. Tabariès S, Annis M, Hsu B, Tam C, Savage P, Park M, et al. Lyn modulates Claudin-2 expression and is a therapeutic target for breast cancer liver metastasis. Oncotarget. 2015;6:9476-87 pubmed
  808. Savci Heijink C, Halfwerk H, Hooijer G, Horlings H, Wesseling J, van de Vijver M. Retrospective analysis of metastatic behaviour of breast cancer subtypes. Breast Cancer Res Treat. 2015;150:547-57 pubmed 出版商
  809. Hausburg M, Doles J, Clement S, Cadwallader A, Hall M, Blackshear P, et al. Post-transcriptional regulation of satellite cell quiescence by TTP-mediated mRNA decay. elife. 2015;4:e03390 pubmed 出版商
  810. Rajnai H, Teleki I, Kiszner G, Meggyesházi N, Balla P, Vancsik T, et al. Connexin 43 communication channels in follicular dendritic cell development and in follicular lymphomas. J Immunol Res. 2015;2015:528098 pubmed 出版商
  811. Fallahi Sichani M, Moerke N, Niepel M, Zhang T, Gray N, Sorger P. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Mol Syst Biol. 2015;11:797 pubmed 出版商
  812. Ngo J, Matsuyama M, Kim C, Poventud Fuentes I, Bates A, Siedlak S, et al. Bax deficiency extends the survival of Ku70 knockout mice that develop lung and heart diseases. Cell Death Dis. 2015;6:e1706 pubmed 出版商
  813. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  814. Charlton J, Tsoukatou D, Mamalaki C, Chatzidakis I. Programmed death 1 regulates memory phenotype CD4 T cell accumulation, inhibits expansion of the effector memory phenotype subset and modulates production of effector cytokines. PLoS ONE. 2015;10:e0119200 pubmed 出版商
  815. Saffarini C, McDonnell Clark E, Amin A, Huse S, Boekelheide K. Developmental exposure to estrogen alters differentiation and epigenetic programming in a human fetal prostate xenograft model. PLoS ONE. 2015;10:e0122290 pubmed 出版商
  816. Venkatesh A, Ma S, Le Y, Hall M, Rüegg M, Punzo C. Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice. J Clin Invest. 2015;125:1446-58 pubmed 出版商
  817. Povinelli B, Kokolus K, Eng J, Dougher C, Curtin L, Capitano M, et al. Standard sub-thermoneutral caging temperature influences radiosensitivity of hematopoietic stem and progenitor cells. PLoS ONE. 2015;10:e0120078 pubmed 出版商
  818. Said M, Hassan N, Schlicht M, Bosland M. Flaxseed suppressed prostatic epithelial proliferation in a rat model of benign prostatic hyperplasia. J Toxicol Environ Health A. 2015;78:453-65 pubmed 出版商
  819. Skardal A, Devarasetty M, Rodman C, Atala A, Soker S. Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro. Ann Biomed Eng. 2015;43:2361-73 pubmed 出版商
  820. van Drongelen V, Danso M, Out J, Mulder A, Lavrijsen A, Bouwstra J, et al. Explant cultures of atopic dermatitis biopsies maintain their epidermal characteristics in vitro. Cell Tissue Res. 2015;361:789-97 pubmed 出版商
  821. Obiero J, Shekalaghe S, Hermsen C, Mpina M, Bijker E, Roestenberg M, et al. Impact of malaria preexposure on antiparasite cellular and humoral immune responses after controlled human malaria infection. Infect Immun. 2015;83:2185-96 pubmed 出版商
  822. Bowcutt R, Malter L, Chen L, Wolff M, Robertson I, Rifkin D, et al. Isolation and cytokine analysis of lamina propria lymphocytes from mucosal biopsies of the human colon. J Immunol Methods. 2015;421:27-35 pubmed 出版商
  823. Rizzi N, Manni I, Vantaggiato C, Delledonne G, Gentileschi M, Maggi A, et al. In vivo imaging of cell proliferation for a dynamic, whole body, analysis of undesired drug effects. Toxicol Sci. 2015;145:296-306 pubmed 出版商
  824. Le A, Huang Y, Pingle S, Kesari S, Wang H, Yong R, et al. Plexin-B2 promotes invasive growth of malignant glioma. Oncotarget. 2015;6:7293-304 pubmed
  825. Eom K, Jang M, Park S, Kang E, Kim S, Kim J, et al. The Expression of Carbonic Anhydrase (CA) IX/XII and Lymph Node Metastasis in Early Breast Cancer. Cancer Res Treat. 2016;48:125-32 pubmed 出版商
  826. Chen Q, Gu Y, Liu B. Clinicopathological characteristics of kidney mucinous tubular and spindle cell carcinoma. Int J Clin Exp Pathol. 2015;8:1007-12 pubmed
  827. Perna F, Vu L, Themeli M, Kriks S, Hoya Arias R, Khanin R, et al. The polycomb group protein L3MBTL1 represses a SMAD5-mediated hematopoietic transcriptional program in human pluripotent stem cells. Stem Cell Reports. 2015;4:658-69 pubmed 出版商
  828. Rusz O, Vörös A, Varga Z, Kelemen G, Uhercsák G, Nikolényi A, et al. One-Year Neoadjuvant Endocrine Therapy in Breast Cancer. Pathol Oncol Res. 2015;21:977-84 pubmed 出版商
  829. Fang X, Gyabaah K, Nickkholgh B, Cline J, Balaji K. Novel In Vivo model for combinatorial fluorescence labeling in mouse prostate. Prostate. 2015;75:988-1000 pubmed 出版商
  830. Wang P, Alvarez Perez J, Felsenfeld D, Liu H, Sivendran S, Bender A, et al. A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nat Med. 2015;21:383-8 pubmed 出版商
  831. Kim S, Lee Y, Koo J. Differential expression of lipid metabolism-related proteins in different breast cancer subtypes. PLoS ONE. 2015;10:e0119473 pubmed 出版商
  832. Resnik N, Mavrič A, KeÅ¡e D, Veranič P, Zupančič D. The effect of LDL particles on the behaviour of epithelial noncancer and cancer cell lines after in vitro induced injury. Protoplasma. 2015;252:1537-50 pubmed 出版商
  833. Hallett R, Huang C, Motazedian A, Auf der Mauer S, Pond G, Hassell J, et al. Treatment-induced cell cycle kinetics dictate tumor response to chemotherapy. Oncotarget. 2015;6:7040-52 pubmed
  834. Kim S, Kim W, Yoon J, Ji J, Morgan M, Cho H, et al. Upregulated RIP3 Expression Potentiates MLKL Phosphorylation-Mediated Programmed Necrosis in Toxic Epidermal Necrolysis. J Invest Dermatol. 2015;135:2021-2030 pubmed 出版商
  835. Liu W, Zhou H, Liu L, Zhao C, Deng Y, Chen L, et al. Disruption of neurogenesis and cortical development in transgenic mice misexpressing Olig2, a gene in the Down syndrome critical region. Neurobiol Dis. 2015;77:106-16 pubmed 出版商
  836. Alaggio R, Midrio P, Sgrò A, Piovan G, Guzzardo V, Donato R, et al. Congenital diaphragmatic hernia: focus on abnormal muscle formation. J Pediatr Surg. 2015;50:388-93 pubmed 出版商
  837. Dun X, Parkinson D. Visualizing peripheral nerve regeneration by whole mount staining. PLoS ONE. 2015;10:e0119168 pubmed 出版商
  838. Mellai M, Piazzi A, Casalone C, Grifoni S, Melcarne A, Annovazzi L, et al. Astroblastoma: beside being a tumor entity, an occasional phenotype of astrocytic gliomas?. Onco Targets Ther. 2015;8:451-60 pubmed 出版商
  839. Tsai C, Liong K, Gunalan M, Li N, Lim D, Fisher D, et al. Type I IFNs and IL-18 regulate the antiviral response of primary human γδ T cells against dendritic cells infected with Dengue virus. J Immunol. 2015;194:3890-900 pubmed 出版商
  840. Claiborne D, Prince J, Scully E, Macharia G, Micci L, Lawson B, et al. Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4+ T cells, and disease progression. Proc Natl Acad Sci U S A. 2015;112:E1480-9 pubmed 出版商
  841. Thomas A, Palma J, Shea L. Sponge-mediated lentivirus delivery to acute and chronic spinal cord injuries. J Control Release. 2015;204:1-10 pubmed 出版商
  842. Quang C, Leboucher S, Passaro D, Fuhrmann L, Nourieh M, Vincent Salomon A, et al. The calcineurin/NFAT pathway is activated in diagnostic breast cancer cases and is essential to survival and metastasis of mammary cancer cells. Cell Death Dis. 2015;6:e1658 pubmed 出版商
  843. Choi C, Kim Y, Sohn J, Lee H, Kim W. Focal adhesion kinase and Src expression in premalignant and malignant skin lesions. Exp Dermatol. 2015;24:361-4 pubmed 出版商
  844. Tam N, Zhang X, Xiao H, Song D, Levin L, Meller J, et al. Increased susceptibility of estrogen-induced bladder outlet obstruction in a novel mouse model. Lab Invest. 2015;95:546-60 pubmed 出版商
  845. Severson J, Serracino H, Mateescu V, Raeburn C, McIntyre R, Sams S, et al. PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer. Cancer Immunol Res. 2015;3:620-30 pubmed 出版商
  846. Okamoto M, Iguchi T, Hattori T, Matsuzaki S, Koyama Y, Taniguchi M, et al. DBZ regulates cortical cell positioning and neurite development by sustaining the anterograde transport of Lis1 and DISC1 through control of Ndel1 dual-phosphorylation. J Neurosci. 2015;35:2942-58 pubmed 出版商
  847. Kitajima S, Kohno S, Kondoh A, Sasaki N, Nishimoto Y, Li F, et al. Undifferentiated State Induced by Rb-p53 Double Inactivation in Mouse Thyroid Neuroendocrine Cells and Embryonic Fibroblasts. Stem Cells. 2015;33:1657-69 pubmed 出版商
  848. Poli G, Ceni E, Armignacco R, Ercolino T, Canu L, Baroni G, et al. 2D-DIGE proteomic analysis identifies new potential therapeutic targets for adrenocortical carcinoma. Oncotarget. 2015;6:5695-706 pubmed
  849. Dow L, Fisher J, O Rourke K, Muley A, Kastenhuber E, Livshits G, et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol. 2015;33:390-394 pubmed 出版商
  850. Licht T, Dor Wollman T, Ben Zvi A, Rothe G, Keshet E. Vessel maturation schedule determines vulnerability to neuronal injuries of prematurity. J Clin Invest. 2015;125:1319-28 pubmed 出版商
  851. Bitler B, Aird K, Garipov A, Li H, Amatangelo M, Kossenkov A, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 2015;21:231-8 pubmed 出版商
  852. Abdelzaher E, Mostafa M. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) upregulation in breast carcinoma contributes to tumor progression and predicts early tumor recurrence. Tumour Biol. 2015;36:5473-83 pubmed 出版商
  853. Zou H, Feng R, Huang Y, Tripodi J, Najfeld V, Tsankova N, et al. Double minute amplification of mutant PDGF receptor α in a mouse glioma model. Sci Rep. 2015;5:8468 pubmed 出版商
  854. Simons M, Nagtegaal I, Overbeek L, Flucke U, Massuger L, Bulten J. A patient with a noninvasive mucinous ovarian borderline tumor presenting with late pleural metastases. Int J Gynecol Pathol. 2015;34:143-50 pubmed 出版商
  855. Park S, Kim H, Koo J. Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer. Breast Cancer Res Treat. 2015;149:727-41 pubmed 出版商
  856. Withofs N, Signolle N, Somja J, Lovinfosse P, Nzaramba E, Mievis F, et al. 18F-FPRGD2 PET/CT imaging of integrin αvβ3 in renal carcinomas: correlation with histopathology. J Nucl Med. 2015;56:361-4 pubmed 出版商
  857. Zhou Y, Rychahou P, Wang Q, Weiss H, Evers B. TSC2/mTORC1 signaling controls Paneth and goblet cell differentiation in the intestinal epithelium. Cell Death Dis. 2015;6:e1631 pubmed 出版商
  858. Nguyen D, Rubinstein L, Takebe N, Miele L, Tomaszewski J, Ivy P, et al. Notch1 phenotype and clinical stage progression in non-small cell lung cancer. J Hematol Oncol. 2015;8:9 pubmed 出版商
  859. Bechet D, Auger F, Couleaud P, Marty E, Ravasi L, Durieux N, et al. Multifunctional ultrasmall nanoplatforms for vascular-targeted interstitial photodynamic therapy of brain tumors guided by real-time MRI. Nanomedicine. 2015;11:657-70 pubmed 出版商
  860. Ohlemacher S, Iglesias C, Sridhar A, Gamm D, Meyer J. Generation of highly enriched populations of optic vesicle-like retinal cells from human pluripotent stem cells. Curr Protoc Stem Cell Biol. 2015;32:1H.8.1-20 pubmed 出版商
  861. Lewis M, Vyse S, Shields A, Boeltz S, Gordon P, Spector T, et al. UBE2L3 polymorphism amplifies NF-κB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am J Hum Genet. 2015;96:221-34 pubmed 出版商
  862. Kap M, Lam K, Ewing Graham P, Riegman P. A reference image-based method for optimization of clinical immunohistochemistry. Histopathology. 2015;67:193-205 pubmed 出版商
  863. Kinose Y, Sawada K, Makino H, Ogura T, Mizuno T, Suzuki N, et al. IKKβ Regulates VEGF Expression and Is a Potential Therapeutic Target for Ovarian Cancer as an Antiangiogenic Treatment. Mol Cancer Ther. 2015;14:909-19 pubmed 出版商
  864. Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci U S A. 2015;112:1809-14 pubmed 出版商
  865. Wright M, Reed Geaghan E, Bolock A, Fujiyama T, Hoshino M, Maricich S. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice. J Cell Biol. 2015;208:367-79 pubmed 出版商
  866. Li Z, Xiao J, Hu K, Wang G, Li M, Zhang J, et al. FBXW7 acts as an independent prognostic marker and inhibits tumor growth in human osteosarcoma. Int J Mol Sci. 2015;16:2294-306 pubmed 出版商
  867. Ammar A, Esmat A, Hassona M, Tadros M, Abdel Naim A, Guns E. The effect of pomegranate fruit extract on testosterone-induced BPH in rats. Prostate. 2015;75:679-92 pubmed 出版商
  868. Warnier M, Roudbaraki M, Derouiche S, Delcourt P, Bokhobza A, Prevarskaya N, et al. CACNA2D2 promotes tumorigenesis by stimulating cell proliferation and angiogenesis. Oncogene. 2015;34:5383-94 pubmed 出版商
  869. Dimova T, Brouwer M, Gosselin F, Tassignon J, Leo O, Donner C, et al. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc Natl Acad Sci U S A. 2015;112:E556-65 pubmed 出版商
  870. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  871. Tian E, Stevens S, Guan Y, Springer D, Anderson S, Starost M, et al. Galnt1 is required for normal heart valve development and cardiac function. PLoS ONE. 2015;10:e0115861 pubmed 出版商
  872. Khan A, Srivastava R, Spencer D, Garg S, Fremgen D, Vahed H, et al. Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes. J Virol. 2015;89:3776-92 pubmed 出版商
  873. Barcus C, Holt E, Keely P, Eliceiri K, Schuler L. Dense collagen-I matrices enhance pro-tumorigenic estrogen-prolactin crosstalk in MCF-7 and T47D breast cancer cells. PLoS ONE. 2015;10:e0116891 pubmed 出版商
  874. Giera S, Deng Y, Luo R, Ackerman S, Mogha A, Monk K, et al. The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun. 2015;6:6121 pubmed 出版商
  875. Xu T, Su B, Wang C, Wang S, Huang H, Pan Y, et al. Molecular markers to assess short-term disease local recurrence in nasopharyngeal carcinoma. Oncol Rep. 2015;33:1418-26 pubmed 出版商
  876. Feng T, Dzieran J, Gu X, Marhenke S, Vogel A, Machida K, et al. Smad7 regulates compensatory hepatocyte proliferation in damaged mouse liver and positively relates to better clinical outcome in human hepatocellular carcinoma. Clin Sci (Lond). 2015;128:761-74 pubmed 出版商
  877. Ilina P, Partti S, Niklander J, Ruponen M, Lou Y, Yliperttula M. Effect of differentiation on endocytic profiles of endothelial and epithelial cell culture models. Exp Cell Res. 2015;332:89-101 pubmed 出版商
  878. Tökés A, Szász A, Geszti F, Lukács L, Kenessey I, Turányi E, et al. Expression of proliferation markers Ki67, cyclin A, geminin and aurora-kinase A in primary breast carcinomas and corresponding distant metastases. J Clin Pathol. 2015;68:274-82 pubmed 出版商
  879. Karunakaran D, Chhaya N, Lemoine C, Congdon S, Black A, Kanadia R. Loss of citron kinase affects a subset of progenitor cells that alters late but not early neurogenesis in the developing rat retina. Invest Ophthalmol Vis Sci. 2015;56:787-98 pubmed 出版商
  880. Zhou W, Ke S, Huang Z, Flavahan W, Fang X, Paul J, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol. 2015;17:170-82 pubmed 出版商
  881. Wald N, Goormaghtigh E. Infrared imaging of primary melanomas reveals hints of regional and distant metastases. Analyst. 2015;140:2144-55 pubmed 出版商
  882. Kumar M, Csaba Z, Peineau S, Srivastava R, Rasika S, Mani S, et al. Endogenous cerebellar neurogenesis in adult mice with progressive ataxia. Ann Clin Transl Neurol. 2014;1:968-81 pubmed 出版商
  883. Long P, Tighe S, Driscoll H, Fortner K, Viapiano M, Jaworski D. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest. J Cell Physiol. 2015;230:1929-43 pubmed 出版商
  884. You L, Zou J, Zhao H, Bertos N, Park M, Wang E, et al. Deficiency of the chromatin regulator BRPF1 causes abnormal brain development. J Biol Chem. 2015;290:7114-29 pubmed 出版商
  885. Moyon S, Dubessy A, Aigrot M, Trotter M, Huang J, Dauphinot L, et al. Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. J Neurosci. 2015;35:4-20 pubmed 出版商
  886. Jonchère B, Vétillard A, Toutain B, Lam D, Bernard A, Henry C, et al. Irinotecan treatment and senescence failure promote the emergence of more transformed and invasive cells that depend on anti-apoptotic Mcl-1. Oncotarget. 2015;6:409-26 pubmed
  887. Gravez B, Tarjus A, Pelloux V, Ouvrard Pascaud A, Delcayre C, Samuel J, et al. Aldosterone promotes cardiac endothelial cell proliferation in vivo. J Am Heart Assoc. 2015;4:e001266 pubmed 出版商
  888. Gurzu S, Kádár Z, Sugimura H, Bara T, Hălmaciu I, Jung I. Gastric cancer in young vs old Romanian patients: immunoprofile with emphasis on maspin and mena protein reactivity. APMIS. 2015;123:223-33 pubmed 出版商
  889. Ehret F, Vogler S, Pojar S, Elliott D, Bradke F, Steiner B, et al. Mouse model of CADASIL reveals novel insights into Notch3 function in adult hippocampal neurogenesis. Neurobiol Dis. 2015;75:131-41 pubmed 出版商
  890. Schotanus B, Kruitwagen H, van den Ingh T, van Wolferen M, Rothuizen J, Penning L, et al. Enhanced Wnt/β-catenin and Notch signalling in the activated canine hepatic progenitor cell niche. BMC Vet Res. 2014;10:309 pubmed 出版商
  891. Gültiken N, Guvenc T, Kaya D, Agaoglu A, Ay S, Kücükaslan I, et al. Tarantula cubensis extract alters the degree of apoptosis and mitosis in canine mammary adenocarcinomas. J Vet Sci. 2015;16:213-9 pubmed
  892. Akrish S, Ben Izhak O, Sabo E, Rachmiel A. Oral squamous cell carcinoma associated with proliferative verrucous leukoplakia compared with conventional squamous cell carcinoma--a clinical, histologic and immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;119:318-25 pubmed 出版商
  893. Iurchenko N, Glushchenko N, Buchynska L. Comprehensive analysis of intratumoral lymphocytes and FOXP3 expression in tumor cells of endometrial cancer. Exp Oncol. 2014;36:262-6 pubmed
  894. Cebulla J, Huuse E, Pettersen K, van der Veen A, Kim E, Andersen S, et al. MRI reveals the in vivo cellular and vascular response to BEZ235 in ovarian cancer xenografts with different PI3-kinase pathway activity. Br J Cancer. 2015;112:504-13 pubmed 出版商
  895. Hill R, Kuijper S, Lindsey J, Petrie K, Schwalbe E, Barker K, et al. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell. 2015;27:72-84 pubmed 出版商
  896. Imajo M, Ebisuya M, Nishida E. Dual role of YAP and TAZ in renewal of the intestinal epithelium. Nat Cell Biol. 2015;17:7-19 pubmed 出版商
  897. Di Sante G, Pestell T, Casimiro M, Bisetto S, Powell M, Lisanti M, et al. Loss of Sirt1 promotes prostatic intraepithelial neoplasia, reduces mitophagy, and delays PARK2 translocation to mitochondria. Am J Pathol. 2015;185:266-79 pubmed 出版商
  898. Green A, Caracappa D, Benhasouna A, Alshareeda A, Nolan C, Macmillan R, et al. Biological and clinical significance of PARP1 protein expression in breast cancer. Breast Cancer Res Treat. 2015;149:353-62 pubmed 出版商
  899. Yuan X, Dee M, Altman N, Malek T. IL-2Rβ-dependent signaling and CD103 functionally cooperate to maintain tolerance in the gut mucosa. J Immunol. 2015;194:1334-46 pubmed 出版商
  900. De Waele J, Reekmans K, Daans J, Goossens H, Berneman Z, Ponsaerts P. 3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials. 2015;41:122-31 pubmed 出版商
  901. Nikolaou K, Moulos P, Chalepakis G, Hatzis P, Oda H, Reinberg D, et al. Spontaneous development of hepatocellular carcinoma with cancer stem cell properties in PR-SET7-deficient livers. EMBO J. 2015;34:430-47 pubmed 出版商
  902. Ta M, Rao P, Korgaonkar M, Foster S, Peduto A, Harris D, et al. Pyrrolidine dithiocarbamate reduces the progression of total kidney volume and cyst enlargement in experimental polycystic kidney disease. Physiol Rep. 2014;2: pubmed 出版商
  903. Li H, Evans T, Gillis J, Connole M, Reeves R. Bone marrow-imprinted gut-homing of plasmacytoid dendritic cells (pDCs) in acute simian immunodeficiency virus infection results in massive accumulation of hyperfunctional CD4+ pDCs in the mucosae. J Infect Dis. 2015;211:1717-25 pubmed 出版商
  904. Smid J, Faulkes S, Rudnicki M. Periostin induces pancreatic regeneration. Endocrinology. 2015;156:824-36 pubmed 出版商
  905. Pekkonen P, Järviluoma A, Zinovkina N, Cvrljevic A, Prakash S, Westermarck J, et al. KSHV viral cyclin interferes with T-cell development and induces lymphoma through Cdk6 and Notch activation in vivo. Cell Cycle. 2014;13:3670-84 pubmed 出版商
  906. Stoycheva D, Deiser K, Stärck L, Nishanth G, Schlüter D, Uckert W, et al. IFN-γ regulates CD8+ memory T cell differentiation and survival in response to weak, but not strong, TCR signals. J Immunol. 2015;194:553-9 pubmed 出版商
  907. Bae W, Kang K, Yu J, Yoo K, Factor V, Kaji K, et al. The methyltransferases enhancer of zeste homolog (EZH) 1 and EZH2 control hepatocyte homeostasis and regeneration. FASEB J. 2015;29:1653-62 pubmed 出版商
  908. Vadasz S, JENSEN T, Moncada C, Girard E, Zhang F, Blanchette A, et al. Second and third trimester amniotic fluid mesenchymal stem cells can repopulate a de-cellularized lung scaffold and express lung markers. J Pediatr Surg. 2014;49:1554-63 pubmed 出版商
  909. Tanaka S, Miki Y, Hashimoto C, Takagi K, Doe Z, Li B, et al. The role of 5α-reductase type 1 associated with intratumoral dihydrotestosterone concentrations in human endometrial carcinoma. Mol Cell Endocrinol. 2015;401:56-64 pubmed 出版商
  910. Sundberg J, Stearns T, Joh J, Proctor M, Ingle A, Silva K, et al. Immune status, strain background, and anatomic site of inoculation affect mouse papillomavirus (MmuPV1) induction of exophytic papillomas or endophytic trichoblastomas. PLoS ONE. 2014;9:e113582 pubmed 出版商
  911. Ventelä S, Sittig E, Mannermaa L, Mäkelä J, Kulmala J, Löyttyniemi E, et al. CIP2A is an Oct4 target gene involved in head and neck squamous cell cancer oncogenicity and radioresistance. Oncotarget. 2015;6:144-58 pubmed
  912. Buell Gutbrod R, Cavallo A, Lee N, Montag A, Gwin K. Heart and Neural Crest Derivatives Expressed Transcript 2 (HAND2): a novel biomarker for the identification of atypical hyperplasia and Type I endometrial carcinoma. Int J Gynecol Pathol. 2015;34:65-73 pubmed 出版商
  913. Gerner W, Talker S, Koinig H, Sedlak C, Mair K, Saalmüller A. Phenotypic and functional differentiation of porcine αβ T cells: current knowledge and available tools. Mol Immunol. 2015;66:3-13 pubmed 出版商
  914. Chow L. Primary intraosseous hybrid nerve sheath tumor of femur: a hitherto undescribed occurrence in bone with secondary aneurysmal bone cyst formation resulting in pathological fracture. Pathol Res Pract. 2015;211:409-14 pubmed 出版商
  915. Rachidi S, Sun S, Wu B, Jones E, Drake R, Ogretmen B, et al. Endoplasmic reticulum heat shock protein gp96 maintains liver homeostasis and promotes hepatocellular carcinogenesis. J Hepatol. 2015;62:879-88 pubmed 出版商
  916. Carter E, Miron Buchacra G, Goldoni S, Danahay H, Westwick J, Watson M, et al. Phosphoinositide 3-kinase alpha-dependent regulation of branching morphogenesis in murine embryonic lung: evidence for a role in determining morphogenic properties of FGF7. PLoS ONE. 2014;9:e113555 pubmed 出版商
  917. Bell C, Sun Y, Nowak U, Clark J, Howlett S, Pekalski M, et al. Sustained in vivo signaling by long-lived IL-2 induces prolonged increases of regulatory T cells. J Autoimmun. 2015;56:66-80 pubmed 出版商
  918. Meinke P, Schneiderat P, Srsen V, Korfali N, Lê Thành P, Cowan G, et al. Abnormal proliferation and spontaneous differentiation of myoblasts from a symptomatic female carrier of X-linked Emery-Dreifuss muscular dystrophy. Neuromuscul Disord. 2015;25:127-36 pubmed 出版商
  919. Hegde V, Hickerson R, Nainamalai S, Campbell P, Smith F, McLean W, et al. In vivo gene silencing following non-invasive siRNA delivery into the skin using a novel topical formulation. J Control Release. 2014;196:355-62 pubmed 出版商
  920. Ma B, Chen Y, Chen L, Cheng H, Mu C, Li J, et al. Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat Cell Biol. 2015;17:95-103 pubmed 出版商
  921. Stacchini A, Pacchioni D, Demurtas A, Aliberti S, Cassenti A, Isolato G, et al. Utilility of flow cytometry as ancillary study to improve the cytologic diagnosis of thyroid lymphomas. Cytometry B Clin Cytom. 2015;88:320-9 pubmed 出版商
  922. Boos A, Weigand A, Deschler G, Gerber T, Arkudas A, Kneser U, et al. Autologous serum improves bone formation in a primary stable silica-embedded nanohydroxyapatite bone substitute in combination with mesenchymal stem cells and rhBMP-2 in the sheep model. Int J Nanomedicine. 2014;9:5317-39 pubmed 出版商
  923. Zhou Q, Liu Z, Wu Z, Wang X, Wang B, Li C, et al. Reconstruction of Highly Proliferative Auto-Tissue-Engineered Lamellar Cornea Enhanced by Embryonic Stem Cell. Tissue Eng Part C Methods. 2015;21:639-48 pubmed 出版商
  924. Liu X, Giguère V. Inactivation of RARβ inhibits Wnt1-induced mammary tumorigenesis by suppressing epithelial-mesenchymal transitions. Nucl Recept Signal. 2014;12:e004 pubmed 出版商
  925. Davis H, Irshad S, Bansal M, Rafferty H, Boitsova T, Bardella C, et al. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nat Med. 2015;21:62-70 pubmed 出版商
  926. Huss D, Mehta D, Sharma A, You X, Riester K, Sheridan J, et al. In vivo maintenance of human regulatory T cells during CD25 blockade. J Immunol. 2015;194:84-92 pubmed
  927. Hanson K, March S, Ng S, Bhatia S, Mota M. In vitro alterations do not reflect a requirement for host cell cycle progression during Plasmodium liver stage infection. Eukaryot Cell. 2015;14:96-103 pubmed 出版商
  928. Scheving L, Zhang X, Stevenson M, Threadgill D, Russell W. Loss of hepatocyte EGFR has no effect alone but exacerbates carbon tetrachloride-induced liver injury and impairs regeneration in hepatocyte Met-deficient mice. Am J Physiol Gastrointest Liver Physiol. 2015;308:G364-77 pubmed 出版商
  929. Wang L, Wang G, Gao T. Acneiform primary cutaneous CD4-positive small/medium pleomorphic T-cell lymphoma with prominent necrosis. J Cutan Pathol. 2015;42:265-70 pubmed 出版商
  930. WANG Y, McAllister F, Bailey J, Scott S, Hendley A, Leach S, et al. Dicer is required for maintenance of adult pancreatic acinar cell identity and plays a role in Kras-driven pancreatic neoplasia. PLoS ONE. 2014;9:e113127 pubmed 出版商
  931. Plosa E, Young L, Gulleman P, Polosukhin V, Zaynagetdinov R, Benjamin J, et al. Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development. 2014;141:4751-62 pubmed 出版商
  932. Ortiz F, Acuña Castroviejo D, Doerrier C, Dayoub J, López L, Venegas C, et al. Melatonin blunts the mitochondrial/NLRP3 connection and protects against radiation-induced oral mucositis. J Pineal Res. 2015;58:34-49 pubmed 出版商
  933. Somsouk M, Estes J, Deléage C, Dunham R, Albright R, Inadomi J, et al. Gut epithelial barrier and systemic inflammation during chronic HIV infection. AIDS. 2015;29:43-51 pubmed 出版商
  934. Lester L, Ewalt M, Warnke R, Kim J. Systemic panniculitis-like T-cell lymphoma with involvement of mesenteric fat and subcutis. J Cutan Pathol. 2015;42:46-9 pubmed 出版商
  935. Zuo W, Zhang T, Wu D, Guan S, Liew A, Yamamoto Y, et al. p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration. Nature. 2015;517:616-20 pubmed 出版商
  936. Ciamporcero E, Miles K, Adelaiye R, Ramakrishnan S, Shen L, Ku S, et al. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther. 2015;14:101-10 pubmed 出版商
  937. Ahmed H, Shousha W, Shalby A, El Mezayen H, Ismaiel N, Mahmoud N. Curcumin: a unique antioxidant offers a multimechanistic approach for management of hepatocellular carcinoma in rat model. Tumour Biol. 2015;36:1667-78 pubmed 出版商
  938. Mouchacca P, Chasson L, Frick M, Foray C, Schmitt Verhulst A, Boyer C. Visualization of granzyme B-expressing CD8 T cells during primary and secondary immune responses to Listeria monocytogenes. Immunology. 2015;145:24-33 pubmed 出版商
  939. Greve K, Lindgreen J, Terp M, Pedersen C, Schmidt S, Mollenhauer J, et al. Ectopic expression of cancer/testis antigen SSX2 induces DNA damage and promotes genomic instability. Mol Oncol. 2015;9:437-49 pubmed 出版商
  940. Kretzschmar K, Cottle D, Donati G, Chiang M, Quist S, Gollnick H, et al. BLIMP1 is required for postnatal epidermal homeostasis but does not define a sebaceous gland progenitor under steady-state conditions. Stem Cell Reports. 2014;3:620-33 pubmed 出版商
  941. Chavali P, Saini R, Zhai Q, Vizlin Hodzic D, Venkatabalasubramanian S, Hayashi A, et al. TLX activates MMP-2, promotes self-renewal of tumor spheres in neuroblastoma and correlates with poor patient survival. Cell Death Dis. 2014;5:e1502 pubmed 出版商
  942. Herr K, Tsang Y, Ong J, Li Q, Yap L, Yu W, et al. Loss of α-catenin elicits a cholestatic response and impairs liver regeneration. Sci Rep. 2014;4:6835 pubmed 出版商
  943. Fujita T, Burwitz B, Chew G, Reed J, Pathak R, Seger E, et al. Expansion of dysfunctional Tim-3-expressing effector memory CD8+ T cells during simian immunodeficiency virus infection in rhesus macaques. J Immunol. 2014;193:5576-83 pubmed 出版商
  944. Vanhoutteghem A, Messiaen S, Hervé F, Delhomme B, Moison D, Petit J, et al. The zinc-finger protein basonuclin 2 is required for proper mitotic arrest, prevention of premature meiotic initiation and meiotic progression in mouse male germ cells. Development. 2014;141:4298-310 pubmed 出版商
  945. Tien J, Liao L, Liu Y, Liu Z, Lee D, Wang F, et al. The steroid receptor coactivator-3 is required for developing neuroendocrine tumor in the mouse prostate. Int J Biol Sci. 2014;10:1116-27 pubmed 出版商
  946. Uehara Y, Inoue M, Fukuda K, Yamakoshi H, Hosoi Y, Kanda H, et al. Inhibition of β-catenin and STAT3 with a curcumin analog suppresses gastric carcinogenesis in vivo. Gastric Cancer. 2015;18:774-83 pubmed 出版商
  947. Heng Y, Zhou B, Harris L, Harvey T, Smith A, Horne E, et al. NFIX Regulates Proliferation and Migration Within the Murine SVZ Neurogenic Niche. Cereb Cortex. 2015;25:3758-78 pubmed 出版商
  948. Ribeiro Resende V, Araújo Gomes T, de Lima S, Nascimento Lima M, Bargas Rega M, Santiago M, et al. Mice lacking GD3 synthase display morphological abnormalities in the sciatic nerve and neuronal disturbances during peripheral nerve regeneration. PLoS ONE. 2014;9:e108919 pubmed 出版商
  949. Sakamoto H, Takeda N, Arai F, Hosokawa K, García P, Suda T, et al. Determining c-Myb protein levels can isolate functional hematopoietic stem cell subtypes. Stem Cells. 2015;33:479-90 pubmed 出版商
  950. Falcone C, Filippis C, Granzotto M, Mallamaci A. Emx2 expression levels in NSCs modulate astrogenesis rates by regulating EgfR and Fgf9. Glia. 2015;63:412-22 pubmed 出版商
  951. Steward O, Sharp K, Yee K, Hatch M, Bonner J. Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury. J Neurosci. 2014;34:14013-21 pubmed 出版商
  952. Li R, Vannitamby A, Meijer J, Southwell B, Hutson J. Postnatal germ cell development during mini-puberty in the mouse does not require androgen receptor: implications for managing cryptorchidism. J Urol. 2015;193:1361-7 pubmed 出版商
  953. Wheeler S, Clark A, Taylor D, Young C, Pillai V, Stolz D, et al. Spontaneous dormancy of metastatic breast cancer cells in an all human liver microphysiologic system. Br J Cancer. 2014;111:2342-50 pubmed 出版商
  954. Kim W, Barron D, San Martin R, Chan K, Tran L, Yang F, et al. RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc Natl Acad Sci U S A. 2014;111:16389-94 pubmed 出版商
  955. Tate M, Lindquist R, Nguyen T, Sanai N, Barkovich A, Huang E, et al. Postnatal growth of the human pons: a morphometric and immunohistochemical analysis. J Comp Neurol. 2015;523:449-62 pubmed 出版商
  956. Kocher B, White L, Piwnica Worms D. DAPK3 suppresses acini morphogenesis and is required for mouse development. Mol Cancer Res. 2015;13:358-67 pubmed 出版商
  957. Laporta J, Keil K, Vezina C, Hernandez L. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice. PLoS ONE. 2014;9:e110190 pubmed 出版商
  958. Wang T, Guo S, Liu Z, Wu L, Li M, Yang J, et al. CAMK2N1 inhibits prostate cancer progression through androgen receptor-dependent signaling. Oncotarget. 2014;5:10293-306 pubmed
  959. Liang N, Zhang C, Dill P, Panasyuk G, Pion D, Koka V, et al. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med. 2014;211:2249-63 pubmed 出版商
  960. Reese J, Suman V, Subramaniam M, Wu X, Negron V, Gingery A, et al. ERβ1: characterization, prognosis, and evaluation of treatment strategies in ERα-positive and -negative breast cancer. BMC Cancer. 2014;14:749 pubmed 出版商
  961. Puig M, Lugo R, Gabasa M, Giménez A, Velásquez A, Galgoczy R, et al. Matrix stiffening and β1 integrin drive subtype-specific fibroblast accumulation in lung cancer. Mol Cancer Res. 2015;13:161-73 pubmed 出版商
  962. Waisberg J, de Souza Viana L, Affonso Junior R, Silva S, Denadai M, Margeotto F, et al. Overexpression of the ITGAV gene is associated with progression and spread of colorectal cancer. Anticancer Res. 2014;34:5599-607 pubmed
  963. Sobieraj J, Kim A, Fannon M, Mandyam C. Chronic wheel running-induced reduction of extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats is associated with reduced number of periaqueductal gray dopamine neurons. Brain Struct Funct. 2016;221:261-76 pubmed 出版商
  964. PFISTER S, Weber T, Härtig W, Schwerdel C, Elsaesser R, Knuesel I, et al. Novel role of cystic fibrosis transmembrane conductance regulator in maintaining adult mouse olfactory neuronal homeostasis. J Comp Neurol. 2015;523:406-30 pubmed 出版商
  965. Lemos M, Lama J, Karuna S, Fong Y, Montano S, Ganoza C, et al. The inner foreskin of healthy males at risk of HIV infection harbors epithelial CD4+ CCR5+ cells and has features of an inflamed epidermal barrier. PLoS ONE. 2014;9:e108954 pubmed 出版商
  966. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  967. Zia M, Vinukonda G, Vose L, Bhimavarapu B, Iacobas S, Pandey N, et al. Postnatal glucocorticoid-induced hypomyelination, gliosis, and neurologic deficits are dose-dependent, preparation-specific, and reversible. Exp Neurol. 2015;263:200-13 pubmed 出版商
  968. Fan C, Jiang G, Zhang X, Miao Y, Lin X, Luan L, et al. Zbed3 contributes to malignant phenotype of lung cancer via regulating β-catenin and P120-catenin 1. Mol Carcinog. 2015;54 Suppl 1:E138-47 pubmed 出版商
  969. Gurzu S, Ciortea D, Tamasi A, Golea M, Bodi A, Sahlean D, et al. The immunohistochemical profile of granular cell (Abrikossoff) tumor suggests an endomesenchymal origin. Arch Dermatol Res. 2015;307:151-7 pubmed 出版商
  970. Kasem K, Lam A. Adrenal oncocytic phaeochromocytoma with putative adverse histologic features: a unique case report and review of the literature. Endocr Pathol. 2014;25:416-21 pubmed 出版商
  971. Cui C, Yin M, Sima J, Childress V, Michel M, Piao Y, et al. Involvement of Wnt, Eda and Shh at defined stages of sweat gland development. Development. 2014;141:3752-60 pubmed 出版商
  972. Dumitrescu A, Aberdeen G, Pepe G, Albrecht E. Placental estrogen suppresses cyclin D1 expression in the nonhuman primate fetal adrenal cortex. Endocrinology. 2014;155:4774-84 pubmed 出版商
  973. Mylvaganam G, Velu V, Hong J, Sadagopal S, Kwa S, Basu R, et al. Diminished viral control during simian immunodeficiency virus infection is associated with aberrant PD-1hi CD4 T cell enrichment in the lymphoid follicles of the rectal mucosa. J Immunol. 2014;193:4527-36 pubmed 出版商
  974. Menhofer M, Bartel D, Liebl J, Kubisch R, Busse J, Wagner E, et al. In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor. Cardiovasc Res. 2014;104:303-14 pubmed 出版商
  975. Gregory E, Webb A, Vercammen J, Flynn M, Ameer G, Kibbe M. Periadventitial atRA citrate-based polyester membranes reduce neointimal hyperplasia and restenosis after carotid injury in rats. Am J Physiol Heart Circ Physiol. 2014;307:H1419-29 pubmed 出版商
  976. Chibly A, Querin L, Harris Z, Limesand K. Label-retaining cells in the adult murine salivary glands possess characteristics of adult progenitor cells. PLoS ONE. 2014;9:e107893 pubmed 出版商
  977. Boxer L, Barajas B, Tao S, Zhang J, Khavari P. ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 chromatin regulators to repress epidermal progenitor genes and induce differentiation genes. Genes Dev. 2014;28:2013-26 pubmed 出版商
  978. ZasÅ‚ona Z, Przybranowski S, Wilke C, Van Rooijen N, Teitz Tennenbaum S, Osterholzer J, et al. Resident alveolar macrophages suppress, whereas recruited monocytes promote, allergic lung inflammation in murine models of asthma. J Immunol. 2014;193:4245-53 pubmed 出版商
  979. Ressler S, Dang T, Wu S, Tse D, Gilbert B, Vyakarnam A, et al. WFDC1 is a key modulator of inflammatory and wound repair responses. Am J Pathol. 2014;184:2951-64 pubmed 出版商
  980. McElwee J, Mohanan S, Horibata S, Sams K, Anguish L, Mclean D, et al. PAD2 overexpression in transgenic mice promotes spontaneous skin neoplasia. Cancer Res. 2014;74:6306-17 pubmed 出版商
  981. Nicol L, O Brien T, Dumesic D, Grogan T, Tarantal A, Abbott D. Abnormal infant islet morphology precedes insulin resistance in PCOS-like monkeys. PLoS ONE. 2014;9:e106527