这是一篇来自已证抗体库的有关人类 Ki67抗原 (Ki 67) 的综述,是根据1855篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ki67抗原 抗体。
Ki67抗原 同义词: KIA; MIB-; MIB-1; PPP1R105

其他
domestic rabbit 单克隆(30-9)
  • 免疫组化-石蜡切片; 人类; 图 2b
Ki67抗原抗体(Roche/Ventana, 30-9)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 单克隆(30-9)
  • 免疫组化-石蜡切片; 小鼠; 图 1a
Ki67抗原抗体(Ventana Medical systems, 790?C4276)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a). Cell Commun Signal (2019) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上. Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 6e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab833)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 6e). Nat Commun (2022) ncbi
domestic rabbit 单克隆(EPR3610)
  • 免疫组化-石蜡切片; 人类; 1:5000; 图 s5c, s6e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5000 (图 s5c, s6e). Nat Commun (2022) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2d). J Transl Med (2022) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 1:200; 图 6c, s8c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 6c, s8c). BMC Med (2022) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 图 2g, 4f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在人类样本上 (图 2g, 4f). Mol Ther Oncolytics (2022) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:500. Sci Adv (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:4000; 图 1h
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:4000 (图 1h). Front Behav Neurosci (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2p
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2p). Anal Cell Pathol (Amst) (2022) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1a). Int J Mol Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1c). elife (2022) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s3g
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1d, s3b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s3g) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1d, s3b). Cell Death Dis (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1g
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1g). Theranostics (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6d). Cell Death Dis (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 7e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7e). Cell Oncol (Dordr) (2022) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; pigs ; 1:200; 图 s3c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:200 (图 s3c). Cell Rep Med (2022) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 大鼠; 图 6b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在大鼠样本上 (图 6b). Redox Biol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7e). BMC Cancer (2022) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 5g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5g). Clin Transl Med (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:500. Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 2a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 2a). Adv Sci (Weinh) (2022) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4d). Neurooncol Adv (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s2l, s2t
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s2l, s2t). Front Neurosci (2022) ncbi
domestic rabbit 单克隆(EPR3610)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 3h, 4k
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 3h, 4k). Respir Res (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 8d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8d). Bioengineered (2022) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s4f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s4f). Nat Commun (2022) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 2j
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上 (图 2j). Sci Adv (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3f). J Cell Sci (2022) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2e). Front Physiol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 3f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 3f). Oncotarget (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 3c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 3c). Invest Ophthalmol Vis Sci (2022) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3h
  • 免疫细胞化学; 小鼠; 1:200; 图 7g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3h) 和 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 7g). Int J Biol Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 6
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 6). Front Cell Neurosci (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1e). iScience (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 7a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab21700)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). Cell Death Differ (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5c). EMBO Mol Med (2022) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:50; 图 5f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5f). Dis Model Mech (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 8f
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1k, s1g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 8f) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1k, s1g). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 s5d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB16667)被用于被用于免疫组化在小鼠样本上 (图 s5d). PLoS Biol (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3j
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3j). iScience (2021) ncbi
domestic rabbit 单克隆(EPR3610)
  • 免疫组化-石蜡切片; 人类; 图 5c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 大鼠; 图 4
  • 免疫印迹; 大鼠; 图 5b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在大鼠样本上 (图 4) 和 被用于免疫印迹在大鼠样本上 (图 5b). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 5 ug/ml; 图 8a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为5 ug/ml (图 8a). Biomed Res Int (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:100; 图 7c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7c). Pulm Circ (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 5b
  • 免疫细胞化学; 小鼠; 1:200; 图 2d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2d). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2o
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2o). Mol Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 人类; 1:150; 图 5c
  • 免疫细胞化学; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:150 (图 5c) 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2b). JCI Insight (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 4a). Mol Brain (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 1j
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1j). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR3610)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 8c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 8c). Int J Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2a
  • 免疫组化; 人类; 1:200; 图 1a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 2a) 和 被用于免疫组化在人类样本上浓度为1:200 (图 1a). J Cell Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上 (图 2g). Mol Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3g). Oncogene (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 8b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在人类样本上 (图 8b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1p
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1p). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 s3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 s3a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 人类; 1:400; 图 5a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:400 (图 5a). Front Cell Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; domestic rabbit; 图 5b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在domestic rabbit样本上 (图 5b). Stem Cell Res Ther (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 1c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1c). elife (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 4c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 4c). Diab Vasc Dis Res (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 6i
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6i). Cancer Commun (Lond) (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 s2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s2). J Genet Genomics (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:10,000; 图 3d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10,000 (图 3d). Mol Med Rep (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2d). Breast Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 4a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 1c, 5b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 1c, 5b). Cell Death Discov (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2l
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2l). J Biomed Sci (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 1:200; 图 1a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1a). Oncogene (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 s1g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab21700)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1g). Nat Commun (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 图 3i
  • 免疫印迹; 人类; 图 3h
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在人类样本上 (图 3i) 和 被用于免疫印迹在人类样本上 (图 3h). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3c). Am J Cancer Res (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 1:500; 图 5d, e5d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在人类样本上浓度为1:500 (图 5d, e5d). Nat Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2f
  • 免疫组化-石蜡切片; 人类; 1:500; 图 s8c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2f) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 s8c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2a, 2b, 2c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2a, 2b, 2c). PLoS Genet (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 1a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化在小鼠样本上 (图 1a). Int J Mol Sci (2021) ncbi
鸡 多克隆
  • 免疫组化; 人类; 图 s10f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab254123)被用于被用于免疫组化在人类样本上 (图 s10f). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 7i
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 7i). Front Endocrinol (Lausanne) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3d). Cancer Res (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7). Clin Cosmet Investig Dermatol (2021) ncbi
domestic rabbit 单克隆(EPR3610)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 8g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 8g). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5a). Development (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:1000; 图 1b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1b). Transl Psychiatry (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3b). Cell Prolif (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 3d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 3d). Redox Biol (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:50; 图 2c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2c). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 3e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 3e). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200; 图 s3d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 s3d). Cell Rep Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2d). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1g). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 8b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 8b). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 s4e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在人类样本上 (图 s4e). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s2d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s2d). Stem Cell Reports (2021) ncbi
domestic rabbit 单克隆(EPR3610)
  • 免疫细胞化学; 人类; 1:250; 图 1c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 92742 - EPR3610)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:500; 图 s7e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s7e). Nat Commun (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1k
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1k). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:5000
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:5000. NPJ Regen Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 5c). Stem Cell Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1b). J Mol Cell Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Nat Commun (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 大鼠; 1:20; 图 s5f
  • 免疫印迹; 大鼠; 图 s5b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在大鼠样本上浓度为1:20 (图 s5f) 和 被用于免疫印迹在大鼠样本上 (图 s5b). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4d). Br J Pharmacol (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5a). PLoS Genet (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s16a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s16a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s4b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4b). PLoS Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Dis Model Mech (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Oncogene (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫印迹; 人类; 1:1000; 图 2d, 7e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d, 7e). Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 5c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5c). Cancer Cell Int (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫印迹基因敲除验证; 小鼠; 1:500; 图 s4c
  • 免疫印迹基因敲除验证; 人类; 图 s5c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:500 (图 s4c) 和 被用于免疫印迹基因敲除验证在人类样本上 (图 s5c). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a, 6a
  • 免疫印迹; 人类; 1:1000; 图 5d, 6d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a, 6a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5d, 6d). Mol Med Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 7l
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7l). Nat Commun (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3e). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 2a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上 (图 2a). Mol Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 5a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在人类样本上 (图 5a). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 7h
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7h). Genes Dev (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫印迹; 人类; 1:1000; 图 3d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Am J Transl Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s6c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s6c). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 3a). Science (2021) ncbi
domestic rabbit 单克隆(EPR3610)
  • 免疫印迹; 人类; 图 5d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫印迹在人类样本上 (图 5d). Front Cell Dev Biol (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 大鼠; 1:100; 图 5a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 5a). PLoS ONE (2021) ncbi
domestic rabbit 单克隆(EPR3610)
  • 免疫组化; 人类; 1:1000; 图 3d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 3d). Front Genet (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 3b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3b). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4a). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab833)被用于被用于免疫细胞化学在人类样本上 (图 3a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:800; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 3a). Stem Cell Reports (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫印迹; 小鼠; 1 ug/ml; 图 6g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫印迹在小鼠样本上浓度为1 ug/ml (图 6g). Science (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2a, 5g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a, 5g). Cell Death Discov (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4i, 4j
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4i, 4j). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 s3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 s3). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:3000; 图 e1j
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:3000 (图 e1j). EMBO Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:300; 图 2a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫组化在人类样本上浓度为1:300 (图 2a). Stem Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2c). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3f). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2f). Neoplasia (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 s7f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 s7f). Science (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s2a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s2a). Genes Dev (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:100; 图 2a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2a). Life Sci Alliance (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 图 s6a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在小鼠样本上 (图 s6a). PLoS Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 2c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 2c). Bosn J Basic Med Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1b). Neuroscience (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫印迹在人类样本上 (图 2e). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2c). J Pathol (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5s1a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5s1a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:800; 图 s5-2e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 s5-2e). elife (2020) ncbi
domestic rabbit 单克隆(SP6)
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于. Nat Commun (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫印迹; 小鼠; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫印迹在小鼠样本上浓度为1:100. Cancers (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6e, 6f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6e, 6f). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s2a
  • 免疫细胞化学; 小鼠; 图 3d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2a) 和 被用于免疫细胞化学在小鼠样本上 (图 3d). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 4e). Diabetes (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s3a). Mol Ther Nucleic Acids (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 6j
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 6j). Nat Commun (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 1:500; 图 s4-3c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s4-3c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). Oncotarget (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6a). Cancers (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 6b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 6b). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:350; 图 1d, 1s2a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:350 (图 1d, 1s2a). elife (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:300; 图 3e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 3e). Oncogene (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Drug Metab Dispos (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫印迹; 人类; 1:1000; 图 2e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, KI67 (ab16667)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab833500)被用于被用于免疫组化在人类样本上 (图 1e). Cancers (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1f). Nat Commun (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Br J Pharmacol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 5c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 5c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4e). EMBO Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 2a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2a). EMBO Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3m
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3m). Life Sci Alliance (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1b, 2c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1b, 2c). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 4a). Stem Cell Reports (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3g). Cell (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫印迹; 人类; 图 3m
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫印迹在人类样本上 (图 3m). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4h
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4h). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2d). elife (2020) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 7i
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Cambridge, UK, #ab15580)被用于被用于流式细胞仪在人类样本上 (图 7i). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:250; 图 6d
  • 免疫印迹; 人类; 1:1000; 图 5d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在人类样本上浓度为1:250 (图 6d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 4c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在大鼠样本上浓度为1:500. Biol Proced Online (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s3d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s3d). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 10d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 10d). Front Oncol (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4g). Cancer Cell Int (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; pigs ; 1:200; 图 7a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:200 (图 7a). Biores Open Access (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s10b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s10b). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 7a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 7a). Cells (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:50. elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s3a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2g). EMBO Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s1). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5a). Sci Rep (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 2c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 2c). Cancer Cell Int (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4a). Cancer Manag Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1g, 1h, e1a
  • 免疫组化; 猕猴; 1:500; 图 e1c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1g, 1h, e1a) 和 被用于免疫组化在猕猴样本上浓度为1:500 (图 e1c). EMBO Mol Med (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1b). Oncotarget (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 6d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6d). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3f). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1500; 图 2a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1500 (图 2a). Clin Epigenetics (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 4 ug/ml; 图 2e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为4 ug/ml (图 2e). Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3c, d, 6d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 3c, d, 6d). Cancer Med (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 4c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上 (图 4c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 1f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化在小鼠样本上 (图 1f). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 3c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3c). Nat Commun (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 s6e
  • 免疫细胞化学; 人类; 1:500; 图 4c
艾博抗(上海)贸易有限公司Ki67抗原抗体(AbCam, Ab16667)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 s6e) 和 被用于免疫细胞化学在人类样本上浓度为1:500 (图 4c). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1j
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1j). JCI Insight (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). J Cell Mol Med (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4f). J Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s6d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s6d). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 4a). Cancers (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3d, 6d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3d, 6d). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 6e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在人类样本上 (图 6e). J Exp Clin Cancer Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 1a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2e). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4a). J Ovarian Res (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 s10c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB16667)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 s10c). PLoS Biol (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 5). Biosci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2b). Eneuro (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 3b, 3c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3b, 3c). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR3610)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5e
  • 免疫印迹; 人类; 1:1000; 图 4c, 5d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4c, 5d). Cancer Sci (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 1e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2f). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1f). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 3d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 3d). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4h
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4h). elife (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 3f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab166667)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 3f). Cell Stem Cell (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 5d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5d). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 7b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上 (图 7b). Cell Rep (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:500. Cell Stem Cell (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 图 2a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫细胞化学在小鼠样本上 (图 2a). Biol Sex Differ (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 图 5a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, RRID:AB_302459)被用于被用于免疫组化在人类样本上 (图 5a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3a). elife (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 e6e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 e6e). Nature (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 3f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab-16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 3f). EMBO J (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 s4c
艾博抗(上海)贸易有限公司Ki67抗原抗体(AbCam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s4c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 s1e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上 (图 s1e). Cell (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:400
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab21700)被用于被用于免疫组化在小鼠样本上浓度为1:400. J Immunother Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s11f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s11f). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1s1e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1s1e). elife (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab1558)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4a). Autophagy (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 大鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 5a). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5a). J Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1d
艾博抗(上海)贸易有限公司Ki67抗原抗体(AbCam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s2a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab21700)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1e). Cell Mol Gastroenterol Hepatol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s2a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s2a). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(EPR3610)
  • 免疫组化; 人类; 图 s2d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫组化在人类样本上 (图 s2d). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 1d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1d). Cell (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 4c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上 (图 4c). Cell Mol Life Sci (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 ex1f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 ex1f). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:3000; 图 e5i
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:3000 (图 e5i). Nature (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s3b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6h
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6h). Cell (2019) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于. Stem Cell Reports (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 1s1f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 1s1f). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3c). Cell Death Differ (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:50; 图 4d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 4d). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s5c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s5c). Front Mol Neurosci (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Cell Signaling, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5a). PLoS ONE (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6a). World J Gastroenterol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4a). Redox Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; pigs ; 1:100; 图 6d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab833)被用于被用于免疫组化在pigs 样本上浓度为1:100 (图 6d). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 7b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7b). Cells (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:250; 图 ev2d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250 (图 ev2d). EMBO J (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 s6
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6). Development (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 6i
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上 (图 6i). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:100; 图 5e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 5e). Nat Commun (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5g). Development (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4b
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4b). elife (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:600; 图 6g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 6g). Nat Commun (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s9c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s9c). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5h
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5h). Cell Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c). Mol Med Rep (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 5g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 5g). Front Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2c). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 2c). J Neurosci (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 5d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5d). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 6c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 6c). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3k
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3k). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 s10b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s10b). Science (2018) ncbi
domestic rabbit 单克隆(EPR3610)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1b). J Pathol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1b). J Exp Med (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 3d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3d). J Cell Biochem (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s14f, s15g, s17d
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 s17b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s14f, s15g, s17d) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 s17b). Nat Med (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). Oncogene (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:800; 图 1b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:800 (图 1b). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4a). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4e). Nucleic Acids Res (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5c). Nat Med (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:500; 图 1f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1f). Nature (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 图 s5g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在人类样本上 (图 s5g). Cell (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 5e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5e). Cell Mol Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 s1f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s1f). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s6a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 s6a). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 e2k
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 e2k). Nature (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:100; 图 2l-n
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2l-n). Cereb Cortex (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1h
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上 (图 1h). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3a). Oncogene (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7i
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7i). Dev Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1e
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1e). EMBO J (2018) ncbi
domestic rabbit 单克隆(EPR3610)
  • 免疫组化-石蜡切片; 人类; 图 1a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 92742)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 15c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 15c). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:500; 图 3c
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, SP6)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1b). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s6a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s6a). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 6e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab833)被用于被用于免疫组化在人类样本上 (图 6e). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 7f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 7f). Development (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4i
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4i). Diabetologia (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 s2c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 s2c). Cell (2017) ncbi
domestic rabbit 单克隆(EPR3610)
  • 免疫细胞化学; 小鼠; 图 1a, 1b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫细胞化学在小鼠样本上 (图 1a, 1b). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3i
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3i). Development (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6c). Oncotarget (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 图 10k
  • 免疫组化; 小鼠; 1:100; 图 7a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在人类样本上 (图 10k) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 7a). Development (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 1a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 图 6d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫细胞化学在人类样本上 (图 6d). Mol Biol Cell (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6e). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s1d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s1d). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 1:100; 图 1c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1c). J Pineal Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 1c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 s8c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 s8c). Nature (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:5000; 图 3d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 3d). Int J Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 8a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab-15580)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 8a). Mol Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1d
  • 免疫细胞化学; 小鼠; 1:1000; 图 s8b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1d) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s8b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s4a). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2h
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2h). Sci Signal (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; domestic rabbit; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在domestic rabbit样本上 (图 4). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:50; 图 2a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2a). Development (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s3d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3d). Nature (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4e). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1f). Breast Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 图 s7d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在人类样本上 (图 s7d). Mol Cancer (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 7f
  • 免疫细胞化学; 大鼠; 1:100; 图 2b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 7f) 和 被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 2b). Theranostics (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1d). Int J Clin Oncol (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 图 1b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 st10
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 st10
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 st10) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 st10). J Toxicol Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(EPR3610)
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Arthritis Res Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3h
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3h). Genes Dev (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5a). Sci Adv (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4h
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4h). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 6b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 6b). BMC Genomics (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6d). Oncogene (2017) ncbi
domestic rabbit 单克隆(EPR3610)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 4c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 6d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s7a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s7a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 4a). PLoS Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2a
  • 免疫组化; 大鼠; 1:100; 图 4g
  • 免疫印迹; 大鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2a), 被用于免疫组化在大鼠样本上浓度为1:100 (图 4g) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4g). EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 大鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在大鼠样本上. Tissue Cell (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 4d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 16,667)被用于被用于免疫组化在小鼠样本上 (图 4d). Atherosclerosis (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 s3k
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s3k). Development (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 4d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在大鼠样本上 (图 4d). J Tissue Eng Regen Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 S2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上 (图 S2). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 s8d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 s8d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). Oncogene (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5a
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5a) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5b). Oncogene (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 7a
  • 免疫细胞化学; 小鼠; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a) 和 被用于免疫细胞化学在小鼠样本上 (图 3). Biotechnol Prog (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化在小鼠样本上 (图 3a). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5c
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 表 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:400 (表 2). Mol Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 5a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 3d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 3d). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:2500; 图 4e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在人类样本上浓度为1:2500 (图 4e). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). Am J Physiol Heart Circ Physiol (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s3a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:50; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Mol Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 3b). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上 (图 5b). Cell Cycle (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:800; 图 2a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 (图 2a). J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Laryngoscope (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s2). Transl Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 8n
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8n). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 图 7
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化在人类样本上 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s6
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, 15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s6). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:200; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB16667)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3a). Fertil Steril (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 10,000 ug/ml; 图 5a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为10,000 ug/ml (图 5a). Biol Reprod (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 1:200; 图 3e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 表 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (表 1). World J Nephrol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; pigs ; 1:10,000; 图 6
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:10,000 (图 6). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6k
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6k). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 6d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab833)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6d). Nat Med (2016) ncbi
domestic rabbit 单克隆(EPR3610)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 5e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, EPR3610)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000 (图 5e). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 6
  • 免疫细胞化学; 大鼠; 1:50; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 6) 和 被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 4). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; domestic rabbit; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(AbCam, Ab15580)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, Ab15580)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 7
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上 (图 7). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 st1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 st1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab833)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫细胞化学在小鼠样本上 (图 1e). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 2). J Neurochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 6B
  • 免疫组化; 小鼠; 1:100; 图 5C
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上 (图 6B) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 5C). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4g
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4g). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4c). Dev Growth Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 s3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上 (图 s3a). Carcinogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s6c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 s6c). Nat Med (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 7
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). Sci Rep (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). Mol Brain (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上 (图 1). elife (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
  • 免疫细胞化学; 人类; 1:100; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). Tissue Eng Part C Methods (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 2b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 2b). Dev Growth Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 大鼠; 1:50; 图 1b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 1b). Lab Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 3g). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab155580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 5). Mol Cancer (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s3
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s3). BMC Mol Biol (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). Oncogene (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4). Hepatology (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 图 1f
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在人类样本上 (图 1f). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 1). Fertil Steril (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于. Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫细胞化学在人类样本上 (图 3). Oncogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:20,000; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20,000 (图 4). Peptides (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫细胞化学在人类样本上 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s15b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s15b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2). Breast Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3j
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3j). Nat Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 1:300; 图 s4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 6
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 3a). Endocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 表 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (表 2). Breast Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5b). Development (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化基因敲除验证; 小鼠; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 3). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 7a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7a). J Neuropathol Exp Neurol (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1). Cell Cycle (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:500; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 3). elife (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 1:100; 图 6
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6b). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 5 ug/ml; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化在人类样本上浓度为5 ug/ml (图 4). J Transl Med (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3g). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s7a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s7a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1j-m
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 1j-m). Oncotarget (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4). Neoplasia (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:250; 图 4a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 4a). Exp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上 (图 3). Tissue Eng Part C Methods (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:300; 图 s3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 s3). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 1
  • 免疫组化-冰冻切片; 小鼠; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(ABCAM, ab15580)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上. J Neurosci (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:50. J Clin Invest (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 7
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2), 被用于免疫印迹在小鼠样本上 (图 7) 和 被用于免疫组化-石蜡切片在人类样本上 (图 1). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1
  • 免疫细胞化学; 犬; 1:200; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Sigma, ab15580)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1) 和 被用于免疫细胞化学在犬样本上浓度为1:200 (图 1). Stem Cells Int (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5b). Oncol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫印迹在人类样本上浓度为1:100. Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫印迹在小鼠样本上 (图 s1). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 3g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, abl5580)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 3g). Methods (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 6e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在人类样本上 (图 6e). Nat Methods (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4d
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4d). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 图 1d
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫细胞化学在人类样本上 (图 1d). Int J Mol Sci (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3a). Ophthalmology (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 7
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB16667)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 7). Nat Commun (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 16667)被用于被用于免疫组化在小鼠样本上浓度为1:500. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 1:1000; 图 4 A-ii
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 4 A-ii). J Appl Physiol (1985) (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 s3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 s3). Development (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 8b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8b). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 6
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 6). Stem Cells (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:200; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Biomolecules (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). J Physiol Sci (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 1e
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1e). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EPR3610)
  • 免疫细胞化学; 人类; 1:300
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab92742)被用于被用于免疫细胞化学在人类样本上浓度为1:300. J Cell Mol Med (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上 (图 3). Lab Invest (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:300; 图 2
  • 免疫细胞化学; 小鼠; 1:300; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 2) 和 被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 2). PLoS Biol (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, a16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s3a). Carcinogenesis (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Dig Dis Sci (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Am J Physiol Renal Physiol (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7). Oncotarget (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 6a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司Ki67抗原抗体(abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上 (图 3a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4). BMC Nephrol (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:300; 图 5f.5g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 5f.5g). Cancer Res (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5). J Toxicol Environ Health A (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 流式细胞仪; 人类; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam;, ab16667)被用于被用于流式细胞仪在人类样本上浓度为1:50. Protoplasma (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:400
艾博抗(上海)贸易有限公司Ki67抗原抗体(AbCam, AB16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. J Control Release (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:150
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化在小鼠样本上浓度为1:150. Lab Invest (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2b
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2b). Nat Biotechnol (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 1:150
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在人类样本上浓度为1:150. Breast Cancer Res Treat (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Analyst (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Ann Clin Transl Neurol (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Br J Cancer (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 表 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (表 2). Physiol Rep (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). FASEB J (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:50. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 5
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上 (图 5). Development (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, Ab16667)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. J Pineal Res (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3). Stem Cell Reports (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). Oncogene (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:200. Mol Endocrinol (2014) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于. Nat Neurosci (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫印迹; 小鼠; 1:200; 图 2g
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2g). J Cell Mol Med (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 大鼠; 1:500
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Comp Neurol (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 大鼠; 1:1,000
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, AB16667)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1,000. J Comp Neurol (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 1:250
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, SP6)被用于被用于免疫组化在人类样本上浓度为1:250. Gut (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Lab Invest (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:50
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Biomaterials (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(AbCam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Mol Oncol (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Cancer Res (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 大鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化在大鼠样本上. Reprod Toxicol (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫细胞化学在小鼠样本上. Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, 16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Clin Cancer Res (2013) ncbi
domestic rabbit 单克隆(SP6)
  • 抑制或激活实验; 人类
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于抑制或激活实验在人类样本上, 被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200
  • 免疫组化-石蜡切片; 大鼠
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 和 被用于免疫组化-石蜡切片在大鼠样本上. J Diabetes Res (2013) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab15580)被用于. Dev Biol (2013) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司Ki67抗原抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Histochem Cell Biol (2012) ncbi
赛默飞世尔
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6a
赛默飞世尔Ki67抗原抗体(Thermo Fisher, 14-5698-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6a). iScience (2022) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2g
  • 免疫细胞化学; 人类; 1:100; 图 1c
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM9106-s1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2g) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 1c). Front Oncol (2022) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:200; 图 2h
赛默飞世尔Ki67抗原抗体(Thermo Fisher, 14-5698-82)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2h). Cell Rep (2022) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:250; 图 5e
赛默飞世尔Ki67抗原抗体(Thermo Scientific, MA5-14520)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 5e). Nat Commun (2022) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔Ki67抗原抗体(NeoMarker, 9106)被用于被用于免疫组化在小鼠样本上浓度为1:100. EMBO Mol Med (2022) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s1d
赛默飞世尔Ki67抗原抗体(Thermo Fisher, 11-5698-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Sci Adv (2022) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7a
赛默飞世尔Ki67抗原抗体(Invitrogen, MA5-14520)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7a). Diabetologia (2022) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 图 5c
赛默飞世尔Ki67抗原抗体(Thermo Fisher, RM-9106-S0)被用于被用于免疫组化在小鼠样本上 (图 5c). iScience (2022) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 2g
赛默飞世尔Ki67抗原抗体(Invitrogen, MA5-14520)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2g). Int J Mol Sci (2022) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Basic Res Cardiol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200-1:2000; 图 5d
  • 免疫组化-冰冻切片; African green monkey; 1:200-1:2000; 图 1g
赛默飞世尔Ki67抗原抗体(Invitrogen, PA5-19462)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200-1:2000 (图 5d) 和 被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:200-1:2000 (图 1g). Sci Adv (2022) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:200; 图 3s1a
赛默飞世尔Ki67抗原抗体(eBioscience, 48-5698-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3s1a). elife (2022) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:300; 图 s5a
赛默飞世尔Ki67抗原抗体(Thermo Fisher, MA5-14520)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 s5a). Life Sci Alliance (2022) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 图 3e
赛默飞世尔Ki67抗原抗体(Invitrogen, MA5?C14520)被用于被用于免疫组化在小鼠样本上 (图 3e). Kidney360 (2021) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:200; 图 1b
赛默飞世尔Ki67抗原抗体(Invitrogen, MA5-14520)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1b). Pharmaceuticals (Basel) (2021) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, 11-5698-82)被用于被用于流式细胞仪在小鼠样本上. Theranostics (2021) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:1000; 图 1o
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, SolA15)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1o). Sci Adv (2021) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 图 7b
赛默飞世尔Ki67抗原抗体(Invitrogen, 14-5698-82)被用于被用于免疫组化在小鼠样本上 (图 7b). Clin Sci (Lond) (2021) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 人类; 图 1b
赛默飞世尔Ki67抗原抗体(Invitrogen, MA5-14520)被用于被用于免疫细胞化学在人类样本上 (图 1b). Pharmaceutics (2021) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 图 2k
赛默飞世尔Ki67抗原抗体(ebioscience, 14-5698-82)被用于被用于免疫组化在小鼠样本上 (图 2k). EMBO J (2021) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-自由浮动切片; 小鼠; 1:150; 图 5a
赛默飞世尔Ki67抗原抗体(LabVision, SP6)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:150 (图 5a). Front Oncol (2021) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBiosciences, SolA15)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2021) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 5m
赛默飞世尔Ki67抗原抗体(eBiosciences, 11-5698-80)被用于被用于流式细胞仪在小鼠样本上 (图 5m). J Immunother Cancer (2021) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 图 s1c
赛默飞世尔Ki67抗原抗体(Thermo, MA514520)被用于被用于免疫组化在小鼠样本上 (图 s1c). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 2b
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 2b). Cancer Res (2021) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 图 4f
赛默飞世尔Ki67抗原抗体(Thermo, MA5-14520)被用于被用于免疫组化在人类样本上 (图 4f). iScience (2021) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 6a
赛默飞世尔Ki67抗原抗体(Thermo, MA5-14520)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). Circulation (2021) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 6b
赛默飞世尔Ki67抗原抗体(eBioscience, 17-5698-80)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Front Cell Dev Biol (2021) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s4c
赛默飞世尔Ki67抗原抗体(ThermoFisher, SP6)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s4c). Sci Rep (2021) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 图 1b
赛默飞世尔Ki67抗原抗体(Invitrogen, 50-5698-82)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1b). Front Immunol (2021) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200; 图 1f
赛默飞世尔Ki67抗原抗体(Thermo Scientific, MA5-14520)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1f). Nat Commun (2021) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(Invitrogen, SolA15)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2021) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200; 图 4a
赛默飞世尔Ki67抗原抗体(Invitrogen, MA5-14520)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4a). Cells (2021) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 7i
赛默飞世尔Ki67抗原抗体(Thermo Fisher, 56-5698-80)被用于被用于流式细胞仪在小鼠样本上 (图 7i). Cell Rep Med (2021) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:50
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, SP6)被用于被用于免疫组化在小鼠样本上浓度为1:50. NPJ Breast Cancer (2021) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:20; 图 3d
赛默飞世尔Ki67抗原抗体(Thermo Fischer, MA514520)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20 (图 3d). Sci Adv (2021) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:200; 图 8a
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 8a). J Neurosci (2021) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔Ki67抗原抗体(ebiosciences, 14-5698-82)被用于被用于免疫组化在小鼠样本上浓度为1:100. elife (2021) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 小鼠; 1:200; 图 3b
赛默飞世尔Ki67抗原抗体(Invitrogen, MA5-14520)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3b). Front Cell Dev Biol (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫细胞化学; 犬; 图 1a
  • 免疫组化-冰冻切片; 小鼠; 图 7f
赛默飞世尔Ki67抗原抗体(Thermo Fisher, 14-5698-82)被用于被用于免疫细胞化学在犬样本上 (图 1a) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 7f). Life Sci Alliance (2021) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 人类; 1:100; 图 2d
赛默飞世尔Ki67抗原抗体(生活技术, 11-5698-82)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2d). Mol Cancer Res (2021) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3d
赛默飞世尔Ki67抗原抗体(Thermo Fisher, RM-9106-S0)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d). elife (2021) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(Invitrogen, SolA15)被用于被用于流式细胞仪在小鼠样本上. Aging Cell (2021) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4b
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-80)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4b). Life Sci Alliance (2021) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类; 图 4d
赛默飞世尔Ki67抗原抗体(eBioscience, 20Raj1)被用于被用于流式细胞仪在人类样本上 (图 4d). Cell Death Dis (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:200; 图 4d
赛默飞世尔Ki67抗原抗体(Invitrogen, 14-5698-82)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4d). elife (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 人类; 图 5h
赛默飞世尔Ki67抗原抗体(eBioscience, 14569882)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5h). Science (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 2s1d
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 2s1d). elife (2020) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1d
赛默飞世尔Ki67抗原抗体(Invitrogen, MA5-14520)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1d). Nat Commun (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:200; 图 s1-2d
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1-2d). elife (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于免疫组化在小鼠样本上. elife (2020) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 1b). JCI Insight (2020) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200; 图 2a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). Oncotarget (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:200; 图 7a
赛默飞世尔Ki67抗原抗体(Thermo Fisher, 11-5698-82)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7a). Brain Commun (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; black ferret; 1:200; 图 1h
赛默飞世尔Ki67抗原抗体(Thermo Fisher, 14-5698-80)被用于被用于免疫组化-冰冻切片在black ferret样本上浓度为1:200 (图 1h). elife (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:200; 图 3b
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-82)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3b). elife (2020) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:500; 图 2d
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, SP6)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2d). J Clin Invest (2020) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:150; 图 1a
赛默飞世尔Ki67抗原抗体(LabVision Corporation, SP6)被用于被用于免疫组化在小鼠样本上浓度为1:150 (图 1a). Front Oncol (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:200; 图 2a
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, 14-5698-82)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). J Exp Med (2020) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:100; 图 2s1
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2s1). elife (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 3f
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-82)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 3f). Nat Commun (2020) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 家羊; 1:200; 图 3k
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, MA5-14520)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:200 (图 3k). Front Physiol (2020) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 2g
赛默飞世尔Ki67抗原抗体(ThermoFisher, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 2g). Blood Adv (2020) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 6s1a
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 6s1a). elife (2020) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:300; 图 s7b
赛默飞世尔Ki67抗原抗体(Invitrogen, 12-5698-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s7b). Cell Res (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-80)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a). elife (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3b
赛默飞世尔Ki67抗原抗体(Invitrogen, 14-5698-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3b). Eneuro (2020) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s2-1a
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 s2-1a). elife (2020) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3e, e5l, e10n
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4p, e4j, e9q
赛默飞世尔Ki67抗原抗体(Thermofisher, MA5-14520)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3e, e5l, e10n) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4p, e4j, e9q). Nature (2020) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s3b
赛默飞世尔Ki67抗原抗体(Thermo Fisher, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Sci Adv (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1j
赛默飞世尔Ki67抗原抗体(ThermoFisher, 14-5698-82)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1j). Front Immunol (2019) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:100; 图 s7c, s7d
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s7c, s7d). Nat Commun (2020) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1c
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1c). Cancer Cell (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s10d
赛默飞世尔Ki67抗原抗体(Thermo Fischer, 14-5698-80)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s10d). PLoS Biol (2020) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔Ki67抗原抗体(Thermofisher, 17-5698-82)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Cell Rep (2019) ncbi
大鼠 单克隆(SolA15)
  • mass cytometry; 小鼠; 0.75 ug/ml; 图 5d
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于mass cytometry在小鼠样本上浓度为0.75 ug/ml (图 5d). Science (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 6c
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4c
赛默飞世尔Ki67抗原抗体(Thermo Fisher, MA5-14520)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 6c) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4c). elife (2019) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Am J Pathol (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2b
赛默飞世尔Ki67抗原抗体(Thermo Fisher, 14-5698-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2b). Nature (2020) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔Ki67抗原抗体(eBioscience, 12569882)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Rep (2019) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Science (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200; 图 s3b
赛默飞世尔Ki67抗原抗体(Thermo-Scientific, RM-9106-S1)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s3b). Nature (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200; 图 2b
赛默飞世尔Ki67抗原抗体(ThermoFisher, MA5-14520)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2b). elife (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 小鼠; 1:200; 图 4f
  • 免疫组化; 小鼠; 1:200; 图 1c
赛默飞世尔Ki67抗原抗体(ThermoScientific, RM-9106-R7)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4f) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 1c). elife (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 8i
赛默飞世尔Ki67抗原抗体(Invitrogen, MA5-14520)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 8i). Nat Commun (2019) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:200; 图 5d
赛默飞世尔Ki67抗原抗体(Invitrogen, 17-5698-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5d). Nat Immunol (2019) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:500; 图 e4d
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-82)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 e4d). EMBO Mol Med (2019) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1e
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1e). Nature (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s1k
赛默飞世尔Ki67抗原抗体(Lab Vision, RM-9106-R7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s1k). Cell (2019) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s6a, s6b
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 s6a, s6b). Sci Adv (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 5f
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM-9106-S1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5f). Sci Rep (2019) ncbi
大鼠 单克隆(SolA15)
  • 免疫细胞化学; 小鼠; 1:200; 图 1b
赛默飞世尔Ki67抗原抗体(Thermo Scientific, 14-5698-82)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1b). Development (2019) ncbi
小鼠 单克隆(4A1)
  • 免疫细胞化学; 人类; 1:200; 图 5b
赛默飞世尔Ki67抗原抗体(Invitrogen, MA5-15525)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5b). Sci Adv (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 1a
赛默飞世尔Ki67抗原抗体(Thermo Fisher, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a). J Clin Invest (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 大鼠; 1:200; 图 1a
赛默飞世尔Ki67抗原抗体(Invitrogen, MA5-14520)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 1a). Glia (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 e6c, e6e
赛默飞世尔Ki67抗原抗体(Thermo Scientific, PA5-16785)被用于被用于免疫组化-石蜡切片在人类样本上 (图 e6c, e6e). Nature (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5c
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, MA5-14520)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5c). Gut (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:500; 图 4b
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4b). J Clin Invest (2019) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 2d
赛默飞世尔Ki67抗原抗体(ThermoFisher, 14-5698-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 2d). Nat Commun (2019) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s1c
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s1c). Nat Neurosci (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
  • 免疫细胞化学; 小鼠; 图 1b
赛默飞世尔Ki67抗原抗体(Thermo Fisher, MA5-14520)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a) 和 被用于免疫细胞化学在小鼠样本上 (图 1b). J Comp Neurol (2019) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:50; 图 3s1d
赛默飞世尔Ki67抗原抗体(eBioscience, 50-5698-82)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3s1d). elife (2019) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔Ki67抗原抗体(eBioscience, 20Raj1)被用于被用于流式细胞仪在人类样本上 (图 3a). J Clin Invest (2019) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:400; 图 1c
赛默飞世尔Ki67抗原抗体(Thermo Fisher, 25-5698-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1c). Front Immunol (2018) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 图 4d
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-80)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4d). Nat Commun (2018) ncbi
大鼠 单克隆(SolA15)
  • 免疫细胞化学; 小鼠; 图 3e
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, SolA15)被用于被用于免疫细胞化学在小鼠样本上 (图 3e). J Cell Physiol (2019) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s7g
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, 25-5698-82)被用于被用于流式细胞仪在小鼠样本上 (图 s7g). Immunity (2018) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:100; 图 3b
赛默飞世尔Ki67抗原抗体(eBiosciences, 14-5698-82)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3b). Invest Ophthalmol Vis Sci (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s3c
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). Eur J Immunol (2018) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类; 图 4c
赛默飞世尔Ki67抗原抗体(eBioscience, 20Raj1)被用于被用于流式细胞仪在人类样本上 (图 4c). Clin Exp Immunol (2018) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 3i
赛默飞世尔Ki67抗原抗体(Thermo Fischer Scientific, Sp6)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3i). Nature (2018) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 图 s5a
  • 免疫组化-石蜡切片; 小鼠; 图 s5a
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s5a) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 s5a). J Cell Biol (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Death Dis (2018) ncbi
大鼠 单克隆(SolA15)
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-80)被用于. elife (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔Ki67抗原抗体(eBioscience, 25-5698-82)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Cell Death Dis (2018) ncbi
大鼠 单克隆(SolA15)
  • 免疫细胞化学; 小鼠; 1:200; 图 s5a
赛默飞世尔Ki67抗原抗体(eBioscience, 50-245-56)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s5a). Science (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 7a
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 7a). J Clin Invest (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Exp Med (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:200; 图 3a
赛默飞世尔Ki67抗原抗体(Affymetrix/eBioscience, SOIA15)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3a). J Clin Invest (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Front Immunol (2018) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
赛默飞世尔Ki67抗原抗体(eBiosciences, 48-5698-82)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). Cell (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔Ki67抗原抗体(eBiosciences, 11-5698-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell (2018) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 1c
赛默飞世尔Ki67抗原抗体(ThermoFisher, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1c). Cell (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔Ki67抗原抗体(Invitrogen, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:400; 图 e6a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, MA5-14520)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 e6a). Nature (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4c
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4c). Development (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 图 4f
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化在小鼠样本上 (图 4f). Nature (2017) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3f
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3f). Dev Biol (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 5e
赛默飞世尔Ki67抗原抗体(eBioscience, SOLA15)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-80)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Immunol (2017) ncbi
小鼠 单克隆(20Raj1)
  • mass cytometry; 人类; 图 2a
赛默飞世尔Ki67抗原抗体(eBiosciences, 20Raj1)被用于被用于mass cytometry在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔Ki67抗原抗体(eBiosciences, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 s14c
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, MA5-14520)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 s14c). J Clin Invest (2017) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:500; 图 8c
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 8c). PLoS Biol (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔Ki67抗原抗体(eBiosciences, 12-5698-82)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Exp Med (2017) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 大鼠; 图 s2
赛默飞世尔Ki67抗原抗体(Thermo Fisher, MA5-15690)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 s2). Mol Ther Oncolytics (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4d
赛默飞世尔Ki67抗原抗体(Pierce, MA5-14520)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4d). Sci Rep (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200; 图 2g
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S0)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2g). Sci Rep (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
赛默飞世尔Ki67抗原抗体(Thermo scientific, RM-9106)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). PLoS ONE (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 6h
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S0)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6h). Nat Commun (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:100; 图 S2f
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 S2f). Nat Commun (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 6c
赛默飞世尔Ki67抗原抗体(Thermo, MA5-14520)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 6c). Cell Cycle (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 s1c
赛默飞世尔Ki67抗原抗体(Thermo Fisher, RM-9106)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1c). Cell (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 人类; 1:25; 图 6
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM 9106-S)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 6). Oncotarget (2017) ncbi
小鼠 单克隆(20Raj1)
  • 免疫细胞化学; 人类; 图 2b
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5699-82)被用于被用于免疫细胞化学在人类样本上 (图 2b). Sci Rep (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2e
赛默飞世尔Ki67抗原抗体(Thermo, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). Mol Cell Biol (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2e
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2e). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). Tuberculosis (Edinb) (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 6b
赛默飞世尔Ki67抗原抗体(Thermoscientific, RM-9106S1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 6b). PLoS ONE (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 s9i
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s9i). Nature (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 大鼠; 图 1f
赛默飞世尔Ki67抗原抗体(eBiosciences, SolA15)被用于被用于流式细胞仪在大鼠样本上 (图 1f). Eur J Immunol (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:400; 图 s1c
赛默飞世尔Ki67抗原抗体(eBioscience, SOLA15)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s1c). Nat Commun (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 人类; 图 1d
赛默飞世尔Ki67抗原抗体(Invitrogen, MA5?\14520)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1d). EMBO Mol Med (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3e
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3e). Oncotarget (2017) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:400; 图 2h
赛默飞世尔Ki67抗原抗体(Ebioscience, 11-5698-80)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2h). Development (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
赛默飞世尔Ki67抗原抗体(Lab Vision, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Nat Commun (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Acta Histochem (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:400; 图 st4
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106-S1)被用于被用于免疫组化在人类样本上浓度为1:400 (图 st4). Development (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 图 3b
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM9106)被用于被用于免疫组化在小鼠样本上 (图 3b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1e
赛默飞世尔Ki67抗原抗体(Thermo, PA1-21520)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1e). Respir Res (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:400; 表 1
赛默飞世尔Ki67抗原抗体(eBioscience, 11-5698-82)被用于被用于免疫组化在小鼠样本上浓度为1:400 (表 1). Brain Struct Funct (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s7a
赛默飞世尔Ki67抗原抗体(lab vision, RM-9106-F1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s7a). Nat Commun (2016) ncbi
小鼠 单克隆(7B11)
  • 流式细胞仪; 人类; 图 4b
赛默飞世尔Ki67抗原抗体(ThermoFisher Scientific, MHKI6701)被用于被用于流式细胞仪在人类样本上 (图 4b). J Immunol Methods (2017) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2B
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-80)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2B). J Clin Invest (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; pigs ; 1:200; 图 5e
赛默飞世尔Ki67抗原抗体(Lab Vision, SP6)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:200 (图 5e). Biomed Res Int (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2f
赛默飞世尔Ki67抗原抗体(Labvision, RM9106)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2f). Oncogene (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 3
赛默飞世尔Ki67抗原抗体(Neo Markers, RM-9106-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 3). Pituitary (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 图 3b
赛默飞世尔Ki67抗原抗体(Lab-Vision, RM-9106-S)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). Kaohsiung J Med Sci (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔Ki67抗原抗体(eBioscience, 41-5698-80)被用于被用于免疫细胞化学在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔Ki67抗原抗体(eBioscience, 11-5699-42)被用于被用于流式细胞仪在人类样本上 (图 1b). J Virol (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔Ki67抗原抗体(eBiosciences, 48-5698-80)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nat Immunol (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛默飞世尔Ki67抗原抗体(Thermo, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Sci Rep (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 6j
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S 0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 6j). Nat Cell Biol (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6d
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM9106-SO)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6d). Nat Commun (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:500; 图 4e
赛默飞世尔Ki67抗原抗体(Lab Vision, SP6)被用于被用于免疫组化在人类样本上浓度为1:500 (图 4e). Nat Med (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 3b
赛默飞世尔Ki67抗原抗体(Thermo Fisher, RM-9106-S0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 3b). Front Cell Neurosci (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:100; 表 1
  • 免疫细胞化学; 小鼠; 1:100; 表 1
赛默飞世尔Ki67抗原抗体(eBiosciences, SolA15)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (表 1) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (表 1). Nat Commun (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 s4a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP-6)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4a). JCI Insight (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 7b
赛默飞世尔Ki67抗原抗体(eBiosciences, 11-5698-82)被用于被用于流式细胞仪在小鼠样本上 (图 7b). J Clin Invest (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:300; 图 s3
赛默飞世尔Ki67抗原抗体(eBiosciences, 25-5698-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s1a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9601-S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1a). Sci Rep (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 表 2
赛默飞世尔Ki67抗原抗体(Thermo Fisher, RM9106-S1)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Mol Diagn Ther (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Clin Invest (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 8b
赛默飞世尔Ki67抗原抗体(Affymetrix eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 8b). J Exp Med (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200; 图 2B
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM9106)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2B). Toxicol Lett (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 6). Clin Cancer Res (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:250; 图 2d
赛默飞世尔Ki67抗原抗体(Lab Vision, SP6)被用于被用于免疫组化在人类样本上浓度为1:250 (图 2d). Kaohsiung J Med Sci (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:200; 图 4b
赛默飞世尔Ki67抗原抗体(ThermoFisher Scientific, RM-9106)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4b). JCI Insight (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔Ki67抗原抗体(Neomarkers, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). Oncol Lett (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 3
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 3). Ann Surg Oncol (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 5d
赛默飞世尔Ki67抗原抗体(LabVision, RM-9128-R1)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 5d). Acta Histochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔Ki67抗原抗体(Thermo Fisher, PA5-19462)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:300
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S)被用于被用于免疫组化在小鼠样本上浓度为1:300. Nat Med (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:2000; 图 s1
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 s1). Sci Rep (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫印迹; 小鼠; 图 S5
赛默飞世尔Ki67抗原抗体(Thermo Fisher, MA5-14520)被用于被用于免疫印迹在小鼠样本上 (图 S5). Sci Rep (2016) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, MA5-15690)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Oncol Lett (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫细胞化学; 人类; 1:500
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-82)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Science (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6a). Cancer Res (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s4d
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s4d). Nature (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:100; 图 1d
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1d). Cell Death Dis (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 图 5a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a). Breast Cancer Res Treat (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1d
赛默飞世尔Ki67抗原抗体(Affymetrix E-bioscience, 14-5698)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1d). Cell Res (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4d
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4d). Acta Neuropathol (2016) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类; 图 9h
赛默飞世尔Ki67抗原抗体(eBiosciences, 20Raj1)被用于被用于流式细胞仪在人类样本上 (图 9h). J Immunol (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 4
赛默飞世尔Ki67抗原抗体(eBiosciences, A15)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 4). Development (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 3
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 3). Virchows Arch (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 图 s3i
赛默飞世尔Ki67抗原抗体(Thermo Scientific, MA5-14520)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3i). Nat Cell Biol (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 图 6f
赛默飞世尔Ki67抗原抗体(Lab Vision, RT-9106-R7)被用于被用于免疫组化在人类样本上 (图 6f). Cancer Res (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 人类
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-82)被用于被用于免疫组化在人类样本上. Nat Commun (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s14a
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s14a). Circ Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 s3
赛默飞世尔Ki67抗原抗体(Thermo Scientific, PA5-16785)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s3). Nat Med (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2
赛默飞世尔Ki67抗原抗体(NeoMarkers, RM9106-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 6
赛默飞世尔Ki67抗原抗体(Thermo scientific, RB-1510)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 3
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RB-90-43-P)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1
赛默飞世尔Ki67抗原抗体(Pierce, PA5-19462)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1). Oncotarget (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 图 4c
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4c). Clin Cancer Res (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫印迹基因敲除验证; 小鼠; 1:300; 图 3
  • 免疫细胞化学; 小鼠; 1:300; 图 2
赛默飞世尔Ki67抗原抗体(Ebioscience, 14-5698-80)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:300 (图 3) 和 被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 2). elife (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
赛默飞世尔Ki67抗原抗体(Thermo Fischer, SP 6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Oncotarget (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 2). elife (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔Ki67抗原抗体(eBioscience, 5698)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Cell Cycle (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:100; 图 3h
赛默飞世尔Ki67抗原抗体(Lab Vision, RM-9106-F1)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3h). Development (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:500; 图 s4c
赛默飞世尔Ki67抗原抗体(eBioscience, 50-5698- 80)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s4c). Cell (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于免疫组化在小鼠样本上. Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:50; 图 4
赛默飞世尔Ki67抗原抗体(Pierce, PA5-16785)被用于被用于免疫组化在人类样本上浓度为1:50 (图 4). Histochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s3
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, PA5-19462)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3). PLoS ONE (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:30; 表 1
赛默飞世尔Ki67抗原抗体(Thermo, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30 (表 1). Am J Dermatopathol (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 图 6
赛默飞世尔Ki67抗原抗体(Thermo Fisher, RM-9106-R7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6). Tissue Eng Part C Methods (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔Ki67抗原抗体(eBioscience, solA15)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Arthritis Rheumatol (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 猕猴; 图 3
赛默飞世尔Ki67抗原抗体(ThermoFisher Scientific, SP6)被用于被用于免疫组化-石蜡切片在猕猴样本上 (图 3). J Immunol (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔Ki67抗原抗体(Neomarkers, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上. EMBO Mol Med (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4c
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4c). PLoS ONE (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s1c
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 5
赛默飞世尔Ki67抗原抗体(Thermo, PA5-19462)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Cereb Cortex (2017) ncbi
domestic rabbit 重组(SP6)
  • 流式细胞仪; 小鼠; 图 s2b
  • 免疫组化; 小鼠; 图 s2a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于流式细胞仪在小鼠样本上 (图 s2b) 和 被用于免疫组化在小鼠样本上 (图 s2a). Nat Med (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s8
赛默飞世尔Ki67抗原抗体(eBioscience, 48-5698)被用于被用于流式细胞仪在小鼠样本上 (图 s8). Nat Neurosci (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 1c
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RB-9043-P0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 1c). Endocr Relat Cancer (2016) ncbi
小鼠 单克隆(4A1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛默飞世尔Ki67抗原抗体(Lab Vision, MA5-15525)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Tumour Biol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, PA5-19462)被用于. Sci Rep (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s2
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2). Nat Immunol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 大鼠; 1:500; 图 8a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 8a). Exp Eye Res (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 人类; 1:500; 图 2c
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2c). Gastric Cancer (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:100; 图 4
赛默飞世尔Ki67抗原抗体(Thermo Scientific Lab Vision, SP6)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4). Nat Med (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔Ki67抗原抗体(Thermo Scientific, PA5-16785)被用于. Mol Cell (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔Ki67抗原抗体(Pierce, PA5-19462)被用于. Oncotarget (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔Ki67抗原抗体(Lab Vision, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Biomed Res Int (2015) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类; 图 5b
赛默飞世尔Ki67抗原抗体(eBioscience, 20Raj1)被用于被用于流式细胞仪在人类样本上 (图 5b). J Allergy Clin Immunol (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:200; 图 13
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, SP6)被用于被用于免疫组化在人类样本上浓度为1:200 (图 13). Rom J Morphol Embryol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
赛默飞世尔Ki67抗原抗体(Thermo Fisher, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b). FASEB J (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 大鼠; 图 7e
赛默飞世尔Ki67抗原抗体(Thermo fisher Scientific, 9106)被用于被用于免疫细胞化学在大鼠样本上 (图 7e). Diabetes (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔Ki67抗原抗体(Thermo, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Clin Invest (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 图 3b
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM9106)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). Reprod Sci (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2). PLoS Pathog (2015) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:500; 图 3e
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-82)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3e). J Cell Sci (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:200; 图 2
赛默飞世尔Ki67抗原抗体(eBioscience, 12-5698)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2). Stem Cell Reports (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:400; 图 s5a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S)被用于被用于免疫组化在人类样本上浓度为1:400 (图 s5a). Glia (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RB-1510-P)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(7B11)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔Ki67抗原抗体(生活技术, MHKI6701)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 图 1e
赛默飞世尔Ki67抗原抗体(Thermo Fisher, SP6)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆(8D5)
  • 免疫印迹; 人类; 图 9c
赛默飞世尔Ki67抗原抗体(Pierce, MA5-15690)被用于被用于免疫印迹在人类样本上 (图 9c). FASEB J (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, PA5-19462)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔Ki67抗原抗体(ThermoFisher Scientific, Ab-4)被用于. BMC Cancer (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). Cell Rep (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:300; 图 5a
赛默飞世尔Ki67抗原抗体(ThermoFisher Scientific, RM-9106)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 5a). Brain Struct Funct (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛默飞世尔Ki67抗原抗体(eBioscience, 42-5698)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Nat Commun (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 6
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-R7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). PLoS Genet (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Development (2015) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类; 1:200; 图 s4
赛默飞世尔Ki67抗原抗体(eBiosciences, 20Raj1)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s4). Nat Commun (2015) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s8b
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5698-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s8b). Nature (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Appl Immunohistochem Mol Morphol (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:150
赛默飞世尔Ki67抗原抗体(Thermo Fisher, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150. Biomark Cancer (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4). Oncotarget (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Stem Cell Reports (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RB-9043-P)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, PA5-19462)被用于. J Magn Reson Imaging (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔Ki67抗原抗体(NeoMarker, sp6)被用于被用于免疫组化-石蜡切片在人类样本上. Invest Clin (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔Ki67抗原抗体(Thermo Scientific, clone SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Cell Death Differ (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类
赛默飞世尔Ki67抗原抗体(Lab Vision, clone SP6)被用于被用于免疫组化在人类样本上. Brain Tumor Pathol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Genome Biol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(Lab Vision, Sp6)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔Ki67抗原抗体(Thermo Scientific, PA5-19462)被用于. J Physiol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
赛默飞世尔Ki67抗原抗体(NEOmarkers, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔Ki67抗原抗体(Thermo scientific, RM-9106)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. PLoS ONE (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 表 2
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Breast Cancer Res Treat (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔Ki67抗原抗体(eBioscience, SOlA15)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔Ki67抗原抗体(LabVision, RM-9106-S)被用于被用于免疫组化-石蜡切片在小鼠样本上. Toxicol Sci (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔Ki67抗原抗体(THERMO, SP6)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Clin Exp Pathol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔Ki67抗原抗体(Thermo Scientific, PA5-19462)被用于. Prostate (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 人类; 图 s3a
  • 免疫组化; 小鼠; 图 4a
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106-s1)被用于被用于免疫细胞化学在人类样本上 (图 s3a) 和 被用于免疫组化在小鼠样本上 (图 4a). Nat Med (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 4
赛默飞世尔Ki67抗原抗体(Thermo scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Neurobiol Dis (2015) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类; 图 s3
赛默飞世尔Ki67抗原抗体(eBioscience, 20Raj1)被用于被用于流式细胞仪在人类样本上 (图 s3). J Immunol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, SP6)被用于被用于免疫组化在小鼠样本上. J Neurosci (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(Thermo Scientific, 9106)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. J Clin Invest (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Tumour Biol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 大鼠; 1:200
赛默飞世尔Ki67抗原抗体(NeoMarkers, RM-9106-S0)被用于被用于免疫组化在大鼠样本上浓度为1:200. Nanomedicine (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:300
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300. Mol Cancer Ther (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3). J Cell Biol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔Ki67抗原抗体(Thermo Fischer Scientific, RM-9106)被用于被用于免疫组化-石蜡切片在大鼠样本上. Prostate (2015) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔Ki67抗原抗体(eBioscience, 20Raj1)被用于被用于流式细胞仪在人类样本上 (图 4). J Virol (2015) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:100; 图 5
赛默飞世尔Ki67抗原抗体(Affymetrix eBioscience, 14-5698-80)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Nat Commun (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔Ki67抗原抗体(LabVisio, SP6)被用于被用于免疫组化-石蜡切片在人类样本上. APMIS (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 犬; 1:50; 图 2
赛默飞世尔Ki67抗原抗体(LabVision, SP6)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:50 (图 2). BMC Vet Res (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3b
赛默飞世尔Ki67抗原抗体(Neomarkers, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3b). Oral Surg Oral Med Oral Pathol Oral Radiol (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM-9106-R7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). PLoS ONE (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:300
赛默飞世尔Ki67抗原抗体(Labvision, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Int J Gynecol Pathol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:400
赛默飞世尔Ki67抗原抗体(ThermoScientific, SP6)被用于被用于免疫组化在人类样本上浓度为1:400. Pathol Res Pract (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S0)被用于被用于免疫细胞化学在人类样本上 (图 4). Neuromuscul Disord (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔Ki67抗原抗体(Lab Vision, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Physiol Gastrointest Liver Physiol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔Ki67抗原抗体(Labvision/Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. AIDS (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nature (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:500; 图 6
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化在人类样本上浓度为1:500 (图 6). Mol Cancer Ther (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔Ki67抗原抗体(Lab Vision, RB-9043-R7)被用于. Tumour Biol (2015) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于免疫组化在小鼠样本上. Immunology (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 大鼠; 1:200
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM9106-S)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200. J Neurosci (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106-S1)被用于被用于免疫组化-石蜡切片在小鼠样本上. Oncotarget (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 大鼠; 1:1000; 图 4a
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 4a). Brain Struct Funct (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔Ki67抗原抗体(Lab Vision, Ab-4)被用于. Mol Carcinog (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:200
赛默飞世尔Ki67抗原抗体(LabVision, SP6)被用于被用于免疫组化在人类样本上浓度为1:200. Arch Dermatol Res (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 图 1
赛默飞世尔Ki67抗原抗体(Thermo, SP6)被用于被用于免疫组化在人类样本上 (图 1). Genes Dev (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(NeoMarkers, RM-9106-S0)被用于被用于免疫组化在小鼠样本上浓度为1:200. Am J Pathol (2014) ncbi
domestic rabbit 重组(SP6)
赛默飞世尔Ki67抗原抗体(Lab Vision, RM-9106-S)被用于. Front Aging Neurosci (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM-9106-S0)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Pathol (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2014) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:100
赛默飞世尔Ki67抗原抗体(eBioscience, solA15)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Mol Pharm (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Rom J Morphol Embryol (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:200; 图 3
赛默飞世尔Ki67抗原抗体(Neo Markers, SP6)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3). J Gastroenterol (2015) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类
赛默飞世尔Ki67抗原抗体(eBioscience, 20Raj1)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:250
赛默飞世尔Ki67抗原抗体(LabVision/Thermo Scientific, #RM-9106, clone SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250. Aging (Albany NY) (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 小鼠
赛默飞世尔Ki67抗原抗体(Lab Vision, SP6)被用于被用于免疫细胞化学在小鼠样本上. Cancer Res (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛默飞世尔Ki67抗原抗体(Thermo Fisher, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). J Am Soc Nephrol (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 人类; 1:200
赛默飞世尔Ki67抗原抗体(Thermoscientific, SP6)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(20Raj1)
  • 流式细胞仪; 人类
赛默飞世尔Ki67抗原抗体(eBioscience, 20Raj1)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上. Dev Cell (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠
赛默飞世尔Ki67抗原抗体(Lab Vision/Thermo Scientific, Clone SP6)被用于被用于免疫组化在小鼠样本上. Mol Psychiatry (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔Ki67抗原抗体(Fisher/Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 重组(SP6)
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106-s1)被用于. Clin Cancer Res (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-自由浮动切片; 小鼠; 1:200
  • 免疫组化; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(LabVision Corporation, SP6)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 和 被用于免疫组化在小鼠样本上浓度为1:200. Front Cell Neurosci (2014) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔Ki67抗原抗体(eBioscience, solA15)被用于被用于免疫组化在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛默飞世尔Ki67抗原抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Nat Genet (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 大鼠; 1:300
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化在大鼠样本上浓度为1:300. Neurochem Int (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 人类; 1:25
  • 免疫组化; 人类; 1:25
赛默飞世尔Ki67抗原抗体(Thermo Scientific, Sp6)被用于被用于免疫细胞化学在人类样本上浓度为1:25 和 被用于免疫组化在人类样本上浓度为1:25. Am J Pathol (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔Ki67抗原抗体(Neomarkers, SP6)被用于被用于免疫组化-石蜡切片在人类样本上. Gastroenterology (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 小鼠
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106-F)被用于被用于免疫细胞化学在小鼠样本上. PLoS Genet (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上. Virol Sin (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM910 6S0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Anat Rec (Hoboken) (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化; 小鼠
赛默飞世尔Ki67抗原抗体(LabVision, SP6)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫组化在小鼠样本上. PLoS ONE (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:300
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM9106)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300. Cell Stem Cell (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔Ki67抗原抗体(Neomarkers, Sp6)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Acta Neuropathol Commun (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:500; 图 2
赛默飞世尔Ki67抗原抗体(Neomarkers, M-9106-S1)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2). Cancers (Basel) (2012) ncbi
domestic rabbit 重组(SP6)
赛默飞世尔Ki67抗原抗体(Thermo Fisher Scientific, RM9106)被用于. J Control Release (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106-S1)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化在小鼠样本上浓度为1:200. Cell Reprogram (2013) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔Ki67抗原抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上. Stem Cells (2014) ncbi
小鼠 单克隆(20Raj1)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛默飞世尔Ki67抗原抗体(eBioscience, 14-5699-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Stem Cells (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:300
赛默飞世尔Ki67抗原抗体(Neomarkers, RM-9106-S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300. Mol Endocrinol (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:300
赛默飞世尔Ki67抗原抗体(NeoMarkers, RM-9106)被用于被用于免疫组化在小鼠样本上浓度为1:300. Glia (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:200
  • 免疫细胞化学; 小鼠; 1:200; 图 5
  • 免疫组化; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(LabVision Corporation, SP6)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200, 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5) 和 被用于免疫组化在小鼠样本上浓度为1:200. Neurobiol Aging (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 小鼠; 1:200
  • 免疫组化; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(Neomarkers / LabVision, SP6)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 和 被用于免疫组化在小鼠样本上浓度为1:200. Genes Dev (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). PLoS ONE (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔Ki67抗原抗体(Thermo Fisher, RM9106_S0)被用于被用于免疫组化在小鼠样本上浓度为1:200. PLoS ONE (2013) ncbi
domestic rabbit 重组(SP6)
赛默飞世尔Ki67抗原抗体(ThermoScientific, RM-9106-S)被用于. Biol Reprod (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 图 6
赛默飞世尔Ki67抗原抗体(thermo scientific, rm-9106-s1)被用于被用于免疫组化在小鼠样本上 (图 6). BMC Cancer (2012) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化在小鼠样本上. Am J Pathol (2012) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200; 图 4
赛默飞世尔Ki67抗原抗体(LabVision Corporation, SP6)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4). Front Neurosci (2012) ncbi
domestic rabbit 重组(SP6)
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106)被用于. J Comp Neurol (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:15,000; 图 3
赛默飞世尔Ki67抗原抗体(Thermo Fisher, RM-9106-s1)被用于被用于免疫组化在小鼠样本上浓度为1:15,000 (图 3). PLoS ONE (2012) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:200
赛默飞世尔Ki67抗原抗体(Neomarkers, RM-9106-S1)被用于被用于免疫组化在人类样本上浓度为1:200. PLoS Pathog (2012) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔Ki67抗原抗体(Labvision, RM-9106-S1)被用于被用于免疫组化-石蜡切片在大鼠样本上. Med Sci Monit (2011) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 图 4
赛默飞世尔Ki67抗原抗体(Thermoscientific, RM-9106-S1)被用于被用于免疫组化在小鼠样本上 (图 4). BMC Cancer (2011) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:1000; 图 1
赛默飞世尔Ki67抗原抗体(Thermo, RM-9106)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Cancer Res (2011) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠
赛默飞世尔Ki67抗原抗体(Lab Vision Corporation, Clone SP6)被用于被用于免疫组化在小鼠样本上. J Pathol (2011) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 3
  • 免疫组化; 小鼠; 1:100
赛默飞世尔Ki67抗原抗体(LabVision, SP6)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 3) 和 被用于免疫组化在小鼠样本上浓度为1:100. PLoS ONE (2009) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:50; 图 5
赛默飞世尔Ki67抗原抗体(Thermo Scientific, RM-9106-S0)被用于被用于免疫组化在人类样本上浓度为1:50 (图 5). Prostate (2009) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 4
  • 免疫组化; 人类; 1:300
赛默飞世尔Ki67抗原抗体(LabVision, Sp6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 4) 和 被用于免疫组化在人类样本上浓度为1:300. Cancer Res (2008) ncbi
圣克鲁斯生物技术
小鼠 单克隆(Ki-67)
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于. Cancers (Basel) (2022) ncbi
小鼠 单克隆(Ki-67)
  • 抑制或激活实验; 小鼠; 图 3j
  • 免疫组化-石蜡切片; 人类; 图 1f
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于抑制或激活实验在小鼠样本上 (图 3j) 和 被用于免疫组化-石蜡切片在人类样本上 (图 1f). J Exp Med (2022) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 图 2f
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2f). Mol Oncol (2022) ncbi
小鼠 单克隆(Ki-67)
  • 免疫细胞化学; 人类; 图 5b, 5c
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫细胞化学在人类样本上 (图 5b, 5c). JBMR Plus (2022) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7b
  • 免疫印迹; 人类; 1:1000; 图 6e
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 7b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6e). Front Oncol (2021) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化; 人类; 图 4d
圣克鲁斯生物技术Ki67抗原抗体(SCBT, sc-23900)被用于被用于免疫组化在人类样本上 (图 4d). Cancer Cell Int (2021) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 3c
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-101861)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3c). Oncogene (2021) ncbi
小鼠 单克隆(Ki-67)
  • 免疫细胞化学; 人类; 1:200; 图 2f
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, Sc-23900)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2f). Front Oncol (2021) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化; 人类; 1:200; 图 5f
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化在人类样本上浓度为1:200 (图 5f). NAR Cancer (2021) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化; 小鼠; 1:200; 图 2a
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz Biotechnology, sc-23900)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). Mol Metab (2021) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1b, 2c
  • 免疫印迹; 人类; 1:500; 图 2d
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1b, 2c) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2d). BMC Cancer (2020) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化; 人类; 1:500; 图 3d
圣克鲁斯生物技术Ki67抗原抗体(Santa, sc-23900)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3d). EMBO Mol Med (2019) ncbi
小鼠 单克隆(Ki-67)
  • 免疫细胞化学; 人类; 图 5c, 5d
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫细胞化学在人类样本上 (图 5c, 5d). Sci Rep (2019) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化; 大鼠; 图 3a
圣克鲁斯生物技术Ki67抗原抗体(Santa, sc-23,900)被用于被用于免疫组化在大鼠样本上 (图 3a). BMC Complement Altern Med (2019) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化; 人类; 1:100; 图 9e
圣克鲁斯生物技术Ki67抗原抗体(Santa, sc-23900)被用于被用于免疫组化在人类样本上浓度为1:100 (图 9e). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:25; 图 2c
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:25 (图 2c). Ann Allergy Asthma Immunol (2019) ncbi
小鼠 单克隆(Ki-67)
  • 免疫印迹; 人类; 图 s4
圣克鲁斯生物技术Ki67抗原抗体(SantaCruz, sc-23900)被用于被用于免疫印迹在人类样本上 (图 s4). Biomed Pharmacother (2018) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 图 1a
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Oncol Lett (2017) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 图 2a
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). Int J Mol Med (2017) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2b
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2b). Exp Ther Med (2017) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4g
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4g). Oncotarget (2017) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 图 3a
圣克鲁斯生物技术Ki67抗原抗体(SantaCruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). Cell Prolif (2016) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Oncol Lett (2016) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化; 人类; 图 8d
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化在人类样本上 (图 8d). Oncotarget (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:200; 图 8
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-101861)被用于被用于免疫组化在人类样本上浓度为1:200 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(Ki-67)
  • 免疫细胞化学; 人类; 1:100; 图 3
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(Ki-67)
  • 免疫细胞化学; 人类; 图 s1
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc23900)被用于被用于免疫细胞化学在人类样本上 (图 s1). Mol Cell Biol (2016) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 4
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(Ki-67)
  • 免疫细胞化学; 人类; 1:100; 图 3
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, SC23900)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 图 3
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc101861)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3). Oncogene (2015) ncbi
小鼠 单克隆(Ki-67)
  • 免疫细胞化学; 人类; 1:200
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, SC23900)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Cell Death Dis (2014) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz, sc-23900)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Int J Ophthalmol (2014) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类
圣克鲁斯生物技术Ki67抗原抗体(Santa, sc-23900)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(Ki-67)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类
圣克鲁斯生物技术Ki67抗原抗体(Santa Cruz Biotechnology, sc-23900)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上. Carcinogenesis (2013) ncbi
BioLegend
大鼠 单克隆(11F6)
  • 流式细胞仪; 小鼠; 图 1h
BioLegendKi67抗原抗体(BioLegend, 11F6)被用于被用于流式细胞仪在小鼠样本上 (图 1h). Front Immunol (2021) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 1:200; 图 s2c
BioLegendKi67抗原抗体(BioLegend, Ki-67)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s2c). Nature (2021) ncbi
大鼠 单克隆(11F6)
  • 流式细胞仪; 小鼠; 图 4e
BioLegendKi67抗原抗体(BioLegend, 151204)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Cell Death Discov (2021) ncbi
大鼠 单克隆(11F6)
  • 流式细胞仪; 小鼠; 图 s3b
BioLegendKi67抗原抗体(Biolegend, 151206)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Nat Commun (2021) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 3:50; 图 3b
BioLegendKi67抗原抗体(Biolegend, Ki-67)被用于被用于流式细胞仪在人类样本上浓度为3:50 (图 3b). elife (2020) ncbi
大鼠 单克隆(11F6)
  • 流式细胞仪; 小鼠; 1:300; 图 3d
BioLegendKi67抗原抗体(Biolegend, 151209)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 3d). Cell (2020) ncbi
大鼠 单克隆(11F6)
  • 流式细胞仪; 小鼠; 1:100; 图 4e
BioLegendKi67抗原抗体(BioLegend, 11F6)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4e). elife (2020) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 图 s1d
BioLegendKi67抗原抗体(Biolegend, 350522)被用于被用于流式细胞仪在人类样本上 (图 s1d). Cell (2020) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 图 4s1
BioLegendKi67抗原抗体(Biolegend, 350516)被用于被用于流式细胞仪在人类样本上 (图 4s1). elife (2020) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 1:20; 图 3a
BioLegendKi67抗原抗体(BioLegend, Ki-67)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 3a). Am J Cancer Res (2020) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 图 4f
BioLegendKi67抗原抗体(Biolegend, 350508)被用于被用于流式细胞仪在人类样本上 (图 4f). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 图 4c
BioLegendKi67抗原抗体(BioLegend, 350522)被用于被用于流式细胞仪在人类样本上 (图 4c). Cell (2019) ncbi
大鼠 单克隆(11F6)
  • 流式细胞仪; 小鼠; 图 s16b
BioLegendKi67抗原抗体(Biolegend, 11F6)被用于被用于流式细胞仪在小鼠样本上 (图 s16b). Science (2019) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 图 1b
BioLegendKi67抗原抗体(Biolegend, Ki-67)被用于被用于流式细胞仪在人类样本上 (图 1b). Eur J Immunol (2019) ncbi
大鼠 单克隆(11F6)
  • 免疫组化; 小鼠; 1:100; 图 s5b
BioLegendKi67抗原抗体(BioLegend, 151206)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s5b). Cell (2019) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 图 s6a
BioLegendKi67抗原抗体(Biolegend, ki-67)被用于被用于流式细胞仪在人类样本上 (图 s6a). Cell Stem Cell (2019) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 小鼠; 图 3a
BioLegendKi67抗原抗体(BioLegend, Ki-67)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Immunol (2018) ncbi
大鼠 单克隆(11F6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1e
BioLegendKi67抗原抗体(Biolegend, 151202)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1e). Acta Neuropathol Commun (2018) ncbi
大鼠 单克隆(11F6)
  • 免疫组化-冰冻切片; 小鼠; 图 9d
BioLegendKi67抗原抗体(Biolegend, 11F6)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 9d). PLoS ONE (2018) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 图 3a
BioLegendKi67抗原抗体(BioLegend, Ki-67)被用于被用于流式细胞仪在人类样本上 (图 3a). Int J Infect Dis (2018) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 图 1b
BioLegendKi67抗原抗体(Biolegend, Ki-67)被用于被用于流式细胞仪在人类样本上 (图 1b). J Immunol (2018) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 图 4e
BioLegendKi67抗原抗体(BioLegend, 350510)被用于被用于流式细胞仪在人类样本上 (图 4e). Oncoimmunology (2016) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 图 2a
BioLegendKi67抗原抗体(Biolegend, Ki67)被用于被用于流式细胞仪在人类样本上 (图 2a). Exp Hematol Oncol (2017) ncbi
小鼠 单克隆(Ki-67)
BioLegendKi67抗原抗体(BioLegend, 350504)被用于. Stem Cell Reports (2016) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 图 3b
BioLegendKi67抗原抗体(BioLegend, Ki-67)被用于被用于流式细胞仪在人类样本上 (图 3b). Clin Cancer Res (2017) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类; 图 s2
BioLegendKi67抗原抗体(Biolegend, Ki-67)被用于被用于流式细胞仪在人类样本上 (图 s2). PLoS Pathog (2015) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 小鼠; 图 4
BioLegendKi67抗原抗体(Biolegend, Ki67)被用于被用于流式细胞仪在小鼠样本上 (图 4). Stem Cells (2015) ncbi
小鼠 单克隆(Ki-67)
  • 流式细胞仪; 人类
BioLegendKi67抗原抗体(BioLegend, 350504)被用于被用于流式细胞仪在人类样本上. J Inflamm (Lond) (2014) ncbi
GeneTex
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 e2b
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 4k, 6i
GeneTexKi67抗原抗体(GeneTex, GTX16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 e2b) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 4k, 6i). Nat Cancer (2022) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2d
GeneTexKi67抗原抗体(GeneTex, GTX16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2d). Oncol Rep (2022) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6b
GeneTexKi67抗原抗体(Genetex, GTX16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6b). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
GeneTexKi67抗原抗体(Genetex, GTX16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). EMBO J (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2b, s4b
GeneTexKi67抗原抗体(GeneTex, GTX16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b, s4b). Mucosal Immunol (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6d, 6h
GeneTexKi67抗原抗体(Genetex, GTX16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6d, 6h). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:100; 图 1d
GeneTexKi67抗原抗体(GeneTex, GTX16667)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1d). Mol Med Rep (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
GeneTexKi67抗原抗体(GeneTex, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). J Cancer (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4
GeneTexKi67抗原抗体(Genetex, GTX16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3
GeneTexKi67抗原抗体(GeneTex, GTX16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 3
GeneTexKi67抗原抗体(GeneTex, GTX16667)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 1
GeneTexKi67抗原抗体(GeneTex, GTX16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (2015) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1e
Novus BiologicalsKi67抗原抗体(Novus, NB500-170)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1e). J Clin Invest (2022) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200
Novus BiologicalsKi67抗原抗体(Novus Biologicals, NB-600-1252)被用于被用于免疫组化在小鼠样本上浓度为1:200. Arterioscler Thromb Vasc Biol (2021) ncbi
domestic rabbit 单克隆(SP6)
Novus BiologicalsKi67抗原抗体(Novus Biologicals, NB600-1252)被用于. elife (2020) ncbi
domestic rabbit 多克隆(TU-20)
  • 免疫组化; 人类; 1:2000; 图 s3d
Novus BiologicalsKi67抗原抗体(Novus, NB110-90592)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 s3d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s1c
Novus BiologicalsKi67抗原抗体(Novus, NB 600-1252)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s1c). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6j
Novus BiologicalsKi67抗原抗体(Novus Biologicals, NB110-89717)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6j). Dev Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 5a
  • 免疫细胞化学; 人类; 1:100; 图 s12a
Novus BiologicalsKi67抗原抗体(Novus, NB110-89717)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5a) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 s12a). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1e
Novus BiologicalsKi67抗原抗体(Novus, NB500-170)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1e). Science (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 7b
Novus BiologicalsKi67抗原抗体(Novus Biologicals, NB600-1252)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7b). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4
Novus BiologicalsKi67抗原抗体(Novus Biologicals, NB500-170)被用于被用于免疫组化在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆(31A1067)
  • 免疫组化-石蜡切片; 小鼠; 图 9f
Novus BiologicalsKi67抗原抗体(Novus Biologicals, NB110-89719)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 9f). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
Novus BiologicalsKi67抗原抗体(Novus Biologicals, NB110-89717)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). J Pathol (2016) ncbi
domestic rabbit 多克隆
Novus BiologicalsKi67抗原抗体(Novus Biologicals, NB110-89717)被用于. Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 多克隆(31A1067)
Novus BiologicalsKi67抗原抗体(Novus, NB110-89719)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
Novus BiologicalsKi67抗原抗体(Novus, NB110-89717)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
Novus BiologicalsKi67抗原抗体(Novus Biologicals, NB110-89717)被用于. J Hepatol (2015) ncbi
美天旎
人类 单克隆(REA183)
  • 流式细胞仪; 小鼠; 图 3e
美天旎Ki67抗原抗体(Miltenyi, 130-120-419)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Sci Transl Med (2022) ncbi
人类 单克隆(REA183)
  • 免疫组化-冰冻切片; 小鼠; 图 s6
美天旎Ki67抗原抗体(Miltenyi Biotec, 130-117-803)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6). Sci Rep (2022) ncbi
人类 单克隆(REA183)
  • 流式细胞仪; 小鼠; 1:50; 图 4c
美天旎Ki67抗原抗体(Miltenyi Biotec, 130-120-418)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4c). Nat Commun (2019) ncbi
Dianova
小鼠 单克隆(Ki-67P)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
DianovaKi67抗原抗体(Dianova, DIA-670-P1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). Aging (Albany NY) (2021) ncbi
北京傲锐东源
小鼠 单克隆(OTI3D11)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 7d
北京傲锐东源Ki67抗原抗体(ZSGB-Bio, TA500265)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 7d). Nat Commun (2017) ncbi
小鼠 单克隆(UMAB107)
  • 免疫组化-石蜡切片; 人类; 1:500
北京傲锐东源Ki67抗原抗体(Origene Technologies, UM800033)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Oncol Lett (2016) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s8d, s8e
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako/Agilent, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s8d, s8e). Cell Mol Life Sci (2022) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 1a, 1b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a, 1b). Curr Oncol (2022) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 4b). Nat Cancer (2022) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:400; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (表 1). ESMO Open (2022) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 4). J Clin Med (2021) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 小鼠; 图 3g
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化在小鼠样本上 (图 3g). Sci Adv (2021) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 犬; 1:50; 图 2d
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:50 (图 2d). Animals (Basel) (2021) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako-Agilent, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Front Immunol (2021) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:100. Pathol Oncol Res (2021) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 小鼠; 图 s5f
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在小鼠样本上 (图 s5f). JCI Insight (2021) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 犬; 图 2h
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在犬样本上 (图 2h). Antioxidants (Basel) (2021) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 小鼠; 1:500; 图 14
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 14). Biomedicines (2021) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 犬; 图 2h
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在犬样本上 (图 2h). Animals (Basel) (2021) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 图 8c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, IR626)被用于被用于免疫组化在人类样本上 (图 8c). PLoS Genet (2021) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 小鼠
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化在小鼠样本上. BMC Cancer (2021) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:3000; 图 3a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:3000 (图 3a). Nat Commun (2021) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 4e
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 4e). Biomolecules (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:200. Cancers (Basel) (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5m
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5m). Acta Neuropathol (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 大鼠; 1:100; 图 3a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3a). J Reprod Dev (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 图 6c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6c). Dev Cell (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4c). Endocr Pathol (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上. Anal Cell Pathol (Amst) (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上. Antioxidants (Basel) (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:50; 图 2b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2b). elife (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 犬; 图 1b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在犬样本上 (图 1b). Cells (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:250; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (表 2). Breast Cancer Res (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:800; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (表 2). Front Oncol (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; African green monkey; 1:100; 图 6a, 6b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在African green monkey样本上浓度为1:100 (图 6a, 6b). PLoS Pathog (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 4j
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4j). PLoS ONE (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1c). Oncotarget (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 5a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a). J Neurooncol (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 猫; 图 st2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在猫样本上 (图 st2). Sci Rep (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2a). Sci Rep (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6f
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako-Agilent, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6f). Cancers (Basel) (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 s2h
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s2h). Redox Biol (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 7h
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7h). Nat Commun (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 猫; 1:50; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在猫样本上浓度为1:50 (表 2). BMC Cancer (2019) ncbi
单克隆(MIB-1)
  • 免疫组化; 人类; 1:200; 图 s3
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, GA62661-2)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s3). Breast Cancer Res (2019) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, IR626)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). BMC Cancer (2019) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 4i
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4i). Oncogene (2020) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:50; 图 1g
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1g). Diagn Pathol (2019) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 6e
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, 7240)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6e). Cancer Res (2019) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 小鼠; 1:100; 图 1c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1c). Nat Commun (2019) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 人类; 1:300
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, clone MIB-1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:300. Nature (2019) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1c). Life Sci Alliance (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 图 1f
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫细胞化学在人类样本上 (图 1f). J Stem Cells Regen Med (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4a). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 图 7a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫细胞化学在人类样本上 (图 7a). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 小鼠; 1:200; 图 8g
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M724001-2)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 8g). J Neurosci (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 6a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 6a). Nat Commun (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, IS626)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1c). Anticancer Res (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 图 3b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化在人类样本上 (图 3b). Oncogene (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; black ferret; 1:500; 图 7a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在black ferret样本上浓度为1:500 (图 7a). Am J Pathol (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1j
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1j). Arch Dermatol Res (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:800; 表 s18
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (表 s18). Science (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:300
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化在人类样本上浓度为1:300. Breast Cancer Res (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 图 s1b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dakocytomation, MIB-1)被用于被用于免疫组化在人类样本上 (图 s1b). Front Immunol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:100. Nature (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2;
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, 7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2;). Oncol Lett (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 表 3
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在人类样本上浓度为1:100 (表 3). PLoS ONE (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:2; 图 st9
  • 免疫组化-石蜡切片; African green monkey; 1:2; 图 st9
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, IR626)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2 (图 st9) 和 被用于免疫组化-石蜡切片在African green monkey样本上浓度为1:2 (图 st9). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7h
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7h). Sci Rep (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 犬; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:50. Vet Pathol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 6c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 6c). Biochim Biophys Acta Mol Cell Res (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上 (表 1). Clin Breast Cancer (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上 (表 1). Endocr Relat Cancer (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:40; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40 (表 2). Am J Dermatopathol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, Mib-1)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Cancer Res (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4f
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4f). J Cell Mol Med (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5b). Mol Cell Biol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 图 2g
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2g). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:200; 图 2e
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2e). Brain Pathol (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上 (表 1). Oncotarget (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4). Acta Derm Venereol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 1). Glia (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:75; 图 6e
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:75 (图 6e). J Pathol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4D
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4D). Gene Ther (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 图 2c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化在人类样本上 (图 2c). Biochem Biophys Res Commun (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:500; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (表 2). Rev Bras Ginecol Obstet (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6d
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6d). Cancer Res (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:25; 图 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, Mib-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 2). Taiwan J Obstet Gynecol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). J Clin Pathol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1c). Contemp Oncol (Pozn) (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, Mib-1)被用于被用于免疫组化在人类样本上. Hum Pathol (2017) ncbi
  • 免疫细胞化学; 人类; 1:500; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, A0047)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (表 1). J Neuroinflammation (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Ann Diagn Pathol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 2b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). Clin Cancer Res (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 小鼠; 1:200; 图 e1f
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, IR-626)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 e1f). Nature (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 图 st1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:100 (图 st1). Gastroenterology (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Cytometry B Clin Cytom (2018) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 2c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, Mib-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2c). J Allergy Clin Immunol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 流式细胞仪; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(BD Pharmigen, M7240)被用于被用于流式细胞仪在人类样本上 (图 4). Oncoimmunology (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Histopathology (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1h
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1h). Virchows Arch (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Mol Clin Oncol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 图 4f
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上 (图 4f). Nat Commun (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 7f
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 7f). Oncol Lett (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a). Nat Commun (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 图 s1b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在人类样本上 (图 s1b). Sci Rep (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:400; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:400 (图 1). Diagn Pathol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在人类样本上 (表 2). PLoS ONE (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a). J Clin Pathol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Virchows Arch (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3a). Medicine (Baltimore) (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 4j-l
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MiB-1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 4j-l). Biomed Res Int (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Clin Cancer Res (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200. PLoS ONE (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 1). Rom J Morphol Embryol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 1:100; 图 5
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Arch Gynecol Obstet (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 2). Am J Surg Pathol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 5a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1b). J Oral Pathol Med (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:100 (表 2). Am J Surg Pathol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在人类样本上 (表 2). PLoS ONE (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 人类; 图 7
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-冰冻切片在人类样本上 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4g
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4g). Nat Med (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1d
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1d). J Hematop (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). Nat Med (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在人类样本上浓度为1:50. Nat Med (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4). Cell Death Dis (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 家羊; 1:100; 图 7
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:100 (图 7). J Neuroinflammation (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:10; 图 s5t
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10 (图 s5t). Nat Commun (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). J Immunol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 犬; 1:50; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:50 (表 1). Vet Comp Oncol (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 图 s2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫细胞化学在人类样本上 (图 s2). Biomaterials (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 图 5
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫细胞化学在人类样本上 (图 5). Mol Vis (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化在人类样本上浓度为1:200. Clin Cancer Res (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. PLoS ONE (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3c). Mol Cancer (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 图 2b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上 (图 2b). Exp Dermatol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 s1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫细胞化学在人类样本上 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:50; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:50 (表 1). Pathol Int (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:100 (表 1). Oral Surg Oral Med Oral Pathol Oral Radiol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3e
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3e). Oncotarget (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 图 7
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上 (图 7). BMC Cancer (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, Mib1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Ann Clin Lab Res (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:20
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20. Endocr J (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 2b
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). J Pediatr Urol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Pathol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 5a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a). Oncol Rep (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4D
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4D). Am J Pathol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. Oncotarget (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 小鼠; 1:75; 图 5a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, MIB-1)被用于被用于免疫组化在小鼠样本上浓度为1:75 (图 5a). Oncotarget (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 1:150; 图 2c1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB1)被用于被用于免疫细胞化学在人类样本上浓度为1:150 (图 2c1). PLoS ONE (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:20; 图 3f
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化在人类样本上浓度为1:20 (图 3f). Endocr Pathol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 3
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 3). PLoS ONE (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 牛; 1:100; 图 1c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在牛样本上浓度为1:100 (图 1c). Transbound Emerg Dis (2017) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Nat Cell Biol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化在人类样本上 (表 1). Nat Commun (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化在人类样本上 (表 1). PLoS ONE (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Clin Cancer Res (2015) ncbi
  • 免疫组化; 小鼠; 图 s3
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Agilent Technology, A0047)被用于被用于免疫组化在小鼠样本上 (图 s3). Mol Biol Cell (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Cancer Res Treat (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 1:200; 图 st1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M724029-2)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 st1). Sci Rep (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:400; 图 3
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化在人类样本上浓度为1:400 (图 3). Nature (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, M7240)被用于被用于免疫组化在人类样本上浓度为1:200. Mol Clin Oncol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化在人类样本上. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB 1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Appl Immunohistochem Mol Morphol (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Breast Cancer Res (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化在人类样本上. Mol Oncol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MiB1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Ann Diagn Pathol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:20
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, clone MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20. BMC Cancer (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:3
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, Mib1)被用于被用于免疫组化在人类样本上浓度为1:3. Int Urol Nephrol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100; 图 3c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3c). Exp Dermatol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 s4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 s4). J Clin Endocrinol Metab (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Oncogene (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:1000; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 4). Mol Cancer (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Leuk Lymphoma (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, clone: Mib1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 1). J Immunol Res (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 0.5 ug/ml; 图 5
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为0.5 ug/ml (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Cell Tissue Res (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:250
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250. Cancer Res Treat (2016) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上. Pathol Oncol Res (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 4). PLoS ONE (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Pediatr Surg (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Onco Targets Ther (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, clone MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Exp Dermatol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Int J Gynecol Pathol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. J Nucl Med (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. J Hematol Oncol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, M7240)被用于被用于免疫组化在人类样本上浓度为1:200. Histopathology (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 6
  • 免疫组化-石蜡切片; 小鼠; 图 6
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, 7240)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Cell Cycle (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:80; 图 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (图 2). Oncol Rep (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化-石蜡切片在人类样本上. J Clin Pathol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫印迹; 人类; 图 7
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 犬; 图 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在犬样本上 (图 2). J Vet Sci (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, MIB1)被用于被用于免疫组化在人类样本上. Exp Oncol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 小鼠
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Pathol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB1)被用于被用于免疫组化在人类样本上浓度为1:50. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:5000; 图 3
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5000 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(MIB-1)
  • 流式细胞仪; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 家羊
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation A / S, MIB-1)被用于被用于免疫组化-石蜡切片在家羊样本上. Int J Nanomedicine (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 小鼠
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在小鼠样本上. Nat Med (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上. J Cutan Pathol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:200. J Cutan Pathol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:400. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 3
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 3). BMC Cancer (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Mol Cancer Res (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKOCytomation, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Anticancer Res (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; domestic rabbit
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上. Exp Neurol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Endocr Pathol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 人类; 1:75
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:75. PLoS ONE (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:600
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化在人类样本上浓度为1:600. BMC Womens Health (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化在人类样本上浓度为1:100. Head Neck Pathol (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上. Virchows Arch (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; ready-to-use
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为ready-to-use. Histopathology (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:150
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150. Int J Clin Exp Med (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上. Int J Cancer (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M724001)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Nature (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, M7240)被用于被用于免疫组化-石蜡切片在人类样本上. Transl Res (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, MIB-1)被用于被用于免疫组化在人类样本上. Pathol Int (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Cancer Cytopathol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 大鼠; 1:150
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M 7240)被用于被用于免疫组化在大鼠样本上浓度为1:150. Respir Physiol Neurobiol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Oncotarget (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Am J Clin Pathol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Oncotarget (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M 7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). PLoS ONE (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-冰冻切片在人类样本上. Cardiovasc Pathol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 流式细胞仪; African green monkey; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于流式细胞仪在African green monkey样本上 (图 4). PLoS Pathog (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 7
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7). Nat Commun (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 1:100; 图 5a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5a). Biomolecules (2012) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 1:50
  • 免疫印迹; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫细胞化学在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:300
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Ann Surg Oncol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Virchows Arch (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上. Andrology (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:50. Pathol Res Pract (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5). Reprod Domest Anim (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. PLoS ONE (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Cell Res (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Pathol Res Pract (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Mol Hum Reprod (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫印迹; 人类; 1 ug/ml
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml. Mediators Inflamm (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; domestic rabbit
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上. Neuroscience (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Hum Pathol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上. Virchows Arch (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50
  • 免疫细胞化学; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 和 被用于免疫细胞化学在人类样本上浓度为1:50. J Clin Invest (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 猕猴
  • 免疫组化-石蜡切片; African green monkey
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在猕猴样本上 和 被用于免疫组化-石蜡切片在African green monkey样本上. Blood (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上. Urol Oncol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 小鼠; 1:5000
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000. PLoS ONE (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Neuropathology (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. World J Gastroenterol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Gut (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 犬; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB1)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:50. Pak J Biol Sci (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. APMIS (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 家羊; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:100. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MTB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Virchows Arch (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Pathol Res Pract (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:250
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250. Mod Pathol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化在人类样本上浓度为1:50. Pathol Res Pract (2014) ncbi
小鼠 单克隆(MIB-1)
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于. Cells Tissues Organs (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, Mib-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Biomed Res Int (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, m7240)被用于被用于免疫组化在人类样本上. Cancer Discov (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Gynecol Pathol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫细胞化学; 人类; 1:200; 图 3c
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3c). Biochimie (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Prostate Cancer Prostatic Dis (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:50. Fetal Pediatr Pathol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 9a
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 9a). Cereb Cortex (2015) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DakoCytomation, MIB-1)被用于被用于免疫组化在人类样本上. Head Neck (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Dev Neurobiol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 流式细胞仪; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, clone MIB1)被用于被用于流式细胞仪在人类样本上 (表 1). Cytopathology (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, mib-1)被用于被用于免疫组化在人类样本上浓度为1:100. Clin Neuropathol (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. World Neurosurg (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 大鼠; 1:200
  • 免疫组化-石蜡切片; 人类; 1:40
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:40. Hum Reprod (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Nat Genet (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 犬; 1:200
  • 免疫细胞化学; 犬; 1:200
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako Cytomation, M7240)被用于被用于免疫组化-冰冻切片在犬样本上浓度为1:200 和 被用于免疫细胞化学在犬样本上浓度为1:200. Histochem Cell Biol (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKOCytomation, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Oncology (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MiB1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Histopathology (2013) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Nucl Med Biol (2012) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:20
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20. Appl Immunohistochem Mol Morphol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-冰冻切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, M7240)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. J Comp Neurol (2012) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Br J Cancer (2012) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako Cytomation, MIB-1)被用于被用于免疫组化在人类样本上浓度为1:100. Pathol Int (2011) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:40
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. Eur J Cancer (2012) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Surg Pathol (2014) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO Baar, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Hum Pathol (2011) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 小鼠
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在小鼠样本上. Hepatology (2009) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(Dako, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Oncogene (2009) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MIB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Placenta (2009) ncbi
小鼠 单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司Ki67抗原抗体(DAKO, MiB-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Virchows Arch (2008) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 7d
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 7d). Cell Rep Med (2022) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, D3B5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2a). Nat Commun (2022) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 s1i
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1i). Cell Death Dis (2022) ncbi
小鼠 单克隆(8D5)
  • 免疫组化; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technologies, 9449)被用于被用于免疫组化在小鼠样本上 (图 1h). Cell Mol Gastroenterol Hepatol (2022) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 1:400; 图 2e
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449T)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2e). J Am Heart Assoc (2022) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠; 1:400; 图 1e
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 12202)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1e). Theranostics (2022) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 2p
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 2p). Br J Cancer (2022) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 人类; 图 7i
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7i). Sci Adv (2022) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 1:400; 图 4
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 9449)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 4). Front Endocrinol (Lausanne) (2022) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 5b, s7a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signalling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b, s7a). Oncogene (2022) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 图 4e
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, D2H10)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4e). Neoplasia (2022) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5k
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 9449)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5k). Proc Natl Acad Sci U S A (2022) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, D3B5)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). Aging (Albany NY) (2022) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4s1g
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4s1g). elife (2022) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 1:500; 图 4b
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449T)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4b). Front Physiol (2022) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s14
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s14). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 1f
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 1f). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, D3B5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2c). Mol Oncol (2022) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 8d
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 8d). Cancer Cell Int (2022) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signalling Technology, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2a). Nat Commun (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠; 1:250; 图 5a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 12202S)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 5a). Mol Metab (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 12202)被用于被用于免疫组化在小鼠样本上 (图 6b). Cell Death Dis (2021) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 图 3d
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 9449)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3d). Nat Commun (2021) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 9449)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6g). Nat Commun (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 3s3
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 3s3). elife (2021) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 国内马; 1:200; 图 7a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在国内马样本上浓度为1:200 (图 7a). Animals (Basel) (2021) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, D3B5)被用于被用于免疫组化在小鼠样本上 (图 3d). Nucleic Acids Res (2021) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 9129)被用于被用于免疫组化在小鼠样本上 (图 3a). J Am Heart Assoc (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 人类; 图 6h
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 12202)被用于被用于免疫组化在人类样本上 (图 6h). Cell Death Discov (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠; 1:200
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 12202)被用于被用于免疫组化在小鼠样本上浓度为1:200. J Pathol (2021) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3f
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, D2H10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3f). J Biomed Sci (2021) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫细胞化学; 小鼠; 1:500; 图 2b
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 9129S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2b). Front Pharmacol (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 s3d
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3d). Cell Rep (2021) ncbi
小鼠 单克隆(8D5)
  • 免疫组化; 人类; 图 s6g
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 9449)被用于被用于免疫组化在人类样本上 (图 s6g). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 图 6c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6c). Neoplasia (2021) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 1:800; 图 5f
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449S)被用于被用于免疫细胞化学在人类样本上浓度为1:800 (图 5f). Oncogene (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2e
  • 免疫细胞化学; 小鼠; 1:200; 图 2c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2e) 和 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2c). Cell Death Dis (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠; 1:500; 图 5a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 12202)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). J Cell Sci (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5k
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5k). PLoS Genet (2021) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化; 小鼠; 1:50; 图 4a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, D3B5)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4a). Aging Cell (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s5a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s5a). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 图 7c
  • 免疫细胞化学; 人类; 图 5a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7c) 和 被用于免疫细胞化学在人类样本上 (图 5a). Cell Stem Cell (2021) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化; 小鼠; 1:400; 图 4c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 9129)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4c). Sci Rep (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2g
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2g). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(8D5)
  • 免疫组化; 小鼠; 图 s5b
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 9449)被用于被用于免疫组化在小鼠样本上 (图 s5b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化; 人类; 1:400; 图 5c, 5d
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 9027)被用于被用于免疫组化在人类样本上浓度为1:400 (图 5c, 5d). J Exp Clin Cancer Res (2021) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 图 7c
  • 免疫细胞化学; 人类; 图 s2e
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7c) 和 被用于免疫细胞化学在人类样本上 (图 s2e). Cell Death Dis (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 6a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 6a). Sci Rep (2021) ncbi
单克隆(D3B5)
  • 免疫细胞化学; 人类; 1:200; 图 2b, 2c
  • 免疫组化-石蜡切片; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 12075)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2b, 2c) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). Thorac Cancer (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠; 图 3h
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signaling, 12202)被用于被用于免疫组化在小鼠样本上 (图 3h). Cell Rep (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫细胞化学; 人类; 图 s6e
  • 免疫细胞化学; 犬; 图 3b
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signaling, 12202)被用于被用于免疫细胞化学在人类样本上 (图 s6e) 和 被用于免疫细胞化学在犬样本上 (图 3b). J Exp Clin Cancer Res (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3). Oncogene (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 4g
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4g). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-冰冻切片; 小鼠; 图 s2c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, D3B5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2c). Sci Adv (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s3o
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s3o). Clin Cancer Res (2021) ncbi
小鼠 单克隆(8D5)
  • 免疫组化; 人类; 1:500; 图 7k
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 9449)被用于被用于免疫组化在人类样本上浓度为1:500 (图 7k). Theranostics (2021) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 6i
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signalling, D3B5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 6i). Science (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠; 1:400; 图 5c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 12202)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 5c). Redox Biol (2021) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫细胞化学; 小鼠; 1:500; 图 s6f
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s6f). Sci Signal (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 4g, s5b
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4g, s5b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化; 小鼠; 1:500; 图 4a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technologies, 9129S)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4a). elife (2020) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 6a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, D3B5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 6a). Mol Biol Cell (2021) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 12202)被用于被用于免疫组化在小鼠样本上. Science (2020) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 图 6e
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 9449)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6e). Mol Oncol (2020) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1b
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 9027)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1b). MBio (2020) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1e
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1e). Mol Cell Biol (2020) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 图 5d
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5d). Am J Cancer Res (2020) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5h, 2h
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5h, 2h). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signaling, D2H10)被用于被用于免疫组化在小鼠样本上. Oncogene (2020) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6d). Dev Cell (2019) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化; 小鼠; 1:100; 图 4c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 9129)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4c). elife (2019) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). Stem Cells Transl Med (2019) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化; 人类; 1:100; 图 8d
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 9027)被用于被用于免疫组化在人类样本上浓度为1:100 (图 8d). Nat Commun (2019) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4d
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4d). Cell Metab (2019) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 图 s1a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449S)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Cell (2019) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1j
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signalling, 12202S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1j). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 9129)被用于被用于免疫组化在小鼠样本上 (图 3e). Cell Rep (2019) ncbi
小鼠 单克隆(8D5)
  • mass cytometry; 人类; 图 3a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technologies, 9449)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化; 小鼠; 1:100; 图 s2k
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, D3B5)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s2k). Nature (2019) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫细胞化学; 人类; 1:100; 图 5a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 9129S)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5a). Cell Death Dis (2019) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a). Cell (2019) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6g
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6g). Am J Physiol Cell Physiol (2019) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫细胞化学; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129)被用于被用于免疫细胞化学在小鼠样本上 (图 5a). Oncogene (2019) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f). Cell (2018) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化; 小鼠; 图 5f
  • 免疫组化; 人类; 图 2e
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 9027)被用于被用于免疫组化在小鼠样本上 (图 5f) 和 被用于免疫组化在人类样本上 (图 2e). Cancer Lett (2019) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 6c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 6c). Biomed Pharmacother (2019) ncbi
单克隆(D3B5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s3a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12075)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s3a). Nat Commun (2018) ncbi
单克隆(D3B5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s5n
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12075)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s5n). Science (2018) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129s)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Cell Mol Med (2018) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4a). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 3g
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 3g). Nat Cell Biol (2018) ncbi
小鼠 单克隆(8D5)
  • 免疫组化; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 9449)被用于被用于免疫组化在小鼠样本上 (图 2c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化; 小鼠; 1:500; 图 s6a
  • 免疫印迹; 小鼠; 图 s6c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s6a) 和 被用于免疫印迹在小鼠样本上 (图 s6c). Sci Adv (2018) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1e
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1e). J Clin Invest (2018) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化在小鼠样本上 (图 1a). PLoS Biol (2018) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化; 人类; 图 1d
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signaling, 9027)被用于被用于免疫组化在人类样本上 (图 1d). Cell Death Dis (2018) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7b). Cancer Cell (2018) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 图 3f
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449S)被用于被用于免疫细胞化学在人类样本上 (图 3f). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫细胞化学; 人类; 1:200; 图 5a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technologies, 9129)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5a). J Cell Biol (2018) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 5c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 5c). Cancer Res (2018) ncbi
小鼠 单克隆(8D5)
  • 免疫组化; 人类; 图 5c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signalling, 9449)被用于被用于免疫组化在人类样本上 (图 5c). Nat Commun (2017) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5f
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5f). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 3d
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 3d). J Cell Biol (2017) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 图 1d, 1c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(CST, 9449)被用于被用于免疫细胞化学在人类样本上 (图 1d, 1c). Oncotarget (2017) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 图 4d
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4d). FEBS Open Bio (2016) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 4F
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 4F). Oncotarget (2017) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 1:400; 图 s5b
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s5b). Mol Syst Biol (2017) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫细胞化学; 小鼠; 图 s2b
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signaling, 9129)被用于被用于免疫细胞化学在小鼠样本上 (图 s2b). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 5a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 5a). Neural Dev (2016) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signalling, 12202)被用于被用于免疫组化在小鼠样本上 (图 3a). Neural Dev (2016) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4c). FASEB J (2017) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 6
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Tech, 9027)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 6). Int J Oncol (2016) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化; 人类; 图 s6a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化在人类样本上 (图 s6a). Nat Biotechnol (2016) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠; 图 3s1
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signaling, 12202)被用于被用于免疫组化在小鼠样本上 (图 3s1). elife (2016) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 7
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signaling, 9027)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 7). EMBO Mol Med (2016) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 10
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 10). Autophagy (2016) ncbi
domestic rabbit 单克隆(D3B5)
  • 流式细胞仪; 人类; 1:200; 图 4
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signaling, 9129)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 4) 和 被用于免疫细胞化学在人类样本上. Sci Rep (2016) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s2
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s2). Nature (2016) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 图 8
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化; 小鼠; 1:100; 图 6
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 9027)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129)被用于被用于免疫细胞化学在人类样本上 (图 4). Hum Mol Genet (2016) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 1:400; 图 4a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449S)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 4a). Biomaterials (2016) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化; 小鼠; 1:400; 图 4
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4). Development (2016) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化-石蜡切片; 小鼠; 1:400
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. Nature (2015) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 9
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signaling, 9449)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 9). Oncotarget (2015) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2a). Oncogenesis (2015) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫印迹; 人类; 图 8c
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 9027)被用于被用于免疫印迹在人类样本上 (图 8c). Oncogene (2016) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫细胞化学; 人类; 1:400; 图 7a
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technologies, 9129)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 7a). PLoS ONE (2015) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 图 s2
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Tech, 9449)被用于被用于免疫细胞化学在人类样本上 (图 s2). BMC Cancer (2015) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 1:400; 图 5
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 9449S)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 5). Mol Syst Biol (2015) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1f
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 9129)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1f). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, D3B5)被用于被用于免疫组化-石蜡切片在小鼠样本上. Stem Cells (2015) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 3). Nat Med (2015) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s9
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, D3B5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s9). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 图 4
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Int J Mol Sci (2015) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫细胞化学; 人类; 图 2
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9129)被用于被用于免疫细胞化学在人类样本上 (图 2). Mol Cancer Res (2015) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化; 人类; 1:20
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化在人类样本上浓度为1:20. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化; 人类; 1:150
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signalling, 9027)被用于被用于免疫组化在人类样本上浓度为1:150. Org Biomol Chem (2014) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化-石蜡切片; 人类; 1:400
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. Mol Cancer (2014) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:400
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling Technology, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫细胞化学; 人类; 1:100
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫组化在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:400
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D2H10)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司Ki67抗原抗体(Cell Signaling, 9027)被用于被用于免疫组化在人类样本上. Mol Cancer Ther (2014) ncbi
Vector Laboratories
  • 免疫组化-石蜡切片; 小鼠; 图 2f
载体实验室Ki67抗原抗体(载体实验室, VP-K451)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2f). Blood (2021) ncbi
  • 免疫组化; 小鼠; 1:100; 图 6i
载体实验室Ki67抗原抗体(载体实验室, VP-RM04)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6i). Nat Commun (2020) ncbi
  • 免疫组化; 小鼠; 图 4d
载体实验室Ki67抗原抗体(载体实验室, VP-RM04)被用于被用于免疫组化在小鼠样本上 (图 4d). Nature (2019) ncbi
  • 免疫组化-石蜡切片; 小鼠; 图 2h
载体实验室Ki67抗原抗体(载体实验室, VP-RM04)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2h). Nature (2019) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4b
载体实验室Ki67抗原抗体(载体实验室, VPRM04)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4b). Breast Cancer Res (2019) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1d
载体实验室Ki67抗原抗体(载体实验室, VP-K451)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1d). Nat Immunol (2019) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3c
载体实验室Ki67抗原抗体(载体实验室, VP-K451)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3c). Development (2018) ncbi
  • 免疫组化-石蜡切片; 小鼠; 图 1b
载体实验室Ki67抗原抗体(载体, VP-K451)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). Nat Commun (2018) ncbi
  • 免疫组化-石蜡切片; 小鼠; 图 4f
载体实验室Ki67抗原抗体(Vector Labs, VP-RM04)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4f). Proc Natl Acad Sci U S A (2017) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5c, 5e
  • 免疫组化; 小鼠; 1:500; 图 5e
载体实验室Ki67抗原抗体(载体实验室, VP-RM04)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5c, 5e) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 5e). Proc Natl Acad Sci U S A (2017) ncbi
  • 免疫组化-石蜡切片; 小鼠; 图 5d
载体实验室Ki67抗原抗体(载体, vp-rm04)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5d). Cancer Res (2017) ncbi
  • 免疫组化; 小鼠; 图 7f
载体实验室Ki67抗原抗体(Vector Labs, VP-RM04)被用于被用于免疫组化在小鼠样本上 (图 7f). Cell Mol Gastroenterol Hepatol (2017) ncbi
  • 免疫组化-石蜡切片; 人类; 图 s8
载体实验室Ki67抗原抗体(载体实验室, VP-RM04)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s8). Mol Syst Biol (2017) ncbi
  • 免疫细胞化学; 小鼠; 图 3h
载体实验室Ki67抗原抗体(Vector labs, VP-RM04)被用于被用于免疫细胞化学在小鼠样本上 (图 3h). EMBO J (2017) ncbi
  • 免疫细胞化学; 小鼠; 图 3h
载体实验室Ki67抗原抗体(Vector labs, VP-RM04)被用于被用于免疫细胞化学在小鼠样本上 (图 3h). Horm Cancer (2017) ncbi
  • 免疫组化; 小鼠; 1:100; 图 s3
载体实验室Ki67抗原抗体(载体实验室, VP-RM04)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3). Gut (2017) ncbi
  • 免疫细胞化学; 人类; 图 2
载体实验室Ki67抗原抗体(载体, VP-RM04)被用于被用于免疫细胞化学在人类样本上 (图 2). Protein Cell (2016) ncbi
  • 免疫组化-石蜡切片; 人类; 图 1
  • 流式细胞仪; 人类; 图 1
载体实验室Ki67抗原抗体(载体, VP-RM04)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1) 和 被用于流式细胞仪在人类样本上 (图 1). Cancer Res (2016) ncbi
  • 免疫组化-石蜡切片; 人类; 1:250; 图 2b
载体实验室Ki67抗原抗体(载体, VP-RM04)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 2b). Science (2016) ncbi
  • 免疫细胞化学; 人类; 1:500; 图 4c
载体实验室Ki67抗原抗体(载体, VP-K451)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4c). Stem Cells Transl Med (2016) ncbi
  • 免疫组化-冰冻切片; 小鼠; 图 s4a
载体实验室Ki67抗原抗体(载体实验室, VP-RM04)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4a). Oncogene (2016) ncbi
  • 免疫组化-冰冻切片; 小鼠; 图 s12
载体实验室Ki67抗原抗体(载体实验室, VP-K451)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s12). PLoS ONE (2016) ncbi
  • 免疫组化-石蜡切片; 人类; 1:100; 图 st1
载体实验室Ki67抗原抗体(Vector Labs, VP-RM04)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 st1). Nature (2016) ncbi
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
载体实验室Ki67抗原抗体(Vector Lab, VP-RM04)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Sci Rep (2016) ncbi
  • 免疫细胞化学; 人类
载体实验室Ki67抗原抗体(载体实验室, VP-RM04)被用于被用于免疫细胞化学在人类样本上. Oncotarget (2016) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5a
载体实验室Ki67抗原抗体(Vector Labs, VP-K451)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5a). Front Neurosci (2016) ncbi
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 s6i
载体实验室Ki67抗原抗体(载体实验室, VP-K451)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 s6i). Cancer Cell (2016) ncbi
  • 免疫组化; 人类; 图 7
载体实验室Ki67抗原抗体(载体实验室, VP-RM04)被用于被用于免疫组化在人类样本上 (图 7). Oncotarget (2016) ncbi
  • 免疫组化-石蜡切片; 小鼠; 图 4c
  • 免疫细胞化学; 小鼠; 图 2b
载体实验室Ki67抗原抗体(Vector Labs, VP-K451)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c) 和 被用于免疫细胞化学在小鼠样本上 (图 2b). Oncogene (2016) ncbi
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
载体实验室Ki67抗原抗体(载体, VP-RM04)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Dis Model Mech (2016) ncbi
  • 免疫组化-石蜡切片; 小鼠
载体实验室Ki67抗原抗体(载体, VP-RM04)被用于被用于免疫组化-石蜡切片在小鼠样本上. Cancer Discov (2016) ncbi
  • 免疫组化; 小鼠; 图 2
载体实验室Ki67抗原抗体(载体, VP-RMO4)被用于被用于免疫组化在小鼠样本上 (图 2). Sci Rep (2015) ncbi
  • 免疫组化-石蜡切片; 人类; 1:400; 图 5b
载体实验室Ki67抗原抗体(载体实验室, VP-RM04)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 5b). Oncotarget (2015) ncbi
  • 免疫组化-冰冻切片; 人类; 1:200; 图 5
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5
载体实验室Ki67抗原抗体(载体实验室, VP-K451)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 5) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5). PLoS Genet (2015) ncbi
  • 免疫组化-石蜡切片; 小鼠; 图 6
载体实验室Ki67抗原抗体(载体实验室, VP-RM04)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Cancer Res (2015) ncbi
  • 免疫组化; 小鼠; 图 5a
载体实验室Ki67抗原抗体(载体, VP-K451)被用于被用于免疫组化在小鼠样本上 (图 5a). Sci Rep (2015) ncbi
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2
载体实验室Ki67抗原抗体(Vector labs, VP-RM04)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2). Nat Neurosci (2015) ncbi
  • 免疫组化-石蜡切片; 小鼠
载体实验室Ki67抗原抗体(Vector Labs, VP-K451)被用于被用于免疫组化-石蜡切片在小鼠样本上. Oncogene (2015) ncbi
  • 免疫组化; 小鼠; 图 s3b
载体实验室Ki67抗原抗体(载体, VP-RM04)被用于被用于免疫组化在小鼠样本上 (图 s3b). Nat Med (2015) ncbi
  • 免疫组化; 小鼠; 1:250
载体实验室Ki67抗原抗体(载体实验室, VP-RM04)被用于被用于免疫组化在小鼠样本上浓度为1:250. Dev Biol (2015) ncbi
  • 免疫组化; 人类; 图 4
载体实验室Ki67抗原抗体(载体, VP-RM04)被用于被用于免疫组化在人类样本上 (图 4). Oncotarget (2014) ncbi
  • 免疫组化; 人类
载体实验室Ki67抗原抗体(载体, VP-K451)被用于被用于免疫组化在人类样本上. Oncogene (2015) ncbi
  • 免疫组化-自由浮动切片; 大鼠; 1:200
载体实验室Ki67抗原抗体(Vector Labs, VP-K451)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:200. Front Neurosci (2014) ncbi
  • 免疫细胞化学; 人类; 1:1000
载体实验室Ki67抗原抗体(载体实验室, VP-K451)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Nucleic Acids Res (2014) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:500
载体实验室Ki67抗原抗体(载体实验室, VPK451)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Neurosci (2014) ncbi
  • 免疫组化; 小鼠; 1:200
载体实验室Ki67抗原抗体(载体实验室, VP-RM04)被用于被用于免疫组化在小鼠样本上浓度为1:200. Mol Cell Biol (2014) ncbi
  • 免疫组化; 小鼠; 1:100
载体实验室Ki67抗原抗体(Vector Labs, VP-RM04)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Pathol (2014) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:200
载体实验室Ki67抗原抗体(载体, VP-RM04)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Mol Cell Biol (2012) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:500
载体实验室Ki67抗原抗体(载体实验室, VP-K451)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2009) ncbi
Cell Marque
单克隆(SP6)
  • 免疫细胞化学; 小鼠; 1:200; 图 7b
Cell MarqueKi67抗原抗体(Cell Marque, 275R)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 7b). elife (2019) ncbi
单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5a
Cell MarqueKi67抗原抗体(Sigma-Aldrich, 275R-18)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5a). PLoS ONE (2017) ncbi
  • 免疫组化-石蜡切片; 人类; 1:150; 表 1
Cell MarqueKi67抗原抗体(Cell Marque, 275R-16)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 1). Diagn Pathol (2017) ncbi
单克隆(SP6)
  • 免疫组化; 小鼠; 1:500; 图 s3
Cell MarqueKi67抗原抗体(Cell Marque, SP6)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s3). Nat Commun (2016) ncbi
  • 免疫组化-石蜡切片; 人类; 1:100; 表 4
Cell MarqueKi67抗原抗体(Cellmarque, 275R-16)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 4). Oncotarget (2016) ncbi
单克隆(SP6)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 s2
Cell MarqueKi67抗原抗体(Cell Marque, 275R-14)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 s2). Cell Death Dis (2016) ncbi
单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
Cell MarqueKi67抗原抗体(Cell Marque, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). J Pediatr Hematol Oncol (2016) ncbi
单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 s3
Cell MarqueKi67抗原抗体(Cell Marque, 275R)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s3). PLoS Genet (2015) ncbi
单克隆(SP6)
  • 免疫组化; 小鼠; 图 5
Cell MarqueKi67抗原抗体(Cell Marque, SP6)被用于被用于免疫组化在小鼠样本上 (图 5). Cell Death Dis (2015) ncbi
单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
Cell MarqueKi67抗原抗体(CellMarque, 275R-14)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). Nat Commun (2015) ncbi
单克隆(SP6)
  • 免疫组化-石蜡切片; domestic rabbit
Cell MarqueKi67抗原抗体(Cell Marque, 275R-14)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上. Exp Neurol (2015) ncbi
单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 2
Cell MarqueKi67抗原抗体(Cell Marque, 275R-18)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Mol Cancer Ther (2014) ncbi
碧迪BD
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 1s1a
  • 免疫组化; 人类; 1:500; 图 1s1c
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 1s1a) 和 被用于免疫组化在人类样本上浓度为1:500 (图 1s1c). elife (2022) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 1:100; 图 3c
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3c). Cells (2022) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4i
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4i). Commun Biol (2022) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2b
碧迪BDKi67抗原抗体(BD Biosciences, 561126)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2b). Nat Cancer (2022) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 3d
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d). Oncogene (2022) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s4d
碧迪BDKi67抗原抗体(BD Biosciences, 558615)被用于被用于流式细胞仪在人类样本上 (图 s4d). iScience (2022) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 2d
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 2d). EMBO J (2022) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:100; 图 8e
碧迪BDKi67抗原抗体(BD Bioscience, 561283)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 8e). Front Immunol (2021) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:100; 图 4e
碧迪BDKi67抗原抗体(BD Biosciences, 561126)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4e). Nat Commun (2021) ncbi
小鼠 单克隆(B56)
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于. Methods Protoc (2021) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 人类; 图 8a
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在人类样本上 (图 8a). elife (2021) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:200; 图 3c
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3c). Cell Rep (2021) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:500; 图 2c
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2c). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s1j
碧迪BDKi67抗原抗体(BD, 561283)被用于被用于流式细胞仪在人类样本上 (图 s1j). Cell Rep (2021) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 2a
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 2a). PLoS ONE (2021) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:500; 图 1d
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1d). elife (2021) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 图 1b
碧迪BDKi67抗原抗体(BD Bioscience, 550609)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1b). Invest Ophthalmol Vis Sci (2021) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:500; 图 4o
碧迪BDKi67抗原抗体(BD phamingen, 556003)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4o). elife (2021) ncbi
小鼠 单克隆(B56)
  • mass cytometry; 小鼠
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于mass cytometry在小鼠样本上. Br J Cancer (2021) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 人类; 图 1i
碧迪BDKi67抗原抗体(BD pharmingen, 550609)被用于被用于免疫组化在人类样本上 (图 1i). Commun Biol (2021) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 图 2e
碧迪BDKi67抗原抗体(BD PharMingen, 550609)被用于被用于免疫组化在小鼠样本上 (图 2e). Cell Rep (2021) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 8l
碧迪BDKi67抗原抗体(BD Pharmingen, 561126)被用于被用于流式细胞仪在小鼠样本上 (图 8l). Signal Transduct Target Ther (2021) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 5c
  • 流式细胞仪; 人类; 图 5b
碧迪BDKi67抗原抗体(BD Biosciences, 558615)被用于被用于流式细胞仪在小鼠样本上 (图 5c) 和 被用于流式细胞仪在人类样本上 (图 5b). J Autoimmun (2021) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3d
碧迪BDKi67抗原抗体(BD Pharmingen, 556003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3d). Neurosci Bull (2021) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 图 2a
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化在小鼠样本上 (图 2a). Genes Dev (2021) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3c
碧迪BDKi67抗原抗体(BD Bioscience, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3c). Nature (2021) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:100
碧迪BDKi67抗原抗体(BD, 558616)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nature (2021) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 2a
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 2a). Mol Cell Biol (2021) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:400; 图 s3a
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s3a). Eur J Immunol (2021) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:250; 图 5a
碧迪BDKi67抗原抗体(BD Pharmingen, 556003)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 5a). Commun Biol (2021) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 6e
碧迪BDKi67抗原抗体(BD Bioscience, 561284)被用于被用于流式细胞仪在小鼠样本上 (图 6e). Sci Rep (2021) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 图 2a
  • 免疫细胞化学; 人类; 图 3a
碧迪BDKi67抗原抗体(BD Bioscience, 550609)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2a) 和 被用于免疫细胞化学在人类样本上 (图 3a). Cell Rep (2021) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:100; 图 6b
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6b). elife (2020) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1f
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1f). elife (2020) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 人类; 图 5e
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫组化在人类样本上 (图 5e). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在小鼠样本上 (图 4a). BMC Immunol (2020) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:500; 图 5j
碧迪BDKi67抗原抗体(BD Pharmingen, 556003)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5j). elife (2020) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 1:200
碧迪BDKi67抗原抗体(BD, 561277)被用于被用于流式细胞仪在人类样本上浓度为1:200. bioRxiv (2020) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 4s1
碧迪BDKi67抗原抗体(BD Biosciences, 561284)被用于被用于流式细胞仪在人类样本上 (图 4s1). elife (2020) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 5c, 5d
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上 (图 5c, 5d). BMC Biol (2020) ncbi
单克隆(B56)
  • 流式细胞仪; 小鼠; 1:200; 图 2s1
碧迪BDKi67抗原抗体(BD, 566109)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2s1). elife (2020) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 s12a
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 s12a). Science (2020) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 人类; 图 s4c
碧迪BDKi67抗原抗体(BD, B56)被用于被用于免疫组化在人类样本上 (图 s4c). Cell Death Dis (2020) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 2b, g
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在小鼠样本上 (图 2b, g). JCI Insight (2019) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:100; 图 1a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). Cell Rep (2019) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 4b
碧迪BDKi67抗原抗体(BD Bioscience, B56)被用于被用于流式细胞仪在人类样本上 (图 4b). Aging Cell (2020) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Am J Pathol (2020) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2a
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2a). elife (2019) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 小鼠; 1:50; 图 4f
  • 免疫组化; 小鼠; 1:50; 图 1c
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 4f) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 1c). elife (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:500; 图 s1i
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1i). Nature (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7d
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7d). Development (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4d
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4d). Nature (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 图 2c
碧迪BDKi67抗原抗体(BD Bioscience, 550609)被用于被用于免疫组化在小鼠样本上 (图 2c). EBioMedicine (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 1:400; 图 ex2b
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:400 (图 ex2b). Nature (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:500
碧迪BDKi67抗原抗体(BD Pharmingen, 556003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. elife (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2a
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2a). elife (2019) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:100; 图 s2b
碧迪BDKi67抗原抗体(BD Biosciences, 561284)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2b). Nat Commun (2019) ncbi
单克隆(B56)
  • 流式细胞仪; 小鼠; 图 s6h
碧迪BDKi67抗原抗体(BD Biosciences, 566109)被用于被用于流式细胞仪在小鼠样本上 (图 s6h). Cell (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 大鼠; 1:50; 图 1a
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 1a). PLoS Genet (2019) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 s2a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Exp Med (2019) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s5f
碧迪BDKi67抗原抗体(BD Biosciences, 561126)被用于被用于流式细胞仪在人类样本上 (图 s5f). Cell (2019) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 大鼠; 图 s4g
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在大鼠样本上 (图 s4g). Nature (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 1:25; 图 6e
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:25 (图 6e). Dev Cell (2019) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 4d
碧迪BDKi67抗原抗体(BD, 561277)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Cell (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6c
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6c). Cell (2019) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s5f
碧迪BDKi67抗原抗体(BD Bioscience, 561284)被用于被用于流式细胞仪在人类样本上 (图 s5f). Cell (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 3a
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 3a). J Comp Neurol (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 图 s7c
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上 (图 s7c). Cell (2019) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 3e, 3f
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在小鼠样本上 (图 3e, 3f). JCI Insight (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:66; 图 s3e
碧迪BDKi67抗原抗体(BD Biosciences, 558615)被用于被用于流式细胞仪在小鼠样本上浓度为1:66 (图 s3e). Nat Commun (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴; 图 4d
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样本上 (图 4d). J Virol (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 图 4a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4a). J Infect Dis (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s6
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在人类样本上 (图 s6). J Clin Invest (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Sci Rep (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:20; 图 s1a
碧迪BDKi67抗原抗体(BD PharMingen, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:20 (图 s1a). Nat Commun (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 6i
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在人类样本上 (图 6i). Cancer Res (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 4a
  • 免疫组化; 人类; 图 2a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 4a) 和 被用于免疫组化在人类样本上 (图 2a). J Clin Invest (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 人类; 图 7h
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7h). J Clin Invest (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 图 2a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2a). J Exp Med (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; ; 图 s2d
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上浓度为 (图 s2d). Nat Commun (2018) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; African green monkey; 图 1c
碧迪BDKi67抗原抗体(BD Biosciences, 561277)被用于被用于免疫细胞化学在African green monkey样本上 (图 1c). J Clin Invest (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 5f
碧迪BDKi67抗原抗体(BD Biosciences, 561277)被用于被用于流式细胞仪在人类样本上 (图 5f). JCI Insight (2018) ncbi
小鼠 单克隆(35/Ki-67)
  • 免疫细胞化学; 人类; 图 s5a
碧迪BDKi67抗原抗体(BD Biosciences, 610968)被用于被用于免疫细胞化学在人类样本上 (图 s5a). J Biol Chem (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 5f
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在人类样本上 (图 5f). J Exp Med (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 s1d
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 8a
碧迪BDKi67抗原抗体(BD, 561284)被用于被用于流式细胞仪在人类样本上 (图 8a). J Virol (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:1000; 图 s10
碧迪BDKi67抗原抗体(Becton Dickinson, 556003)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s10). Development (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 1g
碧迪BDKi67抗原抗体(eBioscience, B56)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Science (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BDKi67抗原抗体(BD Bioscience, B56)被用于被用于流式细胞仪在小鼠样本上 (图 1a). EMBO J (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 人类; 图 1a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于免疫组化在人类样本上 (图 1a). J Immunol (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化; domestic rabbit; 图 5d
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫组化在domestic rabbit样本上 (图 5d). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:500; 图 4i
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4i). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 3c
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nat Immunol (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2e
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2e). Diabetes (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 3c
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 3c). J Immunol (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 1b
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在人类样本上 (图 1b). Nature (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s1d
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在人类样本上 (图 s1d). J Immunol (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 8a
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 8a). Acta Neuropathol Commun (2017) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 1:150; 图 3B
碧迪BDKi67抗原抗体(BD, 556003)被用于被用于免疫细胞化学在人类样本上浓度为1:150 (图 3B). Oncol Lett (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Front Immunol (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 人类; 1:200; 图 s3d
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s3d). Nature (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 s1g
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1g). PLoS Genet (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:200; 表 1
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:200 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s1a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 s1a). Immun Ageing (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:50; 图 7a
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 7a). Sci Rep (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:50; 图 5i
碧迪BDKi67抗原抗体(BD Pharmingen, 561165)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 5i). Nat Commun (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 3b
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在人类样本上 (图 3b). Stem Cells Int (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:20; 图 4a
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于流式细胞仪在小鼠样本上浓度为1:20 (图 4a). Stem Cell Reports (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:50; 图 7a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 7a). Nat Commun (2017) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 图 1f
碧迪BDKi67抗原抗体(BD PharMingen, 550609)被用于被用于免疫细胞化学在人类样本上 (图 1f). Cell Stem Cell (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 2
碧迪BDKi67抗原抗体(BD Bioscience, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Oncoscience (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 2C;2D
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2C;2D). Oncoscience (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:1000; 图 7h
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 7h). Nat Commun (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 s2d
碧迪BDKi67抗原抗体(BD, 558615)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Stem Cell Reports (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:50; 图 5a
碧迪BDKi67抗原抗体(BD Pharmigen, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5a). Sci Rep (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 1e
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BDKi67抗原抗体(BD Bioscience, B56)被用于被用于流式细胞仪在猕猴样本上. PLoS Pathog (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴; 图 4a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样本上 (图 4a). Vaccine (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:160; 图 5g
碧迪BDKi67抗原抗体(BD Biosciences, 561126)被用于被用于流式细胞仪在小鼠样本上浓度为1:160 (图 5g). Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 3a
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3a). Development (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1a
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1a). BMC Biol (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:500; 图 3b
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3b). Neoplasia (2016) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 小鼠; 1:400; 图 2d
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 2d). Oncotarget (2016) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 1:100
碧迪BDKi67抗原抗体(BD Biosciences, 550,609)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Cancer Microenviron (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 4-s1
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4-s1). elife (2016) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 1:250; 图 2
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 1:50
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上浓度为1:50. Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:100; 表 1
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (表 1). Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 5d
碧迪BDKi67抗原抗体(BD Pharmingen, 561126)被用于被用于流式细胞仪在人类样本上 (图 5d). Stem Cell Reports (2016) ncbi
小鼠 单克隆(B56)
  • 免疫印迹; 人类; 图 1
  • 免疫组化; 小鼠; 图 5
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫组化在小鼠样本上 (图 5). Neoplasia (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 3a
碧迪BDKi67抗原抗体(BD, 558615)被用于被用于流式细胞仪在人类样本上 (图 3a). Oncotarget (2016) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 1:1000
碧迪BDKi67抗原抗体(BD, 556003)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Sci Rep (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 2a
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 2a). J Comp Neurol (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 1a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 1a). Cytometry B Clin Cytom (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 5a
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴; 图 2a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样本上 (图 2a). J Immunol (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 3g
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3g). Science (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 5
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-自由浮动切片; 人类; 1:500; 图 4
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500 (图 4). Nat Neurosci (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 6f
碧迪BDKi67抗原抗体(BD Bioscience, 550609)被用于被用于流式细胞仪在小鼠样本上 (图 6f). Science (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 3
碧迪BDKi67抗原抗体(BD Bioscience, B56)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Clin Invest (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s7e
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在人类样本上 (图 s7e). J Clin Invest (2016) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 小鼠; 图 1e
碧迪BDKi67抗原抗体(BD, 558615)被用于被用于免疫细胞化学在小鼠样本上 (图 1e). Nat Biotechnol (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; African green monkey; 图 s1
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在African green monkey样本上 (图 s1). J Med Primatol (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:200; 图 4
碧迪BDKi67抗原抗体(BD Pharmingen Biosciences, 556003)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:150; 图 1e
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于免疫组化在小鼠样本上浓度为1:150 (图 1e). Development (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 图 2
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于免疫组化在小鼠样本上 (图 2). Cell Mol Immunol (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 2
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 图 4b
碧迪BDKi67抗原抗体(Becton Dickinson, 556003)被用于被用于免疫细胞化学在人类样本上 (图 4b). EMBO Rep (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:200; 图 3c
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3c). Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 st1
碧迪BDKi67抗原抗体(BD Pharmigen, B56)被用于被用于流式细胞仪在小鼠样本上 (图 st1). Nature (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:200; 图 5
碧迪BDKi67抗原抗体(Becton Dickinson, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5). Dev Cell (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴; 图 1h
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样本上 (图 1h). J Immunol (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 s18e
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在小鼠样本上 (图 s18e). Science (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; domestic rabbit; 图 3e
碧迪BDKi67抗原抗体(BD科学, 550609)被用于被用于免疫组化在domestic rabbit样本上 (图 3e). Nature (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 3c
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 3c). Science (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 s4c
碧迪BDKi67抗原抗体(BD biosciences, 558615)被用于被用于流式细胞仪在小鼠样本上 (图 s4c). Cell (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 3
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 2
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 2). Int Immunol (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
碧迪BDKi67抗原抗体(BD Pharmingen, 556003)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c). Cell Metab (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 5h
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上 (图 5h). Stem Cells (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:100; 图 4
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 2 ug/ml; 图 1
碧迪BDKi67抗原抗体(BD Pharmingen, 556 003)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为2 ug/ml (图 1). Endocrinology (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
碧迪BDKi67抗原抗体(BD Pharmingen, 556003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1). Neoplasia (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; African green monkey; 图 4
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在African green monkey样本上 (图 4). J Immunol (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 1:20; 图 s1
碧迪BDKi67抗原抗体(BD, 561126)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s1). Diabetes (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 4b
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 4b). PLoS ONE (2015) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 小鼠; 图 1d
碧迪BDKi67抗原抗体(BD Biosciences PharMingen, 556003)被用于被用于免疫细胞化学在小鼠样本上 (图 1d). J Neurosci (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 人类; 图 6e
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6e). Oncotarget (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 图 2s1
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上 (图 2s1). elife (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴; 图 s2b
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样本上 (图 s2b). PLoS ONE (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 1
碧迪BDKi67抗原抗体(Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 7
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 图 6e
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于免疫组化-冰冻切片在人类样本上 (图 6e). Nat Methods (2016) ncbi
小鼠 单克隆(35/Ki-67)
  • 免疫细胞化学; 人类; 图 4
碧迪BDKi67抗原抗体(BD Biosciences, 610969)被用于被用于免疫细胞化学在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 2a
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 2a). J Immunol (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 s11h
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s12c
碧迪BDKi67抗原抗体(BD Bioscience, 550609)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 s11h) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s12c). Nat Med (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Mucosal Immunol (2016) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 图 2
碧迪BDKi67抗原抗体(BD Bioscience, B56)被用于被用于免疫细胞化学在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5a
碧迪BDKi67抗原抗体(Becton Dickinson, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5a). Front Neuroanat (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 s3
碧迪BDKi67抗原抗体(BD biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3). Int J Biol Sci (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 大鼠; 1:50
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化在大鼠样本上浓度为1:50. Neuroscience (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2). elife (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:100
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Dev Biol (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 犬
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在犬样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样本上. Vaccine (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 5
碧迪BDKi67抗原抗体(BD PharMingen, B56)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2015) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 1:100
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Pancreas (2015) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 小鼠; 1:500; 图 4e
碧迪BDKi67抗原抗体(BD, 556003)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4e). PLoS ONE (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 5
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在人类样本上 (图 5). Nat Cell Biol (2015) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 小鼠; 1:50; 图 s3a
  • 免疫组化; 小鼠; 1:50; 图 1a
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 s3a) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 1a). Nat Neurosci (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 4
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在小鼠样本上 (图 4). Stem Cell Res (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s4
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在人类样本上 (图 s4). Infect Immun (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 1 ul/test
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上浓度为1 ul/test. J Immunol Methods (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类
碧迪BDKi67抗原抗体(BD, BD558615)被用于被用于流式细胞仪在人类样本上. Stem Cell Reports (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 表 s3
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (表 s3). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 3
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 3). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 1:500
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Curr Protoc Stem Cell Biol (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 6
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 6). Am J Hum Genet (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 表 s5
碧迪BDKi67抗原抗体(BD Bioscience, B56)被用于被用于流式细胞仪在人类样本上 (表 s5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 5
碧迪BDKi67抗原抗体(BD Bioscience, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 大鼠; 图 2
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 2). Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 1:250
碧迪BDKi67抗原抗体(BD, 556003)被用于被用于免疫细胞化学在人类样本上浓度为1:250. Ann Clin Transl Neurol (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:400
碧迪BDKi67抗原抗体(Pharmingen, 556003)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. J Biol Chem (2015) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 小鼠; 1:400; 图 4
碧迪BDKi67抗原抗体(BD-PharMingen, 550609)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 4). J Neurosci (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 图 3
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于免疫组化在小鼠样本上 (图 3). Cancer Cell (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BDKi67抗原抗体(BD Bioscience, 550 609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Endocrinology (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 5
碧迪BDKi67抗原抗体(BD PharMingen, B56)被用于被用于流式细胞仪在小鼠样本上 (图 5). Cell Cycle (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; pigs
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在pigs 样本上. Mol Immunol (2015) ncbi
小鼠 单克隆(35/Ki-67)
  • 免疫细胞化学; 小鼠
碧迪BDKi67抗原抗体(BD Bioscience, 610968)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 食蟹猴; 图 6
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在食蟹猴样本上 (图 6). J Autoimmun (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:100
碧迪BDKi67抗原抗体(BD Pharmingen, B56)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Nucl Recept Signal (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4b
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4b). Development (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 4
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Int J Biol Sci (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-自由浮动切片; 小鼠; 1:200
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200. Cereb Cortex (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:50; 图 2
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2). Glia (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4). J Urol (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 1:200
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200. J Comp Neurol (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:500
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Comp Neurol (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 7). Nat Cell Biol (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 1
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 1). J Infect Dis (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Endocrinology (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 人类; 图 1
碧迪BDKi67抗原抗体(BD BioSciences, 550609)被用于被用于免疫组化在人类样本上 (图 1). Nature (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). Oncogene (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠
碧迪BDKi67抗原抗体(BD Biosciences, 556003)被用于被用于免疫组化在小鼠样本上. Ann Neurol (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠
碧迪BDKi67抗原抗体(BD Pharmingen, 556003)被用于被用于免疫组化-冰冻切片在小鼠样本上. Dev Biol (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:200
  • 免疫细胞化学; African green monkey; 1:200
碧迪BDKi67抗原抗体(BD Pharmingen, 556003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 和 被用于免疫细胞化学在African green monkey样本上浓度为1:200. Nat Neurosci (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BDKi67抗原抗体(BD Bioscience, B56)被用于被用于流式细胞仪在猕猴样本上. Clin Immunol (2014) ncbi
小鼠 单克隆(35/Ki-67)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
碧迪BDKi67抗原抗体(BD Bioscience, 35/Ki-67)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. Mol Oncol (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上. Cancer Discov (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 1
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS Pathog (2014) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 图 4a
碧迪BDKi67抗原抗体(bd, 550609)被用于被用于免疫细胞化学在人类样本上 (图 4a). J Cell Mol Med (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠
碧迪BDKi67抗原抗体(BD, 556003)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类
碧迪BDKi67抗原抗体(BD Bioscience, clone B56)被用于被用于流式细胞仪在人类样本上. Mol Ther (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:50
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. PLoS Genet (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 1:25; 图 4b
碧迪BDKi67抗原抗体(BD, 550609)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:25 (图 4b). Nature (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类
碧迪BDKi67抗原抗体(BD, B56)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:200
碧迪BDKi67抗原抗体(BD, 556003)被用于被用于免疫组化在小鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-自由浮动切片; 大鼠; 1:50
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:50. Hippocampus (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 人类; 图 3
碧迪BDKi67抗原抗体(BD, 556003)被用于被用于免疫组化在人类样本上 (图 3). Oncogene (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:400
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. J Pediatr Surg (2013) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Pathol (2013) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上. Neural Dev (2013) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠
碧迪BDKi67抗原抗体(BD Biosciences, 558616)被用于被用于免疫组化-冰冻切片在小鼠样本上. Nature (2013) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠
碧迪BDKi67抗原抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2013) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 大鼠
  • 免疫组化-冰冻切片; 小鼠; 1:100
碧迪BDKi67抗原抗体(BD Pharmingen, 550609)被用于被用于免疫组化-冰冻切片在大鼠样本上 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Stem Cells Transl Med (2013) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:20
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:20. Cancer Res (2013) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:500
碧迪BDKi67抗原抗体(BD Pharm, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:500. PLoS ONE (2012) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠
碧迪BDKi67抗原抗体(BD-Biosciences, 556003)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 斑马鱼
碧迪BDKi67抗原抗体(BD Biosciences, 561165)被用于被用于免疫细胞化学在斑马鱼样本上. Nucleic Acids Res (2012) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 大鼠; 1:600
碧迪BDKi67抗原抗体(BD Biosciences, 550609)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:600. J Comp Neurol (2007) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:300
碧迪BDKi67抗原抗体(BD Bioscience, 556003)被用于被用于免疫组化在小鼠样本上浓度为1:300. J Comp Neurol (2007) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆(MM1)
  • 免疫细胞化学; 小鼠; 图 2g
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novacastra/Leica, NCL-Ki67-MM1)被用于被用于免疫细胞化学在小鼠样本上 (图 2g). Neural Regen Res (2022) ncbi
小鼠 单克隆(K2)
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 s1f
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, ACK02)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 s1f). J Clin Invest (2022) ncbi
小鼠 单克隆(bcl-2/100/D5)
  • 免疫细胞化学; 犬; 1:10; 图 1b
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, PA0118)被用于被用于免疫细胞化学在犬样本上浓度为1:10 (图 1b). Cells (2021) ncbi
  • 免疫组化; 小鼠; 1:500; 图 3a
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Biosystems, NCL-Ki67p)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). Eneuro (2021) ncbi
  • 免疫组化; 小鼠; 图 3a
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Nova-Costra, NCL-Ki67p)被用于被用于免疫组化在小鼠样本上 (图 3a). Nat Commun (2021) ncbi
单克隆
  • 免疫组化; 大鼠; 1:250; 图 4a
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, NCL-l-Ki67-MM1)被用于被用于免疫组化在大鼠样本上浓度为1:250 (图 4a). IBRO Neurosci Rep (2021) ncbi
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 6a
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67P)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 6a). Transl Psychiatry (2021) ncbi
  • 免疫组化-石蜡切片; 人类; 1:250; 图 3a, s4c
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Microsystems, NCL- Ki67p)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 3a, s4c). Diabetes (2021) ncbi
小鼠 单克隆(bcl-2/100/D5)
  • 免疫组化; 小鼠; 1:100; 图 6b
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Biosystems, PA0118)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6b). elife (2020) ncbi
  • 免疫细胞化学; 小鼠; 图 1g
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Biosystems, NCL_Ki67p)被用于被用于免疫细胞化学在小鼠样本上 (图 1g). Cell Res (2020) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4e
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(NovoCastra, NCL-Ki67p)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4e). Front Cell Dev Biol (2020) ncbi
小鼠 单克隆(bcl-2/100/D5)
  • 免疫组化; 人类; 1:50; 图 4f, 5c
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Biosystems, Bcl-2/100/D5)被用于被用于免疫组化在人类样本上浓度为1:50 (图 4f, 5c). Medicine (Baltimore) (2020) ncbi
  • 免疫印迹; 人类; 1:1000; 图 7c
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67p)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). Stem Cells (2019) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1g
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Novocastra, NCL-Ki67p)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1g). J Clin Invest (2019) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1e
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Invitrogen, NCL-Ki67p)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1e). Mol Psychiatry (2018) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1d
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, NCL-Ki67p)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1d). J Clin Invest (2018) ncbi
  • 免疫组化-石蜡切片; 人类; 图 6
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-KI-67-P)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6). Oncogene (2018) ncbi
  • 免疫组化; 小鼠; 1:500; 图 1f
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67p)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1f). Nature (2018) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5a
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novacastra, NCL-Ki67p)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5a). PLoS ONE (2017) ncbi
  • 免疫组化; 小鼠; 1:300; 图 s4e
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Novocastra, NCL-Ki67p)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 s4e). Nature (2017) ncbi
  • 免疫细胞化学; 小鼠; 1:500; 图 s4c
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastro, NCL-Ki67p)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s4c). Proc Natl Acad Sci U S A (2017) ncbi
  • 免疫组化-冰冻切片; 人类; 1:500; 图 3s1b, 4c
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2s1a
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, NCL-Ki67p)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 3s1b, 4c) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2s1a). elife (2017) ncbi
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 5g
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67p)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 5g). Nat Protoc (2017) ncbi
单克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5c
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-L-Ki67-MM1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5c). Breast Cancer Res (2017) ncbi
单克隆
  • 免疫组化; 小鼠; 1:100; 图 2a
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Microsistemas, NCL-L-ki67-MM1)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2a). Development (2017) ncbi
小鼠 单克隆(K2)
  • 免疫细胞化学; 小鼠; 1:200; 图 3c
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Biosystems, PA0230)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3c). Stem Cell Reports (2017) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4(S1B)
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67p)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4(S1B)). elife (2017) ncbi
单克隆
  • 免疫组化-石蜡切片; 人类; 1:100
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Biosystems, NCL-L-Ki67-MM-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Oncol Lett (2016) ncbi
  • 免疫组化; 小鼠; 1:250; 图 s6a
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(NovoCastra, NCL-Ki67p)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s6a). Nat Commun (2016) ncbi
小鼠 单克隆(K2)
  • 免疫组化; 人类; 图 4c
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, K2)被用于被用于免疫组化在人类样本上 (图 4c). Case Rep Pathol (2016) ncbi
小鼠 单克隆(K2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4a
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, ACK02)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4a). Dis Model Mech (2017) ncbi
单克隆
  • 免疫组化; 大鼠; 1:200; 图 2a
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, NCL-L-Ki67-MM1)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 2a). J Physiol (2017) ncbi
  • 免疫组化-石蜡切片; 小鼠; 图 6e
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67p)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6e). Sci Rep (2016) ncbi
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 s2a
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 s2a). Mol Psychiatry (2018) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s4a
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Biosystems, NCL-Ki67p)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s4a). J Cell Biol (2016) ncbi
  • 免疫组化; 人类; 1:50; 图 s12a
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Microsystems, NCL-Ki67-p)被用于被用于免疫组化在人类样本上浓度为1:50 (图 s12a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1a
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, KI67P-CE)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). Exp Dermatol (2017) ncbi
  • 免疫组化-石蜡切片; 小鼠; 图 3i
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67p)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3i). J Mol Med (Berl) (2017) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6f
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67p)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6f). Nat Commun (2016) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4b
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67p)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4b). Integr Biol (Camb) (2016) ncbi
单克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4d
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, NCLLKi67MM1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4d). Am J Hum Genet (2016) ncbi
  • 免疫组化; 小鼠; 1:200; 图 3g
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica/Novocastra, NCL-Ki67p)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3g). Science (2016) ncbi
  • 免疫组化; 小鼠; 1:1000; 图 4
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, NCL-Ki67p)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(MM1)
  • 免疫组化; 大鼠; 1:50; 图 8
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67-MM1)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 8). BMC Cancer (2016) ncbi
单克隆
  • 免疫组化-石蜡切片; 人类; 图 5
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Novocastra, NCL-L-Ki67-MM1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5). Am J Transl Res (2016) ncbi
  • 免疫组化-石蜡切片; 小鼠; 图 3
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Biosystems, NCL-Ki67p)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). J Mol Psychiatry (2016) ncbi
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 4
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67p)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 4). Histochem Cell Biol (2016) ncbi
  • 免疫组化; 小鼠; 1:400; 图 s8
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67p)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s8). Nat Commun (2016) ncbi
单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Biosystems, NCL-L-Ki67-MM1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(MM1)
  • 免疫细胞化学; 人类; 1:100; 表 2
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67-MM1)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 2). J Cell Physiol (2017) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). J Exp Clin Cancer Res (2016) ncbi
  • 免疫组化-石蜡切片; 小鼠; 图 3
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Biosystems, NCL-Ki67p)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). elife (2016) ncbi
  • 免疫组化; 小鼠; 1:2000; 图 s4b
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novacastra, NCL-Ki67p)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 s4b). Int J Cancer (2016) ncbi
小鼠 单克隆(MM1)
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于. elife (2016) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Biosystems, KI67-MM1-L-CE)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Development (2016) ncbi
  • 免疫组化; 小鼠; 图 s5
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Biosystems, NCL-Ki67p)被用于被用于免疫组化在小鼠样本上 (图 s5). Sci Rep (2015) ncbi
  • 免疫组化-石蜡切片; 人类; 图 2
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novacastra Laboratories, NCL-Ki67p)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Oncotarget (2015) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 6
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67p)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 6). PLoS Genet (2015) ncbi
  • 免疫组化-冰冻切片; 人类; 1:200; 表 1
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCLKi67P)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (表 1). J Neurosci Methods (2016) ncbi
单克隆
  • 免疫组化; 小鼠; 1:100; 图 3
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, NCL-L-Ki67-MM1)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3). Mol Brain (2015) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novacastra, NCL-ki67)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1). Stem Cells (2015) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novacastra, NCL-ki67)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1). Stem Cells (2015) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1e
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-KI-67-P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1e). Nat Commun (2015) ncbi
  • 免疫组化-自由浮动切片; 小鼠; 1:400
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica biosystems, NCL-Ki67p)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400. PLoS ONE (2015) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:400
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra Laboratories, NCL-Ki67p)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. J Neurosci (2015) ncbi
单克隆
  • 免疫组化; 人类; 1:1200
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-L-Ki67-MM1)被用于被用于免疫组化在人类样本上浓度为1:1200. Pathol Oncol Res (2015) ncbi
小鼠 单克隆(MM1)
  • 免疫细胞化学; 人类; 图 3
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67-MM1)被用于被用于免疫细胞化学在人类样本上 (图 3). PLoS ONE (2015) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:3000; 图 3
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novacastra, NCL-ki67)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:3000 (图 3). Oncogene (2016) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra Laboratories, NCL-Ki67-MM1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:100. Brain Pathol (2016) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-石蜡切片; 小鼠; 图 3d
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, KI67-MM1-CE-S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d). Cell Death Dis (2015) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra Laboratories-Leica Microsystems, NCL-Ki67p)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2). Mol Endocrinol (2015) ncbi
单克隆
  • 免疫组化-石蜡切片; common marmoset; 1:100
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Biosystems, NCL-L-Ki67-MM1)被用于被用于免疫组化-石蜡切片在common marmoset样本上浓度为1:100. Dev Biol (2015) ncbi
  • 免疫组化-石蜡切片; common marmoset; 1:100
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Biosystems, NCL-Ki67p)被用于被用于免疫组化-石蜡切片在common marmoset样本上浓度为1:100. Dev Biol (2015) ncbi
小鼠 单克隆(MM1)
  • 免疫组化; 小鼠; 1:50-1:100; 图 6
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化在小鼠样本上浓度为1:50-1:100 (图 6). Nat Cell Biol (2015) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-石蜡切片; 人类
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, clone NCL-Ki67-MM1)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Surg Pathol (2015) ncbi
单克隆
  • 免疫组化; 小鼠; 图 7
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, NCL-L-Ki67-MM1)被用于被用于免疫组化在小鼠样本上 (图 7). Autophagy (2014) ncbi
单克隆
  • 免疫组化; 小鼠; 1:100
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Nova Castra, NCL-L-Ki67-MM1)被用于被用于免疫组化在小鼠样本上浓度为1:100. Carcinogenesis (2015) ncbi
  • 免疫组化; 斑马鱼; 1:200; 图 s6
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67p)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 s6). Nat Commun (2014) ncbi
  • 免疫组化-自由浮动切片; 小鼠; 1:200
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67p)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200. Cereb Cortex (2015) ncbi
小鼠 单克隆(MM1)
  • 免疫组化; 小鼠; 1:50; 图 8
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Biosystems, NCL-Ki67-MM1)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 8). Oncotarget (2014) ncbi
小鼠 单克隆(bcl-2/100/D5)
  • 免疫组化; African green monkey
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra-Vector Laboratories, NCL-L-Ki67-MM1)被用于被用于免疫组化在African green monkey样本上. Endocrinology (2014) ncbi
小鼠 单克隆(MM1)
  • 免疫组化; African green monkey
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra-Vector Laboratories, NCL-L-Ki67-MM1)被用于被用于免疫组化在African green monkey样本上. Endocrinology (2014) ncbi
  • 免疫组化; 人类; 1:20; 表 1
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67)被用于被用于免疫组化在人类样本上浓度为1:20 (表 1). PLoS ONE (2014) ncbi
  • 免疫组化; 人类; 图 s6
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Microsystems, NCL-Ki67p)被用于被用于免疫组化在人类样本上 (图 s6). Oncogene (2015) ncbi
  • 免疫组化; 大鼠; 图 7i
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-Ki67p)被用于被用于免疫组化在大鼠样本上 (图 7i). PLoS Pathog (2014) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-石蜡切片; 人类; 1:200
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Oncogene (2015) ncbi
小鼠 单克隆(bcl-2/100/D5)
  • 免疫组化-石蜡切片; 人类; 1:200
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Oncogene (2015) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-自由浮动切片; 猕猴; 1:500
  • 免疫组化-自由浮动切片; 人类; 1:500
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-L-Ki67-MM1)被用于被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:500 和 被用于免疫组化-自由浮动切片在人类样本上浓度为1:500. J Comp Neurol (2014) ncbi
  • 免疫组化; 小鼠
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica, NCL-Ki67p)被用于被用于免疫组化在小鼠样本上. Cancer Res (2014) ncbi
小鼠 单克隆(bcl-2/100/D5)
  • 免疫组化; 小鼠; 1:100
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化在小鼠样本上浓度为1:100. Stem Cells (2014) ncbi
小鼠 单克隆(MM1)
  • 免疫组化; 小鼠; 1:100
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化在小鼠样本上浓度为1:100. Stem Cells (2014) ncbi
小鼠 单克隆(MM1)
  • 免疫组化; 家羊; 1:200
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Microsystems, NCL-Ki67-MM1)被用于被用于免疫组化在家羊样本上浓度为1:200. Ann Neurol (2014) ncbi
小鼠 单克隆(K2)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Leica Microsystems, ACK02)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Immunol (2014) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-石蜡切片; 小鼠; 1:150
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, NCL-L-Ki67-MM1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150. Transl Stroke Res (2013) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-石蜡切片; 人类; 1:200
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Korean J Pathol (2013) ncbi
小鼠 单克隆(bcl-2/100/D5)
  • 免疫组化-石蜡切片; 人类; 1:200
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Korean J Pathol (2013) ncbi
小鼠 单克隆(bcl-2/100/D5)
  • 免疫组化-石蜡切片; 人类; 1:25
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. Appl Immunohistochem Mol Morphol (2014) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-石蜡切片; 人类; 1:25
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra, MM1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. Appl Immunohistochem Mol Morphol (2014) ncbi
小鼠 单克隆(MM1)
  • 免疫组化-石蜡切片; 人类; 1:200
徕卡显微系统(上海)贸易有限公司Ki67抗原抗体(Novocastra Laboratories Ltd, NCL-Ki67-MM1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Reprod Biol Endocrinol (2008) ncbi
西格玛奥德里奇
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 1:500; 图 1q
西格玛奥德里奇Ki67抗原抗体(Sigma, SAB5500134)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1q). EMBO Mol Med (2020) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(AFFN-KI67-3E6)
  • 免疫细胞化学; 人类; 1:100; 图 s5
Developmental Studies Hybridoma BankKi67抗原抗体(DSHB, AFFN-KI67-3E6)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s5). Sci Rep (2016) ncbi
文章列表
  1. Zimmerli D, Brambillasca C, Talens F, Bhin J, Linstra R, Romanens L, et al. MYC promotes immune-suppression in triple-negative breast cancer via inhibition of interferon signaling. Nat Commun. 2022;13:6579 pubmed 出版商
  2. Ravindranathan S, Passang T, Li J, Wang S, Dhamsania R, Ware M, et al. Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma. Nat Commun. 2022;13:6418 pubmed 出版商
  3. Turcato F, Wegman E, Lu T, Ferguson N, Luo Y. Dopaminergic neurons are not a major Sonic hedgehog ligand source for striatal cholinergic or PV interneurons. iScience. 2022;25:105278 pubmed 出版商
  4. Chen C, Zhang Z, Liu C, Wang B, Liu P, Fang S, et al. ATF4-dependent fructolysis fuels growth of glioblastoma multiforme. Nat Commun. 2022;13:6108 pubmed 出版商
  5. Hu S, Liu S, Bian Y, Poddar M, Singh S, Cao C, et al. Single-cell spatial transcriptomics reveals a dynamic control of metabolic zonation and liver regeneration by endothelial cell Wnt2 and Wnt9b. Cell Rep Med. 2022;3:100754 pubmed 出版商
  6. Pi xf1 eiro Hermida S, Mart xed nez P, Bosso G, Flores J, Saraswati S, Connor J, et al. Consequences of telomere dysfunction in fibroblasts, club and basal cells for lung fibrosis development. Nat Commun. 2022;13:5656 pubmed 出版商
  7. Pandey S, Shteinfer Kuzmine A, Chalifa Caspi V, Shoshan Barmatz V. Non-apoptotic activity of the mitochondrial protein SMAC/Diablo in lung cancer: Novel target to disrupt survival, inflammation, and immunosuppression. Front Oncol. 2022;12:992260 pubmed 出版商
  8. Zhang G, Li M, Zhou D, Yang X, Zhang W, Gao R. Loss of endothelial EMCN drives tumor lung metastasis through the premetastatic niche. J Transl Med. 2022;20:446 pubmed 出版商
  9. Chen T, Shi Z, Zhao Y, Meng X, Zhao S, Zheng L, et al. LncRNA Airn maintains LSEC differentiation to alleviate liver fibrosis via the KLF2-eNOS-sGC pathway. BMC Med. 2022;20:335 pubmed 出版商
  10. Rangan P, Lobo F, Parrella E, Rochette N, Morselli M, Stephen T, et al. Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in Alzheimer's models. Cell Rep. 2022;40:111417 pubmed 出版商
  11. Fei X, Wu X, Dou Y, Sun K, Guo Q, Zhang L, et al. TRIM22 orchestrates the proliferation of GBMs and the benefits of TMZ by coordinating the modification and degradation of RIG-I. Mol Ther Oncolytics. 2022;26:413-428 pubmed 出版商
  12. Liu F, Cai Z, Yang Y, Plasko G, Zhao P, Wu X, et al. The adipocyte-enriched secretory protein tetranectin exacerbates type 2 diabetes by inhibiting insulin secretion from β cells. Sci Adv. 2022;8:eabq1799 pubmed 出版商
  13. L xf3 pez Oropeza G, Dur xe1 n P, Mart xed nez Canabal A. Maternal enrichment increases infantile spatial amnesia mediated by postnatal neurogenesis modulation. Front Behav Neurosci. 2022;16:971359 pubmed 出版商
  14. Wang B, Li M, Su A, Gao Y, Shi Y, Li C, et al. Prognostic Value of GPNMB, EGFR, p-PI3K, and Ki-67 in Patients with Esophageal Squamous Cell Carcinoma. Anal Cell Pathol (Amst). 2022;2022:9303081 pubmed 出版商
  15. Rodrigues L, Wartchow K, Buchfelder M, Souza D, Gon xe7 alves C, Kleindienst A. Longterm Increased S100B Enhances Hippocampal Progenitor Cell Proliferation in a Transgenic Mouse Model. Int J Mol Sci. 2022;23: pubmed 出版商
  16. Zanin J, Friedman W. p75NTR prevents the onset of cerebellar granule cell migration via RhoA activation. elife. 2022;11: pubmed 出版商
  17. Sun Q, Wang Y, Ji H, Sun X, Xie S, Chen L, et al. Lenvatinib for effectively treating antiangiogenic drug-resistant nasopharyngeal carcinoma. Cell Death Dis. 2022;13:724 pubmed 出版商
  18. Yang L, Semmes E, Ovies C, Megli C, Permar S, Gilner J, et al. Innate immune signaling in trophoblast and decidua organoids defines differential antiviral defenses at the maternal-fetal interface. elife. 2022;11: pubmed 出版商
  19. Cao S, Hung Y, Wang Y, Chung Y, Qi Y, Ouyang C, et al. Glutamine is essential for overcoming the immunosuppressive microenvironment in malignant salivary gland tumors. Theranostics. 2022;12:6038-6056 pubmed 出版商
  20. Zhou S, Hassan A, Kungyal T, Tabari xe8 s S, Luna J, Siegel P, et al. CD109 Is a Critical Determinant of EGFR Expression and Signaling, and Tumorigenicity in Squamous Cell Carcinoma Cells. Cancers (Basel). 2022;14: pubmed 出版商
  21. Xu G, Chen H, Wu S, Chen J, Zhang S, Shao G, et al. Eukaryotic initiation factor 5A2 mediates hypoxia-induced autophagy and cisplatin resistance. Cell Death Dis. 2022;13:683 pubmed 出版商
  22. Katz L, Brill G, Zhang P, Kumar A, Baumel Alterzon S, Honig L, et al. Maladaptive positive feedback production of ChREBPβ underlies glucotoxic β-cell failure. Nat Commun. 2022;13:4423 pubmed 出版商
  23. Miao Y, Thakkar K, Cenik C, Jiang D, Mizuno K, Jia C, et al. Developing high-affinity decoy receptors to treat multiple myeloma and diffuse large B cell lymphoma. J Exp Med. 2022;219: pubmed 出版商
  24. Wu T, Wang W, Shi G, Hao M, Wang Y, Yao M, et al. Targeting HIC1/TGF-β axis-shaped prostate cancer microenvironment restrains its progression. Cell Death Dis. 2022;13:624 pubmed 出版商
  25. Huebner K, Erlenbach Wuensch K, Prochazka J, Sheraj I, Hampel C, Mrazkova B, et al. ATF2 loss promotes tumor invasion in colorectal cancer cells via upregulation of cancer driver TROP2. Cell Mol Life Sci. 2022;79:423 pubmed 出版商
  26. Wang Q, Xu C, Cai R, An W, Yuan H, Xu M. Fbxo45-mediated NP-STEP46 degradation via K6-linked ubiquitination sustains ERK activity in lung cancer. Mol Oncol. 2022;16:3017-3033 pubmed 出版商
  27. Duan S, Sawyer T, Sontz R, Wieland B, Diaz A, Merchant J. GFAP-directed Inactivation of Men1 Exploits Glial Cell Plasticity in Favor of Neuroendocrine Reprogramming. Cell Mol Gastroenterol Hepatol. 2022;14:1025-1051 pubmed 出版商
  28. Paldor M, Levkovitch Siany O, Eidelshtein D, Adar R, Enk C, Marmary Y, et al. Single-cell transcriptomics reveals a senescence-associated IL-6/CCR6 axis driving radiodermatitis. EMBO Mol Med. 2022;14:e15653 pubmed 出版商
  29. Shu W, Zhu X, Wang K, Cherepanoff S, Conway R, Madigan M, et al. The multi-kinase inhibitor afatinib serves as a novel candidate for the treatment of human uveal melanoma. Cell Oncol (Dordr). 2022;45:601-619 pubmed 出版商
  30. Bach M, de Vries C, Khosravi A, Sweere J, Popescu M, Chen Q, et al. Filamentous bacteriophage delays healing of Pseudomonas-infected wounds. Cell Rep Med. 2022;3:100656 pubmed 出版商
  31. Li J, Camirand A, Zakikhani M, Sellin K, Guo Y, Luan X, et al. Parathyroid Hormone-Related Protein Inhibition Blocks Triple-Negative Breast Cancer Expansion in Bone Through Epithelial to Mesenchymal Transition Reversal. JBMR Plus. 2022;6:e10587 pubmed 出版商
  32. Hauke M, Eckenstaler R, Ripperger A, Ender A, Braun H, Benndorf R. Active RhoA Exerts an Inhibitory Effect on the Homeostasis and Angiogenic Capacity of Human Endothelial Cells. J Am Heart Assoc. 2022;11:e025119 pubmed 出版商
  33. Garnier L, Pick R, Montorfani J, Sun M, Brighouse D, Liaudet N, et al. IFN-γ-dependent tumor-antigen cross-presentation by lymphatic endothelial cells promotes their killing by T cells and inhibits metastasis. Sci Adv. 2022;8:eabl5162 pubmed 出版商
  34. Kong Y, Akatsuka S, Motooka Y, Zheng H, Cheng Z, Shiraki Y, et al. BRCA1 haploinsufficiency promotes chromosomal amplification under Fenton reaction-based carcinogenesis through ferroptosis-resistance. Redox Biol. 2022;54:102356 pubmed 出版商
  35. Mao L, Xin F, Ren J, Xu S, Huang H, Zha X, et al. 5-HT2B-mediated serotonin activation in enterocytes suppresses colitis-associated cancer initiation and promotes cancer progression. Theranostics. 2022;12:3928-3945 pubmed 出版商
  36. Su W, Feng B, Hu L, Guo X, Yu M. MUC3A promotes the progression of colorectal cancer through the PI3K/Akt/mTOR pathway. BMC Cancer. 2022;22:602 pubmed 出版商
  37. Liu X, Viswanadhapalli S, Kumar S, Lee T, Moore A, Ma S, et al. Targeting LIPA independent of its lipase activity is a therapeutic strategy in solid tumors via induction of endoplasmic reticulum stress. Nat Cancer. 2022;: pubmed 出版商
  38. Merino B, Casanueva xc1 lvarez E, Quesada I, Gonz xe1 lez Casimiro C, Fern xe1 ndez D xed az C, Postigo Casado T, et al. Insulin-degrading enzyme ablation in mouse pancreatic alpha cells triggers cell proliferation, hyperplasia and glucagon secretion dysregulation. Diabetologia. 2022;65:1375-1389 pubmed 出版商
  39. Baik J, Park H, Kataru R, Savetsky I, Ly C, Shin J, et al. TGF-β1 mediates pathologic changes of secondary lymphedema by promoting fibrosis and inflammation. Clin Transl Med. 2022;12:e758 pubmed 出版商
  40. Wang Q, Bergholz J, Ding L, Lin Z, Kabraji S, Hughes M, et al. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer. Nat Commun. 2022;13:3022 pubmed 出版商
  41. Chao J, Feng L, Ye P, Chen X, Cui Q, Sun G, et al. Therapeutic development for Canavan disease using patient iPSCs introduced with the wild-type ASPA gene. iScience. 2022;25:104391 pubmed 出版商
  42. Kumar D, Das M, Oberg A, Sahoo D, Wu P, Sauceda C, et al. Hepatocyte Deletion of IGF2 Prevents DNA Damage and Tumor Formation in Hepatocellular Carcinoma. Adv Sci (Weinh). 2022;9:e2105120 pubmed 出版商
  43. Yu L, Guo Q, Luo Z, Wang Y, Weng J, Chen Y, et al. TXN inhibitor impedes radioresistance of colorectal cancer cells with decreased ALDH1L2 expression via TXN/NF-κB signaling pathway. Br J Cancer. 2022;127:637-648 pubmed 出版商
  44. Kohlmeyer J, Kaemmer C, Lingo J, Voigt E, Leidinger M, McGivney G, et al. Oncogenic RABL6A promotes NF1-associated MPNST progression in vivo. Neurooncol Adv. 2022;4:vdac047 pubmed 出版商
  45. Son S, Koh J, Im D. Free Fatty Acid Receptor 4 (FFA4) Activation Ameliorates Imiquimod-Induced Psoriasis in Mice. Int J Mol Sci. 2022;23: pubmed 出版商
  46. Khan M, Engstr xf6 m C, Fagman J, Smedh U, Lundholm K, Iresj xf6 B. Reduced tumor growth in EP2 knockout mice is related to signaling pathways favoring an increased local anti‑tumor immunity in the tumor stroma. Oncol Rep. 2022;47: pubmed 出版商
  47. McMillan N, Kirschen G, Desai S, Xia E, Tsirka S, Aguirre A. ADAM10 facilitates rapid neural stem cell cycling and proper positioning within the subventricular zone niche via JAMC/RAP1Gap signaling. Neural Regen Res. 2022;17:2472-2483 pubmed 出版商
  48. Tanton H, Sewastianik T, Seo H, Remillard D, Pierre R, Bala P, et al. A novel β-catenin/BCL9 complex inhibitor blocks oncogenic Wnt signaling and disrupts cholesterol homeostasis in colorectal cancer. Sci Adv. 2022;8:eabm3108 pubmed 出版商
  49. Moore A, Chinnaiya K, Kim D, Brown S, Stewart I, Robins S, et al. Loss of Function of the Neural Cell Adhesion Molecule NrCAM Regulates Differentiation, Proliferation and Neurogenesis in Early Postnatal Hypothalamic Tanycytes. Front Neurosci. 2022;16:832961 pubmed 出版商
  50. Tamura S, Hayashi T, Ichimura T, Yaegashi N, Abiko K, Konishi I. Characteristic of Uterine Rhabdomyosarcoma by Algorithm of Potential Biomarkers for Uterine Mesenchymal Tumor. Curr Oncol. 2022;29:2350-2363 pubmed 出版商
  51. Karvonen E, Krohn K, Ranki A, Hau A. Generation and Characterization of iPS Cells Derived from APECED Patients for Gene Correction. Front Endocrinol (Lausanne). 2022;13:794327 pubmed 出版商
  52. Kidger A, Saville M, Rushworth L, Davidson J, Stellzig J, Ono M, et al. Suppression of mutant Kirsten-RAS (KRASG12D)-driven pancreatic carcinogenesis by dual-specificity MAP kinase phosphatases 5 and 6. Oncogene. 2022;41:2811-2823 pubmed 出版商
  53. Haddock S, Alban T, Turcan S, Husic H, Rosiek E, Ma X, et al. Phenotypic and molecular states of IDH1 mutation-induced CD24-positive glioma stem-like cells. Neoplasia. 2022;28:100790 pubmed 出版商
  54. Kabwe J, Sawada H, Mitani Y, Oshita H, Tsuboya N, Zhang E, et al. CRISPR-mediated Bmpr2 point mutation exacerbates late pulmonary vasculopathy and reduces survival in rats with experimental pulmonary hypertension. Respir Res. 2022;23:87 pubmed 出版商
  55. Zhao Q, Dai W, Chen H, Jacobs R, Zlokovic B, Lund B, et al. Prenatal disruption of blood-brain barrier formation via cyclooxygenase activation leads to lifelong brain inflammation. Proc Natl Acad Sci U S A. 2022;119:e2113310119 pubmed 出版商
  56. Pascal L, Igarashi T, Mizoguchi S, Chen W, Rigatti L, Madigan C, et al. E-cadherin deficiency promotes prostate macrophage inflammation and bladder overactivity in aged male mice. Aging (Albany NY). 2022;14:2945-2965 pubmed 出版商
  57. Seung H, Wröbel J, Wadle C, B xfc hler T, Chiang D, Rettkowski J, et al. P2Y12-dependent activation of hematopoietic stem and progenitor cells promotes emergency hematopoiesis after myocardial infarction. Basic Res Cardiol. 2022;117:16 pubmed 出版商
  58. Yi B, Dai K, Yan Z, Yin Z. Circular RNA PLCE1 promotes epithelial mesenchymal transformation, glycolysis in colorectal cancer and M2 polarization of tumor-associated macrophages. Bioengineered. 2022;13:6243-6256 pubmed 出版商
  59. R xfc tsche D, Michalak Mićka K, Zielinska D, Moll H, Moehrlen U, Biedermann T, et al. The Role of CD200-CD200 Receptor in Human Blood and Lymphatic Endothelial Cells in the Regulation of Skin Tissue Inflammation. Cells. 2022;11: pubmed 出版商
  60. Jiang Q, Zhang X, Dai X, Han S, Wu X, Wang L, et al. S6K1-mediated phosphorylation of PDK1 impairs AKT kinase activity and oncogenic functions. Nat Commun. 2022;13:1548 pubmed 出版商
  61. Patritti Cram J, Wu J, Coover R, Rizvi T, Chaney K, Ravindran R, et al. P2RY14 cAMP signaling regulates Schwann cell precursor self-renewal, proliferation, and nerve tumor initiation in a mouse model of neurofibromatosis. elife. 2022;11: pubmed 出版商
  62. Su Y, Xu J, Gao R, Liu X, Liu T, Li C, et al. The Circ-CYP24A1-miR-224-PRLR Axis Impairs Cell Proliferation and Apoptosis in Recurrent Miscarriage. Front Physiol. 2022;13:778116 pubmed 出版商
  63. Xu J, Li Z, Tower R, Negri S, Wang Y, Meyers C, et al. NGF-p75 signaling coordinates skeletal cell migration during bone repair. Sci Adv. 2022;8:eabl5716 pubmed 出版商
  64. VITALIANO G, Kim J, Kaufman M, Adam C, Zeballos G, Shanmugavadivu A, et al. Clathrin-nanoparticles deliver BDNF to hippocampus and enhance neurogenesis, synaptogenesis and cognition in HIV/neuroAIDS mouse model. Commun Biol. 2022;5:236 pubmed 出版商
  65. Wennerberg E, Mukherjee S, Spada S, Hung C, Agrusa C, Chen C, et al. Expression of the mono-ADP-ribosyltransferase ART1 by tumor cells mediates immune resistance in non-small cell lung cancer. Sci Transl Med. 2022;14:eabe8195 pubmed 出版商
  66. Pantasis S, Friemel J, Brütsch S, Hu Z, Krautbauer S, Liebisch G, et al. Vertebrate lonesome kinase modulates the hepatocyte secretome to prevent perivascular liver fibrosis and inflammation. J Cell Sci. 2022;135: pubmed 出版商
  67. Zhu X, Guo Y, Chu C, Liu D, Duan K, Yin Y, et al. BRN2 as a key gene drives the early primate telencephalon development. Sci Adv. 2022;8:eabl7263 pubmed 出版商
  68. Ha N, Sun J, Bian Q, Wu D, Wang X. Hdac4 Regulates the Proliferation of Neural Crest-Derived Osteoblasts During Murine Craniofacial Development. Front Physiol. 2022;13:819619 pubmed 出版商
  69. Araujo A, Abaurrea A, Azcoaga P, L xf3 pez Velazco J, Manzano S, Rodriguez J, et al. Stromal oncostatin M cytokine promotes breast cancer progression by reprogramming the tumor microenvironment. J Clin Invest. 2022;132: pubmed 出版商
  70. Lopes N, Boucherit N, Santamaria J, Provin N, Charaix J, Ferrier P, et al. Thymocytes trigger self-antigen-controlling pathways in immature medullary thymic epithelial stages. elife. 2022;11: pubmed 出版商
  71. Sahm V, Maurer C, Baumeister T, Anand A, Strangmann J, Schmid R, et al. Telomere shortening accelerates tumor initiation in the L2-IL1B mouse model of Barrett esophagus and emerges as a possible biomarker. Oncotarget. 2022;13:347-359 pubmed 出版商
  72. Dai J, Cimino P, Gouin K, Grzelak C, Barrett A, Lim A, et al. Astrocytic laminin-211 drives disseminated breast tumor cell dormancy in brain. Nat Cancer. 2022;3:25-42 pubmed 出版商
  73. Esposito D, Pant I, Shen Y, Qiao R, Yang X, Bai Y, et al. ROCK1 mechano-signaling dependency of human malignancies driven by TEAD/YAP activation. Nat Commun. 2022;13:703 pubmed 出版商
  74. Kinkhabwala A, Herbel C, Pankratz J, Yushchenko D, R xfc berg S, Praveen P, et al. MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors. Sci Rep. 2022;12:1911 pubmed 出版商
  75. Khadka P, Reitman Z, Lu S, Buchan G, Gionet G, Dubois F, et al. PPM1D mutations are oncogenic drivers of de novo diffuse midline glioma formation. Nat Commun. 2022;13:604 pubmed 出版商
  76. Portal C, Wang Z, Scott D, Wolosin J, Iomini C. The c-Myc Oncogene Maintains Corneal Epithelial Architecture at Homeostasis, Modulates p63 Expression, and Enhances Proliferation During Tissue Repair. Invest Ophthalmol Vis Sci. 2022;63:3 pubmed 出版商
  77. Wu C, Wang Y, Hu S, Wu W, Yeh C, Bamodu O. MED10 Drives the Oncogenicity and Refractory Phenotype of Bladder Urothelial Carcinoma Through the Upregulation of hsa-miR-590. Front Oncol. 2021;11:744937 pubmed 出版商
  78. Meinhardt A, Munkhbaatar E, Höckendorf U, Dietzen M, Dechant M, Anton M, et al. The BCL-2 family member BOK promotes KRAS-driven lung cancer progression in a p53-dependent manner. Oncogene. 2022;41:1376-1382 pubmed 出版商
  79. Grinat J, Kosel F, Goveas N, Kranz A, Alexopoulou D, Rajewsky K, et al. Epigenetic modifier balances Mapk and Wnt signalling in differentiation of goblet and Paneth cells. Life Sci Alliance. 2022;5: pubmed 出版商
  80. Yang K, Han J, Asada M, Gill J, Park J, Sathe M, et al. Cytoplasmic RNA quality control failure engages mTORC1-mediated autoinflammatory disease. J Clin Invest. 2022;132: pubmed 出版商
  81. Yamasaki S, Tu H, Matsuyama T, Horiuchi M, Hashiguchi T, Sho J, et al. A Genetic modification that reduces ON-bipolar cells in hESC-derived retinas enhances functional integration after transplantation. iScience. 2022;25:103657 pubmed 出版商
  82. Jiang Z, Li H, Schroer S, Voisin V, Ju Y, Pacal M, et al. Hypophosphorylated pRb knock-in mice exhibit hallmarks of aging and vitamin C-preventable diabetes. EMBO J. 2022;41:e106825 pubmed 出版商
  83. Wan L, Bai X, Zhou Q, Chen C, Wang H, Liu T, et al. The advanced glycation end-products (AGEs)/ROS/NLRP3 inflammasome axis contributes to delayed diabetic corneal wound healing and nerve regeneration. Int J Biol Sci. 2022;18:809-825 pubmed 出版商
  84. Heitink L, Whittle J, Vaillant F, Capaldo B, Dekkers J, Dawson C, et al. In vivo genome-editing screen identifies tumor suppressor genes that cooperate with Trp53 loss during mammary tumorigenesis. Mol Oncol. 2022;16:1119-1131 pubmed 出版商
  85. Li P, Li L, Li Z, Wang S, Li R, Zhao W, et al. Annexin A1 promotes the progression of bladder cancer via regulating EGFR signaling pathway. Cancer Cell Int. 2022;22:7 pubmed 出版商
  86. Lin J, Chen Y, Zhu H, Cheng K, Wang H, Yu X, et al. Lymphatic Reconstruction in Kidney Allograft Aggravates Chronic Rejection by Promoting Alloantigen Presentation. Front Immunol. 2021;12:796260 pubmed 出版商
  87. Simbolo M, Centonze G, Ali G, Garzone G, Taormina S, Sabella G, et al. Integrative molecular analysis of combined small-cell lung carcinomas identifies major subtypes with different therapeutic opportunities. ESMO Open. 2022;7:100308 pubmed 出版商
  88. Lou Z, Post A, Rodgers C, Chamankhah M, Hong J, Ahuja C, et al. Neural Progenitor Cells Expressing Herpes Simplex Virus-Thymidine Kinase for Ablation Have Differential Chemosensitivity to Brivudine and Ganciclovir. Front Cell Neurosci. 2021;15:638021 pubmed 出版商
  89. Yoshida J, Ohishi T, Abe H, Ohba S, Inoue H, Usami I, et al. Mitochondrial complex I inhibitors suppress tumor growth through concomitant acidification of the intra- and extracellular environment. iScience. 2021;24:103497 pubmed 出版商
  90. Fernández Duran I, Quintanilla A, Tarrats N, Birch J, Hari P, Millar F, et al. Cytoplasmic innate immune sensing by the caspase-4 non-canonical inflammasome promotes cellular senescence. Cell Death Differ. 2022;29:1267-1282 pubmed 出版商
  91. Zhou Q, Liang J, Yang T, Liu J, Li B, Li Y, et al. Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer. EMBO Mol Med. 2022;14:e14502 pubmed 出版商
  92. Inubushi T, Fujiwara A, Hirose T, Aoyama G, Uchihashi T, Yoshida N, et al. Ras signaling and RREB1 are required for the dissociation of medial edge epithelial cells in murine palatogenesis. Dis Model Mech. 2022;15: pubmed 出版商
  93. Stanaszek L, Majchrzak M, Drela K, Rogujski P, Sanford J, Fiedorowicz M, et al. Myelin-Independent Therapeutic Potential of Canine Glial-Restricted Progenitors Transplanted in Mouse Model of Dysmyelinating Disease. Cells. 2021;10: pubmed 出版商
  94. Sekino Y, Pham Q, Kobatake K, Kitano H, Ikeda K, Goto K, et al. KIFC1 Is Associated with Basal Type, Cisplatin Resistance, PD-L1 Expression and Poor Prognosis in Bladder Cancer. J Clin Med. 2021;10: pubmed 出版商
  95. Xia R, Liu T, Li W, Xu X. RNA-binding protein RBM24 represses colorectal tumourigenesis by stabilising PTEN mRNA. Clin Transl Med. 2021;11:e383 pubmed 出版商
  96. Carroll P, Freie B, Cheng P, Kasinathan S, Gu H, Hedrich T, et al. The glucose-sensing transcription factor MLX balances metabolism and stress to suppress apoptosis and maintain spermatogenesis. PLoS Biol. 2021;19:e3001085 pubmed 出版商
  97. Ranea Robles P, Portman K, Bender A, Lee K, He J, Mulholland D, et al. Peroxisomal L-bifunctional protein (EHHADH) deficiency causes male-specific kidney hypertrophy and proximal tubular injury in mice. Kidney360. 2021;2:1441-1454 pubmed 出版商
  98. Fearon A, Slabber C, Kuklin A, Bachofner M, Tortola L, Pohlmeier L, et al. Fibroblast growth factor receptor 3 in hepatocytes protects from toxin-induced liver injury and fibrosis. iScience. 2021;24:103143 pubmed 出版商
  99. Hoste E, Lecomte K, Annusver K, Vandamme N, Roels J, Maschalidi S, et al. OTULIN maintains skin homeostasis by controlling keratinocyte death and stem cell identity. Nat Commun. 2021;12:5913 pubmed 出版商
  100. Zhang Z, Li X, Yang F, Chen C, Liu P, Ren Y, et al. DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat Commun. 2021;12:5872 pubmed 出版商
  101. Kurth I, Yamaguchi N, Andreu Agullo C, Tian H, Sridhar S, Takeda S, et al. Therapeutic targeting of SLC6A8 creatine transporter suppresses colon cancer progression and modulates human creatine levels. Sci Adv. 2021;7:eabi7511 pubmed 出版商
  102. Sapir G, Steinberg D, Aqeilan R, Katz Brull R. Real-Time Non-Invasive and Direct Determination of Lactate Dehydrogenase Activity in Cerebral Organoids-A New Method to Characterize the Metabolism of Brain Organoids?. Pharmaceuticals (Basel). 2021;14: pubmed 出版商
  103. Hu S, Liu D, Li C, Xu Y, Hu K, Cui L, et al. Wuzi-Yanzong prescription alleviates spermatogenesis disorder induced by heat stress dependent on Akt, NF-κB signaling pathway. Sci Rep. 2021;11:18824 pubmed 出版商
  104. Kitakaze K, Oyadomari M, Zhang J, Hamada Y, Takenouchi Y, Tsuboi K, et al. ATF4-mediated transcriptional regulation protects against β-cell loss during endoplasmic reticulum stress in a mouse model. Mol Metab. 2021;54:101338 pubmed 出版商
  105. Ye Q, Chen H, Ma H, Xiang X, Hu S, Xia C, et al. Xiaoyu Xiezhuo Drink Protects against Ischemia-Reperfusion Acute Kidney Injury in Aged Mice through Inhibiting the TGF-β1/Smad3 and HIF1 Signaling Pathways. Biomed Res Int. 2021;2021:9963732 pubmed 出版商
  106. Yue M, Liu T, Yan G, Luo X, Wang L. LINC01605, regulated by the EP300-SMYD2 complex, potentiates the binding between METTL3 and SPTBN2 in colorectal cancer. Cancer Cell Int. 2021;21:504 pubmed 出版商
  107. Li Y, Li Y, Li L, Yin M, Wang J, Li X. PKR deficiency alleviates pulmonary hypertension via inducing inflammasome adaptor ASC inactivation. Pulm Circ. 2021;11:20458940211046156 pubmed 出版商
  108. Tian N, Hu L, Lu Y, Tong L, Feng M, Liu Q, et al. TKT maintains intestinal ATP production and inhibits apoptosis-induced colitis. Cell Death Dis. 2021;12:853 pubmed 出版商
  109. Jiang Y, Yuan Y, Chen M, Li S, Bai J, Zhang Y, et al. PRMT5 disruption drives antitumor immunity in cervical cancer by reprogramming T cell-mediated response and regulating PD-L1 expression. Theranostics. 2021;11:9162-9176 pubmed 出版商
  110. Xi Y, Li Y, Xu P, Li S, Liu Z, Tung H, et al. The anti-fibrotic drug pirfenidone inhibits liver fibrosis by targeting the small oxidoreductase glutaredoxin-1. Sci Adv. 2021;7:eabg9241 pubmed 出版商
  111. Rizvi Z, Dalal R, Sadhu S, Kumar Y, Kumar S, Gupta S, et al. High-salt diet mediates interplay between NK cells and gut microbiota to induce potent tumor immunity. Sci Adv. 2021;7:eabg5016 pubmed 出版商
  112. Wright J, Bazile C, Clark E, Carlesso G, Boucher J, Kleiman E, et al. Impaired B Cell Apoptosis Results in Autoimmunity That Is Alleviated by Ablation of Btk. Front Immunol. 2021;12:705307 pubmed 出版商
  113. Liu X, Liu Y, Liu Z, Lin C, Meng F, Xu L, et al. CircMYH9 drives colorectal cancer growth by regulating serine metabolism and redox homeostasis in a p53-dependent manner. Mol Cancer. 2021;20:114 pubmed 出版商
  114. Lo Cascio C, McNamara J, Melendez E, Lewis E, Dufault M, Sanai N, et al. Nonredundant, isoform-specific roles of HDAC1 in glioma stem cells. JCI Insight. 2021;6: pubmed 出版商
  115. Goel S, Bhatia V, Kundu S, Biswas T, Carskadon S, Gupta N, et al. Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat Commun. 2021;12:5325 pubmed 出版商
  116. Lin J, Liu H, Fukumoto T, Zundell J, Yan Q, Tang C, et al. Targeting the IRE1α/XBP1s pathway suppresses CARM1-expressing ovarian cancer. Nat Commun. 2021;12:5321 pubmed 出版商
  117. Mayweather B, Buchanan S, Rubin L. GDF11 expressed in the adult brain negatively regulates hippocampal neurogenesis. Mol Brain. 2021;14:134 pubmed 出版商
  118. Novais E, Tran V, Johnston S, Darris K, Roupas A, Sessions G, et al. Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat Commun. 2021;12:5213 pubmed 出版商
  119. Huang J, Xiao R, Wang X, Khadka B, Fang Z, Yu M, et al. MicroRNA‑93 knockdown inhibits acute myeloid leukemia cell growth via inactivating the PI3K/AKT pathway by upregulating DAB2. Int J Oncol. 2021;59: pubmed 出版商
  120. La Rocca G, King B, Shui B, Li X, Zhang M, Akat K, et al. Inducible and reversible inhibition of miRNA-mediated gene repression in vivo. elife. 2021;10: pubmed 出版商
  121. Huang Z, Liu S, Tang A, Al Rabadi L, Henkemeyer M, Mimche P, et al. Key role for EphB2 receptor in kidney fibrosis. Clin Sci (Lond). 2021;135:2127-2142 pubmed 出版商
  122. Chen Q, Fan K, Chen X, Xie X, Huang L, Song G, et al. Ezrin regulates synovial angiogenesis in rheumatoid arthritis through YAP and Akt signalling. J Cell Mol Med. 2021;25:9378-9389 pubmed 出版商
  123. García Sánchez D, González González A, García García P, Reyes R, Pérez Núñez M, Riancho J, et al. Effective Osteogenic Priming of Mesenchymal Stem Cells through LNA-ASOs-Mediated Sfrp1 Gene Silencing. Pharmaceutics. 2021;13: pubmed 出版商
  124. Scarlet D, Handschuh S, Reichart U, Podico G, Ellerbrock R, Demyda Peyrás S, et al. Sexual Differentiation and Primordial Germ Cell Distribution in the Early Horse Fetus. Animals (Basel). 2021;11: pubmed 出版商
  125. Rozolen J, Teodoro T, Sobral R, Sueiro F, Laufer Amorim R, Elias F, et al. Investigation of Prognostic Value of Claudin-5, PSMA, and Ki67 Expression in Canine Splenic Hemangiosarcoma. Animals (Basel). 2021;11: pubmed 出版商
  126. da Silva F, Zhang K, Pinson A, Fatti E, Wilsch Bräuninger M, Herbst J, et al. Mitotic WNT signalling orchestrates neurogenesis in the developing neocortex. EMBO J. 2021;40:e108041 pubmed 出版商
  127. Saha J, Bae J, Wang S, Lu H, Chappell L, Gopal P, et al. Ablating putative Ku70 phosphorylation sites results in defective DNA damage repair and spontaneous induction of hepatocellular carcinoma. Nucleic Acids Res. 2021;49:9836-9850 pubmed 出版商
  128. Liu Z, Wang T, She Y, Wu K, Gu S, Li L, et al. N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 2021;20:105 pubmed 出版商
  129. Ceccarelli M, D Andrea G, Micheli L, Gentile G, Cavallaro S, Merlino G, et al. Tumor Growth in the High Frequency Medulloblastoma Mouse Model Ptch1+/-/Tis21KO Has a Specific Activation Signature of the PI3K/AKT/mTOR Pathway and Is Counteracted by the PI3K Inhibitor MEN1611. Front Oncol. 2021;11:692053 pubmed 出版商
  130. Taavela J, Viiri K, Välimäki A, Sarin J, Salonoja K, Maki M, et al. Apolipoprotein A4 Defines the Villus-Crypt Border in Duodenal Specimens for Celiac Disease Morphometry. Front Immunol. 2021;12:713854 pubmed 出版商
  131. Petley E, Koay H, Henderson M, Sek K, Todd K, Keam S, et al. MAIT cells regulate NK cell-mediated tumor immunity. Nat Commun. 2021;12:4746 pubmed 出版商
  132. Annamneedi A, Del Angel M, Gundelfinger E, Stork O, Caliskan G. The Presynaptic Scaffold Protein Bassoon in Forebrain Excitatory Neurons Mediates Hippocampal Circuit Maturation: Potential Involvement of TrkB Signalling. Int J Mol Sci. 2021;22: pubmed 出版商
  133. Yuan S, Zhang P, Wen L, Jia S, Wu Y, Zhang Z, et al. miR-22 promotes stem cell traits via activating Wnt/β-catenin signaling in cutaneous squamous cell carcinoma. Oncogene. 2021;40:5799-5813 pubmed 出版商
  134. Guo E, Mao X, Wang X, Guo L, An C, Zhang C, et al. Alternatively spliced ANLN isoforms synergistically contribute to the progression of head and neck squamous cell carcinoma. Cell Death Dis. 2021;12:764 pubmed 出版商
  135. Miyajima H, Itokazu T, Tanabe S, Yamashita T. Interleukin-17A regulates ependymal cell proliferation and functional recovery after spinal cord injury in mice. Cell Death Dis. 2021;12:766 pubmed 出版商
  136. Shao C, Lou P, Liu R, Bi X, Li G, Yang X, et al. Hormone-Responsive BMP Signaling Expands Myoepithelial Cell Lineages and Prevents Alveolar Precocity in Mammary Gland. Front Cell Dev Biol. 2021;9:691050 pubmed 出版商
  137. Forman R, Logunova L, Smith H, Wemyss K, Mair I, Boon L, et al. Trichuris muris infection drives cell-intrinsic IL4R alpha independent colonic RELMα+ macrophages. PLoS Pathog. 2021;17:e1009768 pubmed 出版商
  138. Pal S, Nixon B, Glennon M, Shridhar P, Satterfield S, Su Y, et al. Replication Stress Response Modifies Sarcomeric Cardiomyopathy Remodeling. J Am Heart Assoc. 2021;10:e021768 pubmed 出版商
  139. Oberhardt V, Luxenburger H, Kemming J, Schulien I, Ciminski K, Giese S, et al. Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine. Nature. 2021;597:268-273 pubmed 出版商
  140. Zhang Y, Ma Y, Wu G, Xie M, Luo C, Huang X, et al. SENP1 promotes MCL pathogenesis through regulating JAK-STAT5 pathway and SOCS2 expression. Cell Death Discov. 2021;7:192 pubmed 出版商
  141. Jiao L, Eickhoff R, Egners A, Jumpertz S, Roth J, Erdem M, et al. Deletion of mTOR in liver epithelial cells enhances hepatic metastasis of colon cancer. J Pathol. 2021;255:270-284 pubmed 出版商
  142. Sahu B, Pihlajamaa P, Zhang K, Palin K, Ahonen S, Cervera A, et al. Human cell transformation by combined lineage conversion and oncogene expression. Oncogene. 2021;: pubmed 出版商
  143. Shen C, Hsieh C, Jiang K, Lin C, Chiang N, Li T, et al. AUY922 induces retinal toxicity through attenuating TRPM1. J Biomed Sci. 2021;28:55 pubmed 出版商
  144. Liu X, Chen X, Xiao M, Zhu Y, Gong R, Liu J, et al. RANBP2 Activates O-GlcNAcylation through Inducing CEBPα-Dependent OGA Downregulation to Promote Hepatocellular Carcinoma Malignant Phenotypes. Cancers (Basel). 2021;13: pubmed 出版商
  145. Bodnar B, Zhang Y, Liu J, Lin Y, Wang P, Wei Z, et al. Novel Scalable and Simplified System to Generate Microglia-Containing Cerebral Organoids From Human Induced Pluripotent Stem Cells. Front Cell Neurosci. 2021;15:682272 pubmed 出版商
  146. Chen C, Abdian N, Maussion G, Thomas R, Demirova I, Cai E, et al. A Multistep Workflow to Evaluate Newly Generated iPSCs and Their Ability to Generate Different Cell Types. Methods Protoc. 2021;4: pubmed 出版商
  147. Åmellem I, Yovianto G, Chong H, Nair R, Cnops V, Thanawalla A, et al. Role of NMDA Receptors in Adult Neurogenesis and Normal Development of the Dentate Gyrus. Eneuro. 2021;8: pubmed 出版商
  148. Li Y, Shi G, Han Y, Shang H, Li H, Liang W, et al. Therapeutic potential of human umbilical cord mesenchymal stem cells on aortic atherosclerotic plaque in a high-fat diet rabbit model. Stem Cell Res Ther. 2021;12:407 pubmed 出版商
  149. Yang S, Qu Y, Chen J, Chen S, Sun L, Zhou Y, et al. Bee Pollen Polysaccharide From Rosa rugosa Thunb. (Rosaceae) Promotes Pancreatic β-Cell Proliferation and Insulin Secretion. Front Pharmacol. 2021;12:688073 pubmed 出版商
  150. Ortega Molina A, Lebrero Fernández C, Sanz A, Deleyto Seldas N, Plata Gómez A, Menéndez C, et al. Inhibition of Rag GTPase signaling in mice suppresses B cell responses and lymphomagenesis with minimal detrimental trade-offs. Cell Rep. 2021;36:109372 pubmed 出版商
  151. Park H, Lee Y, Lee K, Lee H, Yoo J, Ahn S, et al. The Clinicopathological Significance of YAP/TAZ Expression in Hepatocellular Carcinoma with Relation to Hypoxia and Stemness. Pathol Oncol Res. 2021;27:604600 pubmed 出版商
  152. Mathsyaraja H, Catchpole J, Freie B, Eastwood E, Babaeva E, Geuenich M, et al. Loss of MGA repression mediated by an atypical polycomb complex promotes tumor progression and invasiveness. elife. 2021;10: pubmed 出版商
  153. Lauret Marie Joseph E, Kirilovsky A, Lecoester B, El Sissy C, Boullerot L, Rangan L, et al. Chemoradiation triggers antitumor Th1 and tissue resident memory-polarized immune responses to improve immune checkpoint inhibitors therapy. J Immunother Cancer. 2021;9: pubmed 出版商
  154. Lu J, Wang W, Li P, Wang X, Gao C, Zhang B, et al. MiR-146a regulates regulatory T cells to suppress heart transplant rejection in mice. Cell Death Discov. 2021;7:165 pubmed 出版商
  155. Mori Y, Gonzalez Medina M, Liu Z, Guo J, Dingwell L, Chiang S, et al. Roles of vascular endothelial and smooth muscle cells in the vasculoprotective effect of insulin in a mouse model of restenosis. Diab Vasc Dis Res. 2021;18:14791641211027324 pubmed 出版商
  156. Yang S, He X, Zhao J, Wang D, Guo S, Gao T, et al. Mitochondrial transcription factor A plays opposite roles in the initiation and progression of colitis-associated cancer. Cancer Commun (Lond). 2021;41:695-714 pubmed 出版商
  157. Wang Y, Su Y, Yu G, Wang X, Chen X, Yu B, et al. Reduced Oligodendrocyte Precursor Cell Impairs Astrocytic Development in Early Life Stress. Adv Sci (Weinh). 2021;8:e2101181 pubmed 出版商
  158. Zhou Y, Ye X, Zhang C, Wang J, Guan Z, Yan J, et al. Ufl1 deficiency causes kidney atrophy associated with disruption of endoplasmic reticulum homeostasis. J Genet Genomics. 2021;48:403-410 pubmed 出版商
  159. Laine A, Nagelli S, Farrington C, Butt U, Cvrljevic A, Vainonen J, et al. CIP2A Interacts with TopBP1 and Drives Basal-Like Breast Cancer Tumorigenesis. Cancer Res. 2021;81:4319-4331 pubmed 出版商
  160. Low J, Du W, Gocha T, Oguz G, Zhang X, Chen M, et al. Molecular docking-aided identification of small molecule inhibitors targeting β-catenin-TCF4 interaction. iScience. 2021;24:102544 pubmed 出版商
  161. Hamm M, Sohier P, Petit V, Raymond J, Delmas V, Le Coz M, et al. BRN2 is a non-canonical melanoma tumor-suppressor. Nat Commun. 2021;12:3707 pubmed 出版商
  162. Li H, Shen X, Tong Y, Ji T, Feng Y, Tang Y, et al. Aggravation of hepatic ischemia‑reperfusion injury with increased inflammatory cell infiltration is associated with the TGF‑β/Smad3 signaling pathway. Mol Med Rep. 2021;24: pubmed 出版商
  163. Hu F, Song D, Yan Y, Huang C, Shen C, Lan J, et al. IL-6 regulates autophagy and chemotherapy resistance by promoting BECN1 phosphorylation. Nat Commun. 2021;12:3651 pubmed 出版商
  164. Tian L, Chen C, Guo Y, Zhang F, Mi J, Feng Q, et al. mTORC2 regulates ribonucleotide reductase to promote DNA replication and gemcitabine resistance in non-small cell lung cancer. Neoplasia. 2021;23:643-652 pubmed 出版商
  165. Thies K, Cole M, Schafer R, Spehar J, Richardson D, Steck S, et al. The small G-protein RalA promotes progression and metastasis of triple-negative breast cancer. Breast Cancer Res. 2021;23:65 pubmed 出版商
  166. Kimura H, Sada R, Takada N, Harada A, Doki Y, Eguchi H, et al. The Dickkopf1 and FOXM1 positive feedback loop promotes tumor growth in pancreatic and esophageal cancers. Oncogene. 2021;40:4486-4502 pubmed 出版商
  167. Dong F, Chen M, Jiang L, Shen Z, Ma L, Han C, et al. PRMT5 Is Involved in Spermatogonial Stem Cells Maintenance by Regulating Plzf Expression via Modulation of Lysine Histone Modifications. Front Cell Dev Biol. 2021;9:673258 pubmed 出版商
  168. Lasierra Losada M, Pauler M, Vandamme N, Goossens S, Berx G, Leppkes M, et al. Pancreas morphogenesis and homeostasis depends on tightly regulated Zeb1 levels in epithelial cells. Cell Death Discov. 2021;7:138 pubmed 出版商
  169. Chen W, Song J, Liu S, Tang B, Shen L, Zhu J, et al. USP9X promotes apoptosis in cholangiocarcinoma by modulation expression of KIF1Bβ via deubiquitinating EGLN3. J Biomed Sci. 2021;28:44 pubmed 出版商
  170. Ostriker A, Xie Y, Chakraborty R, Sizer A, Bai Y, Ding M, et al. TET2 Protects Against Vascular Smooth Muscle Cell Apoptosis and Intimal Thickening in Transplant Vasculopathy. Circulation. 2021;144:455-470 pubmed 出版商
  171. Malkomes P, Lunger I, Oppermann E, Abou El Ardat K, Oellerich T, Günther S, et al. Transglutaminase 2 promotes tumorigenicity of colon cancer cells by inactivation of the tumor suppressor p53. Oncogene. 2021;40:4352-4367 pubmed 出版商
  172. Moyon S, Frawley R, Maréchal D, Huang D, Marshall Phelps K, Kegel L, et al. TET1-mediated DNA hydroxymethylation regulates adult remyelination in mice. Nat Commun. 2021;12:3359 pubmed 出版商
  173. Lai W, Zhu W, Xiao C, Li X, Wang Y, Han Y, et al. HJURP promotes proliferation in prostate cancer cells through increasing CDKN1A degradation via the GSK3β/JNK signaling pathway. Cell Death Dis. 2021;12:583 pubmed 出版商
  174. Ying L, Zhang M, Ma X, Si Y, Li X, Su J, et al. Macrophage LAMTOR1 Deficiency Prevents Dietary Obesity and Insulin Resistance Through Inflammation-Induced Energy Expenditure. Front Cell Dev Biol. 2021;9:672032 pubmed 出版商
  175. Wang J, Zhang Y, Xiao Y, Yuan X, Li P, Wang X, et al. Boosting immune surveillance by low-dose PI3K inhibitor facilitates early intervention of breast cancer. Am J Cancer Res. 2021;11:2005-2024 pubmed
  176. Wu S, Fukumoto T, Lin J, Nacarelli T, Wang Y, Ong D, et al. Targeting glutamine dependence through GLS1 inhibition suppresses ARID1A-inactivated clear cell ovarian carcinoma. Nat Cancer. 2021;2:189-200 pubmed 出版商
  177. Totten S, Im Y, Cepeda Cañedo E, Najyb O, Nguyen A, Hebert S, et al. STAT1 potentiates oxidative stress revealing a targetable vulnerability that increases phenformin efficacy in breast cancer. Nat Commun. 2021;12:3299 pubmed 出版商
  178. Blessin N, Abu Hashem R, Mandelkow T, Li W, Simon R, Hube Magg C, et al. Prevalence of proliferating CD8+ cells in normal lymphatic tissues, inflammation and cancer. Aging (Albany NY). 2021;13:14590-14603 pubmed 出版商
  179. Keshvari S, Caruso M, Teakle N, Batoon L, Sehgal A, Patkar O, et al. CSF1R-dependent macrophages control postnatal somatic growth and organ maturation. PLoS Genet. 2021;17:e1009605 pubmed 出版商
  180. Schwiebs A, Faqar Uz Zaman F, Herrero San Juan M, Radeke H. S1P Lyase Regulates Intestinal Stem Cell Quiescence via Ki-67 and FOXO3. Int J Mol Sci. 2021;22: pubmed 出版商
  181. Su S, Chen J, Jiang Y, Wang Y, Vital T, Zhang J, et al. SPOP and OTUD7A Control EWS-FLI1 Protein Stability to Govern Ewing Sarcoma Growth. Adv Sci (Weinh). 2021;8:e2004846 pubmed 出版商
  182. Tanday N, English A, Lafferty R, Flatt P, Irwin N. Benefits of Sustained Upregulated Unimolecular GLP-1 and CCK Receptor Signalling in Obesity-Diabetes. Front Endocrinol (Lausanne). 2021;12:674704 pubmed 出版商
  183. Kemp S, Carpenter E, Steele N, Donahue K, Nwosu Z, Pacheco A, et al. Apolipoprotein E Promotes Immune Suppression in Pancreatic Cancer through NF-κB-Mediated Production of CXCL1. Cancer Res. 2021;81:4305-4318 pubmed 出版商
  184. Zhai X, Gong M, Peng Y, Yang D. Effects of UV Induced-Photoaging on the Hair Follicle Cycle of C57BL6/J Mice. Clin Cosmet Investig Dermatol. 2021;14:527-539 pubmed 出版商
  185. Weir K, Kim D, Blackshaw S. A potential role for somatostatin signaling in regulating retinal neurogenesis. Sci Rep. 2021;11:10962 pubmed 出版商
  186. Ma X, Zhao T, Yan H, Guo K, Liu Z, Wei L, et al. Fatostatin reverses progesterone resistance by inhibiting the SREBP1-NF-κB pathway in endometrial carcinoma. Cell Death Dis. 2021;12:544 pubmed 出版商
  187. Li H, Kurtzeborn K, Kupari J, Gui Y, Siefker E, Lu B, et al. Postnatal prolongation of mammalian nephrogenesis by excess fetal GDNF. Development. 2021;148: pubmed 出版商
  188. Haan N, Westacott L, Carter J, Owen M, Gray W, Hall J, et al. Haploinsufficiency of the schizophrenia and autism risk gene Cyfip1 causes abnormal postnatal hippocampal neurogenesis through microglial and Arp2/3 mediated actin dependent mechanisms. Transl Psychiatry. 2021;11:313 pubmed 出版商
  189. Eyermann C, Li J, Alexandrova E. ΔN63 suppresses the ability of pregnancy-identified mammary epithelial cells (PIMECs) to drive HER2-positive breast cancer. Cell Death Dis. 2021;12:525 pubmed 出版商
  190. Liu K, Jing N, Wang D, Xu P, Wang J, Chen X, et al. A novel mouse model for liver metastasis of prostate cancer reveals dynamic tumour-immune cell communication. Cell Prolif. 2021;54:e13056 pubmed 出版商
  191. Liu M, Rao H, Liu J, Li X, Feng W, Gui L, et al. The histone methyltransferase SETD2 modulates oxidative stress to attenuate experimental colitis. Redox Biol. 2021;43:102004 pubmed 出版商
  192. Hendley A, Rao A, Leonhardt L, Ashe S, Smith J, Giacometti S, et al. Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. elife. 2021;10: pubmed 出版商
  193. Kuai L, Luo Y, Qu K, Ru Y, Luo Y, Ding X, et al. Transcriptomic Analysis of the Mechanisms for Alleviating Psoriatic Dermatitis Using Taodan Granules in an Imiquimod-Induced Psoriasis-like Mouse Model. Front Pharmacol. 2021;12:632414 pubmed 出版商
  194. Filppu P, Tanjore Ramanathan J, Granberg K, Gucciardo E, Haapasalo H, Lehti K, et al. CD109-GP130 interaction drives glioblastoma stem cell plasticity and chemoresistance through STAT3 activity. JCI Insight. 2021;6: pubmed 出版商
  195. Meinsohn M, Saatcioglu H, Wei L, Li Y, Horn H, Chauvin M, et al. Single-cell sequencing reveals suppressive transcriptional programs regulated by MIS/AMH in neonatal ovaries. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  196. Liberti D, Kremp M, Liberti W, Penkala I, Li S, Zhou S, et al. Alveolar epithelial cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury. Cell Rep. 2021;35:109092 pubmed 出版商
  197. Qiu R, Wu J, Gudenas B, Northcott P, Wechsler Reya R, Lu Q. Depletion of kinesin motor KIF20A to target cell fate control suppresses medulloblastoma tumour growth. Commun Biol. 2021;4:552 pubmed 出版商
  198. Wu Y, Liu Y, Hu Y, Wang L, Bai F, Xu C, et al. Control of multiciliogenesis by miR-34/449 in the male reproductive tract through enforcing cell cycle exit. J Cell Sci. 2021;134: pubmed 出版商
  199. Tien J, Chugh S, Goodrum A, Cheng Y, Mannan R, Zhang Y, et al. AGO2 promotes tumor progression in KRAS-driven mouse models of non-small cell lung cancer. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  200. Pettinato A, Yoo D, VanOudenhove J, Chen Y, Cohn R, Ladha F, et al. Sarcomere function activates a p53-dependent DNA damage response that promotes polyploidization and limits in vivo cell engraftment. Cell Rep. 2021;35:109088 pubmed 出版商
  201. Delepine C, Pham V, Tsang H, Sur M. GSK3ß inhibitor CHIR 99021 modulates cerebral organoid development through dose-dependent regulation of apoptosis, proliferation, differentiation and migration. PLoS ONE. 2021;16:e0251173 pubmed 出版商
  202. Guillermin O, Angelis N, Sidor C, Ridgway R, Baulies A, Kucharska A, et al. Wnt and Src signals converge on YAP-TEAD to drive intestinal regeneration. EMBO J. 2021;40:e105770 pubmed 出版商
  203. Aprigliano R, Aksu M, Bradamante S, Mihaljevic B, Wang W, Rian K, et al. Increased p53 signaling impairs neural differentiation in HUWE1-promoted intellectual disabilities. Cell Rep Med. 2021;2:100240 pubmed 出版商
  204. Malik N, Yan H, Yang H, Ayaz G, DuBois W, Tseng Y, et al. CBFB cooperates with p53 to maintain TAp73 expression and suppress breast cancer. PLoS Genet. 2021;17:e1009553 pubmed 出版商
  205. Morcom L, Edwards T, Rider E, Jones Davis D, Lim J, Chen K, et al. DRAXIN regulates interhemispheric fissure remodelling to influence the extent of corpus callosum formation. elife. 2021;10: pubmed 出版商
  206. Piñeiro Hermida S, Martinez P, Blasco M. Short and dysfunctional telomeres protect from allergen-induced airway inflammation. Aging Cell. 2021;20:e13352 pubmed 出版商
  207. Deng X, Iwagawa T, Fukushima M, Suzuki Y, Watanabe S. Setd1a Plays Pivotal Roles for the Survival and Proliferation of Retinal Progenitors via Histone Modifications of Uhrf1. Invest Ophthalmol Vis Sci. 2021;62:1 pubmed 出版商
  208. Yuan T, Zheng R, Zhou X, Jin P, Huang Z, Zi X, et al. Abnormal Expression of YAP Is Associated With Proliferation, Differentiation, Neutrophil Infiltration, and Adverse Outcome in Patients With Nasal Inverted Papilloma. Front Cell Dev Biol. 2021;9:625251 pubmed 出版商
  209. Ni N, Fang X, Li Q. Functional similarity between TGF-beta type 2 and type 1 receptors in the female reproductive tract. Sci Rep. 2021;11:9294 pubmed 出版商
  210. Hsieh M, Weng C, Lin Y, Wu C, Chen L, Cheng K. Inhibition of β-Catenin Activity Abolishes LKB1 Loss-Driven Pancreatic Cystadenoma in Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  211. Huang L, Desai R, Conrad D, Leite N, Akshinthala D, Lim C, et al. Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids. Cell Stem Cell. 2021;28:1090-1104.e6 pubmed 出版商
  212. Anania J, Westin A, Adler J, Heyman B. A Novel Image Analysis Approach Reveals a Role for Complement Receptors 1 and 2 in Follicular Dendritic Cell Organization in Germinal Centers. Front Immunol. 2021;12:655753 pubmed 出版商
  213. Ezan J, Moreau M, Mamo T, Shimbo M, Decroo M, Richter M, et al. Early loss of Scribble affects cortical development, interhemispheric connectivity and psychomotor activity. Sci Rep. 2021;11:9106 pubmed 出版商
  214. Lau E, Damiani D, Chehade G, Ruiz Reig N, Saade R, Jossin Y, et al. DIAPH3 deficiency links microtubules to mitotic errors, defective neurogenesis, and brain dysfunction. elife. 2021;10: pubmed 出版商
  215. Yuan B, Yang J, Dubeau L, Hu Y, Li R. A Phosphotyrosine Switch in Estrogen Receptor β Is Required for Mouse Ovarian Function. Front Cell Dev Biol. 2021;9:649087 pubmed 出版商
  216. Go D, Lee S, Lee S, Woo S, Kim K, Kim K, et al. Programmed Death Ligand 1-Expressing Classical Dendritic Cells MitigateHelicobacter-Induced Gastritis. Cell Mol Gastroenterol Hepatol. 2021;12:715-739 pubmed 出版商
  217. Chen C, Hsu S, Chung T, Chu C, Wang H, Hsiao P, et al. Arginine is an epigenetic regulator targeting TEAD4 to modulate OXPHOS in prostate cancer cells. Nat Commun. 2021;12:2398 pubmed 出版商
  218. Wang S, Li S, Li Y, Jiang Q, Li X, Wang Y, et al. Non-muscle myosin heavy chain 9 maintains intestinal homeostasis by preventing epithelium necroptosis and colitis adenoma formation. Stem Cell Reports. 2021;16:1290-1301 pubmed 出版商
  219. Della Chiara G, Gervasoni F, Fakiola M, Godano C, D Oria C, Azzolin L, et al. Epigenomic landscape of human colorectal cancer unveils an aberrant core of pan-cancer enhancers orchestrated by YAP/TAZ. Nat Commun. 2021;12:2340 pubmed 出版商
  220. Gao L, Zhu D, Wang Q, Bao Z, Yin S, Qiang H, et al. Proteome Analysis of USP7 Substrates Revealed Its Role in Melanoma Through PI3K/Akt/FOXO and AMPK Pathways. Front Oncol. 2021;11:650165 pubmed 出版商
  221. Mu W, Li S, Xu J, Guo X, Wu H, Chen Z, et al. Hypothalamic Rax+ tanycytes contribute to tissue repair and tumorigenesis upon oncogene activation in mice. Nat Commun. 2021;12:2288 pubmed 出版商
  222. Nishina T, Deguchi Y, Ohshima D, Takeda W, Ohtsuka M, Shichino S, et al. Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer. Nat Commun. 2021;12:2281 pubmed 出版商
  223. Correll E, Ramser B, Knott M, McCullumsmith R, McGuire J, Ngwenya L. Deficits in pattern separation and dentate gyrus proliferation after rodent lateral fluid percussion injury. IBRO Neurosci Rep. 2021;10:31-41 pubmed 出版商
  224. Wang X, Zhang H, Sapio R, Yang J, Wong J, Zhang X, et al. SOD1 regulates ribosome biogenesis in KRAS mutant non-small cell lung cancer. Nat Commun. 2021;12:2259 pubmed 出版商
  225. Zou Z, Hu X, Luo T, Ming Z, Chen X, Xia L, et al. Naturally-occurring spinosyn A and its derivatives function as argininosuccinate synthase activator and tumor inhibitor. Nat Commun. 2021;12:2263 pubmed 出版商
  226. Yang C, Kwon D, Kim M, Im S, Lee Y. Commensal Microbiome Expands Tγδ17 Cells in the Lung and Promotes Particulate Matter-Induced Acute Neutrophilia. Front Immunol. 2021;12:645741 pubmed 出版商
  227. Zhu X, Chen L, Huang B, Li X, Yang L, Hu X, et al. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. J Exp Clin Cancer Res. 2021;40:122 pubmed 出版商
  228. Saunders D, Aamodt K, Richardson T, Hopkirk A, Aramandla R, Poffenberger G, et al. Coordinated interactions between endothelial cells and macrophages in the islet microenvironment promote β cell regeneration. NPJ Regen Med. 2021;6:22 pubmed 出版商
  229. Košík P, Durdik M, Skorvaga M, Klimova D, Kochanova D, Cerna Z, et al. Induction of AML Preleukemic Fusion Genes in HSPCs and DNA Damage Response in Preleukemic Fusion Gene Positive Samples. Antioxidants (Basel). 2021;10: pubmed 出版商
  230. Zhang J, Saravanabavan S, Rangan G. Effect of Reducing Ataxia-Telangiectasia Mutated (ATM) in Experimental Autosomal Dominant Polycystic Kidney Disease. Cells. 2021;10: pubmed 出版商
  231. Samdal H, Olsen L, Grøn K, Røyset E, Høiem T, Nervik I, et al. Establishment of a Patient-Derived Xenograft Model of Colorectal Cancer in CIEA NOG Mice and Exploring Smartfish Liquid Diet as a Source of Omega-3 Fatty Acids. Biomedicines. 2021;9: pubmed 出版商
  232. Levi M, Muscatello L, Brunetti B, Benazzi C, Parenti F, Gobbo F, et al. High Intrinsic Expression of P-glycoprotein and Breast Cancer Resistance Protein in Canine Mammary Carcinomas Regardless of Immunophenotype and Outcome. Animals (Basel). 2021;11: pubmed 出版商
  233. Joseph R, Soundararajan R, Vasaikar S, Yang F, Allton K, Tian L, et al. CD8+ T cells inhibit metastasis and CXCL4 regulates its function. Br J Cancer. 2021;125:176-189 pubmed 出版商
  234. Peng W, Chang M, Wu Y, Zhu W, Tong L, Zhang G, et al. Lyophilized powder of mesenchymal stem cell supernatant attenuates acute lung injury through the IL-6-p-STAT3-p63-JAG2 pathway. Stem Cell Res Ther. 2021;12:216 pubmed 出版商
  235. Zhu X, Wang X, Yan W, Yang H, Xiang Y, Lv F, et al. Ubiquitination-mediated degradation of TRDMT1 regulates homologous recombination and therapeutic response. NAR Cancer. 2021;3:zcab010 pubmed 出版商
  236. Bonilla W, Kirchhammer N, Marx A, Kallert S, Krzyzaniak M, Lu M, et al. Heterologous arenavirus vector prime-boost overrules self-tolerance for efficient tumor-specific CD8 T cell attack. Cell Rep Med. 2021;2:100209 pubmed 出版商
  237. Zheng F, Chen Z, Tang Q, Wang X, Chong D, Zhang T, et al. Cholesterol metabolic enzyme Ggpps regulates epicardium development and ventricular wall architecture integrity in mice. J Mol Cell Biol. 2021;13:445-454 pubmed 出版商
  238. Hanna R, Flamier A, Barabino A, Bernier G. G-quadruplexes originating from evolutionary conserved L1 elements interfere with neuronal gene expression in Alzheimer's disease. Nat Commun. 2021;12:1828 pubmed 出版商
  239. Du J, Yu Q, Liu Y, Du S, Huang L, Xu D, et al. A novel role of kallikrein-related peptidase 8 in the pathogenesis of diabetic cardiac fibrosis. Theranostics. 2021;11:4207-4231 pubmed 出版商
  240. Ryu Y, Lee D, Shim J, Park J, Kim Y, Choi S, et al. KY19382, a novel activator of Wnt/β-catenin signalling, promotes hair regrowth and hair follicle neogenesis. Br J Pharmacol. 2021;178:2533-2546 pubmed 出版商
  241. Sewastianik T, Straubhaar J, Zhao J, Samur M, Adler K, Tanton H, et al. miR-15a/16-1 deletion in activated B cells promotes plasma cell and mature B-cell neoplasms. Blood. 2021;137:1905-1919 pubmed 出版商
  242. Bi Lin K, Seshachalam P, Tuoc T, Stoykova A, Ghosh S, Singh M. Critical role of the BAF chromatin remodeling complex during murine neural crest development. PLoS Genet. 2021;17:e1009446 pubmed 出版商
  243. Hurtado de Mendoza T, Mose E, Botta G, Braun G, Kotamraju V, French R, et al. Tumor-penetrating therapy for β5 integrin-rich pancreas cancer. Nat Commun. 2021;12:1541 pubmed 出版商
  244. Song Y, Uchida H, Sharipol A, Piraino L, Mereness J, Ingalls M, et al. Development of a functional salivary gland tissue chip with potential for high-content drug screening. Commun Biol. 2021;4:361 pubmed 出版商
  245. Yi M, Liu Y, Umpierre A, Chen T, Ying Y, Zheng J, et al. Optogenetic activation of spinal microglia triggers chronic pain in mice. PLoS Biol. 2021;19:e3001154 pubmed 出版商
  246. Cleal L, McHaffie S, Lee M, Hastie N, Martínez Estrada O, Chau Y. Resolving the heterogeneity of diaphragmatic mesenchyme: a novel mouse model of congenital diaphragmatic hernia. Dis Model Mech. 2021;14: pubmed 出版商
  247. Steenbrugge J, Vander Elst N, Demeyere K, De Wever O, Sanders N, van den Broeck W, et al. OMO-1 reduces progression and enhances cisplatin efficacy in a 4T1-based non-c-MET addicted intraductal mouse model for triple-negative breast cancer. NPJ Breast Cancer. 2021;7:27 pubmed 出版商
  248. Zhang X, Wang X, Yuan Z, Radford S, Liu C, Libutti S, et al. Amino acids-Rab1A-mTORC1 signaling controls whole-body glucose homeostasis. Cell Rep. 2021;34:108830 pubmed 出版商
  249. Koehl M, Ladev xe8 ze E, Catania C, Cota D, Abrous D. Inhibition of mTOR signaling by genetic removal of p70 S6 kinase 1 increases anxiety-like behavior in mice. Transl Psychiatry. 2021;11:165 pubmed 出版商
  250. Shen T, Liu J, Wang C, Rixiati Y, Li S, Cai L, et al. Targeting Erbin in B cells for therapy of lung metastasis of colorectal cancer. Signal Transduct Target Ther. 2021;6:115 pubmed 出版商
  251. Shao N, Cheng J, Huang H, Gong X, Lu Y, Idris M, et al. GASC1 promotes hepatocellular carcinoma progression by inhibiting the degradation of ROCK2. Cell Death Dis. 2021;12:253 pubmed 出版商
  252. Sanchez Vazquez R, Martinez P, Blasco M. AKT-dependent signaling of extracellular cues through telomeres impact on tumorigenesis. PLoS Genet. 2021;17:e1009410 pubmed 出版商
  253. Krausová A, Buresova P, Sarnova L, Oyman Eyrilmez G, Skarda J, Wohl P, et al. Plectin ensures intestinal epithelial integrity and protects colon against colitis. Mucosal Immunol. 2021;14:691-702 pubmed 出版商
  254. Riedel M, Berthelsen M, Cai H, Haldrup J, Borre M, Paludan S, et al. In vivo CRISPR inactivation of Fos promotes prostate cancer progression by altering the associated AP-1 subunit Jun. Oncogene. 2021;40:2437-2447 pubmed 出版商
  255. Luo Y, Niu G, Yi H, Li Q, Wu Z, Wang J, et al. Nanomedicine promotes ferroptosis to inhibit tumour proliferation in vivo. Redox Biol. 2021;42:101908 pubmed 出版商
  256. Shekoohi S, Rajasekaran S, Patel D, Yang S, Liu W, Huang S, et al. Knocking out alpha-synuclein in melanoma cells dysregulates cellular iron metabolism and suppresses tumor growth. Sci Rep. 2021;11:5267 pubmed 出版商
  257. Fan X, Zhao Z, Song J, Zhang D, Wu F, Tu J, et al. LncRNA-SNHG6 promotes the progression of hepatocellular carcinoma by targeting miR-6509-5p and HIF1A. Cancer Cell Int. 2021;21:150 pubmed 出版商
  258. Mrouj K, Andrés Sánchez N, Dubra G, Singh P, Sobecki M, Chahar D, et al. Ki-67 regulates global gene expression and promotes sequential stages of carcinogenesis. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  259. Tang X, Ding H, Liang M, Chen X, Yan Y, Wan N, et al. Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy. Thorac Cancer. 2021;12:1219-1230 pubmed 出版商
  260. Xiao Z, Yang X, Liu Z, Shao Z, Song C, Zhang K, et al. GASC1 promotes glioma progression by enhancing NOTCH1 signaling. Mol Med Rep. 2021;23: pubmed 出版商
  261. Zheng F, Chen J, Zhang X, Wang Z, Chen J, Lin X, et al. The HIF-1α antisense long non-coding RNA drives a positive feedback loop of HIF-1α mediated transactivation and glycolysis. Nat Commun. 2021;12:1341 pubmed 出版商
  262. Zarb Y, Sridhar S, Nassiri S, Utz S, Schaffenrath J, Maheshwari U, et al. Microglia control small vessel calcification via TREM2. Sci Adv. 2021;7: pubmed 出版商
  263. He Y, Kan W, Li Y, Hao Y, Huang A, Gu H, et al. A potent and selective small molecule inhibitor of myoferlin attenuates colorectal cancer progression. Clin Transl Med. 2021;11:e289 pubmed 出版商
  264. Wang H, Hou W, Perera A, Bettler C, Beach J, Ding X, et al. Targeting EphA2 suppresses hepatocellular carcinoma initiation and progression by dual inhibition of JAK1/STAT3 and AKT signaling. Cell Rep. 2021;34:108765 pubmed 出版商
  265. Kim M, Cervantes C, Jung Y, Zhang X, Zhang J, Lee S, et al. PAF remodels the DREAM complex to bypass cell quiescence and promote lung tumorigenesis. Mol Cell. 2021;81:1698-1714.e6 pubmed 出版商
  266. Little J, McNeely K, Michel N, Bott C, Lettieri K, Hecht M, et al. Loss of Coiled-Coil Protein Cep55 Impairs Neural Stem Cell Abscission and Results in p53-Dependent Apoptosis in Developing Cortex. J Neurosci. 2021;41:3344-3365 pubmed 出版商
  267. Kumar B, Ahmad R, Giannico G, Zent R, Talmon G, Harris R, et al. Claudin-2 inhibits renal clear cell carcinoma progression by inhibiting YAP-activation. J Exp Clin Cancer Res. 2021;40:77 pubmed 出版商
  268. Sela Y, Li J, Kuri P, Merrell A, Li N, Lengner C, et al. Dissecting phenotypic transitions in metastatic disease via photoconversion-based isolation. elife. 2021;10: pubmed 出版商
  269. Wang M, Dean E, Quittner Strom E, Zhu Y, Chowdhury K, Zhang Z, et al. Glucagon blockade restores functional β-cell mass in type 1 diabetic mice and enhances function of human islets. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  270. Khosravi Maharlooei M, Li H, Hoelzl M, Zhao G, Ruiz A, Misra A, et al. Role of the thymus in spontaneous development of a multi-organ autoimmune disease in human immune system mice. J Autoimmun. 2021;119:102612 pubmed 出版商
  271. Li X, Liu G, Yang L, Li Z, Zhang Z, Xu Z, et al. Decoding Cortical Glial Cell Development. Neurosci Bull. 2021;37:440-460 pubmed 出版商
  272. Solan J, Hingorani S, Lampe P. Cx43 phosphorylation sites regulate pancreatic cancer metastasis. Oncogene. 2021;40:1909-1920 pubmed 出版商
  273. Innes A, Sun B, Wagner V, Brookes S, McHugh D, Pombo J, et al. XPO7 is a tumor suppressor regulating p21CIP1-dependent senescence. Genes Dev. 2021;35:379-391 pubmed 出版商
  274. Braun S, Petrova R, Tang J, Krokhotin A, Miller E, Tang Y, et al. BAF subunit switching regulates chromatin accessibility to control cell cycle exit in the developing mammalian cortex. Genes Dev. 2021;35:335-353 pubmed 出版商
  275. Hu Z, Chen Y, Huang M, Tu J, Tu S, Pan Y, et al. PLG inhibits Hippo signaling pathway through SRC in the hepatitis B virus-induced hepatocellular-carcinoma progression. Am J Transl Res. 2021;13:515-531 pubmed
  276. Song L, Chang R, Sun X, Lu L, Gao H, Lu H, et al. Macrophage-derived EDA-A2 inhibits intestinal stem cells by targeting miR-494/EDA2R/β-catenin signaling in mice. Commun Biol. 2021;4:213 pubmed 出版商
  277. Yang P, Chou C, Huang C, Wen W, Chen H, Shun C, et al. Obesity alters ovarian folliculogenesis through disrupted angiogenesis from increased IL-10 production. Mol Metab. 2021;49:101189 pubmed 出版商
  278. Ostrop J, Zwiggelaar R, Terndrup Pedersen M, Gerbe F, B xf6 sl K, Lindholm H, et al. A Semi-automated Organoid Screening Method Demonstrates Epigenetic Control of Intestinal Epithelial Differentiation. Front Cell Dev Biol. 2020;8:618552 pubmed 出版商
  279. Trujillo C, Rice E, Schaefer N, Chaim I, Wheeler E, Madrigal A, et al. Reintroduction of the archaic variant of NOVA1 in cortical organoids alters neurodevelopment. Science. 2021;371: pubmed 出版商
  280. Kajiwara K, Yamano S, Aoki K, Okuzaki D, Matsumoto K, Okada M. CDCP1 promotes compensatory renal growth by integrating Src and Met signaling. Life Sci Alliance. 2021;4: pubmed 出版商
  281. Wan X, Zhou M, Huang F, Zhao N, Chen X, Wu Y, et al. AKT1-CREB stimulation of PDGFRα expression is pivotal for PTEN deficient tumor development. Cell Death Dis. 2021;12:172 pubmed 出版商
  282. Wei F, Ba S, Jin M, Ci R, Wang X, E F, et al. RNF180 Inhibits Proliferation and Promotes Apoptosis of Colorectal Cancer Through Ubiquitination of WISP1. Front Cell Dev Biol. 2020;8:623455 pubmed 出版商
  283. Sene L, Scarano W, Zapparoli A, Gontijo J, Boer P. Impact of gestational low-protein intake on embryonic kidney microRNA expression and in nephron progenitor cells of the male fetus. PLoS ONE. 2021;16:e0246289 pubmed 出版商
  284. Yuan G, Flores N, Hausmann S, Lofgren S, Kharchenko V, Angulo Ibáñez M, et al. Elevated NSD3 histone methylation activity drives squamous cell lung cancer. Nature. 2021;590:504-508 pubmed 出版商
  285. Merkenschlager J, Finkin S, Ramos V, Kraft J, Cipolla M, Nowosad C, et al. Dynamic regulation of TFH selection during the germinal centre reaction. Nature. 2021;591:458-463 pubmed 出版商
  286. Delgado E, Erickson H, Tao J, Monga S, Duncan A, Anakk S. Scaffolding Protein IQGAP1 is Dispensable But Its Overexpression Promotes Hepatocellular Carcinoma via YAP1 Signaling. Mol Cell Biol. 2021;: pubmed 出版商
  287. Hidalgo Sastre A, Kuebelsbeck L, Jochheim L, Staufer L, Altmayr F, Johannes W, et al. Toll-like receptor 3 expression in myeloid cells is essential for efficient regeneration after acute pancreatitis in mice. Eur J Immunol. 2021;51:1182-1194 pubmed 出版商
  288. Phan T, Schink L, Mann J, Merk V, Zwicky P, Mundt S, et al. Keratinocytes control skin immune homeostasis through de novo-synthesized glucocorticoids. Sci Adv. 2021;7: pubmed 出版商
  289. Hofving T, Elias E, Rehammar A, Inge L, Altiparmak G, Persson M, et al. SMAD4 haploinsufficiency in small intestinal neuroendocrine tumors. BMC Cancer. 2021;21:101 pubmed 出版商
  290. Shen X, Zhao K, Xu L, Cheng G, Zhu J, Gan L, et al. YTHDF2 Inhibits Gastric Cancer Cell Growth by Regulating FOXC2 Signaling Pathway. Front Genet. 2020;11:592042 pubmed 出版商
  291. Montaser H, Patel K, Balboa D, Ibrahim H, Lithovius V, Näätänen A, et al. Loss of MANF Causes Childhood-Onset Syndromic Diabetes Due to Increased Endoplasmic Reticulum Stress. Diabetes. 2021;70:1006-1018 pubmed 出版商
  292. Kitazawa K, Nadanaka S, Kadomatsu K, Kitagawa H. Chondroitin 6-sulfate represses keratinocyte proliferation in mouse skin, which is associated with psoriasis. Commun Biol. 2021;4:114 pubmed 出版商
  293. Steele N, Biffi G, Kemp S, Zhang Y, Drouillard D, Syu L, et al. Inhibition of Hedgehog Signaling Alters Fibroblast Composition in Pancreatic Cancer. Clin Cancer Res. 2021;: pubmed 出版商
  294. Buitrago Molina L, Marhenke S, Becker D, Geffers R, Itzel T, Teufel A, et al. p53-Independent Induction of p21 Fails to Control Regeneration and Hepatocarcinogenesis in a Murine Liver Injury Model. Cell Mol Gastroenterol Hepatol. 2021;11:1387-1404 pubmed 出版商
  295. Yang Y, Li X, Ma Z, Wang C, Yang Q, Byrne Steele M, et al. CTLA-4 expression by B-1a B cells is essential for immune tolerance. Nat Commun. 2021;12:525 pubmed 出版商
  296. Chen Y, Gao H, Xie W, Guo J, Fang Q, Zhao P, et al. Genomic and transcriptomic analysis of pituitary adenomas reveals the impacts of copy number variations on gene expression and clinical prognosis among prolactin-secreting subtype. Aging (Albany NY). 2020;13:1276-1293 pubmed 出版商
  297. Zhang P, Ishikawa M, Doyle A, Nakamura T, He B, Yamada Y. Pannexin 3 regulates skin development via Epiprofin. Sci Rep. 2021;11:1779 pubmed 出版商
  298. Jing C, Duan Y, Zhou M, Yue K, Zhuo S, Li X, et al. Blockade of deubiquitinating enzyme PSMD14 overcomes chemoresistance in head and neck squamous cell carcinoma by antagonizing E2F1/Akt/SOX2-mediated stemness. Theranostics. 2021;11:2655-2669 pubmed 出版商
  299. Luongo C, Butruille L, S xe9 billot A, Le Blay K, Schwaninger M, Heuer H, et al. Absence of Both Thyroid Hormone Transporters MCT8 and OATP1C1 Impairs Neural Stem Cell Fate in the Adult Mouse Subventricular Zone. Stem Cell Reports. 2021;16:337-353 pubmed 出版商
  300. Wang Y, Mohseni M, Grauel A, Diez J, Guan W, Liang S, et al. SHP2 blockade enhances anti-tumor immunity via tumor cell intrinsic and extrinsic mechanisms. Sci Rep. 2021;11:1399 pubmed 出版商
  301. Break T, Oikonomou V, Dutzan N, Desai J, Swidergall M, Freiwald T, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021;371: pubmed 出版商
  302. Li S, Zhu Z, Xue M, Pan X, Tong G, Yi X, et al. The protective effects of fibroblast growth factor 10 against hepatic ischemia-reperfusion injury in mice. Redox Biol. 2021;40:101859 pubmed 出版商
  303. Arber C, Lovejoy C, Harris L, Willumsen N, Alatza A, Casey J, et al. Familial Alzheimer's Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis. Cell Rep. 2021;34:108615 pubmed 出版商
  304. Peng D, Lin B, Xie M, Zhang P, Guo Q, Li Q, et al. Histone demethylase KDM5A promotes tumorigenesis of osteosarcoma tumor. Cell Death Discov. 2021;7:9 pubmed 出版商
  305. Yang J, Kitami M, Pan H, Nakamura M, Zhang H, Liu F, et al. Augmented BMP signaling commits cranial neural crest cells to a chondrogenic fate by suppressing autophagic β-catenin degradation. Sci Signal. 2021;14: pubmed 出版商
  306. Costa B, Fletcher M, Boskovic P, Ivanova E, Eisemann T, Lohr S, et al. A Set of Cell Lines Derived from a Genetic Murine Glioblastoma Model Recapitulates Molecular and Morphological Characteristics of Human Tumors. Cancers (Basel). 2021;13: pubmed 出版商
  307. Sanchez D, Missiaen R, Skuli N, Steger D, Simon M. Cell-Intrinsic Tumorigenic Functions of PPARγ in Bladder Urothelial Carcinoma. Mol Cancer Res. 2021;19:598-611 pubmed 出版商
  308. Mehta N, Li R, Zhang D, Soomro A, He J, Zhang I, et al. miR299a-5p promotes renal fibrosis by suppressing the antifibrotic actions of follistatin. Sci Rep. 2021;11:88 pubmed 出版商
  309. Long Z, Deng L, Li C, He Q, He Y, Hu X, et al. Loss of EHF facilitates the development of treatment-induced neuroendocrine prostate cancer. Cell Death Dis. 2021;12:46 pubmed 出版商
  310. Aslam M, Alemdehy M, Kwesi Maliepaard E, Muhaimin F, Caganova M, Pardieck I, et al. Histone methyltransferase DOT1L controls state-specific identity during B cell differentiation. EMBO Rep. 2021;22:e51184 pubmed 出版商
  311. Ghoroghi S, Mary B, Larnicol A, Asokan N, Klein A, Osmani N, et al. Ral GTPases promote breast cancer metastasis by controlling biogenesis and organ targeting of exosomes. elife. 2021;10: pubmed 出版商
  312. Cuevas E, Holder D, Alshehri A, Tr xe9 guier J, Lakowski J, Sowden J. NRL-/- gene edited human embryonic stem cells generate rod-deficient retinal organoids enriched in S-cone-like photoreceptors. Stem Cells. 2021;39:414-428 pubmed 出版商
  313. Russell J, Lim X, Santambrogio A, Yianni V, Kemkem Y, Wang B, et al. Pituitary stem cells produce paracrine WNT signals to control the expansion of their descendant progenitor cells. elife. 2021;10: pubmed 出版商
  314. Ribeiro Parenti L, Jarry A, Cavin J, Willemetz A, Le Beyec J, Sannier A, et al. Bariatric surgery induces a new gastric mucosa phenotype with increased functional glucagon-like peptide-1 expressing cells. Nat Commun. 2021;12:110 pubmed 出版商
  315. Caetano A, Yianni V, Volponi A, Booth V, D Agostino E, Sharpe P. Defining human mesenchymal and epithelial heterogeneity in response to oral inflammatory disease. elife. 2021;10: pubmed 出版商
  316. Webb L, Fra Bido S, Innocentin S, Matheson L, Attaf N, Bignon A, et al. Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ. Aging Cell. 2021;20:e13295 pubmed 出版商
  317. He L, Bhat K, Duhacheck Muggy S, Ioannidis A, Zhang L, Nguyen N, et al. Tumor necrosis factor receptor signaling modulates carcinogenesis in a mouse model of breast cancer. Neoplasia. 2021;23:197-209 pubmed 出版商
  318. Yang S, Michel K, Jokhi V, Nedivi E, Arlotta P. Neuron class-specific responses govern adaptive myelin remodeling in the neocortex. Science. 2020;370: pubmed 出版商
  319. Humpton T, Nomura K, Weber J, Magnussen H, Hock A, Nixon C, et al. Differential requirements for MDM2 E3 activity during embryogenesis and in adult mice. Genes Dev. 2021;35:117-132 pubmed 出版商
  320. Gregorova M, Morse D, Brignoli T, Steventon J, Hamilton F, Albur M, et al. Post-acute COVID-19 associated with evidence of bystander T-cell activation and a recurring antibiotic-resistant bacterial pneumonia. elife. 2020;9: pubmed 出版商
  321. Li X, Zhang M, Huang X, Liang W, Li G, Lu X, et al. Ubiquitination of RIPK1 regulates its activation mediated by TNFR1 and TLRs signaling in distinct manners. Nat Commun. 2020;11:6364 pubmed 出版商
  322. Redl E, Sheibani Tezerji R, Cardona C, Hamminger P, Timelthaler G, Hassler M, et al. Requirement of DNMT1 to orchestrate epigenomic reprogramming for NPM-ALK-driven lymphomagenesis. Life Sci Alliance. 2021;4: pubmed 出版商
  323. Song M, YEKU O, Rafiq S, Purdon T, Dong X, Zhu L, et al. Tumor derived UBR5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nat Commun. 2020;11:6298 pubmed 出版商
  324. Chung W, Challagundla L, Zhou Y, Li M, Atfi A, Xu K. Loss of Jag1 cooperates with oncogenic Kras to induce pancreatic cystic neoplasms. Life Sci Alliance. 2021;4: pubmed 出版商
  325. Mia M, Cibi D, Abdul Ghani S, Song W, Tee N, Ghosh S, et al. YAP/TAZ deficiency reprograms macrophage phenotype and improves infarct healing and cardiac function after myocardial infarction. PLoS Biol. 2020;18:e3000941 pubmed 出版商
  326. Liu J, Feng W, Liu M, Rao H, Li X, Teng Y, et al. Stomach-specific c-Myc overexpression drives gastric adenoma in mice through AKT/mammalian target of rapamycin signaling. Bosn J Basic Med Sci. 2021;21:434-446 pubmed 出版商
  327. Pal A, Leung J, Ang G, Rao V, Pignata L, Lim H, et al. EHMT2 epigenetically suppresses Wnt signaling and is a potential target in embryonal rhabdomyosarcoma. elife. 2020;9: pubmed 出版商
  328. Olateju O, Mor xe8 L, Arthur J, Frenguelli B. Mitogen and Stress-activated Protein Kinase 1 Negatively Regulates Hippocampal Neurogenesis. Neuroscience. 2021;452:228-234 pubmed 出版商
  329. Wu S, Xu R, Zhu X, He H, Zhang J, Zeng Q, et al. The long noncoding RNA LINC01140/miR-140-5p/FGF9 axis modulates bladder cancer cell aggressiveness and macrophage M2 polarization. Aging (Albany NY). 2020;12:25845-25864 pubmed 出版商
  330. Atkins A, Xu M, Li M, Rogers N, Pryzhkova M, Jordan P. SMC5/6 is required for replication fork stability and faithful chromosome segregation during neurogenesis. elife. 2020;9: pubmed 出版商
  331. Jensen I, Jensen S, Sjaastad F, Gibson Corley K, Dileepan T, Griffith T, et al. Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. elife. 2020;9: pubmed 出版商
  332. Luo B, Zhan Y, Luo M, Dong H, Liu J, Lin Y, et al. Engineering of α-PD-1 antibody-expressing long-lived plasma cells by CRISPR/Cas9-mediated targeted gene integration. Cell Death Dis. 2020;11:973 pubmed 出版商
  333. Chiremba T, Neufeld K. Constitutive Musashi1 expression impairs mouse postnatal development and intestinal homeostasis. Mol Biol Cell. 2021;32:28-44 pubmed 出版商
  334. Orsenigo F, Conze L, Jauhiainen S, Corada M, Lazzaroni F, Malinverno M, et al. Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell resolution. elife. 2020;9: pubmed 出版商
  335. Esk C, Lindenhofer D, Haendeler S, Wester R, Pflug F, Schroeder B, et al. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science. 2020;370:935-941 pubmed 出版商
  336. Guo H, Chou W, Lai Y, Liang K, Tam J, Brickey W, et al. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science. 2020;370: pubmed 出版商
  337. Chen K, Yoshimura T, Yao X, Gong W, Huang J, Dzutsev A, et al. Distinct contributions of cathelin-related antimicrobial peptide (CRAMP) derived from epithelial cells and macrophages to colon mucosal homeostasis. J Pathol. 2021;253:339-350 pubmed 出版商
  338. Pavlovic N, Calitz C, Thanapirom K, Mazza G, Rombouts K, Gerwins P, et al. Inhibiting IRE1α-endonuclease activity decreases tumor burden in a mouse model for hepatocellular carcinoma. elife. 2020;9: pubmed 出版商
  339. Zhan L, Fan L, Kodama L, Sohn P, Wong M, Mousa G, et al. A MAC2-positive progenitor-like microglial population is resistant to CSF1R inhibition in adult mouse brain. elife. 2020;9: pubmed 出版商
  340. Harrison C, Trevelin S, Richards D, Santos C, Sawyer G, Markovinovic A, et al. Fibroblast Nox2 (NADPH Oxidase-2) Regulates ANG II (Angiotensin II)-Induced Vascular Remodeling and Hypertension via Paracrine Signaling to Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol. 2021;41:698-710 pubmed 出版商
  341. Singhal N, Bai M, Lee E, Luo S, Cook K, Ma D. Cytoprotection by a naturally occurring variant of ATP5G1 in Arctic ground squirrel neural progenitor cells. elife. 2020;9: pubmed 出版商
  342. Cai J, Lin K, Cai W, Lin Y, Liu X, Guo L, et al. Tumors driven by RAS signaling harbor a natural vulnerability to oncolytic virus M1. Mol Oncol. 2020;14:3153-3168 pubmed 出版商
  343. Yao C, Haensel D, Gaddam S, Patel T, Atwood S, Sarin K, et al. AP-1 and TGFß cooperativity drives non-canonical Hedgehog signaling in resistant basal cell carcinoma. Nat Commun. 2020;11:5079 pubmed 出版商
  344. Mevel R, Steiner I, Mason S, Galbraith L, Patel R, Fadlullah M, et al. RUNX1 marks a luminal castration-resistant lineage established at the onset of prostate development. elife. 2020;9: pubmed 出版商
  345. Ashcroft F, Mahammad N, Midtun Flatekvål H, Jullumstrø Feuerherm A, Johansen B. cPLA2α Enzyme Inhibition Attenuates Inflammation and Keratinocyte Proliferation. Biomolecules. 2020;10: pubmed 出版商
  346. Omer A, Barrera M, Moran J, Lian X, Di Marco S, Beausejour C, et al. G3BP1 controls the senescence-associated secretome and its impact on cancer progression. Nat Commun. 2020;11:4979 pubmed 出版商
  347. Martínez Vicente I, Abrisqueta M, Herraiz C, Sires Campos J, Castejón Griñán M, Bennett D, et al. Mahogunin Ring Finger 1 Is Required for Genomic Stability and Modulates the Malignant Phenotype of Melanoma Cells. Cancers (Basel). 2020;12: pubmed 出版商
  348. Jin H, Wang S, Zaal E, Wang C, Wu H, Bosma A, et al. A powerful drug combination strategy targeting glutamine addiction for the treatment of human liver cancer. elife. 2020;9: pubmed 出版商
  349. Erber R, Meyer J, Taubert H, Fasching P, Wach S, Haberle L, et al. PIWI-Like 1 and PIWI-Like 2 Expression in Breast Cancer. Cancers (Basel). 2020;12: pubmed 出版商
  350. Sepe L, Hartl K, Iftekhar A, Berger H, Kumar N, Goosmann C, et al. Genotoxic Effect of Salmonella Paratyphi A Infection on Human Primary Gallbladder Cells. MBio. 2020;11: pubmed 出版商
  351. Schweizer L, Thierfelder F, Thomas C, Soschinski P, Suwala A, Stichel D, et al. Molecular characterization of CNS paragangliomas identifies cauda equina paragangliomas as a distinct tumor entity. Acta Neuropathol. 2020;140:893-906 pubmed 出版商
  352. Gao J, Wu Y, He D, Zhu X, Li H, Liu H, et al. Anti-aging effects of Ribes meyeri anthocyanins on neural stem cells and aging mice. Aging (Albany NY). 2020;12:17738-17753 pubmed 出版商
  353. Tremblay M, Viala S, Shafer M, Graham Paquin A, Liu C, Bouchard M. Regulation of stem/progenitor cell maintenance by BMP5 in prostate homeostasis and cancer initiation. elife. 2020;9: pubmed 出版商
  354. Liu C, Teo M, Pek S, Wu X, Leong M, Tay H, et al. A Multifunctional Role of Leucine-Rich α-2-Glycoprotein 1 in Cutaneous Wound Healing Under Normal and Diabetic Conditions. Diabetes. 2020;69:2467-2480 pubmed 出版商
  355. Zhou S, Zhang W, Cai G, Ding Y, Wei C, Li S, et al. Myofiber necroptosis promotes muscle stem cell proliferation via releasing Tenascin-C during regeneration. Cell Res. 2020;30:1063-1077 pubmed 出版商
  356. Horiguchi K, Yoshida S, Tsukada T, Nakakura T, Fujiwara K, Hasegawa R, et al. Expression and functions of cluster of differentiation 9 and 81 in rat mammary epithelial cells. J Reprod Dev. 2020;66:515-522 pubmed 出版商
  357. Dhanasekaran R, Park J, Yevtodiyenko A, Bellovin D, Adam S, Kd A, et al. MYC ASO Impedes Tumorigenesis and Elicits Oncogene Addiction in Autochthonous Transgenic Mouse Models of HCC and RCC. Mol Ther Nucleic Acids. 2020;21:850-859 pubmed 出版商
  358. Capaci V, Bascetta L, Fantuz M, Beznoussenko G, Sommaggio R, Cancila V, et al. Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome. Nat Commun. 2020;11:3945 pubmed 出版商
  359. Coré N, Erni A, Hoffmann H, Mellon P, Saurin A, Beclin C, et al. Stem cell regionalization during olfactory bulb neurogenesis depends on regulatory interactions between Vax1 and Pax6. elife. 2020;9: pubmed 出版商
  360. Yoshida S, Aoki K, Fujiwara K, Nakakura T, Kawamura A, Yamada K, et al. The novel ciliogenesis regulator DYRK2 governs Hedgehog signaling during mouse embryogenesis. elife. 2020;9: pubmed 出版商
  361. Varela Eirin M, Carpintero Fernández P, Sánchez Temprano A, Varela Vazquez A, Paíno C, Casado Diaz A, et al. Senolytic activity of small molecular polyphenols from olive restores chondrocyte redifferentiation and promotes a pro-regenerative environment in osteoarthritis. Aging (Albany NY). 2020;12:15882-15905 pubmed 出版商
  362. Magnusson J, Zamboni M, Santopolo G, Mold J, Barrientos Somarribas M, Talavera López C, et al. Activation of a neural stem cell transcriptional program in parenchymal astrocytes. elife. 2020;9: pubmed 出版商
  363. Xu E, Vosburgh E, Wong C, Tang L, Notterman D. Genetic analysis of the cooperative tumorigenic effects of targeted deletions of tumor suppressors Rb1, Trp53, Men1, and Pten in neuroendocrine tumors in mice. Oncotarget. 2020;11:2718-2739 pubmed 出版商
  364. Pseftogas A, Xanthopoulos K, Poutahidis T, Ainali C, Dafou D, Panteris E, et al. The Tumor Suppressor CYLD Inhibits Mammary Epithelial to Mesenchymal Transition by the Coordinated Inhibition of YAP/TAZ and TGF Signaling. Cancers (Basel). 2020;12: pubmed 出版商
  365. Dabelsteen S, Pallesen E, Marinova I, Nielsen M, Adamopoulou M, Rømer T, et al. Essential Functions of Glycans in Human Epithelia Dissected by a CRISPR-Cas9-Engineered Human Organotypic Skin Model. Dev Cell. 2020;54:669-684.e7 pubmed 出版商
  366. La Rosa S, Bonzini M, Sciarra A, Asioli S, Maragliano R, Arrigo M, et al. Exploring the Prognostic Role of Ki67 Proliferative Index in Merkel Cell Carcinoma of the Skin: Clinico-Pathologic Analysis of 84 Cases and Review of the Literature. Endocr Pathol. 2020;31:392-400 pubmed 出版商
  367. Wei J, Dong J, Li L. Cancer-associated fibroblasts-derived gamma-glutamyltransferase 5 promotes tumor growth and drug resistance in lung adenocarcinoma. Aging (Albany NY). 2020;12:13220-13233 pubmed 出版商
  368. Oguri Y, Shinoda K, Kim H, Alba D, Bolus W, Wang Q, et al. CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Cell. 2020;: pubmed 出版商
  369. Manils J, Webb L, Howes A, Janzen J, Boeing S, Bowcock A, et al. CARD14E138A signalling in keratinocytes induces TNF-dependent skin and systemic inflammation. elife. 2020;9: pubmed 出版商
  370. BURNS J, Cotleur B, Walther D, Bajrami B, Rubino S, Wei R, et al. Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. elife. 2020;9: pubmed 出版商
  371. Steer C, Mathä L, Shim H, Takei F. Lung group 2 innate lymphoid cells are trained by endogenous IL-33 in the neonatal period. JCI Insight. 2020;5: pubmed 出版商
  372. Zhou L, Wang A, Yu G, Zhou J, Xu H, Wang C. The Diagnostic and Clinical Significance of TFE3 Immunohistochemical Nuclear Expression in Solitary Fibrous Tumour. Anal Cell Pathol (Amst). 2020;2020:8232803 pubmed 出版商
  373. Borges K, Pignatti E, Leng S, Kariyawasam D, Ruiz Babot G, Ramalho F, et al. Wnt/β-catenin activation cooperates with loss of p53 to cause adrenocortical carcinoma in mice. Oncogene. 2020;39:5282-5291 pubmed 出版商
  374. Jiao T, Yao X, Zhao Y, Zhou Y, Gao Y, Fan S, et al. Dexamethasone-Induced Liver Enlargement Is Related to PXR/YAP Activation and Lipid Accumulation but Not Hepatocyte Proliferation. Drug Metab Dispos. 2020;48:830-839 pubmed 出版商
  375. Zhou S, Wu W, Wang Z, Wang Z, Su Q, Li X, et al. RelB regulates the homeostatic proliferation but not the function of Tregs. BMC Immunol. 2020;21:37 pubmed 出版商
  376. Latif A, Jernei T, Podolski Renic A, Kuo C, Vágvölgyi M, Girst G, et al. Protoflavone-Chalcone Hybrids Exhibit Enhanced Antitumor Action through Modulating Redox Balance, Depolarizing the Mitochondrial Membrane, and Inhibiting ATR-Dependent Signaling. Antioxidants (Basel). 2020;9: pubmed 出版商
  377. Liu H, Guo D, Sha Y, Zhang C, Jiang Y, Hong L, et al. ANXA7 promotes the cell cycle, proliferation and cell adhesion-mediated drug resistance of multiple myeloma cells by up-regulating CDC5L. Aging (Albany NY). 2020;12:11100-11115 pubmed 出版商
  378. Zhang H, Qi L, Du Y, Huang L, Braun F, Kogiso M, et al. Patient-Derived Orthotopic Xenograft (PDOX) Mouse Models of Primary and Recurrent Meningioma. Cancers (Basel). 2020;12: pubmed 出版商
  379. Macchi M, Magalon K, Zimmer C, Peeva E, El Waly B, Brousse B, et al. Mature oligodendrocytes bordering lesions limit demyelination and favor myelin repair via heparan sulfate production. elife. 2020;9: pubmed 出版商
  380. Mathew D, Giles J, Baxter A, Greenplate A, Wu J, Alanio C, et al. Deep immune profiling of COVID-19 patients reveals patient heterogeneity and distinct immunotypes with implications for therapeutic interventions. bioRxiv. 2020;: pubmed 出版商
  381. Lechertier T, Reynolds L, Kim H, Pedrosa A, Gómez Escudero J, Muñoz Félix J, et al. Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat Commun. 2020;11:2810 pubmed 出版商
  382. Oh D, Kwek S, Raju S, Li T, McCarthy E, Chow E, et al. Intratumoral CD4+ T Cells Mediate Anti-tumor Cytotoxicity in Human Bladder Cancer. Cell. 2020;181:1612-1625.e13 pubmed 出版商
  383. Suzuki K, Okada H, Takemura G, Takada C, Tomita H, Yano H, et al. Recombinant thrombomodulin protects against LPS-induced acute respiratory distress syndrome via preservation of pulmonary endothelial glycocalyx. Br J Pharmacol. 2020;177:4021-4033 pubmed 出版商
  384. Benezeder T, Painsi C, Patra V, Dey S, Holcmann M, Lange Asschenfeldt B, et al. Dithranol targets keratinocytes, their crosstalk with neutrophils and inhibits the IL-36 inflammatory loop in psoriasis. elife. 2020;9: pubmed 出版商
  385. van Dijk B, Hogeweg P, Doekes H, Takeuchi N. Slightly beneficial genes are retained by bacteria evolving DNA uptake despite selfish elements. elife. 2020;9: pubmed 出版商
  386. Dubey R, van Kerkhof P, Jordens I, Malinauskas T, Pusapati G, McKenna J, et al. R-spondins engage heparan sulfate proteoglycans to potentiate WNT signaling. elife. 2020;9: pubmed 出版商
  387. Fan Z, Tian Y, Chen Z, Liu L, Zhou Q, He J, et al. Blocking interaction between SHP2 and PD-1 denotes a novel opportunity for developing PD-1 inhibitors. EMBO Mol Med. 2020;12:e11571 pubmed 出版商
  388. Shinada M, Kato D, Kamoto S, Yoshimoto S, Tsuboi M, Yoshitake R, et al. PDPN Is Expressed in Various Types of Canine Tumors and Its Silencing Induces Apoptosis and Cell Cycle Arrest in Canine Malignant Melanoma. Cells. 2020;9: pubmed 出版商
  389. Di Matteo F, Pipicelli F, Kyrousi C, Tovecci I, Penna E, Crispino M, et al. Cystatin B is essential for proliferation and interneuron migration in individuals with EPM1 epilepsy. EMBO Mol Med. 2020;12:e11419 pubmed 出版商
  390. Pallikkuth S, Chaudhury S, Lu P, Pan L, Jongert E, Wille Reece U, et al. A delayed fractionated dose RTS,S AS01 vaccine regimen mediates protection via improved T follicular helper and B cell responses. elife. 2020;9: pubmed 出版商
  391. Antoch M, Wrobel M, Gillard B, Kuropatwinski K, Toshkov I, Gleiberman A, et al. Superior cancer preventive efficacy of low versus high dose of mTOR inhibitor in a mouse model of prostate cancer. Oncotarget. 2020;11:1373-1387 pubmed 出版商
  392. Gebril H, Rose R, Gesese R, Emond M, Huo Y, Aronica E, et al. Adenosine kinase inhibition promotes proliferation of neural stem cells after traumatic brain injury. Brain Commun. 2020;2:fcaa017 pubmed 出版商
  393. Gualandi M, Iorio M, Engeler O, Serra Roma A, Gasparre G, Schulte J, et al. Oncogenic ALK F1174L drives tumorigenesis in cutaneous squamous cell carcinoma. Life Sci Alliance. 2020;3: pubmed 出版商
  394. Matsumoto N, Tanaka S, Horiike T, Shinmyo Y, Kawasaki H. A discrete subtype of neural progenitor crucial for cortical folding in the gyrencephalic mammalian brain. elife. 2020;9: pubmed 出版商
  395. Jo H, Park Y, Kim T, Kim J, Lee J, Kim S, et al. Modulation of SIRT3 expression through CDK4/6 enhances the anti-cancer effect of sorafenib in hepatocellular carcinoma cells. BMC Cancer. 2020;20:332 pubmed 出版商
  396. Mayerl S, Heuer H, Ffrench Constant C. Hippocampal Neurogenesis Requires Cell-Autonomous Thyroid Hormone Signaling. Stem Cell Reports. 2020;14:845-860 pubmed 出版商
  397. Ide S, Yahara Y, Kobayashi Y, Strausser S, Ide K, Watwe A, et al. Yolk-sac-derived macrophages progressively expand in the mouse kidney with age. elife. 2020;9: pubmed 出版商
  398. Alajati A, D Ambrosio M, Troiani M, Mosole S, Pellegrini L, Chen J, et al. CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo. J Clin Invest. 2020;130:2435-2450 pubmed 出版商
  399. Ruscetti M, Morris J, Mezzadra R, Russell J, Leibold J, Romesser P, et al. Senescence-Induced Vascular Remodeling Creates Therapeutic Vulnerabilities in Pancreas Cancer. Cell. 2020;181:424-441.e21 pubmed 出版商
  400. Ceccarelli M, D Andrea G, Micheli L, Tirone F. Deletion of Btg1 Induces Prmt1-Dependent Apoptosis and Increased Stemness in Shh-Type Medulloblastoma Cells Without Affecting Tumor Frequency. Front Oncol. 2020;10:226 pubmed 出版商
  401. Liu F, Hu L, Pei Y, Zheng K, Wang W, Li S, et al. Long non-coding RNA AFAP1-AS1 accelerates the progression of melanoma by targeting miR-653-5p/RAI14 axis. BMC Cancer. 2020;20:258 pubmed 出版商
  402. Hermanova I, Z iga Garc a P, Caro Maldonado A, Fernandez Ruiz S, Salvador F, Mart n Mart n N, et al. Genetic manipulation of LKB1 elicits lethal metastatic prostate cancer. J Exp Med. 2020;217: pubmed 出版商
  403. Kim M, Chung Y, Kim H, Woo J, Ahn S, Park S. Immune microenvironment in ductal carcinoma in situ: a comparison with invasive carcinoma of the breast. Breast Cancer Res. 2020;22:32 pubmed 出版商
  404. Chu J, Niu X, Chang J, Shao M, Peng L, Xi Y, et al. Metabolic remodeling by TIGAR overexpression is a therapeutic target in esophageal squamous-cell carcinoma. Theranostics. 2020;10:3488-3502 pubmed 出版商
  405. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  406. Pein M, Insua Rodríguez J, Hongu T, Riedel A, Meier J, Wiedmann L, et al. Metastasis-initiating cells induce and exploit a fibroblast niche to fuel malignant colonization of the lungs. Nat Commun. 2020;11:1494 pubmed 出版商
  407. Gremlich S, Roth Kleiner M, Equey L, Fytianos K, Schittny J, Cremona T. Tenascin-C inactivation impacts lung structure and function beyond lung development. Sci Rep. 2020;10:5118 pubmed 出版商
  408. Liu J, Liu Z, Wu Q, Lu Y, Wong C, Miao L, et al. Long noncoding RNA AGPG regulates PFKFB3-mediated tumor glycolytic reprogramming. Nat Commun. 2020;11:1507 pubmed 出版商
  409. Guven A, Kalebic N, Long K, Florio M, Vaid S, Brandl H, et al. Extracellular matrix-inducing Sox9 promotes both basal progenitor proliferation and gliogenesis in developing neocortex. elife. 2020;9: pubmed 出版商
  410. Aaltonen N, Singha P, Jakupović H, Wirth T, Samaranayake H, Pasonen Seppänen S, et al. High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils. Biol Proced Online. 2020;22:6 pubmed 出版商
  411. Zhang S, Liang W, Luo L, Sun S, Wang F. The role of T cell trafficking in CTLA-4 blockade-induced gut immunopathology. BMC Biol. 2020;18:29 pubmed 出版商
  412. Peng Z, Aggarwal R, Zeng N, He L, Stiles E, Debebe A, et al. AKT1 Regulates Endoplasmic Reticulum Stress and Mediates the Adaptive Response of Pancreatic β Cells. Mol Cell Biol. 2020;40: pubmed 出版商
  413. Mukhtar T, Breda J, Grison A, Karimaddini Z, Grobecker P, Iber D, et al. Tead transcription factors differentially regulate cortical development. Sci Rep. 2020;10:4625 pubmed 出版商
  414. Blackwood C, Bailetti A, Nandi S, Gridley T, Hebert J. Notch Dosage: Jagged1 Haploinsufficiency Is Associated With Reduced Neuronal Division and Disruption of Periglomerular Interneurons in Mice. Front Cell Dev Biol. 2020;8:113 pubmed 出版商
  415. Gihr G, Horvath Rizea D, Hekeler E, Ganslandt O, Henkes H, Hoffmann K, et al. Histogram Analysis of Diffusion Weighted Imaging in Low-Grade Gliomas: in vivo Characterization of Tumor Architecture and Corresponding Neuropathology. Front Oncol. 2020;10:206 pubmed 出版商
  416. Jin T, Liu M, Liu Y, Li Y, Xu Z, He H, et al. Lcn2-derived Circular RNA (hsa_circ_0088732) Inhibits Cell Apoptosis and Promotes EMT in Glioma via the miR-661/RAB3D Axis. Front Oncol. 2020;10:170 pubmed 出版商
  417. Smith M, Chan K, Papagianis P, Nitsos I, Zahra V, Allison B, et al. Umbilical Cord Blood Cells Do Not Reduce Ventilation-Induced Lung Injury in Preterm Lambs. Front Physiol. 2020;11:119 pubmed 出版商
  418. Wang X, Shan Y, Tan Q, Tan C, Zhang H, Liu J, et al. MEX3A knockdown inhibits the development of pancreatic ductal adenocarcinoma. Cancer Cell Int. 2020;20:63 pubmed 出版商
  419. Witalis M, Chang J, Zhong M, Bouklouch Y, Panneton V, Li J, et al. Progression of AITL-like tumors in mice is driven by Tfh signature proteins and T-B cross talk. Blood Adv. 2020;4:868-879 pubmed 出版商
  420. Che H, Li J, Li Y, Ma C, Liu H, Qin J, et al. p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle. elife. 2020;9: pubmed 出版商
  421. Kumar A, Chamoto K, Chowdhury P, Honjo T. Tumors attenuating the mitochondrial activity in T cells escape from PD-1 blockade therapy. elife. 2020;9: pubmed 出版商
  422. Raehtz K, Barrenas F, Xu C, Busman Sahay K, Valentine A, Law L, et al. African green monkeys avoid SIV disease progression by preventing intestinal dysfunction and maintaining mucosal barrier integrity. PLoS Pathog. 2020;16:e1008333 pubmed 出版商
  423. Nayakawde N, Methe K, Banerjee D, Berg M, Premaratne G, Olausson M. In Vitro Regeneration of Decellularized Pig Esophagus Using Human Amniotic Stem Cells. Biores Open Access. 2020;9:22-36 pubmed 出版商
  424. Wu Z, Parry M, Hou X, Liu M, Wang H, Cain R, et al. Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington's disease. Nat Commun. 2020;11:1105 pubmed 出版商
  425. Maestre L, García García J, Jiménez S, Reyes García A, García González Á, Montes Moreno S, et al. High-mobility group box (TOX) antibody a useful tool for the identification of B and T cell subpopulations. PLoS ONE. 2020;15:e0229743 pubmed 出版商
  426. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30:229-243 pubmed 出版商
  427. Pittala S, Levy I, De S, Kumar Pandey S, Melnikov N, Hyman T, et al. The VDAC1-based R-Tf-D-LP4 Peptide as a Potential Treatment for Diabetes Mellitus. Cells. 2020;9: pubmed 出版商
  428. Engelbrecht E, Lévesque M, He L, Vanlandewijck M, Nitzsche A, Niazi H, et al. Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. elife. 2020;9: pubmed 出版商
  429. Niethamer T, Stabler C, Leach J, Zepp J, Morley M, Babu A, et al. Defining the role of pulmonary endothelial cell heterogeneity in the response to acute lung injury. elife. 2020;9: pubmed 出版商
  430. Dause T, KIRBY E. Poor Concordance of Floxed Sequence Recombination in Single Neural Stem Cells: Implications for Cell Autonomous Studies. Eneuro. 2020;7: pubmed 出版商
  431. Huang Y, Huang J, Huang Y, Gan L, Long L, Pu A, et al. TFRC promotes epithelial ovarian cancer cell proliferation and metastasis via up-regulation of AXIN2 expression. Am J Cancer Res. 2020;10:131-147 pubmed
  432. Zhao Z, Wang Y, Yun D, Huang Q, Meng D, Li Q, et al. TRIM21 overexpression promotes tumor progression by regulating cell proliferation, cell migration and cell senescence in human glioma. Am J Cancer Res. 2020;10:114-130 pubmed
  433. Mitrofanova L, Hazratov A, Galkovsky B, Gorshkov A, Bobkov D, Gulyaev D, et al. Morphological and immunophenotypic characterization of perivascular interstitial cells in human glioma: Telocytes, pericytes, and mixed immunophenotypes. Oncotarget. 2020;11:322-346 pubmed 出版商
  434. Liao Y, Zhao J, Bulek K, Tang F, Chen X, Cai G, et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nat Commun. 2020;11:900 pubmed 出版商
  435. Eom T, Han S, Kim J, Blundon J, Wang Y, Yu J, et al. Schizophrenia-related microdeletion causes defective ciliary motility and brain ventricle enlargement via microRNA-dependent mechanisms in mice. Nat Commun. 2020;11:912 pubmed 出版商
  436. Pereira B, Amaral A, Dias A, Mendes N, Muncan V, Silva A, et al. MEX3A regulates Lgr5+ stem cell maintenance in the developing intestinal epithelium. EMBO Rep. 2020;21:e48938 pubmed 出版商
  437. Li D, Zhu R, Zhou L, Zhong D. Clinical, histopathologic, subtype, and immunohistochemical analysis of jaw phosphaturic mesenchymal tumors. Medicine (Baltimore). 2020;99:e19090 pubmed 出版商
  438. Kluz P, Kolb R, Xie Q, Borcherding N, Liu Q, Luo Y, et al. Cancer cell-intrinsic function of CD177 in attenuating β-catenin signaling. Oncogene. 2020;39:2877-2889 pubmed 出版商
  439. Ferrer Font L, Mehta P, Harmos P, Schmidt A, Chappell S, Price K, et al. High-dimensional analysis of intestinal immune cells during helminth infection. elife. 2020;9: pubmed 出版商
  440. Tizian C, Lahmann A, Hölsken O, Cosovanu C, Kofoed Branzk M, Heinrich F, et al. c-Maf restrains T-bet-driven programming of CCR6-negative group 3 innate lymphoid cells. elife. 2020;9: pubmed 出版商
  441. Durrant C, Ruscher K, Sheppard O, Coleman M, Ozen I. Beta secretase 1-dependent amyloid precursor protein processing promotes excessive vascular sprouting through NOTCH3 signalling. Cell Death Dis. 2020;11:98 pubmed 出版商
  442. Tan S, Swathi Y, Tan S, Goh J, Seishima R, Murakami K, et al. AQP5 enriches for stem cells and cancer origins in the distal stomach. Nature. 2020;578:437-443 pubmed 出版商
  443. Kang H, Kwon H, Kim I, Ban W, Kim S, Kang H, et al. Intermittent hypoxia exacerbates tumor progression in a mouse model of lung cancer. Sci Rep. 2020;10:1854 pubmed 出版商
  444. Li K, Zhao S, Long J, Su J, Wu L, Tao J, et al. A novel chalcone derivative has antitumor activity in melanoma by inducing DNA damage through the upregulation of ROS products. Cancer Cell Int. 2020;20:36 pubmed 出版商
  445. You F, Li J, Zhang P, Zhang H, Cao X. miR106a Promotes the Growth of Transplanted Breast Cancer and Decreases the Sensitivity of Transplanted Tumors to Cisplatin. Cancer Manag Res. 2020;12:233-246 pubmed 出版商
  446. Georgescu M, Olar A. Genetic and histologic spatiotemporal evolution of recurrent, multifocal, multicentric and metastatic glioblastoma. Acta Neuropathol Commun. 2020;8:10 pubmed 出版商
  447. Park M, Kim H, Lee H, Zabel B, Bae Y. Novel CD11b+Gr-1+Sca-1+ myeloid cells drive mortality in bacterial infection. Sci Adv. 2020;6:eaax8820 pubmed 出版商
  448. Bell L, Lenhart A, Rosenwald A, Monoranu C, Berberich Siebelt F. Lymphoid Aggregates in the CNS of Progressive Multiple Sclerosis Patients Lack Regulatory T Cells. Front Immunol. 2019;10:3090 pubmed 出版商
  449. Parisi G, Saco J, Salazar F, Tsoi J, Krystofinski P, Puig Saus C, et al. Persistence of adoptively transferred T cells with a kinetically engineered IL-2 receptor agonist. Nat Commun. 2020;11:660 pubmed 出版商
  450. Mei X, Qi D, Zhang T, Zhao Y, Jin L, Hou J, et al. Inhibiting MARSs reduces hyperhomocysteinemia-associated neural tube and congenital heart defects. EMBO Mol Med. 2020;12:e9469 pubmed 出版商
  451. Olafson L, Gunawardena M, Nixdorf S, McDonald K, Rapkins R. The role of TP53 gain-of-function mutation in multifocal glioblastoma. J Neurooncol. 2020;147:37-47 pubmed 出版商
  452. Jaiprasart P, Dogra S, Neelakantan D, Devapatla B, Woo S. Identification of signature genes associated with therapeutic resistance to anti-VEGF therapy. Oncotarget. 2020;11:99-114 pubmed 出版商
  453. Brill Karniely Y, Dror D, Duanis Assaf T, Goldstein Y, Schwob O, Millo T, et al. Triangular correlation (TrC) between cancer aggressiveness, cell uptake capability, and cell deformability. Sci Adv. 2020;6:eaax2861 pubmed 出版商
  454. Ballabio C, Anderle M, Gianesello M, Lago C, Miele E, Cardano M, et al. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun. 2020;11:583 pubmed 出版商
  455. Wu T, Zhang Z, Li S, Wang B, Yang Z, Li P, et al. Characterization of global 5-hydroxymethylcytosine in pediatric posterior fossa ependymoma. Clin Epigenetics. 2020;12:19 pubmed 出版商
  456. Chang W, Xu J, Lin T, Hsu J, Hsieh Li H, Hwu Y, et al. Survival Motor Neuron Protein Participates in Mouse Germ Cell Development and Spermatogonium Maintenance. Int J Mol Sci. 2020;21: pubmed 出版商
  457. Ju L, Shan L, Yin B, Song Y. δ-Catenin regulates proliferation and apoptosis in renal cell carcinoma via promoting β-catenin nuclear localization and activating its downstream target genes. Cancer Med. 2020;9:2201-2212 pubmed 出版商
  458. Cheung E, DeNicola G, Nixon C, Blyth K, Labuschagne C, Tuveson D, et al. Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell. 2020;37:168-182.e4 pubmed 出版商
  459. Liu Z, Wen J, Wu C, Hu C, Wang J, Bao Q, et al. MicroRNA-200a induces immunosuppression by promoting PTEN-mediated PD-L1 upregulation in osteosarcoma. Aging (Albany NY). 2020;12:1213-1236 pubmed 出版商
  460. Choi S, Bae H, Jeong S, Park I, Cho H, Hong S, et al. YAP/TAZ direct commitment and maturation of lymph node fibroblastic reticular cells. Nat Commun. 2020;11:519 pubmed 出版商
  461. Zhu K, Lai Y, Cao H, Bai X, Liu C, Yan Q, et al. Kindlin-2 modulates MafA and β-catenin expression to regulate β-cell function and mass in mice. Nat Commun. 2020;11:484 pubmed 出版商
  462. Marin Navarro A, Pronk R, van der Geest A, Oliynyk G, Nordgren A, Arsenian Henriksson M, et al. p53 controls genomic stability and temporal differentiation of human neural stem cells and affects neural organization in human brain organoids. Cell Death Dis. 2020;11:52 pubmed 出版商
  463. Trevino A, Sinnott Armstrong N, Andersen J, Yoon S, Huber N, Pritchard J, et al. Chromatin accessibility dynamics in a model of human forebrain development. Science. 2020;367: pubmed 出版商
  464. Granados Soler J, Bornemann Kolatzki K, Beck J, Brenig B, Schütz E, Betz D, et al. Analysis of Copy-Number Variations and Feline Mammary Carcinoma Survival. Sci Rep. 2020;10:1003 pubmed 出版商
  465. Tessier S, Doolittle A, Sao K, Rotty J, Bear J, Ulici V, et al. Arp2/3 inactivation causes intervertebral disc and cartilage degeneration with dysregulated TonEBP-mediated osmoadaptation. JCI Insight. 2020;5: pubmed 出版商
  466. Liu T, Guo Z, Song X, Liu L, Dong W, Wang S, et al. High-fat diet-induced dysbiosis mediates MCP-1/CCR2 axis-dependent M2 macrophage polarization and promotes intestinal adenoma-adenocarcinoma sequence. J Cell Mol Med. 2020;24:2648-2662 pubmed 出版商
  467. Qiao H, Tan X, Lv D, Xing R, Shu F, Zhong C, et al. Phosphoribosyl pyrophosphate synthetases 2 knockdown inhibits prostate cancer progression by suppressing cell cycle and inducing cell apoptosis. J Cancer. 2020;11:1027-1037 pubmed 出版商
  468. Zhao L, Ke H, Xu H, Wang G, Zhang H, Zou L, et al. TDP-43 facilitates milk lipid secretion by post-transcriptional regulation of Btn1a1 and Xdh. Nat Commun. 2020;11:341 pubmed 出版商
  469. Kim J, Byun M, Maeng C, Kim Y, Choi J. Selective Targeting of Cancer Stem Cells (CSCs) Based on Photodynamic Therapy (PDT) Penetration Depth Inhibits Colon Polyp Formation in Mice. Cancers (Basel). 2020;12: pubmed 出版商
  470. Aldaz P, Otaegi Ugartemendia M, Sáenz Antoñanzas A, Garcia Puga M, Moreno Valladares M, Flores J, et al. SOX9 promotes tumor progression through the axis BMI1-p21CIP. Sci Rep. 2020;10:357 pubmed 出版商
  471. Mus L, Lambertz I, Claeys S, Kumps C, Van Loocke W, Van Neste C, et al. The ETS transcription factor ETV5 is a target of activated ALK in neuroblastoma contributing to increased tumour aggressiveness. Sci Rep. 2020;10:218 pubmed 出版商
  472. Zhu X, Chen L, Huang B, Wang Y, Ji L, Wu J, et al. The prognostic and predictive potential of Ki-67 in triple-negative breast cancer. Sci Rep. 2020;10:225 pubmed 出版商
  473. Rao L, Giannico D, Leone P, Solimando A, Maiorano E, Caporusso C, et al. HB-EGF-EGFR Signaling in Bone Marrow Endothelial Cells Mediates Angiogenesis Associated with Multiple Myeloma. Cancers (Basel). 2020;12: pubmed 出版商
  474. Deng G, Mou T, He J, Chen D, Lv D, Liu H, et al. Circular RNA circRHOBTB3 acts as a sponge for miR-654-3p inhibiting gastric cancer growth. J Exp Clin Cancer Res. 2020;39:1 pubmed 出版商
  475. Sarić N, Selby M, Ramaswamy V, Kool M, Stockinger B, Hogstrand C, et al. The AHR pathway represses TGFβ-SMAD3 signalling and has a potent tumour suppressive role in SHH medulloblastoma. Sci Rep. 2020;10:148 pubmed 出版商
  476. Pavlidis I, Spiller O, Sammut Demarco G, MacPherson H, Howie S, Norman J, et al. Cervical epithelial damage promotes Ureaplasma parvum ascending infection, intrauterine inflammation and preterm birth induction in mice. Nat Commun. 2020;11:199 pubmed 出版商
  477. Laukoter S, Beattie R, Pauler F, Amberg N, Nakayama K, Hippenmeyer S. Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development. Nat Commun. 2020;11:195 pubmed 出版商
  478. Escoll M, Lastra D, Pajares M, Robledinos Antón N, Rojo A, Fernández Ginés R, et al. Transcription factor NRF2 uses the Hippo pathway effector TAZ to induce tumorigenesis in glioblastomas. Redox Biol. 2020;30:101425 pubmed 出版商
  479. Urata Y, Salehi R, Lima P, Osuga Y, Tsang B. Neuropeptide Y regulates proliferation and apoptosis in granulosa cells in a follicular stage-dependent manner. J Ovarian Res. 2020;13:5 pubmed 出版商
  480. Rabé M, Dumont S, Álvarez Arenas A, Janati H, Belmonte Beitia J, Calvo G, et al. Identification of a transient state during the acquisition of temozolomide resistance in glioblastoma. Cell Death Dis. 2020;11:19 pubmed 出版商
  481. Bhattarai P, Cosacak M, Mashkaryan V, Demir S, Popova S, Govindarajan N, et al. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol. 2020;18:e3000585 pubmed 出版商
  482. Liu W, Yang L, Liu Y, Yuan D, Zhao Z, Wang Q, et al. Dynamic characterization of intestinal metaplasia in the gastric corpus mucosa of Atp4a-deficient mice. Biosci Rep. 2020;40: pubmed 出版商
  483. Almstedt E, Elgendy R, Hekmati N, Rosén E, Wärn C, Olsen T, et al. Integrative discovery of treatments for high-risk neuroblastoma. Nat Commun. 2020;11:71 pubmed 出版商
  484. Dagher E, Royer V, Buchet P, Abadie J, Loussouarn D, Campone M, et al. Androgen receptor and FOXA1 coexpression define a "luminal-AR" subtype of feline mammary carcinomas, spontaneous models of breast cancer. BMC Cancer. 2019;19:1267 pubmed 出版商
  485. Hurrell B, Galle Treger L, Jahani P, Howard E, Helou D, Banie H, et al. TNFR2 Signaling Enhances ILC2 Survival, Function, and Induction of Airway Hyperreactivity. Cell Rep. 2019;29:4509-4524.e5 pubmed 出版商
  486. Robison L, Albert N, Camargo L, Anderson B, Salinero A, Riccio D, et al. High-Fat Diet-Induced Obesity Causes Sex-Specific Deficits in Adult Hippocampal Neurogenesis in Mice. Eneuro. 2020;7: pubmed 出版商
  487. Honkoop H, de Bakker D, Aharonov A, Kruse F, Shakked A, Nguyen P, et al. Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. elife. 2019;8: pubmed 出版商
  488. Tang L, Li J, Fu W, Wu W, Xu J. Suppression of FADS1 induces ROS generation, cell cycle arrest, and apoptosis in melanocytes: implications for vitiligo. Aging (Albany NY). 2019;11:11829-11843 pubmed 出版商
  489. Ding X, Hu H, Huang K, Wei R, Min J, Qi C, et al. Ubiquitination of NOTCH2 by DTX3 suppresses the proliferation and migration of human esophageal carcinoma. Cancer Sci. 2020;111:489-501 pubmed 出版商
  490. Raphael I, Gomez Rivera F, Raphael R, Robinson R, Nalawade S, Forsthuber T. TNFR2 limits proinflammatory astrocyte functions during EAE induced by pathogenic DR2b-restricted T cells. JCI Insight. 2019;4: pubmed 出版商
  491. Sozen B, Cox A, De Jonghe J, Bao M, Hollfelder F, Glover D, et al. Self-Organization of Mouse Stem Cells into an Extended Potential Blastoid. Dev Cell. 2019;51:698-712.e8 pubmed 出版商
  492. Guo C, Allen B, Hiam K, Dodd D, Van Treuren W, Higginbottom S, et al. Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science. 2019;366: pubmed 出版商
  493. Schoof M, Launspach M, Holdhof D, Nguyen L, Engel V, Filser S, et al. The transcriptional coactivator and histone acetyltransferase CBP regulates neural precursor cell development and migration. Acta Neuropathol Commun. 2019;7:199 pubmed 出版商
  494. Li W, Zhang X, Wu F, Zhou Y, Bao Z, Li H, et al. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis. 2019;10:918 pubmed 出版商
  495. Li A, Herbst R, Canner D, Schenkel J, Smith O, Kim J, et al. IL-33 Signaling Alters Regulatory T Cell Diversity in Support of Tumor Development. Cell Rep. 2019;29:2998-3008.e8 pubmed 出版商
  496. Bendriem R, Singh S, Aleem A, Antonetti D, Ross M. Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex. elife. 2019;8: pubmed 出版商
  497. Callender L, Carroll E, Bober E, Akbar A, Solito E, Henson S. Mitochondrial mass governs the extent of human T cell senescence. Aging Cell. 2020;19:e13067 pubmed 出版商
  498. Zhang X, Olsavszky V, Yin Y, Wang B, Engleitner T, Ollinger R, et al. Angiocrine Hepatocyte Growth Factor Signaling Controls Physiological Organ and Body Size and Dynamic Hepatocyte Proliferation to Prevent Liver Damage during Regeneration. Am J Pathol. 2020;190:358-371 pubmed 出版商
  499. Vagnozzi R, Maillet M, Sargent M, Khalil H, Johansen A, Schwanekamp J, et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature. 2020;577:405-409 pubmed 出版商
  500. Davaadelger B, Choi M, Singhal H, Clare S, Khan S, Kim J. BRCA1 mutation influences progesterone response in human benign mammary organoids. Breast Cancer Res. 2019;21:124 pubmed 出版商
  501. Moya I, Castaldo S, Van den Mooter L, Soheily S, Sansores Garcia L, Jacobs J, et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science. 2019;366:1029-1034 pubmed 出版商
  502. Wang L, Shen E, Luo L, Rabe H, Wang Q, Yin J, et al. Control of Germinal Center Localization and Lineage Stability of Follicular Regulatory T Cells by the Blimp1 Transcription Factor. Cell Rep. 2019;29:1848-1861.e6 pubmed 出版商
  503. Li H, Yang F, Hu A, Wang X, Fang E, Chen Y, et al. Therapeutic targeting of circ-CUX1/EWSR1/MAZ axis inhibits glycolysis and neuroblastoma progression. EMBO Mol Med. 2019;11:e10835 pubmed 出版商
  504. Sun C, Guo E, Zhou B, Shan W, Huang J, Weng D, et al. A reactive oxygen species scoring system predicts cisplatin sensitivity and prognosis in ovarian cancer patients. BMC Cancer. 2019;19:1061 pubmed 出版商
  505. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  506. Zhou S, da Silva S, Siegel P, Philip A. CD109 acts as a gatekeeper of the epithelial trait by suppressing epithelial to mesenchymal transition in squamous cell carcinoma cells in vitro. Sci Rep. 2019;9:16317 pubmed 出版商
  507. Shen J, Zhou Y, Zhang X, Peng W, Peng C, Zhou Q, et al. Loss of FoxA2 accelerates neoplastic changes in the intrahepatic bile duct partly via the MAPK signaling pathway. Aging (Albany NY). 2019;11:9280-9294 pubmed 出版商
  508. Reed M, Luissint A, Azcutia V, Fan S, O Leary M, Quirós M, et al. Epithelial CD47 is critical for mucosal repair in the murine intestine in vivo. Nat Commun. 2019;10:5004 pubmed 出版商
  509. Martin S, Wagner D, Hörner N, Horst D, Lang H, Tagscherer K, et al. Ex vivo tissue slice culture system to measure drug-response rates of hepatic metastatic colorectal cancer. BMC Cancer. 2019;19:1030 pubmed 出版商
  510. Momcilovic M, Jones A, Bailey S, Waldmann C, Li R, Lee J, et al. In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer. Nature. 2019;575:380-384 pubmed 出版商
  511. Stupnikov M, Yang Y, Mori M, LU J, Cardoso W. Jagged and Delta-like ligands control distinct events during airway progenitor cell differentiation. elife. 2019;8: pubmed 出版商
  512. Thomson B, Carota I, Souma T, Soman S, Vestweber D, Quaggin S. Targeting the vascular-specific phosphatase PTPRB protects against retinal ganglion cell loss in a pre-clinical model of glaucoma. elife. 2019;8: pubmed 出版商
  513. Varuzhanyan G, Rojansky R, Sweredoski M, Graham R, Hess S, Ladinsky M, et al. Mitochondrial fusion is required for spermatogonial differentiation and meiosis. elife. 2019;8: pubmed 出版商
  514. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  515. Neumann B, Baror R, Zhao C, SEGEL M, Dietmann S, Rawji K, et al. Metformin Restores CNS Remyelination Capacity by Rejuvenating Aged Stem Cells. Cell Stem Cell. 2019;25:473-485.e8 pubmed 出版商
  516. Kon E, Calvo Jiménez E, Cossard A, Na Y, Cooper J, Jossin Y. N-cadherin-regulated FGFR ubiquitination and degradation control mammalian neocortical projection neuron migration. elife. 2019;8: pubmed 出版商
  517. Blomfield I, Rocamonde B, Masdeu M, Mulugeta E, Vaga S, van den Berg D, et al. Id4 promotes the elimination of the pro-activation factor Ascl1 to maintain quiescence of adult hippocampal stem cells. elife. 2019;8: pubmed 出版商
  518. Morris J, Yashinskie J, Koche R, Chandwani R, Tian S, Chen C, et al. α-Ketoglutarate links p53 to cell fate during tumour suppression. Nature. 2019;573:595-599 pubmed 出版商
  519. Zhong B, Shi D, Wu F, Wang S, Hu H, Cheng C, et al. Dynasore suppresses cell proliferation, migration, and invasion and enhances the antitumor capacity of cisplatin via STAT3 pathway in osteosarcoma. Cell Death Dis. 2019;10:687 pubmed 出版商
  520. Abels E, Maas S, Nieland L, Wei Z, Cheah P, Tai E, et al. Glioblastoma-Associated Microglia Reprogramming Is Mediated by Functional Transfer of Extracellular miR-21. Cell Rep. 2019;28:3105-3119.e7 pubmed 出版商
  521. Chen M, Reed R, Lane A. Chronic Inflammation Directs an Olfactory Stem Cell Functional Switch from Neuroregeneration to Immune Defense. Cell Stem Cell. 2019;25:501-513.e5 pubmed 出版商
  522. Noguerol J, Roustan P, N Taye M, Delcombel L, Rolland C, Guiraud L, et al. Sexual dimorphism in PAR2-dependent regulation of primitive colonic cells. Biol Sex Differ. 2019;10:47 pubmed 出版商
  523. Sang Y, Li Y, Zhang Y, Alvarez A, Yu B, Zhang W, et al. CDK5-dependent phosphorylation and nuclear translocation of TRIM59 promotes macroH2A1 ubiquitination and tumorigenicity. Nat Commun. 2019;10:4013 pubmed 出版商
  524. Meier S, Alfonsi F, Kurniawan N, Milne M, Kasherman M, Delogu A, et al. The p75 neurotrophin receptor is required for the survival of neuronal progenitors and normal formation of the basal forebrain, striatum, thalamus and neocortex. Development. 2019;146: pubmed 出版商
  525. DiTroia S, Percharde M, Guerquin M, Wall E, Collignon E, Ebata K, et al. Maternal vitamin C regulates reprogramming of DNA methylation and germline development. Nature. 2019;573:271-275 pubmed 出版商
  526. Xu J, Wang Y, Hsu C, Gao Y, Meyers C, Chang L, et al. Human perivascular stem cell-derived extracellular vesicles mediate bone repair. elife. 2019;8: pubmed 出版商
  527. Diaz Osterman C, Ozmadenci D, Kleinschmidt E, Taylor K, Barrie A, Jiang S, et al. FAK activity sustains intrinsic and acquired ovarian cancer resistance to platinum chemotherapy. elife. 2019;8: pubmed 出版商
  528. Duhachek Muggy S, Bhat K, Medina P, Cheng F, He L, Alli C, et al. Radiation Mitigation of the Intestinal Acute Radiation Injury in Mice by 1-[(4-Nitrophenyl)Sulfonyl]-4-Phenylpiperazine. Stem Cells Transl Med. 2019;: pubmed 出版商
  529. Ombrato L, Nolan E, Kurelac I, Mavousian A, Bridgeman V, Heinze I, et al. Metastatic-niche labelling reveals parenchymal cells with stem features. Nature. 2019;572:603-608 pubmed 出版商
  530. Matsumoto S, Yamamichi T, Shinzawa K, Kasahara Y, Nojima S, Kodama T, et al. GREB1 induced by Wnt signaling promotes development of hepatoblastoma by suppressing TGFβ signaling. Nat Commun. 2019;10:3882 pubmed 出版商
  531. Di Blasi D, Boldanova T, Mori L, Terracciano L, Heim M, De Libero G. Unique T-Cell Populations Define Immune-Inflamed Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol. 2020;9:195-218 pubmed 出版商
  532. Gal H, Lysenko M, Stroganov S, Vadai E, Youssef S, Tzadikevitch Geffen K, et al. Molecular pathways of senescence regulate placental structure and function. EMBO J. 2019;38:e100849 pubmed 出版商
  533. Costa T, Zhuang T, Lorent J, Turco E, Olofsson H, Masià Balagué M, et al. PAK4 suppresses RELB to prevent senescence-like growth arrest in breast cancer. Nat Commun. 2019;10:3589 pubmed 出版商
  534. Sanghvi V, Leibold J, Mina M, Mohan P, Berishaj M, Li Z, et al. The Oncogenic Action of NRF2 Depends on De-glycation by Fructosamine-3-Kinase. Cell. 2019;178:807-819.e21 pubmed 出版商
  535. Lou Q, Liu R, Yang X, Li W, Huang L, Wei L, et al. miR-448 targets IDO1 and regulates CD8+ T cell response in human colon cancer. J Immunother Cancer. 2019;7:210 pubmed 出版商
  536. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  537. Verma V, Shrimali R, Ahmad S, Dai W, Wang H, Lu S, et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat Immunol. 2019;20:1231-1243 pubmed 出版商
  538. Chung K, Hsu C, Fan L, Huang Z, Bhatia D, Chen Y, et al. Mitofusins regulate lipid metabolism to mediate the development of lung fibrosis. Nat Commun. 2019;10:3390 pubmed 出版商
  539. Leclerc M, Voilin E, Gros G, Corgnac S, de Montpreville V, Validire P, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun. 2019;10:3345 pubmed 出版商
  540. Li K, Jain P, He C, Eun F, Kang S, Tumbar T. Skin vasculature and hair follicle cross-talking associated with stem cell activation and tissue homeostasis. elife. 2019;8: pubmed 出版商
  541. Morabito M, Larcher M, Cavalli F, Foray C, Forget A, Mirabal Ortega L, et al. An autocrine ActivinB mechanism drives TGFβ/Activin signaling in Group 3 medulloblastoma. EMBO Mol Med. 2019;11:e9830 pubmed 出版商
  542. Bi J, Ichu T, Zanca C, Yang H, Zhang W, Gu Y, et al. Oncogene Amplification in Growth Factor Signaling Pathways Renders Cancers Dependent on Membrane Lipid Remodeling. Cell Metab. 2019;30:525-538.e8 pubmed 出版商
  543. Burgermeister E, Battaglin F, Eladly F, Wu W, Herweck F, Schulte N, et al. Aryl hydrocarbon receptor nuclear translocator-like (ARNTL/BMAL1) is associated with bevacizumab resistance in colorectal cancer via regulation of vascular endothelial growth factor A. EBioMedicine. 2019;45:139-154 pubmed 出版商
  544. Cai W, Lin L, Wang L, Yang L, Ye G, Zeng Q, et al. Inhibition of Bcl6b promotes gastric cancer by amplifying inflammation in mice. Cell Commun Signal. 2019;17:72 pubmed 出版商
  545. Dulken B, Buckley M, Navarro Negredo P, Saligrama N, Cayrol R, Leeman D, et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature. 2019;571:205-210 pubmed 出版商
  546. Wiel C, Le Gal K, Ibrahim M, Jahangir C, Kashif M, Yao H, et al. BACH1 Stabilization by Antioxidants Stimulates Lung Cancer Metastasis. Cell. 2019;: pubmed 出版商
  547. Pei G, Yao Y, Yang Q, Wang M, Wang Y, Wu J, et al. Lymphangiogenesis in kidney and lymph node mediates renal inflammation and fibrosis. Sci Adv. 2019;5:eaaw5075 pubmed 出版商
  548. Cibi D, Mia M, Guna Shekeran S, Yun L, Sandireddy R, Gupta P, et al. Neural crest-specific deletion of Rbfox2 in mice leads to craniofacial abnormalities including cleft palate. elife. 2019;8: pubmed 出版商
  549. Jung S, Choe S, Woo H, Jeong H, An H, Moon H, et al. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy. 2019;:1-19 pubmed 出版商
  550. Zheng H, Zhao Y, Xu Y, Zhang Z, Zhu J, Fan Y, et al. Long-time qingyan formula extract treatment exerts estrogenic activities on reproductive tissues without side effects in ovariectomized rats and via active ER to ERE-independent gene regulation. Aging (Albany NY). 2019;11:4032-4049 pubmed 出版商
  551. Hsu C, Altschuler S, Wu L. Patterns of Early p21 Dynamics Determine Proliferation-Senescence Cell Fate after Chemotherapy. Cell. 2019;: pubmed 出版商
  552. Galino J, Cervellini I, Zhu N, Stöberl N, Hütte M, Fricker F, et al. RalGTPases contribute to Schwann cell repair after nerve injury via regulation of process formation. J Cell Biol. 2019;: pubmed 出版商
  553. Pascual García M, Bonfill Teixidor E, Planas Rigol E, Rubio Perez C, Iurlaro R, Arias A, et al. LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy. Nat Commun. 2019;10:2416 pubmed 出版商
  554. Hari P, Millar F, Tarrats N, Birch J, Quintanilla A, Rink C, et al. The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Sci Adv. 2019;5:eaaw0254 pubmed 出版商
  555. Velasco S, Kedaigle A, Simmons S, Nash A, Rocha M, Quadrato G, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 2019;: pubmed 出版商
  556. Lüscher Firzlaff J, Chatain N, Kuo C, Braunschweig T, Bochynska A, Ullius A, et al. Hematopoietic stem and progenitor cell proliferation and differentiation requires the trithorax protein Ash2l. Sci Rep. 2019;9:8262 pubmed 出版商
  557. Ligorio M, Sil S, Malagon Lopez J, Nieman L, Misale S, Di Pilato M, et al. Stromal Microenvironment Shapes the Intratumoral Architecture of Pancreatic Cancer. Cell. 2019;: pubmed 出版商
  558. Prior N, Hindley C, Rost F, Meléndez E, Lau W, Gottgens B, et al. Lgr5+ stem and progenitor cells reside at the apex of a heterogeneous embryonic hepatoblast pool. Development. 2019;146: pubmed 出版商
  559. Merve A, Zhang X, Pomella N, Acquati S, Hoeck J, Dumas A, et al. c-MYC overexpression induces choroid plexus papillomas through a T-cell mediated inflammatory mechanism. Acta Neuropathol Commun. 2019;7:2 pubmed 出版商
  560. Yin M, Zhou H, Lin C, Long L, Yang X, Zhang H, et al. CD34+KLF4+ Stromal Stem Cells Contribute to Endometrial Regeneration and Repair. Cell Rep. 2019;27:2709-2724.e3 pubmed 出版商
  561. Wen H, Gao S, Wang Y, Ray M, Magnuson M, Wright C, et al. Myeloid cell-derived HB-EGF Drives Tissue Recovery After Pancreatitis. Cell Mol Gastroenterol Hepatol. 2019;: pubmed 出版商
  562. Wang C, Ma J, Xu Y, Jiang S, Chen T, Yuan Z, et al. Early-generated interneurons regulate neuronal circuit formation during early postnatal development. elife. 2019;8: pubmed 出版商
  563. Sabol R, Bowles A, Côté A, Wise R, O Donnell B, Matossian M, et al. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Res. 2019;21:67 pubmed 出版商
  564. Liu J, Cao L, Zhao N, Feng Y, Yu Z, Li Y, et al. miR‑338‑3p inhibits A549 lung cancer cell proliferation and invasion by targeting AKT and β‑catenin signaling pathways. Mol Med Rep. 2019;20:33-40 pubmed 出版商
  565. Ling C, Nishimoto K, Rolfs Z, Smith L, Frey B, Welham N. Differentiated fibrocytes assume a functional mesenchymal phenotype with regenerative potential. Sci Adv. 2019;5:eaav7384 pubmed 出版商
  566. Pan C, Jin L, Wang X, Li Y, Chun J, Boese A, et al. Inositol-triphosphate 3-kinase B confers cisplatin resistance by regulating NOX4-dependent redox balance. J Clin Invest. 2019;129:2431-2445 pubmed 出版商
  567. Oyama Y, Nishida H, Kusaba T, Kadowaki H, Arakane M, Okamoto K, et al. Colon adenoma and adenocarcinoma with clear cell components - two case reports. Diagn Pathol. 2019;14:37 pubmed 出版商
  568. Walter D, Yates T, Ruiz Torres M, Kim Kiselak C, Gudiel A, Deshpande C, et al. RB constrains lineage fidelity and multiple stages of tumour progression and metastasis. Nature. 2019;569:423-427 pubmed 出版商
  569. Kuriakose J, Redecke V, Guy C, Zhou J, Wu R, Ippagunta S, et al. Patrolling monocytes promote the pathogenesis of early lupus-like glomerulonephritis. J Clin Invest. 2019;129:2251-2265 pubmed 出版商
  570. Li J, Khankan R, Caneda C, Godoy M, Haney M, Krawczyk M, et al. Astrocyte-to-astrocyte contact and a positive feedback loop of growth factor signaling regulate astrocyte maturation. Glia. 2019;67:1571-1597 pubmed 出版商
  571. Yan C, Brunson D, Tang Q, Do D, Iftimia N, Moore J, et al. Visualizing Engrafted Human Cancer and Therapy Responses in Immunodeficient Zebrafish. Cell. 2019;: pubmed 出版商
  572. Szvicsek Z, Oszvald Á, Szabó L, Sándor G, Kelemen A, Soós A, et al. Extracellular vesicle release from intestinal organoids is modulated by Apc mutation and other colorectal cancer progression factors. Cell Mol Life Sci. 2019;76:2463-2476 pubmed 出版商
  573. Serra D, Mayr U, Boni A, Lukonin I, Rempfler M, Challet Meylan L, et al. Self-organization and symmetry breaking in intestinal organoid development. Nature. 2019;569:66-72 pubmed 出版商
  574. Chowdhry S, Zanca C, Rajkumar U, Koga T, Diao Y, Raviram R, et al. NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling. Nature. 2019;569:570-575 pubmed 出版商
  575. Sugiura D, Maruhashi T, Okazaki I, Shimizu K, Maeda T, Takemoto T, et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science. 2019;364:558-566 pubmed 出版商
  576. Shi Y, Gao W, Lytle N, Huang P, Yuan X, Dann A, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 2019;569:131-135 pubmed 出版商
  577. Udden S, Kwak Y, Godfrey V, Khan M, Khan S, Loof N, et al. NLRP12 suppresses hepatocellular carcinoma via downregulation of cJun N-terminal kinase activation in the hepatocyte. elife. 2019;8: pubmed 出版商
  578. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  579. Montalbán Loro R, Lozano Ureña A, Ito M, Krueger C, Reik W, Ferguson Smith A, et al. TET3 prevents terminal differentiation of adult NSCs by a non-catalytic action at Snrpn. Nat Commun. 2019;10:1726 pubmed 出版商
  580. Noguchi H, Castillo J, Nakashima K, Pleasure S. Suppressor of fused controls perinatal expansion and quiescence of future dentate adult neural stem cells. elife. 2019;8: pubmed 出版商
  581. LaFleur M, Nguyen T, Coxe M, Yates K, Trombley J, Weiss S, et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat Commun. 2019;10:1668 pubmed 出版商
  582. Zhu M, Lu T, Jia Y, Luo X, Gopal P, Li L, et al. Somatic Mutations Increase Hepatic Clonal Fitness and Regeneration in Chronic Liver Disease. Cell. 2019;177:608-621.e12 pubmed 出版商
  583. Che L, Chi W, Qiao Y, Zhang J, Song X, Liu Y, et al. Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans. Gut. 2020;69:177-186 pubmed 出版商
  584. Poggio M, Hu T, Pai C, Chu B, BELAIR C, Chang A, et al. Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory. Cell. 2019;177:414-427.e13 pubmed 出版商
  585. Katsura H, Kobayashi Y, Tata P, Hogan B. IL-1 and TNFα Contribute to the Inflammatory Niche to Enhance Alveolar Regeneration. Stem Cell Reports. 2019;12:657-666 pubmed 出版商
  586. Lima Fernandes E, Murison A, da Silva Medina T, Wang Y, Ma A, Leung C, et al. Targeting bivalency de-represses Indian Hedgehog and inhibits self-renewal of colorectal cancer-initiating cells. Nat Commun. 2019;10:1436 pubmed 出版商
  587. Yao W, Rose J, Wang W, Seth S, Jiang H, Taguchi A, et al. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature. 2019;: pubmed 出版商
  588. Li L, Kang H, Zhang Q, D Agati V, Al Awqati Q, Lin F. FoxO3 activation in hypoxic tubules prevents chronic kidney disease. J Clin Invest. 2019;129:2374-2389 pubmed 出版商
  589. Lodge E, Santambrogio A, Russell J, Xekouki P, Jacques T, Johnson R, et al. Homeostatic and tumourigenic activity of SOX2+ pituitary stem cells is controlled by the LATS/YAP/TAZ cascade. elife. 2019;8: pubmed 出版商
  590. Zhong L, Xu Y, Zhuo R, Wang T, Wang K, Huang R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer's disease model. Nat Commun. 2019;10:1365 pubmed 出版商
  591. Wang Z, Feng X, Molinolo A, Martin D, Vitale Cross L, Nohata N, et al. 4E-BP1 Is a Tumor Suppressor Protein Reactivated by mTOR Inhibition in Head and Neck Cancer. Cancer Res. 2019;: pubmed 出版商
  592. Ding L, Shunkwiler L, Harper N, Zhao Y, Hinohara K, Huh S, et al. Deletion of Cdkn1b in ACI rats leads to increased proliferation and pregnancy-associated changes in the mammary gland due to perturbed systemic endocrine environment. PLoS Genet. 2019;15:e1008002 pubmed 出版商
  593. Remmerswaal E, Hombrink P, Nota B, Pircher H, ten Berge I, van Lier R, et al. Expression of IL-7Rα and KLRG1 defines functionally distinct CD8+ T-cell populations in humans. Eur J Immunol. 2019;49:694-708 pubmed 出版商
  594. Liu J, Liu Y, Shao J, Li Y, Qin L, Shen H, et al. Zeb1 is important for proper cleavage plane orientation of dividing progenitors and neuronal migration in the mouse neocortex. Cell Death Differ. 2019;: pubmed 出版商
  595. Demetriadou C, Pavlou D, Mpekris F, Achilleos C, Stylianopoulos T, Zaravinos A, et al. NAA40 contributes to colorectal cancer growth by controlling PRMT5 expression. Cell Death Dis. 2019;10:236 pubmed 出版商
  596. Upadhyay A, Hosseinibarkooie S, Schneider S, Kaczmarek A, Torres Benito L, Mendoza Ferreira N, et al. Neurocalcin Delta Knockout Impairs Adult Neurogenesis Whereas Half Reduction Is Not Pathological. Front Mol Neurosci. 2019;12:19 pubmed 出版商
  597. Lee J, Stone M, Porrett P, Thomas S, Komar C, Li J, et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature. 2019;567:249-252 pubmed 出版商
  598. Xing S, Gai K, Li X, Shao P, Zeng Z, Zhao X, et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J Exp Med. 2019;: pubmed 出版商
  599. Han Y, Feng H, Sun J, Liang X, Wang Z, Xing W, et al. Lkb1 deletion in periosteal mesenchymal progenitors induces osteogenic tumors through mTORC1 activation. J Clin Invest. 2019;130: pubmed 出版商
  600. van Galen P, Hovestadt V, Wadsworth Ii M, Hughes T, Griffin G, Battaglia S, et al. Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity. Cell. 2019;176:1265-1281.e24 pubmed 出版商
  601. Kalamakis G, Brune D, Ravichandran S, Bolz J, Fan W, Ziebell F, et al. Quiescence Modulates Stem Cell Maintenance and Regenerative Capacity in the Aging Brain. Cell. 2019;: pubmed 出版商
  602. Guillon J, Petit C, Moreau M, Toutain B, Henry C, Roche H, et al. Regulation of senescence escape by TSP1 and CD47 following chemotherapy treatment. Cell Death Dis. 2019;10:199 pubmed 出版商
  603. Liu R, Jagannathan R, Li F, Lee J, Balasubramanyam N, Kim B, et al. Tead1 is required for perinatal cardiomyocyte proliferation. PLoS ONE. 2019;14:e0212017 pubmed 出版商
  604. Kurelac I, Iommarini L, Vatrinet R, Amato L, De Luise M, Leone G, et al. Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses. Nat Commun. 2019;10:903 pubmed 出版商
  605. Lodygin D, Hermann M, Schweingruber N, Flügel Koch C, Watanabe T, Schlosser C, et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature. 2019;566:503-508 pubmed 出版商
  606. Greer Y, Gilbert S, Gril B, Narwal R, Peacock Brooks D, Tice D, et al. MEDI3039, a novel highly potent tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 2 agonist, causes regression of orthotopic tumors and inhibits outgrowth of metastatic triple-negative breast cancer. Breast Cancer Res. 2019;21:27 pubmed 出版商
  607. Xu C, Wang K, Ding Y, Li W, Ding L. Claudin-7 gene knockout causes destruction of intestinal structure and animal death in mice. World J Gastroenterol. 2019;25:584-599 pubmed 出版商
  608. Wu W, Zhang W, Choi M, Zhao J, Gao P, Xue M, et al. Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation. Redox Biol. 2019;22:101137 pubmed 出版商
  609. Li J, Liu X, Chen H, Sun Z, Chen H, Wang L, et al. Multi-targeting chemoprevention of Chinese herb formula Yanghe Huayan decoction on experimentally induced mammary tumorigenesis. BMC Complement Altern Med. 2019;19:48 pubmed 出版商
  610. Albanna M, Binder K, Murphy S, Kim J, Qasem S, Zhao W, et al. In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds. Sci Rep. 2019;9:1856 pubmed 出版商
  611. Lee J, Sung J, Choi E, Yoon H, Kang B, Hong E, et al. C/EBPβ Is a Transcriptional Regulator of Wee1 at the G₂/M Phase of the Cell Cycle. Cells. 2019;8: pubmed 出版商
  612. Shen M, Wang F, Li M, Sah N, Stockton M, Tidei J, et al. Reduced mitochondrial fusion and Huntingtin levels contribute to impaired dendritic maturation and behavioral deficits in Fmr1-mutant mice. Nat Neurosci. 2019;22:386-400 pubmed 出版商
  613. Anderson R, Lagnado A, Maggiorani D, Walaszczyk A, Dookun E, Chapman J, et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 2019;38: pubmed 出版商
  614. Suzuki T, Kikuguchi C, Nishijima S, Nagashima T, Takahashi A, Okada M, et al. Postnatal liver functional maturation requires Cnot complex-mediated decay of mRNAs encoding cell cycle and immature liver genes. Development. 2019;146: pubmed 出版商
  615. Sahara M, Santoro F, Sohlmér J, Zhou C, Witman N, Leung C, et al. Population and Single-Cell Analysis of Human Cardiogenesis Reveals Unique LGR5 Ventricular Progenitors in Embryonic Outflow Tract. Dev Cell. 2019;48:475-490.e7 pubmed 出版商
  616. Jin C, Lagoudas G, Zhao C, Bullman S, Bhutkar A, Hu B, et al. Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell. 2019;176:998-1013.e16 pubmed 出版商
  617. Kobayashi T, Voisin B, Kim D, Kennedy E, Jo J, Shih H, et al. Homeostatic Control of Sebaceous Glands by Innate Lymphoid Cells Regulates Commensal Bacteria Equilibrium. Cell. 2019;176:982-997.e16 pubmed 出版商
  618. Yin C, Zhu B, Zhang T, Liu T, Chen S, Liu Y, et al. Pharmacological Targeting of STK19 Inhibits Oncogenic NRAS-Driven Melanomagenesis. Cell. 2019;176:1113-1127.e16 pubmed 出版商
  619. Fousse J, Gautier E, Patti D, Dehay C. Developmental changes in interkinetic nuclear migration dynamics with respect to cell-cycle progression in the mouse cerebral cortex ventricular zone. J Comp Neurol. 2019;527:1545-1557 pubmed 出版商
  620. Yeung M, Djelloul M, Steiner E, Bernard S, Salehpour M, Possnert G, et al. Dynamics of oligodendrocyte generation in multiple sclerosis. Nature. 2019;566:538-542 pubmed 出版商
  621. Ma W, Silverman S, Zhao L, Villasmil R, Campos M, Amaral J, et al. Absence of TGFβ signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. elife. 2019;8: pubmed 出版商
  622. Fenderico N, van Scherpenzeel R, Goldflam M, Proverbio D, Jordens I, Kralj T, et al. Anti-LRP5/6 VHHs promote differentiation of Wnt-hypersensitive intestinal stem cells. Nat Commun. 2019;10:365 pubmed 出版商
  623. Montel Hagen A, Seet C, Li S, Chick B, Zhu Y, Chang P, et al. Organoid-Induced Differentiation of Conventional T Cells from Human Pluripotent Stem Cells. Cell Stem Cell. 2019;24:376-389.e8 pubmed 出版商
  624. Shinozuka T, Takada R, Yoshida S, Yonemura S, Takada S. Wnt produced by stretched roof-plate cells is required for the promotion of cell proliferation around the central canal of the spinal cord. Development. 2019;146: pubmed 出版商
  625. Mahmoud M, Evans I, Mehta V, Pellet Many C, Paliashvili K, Zachary I. Smooth muscle cell-specific knockout of neuropilin-1 impairs postnatal lung development and pathological vascular smooth muscle cell accumulation. Am J Physiol Cell Physiol. 2019;316:C424-C433 pubmed 出版商
  626. Gerber D, Ghidinelli M, Tinelli E, Somandin C, Gerber J, Pereira J, et al. Schwann cells, but not Oligodendrocytes, Depend Strictly on Dynamin 2 Function. elife. 2019;8: pubmed 出版商
  627. Chen H, Hu B, Lv X, Zhu S, Zhen G, Wan M, et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat Commun. 2019;10:181 pubmed 出版商
  628. Naito H, Iba T, Wakabayashi T, Tai Nagara I, Suehiro J, Jia W, et al. TAK1 Prevents Endothelial Apoptosis and Maintains Vascular Integrity. Dev Cell. 2019;48:151-166.e7 pubmed 出版商
  629. Cai W, Xu Y, Zuo W, Su Z. MicroR-542-3p can mediate ILK and further inhibit cell proliferation, migration and invasion in osteosarcoma cells. Aging (Albany NY). 2019;11:18-32 pubmed 出版商
  630. Liu S, Hausmann S, CARLSON S, Fuentes M, Francis J, Pillai R, et al. METTL13 Methylation of eEF1A Increases Translational Output to Promote Tumorigenesis. Cell. 2019;176:491-504.e21 pubmed 出版商
  631. Li H, van der Leun A, Yofe I, Lubling Y, Gelbard Solodkin D, van Akkooi A, et al. Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma. Cell. 2019;176:775-789.e18 pubmed 出版商
  632. Angelova A, Platel J, B clin C, Cremer H, Cor N. Characterization of perinatally born glutamatergic neurons of the mouse olfactory bulb based on NeuroD6 expression reveals their resistance to sensory deprivation. J Comp Neurol. 2019;527:1245-1260 pubmed 出版商
  633. Moon S, Huang C, Houlihan S, Regunath K, Freed Pastor W, Morris J, et al. p53 Represses the Mevalonate Pathway to Mediate Tumor Suppression. Cell. 2019;176:564-580.e19 pubmed 出版商
  634. Ruscetti M, Leibold J, Bott M, Fennell M, Kulick A, Salgado N, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science. 2018;362:1416-1422 pubmed 出版商
  635. Hatzi K, Geng H, Doane A, Meydan C, LaRiviere R, Cárdenas M, et al. Histone demethylase LSD1 is required for germinal center formation and BCL6-driven lymphomagenesis. Nat Immunol. 2019;20:86-96 pubmed 出版商
  636. Wang M, Tang C, Xing R, Liu X, Han X, Liu Y, et al. WDR81 regulates adult hippocampal neurogenesis through endosomal SARA-TGFβ signaling. Mol Psychiatry. 2018;: pubmed 出版商
  637. Pan W, Moroishi T, Koo J, Guan K. Cell type-dependent function of LATS1/2 in cancer cell growth. Oncogene. 2019;38:2595-2610 pubmed 出版商
  638. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  639. Wu R, Li A, Sun B, Sun J, Zhang J, Zhang T, et al. A novel m6A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res. 2019;29:23-41 pubmed 出版商
  640. Perciani C, Farah B, Kaul R, Ostrowski M, Mahmud S, Anzala O, et al. Live attenuated varicella-zoster virus vaccine does not induce HIV target cell activation. J Clin Invest. 2019;129:875-886 pubmed 出版商
  641. Chen R, Miao Y, Hu Z. Dynamic Nestin expression during hair follicle maturation and the normal hair cycle. Mol Med Rep. 2019;19:549-554 pubmed 出版商
  642. Muscate F, Stetter N, Schramm C, Schulze zur Wiesch J, Bosurgi L, Jacobs T. HVEM and CD160: Regulators of Immunopathology During Malaria Blood-Stage. Front Immunol. 2018;9:2611 pubmed 出版商
  643. Coover R, Healy T, Guo L, Chaney K, Hennigan R, Thomson C, et al. Tonic ATP-mediated growth suppression in peripheral nerve glia requires arrestin-PP2 and is evaded in NF1. Acta Neuropathol Commun. 2018;6:127 pubmed 出版商
  644. Zhuang L, Lawlor K, Schlueter H, Pieterse Z, Yu Y, Kaur P. Pericytes promote skin regeneration by inducing epidermal cell polarity and planar cell divisions. Life Sci Alliance. 2018;1:e201700009 pubmed 出版商
  645. Glal D, Sudhakar J, Lu H, Liu M, Chiang H, Liu Y, et al. ATF3 Sustains IL-22-Induced STAT3 Phosphorylation to Maintain Mucosal Immunity Through Inhibiting Phosphatases. Front Immunol. 2018;9:2522 pubmed 出版商
  646. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  647. Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E, et al. Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat Commun. 2018;9:4845 pubmed 出版商
  648. Wang F, Meng M, Mo B, Yang Y, Ji Y, Huang P, et al. Crosstalks between mTORC1 and mTORC2 variagate cytokine signaling to control NK maturation and effector function. Nat Commun. 2018;9:4874 pubmed 出版商
  649. Chen X, Chanda A, Ikeuchi Y, Zhang X, Goodman J, Reddy N, et al. The Transcriptional Regulator SnoN Promotes the Proliferation of Cerebellar Granule Neuron Precursors in the Postnatal Mouse Brain. J Neurosci. 2019;39:44-62 pubmed 出版商
  650. Song X, Chen H, Zhang C, Yu Y, Chen Z, Liang H, et al. SRC-3 inhibition blocks tumor growth of pancreatic ductal adenocarcinoma. Cancer Lett. 2019;442:310-319 pubmed 出版商
  651. Lou C, Lu H, Ma Z, Liu C, Zhang Y. Ginkgolide B enhances gemcitabine sensitivity in pancreatic cancer cell lines via inhibiting PAFR/NF-кB pathway. Biomed Pharmacother. 2019;109:563-572 pubmed 出版商
  652. Koren E, Yosefzon Y, Ankawa R, Soteriou D, Jacob A, Nevelsky A, et al. ARTS mediates apoptosis and regeneration of the intestinal stem cell niche. Nat Commun. 2018;9:4582 pubmed 出版商
  653. Bartolomé A, Zhu C, Sussel L, Pajvani U. Notch signaling dynamically regulates adult β cell proliferation and maturity. J Clin Invest. 2019;129:268-280 pubmed 出版商
  654. Zhang C, Jiang M, Zhou H, Liu W, Wang C, Kang Z, et al. TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation. J Clin Invest. 2018;128:5399-5412 pubmed 出版商
  655. Li Y, Liu Y, Xu H, Jiang G, Van der Jeught K, Fang Y, et al. Heterozygous deletion of chromosome 17p renders prostate cancer vulnerable to inhibition of RNA polymerase II. Nat Commun. 2018;9:4394 pubmed 出版商
  656. Goldie S, Cottle D, Tan F, Roslan S, Srivastava S, Brady R, et al. Loss of GRHL3 leads to TARC/CCL17-mediated keratinocyte proliferation in the epidermis. Cell Death Dis. 2018;9:1072 pubmed 出版商
  657. Hoang T, Harper J, Pino M, Wang H, Micci L, King C, et al. Bone Marrow-Derived CD4+ T Cells Are Depleted in Simian Immunodeficiency Virus-Infected Macaques and Contribute to the Size of the Replication-Competent Reservoir. J Virol. 2019;93: pubmed 出版商
  658. Park J, Lee J, Sheu K, Wang L, Balanis N, Nguyen K, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science. 2018;362:91-95 pubmed 出版商
  659. Peng Y. B cell responses to apoptotic cells in MFG-E8-/- mice. PLoS ONE. 2018;13:e0205172 pubmed 出版商
  660. Albrengues J, Shields M, Ng D, Park C, Ambrico A, Poindexter M, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361: pubmed 出版商
  661. Patel N, Vukmanovic Stejic M, Suárez Fariñas M, Chambers E, Sandhu D, Fuentes Duculan J, et al. Impact of Zostavax Vaccination on T-Cell Accumulation and Cutaneous Gene Expression in the Skin of Older Humans After Varicella Zoster Virus Antigen-Specific Challenge. J Infect Dis. 2018;218:S88-S98 pubmed 出版商
  662. Sanyal R, Pavel A, Glickman J, Chan T, Zheng X, Zhang N, et al. Atopic dermatitis in African American patients is TH2/TH22-skewed with TH1/TH17 attenuation. Ann Allergy Asthma Immunol. 2019;122:99-110.e6 pubmed 出版商
  663. Han S, Dennis D, Balakrishnan A, Dixit R, Britz O, Zinyk D, et al. A non-canonical role for the proneural gene Neurog1 as a negative regulator of neocortical neurogenesis. Development. 2018;145: pubmed 出版商
  664. Petrelli A, Mijnheer G, Hoytema van Konijnenburg D, van der Wal M, Giovannone B, Mocholí E, et al. PD-1+CD8+ T cells are clonally expanding effectors in human chronic inflammation. J Clin Invest. 2018;128:4669-4681 pubmed 出版商
  665. Taparra K, Wang H, Malek R, Lafargue A, Barbhuiya M, Wang X, et al. O-GlcNAcylation is required for mutant KRAS-induced lung tumorigenesis. J Clin Invest. 2018;128:4924-4937 pubmed 出版商
  666. Takemoto Y, Inaba S, Zhang L, Tsujikawa K, Uezumi A, Fukada S. Implication of basal lamina dependency in survival of Nrf2-null muscle stem cells via an antioxidative-independent mechanism. J Cell Physiol. 2019;234:1689-1698 pubmed 出版商
  667. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  668. Kiang L, Ross B, Yao J, Shanmugam S, Andrews C, Hansen S, et al. Vitreous Cytokine Expression and a Murine Model Suggest a Key Role of Microglia in the Inflammatory Response to Retinal Detachment. Invest Ophthalmol Vis Sci. 2018;59:3767-3778 pubmed 出版商
  669. Heshmati Y, Kharazi S, Türköz G, Chang D, Kamali Dolatabadi E, Boström J, et al. The histone chaperone NAP1L3 is required for haematopoietic stem cell maintenance and differentiation. Sci Rep. 2018;8:11202 pubmed 出版商
  670. Xiao D, Liu X, Zhang M, Zou M, Deng Q, Sun D, et al. Direct reprogramming of fibroblasts into neural stem cells by single non-neural progenitor transcription factor Ptf1a. Nat Commun. 2018;9:2865 pubmed 出版商
  671. Morin E, Sjöberg E, Tjomsland V, Testini C, Lindskog C, Franklin O, et al. VEGF receptor-2/neuropilin 1 trans-complex formation between endothelial and tumor cells is an independent predictor of pancreatic cancer survival. J Pathol. 2018;246:311-322 pubmed 出版商
  672. Baens M, Stirparo R, Lampi Y, Verbeke D, Vandepoel R, Cools J, et al. Malt1 self-cleavage is critical for regulatory T cell homeostasis and anti-tumor immunity in mice. Eur J Immunol. 2018;48:1728-1738 pubmed 出版商
  673. Playne R, Jones K, Connor B. Generation of dopamine neuronal-like cells from induced neural precursors derived from adult human cells by non-viral expression of lineage factors. J Stem Cells Regen Med. 2018;14:34-44 pubmed
  674. Hartana C, Ahlén Bergman E, Broome A, Berglund S, Johansson M, Alamdari F, et al. Tissue-resident memory T cells are epigenetically cytotoxic with signs of exhaustion in human urinary bladder cancer. Clin Exp Immunol. 2018;194:39-53 pubmed 出版商
  675. Kim J, Villadsen R. Expression of Luminal Progenitor Marker CD117 in the Human Breast Gland. J Histochem Cytochem. 2018;66:879-888 pubmed 出版商
  676. Xie H, Wang Y, Zhang H, Fan Q, Dai D, Zhuang L, et al. Tubular epithelial C1orf54 mediates protection and recovery from acute kidney injury. J Cell Mol Med. 2018;22:4985-4996 pubmed 出版商
  677. Pinzon Guzman C, Meyer A, Wise R, Choi E, Muthupalani S, Wang T, et al. Evaluation of Lineage Changes in the Gastric Mucosa Following Infection With Helicobacter pylori and Specified Intestinal Flora in INS-GAS Mice. J Histochem Cytochem. 2018;:22155418785621 pubmed 出版商
  678. Jung I, Kim Y, Yu H, Lee M, Kim S, Lee J. CRISPR/Cas9-Mediated Knockout of DGK Improves Antitumor Activities of Human T Cells. Cancer Res. 2018;78:4692-4703 pubmed 出版商
  679. Nusse Y, Savage A, Marangoni P, Rosendahl Huber A, Landman T, De Sauvage F, et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature. 2018;559:109-113 pubmed 出版商
  680. Norris G, Smirnov I, Filiano A, Shadowen H, Cody K, Thompson J, et al. Neuronal integrity and complement control synaptic material clearance by microglia after CNS injury. J Exp Med. 2018;215:1789-1801 pubmed 出版商
  681. Casey A, Sinha A, Singhania R, Livingstone J, Waterhouse P, Tharmapalan P, et al. Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities. J Cell Biol. 2018;217:2951-2974 pubmed 出版商
  682. Chhipa R, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, et al. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol. 2018;20:823-835 pubmed 出版商
  683. Moysi E, Pallikkuth S, de Armas L, Gonzalez L, Ambrozak D, George V, et al. Altered immune cell follicular dynamics in HIV infection following influenza vaccination. J Clin Invest. 2018;128:3171-3185 pubmed 出版商
  684. Natsumi A, Sugawara K, Yasumizu M, Mizukami Y, Sano S, Morita A, et al. Re-investigating the Basement Membrane Zone of Psoriatic Epidermal Lesions: Is Laminin-511 a New Player in Psoriasis Pathogenesis?. J Histochem Cytochem. 2018;66:847-862 pubmed 出版商
  685. Song J, Zhang X, Ge Q, Yuan C, Chu L, Liang H, et al. CRISPR/Cas9-mediated knockout of HBsAg inhibits proliferation and tumorigenicity of HBV-positive hepatocellular carcinoma cells. J Cell Biochem. 2018;119:8419-8431 pubmed 出版商
  686. Liu T, Kong W, Tang X, Xu M, Wang Q, Zhang B, et al. The transcription factor Zfp90 regulates the self-renewal and differentiation of hematopoietic stem cells. Cell Death Dis. 2018;9:677 pubmed 出版商
  687. Appel J, Ye S, Tang F, Sun D, Zhang H, Mei L, et al. Increased Microglial Activity, Impaired Adult Hippocampal Neurogenesis, and Depressive-like Behavior in Microglial VPS35-Depleted Mice. J Neurosci. 2018;38:5949-5968 pubmed 出版商
  688. Giera S, Luo R, Ying Y, Ackerman S, Jeong S, Stoveken H, et al. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. elife. 2018;7: pubmed 出版商
  689. Ruess D, Heynen G, Ciecielski K, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med. 2018;24:954-960 pubmed 出版商
  690. Vera Ramirez L, Vodnala S, Nini R, Hunter K, Green J. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat Commun. 2018;9:1944 pubmed 出版商
  691. Kityo C, Makamdop K, Rothenberger M, Chipman J, Hoskuldsson T, Beilman G, et al. Lymphoid tissue fibrosis is associated with impaired vaccine responses. J Clin Invest. 2018;128:2763-2773 pubmed 出版商
  692. Rossow L, Veitl S, Vorlova S, Wax J, Kuhn A, Maltzahn V, et al. LOX-catalyzed collagen stabilization is a proximal cause for intrinsic resistance to chemotherapy. Oncogene. 2018;37:4921-4940 pubmed 出版商
  693. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  694. Sayin I, Radtke A, Vella L, Jin W, Wherry E, Buggert M, et al. Spatial distribution and function of T follicular regulatory cells in human lymph nodes. J Exp Med. 2018;215:1531-1542 pubmed 出版商
  695. Barwick B, Scharer C, Martinez R, Price M, Wein A, Haines R, et al. B cell activation and plasma cell differentiation are inhibited by de novo DNA methylation. Nat Commun. 2018;9:1900 pubmed 出版商
  696. Marcucci F, Soares C, Mason C. Distinct timing of neurogenesis of ipsilateral and contralateral retinal ganglion cells. J Comp Neurol. 2019;527:212-224 pubmed 出版商
  697. Li M, Yang X, LU X, Dai N, Zhang S, Cheng Y, et al. APE1 deficiency promotes cellular senescence and premature aging features. Nucleic Acids Res. 2018;46:5664-5677 pubmed 出版商
  698. Miyamoto Y, Torii T, Tago K, Tanoue A, Takashima S, Yamauchi J. BIG1/Arfgef1 and Arf1 regulate the initiation of myelination by Schwann cells in mice. Sci Adv. 2018;4:eaar4471 pubmed 出版商
  699. Salomè M, Magee A, Yalla K, Chaudhury S, Sarrou E, Carmody R, et al. A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death Dis. 2018;9:443 pubmed 出版商
  700. Ferrando Martinez S, Moysi E, Pegu A, Andrews S, Nganou Makamdop K, Ambrozak D, et al. Accumulation of follicular CD8+ T cells in pathogenic SIV infection. J Clin Invest. 2018;128:2089-2103 pubmed 出版商
  701. Fu X, Khalil H, Kanisicak O, Boyer J, Vagnozzi R, Maliken B, et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest. 2018;128:2127-2143 pubmed 出版商
  702. Zhang Z, Zi Z, Lee E, Zhao J, Contreras D, South A, et al. Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nat Med. 2018;24:617-627 pubmed 出版商
  703. Seidi K, Jahanban Esfahlan R, Monhemi H, Zare P, Minofar B, Daei Farshchi Adli A, et al. NGR (Asn-Gly-Arg)-targeted delivery of coagulase to tumor vasculature arrests cancer cell growth. Oncogene. 2018;37:3967-3980 pubmed 出版商
  704. Liakath Ali K, Mills E, Sequeira I, Lichtenberger B, Pisco A, Sipilä K, et al. An evolutionarily conserved ribosome-rescue pathway maintains epidermal homeostasis. Nature. 2018;556:376-380 pubmed 出版商
  705. Watanabe K, Luo Y, Da T, Guedan S, Ruella M, Scholler J, et al. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight. 2018;3: pubmed 出版商
  706. Huang Y, Gu L, Li G. H3K36me3-mediated mismatch repair preferentially protects actively transcribed genes from mutation. J Biol Chem. 2018;293:7811-7823 pubmed 出版商
  707. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  708. Lyons J, Ghazi P, Starchenko A, Tovaglieri A, Baldwin K, Poulin E, et al. The colonic epithelium plays an active role in promoting colitis by shaping the tissue cytokine profile. PLoS Biol. 2018;16:e2002417 pubmed 出版商
  709. Leeman D, Hebestreit K, Ruetz T, Webb A, McKay A, Pollina E, et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science. 2018;359:1277-1283 pubmed 出版商
  710. Qiang L, Wang J, Zhang Y, Ge P, Chai Q, Li B, et al. Mycobacterium tuberculosis Mce2E suppresses the macrophage innate immune response and promotes epithelial cell proliferation. Cell Mol Immunol. 2018;: pubmed 出版商
  711. Kawano Y, Zavidij O, Park J, Moschetta M, Kokubun K, Mouhieddine T, et al. Blocking IFNAR1 inhibits multiple myeloma-driven Treg expansion and immunosuppression. J Clin Invest. 2018;128:2487-2499 pubmed 出版商
  712. Li M, Zhang W, Liu J, Li M, Zhang Y, Xiong Y, et al. Dynamic changes in the immunological characteristics of T lymphocytes in surviving patients with severe fever with thrombocytopenia syndrome (SFTS). Int J Infect Dis. 2018;70:72-80 pubmed 出版商
  713. Lee C, Moon S, Jeong J, Lee S, Lee M, Yoo S, et al. Kaempferol targeting on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis prevents the development of rheumatoid arthritis. Cell Death Dis. 2018;9:401 pubmed 出版商
  714. Andricovich J, Perkail S, Kai Y, Casasanta N, Peng W, Tzatsos A. Loss of KDM6A Activates Super-Enhancers to Induce Gender-Specific Squamous-like Pancreatic Cancer and Confers Sensitivity to BET Inhibitors. Cancer Cell. 2018;33:512-526.e8 pubmed 出版商
  715. Poli V, Fagnocchi L, Fasciani A, Cherubini A, Mazzoleni S, Ferrillo S, et al. MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nat Commun. 2018;9:1024 pubmed 出版商
  716. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed 出版商
  717. Li N, van Unen V, Höllt T, Thompson A, van Bergen J, Pezzotti N, et al. Mass cytometry reveals innate lymphoid cell differentiation pathways in the human fetal intestine. J Exp Med. 2018;215:1383-1396 pubmed 出版商
  718. Huang L, Nazarova E, Tan S, Liu Y, Russell D. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med. 2018;215:1135-1152 pubmed 出版商
  719. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  720. Zacharias W, Frank D, Zepp J, Morley M, Alkhaleel F, Kong J, et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature. 2018;555:251-255 pubmed 出版商
  721. Hailemichael Y, Woods A, Fu T, He Q, Nielsen M, Hasan F, et al. Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. J Clin Invest. 2018;128:1338-1354 pubmed 出版商
  722. Panduro M, Benoist C, Mathis D. Treg cells limit IFN-? production to control macrophage accrual and phenotype during skeletal muscle regeneration. Proc Natl Acad Sci U S A. 2018;115:E2585-E2593 pubmed 出版商
  723. Jegaskanda S, Mason R, Andrews S, Wheatley A, Zhang R, Reynoso G, et al. Intranasal Live Influenza Vaccine Priming Elicits Localized B Cell Responses in Mediastinal Lymph Nodes. J Virol. 2018;92: pubmed 出版商
  724. Yu Y, Shang R, Chen Y, Li J, Liang Z, Hu J, et al. Tumor suppressive ZBTB4 inhibits cell growth by regulating cell cycle progression and apoptosis in Ewing sarcoma. Biomed Pharmacother. 2018;100:108-115 pubmed 出版商
  725. Xu M, Han X, Liu R, Li Y, Qi C, Yang Z, et al. PDK1 Deficit Impairs the Development of the Dentate Gyrus in Mice. Cereb Cortex. 2019;29:1185-1198 pubmed 出版商
  726. Ellestad K, Thangavelu G, Haile Y, Lin J, Boon L, Anderson C. Prior to Peripheral Tolerance, Newly Generated CD4 T Cells Maintain Dangerous Autoimmune Potential: Fas- and Perforin-Independent Autoimmunity Controlled by Programmed Death-1. Front Immunol. 2018;9:12 pubmed 出版商
  727. Le Duff M, Gouju J, Jonchère B, Guillon J, Toutain B, Boissard A, et al. Regulation of senescence escape by the cdk4-EZH2-AP2M1 pathway in response to chemotherapy. Cell Death Dis. 2018;9:199 pubmed 出版商
  728. Rogerson C, Gissen P. VPS33B and VIPAR are essential for epidermal lamellar body biogenesis and function. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1609-1621 pubmed 出版商
  729. Glatzel Plucińska N, Piotrowska A, Grzegrzolka J, Olbromski M, Rzechonek A, Dziegiel P, et al. SATB1 Level Correlates with Ki-67 Expression and Is a Positive Prognostic Factor in Non-small Cell Lung Carcinoma. Anticancer Res. 2018;38:723-736 pubmed
  730. Ireland L, Santos A, Campbell F, Figueiredo C, Hammond D, Ellies L, et al. Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer. Oncogene. 2018;37:2022-2036 pubmed 出版商
  731. Browne A, Charmsaz S, Varešlija D, Fagan A, Cosgrove N, Cocchiglia S, et al. Network analysis of SRC-1 reveals a novel transcription factor hub which regulates endocrine resistant breast cancer. Oncogene. 2018;37:2008-2021 pubmed 出版商
  732. Rotti P, Xie W, Poudel A, Yi Y, Sun X, Tyler S, et al. Pancreatic and Islet Remodeling in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Knockout Ferrets. Am J Pathol. 2018;188:876-890 pubmed 出版商
  733. Linehan J, Harrison O, Han S, Byrd A, Vujkovic Cvijin I, Villarino A, et al. Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell. 2018;172:784-796.e18 pubmed 出版商
  734. Panaliappan T, Wittmann W, Jidigam V, Mercurio S, Bertolini J, Sghari S, et al. Sox2 is required for olfactory pit formation and olfactory neurogenesis through BMP restriction and Hes5 upregulation. Development. 2018;145: pubmed 出版商
  735. Teater M, Domínguez P, Redmond D, Chen Z, Ennishi D, Scott D, et al. AICDA drives epigenetic heterogeneity and accelerates germinal center-derived lymphomagenesis. Nat Commun. 2018;9:222 pubmed 出版商
  736. Mitroulis I, Ruppova K, Wang B, Chen L, Grzybek M, Grinenko T, et al. Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell. 2018;172:147-161.e12 pubmed 出版商
  737. Huang Y, Mao K, Chen X, Sun M, Kawabe T, Li W, et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science. 2018;359:114-119 pubmed 出版商
  738. Smith M, Harley M, Kemp A, Wills J, Lee M, Arends M, et al. CCPG1 Is a Non-canonical Autophagy Cargo Receptor Essential for ER-Phagy and Pancreatic ER Proteostasis. Dev Cell. 2018;44:217-232.e11 pubmed 出版商
  739. Shimbo M, Suzuki R, Fuseya S, Sato T, Kiyohara K, Hagiwara K, et al. Postnatal lethality and chondrodysplasia in mice lacking both chondroitin sulfate N-acetylgalactosaminyltransferase-1 and -2. PLoS ONE. 2017;12:e0190333 pubmed 出版商
  740. Fontaine M, Vogel I, Van Eycke Y, Galuppo A, Ajouaou Y, Decaestecker C, et al. Regulatory T cells constrain the TCR repertoire of antigen-stimulated conventional CD4 T cells. EMBO J. 2018;37:398-412 pubmed 出版商
  741. Pleiner T, Bates M, Gorlich D. A toolbox of anti-mouse and anti-rabbit IgG secondary nanobodies. J Cell Biol. 2018;217:1143-1154 pubmed 出版商
  742. Amodio D, Cotugno N, Macchiarulo G, Rocca S, Dimopoulos Y, Castrucci M, et al. Quantitative Multiplexed Imaging Analysis Reveals a Strong Association between Immunogen-Specific B Cell Responses and Tonsillar Germinal Center Immune Dynamics in Children after Influenza Vaccination. J Immunol. 2018;200:538-550 pubmed 出版商
  743. Ziegler Waldkirch S, d Errico P, Sauer J, Erny D, Savanthrapadian S, Loreth D, et al. Seed-induced Aβ deposition is modulated by microglia under environmental enrichment in a mouse model of Alzheimer's disease. EMBO J. 2018;37:167-182 pubmed 出版商
  744. Wu Y, Zhang Z, Cenciarini M, Proietti C, Amasino M, Hong T, et al. Tamoxifen Resistance in Breast Cancer Is Regulated by the EZH2-ERα-GREB1 Transcriptional Axis. Cancer Res. 2018;78:671-684 pubmed 出版商
  745. Kortlever R, Sodir N, Wilson C, Burkhart D, Pellegrinet L, Brown Swigart L, et al. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell. 2017;171:1301-1315.e14 pubmed 出版商
  746. Blom S, Paavolainen L, Bychkov D, Turkki R, Mäki Teeri P, Hemmes A, et al. Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis. Sci Rep. 2017;7:15580 pubmed 出版商
  747. Li Y, Yang Y, Yang L, Zeng Y, Gao X, Xu H. Poly(ethylene glycol)-modified silk fibroin membrane as a carrier for limbal epithelial stem cell transplantation in a rabbit LSCD model. Stem Cell Res Ther. 2017;8:256 pubmed 出版商
  748. Wasiuk A, Testa J, Weidlick J, Sisson C, Vitale L, Widger J, et al. CD27-Mediated Regulatory T Cell Depletion and Effector T Cell Costimulation Both Contribute to Antitumor Efficacy. J Immunol. 2017;199:4110-4123 pubmed 出版商
  749. Escamilla C, Filonova I, Walker A, Xuan Z, Holehonnur R, Espinosa F, et al. Kctd13 deletion reduces synaptic transmission via increased RhoA. Nature. 2017;551:227-231 pubmed 出版商
  750. Kannan M, Bayam E, Wagner C, Rinaldi B, Kretz P, Tilly P, et al. WD40-repeat 47, a microtubule-associated protein, is essential for brain development and autophagy. Proc Natl Acad Sci U S A. 2017;114:E9308-E9317 pubmed 出版商
  751. Xue X, Bredell B, Anderson E, Martin A, Mays C, Nagao Kitamoto H, et al. Quantitative proteomics identifies STEAP4 as a critical regulator of mitochondrial dysfunction linking inflammation and colon cancer. Proc Natl Acad Sci U S A. 2017;114:E9608-E9617 pubmed 出版商
  752. Berrout J, Kyriakopoulou E, Moparthi L, Hogea A, Berrout L, Ivan C, et al. TRPA1-FGFR2 binding event is a regulatory oncogenic driver modulated by miRNA-142-3p. Nat Commun. 2017;8:947 pubmed 出版商
  753. Paikari A, D Belair C, Saw D, Blelloch R. The eutheria-specific miR-290 cluster modulates placental growth and maternal-fetal transport. Development. 2017;144:3731-3743 pubmed 出版商
  754. Otto T, Candido S, Pilarz M, Sicinska E, Bronson R, Bowden M, et al. Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proc Natl Acad Sci U S A. 2017;114:10660-10665 pubmed 出版商
  755. Kim J, Park D, Bae H, Park D, Kim D, Lee C, et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. J Clin Invest. 2017;127:3877-3896 pubmed 出版商
  756. Matsuyama K, Mizutani Y, Takahashi T, Shu E, Kanoh H, Miyazaki T, et al. Enhanced dendritic cells and regulatory T cells in the dermis of porokeratosis. Arch Dermatol Res. 2017;309:749-756 pubmed 出版商
  757. Yanai H, Atsumi N, Tanaka T, Nakamura N, Komai Y, Omachi T, et al. Intestinal stem cells contribute to the maturation of the neonatal small intestine and colon independently of digestive activity. Sci Rep. 2017;7:9891 pubmed 出版商
  758. Kuroda M, Muramatsu R, Maedera N, Koyama Y, Hamaguchi M, Fujimura H, et al. Peripherally derived FGF21 promotes remyelination in the central nervous system. J Clin Invest. 2017;127:3496-3509 pubmed 出版商
  759. Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357: pubmed 出版商
  760. Goel S, Decristo M, Watt A, BrinJones H, Sceneay J, Li B, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548:471-475 pubmed 出版商
  761. Guo H, Kazadaeva Y, Ortega F, Manjunath N, Desai T. Trinucleotide repeat containing 6c (TNRC6c) is essential for microvascular maturation during distal airspace sacculation in the developing lung. Dev Biol. 2017;430:214-223 pubmed 出版商
  762. Minguet S, Kläsener K, Schaffer A, Fiala G, Osteso Ibanez T, Raute K, et al. Caveolin-1-dependent nanoscale organization of the BCR regulates B cell tolerance. Nat Immunol. 2017;18:1150-1159 pubmed 出版商
  763. Brown S, Pineda C, Xin T, Boucher J, Suozzi K, Park S, et al. Correction of aberrant growth preserves tissue homeostasis. Nature. 2017;548:334-337 pubmed 出版商
  764. Liu Z, Li H, Liu J, Wu M, Chen X, Liu L, et al. Inactivated Wnt signaling in resveratrol-treated epidermal squamous cancer cells and its biological implication. Oncol Lett. 2017;14:2239-2243 pubmed 出版商
  765. Luo W, Tan P, Rodriguez M, He L, Tan K, Zeng L, et al. Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is necessary for prostate cancer metastasis via epithelial-mesenchymal transition. J Biol Chem. 2017;292:15525-15537 pubmed 出版商
  766. Roberts S, Dun X, Doddrell R, Mindos T, Drake L, Onaitis M, et al. Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve. Development. 2017;144:3114-3125 pubmed 出版商
  767. Nikolaidis N, Noel J, Pitstick L, Gardner J, Uehara Y, Wu H, et al. Mitogenic stimulation accelerates influenza-induced mortality by increasing susceptibility of alveolar type II cells to infection. Proc Natl Acad Sci U S A. 2017;114:E6613-E6622 pubmed 出版商
  768. Spaeth J, Gupte M, Perelis M, Yang Y, CYPHERT H, Guo S, et al. Defining a Novel Role for the Pdx1 Transcription Factor in Islet β-Cell Maturation and Proliferation During Weaning. Diabetes. 2017;66:2830-2839 pubmed 出版商
  769. Sitrin J, Suto E, Wuster A, Eastham Anderson J, Kim J, Austin C, et al. The Ox40/Ox40 Ligand Pathway Promotes Pathogenic Th Cell Responses, Plasmablast Accumulation, and Lupus Nephritis in NZB/W F1 Mice. J Immunol. 2017;199:1238-1249 pubmed 出版商
  770. Capurro M, Izumikawa T, Suarez P, Shi W, Cydzik M, Kaneiwa T, et al. Glypican-6 promotes the growth of developing long bones by stimulating Hedgehog signaling. J Cell Biol. 2017;216:2911-2926 pubmed 出版商
  771. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  772. Lee S, Park H, Suh Y, Yoon E, Kim J, Jang W, et al. Inhibition of acute lethal pulmonary inflammation by the IDO-AhR pathway. Proc Natl Acad Sci U S A. 2017;114:E5881-E5890 pubmed 出版商
  773. Young F, Keruzore M, Nan X, Gennet N, Bellefroid E, Li M. The doublesex-related Dmrta2 safeguards neural progenitor maintenance involving transcriptional regulation of Hes1. Proc Natl Acad Sci U S A. 2017;114:E5599-E5607 pubmed 出版商
  774. Ida S, Morino K, Sekine O, Ohashi N, Kume S, Chano T, et al. Diverse metabolic effects of O-GlcNAcylation in the pancreas but limited effects in insulin-sensitive organs in mice. Diabetologia. 2017;60:1761-1769 pubmed 出版商
  775. Sakurai M, Miki Y, Takagi K, Suzuki T, Ishida T, Ohuchi N, et al. Interaction with adipocyte stromal cells induces breast cancer malignancy via S100A7 upregulation in breast cancer microenvironment. Breast Cancer Res. 2017;19:70 pubmed 出版商
  776. Xu P, Tao X, Zhao C, Huang Q, Chang H, Ban N, et al. DTX3L is upregulated in glioma and is associated with glioma progression. Int J Mol Med. 2017;40:491-498 pubmed 出版商
  777. Guo T, Zhao S, Wang P, Xue X, Zhang Y, Yang M, et al. YB-1 regulates tumor growth by promoting MACC1/c-Met pathway in human lung adenocarcinoma. Oncotarget. 2017;8:48110-48125 pubmed 出版商
  778. Nozawa R, Boteva L, Soares D, Naughton C, Dun A, Buckle A, et al. SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs. Cell. 2017;169:1214-1227.e18 pubmed 出版商
  779. Kokabu S, Nakatomi C, Matsubara T, Ono Y, Addison W, Lowery J, et al. The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor. J Biol Chem. 2017;292:12885-12894 pubmed 出版商
  780. Feng J, Jing J, Li J, Zhao H, Punj V, Zhang T, et al. BMP signaling orchestrates a transcriptional network to control the fate of mesenchymal stem cells in mice. Development. 2017;144:2560-2569 pubmed 出版商
  781. Nielsen C, van Putten S, Lund I, Melander M, Nørregaard K, Jürgensen H, et al. The collagen receptor uPARAP/Endo180 as a novel target for antibody-drug conjugate mediated treatment of mesenchymal and leukemic cancers. Oncotarget. 2017;8:44605-44624 pubmed 出版商
  782. Shi Y, Ping Y, Zhou W, He Z, Chen C, Bian B, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun. 2017;8:15080 pubmed 出版商
  783. Garcia Hernandez M, Uribe Uribe N, Espinosa González R, Kast W, Khader S, Rangel Moreno J. A Unique Cellular and Molecular Microenvironment Is Present in Tertiary Lymphoid Organs of Patients with Spontaneous Prostate Cancer Regression. Front Immunol. 2017;8:563 pubmed 出版商
  784. Xia H, Gilbertsen A, Herrera J, Racila E, Smith K, Peterson M, et al. Calcium-binding protein S100A4 confers mesenchymal progenitor cell fibrogenicity in idiopathic pulmonary fibrosis. J Clin Invest. 2017;127:2586-2597 pubmed 出版商
  785. Haston S, Pozzi S, Carreno G, Manshaei S, Panousopoulos L, González Meljem J, et al. MAPK pathway control of stem cell proliferation and differentiation in the embryonic pituitary provides insights into the pathogenesis of papillary craniopharyngioma. Development. 2017;144:2141-2152 pubmed 出版商
  786. Arumugakani G, Stephenson S, Newton D, Rawstron A, Emery P, Doody G, et al. Early Emergence of CD19-Negative Human Antibody-Secreting Cells at the Plasmablast to Plasma Cell Transition. J Immunol. 2017;198:4618-4628 pubmed 出版商
  787. Barazzuol L, Ju L, Jeggo P. A coordinated DNA damage response promotes adult quiescent neural stem cell activation. PLoS Biol. 2017;15:e2001264 pubmed 出版商
  788. Miao T, Symonds A, Singh R, Symonds J, Ogbe A, Omodho B, et al. Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med. 2017;214:1787-1808 pubmed 出版商
  789. Giroux V, Lento A, Islam M, Pitarresi J, Kharbanda A, Hamilton K, et al. Long-lived keratin 15+ esophageal progenitor cells contribute to homeostasis and regeneration. J Clin Invest. 2017;127:2378-2391 pubmed 出版商
  790. Marsboom G, Chen Z, Yuan Y, Zhang Y, Tiruppathi C, Loyd J, et al. Aberrant caveolin-1-mediated Smad signaling and proliferation identified by analysis of adenine 474 deletion mutation (c.474delA) in patient fibroblasts: a new perspective on the mechanism of pulmonary hypertension. Mol Biol Cell. 2017;28:1177-1185 pubmed 出版商
  791. Ku A, Shaver T, Rao A, Howard J, Rodriguez C, Miao Q, et al. TCF7L1 promotes skin tumorigenesis independently of β-catenin through induction of LCN2. elife. 2017;6: pubmed 出版商
  792. Olvedy M, Tisserand J, Luciani F, Boeckx B, Wouters J, Lopez S, et al. Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma. J Clin Invest. 2017;127:2310-2325 pubmed 出版商
  793. Gibot L, Galbraith T, Bourland J, Rogic A, Skobe M, Auger F. Tissue-engineered 3D human lymphatic microvascular network for in vitro studies of lymphangiogenesis. Nat Protoc. 2017;12:1077-1088 pubmed 出版商
  794. Abbosh C, Birkbak N, Wilson G, Jamal Hanjani M, Constantin T, Salari R, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545:446-451 pubmed 出版商
  795. Riemer P, Rydenfelt M, Marks M, van Eunen K, Thedieck K, Herrmann B, et al. Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. J Cell Biol. 2017;216:1567-1577 pubmed 出版商
  796. Mendivil Perez M, Soto Mercado V, Guerra Librero A, Fernandez Gil B, Florido J, Shen Y, et al. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J Pineal Res. 2017;63: pubmed 出版商
  797. Huang A, Postow M, Orlowski R, Mick R, Bengsch B, Manne S, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017;545:60-65 pubmed 出版商
  798. Melis D, Carbone F, Minopoli G, La Rocca C, Perna F, De Rosa V, et al. Cutting Edge: Increased Autoimmunity Risk in Glycogen Storage Disease Type 1b Is Associated with a Reduced Engagement of Glycolysis in T Cells and an Impaired Regulatory T Cell Function. J Immunol. 2017;198:3803-3808 pubmed 出版商
  799. Cong Q, Jia H, Li P, Qiu S, Yeh J, Wang Y, et al. p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Sci Rep. 2017;7:45964 pubmed 出版商
  800. Sosunov A, McKhann G, Goldman J. The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease. Acta Neuropathol Commun. 2017;5:27 pubmed 出版商
  801. Connolly N, Stokum J, Schneider C, Ozawa T, Xu S, Galisteo R, et al. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer. PLoS ONE. 2017;12:e0174557 pubmed 出版商
  802. Mitsunari K, Miyata Y, Watanabe S, Asai A, Yasuda T, Kanda S, et al. Stromal expression of Fer suppresses tumor progression in renal cell carcinoma and is a predictor of survival. Oncol Lett. 2017;13:834-840 pubmed 出版商
  803. Song M, Kim Y, Bae J, Lee C, Lee S. Effect of cancer/testis antigen NY-SAR-35 on the proliferation, migration and invasion of cancer cells. Oncol Lett. 2017;13:784-790 pubmed 出版商
  804. Shimokawa M, Ohta Y, Nishikori S, Matano M, Takano A, Fujii M, et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature. 2017;545:187-192 pubmed 出版商
  805. Ji L, Gong C, Ge L, Song L, Chen F, Jin C, et al. Orphan nuclear receptor Nurr1 as a potential novel marker for progression in human pancreatic ductal adenocarcinoma. Exp Ther Med. 2017;13:551-559 pubmed 出版商
  806. Li X, Liu F, Lin B, Luo H, Liu M, Wu J, et al. miR?150 inhibits proliferation and tumorigenicity via retarding G1/S phase transition in nasopharyngeal carcinoma. Int J Oncol. 2017;: pubmed 出版商
  807. Mehta N, Lyon J, Patil K, Mokarram N, Kim C, Bellamkonda R. Bacterial Carriers for Glioblastoma Therapy. Mol Ther Oncolytics. 2017;4:1-17 pubmed 出版商
  808. González Pérez G, Lamousé Smith E. Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8+ T Cell Receptor Signaling. Front Immunol. 2017;8:265 pubmed 出版商
  809. Liao L, Song M, Li X, Tang L, Zhang T, Zhang L, et al. E3 Ubiquitin Ligase UBR5 Drives the Growth and Metastasis of Triple-Negative Breast Cancer. Cancer Res. 2017;77:2090-2101 pubmed 出版商
  810. Sarper M, Allen M, Gomm J, Haywood L, Decock J, Thirkettle S, et al. Loss of MMP-8 in ductal carcinoma in situ (DCIS)-associated myoepithelial cells contributes to tumour promotion through altered adhesive and proteolytic function. Breast Cancer Res. 2017;19:33 pubmed 出版商
  811. Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed 出版商
  812. Ohgaki R, Ohmori T, Hara S, Nakagomi S, Kanai Azuma M, Kaneda Nakashima K, et al. Essential Roles of L-Type Amino Acid Transporter 1 in Syncytiotrophoblast Development by Presenting Fusogenic 4F2hc. Mol Cell Biol. 2017;37: pubmed 出版商
  813. Li N, Xue W, Yuan H, Dong B, Ding Y, Liu Y, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284-1302 pubmed 出版商
  814. Feng W, Kawauchi D, Körkel Qu H, Deng H, Serger E, Sieber L, et al. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat Commun. 2017;8:14758 pubmed 出版商
  815. Riascos Bernal D, Chinnasamy P, Gross J, Almonte V, Egaña Gorroño L, Parikh D, et al. Inhibition of Smooth Muscle ?-Catenin Hinders Neointima Formation After Vascular Injury. Arterioscler Thromb Vasc Biol. 2017;37:879-888 pubmed 出版商
  816. Jin Z, Liang F, Yang J, Mei W. hnRNP I regulates neonatal immune adaptation and prevents colitis and colorectal cancer. PLoS Genet. 2017;13:e1006672 pubmed 出版商
  817. Chen K, Harris L, Lim J, Harvey T, Piper M, Gronostajski R, et al. Differential neuronal and glial expression of nuclear factor I proteins in the cerebral cortex of adult mice. J Comp Neurol. 2017;525:2465-2483 pubmed 出版商
  818. CAROMILE L, Dortche K, Rahman M, Grant C, Stoddard C, Ferrer F, et al. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10: pubmed 出版商
  819. Liu J, Hu F, Tang J, Tang S, Xia K, Wu S, et al. Homemade-device-induced negative pressure promotes wound healing more efficiently than VSD-induced positive pressure by regulating inflammation, proliferation and remodeling. Int J Mol Med. 2017;39:879-888 pubmed 出版商
  820. Martín Ibáñez R, Pardo M, Giralt A, Miguez A, Guardia I, Marion Poll L, et al. Helios expression coordinates the development of a subset of striatopallidal medium spiny neurons. Development. 2017;144:1566-1577 pubmed 出版商
  821. Egashira A, Morita M, Kumagai R, Taguchi K, Ueda M, Yamaguchi S, et al. Neuroendocrine carcinoma of the esophagus: Clinicopathological and immunohistochemical features of 14 cases. PLoS ONE. 2017;12:e0173501 pubmed 出版商
  822. Coni S, Mancuso A, Di Magno L, Sdruscia G, Manni S, Serrao S, et al. Selective targeting of HDAC1/2 elicits anticancer effects through Gli1 acetylation in preclinical models of SHH Medulloblastoma. Sci Rep. 2017;7:44079 pubmed 出版商
  823. Mosialou I, Shikhel S, Liu J, Maurizi A, Luo N, He Z, et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature. 2017;543:385-390 pubmed 出版商
  824. Sgourdou P, Mishra Gorur K, Saotome I, Henagariu O, Tuysuz B, Campos C, et al. Disruptions in asymmetric centrosome inheritance and WDR62-Aurora kinase B interactions in primary microcephaly. Sci Rep. 2017;7:43708 pubmed 出版商
  825. Fumagalli A, Drost J, Suijkerbuijk S, van Boxtel R, de Ligt J, Offerhaus G, et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc Natl Acad Sci U S A. 2017;114:E2357-E2364 pubmed 出版商
  826. Ubellacker J, Haider M, Decristo M, Allocca G, Brown N, Silver D, et al. Zoledronic acid alters hematopoiesis and generates breast tumor-suppressive bone marrow cells. Breast Cancer Res. 2017;19:23 pubmed 出版商
  827. Itakura G, Kawabata S, Ando M, Nishiyama Y, Sugai K, Ozaki M, et al. Fail-Safe System against Potential Tumorigenicity after Transplantation of iPSC Derivatives. Stem Cell Reports. 2017;8:673-684 pubmed 出版商
  828. Obeid S, Wankell M, Charrez B, Sternberg J, Kreuter R, Esmaili S, et al. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J Biol Chem. 2017;292:6569-6582 pubmed 出版商
  829. Liu Y, Liu R, Yang F, Cheng R, Chen X, Cui S, et al. miR-19a promotes colorectal cancer proliferation and migration by targeting TIA1. Mol Cancer. 2017;16:53 pubmed 出版商
  830. Zhang H, Wang Y, Liu Z, Yao B, Dou C, Xu M, et al. Lymphocyte-specific protein 1 inhibits the growth of hepatocellular carcinoma by suppressing ERK1/2 phosphorylation. FEBS Open Bio. 2016;6:1227-1237 pubmed 出版商
  831. Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, et al. miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics. 2017;7:664-676 pubmed 出版商
  832. van der Geest K, Wang Q, Eijsvogels T, Koenen H, Joosten I, Brouwer E, et al. Changes in peripheral immune cell numbers and functions in octogenarian walkers - an acute exercise study. Immun Ageing. 2017;14:5 pubmed 出版商
  833. Malchenko S, Sredni S, Bi Y, Margaryan N, Boyineni J, Mohanam I, et al. Stabilization of HIF-1α and HIF-2α, up-regulation of MYCC and accumulation of stabilized p53 constitute hallmarks of CNS-PNET animal model. PLoS ONE. 2017;12:e0173106 pubmed 出版商
  834. Cai Z, Zhang C, Zou Y, Lu C, Hu H, Qian J, et al. Tissue thioredoxin-interacting protein expression predicted recurrence in patients with meningiomas. Int J Clin Oncol. 2017;22:660-666 pubmed 出版商
  835. Ju H, Ying H, Tian T, Ling J, Fu J, Lu Y, et al. Mutant Kras- and p16-regulated NOX4 activation overcomes metabolic checkpoints in development of pancreatic ductal adenocarcinoma. Nat Commun. 2017;8:14437 pubmed 出版商
  836. Vallejo A, Perurena N, Guruceaga E, Mazur P, Martínez Canarias S, Zandueta C, et al. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nat Commun. 2017;8:14294 pubmed 出版商
  837. Subashini C, Dhanesh S, Chen C, Riya P, Meera V, Divya T, et al. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep. 2017;7:42523 pubmed 出版商
  838. Cen M, Hu P, Cai Z, Fang T, Zhang J, Lu M. TIEG1 deficiency confers enhanced myocardial protection in the infarcted heart by mediating the Pten/Akt signalling pathway. Int J Mol Med. 2017;39:569-578 pubmed 出版商
  839. Zamarin D, Holmgaard R, Ricca J, Plitt T, Palese P, Sharma P, et al. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nat Commun. 2017;8:14340 pubmed 出版商
  840. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  841. Chierico L, Rizzello L, Guan L, Joseph A, Lewis A, Battaglia G. The role of the two splice variants and extranuclear pathway on Ki-67 regulation in non-cancer and cancer cells. PLoS ONE. 2017;12:e0171815 pubmed 出版商
  842. Wu Q, Yan H, Tao S, Wang X, Mou L, Chen P, et al. XIAP 3'-untranslated region as a ceRNA promotes FSCN1 function in inducing the progression of breast cancer by binding endogenous miR-29a-5p. Oncotarget. 2017;8:16784-16800 pubmed 出版商
  843. Mazzotta C, Manetti M, Rosa I, Romano E, Blagojevic J, Bellando Randone S, et al. Proangiogenic effects of soluble ?-Klotho on systemic sclerosis dermal microvascular endothelial cells. Arthritis Res Ther. 2017;19:27 pubmed 出版商
  844. Watanabe N, Bajgain P, Sukumaran S, Ansari S, Heslop H, Rooney C, et al. Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology. 2016;5:e1253656 pubmed 出版商
  845. Xu K, Chen G, Li X, Wu X, Chang Z, Xu J, et al. MFN2 suppresses cancer progression through inhibition of mTORC2/Akt signaling. Sci Rep. 2017;7:41718 pubmed 出版商
  846. Duelen R, Gilbert G, Patel A, de Schaetzen N, de Waele L, Roderick L, et al. Activin A Modulates CRIPTO-1/HNF4?+ Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells. Stem Cells Int. 2017;2017:4651238 pubmed 出版商
  847. Ritschka B, Storer M, Mas A, Heinzmann F, Ortells M, Morton J, et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 2017;31:172-183 pubmed 出版商
  848. Chen W, Wang Z, Missinato M, Park D, Long D, Liu H, et al. Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration. Sci Adv. 2016;2:e1600844 pubmed 出版商
  849. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  850. Beaumont M, Andriamihaja M, Armand L, Grauso M, Jaffrézic F, Laloë D, et al. Epithelial response to a high-protein diet in rat colon. BMC Genomics. 2017;18:116 pubmed 出版商
  851. He Y, Northey J, Pelletier A, Kos Z, Meunier L, Haibe Kains B, et al. The Cdc42/Rac1 regulator CdGAP is a novel E-cadherin transcriptional co-repressor with Zeb2 in breast cancer. Oncogene. 2017;36:3490-3503 pubmed 出版商
  852. Dall G, Vieusseux J, Korach K, Arao Y, Hewitt S, Hamilton K, et al. SCA-1 Labels a Subset of Estrogen-Responsive Bipotential Repopulating Cells within the CD24+ CD49fhi Mammary Stem Cell-Enriched Compartment. Stem Cell Reports. 2017;8:417-431 pubmed 出版商
  853. Halsey C, Thamm D, Weishaar K, Burton J, Charles J, Gustafson D, et al. Expression of Phosphorylated KIT in Canine Mast Cell Tumor. Vet Pathol. 2017;54:387-394 pubmed 出版商
  854. Liu W, Wang F, Xu Q, Shi J, Zhang X, Lu X, et al. BCAS2 is involved in alternative mRNA splicing in spermatogonia and the transition to meiosis. Nat Commun. 2017;8:14182 pubmed 出版商
  855. Liu J, Wang Y, Song L, Zeng L, Yi W, Liu T, et al. A critical role of DDRGK1 in endoplasmic reticulum homoeostasis via regulation of IRE1α stability. Nat Commun. 2017;8:14186 pubmed 出版商
  856. Grove M, Kim H, Santerre M, Krupka A, Han S, Zhai J, et al. YAP/TAZ initiate and maintain Schwann cell myelination. elife. 2017;6: pubmed 出版商
  857. Che L, Pilo M, Cigliano A, Latte G, Simile M, Ribback S, et al. Oncogene dependent requirement of fatty acid synthase in hepatocellular carcinoma. Cell Cycle. 2017;16:499-507 pubmed 出版商
  858. Bershteyn M, Nowakowski T, Pollen A, Di Lullo E, Nene A, Wynshaw Boris A, et al. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell. 2017;20:435-449.e4 pubmed 出版商
  859. Dong J, Aulestia F, Assad Kahn S, Zeniou M, Dubois L, El Habr E, et al. Bisacodyl and its cytotoxic activity on human glioblastoma stem-like cells. Implication of inositol 1,4,5-triphosphate receptor dependent calcium signaling. Biochim Biophys Acta Mol Cell Res. 2017;1864:1018-1027 pubmed 出版商
  860. Marquez Vilendrer S, Rai S, Gramling S, Lu L, Reisman D. BRG1 and BRM loss selectively impacts RB and P53, respectively: BRG1 and BRM have differential functions in vivo. Oncoscience. 2016;3:337-350 pubmed 出版商
  861. Marquez Vilendrer S, Rai S, Gramling S, Lu L, Reisman D. Loss of the SWI/SNF ATPase subunits BRM and BRG1 drives lung cancer development. Oncoscience. 2016;3:322-336 pubmed 出版商
  862. Moro A, Foresta E, Gasparini G, Pelo S, Forcione M, Cristallini E, et al. Ameloblastic carcinoma of the maxilla: A case report and an updated review of the literature. Oncol Lett. 2016;12:4339-4350 pubmed 出版商
  863. Kawakami K, Takeshita A, Furushima K, Miyajima M, Hatamura I, Kuro O M, et al. Persistent fibroblast growth factor 23 signalling in the parathyroid glands for secondary hyperparathyroidism in mice with chronic kidney disease. Sci Rep. 2017;7:40534 pubmed 出版商
  864. Yue F, Bi P, Wang C, Shan T, Nie Y, Ratliff T, et al. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat Commun. 2017;8:14328 pubmed 出版商
  865. Halbrook C, Wen H, Ruggeri J, Takeuchi K, Zhang Y, di Magliano M, et al. Mitogen-activated Protein Kinase Kinase Activity Maintains Acinar-to-Ductal Metaplasia and Is Required for Organ Regeneration in Pancreatitis. Cell Mol Gastroenterol Hepatol. 2017;3:99-118 pubmed 出版商
  866. Xu J, Zhou W, Yang F, Chen G, Li H, Zhao Y, et al. The β-TrCP-FBXW2-SKP2 axis regulates lung cancer cell growth with FBXW2 acting as a tumour suppressor. Nat Commun. 2017;8:14002 pubmed 出版商
  867. Lo Nigro A, de Jaime Soguero A, Khoueiry R, Cho D, Ferlazzo G, Perini I, et al. PDGFR?+ Cells in Embryonic Stem Cell Cultures Represent the In Vitro Equivalent of the Pre-implantation Primitive Endoderm Precursors. Stem Cell Reports. 2017;8:318-333 pubmed 出版商
  868. Pereira C, Leal M, Abdelhay E, Demachki S, Assumpcao P, de Souza M, et al. MYC Amplification as a Predictive Factor of Complete Pathologic Response to Docetaxel-based Neoadjuvant Chemotherapy for Breast Cancer. Clin Breast Cancer. 2017;17:188-194 pubmed 出版商
  869. Candanedo Gonzalez F, Ortiz Arce C, Rosales Perez S, Remirez Castellanos A, Cordova Uscanga C, Gamboa Dominguez A. Immunohistochemical features of giant cell ependymoma of the filum terminale with unusual clinical and radiological presentation. Diagn Pathol. 2017;12:7 pubmed 出版商
  870. Herrtwich L, Nanda I, Evangelou K, Nikolova T, Horn V, Sagar -, et al. DNA Damage Signaling Instructs Polyploid Macrophage Fate in Granulomas. Cell. 2016;167:1264-1280.e18 pubmed 出版商
  871. Vanegas N, Vernot J. Loss of quiescence and self-renewal capacity of hematopoietic stem cell in an in vitro leukemic niche. Exp Hematol Oncol. 2017;6:2 pubmed 出版商
  872. Hopkinson B, Klitgaard M, Petersen O, Villadsen R, Rønnov Jessen L, Kim J. Establishment of a normal-derived estrogen receptor-positive cell line comparable to the prevailing human breast cancer subtype. Oncotarget. 2017;8:10580-10593 pubmed 出版商
  873. Jiang C, Diao F, Sang Y, Xu N, Zhu R, Wang X, et al. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet. 2017;13:e1006535 pubmed 出版商
  874. Christoforou N, Chakraborty S, Kirkton R, Adler A, Addis R, Leong K. Core Transcription Factors, MicroRNAs, and Small Molecules Drive Transdifferentiation of Human Fibroblasts Towards The Cardiac Cell Lineage. Sci Rep. 2017;7:40285 pubmed 出版商
  875. Benevento M, Oomen C, Horner A, Amiri H, Jacobs T, Pauwels C, et al. Haploinsufficiency of EHMT1 improves pattern separation and increases hippocampal cell proliferation. Sci Rep. 2017;7:40284 pubmed 出版商
  876. Bai H, Lee J, Chen E, Wang M, Xing Y, Fahmy T, et al. Covalent modification of pericardial patches for sustained rapamycin delivery inhibits venous neointimal hyperplasia. Sci Rep. 2017;7:40142 pubmed 出版商
  877. Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed 出版商
  878. Fallahi Sichani M, Becker V, Izar B, Baker G, Lin J, Boswell S, et al. Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de-differentiated state. Mol Syst Biol. 2017;13:905 pubmed 出版商
  879. Morandi L, Righi A, Maletta F, Rucci P, Pagni F, Gallo M, et al. Somatic mutation profiling of hobnail variant of papillary thyroid carcinoma. Endocr Relat Cancer. 2017;24:107-117 pubmed 出版商
  880. de Jong R, Paulin N, Lemnitzer P, Viola J, Winter C, Ferraro B, et al. Protective Aptitude of Annexin A1 in Arterial Neointima Formation in Atherosclerosis-Prone Mice-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:312-315 pubmed 出版商
  881. Niu X, Pi S, Baral S, Xia Y, He Q, Li Y, et al. P2Y12 Promotes Migration of Vascular Smooth Muscle Cells Through Cofilin Dephosphorylation During Atherogenesis. Arterioscler Thromb Vasc Biol. 2017;37:515-524 pubmed 出版商
  882. Linge I, Dyatlov A, Kondratieva E, Avdienko V, Apt A, Kondratieva T. B-lymphocytes forming follicle-like structures in the lung tissue of tuberculosis-infected mice: Dynamics, phenotypes and functional activity. Tuberculosis (Edinb). 2017;102:16-23 pubmed 出版商
  883. Malek Mohammadi M, Kattih B, Grund A, Froese N, Korf Klingebiel M, Gigina A, et al. The transcription factor GATA4 promotes myocardial regeneration in neonatal mice. EMBO Mol Med. 2017;9:265-279 pubmed 出版商
  884. Hennika T, Hu G, Olaciregui N, Barton K, Ehteda A, Chitranjan A, et al. Pre-Clinical Study of Panobinostat in Xenograft and Genetically Engineered Murine Diffuse Intrinsic Pontine Glioma Models. PLoS ONE. 2017;12:e0169485 pubmed 出版商
  885. Monaghan C, Nechiporuk T, Jeng S, McWeeney S, Wang J, Rosenfeld M, et al. REST corepressors RCOR1 and RCOR2 and the repressor INSM1 regulate the proliferation-differentiation balance in the developing brain. Proc Natl Acad Sci U S A. 2017;114:E406-E415 pubmed 出版商
  886. Engler J, Kursawe N, Solano M, Patas K, Wehrmann S, Heckmann N, et al. Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy. Proc Natl Acad Sci U S A. 2017;114:E181-E190 pubmed 出版商
  887. Cullen D, Diaz Recuero J, Cullen R, Rodriguez Peralto J, Kutzner H, Requena L. Superficial Acral Fibromyxoma: Report of 13 Cases With New Immunohistochemical Findings. Am J Dermatopathol. 2017;39:14-22 pubmed 出版商
  888. Tang J, Shen D, Caranasos T, Wang Z, Vandergriff A, Allen T, et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun. 2017;8:13724 pubmed 出版商
  889. Giunti L, Buccoliero A, Pantaleo M, Lucchesi M, Provenzano A, Palazzo V, et al. Molecular characterization of paediatric glioneuronal tumours with neuropil-like islands: a genome-wide copy number analysis. Am J Cancer Res. 2016;6:2910-2918 pubmed
  890. Dergilev K, Makarevich P, Tsokolaeva Z, Boldyreva M, Beloglazova I, Zubkova E, et al. Comparison of cardiac stem cell sheets detached by Versene solution and from thermoresponsive dishes reveals similar properties of constructs. Tissue Cell. 2017;49:64-71 pubmed 出版商
  891. Roberts E, Carnathan D, Li H, Shaw G, Silvestri G, Betts M. Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques. PLoS Pathog. 2016;12:e1006135 pubmed 出版商
  892. Penna I, Gigoni A, Costa D, Vella S, Russo D, Poggi A, et al. The inhibition of 45A ncRNA expression reduces tumor formation, affecting tumor nodules compactness and metastatic potential in neuroblastoma cells. Oncotarget. 2017;8:8189-8205 pubmed 出版商
  893. Jostes S, Nettersheim D, Fellermeyer M, Schneider S, Hafezi F, Honecker F, et al. The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo. J Cell Mol Med. 2017;21:1300-1314 pubmed 出版商
  894. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 2017;541:228-232 pubmed 出版商
  895. Stanfield B, Pahar B, Chouljenko V, Veazey R, Kousoulas K. Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies. Vaccine. 2017;35:536-543 pubmed 出版商
  896. Baumer Y, McCurdy S, Alcala M, Mehta N, Lee B, Ginsberg M, et al. CD98 regulates vascular smooth muscle cell proliferation in atherosclerosis. Atherosclerosis. 2017;256:105-114 pubmed 出版商
  897. Tuncel J, Haag S, Holmdahl R. MHC class II alleles associated with Th1 rather than Th17 type immunity drive the onset of early arthritis in a rat model of rheumatoid arthritis. Eur J Immunol. 2017;47:563-574 pubmed 出版商
  898. Aguilera T, Rafat M, Castellini L, Shehade H, Kariolis M, Hui A, et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun. 2016;7:13898 pubmed 出版商
  899. Wang C, Wang M, Arrington J, Shan T, Yue F, Nie Y, et al. Ascl2 inhibits myogenesis by antagonizing the transcriptional activity of myogenic regulatory factors. Development. 2017;144:235-247 pubmed 出版商
  900. Jablonska B, Gierdalski M, Chew L, Hawley T, Catron M, Lichauco A, et al. Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury. Nat Commun. 2016;7:13866 pubmed 出版商
  901. Ohs I, Van Den Broek M, Nussbaum K, MUNZ C, Arnold S, Quezada S, et al. Interleukin-12 bypasses common gamma-chain signalling in emergency natural killer cell lymphopoiesis. Nat Commun. 2016;7:13708 pubmed 出版商
  902. Comunanza V, Cora D, Orso F, Consonni F, Middonti E, Di Nicolantonio F, et al. VEGF blockade enhances the antitumor effect of BRAFV600E inhibition. EMBO Mol Med. 2017;9:219-237 pubmed 出版商
  903. Lazaro S, Perez Crespo M, Enguita A, Hernandez P, Martínez Palacio J, Oteo M, et al. Ablating all three retinoblastoma family members in mouse lung leads to neuroendocrine tumor formation. Oncotarget. 2017;8:4373-4386 pubmed 出版商
  904. De Luca Johnson J, Zenali M. A Previously Undescribed Presentation of Mixed Adenoneuroendocrine Carcinoma. Case Rep Pathol. 2016;2016:9063634 pubmed
  905. Harris L, Zalucki O, Gobius I, McDonald H, Osinki J, Harvey T, et al. Transcriptional regulation of intermediate progenitor cell generation during hippocampal development. Development. 2016;143:4620-4630 pubmed
  906. Liu L, Guan H, Li Y, Ying Z, Wu J, Zhu X, et al. Astrocyte Elevated Gene 1 Interacts with Acetyltransferase p300 and c-Jun To Promote Tumor Aggressiveness. Mol Cell Biol. 2017;37: pubmed 出版商
  907. Phelps M, Bailey J, Vleeshouwer Neumann T, Chen E. CRISPR screen identifies the NCOR/HDAC3 complex as a major suppressor of differentiation in rhabdomyosarcoma. Proc Natl Acad Sci U S A. 2016;113:15090-15095 pubmed 出版商
  908. Scarritt M, Pashos N, Motherwell J, Eagle Z, Burkett B, Gregory A, et al. Re-endothelialization of rat lung scaffolds through passive, gravity-driven seeding of segment-specific pulmonary endothelial cells. J Tissue Eng Regen Med. 2018;12:e786-e806 pubmed 出版商
  909. Revandkar A, Perciato M, Toso A, Alajati A, Chen J, Gerber H, et al. Inhibition of Notch pathway arrests PTEN-deficient advanced prostate cancer by triggering p27-driven cellular senescence. Nat Commun. 2016;7:13719 pubmed 出版商
  910. Burnett L, LeDuc C, Sulsona C, Paull D, Rausch R, Eddiry S, et al. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome. J Clin Invest. 2017;127:293-305 pubmed 出版商
  911. Jung J, Jung H, Neupane S, Kim K, Kim J, Yamamoto H, et al. Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem. 2017;119:92-98 pubmed 出版商
  912. Kahn B, Corman T, Lovelace K, Hong M, Krauss R, Epstein D. Prenatal ethanol exposure in mice phenocopies Cdon mutation by impeding Shh function in the etiology of optic nerve hypoplasia. Dis Model Mech. 2017;10:29-37 pubmed 出版商
  913. Ronellenfitsch M, Oh J, Satomi K, Sumi K, Harter P, Steinbach J, et al. CASP9 germline mutation in a family with multiple brain tumors. Brain Pathol. 2018;28:94-102 pubmed 出版商
  914. Cai H, Liu A. Spop promotes skeletal development and homeostasis by positively regulating Ihh signaling. Proc Natl Acad Sci U S A. 2016;113:14751-14756 pubmed 出版商
  915. Tsai Y, Nattiv R, Dedhia P, Nagy M, Chin A, Thomson M, et al. In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development. 2017;144:1045-1055 pubmed 出版商
  916. Weyandt J, Carney J, Pavlisko E, Xu M, Counter C. Isoform-Specific Effects of Wild-Type Ras Genes on Carcinogen-Induced Lung Tumorigenesis in Mice. PLoS ONE. 2016;11:e0167205 pubmed 出版商
  917. Gerber T, Willscher E, Loeffler Wirth H, Hopp L, Schadendorf D, Schartl M, et al. Mapping heterogeneity in patient-derived melanoma cultures by single-cell RNA-seq. Oncotarget. 2017;8:846-862 pubmed 出版商
  918. Burgy O, Bellaye P, Causse S, Beltramo G, Wettstein G, Boutanquoi P, et al. Pleural inhibition of the caspase-1/IL-1? pathway diminishes profibrotic lung toxicity of bleomycin. Respir Res. 2016;17:162 pubmed
  919. Goreczny G, Ouderkirk Pecone J, Olson E, Krendel M, Turner C. Hic-5 remodeling of the stromal matrix promotes breast tumor progression. Oncogene. 2017;36:2693-2703 pubmed 出版商
  920. Fraser J, Essebier A, Gronostajski R, Boden M, Wainwright B, Harvey T, et al. Cell-type-specific expression of NFIX in the developing and adult cerebellum. Brain Struct Funct. 2017;222:2251-2270 pubmed 出版商
  921. Rebo J, Mehdipour M, Gathwala R, Causey K, Liu Y, Conboy M, et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun. 2016;7:13363 pubmed 出版商
  922. Bosch P, Fuller L, Sleeth C, Weiner J. Akirin2 is essential for the formation of the cerebral cortex. Neural Dev. 2016;11:21 pubmed
  923. Lu W, Liu S, Li B, Xie Y, Izban M, Ballard B, et al. SKP2 loss destabilizes EZH2 by promoting TRAF6-mediated ubiquitination to suppress prostate cancer. Oncogene. 2017;36:1364-1373 pubmed 出版商
  924. Stone O, Carter J, Lin P, Paleolog E, Machado M, Bates D. Differential regulation of blood flow-induced neovascularization and mural cell recruitment by vascular endothelial growth factor and angiopoietin signalling. J Physiol. 2017;595:1575-1591 pubmed 出版商
  925. Nygaard U, van den Bogaard E, Niehues H, Hvid M, Deleuran M, Johansen C, et al. The "Alarmins" HMBG1 and IL-33 Downregulate Structural Skin Barrier Proteins and Impair Epidermal Growth. Acta Derm Venereol. 2017;97:305-312 pubmed 出版商
  926. Yang S, Ji Q, Chang B, Wang Y, Zhu Y, Li D, et al. STC2 promotes head and neck squamous cell carcinoma metastasis through modulating the PI3K/AKT/Snail signaling. Oncotarget. 2017;8:5976-5991 pubmed 出版商
  927. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65:375-387 pubmed 出版商
  928. Sharp J, Vermette P. An In-situ glucose-stimulated insulin secretion assay under perfusion bioreactor conditions. Biotechnol Prog. 2017;33:454-462 pubmed 出版商
  929. Corda G, Sala G, Lattanzio R, Iezzi M, Sallese M, Fragassi G, et al. Functional and prognostic significance of the genomic amplification of frizzled 6 (FZD6) in breast cancer. J Pathol. 2017;241:350-361 pubmed 出版商
  930. Kostrzak A, Caval V, Escande M, Pliquet E, Thalmensi J, Bestetti T, et al. APOBEC3A intratumoral DNA electroporation in mice. Gene Ther. 2017;24:74-83 pubmed 出版商
  931. Pu W, Zhang H, Huang X, Tian X, He L, Wang Y, et al. Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nat Commun. 2016;7:13369 pubmed 出版商
  932. Qiu X, Jiao J, Li Y, Tian T. Overexpression of FZD7 promotes glioma cell proliferation by upregulating TAZ. Oncotarget. 2016;7:85987-85999 pubmed 出版商
  933. Weingartner E, Courneya J, Keegan A, Golding A. A novel method for assaying human regulatory T cell direct suppression of B cell effector function. J Immunol Methods. 2017;441:1-7 pubmed 出版商
  934. Sakata K, Araki K, Nakano H, Nishina T, Komazawa Sakon S, Murai S, et al. Novel method to rescue a lethal phenotype through integration of target gene onto the X-chromosome. Sci Rep. 2016;6:37200 pubmed 出版商
  935. Kim S, Kim Y, Choi M, Kim M, Yang J, Park H, et al. O-linked-N-acetylglucosamine transferase is associated with metastatic spread of human papillomavirus E6 and E7 oncoproteins to the lungs of mice. Biochem Biophys Res Commun. 2017;483:793-802 pubmed 出版商
  936. Mohammad H, Marchisella F, Ortega Martinez S, Hollos P, Eerola K, Komulainen E, et al. JNK1 controls adult hippocampal neurogenesis and imposes cell-autonomous control of anxiety behaviour from the neurogenic niche. Mol Psychiatry. 2018;23:362-374 pubmed 出版商
  937. Shatirishvili M, Burk A, Franz C, Pace G, Kastilan T, Breuhahn K, et al. Epidermal-specific deletion of CD44 reveals a function in keratinocytes in response to mechanical stress. Cell Death Dis. 2016;7:e2461 pubmed 出版商
  938. Strietz J, Stepputtis S, Preca B, Vannier C, Kim M, Castro D, et al. ERN1 and ALPK1 inhibit differentiation of bi-potential tumor-initiating cells in human breast cancer. Oncotarget. 2016;7:83278-83293 pubmed 出版商
  939. Lacaille H, Duterte Boucher D, Vaudry H, Zerdoumi Y, Flaman J, Hashimoto H, et al. PACAP Protects the Adolescent and Adult Mice Brain from Ethanol Toxicity and Modulates Distinct Sets of Genes Regulating Similar Networks. Mol Neurobiol. 2017;54:7534-7548 pubmed 出版商
  940. Marichal T, Gaudenzio N, El Abbas S, Sibilano R, Zurek O, Starkl P, et al. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. J Clin Invest. 2016;126:4497-4515 pubmed 出版商
  941. Masili Oku S, Bacchi C, Fernandes F, Filassi J, Baracat E, Carvalho F. The Apocrine Profile of Triple-negative Breast Carcinomas in Patients Aged 45 Years or Younger: favorable but rare features. Rev Bras Ginecol Obstet. 2016;38:512-517 pubmed
  942. Pamarthy S, Mao L, Katara G, Fleetwood S, Kulshreshta A, Gilman Sachs A, et al. The V-ATPase a2 isoform controls mammary gland development through Notch and TGF-β signaling. Cell Death Dis. 2016;7:e2443 pubmed 出版商
  943. Tirosh I, Venteicher A, Hebert C, Escalante L, Patel A, Yizhak K, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;539:309-313 pubmed 出版商
  944. Yousefi M, Li N, Nakauka Ddamba A, Wang S, Davidow K, Schoenberger J, et al. Msi RNA-binding proteins control reserve intestinal stem cell quiescence. J Cell Biol. 2016;215:401-413 pubmed
  945. Miyoshi H, VanDussen K, Malvin N, Ryu S, Wang Y, Sonnek N, et al. Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium. EMBO J. 2017;36:5-24 pubmed 出版商
  946. Matthews S, Sartorius C. Steroid Hormone Receptor Positive Breast Cancer Patient-Derived Xenografts. Horm Cancer. 2017;8:4-15 pubmed 出版商
  947. Day K, Lorenzatti Hiles G, Kozminsky M, Dawsey S, Paul A, Broses L, et al. HER2 and EGFR Overexpression Support Metastatic Progression of Prostate Cancer to Bone. Cancer Res. 2017;77:74-85 pubmed 出版商
  948. Lian G, Dettenhofer M, Lu J, Downing M, Chenn A, Wong T, et al. Filamin A- and formin 2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development. 2016;143:4509-4520 pubmed
  949. Junge H, Yung A, Goodrich L, Chen Z. Netrin1/DCC signaling promotes neuronal migration in the dorsal spinal cord. Neural Dev. 2016;11:19 pubmed
  950. Reinfeldt Engberg G, Chamorro C, Nordenskjold A, Fossum M. Expansion of Submucosal Bladder Wall Tissue In Vitro and In Vivo. Biomed Res Int. 2016;2016:5415012 pubmed
  951. Konstantinidou C, Taraviras S, Pachnis V. Geminin prevents DNA damage in vagal neural crest cells to ensure normal enteric neurogenesis. BMC Biol. 2016;14:94 pubmed
  952. Parrales A, Ranjan A, Iyer S, Padhye S, Weir S, Roy A, et al. DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat Cell Biol. 2016;18:1233-1243 pubmed 出版商
  953. Chiche A, Moumen M, Romagnoli M, Petit V, Lasla H, Jézéquel P, et al. p53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors. Oncogene. 2017;36:2355-2365 pubmed 出版商
  954. Omiya S, Omori Y, Taneike M, Protti A, Yamaguchi O, Akira S, et al. Toll-like receptor 9 prevents cardiac rupture after myocardial infarction in mice independently of inflammation. Am J Physiol Heart Circ Physiol. 2016;311:H1485-H1497 pubmed 出版商
  955. Fielitz K, Althoff K, De Preter K, Nonnekens J, Ohli J, Elges S, et al. Characterization of pancreatic glucagon-producing tumors and pituitary gland tumors in transgenic mice overexpressing MYCN in hGFAP-positive cells. Oncotarget. 2016;7:74415-74426 pubmed 出版商
  956. Zhang Q, Zhang Y, Parsels J, Lohse I, Lawrence T, Pasca di Magliano M, et al. Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation. Neoplasia. 2016;18:666-673 pubmed 出版商
  957. Loverro G, Resta L, Dellino M, Edoardo D, Cascarano M, Loverro M, et al. Uterine and ovarian changes during testosterone administration in young female-to-male transsexuals. Taiwan J Obstet Gynecol. 2016;55:686-691 pubmed 出版商
  958. Hagel C, Buslei R, Buchfelder M, Fahlbusch R, Bergmann M, Giese A, et al. Immunoprofiling of glial tumours of the neurohypophysis suggests a common pituicytic origin of neoplastic cells. Pituitary. 2017;20:211-217 pubmed 出版商
  959. Barut F, Udul P, Kokturk F, Kandemir N, Keser S, Ozdamar S. Clinicopathological features and pituitary homeobox 1 gene expression in the progression and prognosis of cutaneous malignant melanoma. Kaohsiung J Med Sci. 2016;32:494-500 pubmed 出版商
  960. Andriani G, Almeida V, Faggioli F, Mauro M, Tsai W, Santambrogio L, et al. Whole Chromosome Instability induces senescence and promotes SASP. Sci Rep. 2016;6:35218 pubmed 出版商
  961. Busch A, Bauer L, Wardelmann E, Rudack C, Grünewald I, Stenner M. Prognostic relevance of epithelial-mesenchymal transition and proliferation in surgically treated primary parotid gland cancer. J Clin Pathol. 2017;70:403-409 pubmed 出版商
  962. Parween S, Kostromina E, Nord C, Eriksson M, Lindstrom P, Ahlgren U. Intra-islet lesions and lobular variations in ?-cell mass expansion in ob/ob mice revealed by 3D imaging of intact pancreas. Sci Rep. 2016;6:34885 pubmed 出版商
  963. Zhang C, Wang H, Bao Q, Wang L, Guo T, Chen W, et al. NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction. Oncotarget. 2016;7:73593-73606 pubmed 出版商
  964. Chandele A, Sewatanon J, Gunisetty S, Singla M, Onlamoon N, Akondy R, et al. Characterization of Human CD8 T Cell Responses in Dengue Virus-Infected Patients from India. J Virol. 2016;90:11259-11278 pubmed
  965. Figueroa González G, García Castillo V, Coronel Hernández J, López Urrutia E, León Cabrera S, Arias Romero L, et al. Anti-inflammatory and Antitumor Activity of a Triple Therapy for a Colitis-Related Colorectal Cancer. J Cancer. 2016;7:1632-1644 pubmed
  966. Huang T, Alvarez A, Pangeni R, Horbinski C, Lu S, Kim S, et al. A regulatory circuit of miR-125b/miR-20b and Wnt signalling controls glioblastoma phenotypes through FZD6-modulated pathways. Nat Commun. 2016;7:12885 pubmed 出版商
  967. Gerriets V, Kishton R, Johnson M, Cohen S, Siska P, Nichols A, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol. 2016;17:1459-1466 pubmed 出版商
  968. Zhou L, Dai H, Wu J, Zhou M, Yuan H, Du J, et al. Role of FEN1 S187 phosphorylation in counteracting oxygen-induced stress and regulating postnatal heart development. FASEB J. 2017;31:132-147 pubmed 出版商
  969. Deng Y, Chen X, Ye Y, Shi X, Zhu K, Huang L, et al. Histological characterisation and prognostic evaluation of 62 gastric neuroendocrine carcinomas. Contemp Oncol (Pozn). 2016;20:311-9 pubmed 出版商
  970. Dubail J, Vasudevan D, Wang L, Earp S, Jenkins M, Haltiwanger R, et al. Impaired ADAMTS9 secretion: A potential mechanism for eye defects in Peters Plus Syndrome. Sci Rep. 2016;6:33974 pubmed 出版商
  971. Gago Fuentes R, Bechberger J, Varela Eirin M, Varela Vazquez A, Acea B, Fonseca E, et al. The C-terminal domain of connexin43 modulates cartilage structure via chondrocyte phenotypic changes. Oncotarget. 2016;7:73055-73067 pubmed 出版商
  972. Truong D, Puleo J, Llave A, Mouneimne G, Kamm R, Nikkhah M. Breast Cancer Cell Invasion into a Three Dimensional Tumor-Stroma Microenvironment. Sci Rep. 2016;6:34094 pubmed 出版商
  973. Tuncel D, Roa J, Araya J, Bellolio E, Villaseca M, Tapia O, et al. Poorly cohesive cell (diffuse-infiltrative/signet ring cell) carcinomas of the gallbladder: clinicopathological analysis of 24 cases identified in 628 gallbladder carcinomas. Hum Pathol. 2017;60:24-31 pubmed 出版商
  974. Fogarty L, Song B, Suppiah Y, Hasan S, Martin H, Hogan S, et al. Bcl-xL dependency coincides with the onset of neurogenesis in the developing mammalian spinal cord. Mol Cell Neurosci. 2016;77:34-46 pubmed 出版商
  975. Xiong J, Zhou M, Wang Y, Chen L, Xu W, Wang Y, et al. Protein Kinase D2 Protects against Acute Colitis Induced by Dextran Sulfate Sodium in Mice. Sci Rep. 2016;6:34079 pubmed 出版商
  976. Jansson D, Scotter E, Rustenhoven J, Coppieters N, Smyth L, Oldfield R, et al. Interferon-? blocks signalling through PDGFR? in human brain pericytes. J Neuroinflammation. 2016;13:249 pubmed
  977. McLane J, Ligon L. Stiffened Extracellular Matrix and Signaling from Stromal Fibroblasts via Osteoprotegerin Regulate Tumor Cell Invasion in a 3-D Tumor in Situ Model. Cancer Microenviron. 2016;9:127-139 pubmed 出版商
  978. Chen Y, Wang X, Duan C, Chen J, Su M, Jin Y, et al. Loss of TAB3 expression by shRNA exhibits suppressive bioactivity and increased chemical sensitivity of ovarian cancer cell lines via the NF-?B pathway. Cell Prolif. 2016;49:657-668 pubmed 出版商
  979. Soon G, Ow G, Chan H, Ng S, Wang S. Primary cardiac diffuse large B-cell lymphoma in immunocompetent patients: clinical, histologic, immunophenotypic, and genotypic features of 3 cases. Ann Diagn Pathol. 2016;24:40-6 pubmed 出版商
  980. Dragich J, Kuwajima T, Hirose Ikeda M, Yoon M, Eenjes E, Bosco J, et al. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. elife. 2016;5: pubmed 出版商
  981. Johnson R, Finger E, Olcina M, Vilalta M, Aguilera T, Miao Y, et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol. 2016;18:1078-1089 pubmed 出版商
  982. Sugita S, Iwasaki Y, Makabe K, Kimura T, Futagami T, Suegami S, et al. Lack of T Cell Response to iPSC-Derived Retinal Pigment Epithelial Cells from HLA Homozygous Donors. Stem Cell Reports. 2016;7:619-634 pubmed 出版商
  983. Borgs L, Peyre E, Alix P, Hanon K, Grobarczyk B, Godin J, et al. Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects. Sci Rep. 2016;6:33377 pubmed 出版商
  984. Lopez C, Miller B, Rivera Chávez F, Velazquez E, Byndloss M, Chávez Arroyo A, et al. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration. Science. 2016;353:1249-53 pubmed 出版商
  985. Drelon C, Berthon A, Sahut Barnola I, Mathieu M, Dumontet T, Rodriguez S, et al. PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development. Nat Commun. 2016;7:12751 pubmed 出版商
  986. Tavana O, Li D, Dai C, Lopez G, Banerjee D, Kon N, et al. HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat Med. 2016;22:1180-1186 pubmed 出版商
  987. Czerwinska A, Nowacka J, Aszer M, Gawrzak S, Archacka K, Fogtman A, et al. Cell cycle regulation of embryonic stem cells and mouse embryonic fibroblasts lacking functional Pax7. Cell Cycle. 2016;15:2931-2942 pubmed
  988. Wang L, Xu D, Qiao Z, Shen L, Dai H, Ji Y. Follicular dendritic cell sarcoma of the spleen: A case report and review of the literature. Oncol Lett. 2016;12:2062-2064 pubmed
  989. Nielsen T, Jensen M, Burugu S, Gao D, Jørgensen C, Balslev E, et al. High-Risk Premenopausal Luminal A Breast Cancer Patients Derive no Benefit from Adjuvant Cyclophosphamide-based Chemotherapy: Results from the DBCG77B Clinical Trial. Clin Cancer Res. 2017;23:946-953 pubmed 出版商
  990. Lu X, Chen Q, Rong Y, Yang G, Li C, Xu N, et al. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun. 2016;7:12719 pubmed 出版商
  991. Chen W, Hill H, Christie A, Kim M, Holloman E, Pavía Jiménez A, et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature. 2016;539:112-117 pubmed 出版商
  992. Huang H, Huang Q, Wang F, Milner R, Li L. Cerebral ischemia-induced angiogenesis is dependent on tumor necrosis factor receptor 1-mediated upregulation of α5β1 and αVβ3 integrins. J Neuroinflammation. 2016;13:227 pubmed 出版商
  993. Magalhães A, Rivera C. NKCC1-Deficiency Results in Abnormal Proliferation of Neural Progenitor Cells of the Lateral Ganglionic Eminence. Front Cell Neurosci. 2016;10:200 pubmed 出版商
  994. Ladle B, Li K, Phillips M, Pucsek A, Haile A, Powell J, et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A. 2016;113:10631-6 pubmed 出版商
  995. Jackson Jones L, Duncan S, Magalhaes M, Campbell S, Maizels R, McSorley H, et al. Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nat Commun. 2016;7:12651 pubmed 出版商
  996. Jiang L, Wang L, Chen C, Li M, Liao X. Lgr6 is dispensable for epidermal cell proliferation and wound repair. Exp Dermatol. 2017;26:105-107 pubmed 出版商
  997. Sweeny L, Prince A, Patel N, Moore L, Rosenthal E, Hughley B, et al. Antiangiogenic antibody improves melanoma detection by fluorescently labeled therapeutic antibodies. Laryngoscope. 2016;126:E387-E395 pubmed 出版商
  998. Josowitz R, Mulero Navarro S, Rodriguez N, Falce C, Cohen N, Ullian E, et al. Autonomous and Non-autonomous Defects Underlie Hypertrophic Cardiomyopathy in BRAF-Mutant hiPSC-Derived Cardiomyocytes. Stem Cell Reports. 2016;7:355-369 pubmed 出版商
  999. Svinka J, Pflügler S, Mair M, Marschall H, Hengstler J, Stiedl P, et al. Epidermal growth factor signaling protects from cholestatic liver injury and fibrosis. J Mol Med (Berl). 2017;95:109-117 pubmed 出版商
  1000. Waters A, Stafman L, Garner E, Mruthyunjayappa S, Stewart J, Mroczek Musulman E, et al. Targeting Focal Adhesion Kinase Suppresses the Malignant Phenotype in Rhabdomyosarcoma Cells. Transl Oncol. 2016;9:263-73 pubmed 出版商
  1001. Hinsenkamp I, Schulz S, Roscher M, Suhr A, Meyer B, Munteanu B, et al. Inhibition of Rho-Associated Kinase 1/2 Attenuates Tumor Growth in Murine Gastric Cancer. Neoplasia. 2016;18:500-11 pubmed 出版商
  1002. Manzini C, Venè R, Cossu I, Gualco M, Zupo S, Dono M, et al. Cytokines can counteract the inhibitory effect of MEK-i on NK-cell function. Oncotarget. 2016;7:60858-60871 pubmed 出版商
  1003. Lan A, Blais A, Coelho D, Capron J, Maarouf M, Benamouzig R, et al. Dual effects of a high-protein diet on DSS-treated mice during colitis resolution phase. Am J Physiol Gastrointest Liver Physiol. 2016;311:G624-G633 pubmed 出版商
  1004. Yoon J, Leyva Castillo J, Wang G, Galand C, Oyoshi M, Kumar L, et al. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. J Exp Med. 2016;213:2147-66 pubmed 出版商
  1005. Klose R, Krzywinska E, Castells M, Gotthardt D, Putz E, Kantari Mimoun C, et al. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nat Commun. 2016;7:12528 pubmed 出版商
  1006. Fang D, Yan S, Yu Q, Chen D, Yan S. Mfn2 is Required for Mitochondrial Development and Synapse Formation in Human Induced Pluripotent Stem Cells/hiPSC Derived Cortical Neurons. Sci Rep. 2016;6:31462 pubmed 出版商
  1007. Belinson H, Savage A, Fadrosh D, Kuo Y, Lin D, Valladares R, et al. Dual epithelial and immune cell function of Dvl1 regulates gut microbiota composition and intestinal homeostasis. JCI Insight. 2016;1: pubmed 出版商
  1008. Yamaguchi J, Mino Kenudson M, Liss A, Chowdhury S, Wang T, Fernández Del Castillo C, et al. Loss of Trefoil Factor 2 From Pancreatic Duct Glands Promotes Formation of Intraductal Papillary Mucinous Neoplasms in Mice. Gastroenterology. 2016;151:1232-1244.e10 pubmed 出版商
  1009. Gallini R, Huusko J, Yla Herttuala S, Betsholtz C, Andrae J. Isoform-Specific Modulation of Inflammation Induced by Adenoviral Mediated Delivery of Platelet-Derived Growth Factors in the Adult Mouse Heart. PLoS ONE. 2016;11:e0160930 pubmed 出版商
  1010. Khanom R, Nguyen C, Kayamori K, Zhao X, Morita K, Miki Y, et al. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth. PLoS ONE. 2016;11:e0161163 pubmed 出版商
  1011. Chrenek R, Magnotti L, Herrera G, Jha R, Cardozo D. Characterization of the Filum terminale as a neural progenitor cell niche in both rats and humans. J Comp Neurol. 2017;525:661-675 pubmed 出版商
  1012. Alexovič Matiašová A, Sevc J, Tomori Z, Gombalová Z, Gedrová S, Daxnerova Z. Quantitative analyses of cellularity and proliferative activity reveals the dynamics of the central canal lining during postnatal development of the rat. J Comp Neurol. 2017;525:693-707 pubmed 出版商
  1013. Saatcioglu H, Cuevas I, Castrillon D. Control of Oocyte Reawakening by Kit. PLoS Genet. 2016;12:e1006215 pubmed 出版商
  1014. You L, Li L, Zou J, Yan K, Belle J, Nijnik A, et al. BRPF1 is essential for development of fetal hematopoietic stem cells. J Clin Invest. 2016;126:3247-62 pubmed 出版商
  1015. Riascos Bernal D, Chinnasamy P, Cao L, Dunaway C, Valenta T, Basler K, et al. β-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nat Commun. 2016;7:12389 pubmed 出版商
  1016. Liou A, Wu S, Liao C, Chang Y, Chang C, Shih C. A new animal model containing human SCARB2 and lacking stat-1 is highly susceptible to EV71. Sci Rep. 2016;6:31151 pubmed 出版商
  1017. Qin S, Yang C, Zhang B, Li X, Sun X, Li G, et al. XIAP inhibits mature Smac-induced apoptosis by degrading it through ubiquitination in NSCLC. Int J Oncol. 2016;49:1289-96 pubmed 出版商
  1018. Shi L, Fu T, Guan B, Chen J, Blando J, Allison J, et al. Interdependent IL-7 and IFN-? signalling in T-cell controls tumour eradication by combined ?-CTLA-4+?-PD-1 therapy. Nat Commun. 2016;7:12335 pubmed 出版商
  1019. Gerling M, Büller N, Kirn L, Joost S, Frings O, Englert B, et al. Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nat Commun. 2016;7:12321 pubmed 出版商
  1020. Johansson E, Rönö B, Johansson M, Lindgren D, Möller C, Axelson H, et al. Simultaneous targeted activation of Notch1 and Vhl-disruption in the kidney proximal epithelial tubular cells in mice. Sci Rep. 2016;6:30739 pubmed 出版商
  1021. Medrano J, Rombaut C, Simon C, Pellicer A, Goossens E. Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions. Fertil Steril. 2016;106:1539-1549.e8 pubmed 出版商
  1022. Petrovic N, Davidovic R, Jovanovic Cupic S, Krajnovic M, Lukic S, Petrovic M, et al. Changes in miR-221/222 Levels in Invasive and In Situ Carcinomas of the Breast: Differences in Association with Estrogen Receptor and TIMP3 Expression Levels. Mol Diagn Ther. 2016;20:603-615 pubmed
  1023. Agrimson K, Onken J, Mitchell D, Topping T, Chiarini Garcia H, Hogarth C, et al. Characterizing the Spermatogonial Response to Retinoic Acid During the Onset of Spermatogenesis and Following Synchronization in the Neonatal Mouse Testis. Biol Reprod. 2016;95:81 pubmed
  1024. Cheng H, Gaddis D, Wu R, McSkimming C, Haynes L, Taylor A, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J Clin Invest. 2016;126:3236-46 pubmed 出版商
  1025. Hwang S, Cobb D, Bhadra R, Youngblood B, Khan I. Blimp-1-mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis. J Exp Med. 2016;213:1799-818 pubmed 出版商
  1026. Debliquis A, Voirin J, Harzallah I, Maurer M, Lerintiu F, Drenou B, et al. Cytomorphology and flow cytometry of brain biopsy rinse fluid enables faster and multidisciplinary diagnosis of large B-cell lymphoma of the central nervous system. Cytometry B Clin Cytom. 2018;94:182-188 pubmed 出版商
  1027. Chen H, Händel N, Ngeow J, Muller J, Huhn M, Yang H, et al. Immune dysregulation in patients with PTEN hamartoma tumor syndrome: Analysis of FOXP3 regulatory T cells. J Allergy Clin Immunol. 2017;139:607-620.e15 pubmed 出版商
  1028. Freddo A, Shoffner S, Shao Y, Taniguchi K, Grosse A, Guysinger M, et al. Coordination of signaling and tissue mechanics during morphogenesis of murine intestinal villi: a role for mitotic cell rounding. Integr Biol (Camb). 2016;8:918-28 pubmed 出版商
  1029. Cetinkaya A, Xiong J, Vargel I, Kosemehmetoglu K, Canter H, Gerdan Ö, et al. Loss-of-Function Mutations in ELMO2 Cause Intraosseous Vascular Malformation by Impeding RAC1 Signaling. Am J Hum Genet. 2016;99:299-317 pubmed 出版商
  1030. Komada M, Gendai Y, Kagawa N, Nagao T. Prenatal exposure to di(2-ethylhexyl) phthalate impairs development of the mouse neocortex. Toxicol Lett. 2016;259:69-79 pubmed 出版商
  1031. Liu H, Li W, Yu X, Gao F, Duan Z, Ma X, et al. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis. Oncotarget. 2016;7:56338-56354 pubmed 出版商
  1032. Wiley L, Burnight E, DeLuca A, Anfinson K, Cranston C, Kaalberg E, et al. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness. Sci Rep. 2016;6:30742 pubmed 出版商
  1033. Seifert A, Zeng S, Zhang J, Kim T, Cohen N, Beckman M, et al. PD-1/PD-L1 Blockade Enhances T-cell Activity and Antitumor Efficacy of Imatinib in Gastrointestinal Stromal Tumors. Clin Cancer Res. 2017;23:454-465 pubmed 出版商
  1034. Franzese O, Palermo B, Di Donna C, Sperduti I, Ferraresi V, Stabile H, et al. Polyfunctional Melan-A-specific tumor-reactive CD8(+) T cells elicited by dacarbazine treatment before peptide-vaccination depends on AKT activation sustained by ICOS. Oncoimmunology. 2016;5:e1114203 pubmed 出版商
  1035. Fujimoto M, Yoshizawa A, Sumiyoshi S, Sonobe M, Menju T, Hirata M, et al. Adipophilin expression in lung adenocarcinoma is associated with apocrine-like features and poor clinical prognosis: an immunohistochemical study of 328 cases. Histopathology. 2017;70:232-241 pubmed 出版商
  1036. Ta M, Schwensen K, Liuwantara D, Huso D, Watnick T, Rangan G. Constitutive renal Rel/nuclear factor-?B expression in Lewis polycystic kidney disease rats. World J Nephrol. 2016;5:339-57 pubmed 出版商
  1037. Ashizawa T, Iizuka A, Nonomura C, Kondou R, Maeda C, Miyata H, et al. Antitumor Effect of Programmed Death-1 (PD-1) Blockade in Humanized the NOG-MHC Double Knockout Mouse. Clin Cancer Res. 2017;23:149-158 pubmed 出版商
  1038. Kurita D, Takeuchi K, Kobayashi S, Hojo A, Uchino Y, Sakagami M, et al. A cyclin D1-negative mantle cell lymphoma with an IGL-CCND2 translocation that relapsed with blastoid morphology and aggressive clinical behavior. Virchows Arch. 2016;469:471-6 pubmed 出版商
  1039. Lesina M, Wörmann S, Morton J, Diakopoulos K, Korneeva O, Wimmer M, et al. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. J Clin Invest. 2016;126:2919-32 pubmed 出版商
  1040. Ugras N, Yerci O, Coşkun S, Ocakoglu G, Sarkut P, Dündar H. Retrospective analysis of clinicopathological features of solid pseudopapillary neoplasm of the pancreas. Kaohsiung J Med Sci. 2016;32:356-61 pubmed 出版商
  1041. Zhou Y, Xu H, Ding Y, Lu Q, Zou M, Song P. AMPK?1 deletion in fibroblasts promotes tumorigenesis in athymic nude mice by p52-mediated elevation of erythropoietin and CDK2. Oncotarget. 2016;7:53654-53667 pubmed 出版商
  1042. Stergiopoulos A, Politis P. Nuclear receptor NR5A2 controls neural stem cell fate decisions during development. Nat Commun. 2016;7:12230 pubmed 出版商
  1043. Deléage C, Schuetz A, Alvord W, Johnston L, Hao X, Morcock D, et al. Impact of early cART in the gut during acute HIV infection. JCI Insight. 2016;1: pubmed
  1044. Takasaki C, Kobayashi M, Ishibashi H, Akashi T, Okubo K. Expression of hypoxia-inducible factor-1? affects tumor proliferation and antiapoptosis in surgically resected lung cancer. Mol Clin Oncol. 2016;5:295-300 pubmed
  1045. Liu Y, Wang K, Xing H, Zhai X, Wang L, Wang W. Attempt towards a novel classification of triple-negative breast cancer using immunohistochemical markers. Oncol Lett. 2016;12:1240-1256 pubmed
  1046. Sauter K, Waddell L, Lisowski Z, Young R, Lefèvre L, Davis G, et al. Macrophage colony-stimulating factor (CSF1) controls monocyte production and maturation and the steady-state size of the liver in pigs. Am J Physiol Gastrointest Liver Physiol. 2016;311:G533-47 pubmed 出版商
  1047. Choi J, Park S, Khang S, Suh Y, Kim S, Lee Y, et al. Hemangiopericytomas in the Central Nervous System: A Multicenter Study of Korean Cases with Validation of the Usage of STAT6 Immunohistochemistry for Diagnosis of Disease. Ann Surg Oncol. 2016;23:954-961 pubmed
  1048. Metz H, Kargl J, Busch S, Kim K, Kurland B, Abberbock S, et al. Insulin receptor substrate-1 deficiency drives a proinflammatory phenotype in KRAS mutant lung adenocarcinoma. Proc Natl Acad Sci U S A. 2016;113:8795-800 pubmed 出版商
  1049. Parsa R, Lund H, Georgoudaki A, Zhang X, Ortlieb Guerreiro Cacais A, Grommisch D, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med. 2016;213:1537-53 pubmed 出版商
  1050. DeGottardi M, Okoye A, Vaidya M, Talla A, Konfe A, Reyes M, et al. Effect of Anti-IL-15 Administration on T Cell and NK Cell Homeostasis in Rhesus Macaques. J Immunol. 2016;197:1183-98 pubmed 出版商
  1051. Urbán N, van den Berg D, Forget A, Andersen J, Demmers J, Hunt C, et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science. 2016;353:292-5 pubmed 出版商
  1052. Cox A, Barrandon O, Cai E, Rios J, Chavez J, Bonnyman C, et al. Resolving Discrepant Findings on ANGPTL8 in ?-Cell Proliferation: A Collaborative Approach to Resolving the Betatrophin Controversy. PLoS ONE. 2016;11:e0159276 pubmed 出版商
  1053. Li S, Qu Z, Haas M, Ngo L, Heo Y, Kang H, et al. The HSA21 gene EURL/C21ORF91 controls neurogenesis within the cerebral cortex and is implicated in the pathogenesis of Down Syndrome. Sci Rep. 2016;6:29514 pubmed 出版商
  1054. Zhang Y, Velez Delgado A, Mathew E, Li D, Mendez F, Flannagan K, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 2017;66:124-136 pubmed 出版商
  1055. Chen H, Wei Z, Sun J, Bhattacharya A, Savage D, Serda R, et al. A recellularized human colon model identifies cancer driver genes. Nat Biotechnol. 2016;34:845-51 pubmed 出版商
  1056. Garcia P, Seiva F, Carniato A, de Mello Júnior W, Duran N, Macedo A, et al. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier. BMC Cancer. 2016;16:422 pubmed 出版商
  1057. Bigot P, Colli L, Machiela M, Jessop L, Myers T, Carrouget J, et al. Functional characterization of the 12p12.1 renal cancer-susceptibility locus implicates BHLHE41. Nat Commun. 2016;7:12098 pubmed 出版商
  1058. Nooh H, Nour Eldien N. The dual anti-inflammatory and antioxidant activities of natural honey promote cell proliferation and neural regeneration in a rat model of colitis. Acta Histochem. 2016;118:588-595 pubmed 出版商
  1059. Liang Y, Zhu F, Zhang H, Chen D, Zhang X, Gao Q, et al. Conditional ablation of TGF-? signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model. Sci Rep. 2016;6:29479 pubmed 出版商
  1060. Lukjanenko L, Jung M, Hegde N, Perruisseau Carrier C, Migliavacca E, Rozo M, et al. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat Med. 2016;22:897-905 pubmed 出版商
  1061. Adriaens C, Standaert L, Barra J, Latil M, Verfaillie A, Kalev P, et al. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med. 2016;22:861-8 pubmed 出版商
  1062. Stock K, Estrada M, Vidic S, Gjerde K, Rudisch A, Santo V, et al. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery. Sci Rep. 2016;6:28951 pubmed 出版商
  1063. Li Y, Jalili R, Ghahary A. Accelerating skin wound healing by M-CSF through generating SSEA-1 and -3 stem cells in the injured sites. Sci Rep. 2016;6:28979 pubmed 出版商
  1064. Bai H, Wang M, Foster T, Hu H, He H, Hashimoto T, et al. Pericardial patch venoplasty heals via attraction of venous progenitor cells. Physiol Rep. 2016;4: pubmed 出版商
  1065. Gulhane M, Murray L, Lourie R, Tong H, Sheng Y, Wang R, et al. High Fat Diets Induce Colonic Epithelial Cell Stress and Inflammation that is Reversed by IL-22. Sci Rep. 2016;6:28990 pubmed 出版商
  1066. Li Y, Zhang J, Xu Y, Han Y, Jiang B, Huang L, et al. The Histopathological Investigation of Red and Blue Light Emitting Diode on Treating Skin Wounds in Japanese Big-Ear White Rabbit. PLoS ONE. 2016;11:e0157898 pubmed 出版商
  1067. Chen G, Liang Y, Guan X, Chen H, Liu Q, Lin B, et al. Circulating low IL-23: IL-35 cytokine ratio promotes progression associated with poor prognosisin breast cancer. Am J Transl Res. 2016;8:2255-64 pubmed
  1068. Gao S, Fan C, Huang H, Zhu C, Su M, Zhang Y. Effects of HCG on human epithelial ovarian cancer vasculogenic mimicry formation in vivo. Oncol Lett. 2016;12:459-466 pubmed
  1069. Guan C, Zhang J, Zhang J, Shi H, Ni R. Enhanced expression of early mitotic inhibitor-1 predicts a poor prognosis in esophageal squamous cell carcinoma patients. Oncol Lett. 2016;12:114-120 pubmed
  1070. Barcus C, Keely P, Eliceiri K, Schuler L. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget. 2016;7:48093-48106 pubmed 出版商
  1071. Dutta A, Le Magnen C, Mitrofanova A, Ouyang X, Califano A, Abate Shen C. Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science. 2016;352:1576-80 pubmed 出版商
  1072. Dai Y, Miao Y, Wu W, Li Y, D Errico F, Su W, et al. Ablation of Liver X receptors ? and ? leads to spontaneous peripheral squamous cell lung cancer in mice. Proc Natl Acad Sci U S A. 2016;113:7614-9 pubmed 出版商
  1073. Hall Z, Ament Z, Wilson C, Burkhart D, Ashmore T, Koulman A, et al. Myc Expression Drives Aberrant Lipid Metabolism in Lung Cancer. Cancer Res. 2016;76:4608-18 pubmed 出版商
  1074. Folmsbee S, Wilcox D, Tyberghein K, De Bleser P, Tourtellotte W, van Hengel J, et al. ?T-catenin in restricted brain cell types and its potential connection to autism. J Mol Psychiatry. 2016;4:2 pubmed 出版商
  1075. Wu J, Hussaini S, Bastille I, Rodriguez G, Mrejeru A, Rilett K, et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci. 2016;19:1085-92 pubmed 出版商
  1076. Papafotiou G, Paraskevopoulou V, Vasilaki E, Kanaki Z, Paschalidis N, Klinakis A. KRT14 marks a subpopulation of bladder basal cells with pivotal role in regeneration and tumorigenesis. Nat Commun. 2016;7:11914 pubmed 出版商
  1077. Borowiec A, Sion B, Chalmel F, D Rolland A, Lemonnier L, De Clerck T, et al. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation. FASEB J. 2016;30:3155-70 pubmed 出版商
  1078. Fu T, Yang W, Zhang X, Xu X. Peripheral T-cell lymphoma unspecified type presenting with a pneumothorax as the initial manifestation: A case report and literature review. Oncol Lett. 2016;11:4069-4076 pubmed
  1079. Arbore G, West E, Spolski R, Robertson A, Klos A, Rheinheimer C, et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4⁺ T cells. Science. 2016;352:aad1210 pubmed 出版商
  1080. Zaglia T, Di Bona A, Chioato T, Basso C, Ausoni S, Mongillo M. Optimized protocol for immunostaining of experimental GFP-expressing and human hearts. Histochem Cell Biol. 2016;146:407-19 pubmed 出版商
  1081. Fame R, MacDonald J, Dunwoodie S, Takahashi E, Macklis J. Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity. J Neurosci. 2016;36:6403-19 pubmed 出版商
  1082. Muroyama A, Seldin L, Lechler T. Divergent regulation of functionally distinct γ-tubulin complexes during differentiation. J Cell Biol. 2016;213:679-92 pubmed 出版商
  1083. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  1084. Xu Y, Chaudhury A, Zhang M, Savoldo B, Metelitsa L, Rodgers J, et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Invest. 2016;126:2678-88 pubmed 出版商
  1085. Hoefflin R, Lahrmann B, Warsow G, Hübschmann D, Spath C, Walter B, et al. Spatial niche formation but not malignant progression is a driving force for intratumoural heterogeneity. Nat Commun. 2016;7:ncomms11845 pubmed 出版商
  1086. Huber M, Falkenberg N, Hauck S, Priller M, Braselmann H, Feuchtinger A, et al. Cyr61 and YB-1 are novel interacting partners of uPAR and elevate the malignancy of triple-negative breast cancer. Oncotarget. 2016;7:44062-44075 pubmed 出版商
  1087. Bergler T, Jung B, Bourier F, Kühne L, Banas M, Rümmele P, et al. Infiltration of Macrophages Correlates with Severity of Allograft Rejection and Outcome in Human Kidney Transplantation. PLoS ONE. 2016;11:e0156900 pubmed 出版商
  1088. Oktay Y, Ãœlgen E, Can Ã, Akyerli C, Yüksel Å, Erdemgil Y, et al. IDH-mutant glioma specific association of rs55705857 located at 8q24.21 involves MYC deregulation. Sci Rep. 2016;6:27569 pubmed 出版商
  1089. Bouchard G, Therriault H, Geha S, Bérubé Lauzière Y, Bujold R, Saucier C, et al. Stimulation of triple negative breast cancer cell migration and metastases formation is prevented by chloroquine in a pre-irradiated mouse model. BMC Cancer. 2016;16:361 pubmed 出版商
  1090. Fox R, Lytle N, Jaquish D, Park F, Ito T, Bajaj J, et al. Image-based detection and targeting of therapy resistance in pancreatic adenocarcinoma. Nature. 2016;534:407-411 pubmed 出版商
  1091. Hanna J, Garcia M, Go J, Finkelstein D, Kodali K, Pagala V, et al. PAX7 is a required target for microRNA-206-induced differentiation of fusion-negative rhabdomyosarcoma. Cell Death Dis. 2016;7:e2256 pubmed 出版商
  1092. Li Y, Zhang W, Chang L, Han Y, Sun L, Gong X, et al. Vitamin C alleviates aging defects in a stem cell model for Werner syndrome. Protein Cell. 2016;7:478-88 pubmed 出版商
  1093. Lu B, Chen Q, Zhang X, Cheng L. Serous carcinoma arising from uterine adenomyosis/adenomyotic cyst of the cervical stump: a report of 3 cases. Diagn Pathol. 2016;11:46 pubmed 出版商
  1094. Szalayova G, Ogrodnik A, Spencer B, Wade J, Bunn J, Ambaye A, et al. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation. Breast Cancer Res Treat. 2016;157:461-74 pubmed 出版商
  1095. Sigl V, Owusu Boaitey K, Joshi P, Kavirayani A, Wirnsberger G, Novatchkova M, et al. RANKL/RANK control Brca1 mutation- . Cell Res. 2016;26:761-74 pubmed 出版商
  1096. Quarta M, Brett J, DiMarco R, de Morrée A, Boutet S, Chacon R, et al. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol. 2016;34:752-9 pubmed 出版商
  1097. Schulz A, Büttner R, Hagel C, Baader S, Kluwe L, Salamon J, et al. The importance of nerve microenvironment for schwannoma development. Acta Neuropathol. 2016;132:289-307 pubmed 出版商
  1098. Goodier M, Rodríguez Galán A, Lusa C, Nielsen C, Darboe A, Moldoveanu A, et al. Influenza Vaccination Generates Cytokine-Induced Memory-like NK Cells: Impact of Human Cytomegalovirus Infection. J Immunol. 2016;197:313-25 pubmed 出版商
  1099. Morales I, Sánchez A, Rodriguez Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016;139:81-95 pubmed 出版商
  1100. Rigden H, Alias A, Havelock T, O Donnell R, Djukanovic R, Davies D, et al. Squamous Metaplasia Is Increased in the Bronchial Epithelium of Smokers with Chronic Obstructive Pulmonary Disease. PLoS ONE. 2016;11:e0156009 pubmed 出版商
  1101. Kanda M, Nagai T, Takahashi T, Liu M, Kondou N, Naito A, et al. Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction. PLoS ONE. 2016;11:e0156562 pubmed 出版商
  1102. Nooij L, Dreef E, Smit V, van Poelgeest M, Bosse T. Stathmin is a highly sensitive and specific biomarker for vulvar high-grade squamous intraepithelial lesions. J Clin Pathol. 2016;69:1070-1075 pubmed 出版商
  1103. Roth Flach R, Danai L, DiStefano M, Kelly M, Menendez L, Jurczyk A, et al. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia. J Biol Chem. 2016;291:16221-30 pubmed 出版商
  1104. Elbaz B, Traka M, Kunjamma R, Dukala D, Brosius Lutz A, Anton E, et al. Adenomatous polyposis coli regulates radial axonal sorting and myelination in the PNS. Development. 2016;143:2356-66 pubmed 出版商
  1105. Yajima H, Kawakami K. Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. Dev Growth Differ. 2016;58:546-61 pubmed 出版商
  1106. Roy A, Femel J, Huijbers E, Spillmann D, Larsson E, Ringvall M, et al. Targeting Serglycin Prevents Metastasis in Murine Mammary Carcinoma. PLoS ONE. 2016;11:e0156151 pubmed 出版商
  1107. Leggere J, Saito Y, Darnell R, Tessier Lavigne M, Junge H, Chen Z. NOVA regulates Dcc alternative splicing during neuronal migration and axon guidance in the spinal cord. elife. 2016;5: pubmed 出版商
  1108. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  1109. Piton N, Wason J, Colasse É, Cornic M, Lemoine F, Le Pessot F, et al. Endoplasmic reticulum stress, unfolded protein response and development of colon adenocarcinoma. Virchows Arch. 2016;469:145-54 pubmed 出版商
  1110. Leo F, Bartels S, Mägel L, Framke T, Büsche G, Jonigk D, et al. Prognostic factors in the myoepithelial-like spindle cell type of metaplastic breast cancer. Virchows Arch. 2016;469:191-201 pubmed 出版商
  1111. Torrano V, Valcarcel Jimenez L, Cortazar A, Liu X, Urosevic J, Castillo Martin M, et al. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat Cell Biol. 2016;18:645-656 pubmed 出版商
  1112. Sun F, Zhang Z, Tan E, Lim Z, Li Y, Wang X, et al. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice. Carcinogenesis. 2016;37:701-711 pubmed 出版商
  1113. Guinot A, Oeztuerk Winder F, Ventura J. miR-17-92/p38? Dysregulation Enhances Wnt Signaling and Selects Lgr6+ Cancer Stem-like Cells during Lung Adenocarcinoma Progression. Cancer Res. 2016;76:4012-22 pubmed 出版商
  1114. Albino D, Civenni G, Dallavalle C, Roos M, Jahns H, Curti L, et al. Activation of the Lin28/let-7 Axis by Loss of ESE3/EHF Promotes a Tumorigenic and Stem-like Phenotype in Prostate Cancer. Cancer Res. 2016;76:3629-43 pubmed 出版商
  1115. Chung M, Lee J, Kim S, Suh Y, Choi H. Simple Prediction Model of Axillary Lymph Node Positivity After Analyzing Molecular and Clinical Factors in Early Breast Cancer. Medicine (Baltimore). 2016;95:e3689 pubmed 出版商
  1116. Jensen L, Jørgensen L, Bech R, Frandsen U, Schrøder H. Skeletal Muscle Remodelling as a Function of Disease Progression in Amyotrophic Lateral Sclerosis. Biomed Res Int. 2016;2016:5930621 pubmed 出版商
  1117. El Maassarani M, Barbarin A, Fromont G, Kaissi O, Lebbe M, Vannier B, et al. Integrated and Functional Genomics Analysis Validates the Relevance of the Nuclear Variant ErbB380kDa in Prostate Cancer Progression. PLoS ONE. 2016;11:e0155950 pubmed 出版商
  1118. Chen P, Qin L, Li G, Tellides G, Simons M. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med. 2016;8:712-28 pubmed 出版商
  1119. Zhang H, Prado K, Zhang K, Peek E, Lee J, Wang X, et al. Biased Expression of the FOXP3Δ3 Isoform in Aggressive Bladder Cancer Mediates Differentiation and Cisplatin Chemotherapy Resistance. Clin Cancer Res. 2016;22:5349-5361 pubmed
  1120. Zhang X, Ye C, Sun F, Wei W, Hu B, Wang J. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation. PLoS ONE. 2016;11:e0155725 pubmed 出版商
  1121. de Jong P, Taniguchi K, Harris A, Bertin S, Takahashi N, Duong J, et al. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nat Commun. 2016;7:11551 pubmed 出版商
  1122. Cherepanova O, Gomez D, Shankman L, Swiatlowska P, Williams J, Sarmento O, et al. Activation of the pluripotency factor OCT4 in smooth muscle cells is atheroprotective. Nat Med. 2016;22:657-65 pubmed 出版商
  1123. Oishi S, Premarathne S, Harvey T, Iyer S, Dixon C, Alexander S, et al. Usp9x-deficiency disrupts the morphological development of the postnatal hippocampal dentate gyrus. Sci Rep. 2016;6:25783 pubmed 出版商
  1124. Zhang Z, Meng G, Wang L, Ma Y, Guan Z. The prognostic role and reduced expression of FOXJ2 in human hepatocellular carcinoma. Mol Med Rep. 2016;14:254-62 pubmed 出版商
  1125. Kriegbaum M, Jacobsen B, Füchtbauer A, Hansen G, Christensen I, Rundsten C, et al. C4.4A gene ablation is compatible with normal epidermal development and causes modest overt phenotypes. Sci Rep. 2016;6:25833 pubmed 出版商
  1126. Schuster C, Akslen L, Straume O. Expression of Heat Shock Protein 27 in Melanoma Metastases Is Associated with Overall Response to Bevacizumab Monotherapy: Analyses of Predictive Markers in a Clinical Phase II Study. PLoS ONE. 2016;11:e0155242 pubmed 出版商
  1127. Xue H, Yuan G, Guo X, Liu Q, Zhang J, Gao X, et al. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy. 2016;12:1129-52 pubmed 出版商
  1128. De Filippis L, Halikere A, McGowan H, Moore J, Tischfield J, Hart R, et al. Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells. Mol Brain. 2016;9:51 pubmed 出版商
  1129. Tuşaliu M, Zainea V, Mogoantă C, Dragu A, GoanŢă C, Niţescu M, et al. Diagnostic and therapeutic aspects in malignant sinonasal lymphoma. Rom J Morphol Embryol. 2016;57:233-6 pubmed
  1130. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385 pubmed 出版商
  1131. Wang L, Lee K, Malonis R, SANCHEZ I, Dynlacht B. Tethering of an E3 ligase by PCM1 regulates the abundance of centrosomal KIAA0586/Talpid3 and promotes ciliogenesis. elife. 2016;5: pubmed 出版商
  1132. Chen P, Hsiao J, Sirois C, Chamberlain S. RBFOX1 and RBFOX2 are dispensable in iPSCs and iPSC-derived neurons and do not contribute to neural-specific paternal UBE3A silencing. Sci Rep. 2016;6:25368 pubmed 出版商
  1133. Kam J, Dumontier E, Baim C, Brignall A, Mendes da Silva D, Cowan M, et al. RGMB and neogenin control cell differentiation in the developing olfactory epithelium. Development. 2016;143:1534-46 pubmed 出版商
  1134. Nietzer S, Baur F, Sieber S, Hansmann J, Schwarz T, Stoffer C, et al. Mimicking Metastases Including Tumor Stroma: A New Technique to Generate a Three-Dimensional Colorectal Cancer Model Based on a Biological Decellularized Intestinal Scaffold. Tissue Eng Part C Methods. 2016;22:621-35 pubmed 出版商
  1135. Xu X, Meng Q, Erben U, Wang P, Glauben R, Kuhl A, et al. Myeloid-derived suppressor cells promote B-cell production of IgA in a TNFR2-dependent manner. Cell Mol Immunol. 2017;14:597-606 pubmed 出版商
  1136. Nakamura R, Koshiba Takeuchi K, Tsuchiya M, Kojima M, Miyazawa A, Ito K, et al. Expression analysis of Baf60c during heart regeneration in axolotls and neonatal mice. Dev Growth Differ. 2016;58:367-82 pubmed 出版商
  1137. Tirosh I, Izar B, Prakadan S, Wadsworth M, Treacy D, Trombetta J, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352:189-96 pubmed 出版商
  1138. Lombardi R, Chen S, Ruggiero A, Gurha P, Czernuszewicz G, Willerson J, et al. Cardiac Fibro-Adipocyte Progenitors Express Desmosome Proteins and Preferentially Differentiate to Adipocytes Upon Deletion of the Desmoplakin Gene. Circ Res. 2016;119:41-54 pubmed 出版商
  1139. Noda K, Kitami M, Kitami K, Kaku M, Komatsu Y. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A. 2016;113:E2589-97 pubmed 出版商
  1140. Sánchez A, Urrego D, Pardo L. Cyclic expression of the voltage-gated potassium channel KV10.1 promotes disassembly of the primary cilium. EMBO Rep. 2016;17:708-23 pubmed 出版商
  1141. Ren M, Du C, Herrero Acero E, Tang Schomer M, Ozkucur N. A biofidelic 3D culture model to study the development of brain cellular systems. Sci Rep. 2016;6:24953 pubmed 出版商
  1142. Choudhary P, Gutteridge A, Impey E, Storer R, Owen R, Whiting P, et al. Targeting the cAMP and Transforming Growth Factor-? Pathway Increases Proliferation to Promote Re-Epithelialization of Human Stem Cell-Derived Retinal Pigment Epithelium. Stem Cells Transl Med. 2016;5:925-37 pubmed 出版商
  1143. Kishimoto Y, Kishimoto A, Ye S, Kendziorski C, Welham N. Modeling fibrosis using fibroblasts isolated from scarred rat vocal folds. Lab Invest. 2016;96:807-16 pubmed 出版商
  1144. Yasuda T, Fukada T, Nishida K, Nakayama M, Matsuda M, Miura I, et al. Hyperactivation of JAK1 tyrosine kinase induces stepwise, progressive pruritic dermatitis. J Clin Invest. 2016;126:2064-76 pubmed 出版商
  1145. Heilmann T, Dittmann L, van Mackelenbergh M, Mundhenke C, Weimer J, Arnold N, et al. Head-to-head comparison of the impact of Aurora A, Aurora B, Repp86, CDK1, CDK2 and Ki67 expression in two of the most relevant gynaecological tumor entities. Arch Gynecol Obstet. 2016;294:813-23 pubmed 出版商
  1146. Li Z, Hodgkinson T, Gothard E, Boroumand S, Lamb R, Cummins I, et al. Epidermal Notch1 recruits RORγ(+) group 3 innate lymphoid cells to orchestrate normal skin repair. Nat Commun. 2016;7:11394 pubmed 出版商
  1147. Titmarsh D, Glass N, Mills R, Hidalgo A, Wolvetang E, Porrello E, et al. Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays. Sci Rep. 2016;6:24637 pubmed 出版商
  1148. Wilkinson R, Young A, Burden R, Williams R, Scott C. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development. Mol Cancer. 2016;15:29 pubmed 出版商
  1149. Okamoto M, Miyata T, Konno D, Ueda H, Kasukawa T, Hashimoto M, et al. Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells. Nat Commun. 2016;7:11349 pubmed 出版商
  1150. Bartram M, Amendola E, Benzing T, Schermer B, De Vita G, Muller R. Mice lacking microRNAs in Pax8-expressing cells develop hypothyroidism and end-stage renal failure. BMC Mol Biol. 2016;17:11 pubmed 出版商
  1151. Burridge P, Li Y, Matsa E, Wu H, Ong S, Sharma A, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med. 2016;22:547-56 pubmed 出版商
  1152. O Leary C, Riling C, Spruce L, Ding H, Kumar S, Deng G, et al. Ndfip-mediated degradation of Jak1 tunes cytokine signalling to limit expansion of CD4+ effector T cells. Nat Commun. 2016;7:11226 pubmed 出版商
  1153. Lu C, Thoeni C, Connor A, Kawabe H, Gallinger S, Rotin D. Intestinal knockout of Nedd4 enhances growth of Apcmin tumors. Oncogene. 2016;35:5839-5849 pubmed 出版商
  1154. Lim S, Yuzhalin A, Gordon Weeks A, Muschel R. Tumor-infiltrating monocytes/macrophages promote tumor invasion and migration by upregulating S100A8 and S100A9 expression in cancer cells. Oncogene. 2016;35:5735-5745 pubmed 出版商
  1155. Waisbourd Zinman O, Koh H, Tsai S, Lavrut P, Dang C, Zhao X, et al. The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17. Hepatology. 2016;64:880-93 pubmed 出版商
  1156. Timraz S, Farhat I, Alhussein G, Christoforou N, Teo J. In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering. Exp Cell Res. 2016;343:168-176 pubmed 出版商
  1157. Wang S, Gao X, Shen G, Wang W, Li J, Zhao J, et al. Interleukin-10 deficiency impairs regulatory T cell-derived neuropilin-1 functions and promotes Th1 and Th17 immunity. Sci Rep. 2016;6:24249 pubmed 出版商
  1158. Itkin T, Gur Cohen S, Spencer J, Schajnovitz A, Ramasamy S, Kusumbe A, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532:323-8 pubmed 出版商
  1159. Ma Z, Shou K, Li Z, Jian C, Qi B, Yu A. Negative pressure wound therapy promotes vessel destabilization and maturation at various stages of wound healing and thus influences wound prognosis. Exp Ther Med. 2016;11:1307-1317 pubmed
  1160. Dührsen L, Emami P, Matschke J, Abboud T, Westphal M, Regelsberger J. Meninigiomas of the Craniocervical Junction--A Distinctive Subgroup of Meningiomas. PLoS ONE. 2016;11:e0153405 pubmed 出版商
  1161. Hellstrom M, Moreno Moya J, Bandstein S, Bom E, Akouri R, Miyazaki K, et al. Bioengineered uterine tissue supports pregnancy in a rat model. Fertil Steril. 2016;106:487-496.e1 pubmed 出版商
  1162. Huang G, Yang X, Chen K, Xing J, Guo L, Zhu L, et al. Porf-2 Inhibits Neural Stem Cell Proliferation Through Wnt/?-Catenin Pathway by Its GAP Domain. Front Cell Neurosci. 2016;10:85 pubmed 出版商
  1163. Haemmerle M, Bottsford Miller J, Pradeep S, Taylor M, Choi H, Hansen J, et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest. 2016;126:1885-96 pubmed 出版商
  1164. Wierzbicka J, Zmijewski M, Antoniewicz J, Sobjanek M, Slominski A. Differentiation of Keratinocytes Modulates Skin HPA Analog. J Cell Physiol. 2017;232:154-66 pubmed 出版商
  1165. Balakrishnan A, Stykel M, Touahri Y, Stratton J, Biernaskie J, Schuurmans C. Temporal Analysis of Gene Expression in the Murine Schwann Cell Lineage and the Acutely Injured Postnatal Nerve. PLoS ONE. 2016;11:e0153256 pubmed 出版商
  1166. Wezel A, De Vries M, Maassen J, Kip P, Peters E, Karper J, et al. Deficiency of the TLR4 analogue RP105 aggravates vein graft disease by inducing a pro-inflammatory response. Sci Rep. 2016;6:24248 pubmed 出版商
  1167. Chen G, Luo Y, Eriksson D, Meng X, Qian C, Bauerle T, et al. High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6. Oncotarget. 2016;7:26653-69 pubmed 出版商
  1168. Balasooriya G, Johnson J, Basson M, Rawlins E. An FGFR1-SPRY2 Signaling Axis Limits Basal Cell Proliferation in the Steady-State Airway Epithelium. Dev Cell. 2016;37:85-97 pubmed 出版商
  1169. Rhee M, Lee S, Kim J, Ham D, Park H, Yang H, et al. Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells. Sci Rep. 2016;6:23960 pubmed 出版商
  1170. Papadakis E, Barker C, Syed H, Reeves T, Schwaiger S, Stuppner H, et al. The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ. Oncogenesis. 2016;5:e215 pubmed 出版商
  1171. Kaur A, Webster M, Marchbank K, Behera R, Ndoye A, Kugel C, et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature. 2016;532:250-4 pubmed 出版商
  1172. Fossmark R, Rao S, Mjønes P, Munkvold B, Flatberg A, Varro A, et al. PAI-1 deficiency increases the trophic effects of hypergastrinemia in the gastric corpus mucosa. Peptides. 2016;79:83-94 pubmed 出版商
  1173. Rueda C, Presicce P, Jackson C, Miller L, Kallapur S, Jobe A, et al. Lipopolysaccharide-Induced Chorioamnionitis Promotes IL-1-Dependent Inflammatory FOXP3+ CD4+ T Cells in the Fetal Rhesus Macaque. J Immunol. 2016;196:3706-15 pubmed 出版商
  1174. Lee J, Han A, Lee S, Min W, Kim H. Co-culture with podoplanin+ cells protects leukemic blast cells with leukemia-associated antigens in the tumor microenvironment. Mol Med Rep. 2016;13:3849-57 pubmed 出版商
  1175. Lian Y, Yuan J, Cui Q, Feng Q, Xu M, Bei J, et al. Upregulation of KLHDC4 Predicts a Poor Prognosis in Human Nasopharyngeal Carcinoma. PLoS ONE. 2016;11:e0152820 pubmed 出版商
  1176. Li C, Jiang W, Hu Q, Li L, Dong L, Chen R, et al. Enhancing DPYSL3 gene expression via a promoter-targeted small activating RNA approach suppresses cancer cell motility and metastasis. Oncotarget. 2016;7:22893-910 pubmed 出版商
  1177. Nagao M, Ogata T, Sawada Y, Gotoh Y. Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun. 2016;7:11102 pubmed 出版商
  1178. Esbona K, Inman D, Saha S, Jeffery J, Schedin P, Wilke L, et al. COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Res. 2016;18:35 pubmed 出版商
  1179. Carbognin L, Sperduti I, Brunelli M, Marcolini L, Nortilli R, Pilotto S, et al. Subpopulation Treatment Effect Pattern Plot (STEPP) analysis of Ki67 assay according to histology: prognostic relevance for resected early stage 'pure' and 'mixed' lobular breast cancer. J Exp Clin Cancer Res. 2016;35:50 pubmed 出版商
  1180. Hes O, Condom Mundo E, Peckova K, Lopez J, Martinek P, Vanecek T, et al. Biphasic Squamoid Alveolar Renal Cell Carcinoma: A Distinctive Subtype of Papillary Renal Cell Carcinoma?. Am J Surg Pathol. 2016;40:664-75 pubmed 出版商
  1181. Martin B, Wang C, Zhang C, Kang Z, Gulen M, Zepp J, et al. T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol. 2016;17:583-92 pubmed 出版商
  1182. Lee I, Maniar K, Lydon J, Kim J. Akt regulates progesterone receptor B-dependent transcription and angiogenesis in endometrial cancer cells. Oncogene. 2016;35:5191-201 pubmed 出版商
  1183. Yuan X, Cao J, He X, Serra R, Qu J, Cao X, et al. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nat Commun. 2016;7:11024 pubmed 出版商
  1184. Destouches D, Sader M, Terry S, Marchand C, Maillé P, Soyeux P, et al. Implication of NPM1 phosphorylation and preclinical evaluation of the nucleoprotein antagonist N6L in prostate cancer. Oncotarget. 2016;7:69397-69411 pubmed 出版商
  1185. Fonseca F, Bingle L, Santos Silva A, Lopes M, Coletta R, de Andrade B, et al. Immunoexpression of hoxb7 and hoxb9 in salivary gland tumours. J Oral Pathol Med. 2016;45:672-681 pubmed 出版商
  1186. Liang L, Olar A, Niu N, Jiang Y, Cheng W, Bian X, et al. Primary Glial and Neuronal Tumors of the Ovary or Peritoneum: A Clinicopathologic Study of 11 Cases. Am J Surg Pathol. 2016;40:847-56 pubmed 出版商
  1187. Mohammad G, Olde Damink S, Malago M, Dhar D, Pereira S. Pyruvate Kinase M2 and Lactate Dehydrogenase A Are Overexpressed in Pancreatic Cancer and Correlate with Poor Outcome. PLoS ONE. 2016;11:e0151635 pubmed 出版商
  1188. Gomez de Agüero M, Ganal Vonarburg S, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351:1296-302 pubmed 出版商
  1189. Panousopoulou E, Hobbs C, Mason I, Green J, Formstone C. Epiboly generates the epidermal basal monolayer and spreads the nascent mammalian skin to enclose the embryonic body. J Cell Sci. 2016;129:1915-27 pubmed 出版商
  1190. Morena D, Maestro N, Bersani F, Forni P, Lingua M, Foglizzo V, et al. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. elife. 2016;5: pubmed 出版商
  1191. Ravindran R, Loebbermann J, Nakaya H, Khan N, Ma H, Gama L, et al. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature. 2016;531:523-527 pubmed 出版商
  1192. Ye L, Qiu L, Zhang H, Chen H, Jiang C, Hong H, et al. Cardiomyocytes in Young Infants With Congenital Heart Disease: a Three-Month Window of Proliferation. Sci Rep. 2016;6:23188 pubmed 出版商
  1193. Guo X, Hollander L, MacPherson D, Wang L, Velazquez H, Chang J, et al. Inhibition of renalase expression and signaling has antitumor activity in pancreatic cancer. Sci Rep. 2016;6:22996 pubmed 出版商
  1194. Kim J, Lee H, Park K, Choi Y, Nam J, Hong I. CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: a novel therapeutic approach for liver cancer treatment. Oncotarget. 2016;7:20395-409 pubmed 出版商
  1195. Murai K, Sun G, Ye P, Tian E, Yang S, Cui Q, et al. The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model. Nat Commun. 2016;7:10965 pubmed 出版商
  1196. Simitsidellis I, Gibson D, Cousins F, Esnal Zufiaurre A, Saunders P. A Role for Androgens in Epithelial Proliferation and Formation of Glands in the Mouse Uterus. Endocrinology. 2016;157:2116-28 pubmed 出版商
  1197. Yang H, Vainshtein A, Maik Rachline G, Peles E. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination. Nat Commun. 2016;7:10884 pubmed 出版商
  1198. Alkner S, Bendahl P, Ehinger A, Lövgren K, Rydén L, Fernö M. Prior Adjuvant Tamoxifen Treatment in Breast Cancer Is Linked to Increased AIB1 and HER2 Expression in Metachronous Contralateral Breast Cancer. PLoS ONE. 2016;11:e0150977 pubmed 出版商
  1199. Beaumatin F, El Dhaybi M, Lasserre J, Salin B, Moyer M, Verdier M, et al. N52 monodeamidated Bcl‑xL shows impaired oncogenic properties in vivo and in vitro. Oncotarget. 2016;7:17129-43 pubmed 出版商
  1200. Lin H, Ouyang H, Zhu J, Huang S, Liu Z, Chen S, et al. Lens regeneration using endogenous stem cells with gain of visual function. Nature. 2016;531:323-8 pubmed 出版商
  1201. Dadiani M, Bossel Ben Moshe N, Paluch Shimon S, Perry G, Balint N, Marin I, et al. Tumor Evolution Inferred by Patterns of microRNA Expression through the Course of Disease, Therapy, and Recurrence in Breast Cancer. Clin Cancer Res. 2016;22:3651-62 pubmed 出版商
  1202. Luque R, Villa Osaba A, L López F, Pozo Salas A, Sánchez Sánchez R, Ortega Salas R, et al. Lack of cortistatin or somatostatin differentially influences DMBA-induced mammary gland tumorigenesis in mice in an obesity-dependent mode. Breast Cancer Res. 2016;18:29 pubmed 出版商
  1203. Tomann P, Paus R, Millar S, Scheidereit C, Schmidt Ullrich R. Lhx2 is a direct NF-κB target gene that promotes primary hair follicle placode down-growth. Development. 2016;143:1512-22 pubmed 出版商
  1204. Camarda R, Zhou A, Kohnz R, Balakrishnan S, Mahieu C, Anderton B, et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med. 2016;22:427-32 pubmed 出版商
  1205. van den Brand M, Balagué O, van Cleef P, Groenen P, Hebeda K, de Jong D, et al. A subset of low-grade B cell lymphomas with a follicular growth pattern but without a BCL2 translocation shows features suggestive of nodal marginal zone lymphoma. J Hematop. 2016;9:3-8 pubmed
  1206. Sobecki M, Mrouj K, Camasses A, Parisis N, Nicolas E, Llères D, et al. The cell proliferation antigen Ki-67 organises heterochromatin. elife. 2016;5:e13722 pubmed 出版商
  1207. Loewen J, Barker Haliski M, Dahle E, White H, Wilcox K. Neuronal Injury, Gliosis, and Glial Proliferation in Two Models of Temporal Lobe Epilepsy. J Neuropathol Exp Neurol. 2016;75:366-78 pubmed 出版商
  1208. Helbig D, Ihle M, Pütz K, Tantcheva Poor I, Mauch C, Büttner R, et al. Oncogene and therapeutic target analyses in atypical fibroxanthomas and pleomorphic dermal sarcomas. Oncotarget. 2016;7:21763-74 pubmed 出版商
  1209. Dhar S, Kumar A, Zhang L, Rimando A, Lage J, Lewin J, et al. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget. 2016;7:18469-84 pubmed 出版商
  1210. Korn M, Mandle Q, Parent J. Conditional Disabled-1 Deletion in Mice Alters Hippocampal Neurogenesis and Reduces Seizure Threshold. Front Neurosci. 2016;10:63 pubmed 出版商
  1211. McGranahan N, Furness A, Rosenthal R, Ramskov S, Lyngaa R, Saini S, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463-9 pubmed 出版商
  1212. Wang W, Jossin Y, Chai G, Lien W, Tissir F, Goffinet A. Feedback regulation of apical progenitor fate by immature neurons through Wnt7-Celsr3-Fzd3 signalling. Nat Commun. 2016;7:10936 pubmed 出版商
  1213. Xi Y, Dhaliwal J, Ceizar M, Vaculik M, Kumar K, Lagace D. Knockout of Atg5 delays the maturation and reduces the survival of adult-generated neurons in the hippocampus. Cell Death Dis. 2016;7:e2127 pubmed 出版商
  1214. Lee E, Oh J, Selvaraj S, Park S, Choi M, Spanel R, et al. Immunogenomics reveal molecular circuits of diclofenac induced liver injury in mice. Oncotarget. 2016;7:14983-5017 pubmed 出版商
  1215. Kumar A, Coleman I, Morrissey C, Zhang X, True L, Gulati R, et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med. 2016;22:369-78 pubmed 出版商
  1216. Waldeck K, Cullinane C, Ardley K, Shortt J, Martin B, Tothill R, et al. Long term, continuous exposure to panobinostat induces terminal differentiation and long term survival in the TH-MYCN neuroblastoma mouse model. Int J Cancer. 2016;139:194-204 pubmed 出版商
  1217. Kai T, Tsukamoto Y, Hijiya N, Tokunaga A, Nakada C, Uchida T, et al. Kidney-specific knockout of Sav1 in the mouse promotes hyperproliferation of renal tubular epithelium through suppression of the Hippo pathway. J Pathol. 2016;239:97-108 pubmed 出版商
  1218. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  1219. Lanza D, Dawson E, Rao P, Heaney J. Misexpression of cyclin D1 in embryonic germ cells promotes testicular teratoma initiation. Cell Cycle. 2016;15:919-30 pubmed 出版商
  1220. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  1221. Ji C, Zhou M, Gan W, Zheng J, Yan X, Guo H. Advanced prostatic ductal carcinoma in a patient with a long survival time following a total pelvis exenteration: A case report. Oncol Lett. 2016;11:1509-1511 pubmed
  1222. Kan H, Huang Y, Li X, Liu D, Chen J, Shu M. Zinc finger protein ZBTB20 is an independent prognostic marker and promotes tumor growth of human hepatocellular carcinoma by repressing FoxO1. Oncotarget. 2016;7:14336-49 pubmed 出版商
  1223. Yu W, Huang X, Tian X, Zhang H, He L, Wang Y, et al. GATA4 regulates Fgf16 to promote heart repair after injury. Development. 2016;143:936-49 pubmed 出版商
  1224. Zhang W, Kim P, Chen Z, Lokman H, Qiu L, Zhang K, et al. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. elife. 2016;5: pubmed 出版商
  1225. Liang H, Li X, Wang B, Chen B, Zhao Y, Sun J, et al. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix. Sci Rep. 2016;6:18205 pubmed 出版商
  1226. Li X, Wu J, Li Q, Shigemura K, Chung L, Huang W. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer. Oncotarget. 2016;7:12869-84 pubmed 出版商
  1227. Oyewumi M, Manickavasagam D, Novak K, Wehrung D, Paulic N, Moussa F, et al. Osteoactivin (GPNMB) ectodomain protein promotes growth and invasive behavior of human lung cancer cells. Oncotarget. 2016;7:13932-44 pubmed 出版商
  1228. Du L, Chen X, Cao Y, Lu L, Zhang F, Bornstein S, et al. Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling. Oncogene. 2016;35:4641-52 pubmed 出版商
  1229. Passer D, van de Vrugt A, Atmanli A, Domian I. Atypical Protein Kinase C-Dependent Polarized Cell Division Is Required for Myocardial Trabeculation. Cell Rep. 2016;14:1662-1672 pubmed 出版商
  1230. Waters A, Stewart J, Atigadda V, Mroczek Musulman E, Muccio D, Grubbs C, et al. Preclinical Evaluation of UAB30 in Pediatric Renal and Hepatic Malignancies. Mol Cancer Ther. 2016;15:911-21 pubmed 出版商
  1231. Scognamiglio R, Cabezas Wallscheid N, Thier M, Altamura S, Reyes A, Prendergast Ã, et al. Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell. 2016;164:668-80 pubmed 出版商
  1232. Farin H, Jordens I, Mosa M, Basak O, Korving J, Tauriello D, et al. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature. 2016;530:340-3 pubmed 出版商
  1233. Gerashchenko B, Salmina K, Eglitis J, Huna A, Grjunberga V, Erenpreisa J. Disentangling the aneuploidy and senescence paradoxes: a study of triploid breast cancers non-responsive to neoadjuvant therapy. Histochem Cell Biol. 2016;145:497-508 pubmed 出版商
  1234. Malanga D, Belmonte S, Colelli F, Scarfò M, De Marco C, Oliveira D, et al. AKT1E¹⁷K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer. PLoS ONE. 2016;11:e0147334 pubmed 出版商
  1235. Su R, Strug M, Jeong J, Miele L, Fazleabas A. Aberrant activation of canonical Notch1 signaling in the mouse uterus decreases progesterone receptor by hypermethylation and leads to infertility. Proc Natl Acad Sci U S A. 2016;113:2300-5 pubmed 出版商
  1236. Setoguchi R. IL-15 boosts the function and migration of human terminally differentiated CD8+ T cells by inducing a unique gene signature. Int Immunol. 2016;28:293-305 pubmed 出版商
  1237. Nakagawa A, Adams C, Huang Y, Hamarneh S, Liu W, Von Alt K, et al. Selective and reversible suppression of intestinal stem cell differentiation by pharmacological inhibition of BET bromodomains. Sci Rep. 2016;6:20390 pubmed 出版商
  1238. Beltran H, Prandi D, Mosquera J, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22:298-305 pubmed 出版商
  1239. Davidson S, Papagiannakopoulos T, Olenchock B, Heyman J, Keibler M, Luengo A, et al. Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer. Cell Metab. 2016;23:517-28 pubmed 出版商
  1240. Lu K, Nakagawa M, Thummar K, RATHINAM C. Slicer Endonuclease Argonaute 2 Is a Negative Regulator of Hematopoietic Stem Cell Quiescence. Stem Cells. 2016;34:1343-53 pubmed 出版商
  1241. Ha D, Carpenter L, Koutakis P, Swanson S, Zhu Z, Hanna M, et al. Transforming growth factor-beta 1 produced by vascular smooth muscle cells predicts fibrosis in the gastrocnemius of patients with peripheral artery disease. J Transl Med. 2016;14:39 pubmed 出版商
  1242. Flanagan L, Meyer M, Fay J, Curry S, Bacon O, Duessmann H, et al. Low levels of Caspase-3 predict favourable response to 5FU-based chemotherapy in advanced colorectal cancer: Caspase-3 inhibition as a therapeutic approach. Cell Death Dis. 2016;7:e2087 pubmed 出版商
  1243. Sundarkrishnan L, Bradish J, Oliai B, Hosler G. Cutaneous Cellular Pseudoglandular Schwannoma: An Unusual Histopathologic Variant. Am J Dermatopathol. 2016;38:315-8 pubmed 出版商
  1244. Wang X, Jung Y, Jun S, Lee S, Wang W, Schneider A, et al. PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun. 2016;7:10633 pubmed 出版商
  1245. Ophelders D, Gussenhoven R, Lammens M, Küsters B, Kemp M, Newnham J, et al. Neuroinflammation and structural injury of the fetal ovine brain following intra-amniotic Candida albicans exposure. J Neuroinflammation. 2016;13:29 pubmed 出版商
  1246. Sun H, Luo L, Lal B, Ma X, Chen L, Hann C, et al. A monoclonal antibody against KCNK9 K(+) channel extracellular domain inhibits tumour growth and metastasis. Nat Commun. 2016;7:10339 pubmed 出版商
  1247. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  1248. Llanos S, García Pedrero J, Morgado Palacin L, Rodrigo J, Serrano M. Stabilization of p21 by mTORC1/4E-BP1 predicts clinical outcome of head and neck cancers. Nat Commun. 2016;7:10438 pubmed 出版商
  1249. Ramasamy S, Saez B, Mukhopadhyay S, Ding D, Ahmed A, Chen X, et al. Tle1 tumor suppressor negatively regulates inflammation in vivo and modulates NF-κB inflammatory pathway. Proc Natl Acad Sci U S A. 2016;113:1871-6 pubmed 出版商
  1250. Ware M, Colbert K, Keshishian V, Ho J, Corr S, Curley S, et al. Generation of Homogenous Three-Dimensional Pancreatic Cancer Cell Spheroids Using an Improved Hanging Drop Technique. Tissue Eng Part C Methods. 2016;22:312-21 pubmed 出版商
  1251. Llibre A, López Macías C, Marafioti T, Mehta H, Partridge A, Kanzig C, et al. LLT1 and CD161 Expression in Human Germinal Centers Promotes B Cell Activation and CXCR4 Downregulation. J Immunol. 2016;196:2085-94 pubmed 出版商
  1252. Wang Y, Cui R, Zhang X, Qiao Y, Liu X, Chang Y, et al. SIRT1 increases YAP- and MKK3-dependent p38 phosphorylation in mouse liver and human hepatocellular carcinoma. Oncotarget. 2016;7:11284-98 pubmed 出版商
  1253. Chandrasekaran U, Yi W, Gupta S, Weng C, Giannopoulou E, Chinenov Y, et al. Regulation of Effector Treg Cells in Murine Lupus. Arthritis Rheumatol. 2016;68:1454-66 pubmed 出版商
  1254. Scott C, Zheng F, De Baetselier P, Martens L, Saeys Y, De Prijck S, et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun. 2016;7:10321 pubmed 出版商
  1255. Gaide Chevronnay H, Janssens V, Van Der Smissen P, Rocca C, Liao X, Refetoff S, et al. Hematopoietic Stem Cells Transplantation Can Normalize Thyroid Function in a Cystinosis Mouse Model. Endocrinology. 2016;157:1363-71 pubmed 出版商
  1256. Misuraca K, Hu G, Barton K, Chung A, Becher O. A Novel Mouse Model of Diffuse Intrinsic Pontine Glioma Initiated in Pax3-Expressing Cells. Neoplasia. 2016;18:60-70 pubmed 出版商
  1257. Chung S, Moon H, Ju H, Kim D, Cho K, Ribback S, et al. Comparison of liver oncogenic potential among human RAS isoforms. Oncotarget. 2016;7:7354-66 pubmed 出版商
  1258. Carvalho M, Pires I, Prada J, Raposo T, Gregório H, Lobo L, et al. High COX-2 expression is associated with increased angiogenesis, proliferation and tumoural inflammatory infiltrate in canine malignant mammary tumours: a multivariate survival study. Vet Comp Oncol. 2017;15:619-631 pubmed 出版商
  1259. Crowley C, Klanrit P, Butler C, Varanou A, Platé M, Hynds R, et al. Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold. Biomaterials. 2016;83:283-93 pubmed 出版商
  1260. Forest F, Thuret G, Gain P, Dumollard J, Peoc h M, Perrache C, et al. Optimization of immunostaining on flat-mounted human corneas. Mol Vis. 2015;21:1345-56 pubmed
  1261. Iyer N, Huettner J, Butts J, Brown C, Sakiyama Elbert S. Generation of highly enriched V2a interneurons from mouse embryonic stem cells. Exp Neurol. 2016;277:305-316 pubmed 出版商
  1262. Vargas Inchaustegui D, Demers A, Shaw J, Kang G, Ball D, Tuero I, et al. Vaccine Induction of Lymph Node-Resident Simian Immunodeficiency Virus Env-Specific T Follicular Helper Cells in Rhesus Macaques. J Immunol. 2016;196:1700-10 pubmed 出版商
  1263. Baptista P, Moran E, Vyas D, Ribeiro M, Atala A, Sparks J, et al. Fluid Flow Regulation of Revascularization and Cellular Organization in a Bioengineered Liver Platform. Tissue Eng Part C Methods. 2016;22:199-207 pubmed 出版商
  1264. Loebel D, Plageman T, Tang T, Jones V, Muccioli M, Tam P. Thyroid bud morphogenesis requires CDC42- and SHROOM3-dependent apical constriction. Biol Open. 2016;5:130-9 pubmed 出版商
  1265. Catarinella M, Monestiroli A, Escobar G, Fiocchi A, Tran N, Aiolfi R, et al. IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment. EMBO Mol Med. 2016;8:155-70 pubmed 出版商
  1266. Chen X, Wei S, Li J, Zhang Q, Wang Y, Zhao S, et al. Overexpression of Heme Oxygenase-1 Prevents Renal Interstitial Inflammation and Fibrosis Induced by Unilateral Ureter Obstruction. PLoS ONE. 2016;11:e0147084 pubmed 出版商
  1267. Varešlija D, McBryan J, Fagan A, Redmond A, Hao Y, Sims A, et al. Adaptation to AI Therapy in Breast Cancer Can Induce Dynamic Alterations in ER Activity Resulting in Estrogen-Independent Metastatic Tumors. Clin Cancer Res. 2016;22:2765-77 pubmed 出版商
  1268. Zhao C, Zhang W, Zhao Y, Yang Y, Luo H, Ji G, et al. Endothelial Cords Promote Tumor Initial Growth prior to Vascular Function through a Paracrine Mechanism. Sci Rep. 2016;6:19404 pubmed 出版商
  1269. Nalwoga H, Ahmed L, Arnes J, Wabinga H, Akslen L. Strong Expression of Hypoxia-Inducible Factor-1α (HIF-1α) Is Associated with Axl Expression and Features of Aggressive Tumors in African Breast Cancer. PLoS ONE. 2016;11:e0146823 pubmed 出版商
  1270. Kim Y, Nam H, Lee J, Park D, Kim C, Yu Y, et al. Methylation-dependent regulation of HIF-1α stability restricts retinal and tumour angiogenesis. Nat Commun. 2016;7:10347 pubmed 出版商
  1271. Lalli M, Jang J, Park J, Wang Y, Guzman E, Zhou H, et al. Haploinsufficiency of BAZ1B contributes to Williams syndrome through transcriptional dysregulation of neurodevelopmental pathways. Hum Mol Genet. 2016;25:1294-306 pubmed 出版商
  1272. Soragni A, Janzen D, Johnson L, Lindgren A, Thai Quynh Nguyen A, Tiourin E, et al. A Designed Inhibitor of p53 Aggregation Rescues p53 Tumor Suppression in Ovarian Carcinomas. Cancer Cell. 2016;29:90-103 pubmed 出版商
  1273. Nechiporuk T, MCGANN J, Mullendorff K, Hsieh J, Wurst W, Floss T, et al. The REST remodeling complex protects genomic integrity during embryonic neurogenesis. elife. 2016;5:e09584 pubmed 出版商
  1274. Leiva M, Quintana J, Ligos J, Hidalgo A. Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGFβ availability. Nat Commun. 2016;7:10222 pubmed 出版商
  1275. Rooney G, Goodwin A, Depeille P, Sharir A, Schofield C, Yeh E, et al. Human iPS Cell-Derived Neurons Uncover the Impact of Increased Ras Signaling in Costello Syndrome. J Neurosci. 2016;36:142-52 pubmed 出版商
  1276. Bruin J, Saber N, O Dwyer S, Fox J, Mojibian M, Arora P, et al. Hypothyroidism Impairs Human Stem Cell-Derived Pancreatic Progenitor Cell Maturation in Mice. Diabetes. 2016;65:1297-309 pubmed 出版商
  1277. Wu Z, Li D, Huang Y, Chen X, Huang W, Liu C, et al. Caspr Controls the Temporal Specification of Neural Progenitor Cells through Notch Signaling in the Developing Mouse Cerebral Cortex. Cereb Cortex. 2017;27:1369-1385 pubmed 出版商
  1278. Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, et al. PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Mol Cancer. 2016;15:3 pubmed 出版商
  1279. Tsianakas A, Brunner P, Ghoreschi K, Berger C, Loser K, Röcken M, et al. The single-chain anti-TNF-α antibody DLX105 induces clinical and biomarker responses upon local administration in patients with chronic plaque-type psoriasis. Exp Dermatol. 2016;25:428-33 pubmed 出版商
  1280. Zhao F, Huang W, Zhang Z, Mao L, Han Y, Yan J, et al. Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells. Oncotarget. 2016;7:5366-82 pubmed 出版商
  1281. Kim T, Jin F, Shin S, Oh S, Lightfoot S, Grande J, et al. Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1. J Clin Invest. 2016;126:706-20 pubmed 出版商
  1282. Martínez Iglesias O, Alonso Merino E, Gómez Rey S, Velasco Martín J, Martín Orozco R, Luengo E, et al. Autoregulatory loop of nuclear corepressor 1 expression controls invasion, tumor growth, and metastasis. Proc Natl Acad Sci U S A. 2016;113:E328-37 pubmed 出版商
  1283. Kindy M, Yu J, Zhu H, Smith M, Gattoni Celli S. A therapeutic cancer vaccine against GL261 murine glioma. J Transl Med. 2016;14:1 pubmed 出版商
  1284. Arai S, Kitada K, Yamazaki T, Takai R, Zhang X, Tsugawa Y, et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat Med. 2016;22:183-93 pubmed 出版商
  1285. Dey A, Robitaille M, Remke M, Maier C, Malhotra A, Gregorieff A, et al. YB-1 is elevated in medulloblastoma and drives proliferation in Sonic hedgehog-dependent cerebellar granule neuron progenitor cells and medulloblastoma cells. Oncogene. 2016;35:4256-68 pubmed 出版商
  1286. Creedon H, Balderstone L, Muir M, Balla J, Gómez Cuadrado L, Tracey N, et al. Use of a genetically engineered mouse model as a preclinical tool for HER2 breast cancer. Dis Model Mech. 2016;9:131-40 pubmed 出版商
  1287. Yin P, Shah S, Pasquale N, Garbuzenko O, Minko T, Lee K. Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer. Biomaterials. 2016;81:46-57 pubmed 出版商
  1288. García Castro I, Garcia Lopez G, Avila González D, Flores Herrera H, Molina Hernández A, Portillo W, et al. Markers of Pluripotency in Human Amniotic Epithelial Cells and Their Differentiation to Progenitor of Cortical Neurons. PLoS ONE. 2015;10:e0146082 pubmed 出版商
  1289. Mardaryev A, Liu B, Rapisarda V, Poterlowicz K, Malashchuk I, Rudolf J, et al. Cbx4 maintains the epithelial lineage identity and cell proliferation in the developing stratified epithelium. J Cell Biol. 2016;212:77-89 pubmed 出版商
  1290. Jia H, Shi Y, Luo L, Jiang G, Zhou Q, Xu S, et al. Asymmetric stem-cell division ensures sustained keratinocyte hyperproliferation in psoriatic skin lesions. Int J Mol Med. 2016;37:359-68 pubmed 出版商
  1291. Joseph J, van Roosmalen I, Busschers E, Tomar T, Conroy S, Eggens Meijer E, et al. Serum-Induced Differentiation of Glioblastoma Neurospheres Leads to Enhanced Migration/Invasion Capacity That Is Associated with Increased MMP9. PLoS ONE. 2015;10:e0145393 pubmed 出版商
  1292. Palazzolo G, Quattrocelli M, Toelen J, Dominici R, Anastasia L, Tettamenti G, et al. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells. Stem Cells Int. 2016;2016:4969430 pubmed 出版商
  1293. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  1294. Paris R, Petrovas C, Ferrando Martinez S, Moysi E, Boswell K, Archer E, et al. Selective Loss of Early Differentiated, Highly Functional PD1high CD4 T Cells with HIV Progression. PLoS ONE. 2015;10:e0144767 pubmed 出版商
  1295. Márquez J, Mena J, Hernandez Unzueta I, Benedicto A, Sanz E, Arteta B, et al. Ocoxin® oral solution slows down tumor growth in an experimental model of colorectal cancer metastasis to the liver in Balb/c mice. Oncol Rep. 2016;35:1265-72 pubmed 出版商
  1296. Ulaganathan V, Sperl B, Rapp U, Ullrich A. Germline variant FGFR4  p.G388R exposes a membrane-proximal STAT3 binding site. Nature. 2015;528:570-4 pubmed 出版商
  1297. Chen Y, Tsou B, Hu S, Ma H, Liu X, Yen Y, et al. Autophagy induction causes a synthetic lethal sensitization to ribonucleotide reductase inhibition in breast cancer cells. Oncotarget. 2016;7:1984-99 pubmed 出版商
  1298. Monaghan M, Linneweh M, Liebscher S, Van Handel B, Layland S, Schenke Layland K. Endocardial-to-mesenchymal transformation and mesenchymal cell colonization at the onset of human cardiac valve development. Development. 2016;143:473-82 pubmed 出版商
  1299. de Almeida G, Yamamoto M, Morioka Y, Ogawa S, Matsuzaki T, Noda M. Critical roles for murine Reck in the regulation of vascular patterning and stabilization. Sci Rep. 2015;5:17860 pubmed 出版商
  1300. Lagarrigue S, Lopez Mejia I, Denechaud P, Escoté X, Castillo Armengol J, Jimenez V, et al. CDK4 is an essential insulin effector in adipocytes. J Clin Invest. 2016;126:335-48 pubmed 出版商
  1301. Traka M, Podojil J, McCarthy D, Miller S, Popko B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci. 2016;19:65-74 pubmed 出版商
  1302. Osorio L, Farfán N, Castellón E, Contreras H. SNAIL transcription factor increases the motility and invasive capacity of prostate cancer cells. Mol Med Rep. 2016;13:778-86 pubmed 出版商
  1303. Grandy R, Whitfield T, Wu H, Fitzgerald M, VanOudenhove J, Zaidi S, et al. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation. Mol Cell Biol. 2016;36:615-27 pubmed 出版商
  1304. Yamaguchi M, Komori T, Nakata Y, Yagishita A, Morino M, Isozaki E. Multinodular and vacuolating neuronal tumor affecting amygdala and hippocampus: A quasi-tumor?. Pathol Int. 2016;66:34-41 pubmed 出版商
  1305. Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015;6:8989 pubmed 出版商
  1306. Martínez Martínez M, Mosqueda Taylor A, Delgado Azañero W, Rumayor Piña A, de Almeida O. Primary intraosseous squamous cell carcinoma arising in an odontogenic keratocyst previously treated with marsupialization: case report and immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:e87-95 pubmed 出版商
  1307. Ho S, Hartley B, TCW J, Beaumont M, Stafford K, Slesinger P, et al. Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods. 2016;101:113-24 pubmed 出版商
  1308. Mayr C, Wagner A, Loeffelberger M, Brückner D, Jakab M, Berr F, et al. The BMI1 inhibitor PTC-209 is a potential compound to halt cellular growth in biliary tract cancer cells. Oncotarget. 2016;7:745-58 pubmed 出版商
  1309. Gravina G, Mancini A, Sanità P, Vitale F, Marampon F, Ventura L, et al. KPT-330, a potent and selective exportin-1 (XPO-1) inhibitor, shows antitumor effects modulating the expression of cyclin D1 and survivin [corrected] in prostate cancer models. BMC Cancer. 2015;15:941 pubmed 出版商
  1310. Amadei G, Zander M, Yang G, Dumelie J, Vessey J, Lipshitz H, et al. A Smaug2-Based Translational Repression Complex Determines the Balance between Precursor Maintenance versus Differentiation during Mammalian Neurogenesis. J Neurosci. 2015;35:15666-81 pubmed 出版商
  1311. Moretto M, Khan I. IL-21 Is Important for Induction of KLRG1+ Effector CD8 T Cells during Acute Intracellular Infection. J Immunol. 2016;196:375-84 pubmed 出版商
  1312. Lai J, Lee C, Crocker M, Najmuddin M, Lange E, Merino M, et al. Isolated Large Cell Calcifying Sertoli Cell Tumor in a Young Boy, not Associated with Peutz-Jeghers Syndrome or Carney Complex. Ann Clin Lab Res. 2015;3:2 pubmed
  1313. Dimitrova N, Gocheva V, Bhutkar A, Resnick R, Jong R, Miller K, et al. Stromal Expression of miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development. Cancer Discov. 2016;6:188-201 pubmed 出版商
  1314. Li G, Guo W, Zhang Y, Seng J, Zhang H, Ma X, et al. Suppression of BRD4 inhibits human hepatocellular carcinoma by repressing MYC and enhancing BIM expression. Oncotarget. 2016;7:2462-74 pubmed 出版商
  1315. Nakamura A, Mitsuhashi T, Takano Y, Miyoshi H, Kameda H, Nomoto H, et al. Usefulness of the octreotide test in Japanese patients for predicting the presence/absence of somatostatin receptor 2 expression in insulinomas. Endocr J. 2016;63:135-42 pubmed 出版商
  1316. Hu X, Garcia C, Fazli L, Gleave M, Vitek M, Jansen M, et al. Inhibition of Pten deficient Castration Resistant Prostate Cancer by Targeting of the SET - PP2A Signaling axis. Sci Rep. 2015;5:15182 pubmed 出版商
  1317. Park J, Han C, Zhao L, Willingham M, Cheng S. Inhibition of STAT3 activity delays obesity-induced thyroid carcinogenesis in a mouse model. Endocr Relat Cancer. 2016;23:53-63 pubmed 出版商
  1318. Zylicz J, Dietmann S, Günesdogan U, Hackett J, Cougot D, Lee C, et al. Chromatin dynamics and the role of G9a in gene regulation and enhancer silencing during early mouse development. elife. 2015;4: pubmed 出版商
  1319. Javed A, Leuchte N, Neumann B, Sopper S, Sauermann U. Noncytolytic CD8+ Cell Mediated Antiviral Response Represents a Strong Element in the Immune Response of Simian Immunodeficiency Virus-Infected Long-Term Non-Progressing Rhesus Macaques. PLoS ONE. 2015;10:e0142086 pubmed 出版商
  1320. Trikha P, Sharma N, Pena C, Reyes A, Pécot T, Khurshid S, et al. E2f3 in tumor macrophages promotes lung metastasis. Oncogene. 2016;35:3636-46 pubmed 出版商
  1321. Yen Y, Hsiao J, Jiang S, Chang J, Wang S, Shen Y, et al. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1. Oncotarget. 2015;6:41837-55 pubmed 出版商
  1322. Bhate A, Parker D, Bebee T, Ahn J, Arif W, Rashan E, et al. ESRP2 controls an adult splicing programme in hepatocytes to support postnatal liver maturation. Nat Commun. 2015;6:8768 pubmed 出版商
  1323. Hasby E. Mammary serine protease inhibitor and CD138 immunohistochemical expression in ovarian serous and clear cell carcinomas. Tumour Biol. 2016;37:4889-900 pubmed 出版商
  1324. Thomsen E, Mich J, Yao Z, Hodge R, Doyle A, Jang S, et al. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat Methods. 2016;13:87-93 pubmed 出版商
  1325. Castillo Martin M, Collazo Lorduy A, Gladoun N, Hyun G, Cordon Cardo C. H-RAS mutation is a key molecular feature of pediatric urothelial bladder cancer. A detailed report of three cases. J Pediatr Urol. 2016;12:91.e1-7 pubmed 出版商
  1326. Lin C, Chen Y, Lin C, Chen Y, Lo G, Lee P, et al. Amiodarone as an autophagy promoter reduces liver injury and enhances liver regeneration and survival in mice after partial hepatectomy. Sci Rep. 2015;5:15807 pubmed 出版商
  1327. Judd L, Heine R, Menheniott T, Buzzelli J, O Brien Simpson N, Pavlic D, et al. Elevated IL-33 expression is associated with pediatric eosinophilic esophagitis, and exogenous IL-33 promotes eosinophilic esophagitis development in mice. Am J Physiol Gastrointest Liver Physiol. 2016;310:G13-25 pubmed 出版商
  1328. Wu Y, Zhao H, Zhou L, Zhao C, Wu Y, Zhen L, et al. miR-134 Modulates the Proliferation of Human Cardiomyocyte Progenitor Cells by Targeting Meis2. Int J Mol Sci. 2015;16:25199-213 pubmed 出版商
  1329. Antonucci L, Fagman J, Kim J, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A. 2015;112:E6166-74 pubmed 出版商
  1330. McCart Reed A, Kutasovic J, Vargas A, Jayanthan J, Al Murrani A, Reid L, et al. An epithelial to mesenchymal transition programme does not usually drive the phenotype of invasive lobular carcinomas. J Pathol. 2016;238:489-94 pubmed 出版商
  1331. Small K, DeLuca A, Whitmore S, Rosenberg T, Silva Garcia R, Udar N, et al. North Carolina Macular Dystrophy Is Caused by Dysregulation of the Retinal Transcription Factor PRDM13. Ophthalmology. 2016;123:9-18 pubmed 出版商
  1332. Zhou X, Wei J, Chen F, Xiao X, Huang T, He Q, et al. Epigenetic downregulation of the ISG15-conjugating enzyme UbcH8 impairs lipolysis and correlates with poor prognosis in nasopharyngeal carcinoma. Oncotarget. 2015;6:41077-91 pubmed 出版商
  1333. Cifuentes F, Valenzuela R, Contreras H, Castellón E. Surgical cytoreduction of the primary tumor reduces metastatic progression in a mouse model of prostate cancer. Oncol Rep. 2015;34:2837-44 pubmed
  1334. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  1335. Nakano A, Nakahara T, Mori A, Ushikubo H, Sakamoto K, Ishii K. Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats. Exp Eye Res. 2016;143:120-31 pubmed 出版商
  1336. Ramcharan R, Aleksic T, Kamdoum W, Gao S, Pfister S, Tanner J, et al. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide. Oncotarget. 2015;6:39877-90 pubmed 出版商
  1337. Geister K, Brinkmeier M, Cheung L, Wendt J, Oatley M, Burgess D, et al. LINE-1 Mediated Insertion into Poc1a (Protein of Centriole 1 A) Causes Growth Insufficiency and Male Infertility in Mice. PLoS Genet. 2015;11:e1005569 pubmed 出版商
  1338. Mikami J, Kurokawa Y, Takahashi T, Miyazaki Y, Yamasaki M, Miyata H, et al. Antitumor effect of antiplatelet agents in gastric cancer cells: an in vivo and in vitro study. Gastric Cancer. 2016;19:817-26 pubmed 出版商
  1339. Fujino K, Motooka Y, Hassan W, Ali Abdalla M, Sato Y, Kudoh S, et al. Insulinoma-Associated Protein 1 Is a Crucial Regulator of Neuroendocrine Differentiation in Lung Cancer. Am J Pathol. 2015;185:3164-77 pubmed 出版商
  1340. Adachi T, Kobayashi T, Sugihara E, Yamada T, Ikuta K, Pittaluga S, et al. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat Med. 2015;21:1272-9 pubmed 出版商
  1341. Minas T, Han J, Javaheri T, Hong S, Schlederer M, SaygideÄŸer Kont Y, et al. YK-4-279 effectively antagonizes EWS-FLI1 induced leukemia in a transgenic mouse model. Oncotarget. 2015;6:37678-94 pubmed 出版商
  1342. Schulz A, Mälzer J, Domingo C, Jürchott K, Grützkau A, Babel N, et al. Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans. J Immunol. 2015;195:4699-711 pubmed 出版商
  1343. Liu F, Hon G, Villa G, Turner K, Ikegami S, Yang H, et al. EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling. Mol Cell. 2015;60:307-18 pubmed 出版商
  1344. Witalison E, Cui X, Causey C, Thompson P, Hofseth L. Molecular targeting of protein arginine deiminases to suppress colitis and prevent colon cancer. Oncotarget. 2015;6:36053-62 pubmed 出版商
  1345. Gautier H, Evans K, Volbracht K, James R, Sitnikov S, Lundgaard I, et al. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors. Nat Commun. 2015;6:8518 pubmed 出版商
  1346. Payne S, Maher M, Tran N, Van De Hey D, Foley T, Yueh A, et al. PIK3CA mutations can initiate pancreatic tumorigenesis and are targetable with PI3K inhibitors. Oncogenesis. 2015;4:e169 pubmed 出版商
  1347. Panvichian R, Tantiwetrueangdet A, Sornmayura P, Leelaudomlipi S. Missense Mutations in Exons 18-24 of EGFR in Hepatocellular Carcinoma Tissues. Biomed Res Int. 2015;2015:171845 pubmed 出版商
  1348. Endaya B, Cavanagh B, Alowaidi F, Walker T, de Pennington N, Ng J, et al. Isolating dividing neural and brain tumour cells for gene expression profiling. J Neurosci Methods. 2016;257:121-33 pubmed 出版商
  1349. Mitson Salazar A, Yin Y, Wansley D, Young M, Bolan H, Arceo S, et al. Hematopoietic prostaglandin D synthase defines a proeosinophilic pathogenic effector human T(H)2 cell subpopulation with enhanced function. J Allergy Clin Immunol. 2016;137:907-18.e9 pubmed 出版商
  1350. Costache M, Dumitru A, Pătraşcu O, Popa Cherecheanu D, Bădilă P, Miu J, et al. A challenging case of ocular melanoma. Rom J Morphol Embryol. 2015;56:817-22 pubmed
  1351. Gamat M, Malinowski R, Parkhurst L, Steinke L, Marker P. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate. PLoS ONE. 2015;10:e0139522 pubmed 出版商
  1352. Ladell K, Hazenberg M, Fitch M, Emson C, McEvoy Hein Asgarian B, Mold J, et al. Continuous Antigenic Stimulation of DO11.10 TCR Transgenic Mice in the Presence or Absence of IL-1?: Possible Implications for Mechanisms of T Cell Depletion in HIV Disease. J Immunol. 2015;195:4096-105 pubmed 出版商
  1353. Perez Aso M, Mediero A, Low Y, Levine J, Cronstein B. Adenosine A2A receptor plays an important role in radiation-induced dermal injury. FASEB J. 2016;30:457-65 pubmed 出版商
  1354. Farup J, De Lisio M, Rahbek S, Bjerre J, Vendelbo M, Boppart M, et al. Pericyte response to contraction mode-specific resistance exercise training in human skeletal muscle. J Appl Physiol (1985). 2015;119:1053-63 pubmed 出版商
  1355. Chen F, Rosiene J, Che A, Becker A, LoTurco J. Tracking and transforming neocortical progenitors by CRISPR/Cas9 gene targeting and piggyBac transposase lineage labeling. Development. 2015;142:3601-11 pubmed 出版商
  1356. Xu Y, Zheng Y, Sun X, Yu X, Gu J, Wu W, et al. Concurrent radiotherapy with gefitinib in elderly patients with esophageal squamous cell carcinoma: Preliminary results of a phase II study. Oncotarget. 2015;6:38429-39 pubmed 出版商
  1357. Martin E, Buzza M, Driesbaugh K, Liu S, Fortenberry Y, Leppla S, et al. Targeting the membrane-anchored serine protease testisin with a novel engineered anthrax toxin prodrug to kill tumor cells and reduce tumor burden. Oncotarget. 2015;6:33534-53 pubmed 出版商
  1358. Mazur P, Herner A, Mello S, Wirth M, Hausmann S, Sánchez Rivera F, et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21:1163-71 pubmed 出版商
  1359. Baligar P, Mukherjee S, Kochat V, Rastogi A, Mukhopadhyay A. Molecular and Cellular Functions Distinguish Superior Therapeutic Efficiency of Bone Marrow CD45 Cells Over Mesenchymal Stem Cells in Liver Cirrhosis. Stem Cells. 2016;34:135-47 pubmed 出版商
  1360. Yokdang N, Hatakeyama J, Wald J, Simion C, Tellez J, Chang D, et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene. 2016;35:2932-47 pubmed 出版商
  1361. Zhang P, Kumar A, Katz L, Li L, Paulynice M, Herman M, et al. Induction of the ChREBPβ Isoform Is Essential for Glucose-Stimulated β-Cell Proliferation. Diabetes. 2015;64:4158-70 pubmed 出版商
  1362. Skrzypek K, Kusienicka A, Szewczyk B, Adamus T, Lukasiewicz E, Miekus K, et al. Constitutive activation of MET signaling impairs myogenic differentiation of rhabdomyosarcoma and promotes its development and progression. Oncotarget. 2015;6:31378-98 pubmed 出版商
  1363. Liu R, Yang Y, Shen J, Chen H, Zhang Q, Ba R, et al. Fstl1 is involved in the regulation of radial glial scaffold development. Mol Brain. 2015;8:53 pubmed 出版商
  1364. Koukourakis M, Kalamida D, Giatromanolaki A, Zois C, Sivridis E, Pouliliou S, et al. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines. PLoS ONE. 2015;10:e0137675 pubmed 出版商
  1365. Brasseit J, Althaus Steiner E, Faderl M, Dickgreber N, Saurer L, Genitsch V, et al. CD4 T cells are required for both development and maintenance of disease in a new mouse model of reversible colitis. Mucosal Immunol. 2016;9:689-701 pubmed 出版商
  1366. Lee N, Kwon J, Kim Y, Kim S, Park S, Xu W, et al. Vaccinia-related kinase 1 promotes hepatocellular carcinoma by controlling the levels of cell cycle regulators associated with G1/S transition. Oncotarget. 2015;6:30130-48 pubmed 出版商
  1367. Wei S, Baloch Z, LiVolsi V. Pathology of Struma Ovarii: A Report of 96 Cases. Endocr Pathol. 2015;26:342-8 pubmed 出版商
  1368. Rodríguez C, Reidel S, Bal de Kier Joffé E, Jasnis M, Fiszman G. Autophagy Protects from Trastuzumab-Induced Cytotoxicity in HER2 Overexpressing Breast Tumor Spheroids. PLoS ONE. 2015;10:e0137920 pubmed 出版商
  1369. Machado Neto J, de Melo Campos P, Favaro P, Lazarini M, da Silva Santos Duarte A, Lorand Metze I, et al. Stathmin 1 inhibition amplifies ruxolitinib-induced apoptosis in JAK2V617F cells. Oncotarget. 2015;6:29573-84 pubmed 出版商
  1370. Mu X, Español Suñer R, Mederacke I, Affò S, Manco R, Sempoux C, et al. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest. 2015;125:3891-903 pubmed 出版商
  1371. Sobolewski C, Sanduja S, Blanco F, Hu L, Dixon D. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1) in Colorectal Cancer Cells. Biomolecules. 2015;5:2035-55 pubmed 出版商
  1372. Lan M, Li H, Bao L, Li M, Lye S, Dong X. In Vivo Evidence of the Androgen Receptor in Association With Myometrial Cell Proliferation and Apoptosis. Reprod Sci. 2016;23:264-71 pubmed 出版商
  1373. Jung Y, Kim H, Koo J. Expression of Lipid Metabolism-Related Proteins in Metastatic Breast Cancer. PLoS ONE. 2015;10:e0137204 pubmed 出版商
  1374. Yoshida S, Yamamoto H, Tetsui T, Kobayakawa Y, Hatano R, Mukaisho K, et al. Effects of ezrin knockdown on the structure of gastric glandular epithelia. J Physiol Sci. 2016;66:53-65 pubmed 出版商
  1375. Sin S, Kim Y, Eason A, Dittmer D. KSHV Latency Locus Cooperates with Myc to Drive Lymphoma in Mice. PLoS Pathog. 2015;11:e1005135 pubmed 出版商
  1376. Heide M, Zhang Y, Zhou X, Zhao T, Miquelajáuregui A, Varela Echavarría A, et al. Lhx5 controls mamillary differentiation in the developing hypothalamus of the mouse. Front Neuroanat. 2015;9:113 pubmed 出版商
  1377. Coelho R, Calaça I, Celestrini D, Correia Carneiro A, Costa M, Zancan P, et al. Hexokinase and phosphofructokinase activity and intracellular distribution correlate with aggressiveness and invasiveness of human breast carcinoma. Oncotarget. 2015;6:29375-87 pubmed 出版商
  1378. Schmidt L, Kümmel A, Görlich D, Mohr M, Bröckling S, Mikesch J, et al. PD-1 and PD-L1 Expression in NSCLC Indicate a Favorable Prognosis in Defined Subgroups. PLoS ONE. 2015;10:e0136023 pubmed 出版商
  1379. Khiati S, Baechler S, Factor V, Zhang H, Huang S, Dalla Rosa I, et al. Lack of mitochondrial topoisomerase I (TOP1mt) impairs liver regeneration. Proc Natl Acad Sci U S A. 2015;112:11282-7 pubmed 出版商
  1380. Romero Palomo F, Risalde M, Gómez Villamandos J. Immunopathologic Changes in the Thymus of Calves Pre-infected with BVDV and Challenged with BHV-1. Transbound Emerg Dis. 2017;64:574-584 pubmed 出版商
  1381. Barazzuol L, Rickett N, Ju L, Jeggo P. Low levels of endogenous or X-ray-induced DNA double-strand breaks activate apoptosis in adult neural stem cells. J Cell Sci. 2015;128:3597-606 pubmed 出版商
  1382. Cardaci S, Zheng L, Mackay G, van den Broek N, MacKenzie E, Nixon C, et al. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat Cell Biol. 2015;17:1317-26 pubmed 出版商
  1383. Chang C, Zhang M, Rajapakshe K, Coarfa C, Edwards D, Huang S, et al. Mammary Stem Cells and Tumor-Initiating Cells Are More Resistant to Apoptosis and Exhibit Increased DNA Repair Activity in Response to DNA Damage. Stem Cell Reports. 2015;5:378-91 pubmed 出版商
  1384. Kong G, Hofman M, Murray W, Wilson S, Wood P, Downie P, et al. Initial Experience With Gallium-68 DOTA-Octreotate PET/CT and Peptide Receptor Radionuclide Therapy for Pediatric Patients With Refractory Metastatic Neuroblastoma. J Pediatr Hematol Oncol. 2016;38:87-96 pubmed 出版商
  1385. Leeansyah E, Svärd J, Dias J, Buggert M, Nyström J, Quigley M, et al. Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection. PLoS Pathog. 2015;11:e1005072 pubmed 出版商
  1386. Zhang P, Haidet Phillips A, Pham J, Lee Y, Huo Y, Tienari P, et al. Generation of GFAP::GFP astrocyte reporter lines from human adult fibroblast-derived iPS cells using zinc-finger nuclease technology. Glia. 2016;64:63-75 pubmed 出版商
  1387. Fu Y, Cruz Monserrate Z, Helen Lin H, Chung Y, Ji B, Lin S, et al. Ductal activation of oncogenic KRAS alone induces sarcomatoid phenotype. Sci Rep. 2015;5:13347 pubmed 出版商
  1388. Qu D, Weygant N, May R, Chandrakesan P, Madhoun M, Ali N, et al. Ablation of Doublecortin-Like Kinase 1 in the Colonic Epithelium Exacerbates Dextran Sulfate Sodium-Induced Colitis. PLoS ONE. 2015;10:e0134212 pubmed 出版商
  1389. Li J, Wang Q, Wen R, Liang J, Zhong X, Yang W, et al. MiR-138 inhibits cell proliferation and reverses epithelial-mesenchymal transition in non-small cell lung cancer cells by targeting GIT1 and SEMA4C. J Cell Mol Med. 2015;19:2793-805 pubmed 出版商
  1390. Pajoohesh Ganji A, Pal Ghosh S, Tadvalkar G, Kyne B, Saban D, Stepp M. Partial denervation of sub-basal axons persists following debridement wounds to the mouse cornea. Lab Invest. 2015;95:1305-18 pubmed 出版商
  1391. Umansky K, Gruenbaum Cohen Y, Tsoory M, Feldmesser E, Goldenberg D, Brenner O, et al. Runx1 Transcription Factor Is Required for Myoblasts Proliferation during Muscle Regeneration. PLoS Genet. 2015;11:e1005457 pubmed 出版商
  1392. Zeniou M, Fève M, Mameri S, Dong J, Salomé C, Chen W, et al. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells. PLoS ONE. 2015;10:e0134793 pubmed 出版商
  1393. Wang D, Pang Z, Clarke G, Nofech Mozes S, Liu K, Cheung A, et al. Ki-67 Membranous Staining: Biologically Relevant or an Artifact of Multiplexed Immunofluorescent Staining. Appl Immunohistochem Mol Morphol. 2016;24:447-52 pubmed 出版商
  1394. Wong F, Fei J, Mora Bermúdez F, Taverna E, Haffner C, Fu J, et al. Sustained Pax6 Expression Generates Primate-like Basal Radial Glia in Developing Mouse Neocortex. PLoS Biol. 2015;13:e1002217 pubmed 出版商
  1395. Tzenaki N, Aivaliotis M, Papakonstanti E. Focal adhesion kinase phosphorylates the phosphatase and tensin homolog deleted on chromosome 10 under the control of p110δ phosphoinositide-3 kinase. FASEB J. 2015;29:4840-52 pubmed 出版商
  1396. Coutinho de Souza P, Mallory S, Smith N, Saunders D, Li X, McNall Knapp R, et al. Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts. PLoS ONE. 2015;10:e0134276 pubmed 出版商
  1397. Rocha Caldas G, Oliveira A, Araújo A, Lafayette S, Albuquerque G, Silva Neto J, et al. Gastroprotective Mechanisms of the Monoterpene 1,8-Cineole (Eucalyptol). PLoS ONE. 2015;10:e0134558 pubmed 出版商
  1398. Meunier S, Shvedunova M, Van Nguyen N, Avila L, Vernos I, Akhtar A. An epigenetic regulator emerges as microtubule minus-end binding and stabilizing factor in mitosis. Nat Commun. 2015;6:7889 pubmed 出版商
  1399. Lee S, Bae S, Lee J, Lee H, Yi H, Kil W, et al. Distinguishing Low-Risk Luminal A Breast Cancer Subtypes with Ki-67 and p53 Is More Predictive of Long-Term Survival. PLoS ONE. 2015;10:e0124658 pubmed 出版商
  1400. Velarde M, Demaria M, Melov S, Campisi J. Pleiotropic age-dependent effects of mitochondrial dysfunction on epidermal stem cells. Proc Natl Acad Sci U S A. 2015;112:10407-12 pubmed 出版商
  1401. McBryan J, Fagan A, McCartan D, Bane F, VareÅ¡lija D, Cocchiglia S, et al. Transcriptomic Profiling of Sequential Tumors from Breast Cancer Patients Provides a Global View of Metastatic Expression Changes Following Endocrine Therapy. Clin Cancer Res. 2015;21:5371-9 pubmed 出版商
  1402. He S, Zhao Z, Yang Y, O Connell D, Zhang X, Oh S, et al. Truncating mutation in the autophagy gene UVRAG confers oncogenic properties and chemosensitivity in colorectal cancers. Nat Commun. 2015;6:7839 pubmed 出版商
  1403. Rowson Hodel A, Manjarin R, Trott J, Cardiff R, Borowsky A, Hovey R. Neoplastic transformation of porcine mammary epithelial cells in vitro and tumor formation in vivo. BMC Cancer. 2015;15:562 pubmed 出版商
  1404. Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, et al. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell. 2015;26:3489-503 pubmed 出版商
  1405. Chen X, Qin L, Liu Z, Liao L, Martin J, Xu J. Knockout of SRC-1 and SRC-3 in Mice Decreases Cardiomyocyte Proliferation and Causes a Noncompaction Cardiomyopathy Phenotype. Int J Biol Sci. 2015;11:1056-72 pubmed 出版商
  1406. Lee S, Johnson D, Luong R, Yu E, Cunha G, Nusse R, et al. Wnt/β-Catenin-Responsive Cells in Prostatic Development and Regeneration. Stem Cells. 2015;33:3356-67 pubmed 出版商
  1407. Massey A. Multiparametric Cell Cycle Analysis Using the Operetta High-Content Imager and Harmony Software with PhenoLOGIC. PLoS ONE. 2015;10:e0134306 pubmed 出版商
  1408. Parchem R, Moore N, Fish J, Parchem J, Braga T, Shenoy A, et al. miR-302 Is Required for Timing of Neural Differentiation, Neural Tube Closure, and Embryonic Viability. Cell Rep. 2015;12:760-73 pubmed 出版商
  1409. Brown A, Simmen R, Raj V, Van T, MacLeod S, Simmen F. Krüppel-like factor 9 (KLF9) prevents colorectal cancer through inhibition of interferon-related signaling. Carcinogenesis. 2015;36:946-55 pubmed 出版商
  1410. Pencik J, Schlederer M, Gruber W, Unger C, Walker S, Chalaris A, et al. STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat Commun. 2015;6:7736 pubmed 出版商
  1411. Park S, Nam S, Keam B, Kim T, Jeon Y, Lee S, et al. VEGF and Ki-67 Overexpression in Predicting Poor Overall Survival in Adenoid Cystic Carcinoma. Cancer Res Treat. 2016;48:518-26 pubmed 出版商
  1412. Zheng Y, Smithies H, Aitken P, Gliddon C, Stiles L, Darlington C, et al. Cell proliferation in the cochlear nucleus following acoustic trauma in rat. Neuroscience. 2015;303:524-34 pubmed 出版商
  1413. Jiao L, Inhoffen J, Gan Schreier H, Tuma Kellner S, Stremmel W, Sun Z, et al. Deficiency of Group VIA Phospholipase A2 (iPLA2β) Renders Susceptibility for Chemical-Induced Colitis. Dig Dis Sci. 2015;60:3590-602 pubmed 出版商
  1414. Haupt S, Buckley D, Pang J, Panimaya J, Paul P, Gamell C, et al. Targeting Mdmx to treat breast cancers with wild-type p53. Cell Death Dis. 2015;6:e1821 pubmed 出版商
  1415. Chugh D, Ali I, Bakochi A, Bahonjic E, Etholm L, Ekdahl C. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2. PLoS ONE. 2015;10:e0132366 pubmed 出版商
  1416. Jones A, Gokhale P, Allison T, Sampson B, Athwal S, Grant S, et al. Evidence for bystander signalling between human trophoblast cells and human embryonic stem cells. Sci Rep. 2015;5:11694 pubmed 出版商
  1417. Garcia Calero E, Botella Lopez A, Bahamonde O, Perez Balaguer A, Martinez S. FoxP2 protein levels regulate cell morphology changes and migration patterns in the vertebrate developing telencephalon. Brain Struct Funct. 2016;221:2905-17 pubmed 出版商
  1418. Mohammed H, Russell I, Stark R, Rueda O, Hickey T, Tarulli G, et al. Progesterone receptor modulates ERα action in breast cancer. Nature. 2015;523:313-7 pubmed 出版商
  1419. Krah N, De La O J, Swift G, Hoang C, Willet S, Chen Pan F, et al. The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma. elife. 2015;4: pubmed 出版商
  1420. Yan S, Xu Z, Lou F, Zhang L, Ke F, Bai J, et al. NF-κB-induced microRNA-31 promotes epidermal hyperplasia by repressing protein phosphatase 6 in psoriasis. Nat Commun. 2015;6:7652 pubmed 出版商
  1421. Mundim F, Pasini F, Brentani M, Soares F, Nonogaki S, Waitzberg A. MYC is expressed in the stromal and epithelial cells of primary breast carcinoma and paired nodal metastases. Mol Clin Oncol. 2015;3:506-514 pubmed
  1422. Evason K, Francisco M, Juric V, Balakrishnan S, Lopez Pazmino M, Gordan J, et al. Identification of Chemical Inhibitors of β-Catenin-Driven Liver Tumorigenesis in Zebrafish. PLoS Genet. 2015;11:e1005305 pubmed 出版商
  1423. O Shaughnessy Kirwan A, Signolet J, Costello I, Gharbi S, Hendrich B. Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification. Development. 2015;142:2586-97 pubmed 出版商
  1424. Noda K, Mishina Y, Komatsu Y. Constitutively active mutation of ACVR1 in oral epithelium causes submucous cleft palate in mice. Dev Biol. 2016;415:306-313 pubmed 出版商
  1425. Liu K, Chuang S, Long C, Lee Y, Wang C, Lu M, et al. Ketamine-induced ulcerative cystitis and bladder apoptosis involve oxidative stress mediated by mitochondria and the endoplasmic reticulum. Am J Physiol Renal Physiol. 2015;309:F318-31 pubmed 出版商
  1426. Adoro S, Cubillos Ruiz J, Chen X, Deruaz M, Vrbanac V, Song M, et al. IL-21 induces antiviral microRNA-29 in CD4 T cells to limit HIV-1 infection. Nat Commun. 2015;6:7562 pubmed 出版商
  1427. Michaelidou K, Ardavanis A, Scorilas A. Clinical relevance of the deregulated kallikrein-related peptidase 8 mRNA expression in breast cancer: a novel independent indicator of disease-free survival. Breast Cancer Res Treat. 2015;152:323-36 pubmed 出版商
  1428. Kimura W, Xiao F, Canseco D, Muralidhar S, Thet S, Zhang H, et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature. 2015;523:226-30 pubmed 出版商
  1429. Zhu Y, Matsumoto T, Nagasawa T, Mackay F, Murakami F. Chemokine Signaling Controls Integrity of Radial Glial Scaffold in Developing Spinal Cord and Consequential Proper Position of Boundary Cap Cells. J Neurosci. 2015;35:9211-24 pubmed 出版商
  1430. Evonuk K, Baker B, Doyle R, Moseley C, Sestero C, Johnston B, et al. Inhibition of System Xc(-) Transporter Attenuates Autoimmune Inflammatory Demyelination. J Immunol. 2015;195:450-463 pubmed 出版商
  1431. Scalia C, Gendusa R, Cattoretti G. A 2-Step Laemmli and Antigen Retrieval Method Improves Immunodetection. Appl Immunohistochem Mol Morphol. 2016;24:436-46 pubmed 出版商
  1432. Zuckermann M, Hovestadt V, Knobbe Thomsen C, Zapatka M, Northcott P, Schramm K, et al. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun. 2015;6:7391 pubmed 出版商
  1433. Winczura P, SosiÅ„ska Mielcarek K, Duchnowska R, Badzio A, Lakomy J, Majewska H, et al. Immunohistochemical Predictors of Bone Metastases in Breast Cancer Patients. Pathol Oncol Res. 2015;21:1229-36 pubmed 出版商
  1434. Shields E, Lam C, Cox A, Rankin M, Van Winkle T, Hess R, et al. Extreme Beta-Cell Deficiency in Pancreata of Dogs with Canine Diabetes. PLoS ONE. 2015;10:e0129809 pubmed 出版商
  1435. Koumarianou A, Economopoulou P, Katsaounis P, Laschos K, Arapantoni Dadioti P, Martikos G, et al. Gastrointestinal Stromal Tumors (GIST): A Prospective Analysis and an Update on Biomarkers and Current Treatment Concepts. Biomark Cancer. 2015;7:1-7 pubmed 出版商
  1436. Soares A, Müller T, Chege G, Williamson A, Burgers W. Transient global T cell activation after vaccination of rhesus macaques with a DNA-poxvirus vaccine regimen for HIV. Vaccine. 2015;33:3435-9 pubmed 出版商
  1437. Mandriota S, Valentijn L, Lesne L, Betts D, Marino D, Boudal Khoshbeen M, et al. Ataxia-telangiectasia mutated (ATM) silencing promotes neuroblastoma progression through a MYCN independent mechanism. Oncotarget. 2015;6:18558-76 pubmed
  1438. Jäger W, Xue H, Hayashi T, Janssen C, Awrey S, Wyatt A, et al. Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget. 2015;6:21522-32 pubmed
  1439. Huo C, Chew G, Hill P, Huang D, Ingman W, Hodson L, et al. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res. 2015;17:79 pubmed 出版商
  1440. Gromova I, Gromov P, Honma N, Kumar S, Rimm D, Talman M, et al. High level PHGDH expression in breast is predominantly associated with keratin 5-positive cell lineage independently of malignancy. Mol Oncol. 2015;9:1636-54 pubmed 出版商
  1441. Adomako A, Calvo V, Biran N, Osman K, Chari A, Paton J, et al. Identification of markers that functionally define a quiescent multiple myeloma cell sub-population surviving bortezomib treatment. BMC Cancer. 2015;15:444 pubmed 出版商
  1442. Ohlmann C, Brecht I, Junker K, van der Zee J, Nistor A, Bohle R, et al. Sclerosing epithelioid fibrosarcoma of the kidney: clinicopathologic and molecular study of a rare neoplasm at a novel location. Ann Diagn Pathol. 2015;19:221-5 pubmed 出版商
  1443. Yin Y, Castro A, Hoekstra M, Yan T, Kanakamedala A, Dehner L, et al. Fibroblast Growth Factor 9 Regulation by MicroRNAs Controls Lung Development and Links DICER1 Loss to the Pathogenesis of Pleuropulmonary Blastoma. PLoS Genet. 2015;11:e1005242 pubmed 出版商
  1444. Chen Q, Arai D, Kawakami K, Sawada T, Jing X, Miyajima M, et al. EphA4 Regulates the Balance between Self-Renewal and Differentiation of Radial Glial Cells and Intermediate Neuronal Precursors in Cooperation with FGF Signaling. PLoS ONE. 2015;10:e0126942 pubmed 出版商
  1445. Li W, Zhang C, Ren A, Li T, Jin R, Li G, et al. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation. PLoS ONE. 2015;10:e0126459 pubmed 出版商
  1446. Robl B, Pauli C, Botter S, Bode Lesniewska B, Fuchs B. Prognostic value of tumor suppressors in osteosarcoma before and after neoadjuvant chemotherapy. BMC Cancer. 2015;15:379 pubmed 出版商
  1447. Bánfi G, Teleki I, Nyirády P, Keszthelyi A, Romics I, Fintha A, et al. Changes of protein expression in prostate cancer having lost its androgen sensitivity. Int Urol Nephrol. 2015;47:1149-54 pubmed 出版商
  1448. Abdayem R, Callejon S, Portes P, Kirilov P, Demarne F, Pirot F, et al. Modulation of transepithelial electric resistance (TEER) in reconstructed human epidermis by excipients known to permeate intestinal tight junctions. Exp Dermatol. 2015;24:686-91 pubmed 出版商
  1449. Ruscetti M, Quach B, Dadashian E, Mulholland D, Wu H. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells during Prostate Cancer Metastasis. Cancer Res. 2015;75:2749-59 pubmed 出版商
  1450. Guha G, Lu W, Li S, Liang X, Kulesz Martin M, Mahmud T, et al. Novel Pactamycin Analogs Induce p53 Dependent Cell-Cycle Arrest at S-Phase in Human Head and Neck Squamous Cell Carcinoma (HNSCC) Cells. PLoS ONE. 2015;10:e0125322 pubmed 出版商
  1451. Wang B, Wang X, Long J, Eastham Anderson J, Firestein R, Junttila M. Castration-resistant Lgr5(+) cells are long-lived stem cells required for prostatic regeneration. Stem Cell Reports. 2015;4:768-79 pubmed 出版商
  1452. Brindle N, Joyce J, Rostker F, Lawlor E, Swigart Brown L, Evan G, et al. Deficiency for the cysteine protease cathepsin L impairs Myc-induced tumorigenesis in a mouse model of pancreatic neuroendocrine cancer. PLoS ONE. 2015;10:e0120348 pubmed 出版商
  1453. Pei B, Zhao M, Miller B, Véla J, Bruinsma M, Virgin H, et al. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation. J Immunol. 2015;194:5872-84 pubmed 出版商
  1454. Park J, Zhao L, Willingham M, Cheng S. Oncogenic mutations of thyroid hormone receptor β. Oncotarget. 2015;6:8115-31 pubmed
  1455. De Souza P, Balasubramanian K, Njoku C, Smith N, Gillespie D, Schwager A, et al. OKN-007 decreases tumor necrosis and tumor cell proliferation and increases apoptosis in a preclinical F98 rat glioma model. J Magn Reson Imaging. 2015;42:1582-91 pubmed 出版商
  1456. Gültekin S, Sengüven B, Klussmann J, Dienes H. P16(INK 4a) and Ki-67 expression in human papilloma virus-related head and neck mucosal lesions. Invest Clin. 2015;56:47-59 pubmed
  1457. Moguche A, Shafiani S, Clemons C, Larson R, Dinh C, Higdon L, et al. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med. 2015;212:715-28 pubmed 出版商
  1458. Shaikh L, Zhou J, Teo A, Garg S, Neogi S, Figg N, et al. LGR5 Activates Noncanonical Wnt Signaling and Inhibits Aldosterone Production in the Human Adrenal. J Clin Endocrinol Metab. 2015;100:E836-44 pubmed 出版商
  1459. Aghababaei M, Hogg K, Perdu S, Robinson W, Beristain A. ADAM12-directed ectodomain shedding of E-cadherin potentiates trophoblast fusion. Cell Death Differ. 2015;22:1970-84 pubmed 出版商
  1460. Kim S, Lahmy R, Riha C, Yang C, Jakubison B, van Niekerk J, et al. The basic helix-loop-helix transcription factor E47 reprograms human pancreatic cancer cells to a quiescent acinar state with reduced tumorigenic potential. Pancreas. 2015;44:718-27 pubmed 出版商
  1461. Nakada S, Minato H, Takegami T, Kurose N, Ikeda H, Kobayashi M, et al. NAB2-STAT6 fusion gene analysis in two cases of meningeal solitary fibrous tumor/hemangiopericytoma with late distant metastases. Brain Tumor Pathol. 2015;32:268-74 pubmed 出版商
  1462. Lodillinsky C, Infante E, Guichard A, Chaligné R, Fuhrmann L, Cyrta J, et al. p63/MT1-MMP axis is required for in situ to invasive transition in basal-like breast cancer. Oncogene. 2016;35:344-57 pubmed 出版商
  1463. Lee S, Luong R, Johnson D, Cunha G, Rivina L, Gonzalgo M, et al. Androgen signaling is a confounding factor for β-catenin-mediated prostate tumorigenesis. Oncogene. 2016;35:702-14 pubmed 出版商
  1464. Zhang P, Yang X, Ma X, Ingram D, Lazar A, Torres K, et al. Antitumor effects of pharmacological EZH2 inhibition on malignant peripheral nerve sheath tumor through the miR-30a and KPNB1 pathway. Mol Cancer. 2015;14:55 pubmed 出版商
  1465. Sommer F, Nookaew I, Sommer N, Fogelstrand P, Bäckhed F. Site-specific programming of the host epithelial transcriptome by the gut microbiota. Genome Biol. 2015;16:62 pubmed 出版商
  1466. Bartram M, Dafinger C, Habbig S, Benzing T, Schermer B, Müller R. Loss of Dgcr8-mediated microRNA expression in the kidney results in hydronephrosis and renal malformation. BMC Nephrol. 2015;16:55 pubmed 出版商
  1467. Stroo I, Claessen N, Teske G, Butter L, Florquin S, Leemans J. Deficiency for the chemokine monocyte chemoattractant protein-1 aggravates tubular damage after renal ischemia/reperfusion injury. PLoS ONE. 2015;10:e0123203 pubmed 出版商
  1468. Deleyrolle L, Sabourin J, Rothhut B, Fujita H, Guichet P, Teigell M, et al. OCAM regulates embryonic spinal cord stem cell proliferation by modulating ErbB2 receptor. PLoS ONE. 2015;10:e0122337 pubmed 出版商
  1469. Ross J, Huh D, Noble L, Tavazoie S. Identification of molecular determinants of primary and metastatic tumour re-initiation in breast cancer. Nat Cell Biol. 2015;17:651-64 pubmed 出版商
  1470. Tandon B, Swerdlow S, Hasserjian R, Surti U, Gibson S. Chronic lymphocytic leukemia/small lymphocytic lymphoma: another neoplasm related to the B-cell follicle?. Leuk Lymphoma. 2015;56:3378-86 pubmed 出版商
  1471. Cohen T, Kollias H, Liu N, Ward C, Wagner K. Genetic disruption of Smad7 impairs skeletal muscle growth and regeneration. J Physiol. 2015;593:2479-97 pubmed 出版商
  1472. Frank C, Liu F, Wijayatunge R, Song L, Biegler M, Yang M, et al. Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat Neurosci. 2015;18:647-56 pubmed 出版商
  1473. Sadok A, McCarthy A, Caldwell J, Collins I, Garrett M, Yeo M, et al. Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer Res. 2015;75:2272-84 pubmed 出版商
  1474. Rao T, Marks Bluth J, Sullivan J, Gupta M, Chandrakanthan V, Fitch S, et al. High-level Gpr56 expression is dispensable for the maintenance and function of hematopoietic stem and progenitor cells in mice. Stem Cell Res. 2015;14:307-22 pubmed 出版商
  1475. Dodbiba L, Teichman J, Fleet A, Thai H, Starmans M, Navab R, et al. Appropriateness of using patient-derived xenograft models for pharmacologic evaluation of novel therapies for esophageal/gastro-esophageal junction cancers. PLoS ONE. 2015;10:e0121872 pubmed 出版商
  1476. Yarilin D, Xu K, Turkekul M, Fan N, Romin Y, Fijisawa S, et al. Machine-based method for multiplex in situ molecular characterization of tissues by immunofluorescence detection. Sci Rep. 2015;5:9534 pubmed 出版商
  1477. Malchenko S, Sredni S, Hashimoto H, Kasai A, Nagayasu K, Xie J, et al. A mouse model of human primitive neuroectodermal tumors resulting from microenvironmentally-driven malignant transformation of orthotopically transplanted radial glial cells. PLoS ONE. 2015;10:e0121707 pubmed 出版商
  1478. Zonouzi M, Scafidi J, Li P, McEllin B, Edwards J, Dupree J, et al. GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury. Nat Neurosci. 2015;18:674-82 pubmed 出版商
  1479. Savci Heijink C, Halfwerk H, Hooijer G, Horlings H, Wesseling J, van de Vijver M. Retrospective analysis of metastatic behaviour of breast cancer subtypes. Breast Cancer Res Treat. 2015;150:547-57 pubmed 出版商
  1480. Rajnai H, Teleki I, Kiszner G, Meggyesházi N, Balla P, Vancsik T, et al. Connexin 43 communication channels in follicular dendritic cell development and in follicular lymphomas. J Immunol Res. 2015;2015:528098 pubmed 出版商
  1481. Fallahi Sichani M, Moerke N, Niepel M, Zhang T, Gray N, Sorger P. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Mol Syst Biol. 2015;11:797 pubmed 出版商
  1482. Videla Richardson G, Garcia C, Roisman A, Slavutsky I, Fernandez Espinosa D, Romorini L, et al. Specific Preferences in Lineage Choice and Phenotypic Plasticity of Glioma Stem Cells Under BMP4 and Noggin Influence. Brain Pathol. 2016;26:43-61 pubmed 出版商
  1483. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  1484. Charlton J, Tsoukatou D, Mamalaki C, Chatzidakis I. Programmed death 1 regulates memory phenotype CD4 T cell accumulation, inhibits expansion of the effector memory phenotype subset and modulates production of effector cytokines. PLoS ONE. 2015;10:e0119200 pubmed 出版商
  1485. Saffarini C, McDonnell Clark E, Amin A, Huse S, Boekelheide K. Developmental exposure to estrogen alters differentiation and epigenetic programming in a human fetal prostate xenograft model. PLoS ONE. 2015;10:e0122290 pubmed 出版商
  1486. Povinelli B, Kokolus K, Eng J, Dougher C, Curtin L, Capitano M, et al. Standard sub-thermoneutral caging temperature influences radiosensitivity of hematopoietic stem and progenitor cells. PLoS ONE. 2015;10:e0120078 pubmed 出版商
  1487. Said M, Hassan N, Schlicht M, Bosland M. Flaxseed suppressed prostatic epithelial proliferation in a rat model of benign prostatic hyperplasia. J Toxicol Environ Health A. 2015;78:453-65 pubmed 出版商
  1488. van Drongelen V, Danso M, Out J, Mulder A, Lavrijsen A, Bouwstra J, et al. Explant cultures of atopic dermatitis biopsies maintain their epidermal characteristics in vitro. Cell Tissue Res. 2015;361:789-97 pubmed 出版商
  1489. Obiero J, Shekalaghe S, Hermsen C, Mpina M, Bijker E, Roestenberg M, et al. Impact of malaria preexposure on antiparasite cellular and humoral immune responses after controlled human malaria infection. Infect Immun. 2015;83:2185-96 pubmed 出版商
  1490. Bowcutt R, Malter L, Chen L, Wolff M, Robertson I, Rifkin D, et al. Isolation and cytokine analysis of lamina propria lymphocytes from mucosal biopsies of the human colon. J Immunol Methods. 2015;421:27-35 pubmed 出版商
  1491. Rizzi N, Manni I, Vantaggiato C, Delledonne G, Gentileschi M, Maggi A, et al. In vivo imaging of cell proliferation for a dynamic, whole body, analysis of undesired drug effects. Toxicol Sci. 2015;145:296-306 pubmed 出版商
  1492. Eom K, Jang M, Park S, Kang E, Kim S, Kim J, et al. The Expression of Carbonic Anhydrase (CA) IX/XII and Lymph Node Metastasis in Early Breast Cancer. Cancer Res Treat. 2016;48:125-32 pubmed 出版商
  1493. Chen Q, Gu Y, Liu B. Clinicopathological characteristics of kidney mucinous tubular and spindle cell carcinoma. Int J Clin Exp Pathol. 2015;8:1007-12 pubmed
  1494. Perna F, Vu L, Themeli M, Kriks S, Hoya Arias R, Khanin R, et al. The polycomb group protein L3MBTL1 represses a SMAD5-mediated hematopoietic transcriptional program in human pluripotent stem cells. Stem Cell Reports. 2015;4:658-69 pubmed 出版商
  1495. Rusz O, Vörös A, Varga Z, Kelemen G, Uhercsák G, Nikolényi A, et al. One-Year Neoadjuvant Endocrine Therapy in Breast Cancer. Pathol Oncol Res. 2015;21:977-84 pubmed 出版商
  1496. Fang X, Gyabaah K, Nickkholgh B, Cline J, Balaji K. Novel In Vivo model for combinatorial fluorescence labeling in mouse prostate. Prostate. 2015;75:988-1000 pubmed 出版商
  1497. Wang P, Alvarez Perez J, Felsenfeld D, Liu H, Sivendran S, Bender A, et al. A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nat Med. 2015;21:383-8 pubmed 出版商
  1498. Kim S, Lee Y, Koo J. Differential expression of lipid metabolism-related proteins in different breast cancer subtypes. PLoS ONE. 2015;10:e0119473 pubmed 出版商
  1499. Resnik N, Mavrič A, KeÅ¡e D, Veranič P, Zupančič D. The effect of LDL particles on the behaviour of epithelial noncancer and cancer cell lines after in vitro induced injury. Protoplasma. 2015;252:1537-50 pubmed 出版商
  1500. Hallett R, Huang C, Motazedian A, Auf der Mauer S, Pond G, Hassell J, et al. Treatment-induced cell cycle kinetics dictate tumor response to chemotherapy. Oncotarget. 2015;6:7040-52 pubmed
  1501. Liu W, Zhou H, Liu L, Zhao C, Deng Y, Chen L, et al. Disruption of neurogenesis and cortical development in transgenic mice misexpressing Olig2, a gene in the Down syndrome critical region. Neurobiol Dis. 2015;77:106-16 pubmed 出版商
  1502. Alaggio R, Midrio P, Sgrò A, Piovan G, Guzzardo V, Donato R, et al. Congenital diaphragmatic hernia: focus on abnormal muscle formation. J Pediatr Surg. 2015;50:388-93 pubmed 出版商
  1503. Knezevic J, Pfefferle A, Petrovic I, Greene S, Perou C, Rosen J. Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential. Oncogene. 2015;34:5997-6006 pubmed 出版商
  1504. Mellai M, Piazzi A, Casalone C, Grifoni S, Melcarne A, Annovazzi L, et al. Astroblastoma: beside being a tumor entity, an occasional phenotype of astrocytic gliomas?. Onco Targets Ther. 2015;8:451-60 pubmed 出版商
  1505. Tsai C, Liong K, Gunalan M, Li N, Lim D, Fisher D, et al. Type I IFNs and IL-18 regulate the antiviral response of primary human γδ T cells against dendritic cells infected with Dengue virus. J Immunol. 2015;194:3890-900 pubmed 出版商
  1506. Claiborne D, Prince J, Scully E, Macharia G, Micci L, Lawson B, et al. Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4+ T cells, and disease progression. Proc Natl Acad Sci U S A. 2015;112:E1480-9 pubmed 出版商
  1507. Thomas A, Palma J, Shea L. Sponge-mediated lentivirus delivery to acute and chronic spinal cord injuries. J Control Release. 2015;204:1-10 pubmed 出版商
  1508. Quang C, Leboucher S, Passaro D, Fuhrmann L, Nourieh M, Vincent Salomon A, et al. The calcineurin/NFAT pathway is activated in diagnostic breast cancer cases and is essential to survival and metastasis of mammary cancer cells. Cell Death Dis. 2015;6:e1658 pubmed 出版商
  1509. Choi C, Kim Y, Sohn J, Lee H, Kim W. Focal adhesion kinase and Src expression in premalignant and malignant skin lesions. Exp Dermatol. 2015;24:361-4 pubmed 出版商
  1510. Tam N, Zhang X, Xiao H, Song D, Levin L, Meller J, et al. Increased susceptibility of estrogen-induced bladder outlet obstruction in a novel mouse model. Lab Invest. 2015;95:546-60 pubmed 出版商
  1511. Severson J, Serracino H, Mateescu V, Raeburn C, McIntyre R, Sams S, et al. PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer. Cancer Immunol Res. 2015;3:620-30 pubmed 出版商
  1512. Okamoto M, Iguchi T, Hattori T, Matsuzaki S, Koyama Y, Taniguchi M, et al. DBZ regulates cortical cell positioning and neurite development by sustaining the anterograde transport of Lis1 and DISC1 through control of Ndel1 dual-phosphorylation. J Neurosci. 2015;35:2942-58 pubmed 出版商
  1513. Kitajima S, Kohno S, Kondoh A, Sasaki N, Nishimoto Y, Li F, et al. Undifferentiated State Induced by Rb-p53 Double Inactivation in Mouse Thyroid Neuroendocrine Cells and Embryonic Fibroblasts. Stem Cells. 2015;33:1657-69 pubmed 出版商
  1514. Poli G, Ceni E, Armignacco R, Ercolino T, Canu L, Baroni G, et al. 2D-DIGE proteomic analysis identifies new potential therapeutic targets for adrenocortical carcinoma. Oncotarget. 2015;6:5695-706 pubmed
  1515. Dow L, Fisher J, O Rourke K, Muley A, Kastenhuber E, Livshits G, et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol. 2015;33:390-394 pubmed 出版商
  1516. Licht T, Dor Wollman T, Ben Zvi A, Rothe G, Keshet E. Vessel maturation schedule determines vulnerability to neuronal injuries of prematurity. J Clin Invest. 2015;125:1319-28 pubmed 出版商
  1517. Bitler B, Aird K, Garipov A, Li H, Amatangelo M, Kossenkov A, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 2015;21:231-8 pubmed 出版商
  1518. Abdelzaher E, Mostafa M. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) upregulation in breast carcinoma contributes to tumor progression and predicts early tumor recurrence. Tumour Biol. 2015;36:5473-83 pubmed 出版商
  1519. Simons M, Nagtegaal I, Overbeek L, Flucke U, Massuger L, Bulten J. A patient with a noninvasive mucinous ovarian borderline tumor presenting with late pleural metastases. Int J Gynecol Pathol. 2015;34:143-50 pubmed 出版商
  1520. Gergics P, Brinkmeier M, Camper S. Lhx4 deficiency: increased cyclin-dependent kinase inhibitor expression and pituitary hypoplasia. Mol Endocrinol. 2015;29:597-612 pubmed 出版商
  1521. Park S, Kim H, Koo J. Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer. Breast Cancer Res Treat. 2015;149:727-41 pubmed 出版商
  1522. Withofs N, Signolle N, Somja J, Lovinfosse P, Nzaramba E, Mievis F, et al. 18F-FPRGD2 PET/CT imaging of integrin αvβ3 in renal carcinomas: correlation with histopathology. J Nucl Med. 2015;56:361-4 pubmed 出版商
  1523. Zhou Y, Rychahou P, Wang Q, Weiss H, Evers B. TSC2/mTORC1 signaling controls Paneth and goblet cell differentiation in the intestinal epithelium. Cell Death Dis. 2015;6:e1631 pubmed 出版商
  1524. Nguyen D, Rubinstein L, Takebe N, Miele L, Tomaszewski J, Ivy P, et al. Notch1 phenotype and clinical stage progression in non-small cell lung cancer. J Hematol Oncol. 2015;8:9 pubmed 出版商
  1525. Bechet D, Auger F, Couleaud P, Marty E, Ravasi L, Durieux N, et al. Multifunctional ultrasmall nanoplatforms for vascular-targeted interstitial photodynamic therapy of brain tumors guided by real-time MRI. Nanomedicine. 2015;11:657-70 pubmed 出版商
  1526. Ohlemacher S, Iglesias C, Sridhar A, Gamm D, Meyer J. Generation of highly enriched populations of optic vesicle-like retinal cells from human pluripotent stem cells. Curr Protoc Stem Cell Biol. 2015;32:1H.8.1-20 pubmed 出版商
  1527. Lewis M, Vyse S, Shields A, Boeltz S, Gordon P, Spector T, et al. UBE2L3 polymorphism amplifies NF-κB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am J Hum Genet. 2015;96:221-34 pubmed 出版商
  1528. Kap M, Lam K, Ewing Graham P, Riegman P. A reference image-based method for optimization of clinical immunohistochemistry. Histopathology. 2015;67:193-205 pubmed 出版商
  1529. Kinose Y, Sawada K, Makino H, Ogura T, Mizuno T, Suzuki N, et al. IKKβ Regulates VEGF Expression and Is a Potential Therapeutic Target for Ovarian Cancer as an Antiangiogenic Treatment. Mol Cancer Ther. 2015;14:909-19 pubmed 出版商
  1530. Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci U S A. 2015;112:1809-14 pubmed 出版商
  1531. Wright M, Reed Geaghan E, Bolock A, Fujiyama T, Hoshino M, Maricich S. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice. J Cell Biol. 2015;208:367-79 pubmed 出版商
  1532. Lin Z, Hirano T, Shibata S, Seki N, Kitajima R, Sedohara A, et al. Gene expression ontogeny of spermatogenesis in the marmoset uncovers primate characteristics during testicular development. Dev Biol. 2015;400:43-58 pubmed 出版商
  1533. Li Z, Xiao J, Hu K, Wang G, Li M, Zhang J, et al. FBXW7 acts as an independent prognostic marker and inhibits tumor growth in human osteosarcoma. Int J Mol Sci. 2015;16:2294-306 pubmed 出版商
  1534. Ammar A, Esmat A, Hassona M, Tadros M, Abdel Naim A, Guns E. The effect of pomegranate fruit extract on testosterone-induced BPH in rats. Prostate. 2015;75:679-92 pubmed 出版商
  1535. Warnier M, Roudbaraki M, Derouiche S, Delcourt P, Bokhobza A, Prevarskaya N, et al. CACNA2D2 promotes tumorigenesis by stimulating cell proliferation and angiogenesis. Oncogene. 2015;34:5383-94 pubmed 出版商
  1536. Dimova T, Brouwer M, Gosselin F, Tassignon J, Leo O, Donner C, et al. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc Natl Acad Sci U S A. 2015;112:E556-65 pubmed 出版商
  1537. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  1538. Tian E, Stevens S, Guan Y, Springer D, Anderson S, Starost M, et al. Galnt1 is required for normal heart valve development and cardiac function. PLoS ONE. 2015;10:e0115861 pubmed 出版商
  1539. Khan A, Srivastava R, Spencer D, Garg S, Fremgen D, Vahed H, et al. Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes. J Virol. 2015;89:3776-92 pubmed 出版商
  1540. Giera S, Deng Y, Luo R, Ackerman S, Mogha A, Monk K, et al. The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun. 2015;6:6121 pubmed 出版商
  1541. Xu T, Su B, Wang C, Wang S, Huang H, Pan Y, et al. Molecular markers to assess short-term disease local recurrence in nasopharyngeal carcinoma. Oncol Rep. 2015;33:1418-26 pubmed 出版商
  1542. Tökés A, Szász A, Geszti F, Lukács L, Kenessey I, Turányi E, et al. Expression of proliferation markers Ki67, cyclin A, geminin and aurora-kinase A in primary breast carcinomas and corresponding distant metastases. J Clin Pathol. 2015;68:274-82 pubmed 出版商
  1543. Karunakaran D, Chhaya N, Lemoine C, Congdon S, Black A, Kanadia R. Loss of citron kinase affects a subset of progenitor cells that alters late but not early neurogenesis in the developing rat retina. Invest Ophthalmol Vis Sci. 2015;56:787-98 pubmed 出版商
  1544. Wald N, Goormaghtigh E. Infrared imaging of primary melanomas reveals hints of regional and distant metastases. Analyst. 2015;140:2144-55 pubmed 出版商
  1545. Kumar M, Csaba Z, Peineau S, Srivastava R, Rasika S, Mani S, et al. Endogenous cerebellar neurogenesis in adult mice with progressive ataxia. Ann Clin Transl Neurol. 2014;1:968-81 pubmed 出版商
  1546. You L, Zou J, Zhao H, Bertos N, Park M, Wang E, et al. Deficiency of the chromatin regulator BRPF1 causes abnormal brain development. J Biol Chem. 2015;290:7114-29 pubmed 出版商
  1547. Moyon S, Dubessy A, Aigrot M, Trotter M, Huang J, Dauphinot L, et al. Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. J Neurosci. 2015;35:4-20 pubmed 出版商
  1548. Jonchère B, Vétillard A, Toutain B, Lam D, Bernard A, Henry C, et al. Irinotecan treatment and senescence failure promote the emergence of more transformed and invasive cells that depend on anti-apoptotic Mcl-1. Oncotarget. 2015;6:409-26 pubmed
  1549. Gurzu S, Kádár Z, Sugimura H, Bara T, Hălmaciu I, Jung I. Gastric cancer in young vs old Romanian patients: immunoprofile with emphasis on maspin and mena protein reactivity. APMIS. 2015;123:223-33 pubmed 出版商
  1550. Schotanus B, Kruitwagen H, van den Ingh T, van Wolferen M, Rothuizen J, Penning L, et al. Enhanced Wnt/β-catenin and Notch signalling in the activated canine hepatic progenitor cell niche. BMC Vet Res. 2014;10:309 pubmed 出版商
  1551. Gültiken N, Guvenc T, Kaya D, Agaoglu A, Ay S, Kücükaslan I, et al. Tarantula cubensis extract alters the degree of apoptosis and mitosis in canine mammary adenocarcinomas. J Vet Sci. 2015;16:213-9 pubmed
  1552. Akrish S, Ben Izhak O, Sabo E, Rachmiel A. Oral squamous cell carcinoma associated with proliferative verrucous leukoplakia compared with conventional squamous cell carcinoma--a clinical, histologic and immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;119:318-25 pubmed 出版商
  1553. Iurchenko N, Glushchenko N, Buchynska L. Comprehensive analysis of intratumoral lymphocytes and FOXP3 expression in tumor cells of endometrial cancer. Exp Oncol. 2014;36:262-6 pubmed
  1554. Cebulla J, Huuse E, Pettersen K, van der Veen A, Kim E, Andersen S, et al. MRI reveals the in vivo cellular and vascular response to BEZ235 in ovarian cancer xenografts with different PI3-kinase pathway activity. Br J Cancer. 2015;112:504-13 pubmed 出版商
  1555. Hill R, Kuijper S, Lindsey J, Petrie K, Schwalbe E, Barker K, et al. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell. 2015;27:72-84 pubmed 出版商
  1556. Imajo M, Ebisuya M, Nishida E. Dual role of YAP and TAZ in renewal of the intestinal epithelium. Nat Cell Biol. 2015;17:7-19 pubmed 出版商
  1557. Di Sante G, Pestell T, Casimiro M, Bisetto S, Powell M, Lisanti M, et al. Loss of Sirt1 promotes prostatic intraepithelial neoplasia, reduces mitophagy, and delays PARK2 translocation to mitochondria. Am J Pathol. 2015;185:266-79 pubmed 出版商
  1558. Green A, Caracappa D, Benhasouna A, Alshareeda A, Nolan C, Macmillan R, et al. Biological and clinical significance of PARP1 protein expression in breast cancer. Breast Cancer Res Treat. 2015;149:353-62 pubmed 出版商
  1559. Yuan X, Dee M, Altman N, Malek T. IL-2Rβ-dependent signaling and CD103 functionally cooperate to maintain tolerance in the gut mucosa. J Immunol. 2015;194:1334-46 pubmed 出版商
  1560. Moser B, Schiefer A, Janik S, Marx A, Prosch H, Pohl W, et al. Adenocarcinoma of the thymus, enteric type: report of 2 cases, and proposal for a novel subtype of thymic carcinoma. Am J Surg Pathol. 2015;39:541-8 pubmed 出版商
  1561. Ta M, Rao P, Korgaonkar M, Foster S, Peduto A, Harris D, et al. Pyrrolidine dithiocarbamate reduces the progression of total kidney volume and cyst enlargement in experimental polycystic kidney disease. Physiol Rep. 2014;2: pubmed 出版商
  1562. Li H, Evans T, Gillis J, Connole M, Reeves R. Bone marrow-imprinted gut-homing of plasmacytoid dendritic cells (pDCs) in acute simian immunodeficiency virus infection results in massive accumulation of hyperfunctional CD4+ pDCs in the mucosae. J Infect Dis. 2015;211:1717-25 pubmed 出版商
  1563. Smid J, Faulkes S, Rudnicki M. Periostin induces pancreatic regeneration. Endocrinology. 2015;156:824-36 pubmed 出版商
  1564. Yoda A, Adelmant G, Tamburini J, Chapuy B, Shindoh N, Yoda Y, et al. Mutations in G protein β subunits promote transformation and kinase inhibitor resistance. Nat Med. 2015;21:71-5 pubmed 出版商
  1565. Cicchini M, Chakrabarti R, Kongara S, Price S, Nahar R, Lozy F, et al. Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity. Autophagy. 2014;10:2036-52 pubmed 出版商
  1566. Pekkonen P, Järviluoma A, Zinovkina N, Cvrljevic A, Prakash S, Westermarck J, et al. KSHV viral cyclin interferes with T-cell development and induces lymphoma through Cdk6 and Notch activation in vivo. Cell Cycle. 2014;13:3670-84 pubmed 出版商
  1567. Stoycheva D, Deiser K, Stärck L, Nishanth G, Schlüter D, Uckert W, et al. IFN-γ regulates CD8+ memory T cell differentiation and survival in response to weak, but not strong, TCR signals. J Immunol. 2015;194:553-9 pubmed 出版商
  1568. Bae W, Kang K, Yu J, Yoo K, Factor V, Kaji K, et al. The methyltransferases enhancer of zeste homolog (EZH) 1 and EZH2 control hepatocyte homeostasis and regeneration. FASEB J. 2015;29:1653-62 pubmed 出版商
  1569. Tanaka S, Miki Y, Hashimoto C, Takagi K, Doe Z, Li B, et al. The role of 5α-reductase type 1 associated with intratumoral dihydrotestosterone concentrations in human endometrial carcinoma. Mol Cell Endocrinol. 2015;401:56-64 pubmed 出版商
  1570. Sundberg J, Stearns T, Joh J, Proctor M, Ingle A, Silva K, et al. Immune status, strain background, and anatomic site of inoculation affect mouse papillomavirus (MmuPV1) induction of exophytic papillomas or endophytic trichoblastomas. PLoS ONE. 2014;9:e113582 pubmed 出版商
  1571. Ventelä S, Sittig E, Mannermaa L, Mäkelä J, Kulmala J, Löyttyniemi E, et al. CIP2A is an Oct4 target gene involved in head and neck squamous cell cancer oncogenicity and radioresistance. Oncotarget. 2015;6:144-58 pubmed
  1572. Buell Gutbrod R, Cavallo A, Lee N, Montag A, Gwin K. Heart and Neural Crest Derivatives Expressed Transcript 2 (HAND2): a novel biomarker for the identification of atypical hyperplasia and Type I endometrial carcinoma. Int J Gynecol Pathol. 2015;34:65-73 pubmed 出版商
  1573. Gerner W, Talker S, Koinig H, Sedlak C, Mair K, Saalmüller A. Phenotypic and functional differentiation of porcine αβ T cells: current knowledge and available tools. Mol Immunol. 2015;66:3-13 pubmed 出版商
  1574. Chow L. Primary intraosseous hybrid nerve sheath tumor of femur: a hitherto undescribed occurrence in bone with secondary aneurysmal bone cyst formation resulting in pathological fracture. Pathol Res Pract. 2015;211:409-14 pubmed 出版商
  1575. Rachidi S, Sun S, Wu B, Jones E, Drake R, Ogretmen B, et al. Endoplasmic reticulum heat shock protein gp96 maintains liver homeostasis and promotes hepatocellular carcinogenesis. J Hepatol. 2015;62:879-88 pubmed 出版商
  1576. Carter E, Miron Buchacra G, Goldoni S, Danahay H, Westwick J, Watson M, et al. Phosphoinositide 3-kinase alpha-dependent regulation of branching morphogenesis in murine embryonic lung: evidence for a role in determining morphogenic properties of FGF7. PLoS ONE. 2014;9:e113555 pubmed 出版商
  1577. Bell C, Sun Y, Nowak U, Clark J, Howlett S, Pekalski M, et al. Sustained in vivo signaling by long-lived IL-2 induces prolonged increases of regulatory T cells. J Autoimmun. 2015;56:66-80 pubmed 出版商
  1578. Meinke P, Schneiderat P, Srsen V, Korfali N, Lê Thành P, Cowan G, et al. Abnormal proliferation and spontaneous differentiation of myoblasts from a symptomatic female carrier of X-linked Emery-Dreifuss muscular dystrophy. Neuromuscul Disord. 2015;25:127-36 pubmed 出版商
  1579. Serinagaoglu Y, Paré J, Giovannini M, Cao X. Nf2-Yap signaling controls the expansion of DRG progenitors and glia during DRG development. Dev Biol. 2015;398:97-109 pubmed 出版商
  1580. Stacchini A, Pacchioni D, Demurtas A, Aliberti S, Cassenti A, Isolato G, et al. Utilility of flow cytometry as ancillary study to improve the cytologic diagnosis of thyroid lymphomas. Cytometry B Clin Cytom. 2015;88:320-9 pubmed 出版商
  1581. Boos A, Weigand A, Deschler G, Gerber T, Arkudas A, Kneser U, et al. Autologous serum improves bone formation in a primary stable silica-embedded nanohydroxyapatite bone substitute in combination with mesenchymal stem cells and rhBMP-2 in the sheep model. Int J Nanomedicine. 2014;9:5317-39 pubmed 出版商
  1582. Liu X, Giguère V. Inactivation of RARβ inhibits Wnt1-induced mammary tumorigenesis by suppressing epithelial-mesenchymal transitions. Nucl Recept Signal. 2014;12:e004 pubmed 出版商
  1583. Dabydeen S, Kang K, Díaz Cruz E, Alamri A, Axelrod M, Bouker K, et al. Comparison of tamoxifen and letrozole response in mammary preneoplasia of ER and aromatase overexpressing mice defines an immune-associated gene signature linked to tamoxifen resistance. Carcinogenesis. 2015;36:122-32 pubmed 出版商
  1584. Davis H, Irshad S, Bansal M, Rafferty H, Boitsova T, Bardella C, et al. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nat Med. 2015;21:62-70 pubmed 出版商
  1585. Huss D, Mehta D, Sharma A, You X, Riester K, Sheridan J, et al. In vivo maintenance of human regulatory T cells during CD25 blockade. J Immunol. 2015;194:84-92 pubmed
  1586. Scheving L, Zhang X, Stevenson M, Threadgill D, Russell W. Loss of hepatocyte EGFR has no effect alone but exacerbates carbon tetrachloride-induced liver injury and impairs regeneration in hepatocyte Met-deficient mice. Am J Physiol Gastrointest Liver Physiol. 2015;308:G364-77 pubmed 出版商
  1587. Wang L, Wang G, Gao T. Acneiform primary cutaneous CD4-positive small/medium pleomorphic T-cell lymphoma with prominent necrosis. J Cutan Pathol. 2015;42:265-70 pubmed 出版商
  1588. WANG Y, McAllister F, Bailey J, Scott S, Hendley A, Leach S, et al. Dicer is required for maintenance of adult pancreatic acinar cell identity and plays a role in Kras-driven pancreatic neoplasia. PLoS ONE. 2014;9:e113127 pubmed 出版商
  1589. Plosa E, Young L, Gulleman P, Polosukhin V, Zaynagetdinov R, Benjamin J, et al. Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development. 2014;141:4751-62 pubmed 出版商
  1590. Ortiz F, Acuña Castroviejo D, Doerrier C, Dayoub J, López L, Venegas C, et al. Melatonin blunts the mitochondrial/NLRP3 connection and protects against radiation-induced oral mucositis. J Pineal Res. 2015;58:34-49 pubmed 出版商
  1591. Somsouk M, Estes J, Deléage C, Dunham R, Albright R, Inadomi J, et al. Gut epithelial barrier and systemic inflammation during chronic HIV infection. AIDS. 2015;29:43-51 pubmed 出版商
  1592. Lester L, Ewalt M, Warnke R, Kim J. Systemic panniculitis-like T-cell lymphoma with involvement of mesenteric fat and subcutis. J Cutan Pathol. 2015;42:46-9 pubmed 出版商
  1593. Zuo W, Zhang T, Wu D, Guan S, Liew A, Yamamoto Y, et al. p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration. Nature. 2015;517:616-20 pubmed 出版商
  1594. Ciamporcero E, Miles K, Adelaiye R, Ramakrishnan S, Shen L, Ku S, et al. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther. 2015;14:101-10 pubmed 出版商
  1595. Ahmed H, Shousha W, Shalby A, El Mezayen H, Ismaiel N, Mahmoud N. Curcumin: a unique antioxidant offers a multimechanistic approach for management of hepatocellular carcinoma in rat model. Tumour Biol. 2015;36:1667-78 pubmed 出版商
  1596. Kim M, Kim M, Lee M, Kim C, Lim D. The MST1/2-SAV1 complex of the Hippo pathway promotes ciliogenesis. Nat Commun. 2014;5:5370 pubmed 出版商
  1597. Mouchacca P, Chasson L, Frick M, Foray C, Schmitt Verhulst A, Boyer C. Visualization of granzyme B-expressing CD8 T cells during primary and secondary immune responses to Listeria monocytogenes. Immunology. 2015;145:24-33 pubmed 出版商
  1598. Kretzschmar K, Cottle D, Donati G, Chiang M, Quist S, Gollnick H, et al. BLIMP1 is required for postnatal epidermal homeostasis but does not define a sebaceous gland progenitor under steady-state conditions. Stem Cell Reports. 2014;3:620-33 pubmed 出版商
  1599. Chavali P, Saini R, Zhai Q, Vizlin Hodzic D, Venkatabalasubramanian S, Hayashi A, et al. TLX activates MMP-2, promotes self-renewal of tumor spheres in neuroblastoma and correlates with poor patient survival. Cell Death Dis. 2014;5:e1502 pubmed 出版商
  1600. Fujita T, Burwitz B, Chew G, Reed J, Pathak R, Seger E, et al. Expansion of dysfunctional Tim-3-expressing effector memory CD8+ T cells during simian immunodeficiency virus infection in rhesus macaques. J Immunol. 2014;193:5576-83 pubmed 出版商
  1601. Vanhoutteghem A, Messiaen S, Hervé F, Delhomme B, Moison D, Petit J, et al. The zinc-finger protein basonuclin 2 is required for proper mitotic arrest, prevention of premature meiotic initiation and meiotic progression in mouse male germ cells. Development. 2014;141:4298-310 pubmed 出版商
  1602. Tien J, Liao L, Liu Y, Liu Z, Lee D, Wang F, et al. The steroid receptor coactivator-3 is required for developing neuroendocrine tumor in the mouse prostate. Int J Biol Sci. 2014;10:1116-27 pubmed 出版商
  1603. Heng Y, Zhou B, Harris L, Harvey T, Smith A, Horne E, et al. NFIX Regulates Proliferation and Migration Within the Murine SVZ Neurogenic Niche. Cereb Cortex. 2015;25:3758-78 pubmed 出版商
  1604. Sakamoto H, Takeda N, Arai F, Hosokawa K, García P, Suda T, et al. Determining c-Myb protein levels can isolate functional hematopoietic stem cell subtypes. Stem Cells. 2015;33:479-90 pubmed 出版商
  1605. Falcone C, Filippis C, Granzotto M, Mallamaci A. Emx2 expression levels in NSCs modulate astrogenesis rates by regulating EgfR and Fgf9. Glia. 2015;63:412-22 pubmed 出版商
  1606. Steward O, Sharp K, Yee K, Hatch M, Bonner J. Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury. J Neurosci. 2014;34:14013-21 pubmed 出版商
  1607. Li R, Vannitamby A, Meijer J, Southwell B, Hutson J. Postnatal germ cell development during mini-puberty in the mouse does not require androgen receptor: implications for managing cryptorchidism. J Urol. 2015;193:1361-7 pubmed 出版商
  1608. Kim W, Barron D, San Martin R, Chan K, Tran L, Yang F, et al. RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc Natl Acad Sci U S A. 2014;111:16389-94 pubmed 出版商
  1609. Tate M, Lindquist R, Nguyen T, Sanai N, Barkovich A, Huang E, et al. Postnatal growth of the human pons: a morphometric and immunohistochemical analysis. J Comp Neurol. 2015;523:449-62 pubmed 出版商
  1610. Kocher B, White L, Piwnica Worms D. DAPK3 suppresses acini morphogenesis and is required for mouse development. Mol Cancer Res. 2015;13:358-67 pubmed 出版商
  1611. Wang T, Guo S, Liu Z, Wu L, Li M, Yang J, et al. CAMK2N1 inhibits prostate cancer progression through androgen receptor-dependent signaling. Oncotarget. 2014;5:10293-306 pubmed
  1612. Sung S, Wu I, Chuang P, Petros J, Wu H, Zeng H, et al. Targeting L1 cell adhesion molecule expression using liposome-encapsulated siRNA suppresses prostate cancer bone metastasis and growth. Oncotarget. 2014;5:9911-29 pubmed
  1613. Reese J, Suman V, Subramaniam M, Wu X, Negron V, Gingery A, et al. ERβ1: characterization, prognosis, and evaluation of treatment strategies in ERα-positive and -negative breast cancer. BMC Cancer. 2014;14:749 pubmed 出版商
  1614. Puig M, Lugo R, Gabasa M, Giménez A, Velásquez A, Galgoczy R, et al. Matrix stiffening and β1 integrin drive subtype-specific fibroblast accumulation in lung cancer. Mol Cancer Res. 2015;13:161-73 pubmed 出版商
  1615. Waisberg J, de Souza Viana L, Affonso Junior R, Silva S, Denadai M, Margeotto F, et al. Overexpression of the ITGAV gene is associated with progression and spread of colorectal cancer. Anticancer Res. 2014;34:5599-607 pubmed
  1616. Sobieraj J, Kim A, Fannon M, Mandyam C. Chronic wheel running-induced reduction of extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats is associated with reduced number of periaqueductal gray dopamine neurons. Brain Struct Funct. 2016;221:261-76 pubmed 出版商
  1617. PFISTER S, Weber T, Härtig W, Schwerdel C, Elsaesser R, Knuesel I, et al. Novel role of cystic fibrosis transmembrane conductance regulator in maintaining adult mouse olfactory neuronal homeostasis. J Comp Neurol. 2015;523:406-30 pubmed 出版商
  1618. Lemos M, Lama J, Karuna S, Fong Y, Montano S, Ganoza C, et al. The inner foreskin of healthy males at risk of HIV infection harbors epithelial CD4+ CCR5+ cells and has features of an inflamed epidermal barrier. PLoS ONE. 2014;9:e108954 pubmed 出版商
  1619. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  1620. Zia M, Vinukonda G, Vose L, Bhimavarapu B, Iacobas S, Pandey N, et al. Postnatal glucocorticoid-induced hypomyelination, gliosis, and neurologic deficits are dose-dependent, preparation-specific, and reversible. Exp Neurol. 2015;263:200-13 pubmed 出版商
  1621. Fan C, Jiang G, Zhang X, Miao Y, Lin X, Luan L, et al. Zbed3 contributes to malignant phenotype of lung cancer via regulating β-catenin and P120-catenin 1. Mol Carcinog. 2015;54 Suppl 1:E138-47 pubmed 出版商
  1622. Gurzu S, Ciortea D, Tamasi A, Golea M, Bodi A, Sahlean D, et al. The immunohistochemical profile of granular cell (Abrikossoff) tumor suggests an endomesenchymal origin. Arch Dermatol Res. 2015;307:151-7 pubmed 出版商
  1623. Kasem K, Lam A. Adrenal oncocytic phaeochromocytoma with putative adverse histologic features: a unique case report and review of the literature. Endocr Pathol. 2014;25:416-21 pubmed 出版商
  1624. Dumitrescu A, Aberdeen G, Pepe G, Albrecht E. Placental estrogen suppresses cyclin D1 expression in the nonhuman primate fetal adrenal cortex. Endocrinology. 2014;155:4774-84 pubmed 出版商
  1625. Mylvaganam G, Velu V, Hong J, Sadagopal S, Kwa S, Basu R, et al. Diminished viral control during simian immunodeficiency virus infection is associated with aberrant PD-1hi CD4 T cell enrichment in the lymphoid follicles of the rectal mucosa. J Immunol. 2014;193:4527-36 pubmed 出版商
  1626. Chibly A, Querin L, Harris Z, Limesand K. Label-retaining cells in the adult murine salivary glands possess characteristics of adult progenitor cells. PLoS ONE. 2014;9:e107893 pubmed 出版商
  1627. Boxer L, Barajas B, Tao S, Zhang J, Khavari P. ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 chromatin regulators to repress epidermal progenitor genes and induce differentiation genes. Genes Dev. 2014;28:2013-26 pubmed 出版商
  1628. ZasÅ‚ona Z, Przybranowski S, Wilke C, Van Rooijen N, Teitz Tennenbaum S, Osterholzer J, et al. Resident alveolar macrophages suppress, whereas recruited monocytes promote, allergic lung inflammation in murine models of asthma. J Immunol. 2014;193:4245-53 pubmed 出版商
  1629. Ressler S, Dang T, Wu S, Tse D, Gilbert B, Vyakarnam A, et al. WFDC1 is a key modulator of inflammatory and wound repair responses. Am J Pathol. 2014;184:2951-64 pubmed 出版商
  1630. Nicol L, O Brien T, Dumesic D, Grogan T, Tarantal A, Abbott D. Abnormal infant islet morphology precedes insulin resistance in PCOS-like monkeys. PLoS ONE. 2014;9:e106527 pubmed 出版商
  1631. Sevcenco S, Haitel A, Ponhold L, Susani M, Fajkovic H, Shariat S, et al. Quantitative apparent diffusion coefficient measurements obtained by 3-Tesla MRI are correlated with biomarkers of bladder cancer proliferative activity. PLoS ONE. 2014;9:e106866 pubmed 出版商
  1632. Cutuli D, De Bartolo P, Caporali P, Laricchiuta D, Foti F, Ronci M, et al. n-3 polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice. Front Aging Neurosci. 2014;6:220 pubmed 出版商
  1633. Sackmann Sala L, Chiche A, Mosquera Garrote N, Boutillon F, Cordier C, Pourmir I, et al. Prolactin-induced prostate tumorigenesis links sustained Stat5 signaling with the amplification of basal/stem cells and emergence of putative luminal progenitors. Am J Pathol. 2014;184:3105-19 pubmed 出版商
  1634. Guo W, Liu R, Bhardwaj G, Yang J, Changou C, Ma A, et al. Targeting Btk/Etk of prostate cancer cells by a novel dual inhibitor. Cell Death Dis. 2014;5:e1409 pubmed 出版商
  1635. Burton B, Britton G, Fang H, Verhagen J, Smithers B, Sabatos Peyton C, et al. Sequential transcriptional changes dictate safe and effective antigen-specific immunotherapy. Nat Commun. 2014;5:4741 pubmed 出版商
  1636. Meraz I, Savage D, Segura Ibarra V, Li J, Rhudy J, Gu J, et al. Adjuvant cationic liposomes presenting MPL and IL-12 induce cell death, suppress tumor growth, and alter the cellular phenotype of tumors in a murine model of breast cancer. Mol Pharm. 2014;11:3484-91 pubmed 出版商
  1637. Costache M, Pătraşcu O, Dumitru A, Costache D, Voinea L, Simionescu O, et al. Histopathological findings concerning ocular melanomas. Rom J Morphol Embryol. 2014;55:649-53 pubmed
  1638. Carvalho F, Bacchi L, Pincerato K, van de Rijn M, Bacchi C. Geographic differences in the distribution of molecular subtypes of breast cancer in Brazil. BMC Womens Health. 2014;14:102 pubmed 出版商
  1639. Liu Y, Wan S, Zhang P, Zhang W, Zheng J, Lin J, et al. Expression levels of autophagy related proteins and their prognostic significance in retinocytoma and retinoblastoma. Int J Ophthalmol. 2014;7:594-601 pubmed 出版商
  1640. Hijioka S, Hosoda W, Mizuno N, Hara K, Imaoka H, Bhatia V, et al. Does the WHO 2010 classification of pancreatic neuroendocrine neoplasms accurately characterize pancreatic neuroendocrine carcinomas?. J Gastroenterol. 2015;50:564-72 pubmed 出版商
  1641. Thompson L, Bauer J, Chiosea S, McHugh J, Seethala R, Miettinen M, et al. Canalicular adenoma: a clinicopathologic and immunohistochemical analysis of 67 cases with a review of the literature. Head Neck Pathol. 2015;9:181-95 pubmed 出版商
  1642. Jeon Y, Moon K, Park S, Chung D. Primary pulmonary myxoid sarcomas with EWSR1-CREB1 translocation might originate from primitive peribronchial mesenchymal cells undergoing (myo)fibroblastic differentiation. Virchows Arch. 2014;465:453-61 pubmed 出版商
  1643. Onaindia A, Montes Moreno S, Rodriguez Pinilla S, Batlle A, Gonzalez de Villambrosia S, Rodriguez A, et al. Primary cutaneous anaplastic large cell lymphomas with 6p25.3 rearrangement exhibit particular histological features. Histopathology. 2015;66:846-55 pubmed 出版商
  1644. Sözütek D, Yanik S, Akkoca A, Sozutek A, Ozdemir Z, Avşar C, et al. Diagnostic and prognostic roles of DOG1 and Ki-67, in GIST patients with localized or advanced/metastatic disease. Int J Clin Exp Med. 2014;7:1914-22 pubmed
  1645. Gargalionis A, Korkolopoulou P, Farmaki E, Piperi C, Dalagiorgou G, Adamopoulos C, et al. Polycystin-1 and polycystin-2 are involved in the acquisition of aggressive phenotypes in colorectal cancer. Int J Cancer. 2015;136:1515-27 pubmed 出版商
  1646. Yi T, Kabha E, Papadopoulos E, Wagner G. 4EGI-1 targets breast cancer stem cells by selective inhibition of translation that persists in CSC maintenance, proliferation and metastasis. Oncotarget. 2014;5:6028-37 pubmed
  1647. Penaloza MacMaster P, Kamphorst A, Wieland A, Araki K, Iyer S, West E, et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med. 2014;211:1905-18 pubmed 出版商
  1648. Riemer P, Sreekumar A, Reinke S, Rad R, Schäfer R, Sers C, et al. Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by β-catenin activity. Oncogene. 2015;34:3164-75 pubmed 出版商
  1649. Tchakoute C, Hesseling A, Kidzeru E, Gamieldien H, Passmore J, Jones C, et al. Delaying BCG vaccination until 8 weeks of age results in robust BCG-specific T-cell responses in HIV-exposed infants. J Infect Dis. 2015;211:338-46 pubmed 出版商
  1650. Xie Y, Lu W, Liu S, Yang Q, Carver B, Li E, et al. Crosstalk between nuclear MET and SOX9/?-catenin correlates with castration-resistant prostate cancer. Mol Endocrinol. 2014;28:1629-39 pubmed 出版商
  1651. Bending D, Pesenacker A, Ursu S, Wu Q, Lom H, Thirugnanabalan B, et al. Hypomethylation at the regulatory T cell-specific demethylated region in CD25hi T cells is decoupled from FOXP3 expression at the inflamed site in childhood arthritis. J Immunol. 2014;193:2699-708 pubmed 出版商
  1652. Denton A, Roberts E, Linterman M, Fearon D. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A. 2014;111:12139-44 pubmed 出版商
  1653. Patsialou A, Wang Y, Pignatelli J, Chen X, Entenberg D, Oktay M, et al. Autocrine CSF1R signaling mediates switching between invasion and proliferation downstream of TGF? in claudin-low breast tumor cells. Oncogene. 2015;34:2721-31 pubmed 出版商
  1654. Marusyk A, Tabassum D, Altrock P, Almendro V, Michor F, Polyak K. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature. 2014;514:54-8 pubmed 出版商
  1655. Merkley C, Jian C, Mosa A, Tan Y, Wojtowicz J. Homeostatic regulation of adult hippocampal neurogenesis in aging rats: long-term effects of early exercise. Front Neurosci. 2014;8:174 pubmed 出版商
  1656. Laos M, Anttonen T, Kirjavainen A, af Hällström T, Laiho M, Pirvola U. DNA damage signaling regulates age-dependent proliferative capacity of quiescent inner ear supporting cells. Aging (Albany NY). 2014;6:496-510 pubmed
  1657. Miyata Y, Kanda S, Mitsunari K, Asai A, Sakai H. Heme oxygenase-1 expression is associated with tumor aggressiveness and outcomes in patients with bladder cancer: a correlation with smoking intensity. Transl Res. 2014;164:468-76 pubmed 出版商
  1658. Inada A, Inada O, Fujii N, Fujishima K, Inai T, Fujii H, et al. ?-cell induction in vivo in severely diabetic male mice by changing the circulating levels and pattern of the ratios of estradiol to androgens. Endocrinology. 2014;155:3829-42 pubmed 出版商
  1659. Chuang H, Liao J, Chang H, Wang J, Lin S, Hsieh P. Ciliated muconodular papillary tumor of the lung: a newly defined peripheral pulmonary tumor with conspicuous mucin pool mimicking colloid adenocarcinoma: a case report and review of literature. Pathol Int. 2014;64:352-7 pubmed 出版商
  1660. Liu Y, Jiang Y, Wang B, Hao J, Shang L, Zhang T, et al. A panel of protein markers for the early detection of lung cancer with bronchial brushing specimens. Cancer Cytopathol. 2014;122:833-41 pubmed 出版商
  1661. Atanasova D, Lazarov N. Expression of neurotrophic factors and their receptors in the carotid body of spontaneously hypertensive rats. Respir Physiol Neurobiol. 2014;202:6-15 pubmed 出版商
  1662. Ouyang H, Xue Y, Lin Y, Zhang X, Xi L, Patel S, et al. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature. 2014;511:358-61 pubmed 出版商
  1663. George S, Vishwamitra D, Manshouri R, Shi P, Amin H. The ALK inhibitor ASP3026 eradicates NPM-ALK? T-cell anaplastic large-cell lymphoma in vitro and in a systemic xenograft lymphoma model. Oncotarget. 2014;5:5750-63 pubmed
  1664. Patel A, Burton D, Halvorsen K, Balkan W, Reiner T, Perez Stable C, et al. MutT Homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways. Oncogene. 2015;34:2586-96 pubmed 出版商
  1665. Mingels M, Masadah R, Geels Y, Otte Holler I, de Kievit I, van der Laak J, et al. High prevalence of atypical hyperplasia in the endometrium of patients with epithelial ovarian cancer. Am J Clin Pathol. 2014;142:213-21 pubmed 出版商
  1666. Liang D, Hu H, Li S, Dong J, Wang X, Wang Y, et al. Oncogenic herpesvirus KSHV Hijacks BMP-Smad1-Id signaling to promote tumorigenesis. PLoS Pathog. 2014;10:e1004253 pubmed 出版商
  1667. Fujiwara S, Hung M, Yamamoto Ibusuk C, Yamamoto Y, Yamamoto S, Tomiguchi M, et al. The localization of HER4 intracellular domain and expression of its alternately-spliced isoforms have prognostic significance in ER+ HER2- breast cancer. Oncotarget. 2014;5:3919-30 pubmed
  1668. Syed B, Green A, Nolan C, Morgan D, Ellis I, Cheung K. Biological characteristics and clinical outcome of triple negative primary breast cancer in older women - comparison with their younger counterparts. PLoS ONE. 2014;9:e100573 pubmed 出版商
  1669. Stodden G, Lindberg M, King M, Paquet M, MacLean J, Mann J, et al. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment. Oncogene. 2015;34:2471-82 pubmed 出版商
  1670. Owens P, Pickup M, Novitskiy S, Giltnane J, Gorska A, Hopkins C, et al. Inhibition of BMP signaling suppresses metastasis in mammary cancer. Oncogene. 2015;34:2437-49 pubmed 出版商
  1671. Sider K, Zhu C, Kwong A, Mirzaei Z, de Lange C, Simmons C. Evaluation of a porcine model of early aortic valve sclerosis. Cardiovasc Pathol. 2014;23:289-97 pubmed 出版商
  1672. Jacquelin B, Petitjean G, Kunkel D, Liovat A, Jochems S, Rogers K, et al. Innate immune responses and rapid control of inflammation in African green monkeys treated or not with interferon-alpha during primary SIVagm infection. PLoS Pathog. 2014;10:e1004241 pubmed 出版商
  1673. Cowan J, McCarthy N, Parnell S, White A, Bacon A, Serge A, et al. Differential requirement for CCR4 and CCR7 during the development of innate and adaptive ??T cells in the adult thymus. J Immunol. 2014;193:1204-12 pubmed 出版商
  1674. Piazzolla D, Palla A, Pantoja C, Canamero M, de Castro I, Ortega S, et al. Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nat Commun. 2014;5:4226 pubmed 出版商
  1675. Brobeil A, Graf M, Eiber M, Wimmer M. Interaction of PTPIP51 with Tubulin, CGI-99 and Nuf2 During Cell Cycle Progression. Biomolecules. 2012;2:122-42 pubmed 出版商
  1676. Rathore K, Cekanova M. Animal model of naturally occurring bladder cancer: characterization of four new canine transitional cell carcinoma cell lines. BMC Cancer. 2014;14:465 pubmed 出版商
  1677. Tepavcevic V, Kerninon C, Aigrot M, Meppiel E, Mozafari S, Arnould Laurent R, et al. Early netrin-1 expression impairs central nervous system remyelination. Ann Neurol. 2014;76:252-68 pubmed 出版商
  1678. Schreurs L, Smit J, Pavlov K, Pultrum B, Pruim J, Groen H, et al. Prognostic impact of clinicopathological features and expression of biomarkers related to (18)F-FDG uptake in esophageal cancer. Ann Surg Oncol. 2014;21:3751-7 pubmed 出版商
  1679. Tabor V, Bocci M, Alikhani N, Kuiper R, Larsson L. MYC synergizes with activated BRAFV600E in mouse lung tumor development by suppressing senescence. Cancer Res. 2014;74:4222-9 pubmed 出版商
  1680. Sallam A, Mohyeldin M, Foudah A, Akl M, Nazzal S, Meyer S, et al. Marine natural products-inspired phenylmethylene hydantoins with potent in vitro and in vivo antitumor activities via suppression of Brk and FAK signaling. Org Biomol Chem. 2014;12:5295-303 pubmed 出版商
  1681. Rito M, Schmitt F, Pinto A, André S. Fibromatosis-like metaplastic carcinoma of the breast has a claudin-low immunohistochemical phenotype. Virchows Arch. 2014;465:185-91 pubmed 出版商
  1682. Sachs C, Robinson B, Andres Martin L, Webster T, Gilbert M, Lo H, et al. Evaluation of candidate spermatogonial markers ID4 and GPR125 in testes of adult human cadaveric organ donors. Andrology. 2014;2:607-14 pubmed 出版商
  1683. Oishi N, Kondo T, Nakazawa T, Mochizuki K, Kasai K, Inoue T, et al. Thyroid-like low-grade nasopharyngeal papillary adenocarcinoma: case report and literature review. Pathol Res Pract. 2014;210:1142-5 pubmed 出版商
  1684. Quintas H, Alegría N, Mendonça A, Botelho A, Alves A, Pires I. Coexistence of tuberculosis and mammary carcinoma in a goat. Reprod Domest Anim. 2014;49:606-610 pubmed 出版商
  1685. Bellas C, Garcia D, Vicente Y, Kilany L, Abraira V, Navarro B, et al. Immunohistochemical and molecular characteristics with prognostic significance in diffuse large B-cell lymphoma. PLoS ONE. 2014;9:e98169 pubmed 出版商
  1686. Tu K, Yang W, Li C, Zheng X, Lu Z, Guo C, et al. Fbxw7 is an independent prognostic marker and induces apoptosis and growth arrest by regulating YAP abundance in hepatocellular carcinoma. Mol Cancer. 2014;13:110 pubmed 出版商
  1687. Esteves de Lima J, Bonnin M, Bourgeois A, Parisi A, Le Grand F, Duprez D. Specific pattern of cell cycle during limb fetal myogenesis. Dev Biol. 2014;392:308-23 pubmed 出版商
  1688. Paez Gonzalez P, Asrican B, Rodriguez E, Kuo C. Identification of distinct ChAT? neurons and activity-dependent control of postnatal SVZ neurogenesis. Nat Neurosci. 2014;17:934-42 pubmed 出版商
  1689. Feng Q, Zhang Z, Shea M, Creighton C, Coarfa C, Hilsenbeck S, et al. An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Res. 2014;24:809-19 pubmed 出版商
  1690. Soares F, Tattoli I, Rahman M, Robertson S, Belcheva A, Liu D, et al. The mitochondrial protein NLRX1 controls the balance between extrinsic and intrinsic apoptosis. J Biol Chem. 2014;289:19317-30 pubmed 出版商
  1691. Kielar M, Tuy F, Bizzotto S, Lebrand C, de Juan Romero C, Poirier K, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci. 2014;17:923-33 pubmed 出版商
  1692. Changchien Y, Bocskai P, Kovacs I, Hargitai Z, Kollár S, Torok M. Pleomorphic hyalinizing angiectatic tumor of soft parts: case report with unusual ganglion-like cells and review of the literature. Pathol Res Pract. 2014;210:1146-51 pubmed 出版商
  1693. Lindberg K, Amin R, Moe O, Hu M, Erben R, Östman Wernerson A, et al. The kidney is the principal organ mediating klotho effects. J Am Soc Nephrol. 2014;25:2169-75 pubmed 出版商
  1694. Naldi I, Taranta M, Gherardini L, Pelosi G, Viglione F, Grimaldi S, et al. Novel epigenetic target therapy for prostate cancer: a preclinical study. PLoS ONE. 2014;9:e98101 pubmed 出版商
  1695. Velicky P, Haider S, Otti G, Fiala C, Pollheimer J, Knöfler M. Notch-dependent RBPJ? inhibits proliferation of human cytotrophoblasts and their differentiation into extravillous trophoblasts. Mol Hum Reprod. 2014;20:756-66 pubmed 出版商
  1696. Jitschin R, Braun M, Büttner M, Dettmer Wilde K, Bricks J, Berger J, et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124:750-60 pubmed 出版商
  1697. Mizoguchi T, Pinho S, Ahmed J, Kunisaki Y, Hanoun M, Mendelson A, et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev Cell. 2014;29:340-9 pubmed 出版商
  1698. Durak O, de Anda F, Singh K, Leussis M, Petryshen T, Sklar P, et al. Ankyrin-G regulates neurogenesis and Wnt signaling by altering the subcellular localization of ?-catenin. Mol Psychiatry. 2015;20:388-97 pubmed 出版商
  1699. Demberg T, Mohanram V, Venzon D, Robert Guroff M. Phenotypes and distribution of mucosal memory B-cell populations in the SIV/SHIV rhesus macaque model. Clin Immunol. 2014;153:264-76 pubmed 出版商
  1700. Helm O, Mennrich R, Petrick D, Goebel L, Freitag Wolf S, Roder C, et al. Comparative characterization of stroma cells and ductal epithelium in chronic pancreatitis and pancreatic ductal adenocarcinoma. PLoS ONE. 2014;9:e94357 pubmed 出版商
  1701. Li Q, Wijesekera O, Salas S, Wang J, Zhu M, ApRhys C, et al. Mesenchymal stem cells from human fat engineered to secrete BMP4 are nononcogenic, suppress brain cancer, and prolong survival. Clin Cancer Res. 2014;20:2375-87 pubmed 出版商
  1702. Schuster A, Klotz M, Schwab T, Di Liddo R, Bertalot T, Schrenk S, et al. Maintenance of the enteric stem cell niche by bacterial lipopolysaccharides? Evidence and perspectives. J Cell Mol Med. 2014;18:1429-43 pubmed 出版商
  1703. Siwetz M, Blaschitz A, Kremshofer J, Bilic J, Desoye G, Huppertz B, et al. Metalloprotease dependent release of placenta derived fractalkine. Mediators Inflamm. 2014;2014:839290 pubmed 出版商
  1704. Vidi P, Liu J, Salles D, Jayaraman S, Dorfman G, Gray M, et al. NuMA promotes homologous recombination repair by regulating the accumulation of the ISWI ATPase SNF2h at DNA breaks. Nucleic Acids Res. 2014;42:6365-79 pubmed 出版商
  1705. Grage Griebenow E, Jerg E, Gorys A, Wicklein D, Wesch D, Freitag Wolf S, et al. L1CAM promotes enrichment of immunosuppressive T cells in human pancreatic cancer correlating with malignant progression. Mol Oncol. 2014;8:982-97 pubmed 出版商
  1706. Farioli Vecchioli S, Ceccarelli M, Saraulli D, Micheli L, Cannas S, D Alessandro F, et al. Tis21 is required for adult neurogenesis in the subventricular zone and for olfactory behavior regulating cyclins, BMP4, Hes1/5 and Ids. Front Cell Neurosci. 2014;8:98 pubmed 出版商
  1707. Caswell D, Chuang C, Yang D, Chiou S, Cheemalavagu S, Kim Kiselak C, et al. Obligate progression precedes lung adenocarcinoma dissemination. Cancer Discov. 2014;4:781-9 pubmed 出版商
  1708. Meraz I, Hearnden C, Liu X, Yang M, Williams L, Savage D, et al. Multivalent presentation of MPL by porous silicon microparticles favors T helper 1 polarization enhancing the anti-tumor efficacy of doxorubicin nanoliposomes. PLoS ONE. 2014;9:e94703 pubmed 出版商
  1709. Vose L, Vinukonda G, Diamond D, Korumilli R, Hu F, Zia M, et al. Prenatal betamethasone does not affect glutamatergic or GABAergic neurogenesis in preterm newborns. Neuroscience. 2014;270:148-57 pubmed 出版商
  1710. Kabaroff L, Gupta A, Menezes S, Babichev Y, Kandel R, Swallow C, et al. Development of genetically flexible mouse models of sarcoma using RCAS-TVA mediated gene delivery. PLoS ONE. 2014;9:e94817 pubmed 出版商
  1711. Cartwright E, McGary C, Cervasi B, Micci L, Lawson B, Elliott S, et al. Divergent CD4+ T memory stem cell dynamics in pathogenic and nonpathogenic simian immunodeficiency virus infections. J Immunol. 2014;192:4666-73 pubmed 出版商
  1712. Dupont C, Christian D, Selleck E, Pepper M, Leney Greene M, Harms Pritchard G, et al. Parasite fate and involvement of infected cells in the induction of CD4+ and CD8+ T cell responses to Toxoplasma gondii. PLoS Pathog. 2014;10:e1004047 pubmed 出版商
  1713. Zhong A, Wang G, Yang J, Xu Q, Yuan Q, Yang Y, et al. Stromal-epithelial cell interactions and alteration of branching morphogenesis in macromastic mammary glands. J Cell Mol Med. 2014;18:1257-66 pubmed 出版商
  1714. Capella C, Marando A, Longhi E, Bernasconi B, Finzi G, Parravicini C, et al. Primary gastric Merkel cell carcinoma harboring DNA polyomavirus: first description of an unusual high-grade neuroendocrine carcinoma. Hum Pathol. 2014;45:1310-4 pubmed 出版商
  1715. Mirzaa G, Parry D, Fry A, Giamanco K, Schwartzentruber J, Vanstone M, et al. De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nat Genet. 2014;46:510-515 pubmed 出版商
  1716. König S, Nitzki F, Uhmann A, Dittmann K, Theiss Suennemann J, Herrmann M, et al. Depletion of cutaneous macrophages and dendritic cells promotes growth of basal cell carcinoma in mice. PLoS ONE. 2014;9:e93555 pubmed 出版商
  1717. Ito S, Bollard C, Carlsten M, Melenhorst J, Biancotto A, Wang E, et al. Ultra-low dose interleukin-2 promotes immune-modulating function of regulatory T cells and natural killer cells in healthy volunteers. Mol Ther. 2014;22:1388-1395 pubmed 出版商
  1718. Brittan M, Barr L, Anderson N, Morris A, Duffin R, Marwick J, et al. Functional characterisation of human pulmonary monocyte-like cells in lipopolysaccharide-mediated acute lung inflammation. J Inflamm (Lond). 2014;11:9 pubmed 出版商
  1719. Kiszner G, Wichmann B, Nemeth I, Varga E, Meggyeshazi N, Teleki I, et al. Cell cycle analysis can differentiate thin melanomas from dysplastic nevi and reveals accelerated replication in thick melanomas. Virchows Arch. 2014;464:603-12 pubmed 出版商
  1720. Wahl S, McLane L, Bercury K, Macklin W, Wood T. Mammalian target of rapamycin promotes oligodendrocyte differentiation, initiation and extent of CNS myelination. J Neurosci. 2014;34:4453-65 pubmed 出版商
  1721. Scharfmann R, Pechberty S, Hazhouz Y, von Bülow M, Bricout Neveu E, Grenier Godard M, et al. Development of a conditionally immortalized human pancreatic ? cell line. J Clin Invest. 2014;124:2087-98 pubmed 出版商
  1722. Sevc J, Matiašová A, Kútna V, Daxnerova Z. Evidence that the central canal lining of the spinal cord contributes to oligodendrogenesis during postnatal development and adulthood in intact rats. J Comp Neurol. 2014;522:3194-207 pubmed 出版商
  1723. Kassis H, Chopp M, Liu X, Shehadah A, Roberts C, Zhang Z. Histone deacetylase expression in white matter oligodendrocytes after stroke. Neurochem Int. 2014;77:17-23 pubmed 出版商
  1724. Balk Møller E, Kim J, Hopkinson B, Timmermans Wielenga V, Petersen O, Villadsen R. A marker of endocrine receptor-positive cells, CEACAM6, is shared by two major classes of breast cancer: luminal and HER2-enriched. Am J Pathol. 2014;184:1198-208 pubmed 出版商
  1725. Kaliyaperumal S, Watkins B, Sharma P, Furlan S, Ramakrishnan S, Giver C, et al. CD8-predominant T-cell CNS infiltration accompanies GVHD in primates and is improved with immunoprophylaxis. Blood. 2014;123:1967-9 pubmed 出版商
  1726. Vessey K, Greferath U, Aplin F, Jobling A, Phipps J, Ho T, et al. Adenosine triphosphate-induced photoreceptor death and retinal remodeling in rats. J Comp Neurol. 2014;522:2928-50 pubmed 出版商
  1727. Alfaro Cervello C, Cebrian Silla A, Soriano Navarro M, García Tárraga P, Matías Guiu J, Gomez Pinedo U, et al. The adult macaque spinal cord central canal zone contains proliferative cells and closely resembles the human. J Comp Neurol. 2014;522:1800-17 pubmed 出版商
  1728. Mountzios G, Aivazi D, Kostopoulos I, Kourea H, Kouvatseas G, Timotheadou E, et al. Differential expression of the insulin-like growth factor receptor among early breast cancer subtypes. PLoS ONE. 2014;9:e91407 pubmed 出版商
  1729. Hofner T, Macher Goeppinger S, Klein C, Schillert A, Eisen C, Wagner S, et al. Expression and prognostic significance of cancer stem cell markers CD24 and CD44 in urothelial bladder cancer xenografts and patients undergoing radical cystectomy. Urol Oncol. 2014;32:678-86 pubmed 出版商
  1730. Mäkelä J, Toppari J, Rivero Muller A, Ventelä S. Reconstruction of mouse testicular cellular microenvironments in long-term seminiferous tubule culture. PLoS ONE. 2014;9:e90088 pubmed 出版商
  1731. Pan T, Sun J, Hu J, Hu Y, Zhou J, Chen Z, et al. Cytohesins/ARNO: the function in colorectal cancer cells. PLoS ONE. 2014;9:e90997 pubmed 出版商
  1732. Kuga Y, Ohnishi H, Kodama Y, Takakura S, Hayashi M, Yagi R, et al. Cerebral and spinal cord tanycytic ependymomas in a young adult with a mutation in the NF2 gene. Neuropathology. 2014;34:406-13 pubmed 出版商
  1733. Ota M, Horiguchi M, Fang V, Shibahara K, Kadota K, Loomis C, et al. Genetic suppression of inflammation blocks the tumor-promoting effects of TGF-? in gastric tissue. Cancer Res. 2014;74:2642-51 pubmed 出版商
  1734. Chen D, Sun Y, Yuan Y, Han Z, Zhang P, Zhang J, et al. miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet. 2014;10:e1004177 pubmed 出版商
  1735. Kim J, Kim H, Park J, Park D, Cho Y, Sohn C, et al. Epidermal growth factor upregulates Skp2/Cks1 and p27(kip1) in human extrahepatic cholangiocarcinoma cells. World J Gastroenterol. 2014;20:755-73 pubmed 出版商
  1736. Zhu S, Rezvani M, Harbell J, Mattis A, Wolfe A, Benet L, et al. Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature. 2014;508:93-7 pubmed 出版商
  1737. Barbera M, Di Pietro M, Walker E, Brierley C, Macrae S, Simons B, et al. The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation. Gut. 2015;64:11-9 pubmed 出版商
  1738. Konsavage W, Yochum G. The myc 3' wnt-responsive element suppresses colonic tumorigenesis. Mol Cell Biol. 2014;34:1659-69 pubmed 出版商
  1739. Peguillet I, Milder M, Louis D, Vincent Salomon A, Dorval T, Piperno Neumann S, et al. High numbers of differentiated effector CD4 T cells are found in patients with cancer and correlate with clinical response after neoadjuvant therapy of breast cancer. Cancer Res. 2014;74:2204-16 pubmed 出版商
  1740. Foth M, Ahmad I, van Rhijn B, van der Kwast T, Bergman A, King L, et al. Fibroblast growth factor receptor 3 activation plays a causative role in urothelial cancer pathogenesis in cooperation with Pten loss in mice. J Pathol. 2014;233:148-58 pubmed 出版商
  1741. Rodrigues M, Rema A, Gartner M, Laufer Amorim R. Role of adhesion molecules and proliferation hyperplasic, pre neoplastic and neoplastic lesions in canine prostate. Pak J Biol Sci. 2013;16:1324-9 pubmed
  1742. Dorn C, Engelmann J, Saugspier M, Koch A, Hartmann A, Müller M, et al. Increased expression of c-Jun in nonalcoholic fatty liver disease. Lab Invest. 2014;94:394-408 pubmed 出版商
  1743. Kővári B, Rusz O, Schally A, Kahan Z, Cserni G. Differential immunostaining of various types of breast carcinomas for growth hormone-releasing hormone receptor - Apocrine epithelium and carcinomas emerging as uniformly positive. APMIS. 2014;122:824-31 pubmed 出版商
  1744. Grégoire C, Bonenfant D, Le Nguyen A, Aumont A, Fernandes K. Untangling the influences of voluntary running, environmental complexity, social housing and stress on adult hippocampal neurogenesis. PLoS ONE. 2014;9:e86237 pubmed 出版商
  1745. Li A, Morton J, Ma Y, Karim S, Zhou Y, Faller W, et al. Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology. 2014;146:1386-96.e1-17 pubmed 出版商
  1746. Wagner D, Bonenfant N, Parsons C, Sokocevic D, Brooks E, Borg Z, et al. Comparative decellularization and recellularization of normal versus emphysematous human lungs. Biomaterials. 2014;35:3281-97 pubmed 出版商
  1747. Wolfs T, Kramer B, Thuijls G, Kemp M, Saito M, Willems M, et al. Chorioamnionitis-induced fetal gut injury is mediated by direct gut exposure of inflammatory mediators or by lung inflammation. Am J Physiol Gastrointest Liver Physiol. 2014;306:G382-93 pubmed 出版商
  1748. Kanemura H, Go M, Shikamura M, Nishishita N, Sakai N, Kamao H, et al. Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration. PLoS ONE. 2014;9:e85336 pubmed 出版商
  1749. Kikuchi K, Hettmer S, Aslam M, Michalek J, Laub W, Wilky B, et al. Cell-cycle dependent expression of a translocation-mediated fusion oncogene mediates checkpoint adaptation in rhabdomyosarcoma. PLoS Genet. 2014;10:e1004107 pubmed 出版商
  1750. Joedicke J, Dietze K, Zelinskyy G, Dittmer U. The phenotype and activation status of regulatory T cells during Friend retrovirus infection. Virol Sin. 2014;29:48-60 pubmed 出版商
  1751. Zheng Y, Geddes L, Sato G, Stiles L, Darlington C, Smith P. Galvanic vestibular stimulation impairs cell proliferation and neurogenesis in the rat hippocampus but not spatial memory. Hippocampus. 2014;24:541-52 pubmed 出版商
  1752. Hayashi A, Morikawa T, Kawai T, Kume H, Ishikawa S, Homma Y, et al. Clinicopathological and prognostic significance of EZH2 expression in upper urinary tract carcinoma. Virchows Arch. 2014;464:463-71 pubmed 出版商
  1753. Bodi I, Curran O, Selway R, Elwes R, Burrone J, Laxton R, et al. Two cases of multinodular and vacuolating neuronal tumour. Acta Neuropathol Commun. 2014;2:7 pubmed 出版商
  1754. O Reilly M, Hansbro P, Horvat J, Beckett E, Harding R, Sozo F. Bronchiolar remodeling in adult mice following neonatal exposure to hyperoxia: relation to growth. Anat Rec (Hoboken). 2014;297:758-69 pubmed 出版商
  1755. Gu X, Fu J, Feng X, Huang X, Wang S, Chen X, et al. Expression and prognostic relevance of centromere protein A in primary osteosarcoma. Pathol Res Pract. 2014;210:228-33 pubmed 出版商
  1756. Cheng Y, Holloway M, Nguyen K, McCauley D, Landesman Y, Kauffman M, et al. XPO1 (CRM1) inhibition represses STAT3 activation to drive a survivin-dependent oncogenic switch in triple-negative breast cancer. Mol Cancer Ther. 2014;13:675-86 pubmed 出版商
  1757. Park H, Jang M, Kim E, Kim H, Lee H, Kim Y, et al. High EGFR gene copy number predicts poor outcome in triple-negative breast cancer. Mod Pathol. 2014;27:1212-22 pubmed 出版商
  1758. Knösel T, Werner M, Jung A, Kirchner T, Dürr H. Dedifferentiated chondrosarcoma mimicking a giant cell tumor. Is this low grade dedifferentiated chondrosarcoma?. Pathol Res Pract. 2014;210:194-7 pubmed 出版商
  1759. Carnicero E, Alonso M, Carretero R, Lamus F, Moro J, de la Mano A, et al. Embryonic cerebrospinal fluid activates neurogenesis of neural precursors within the subventricular zone of the adult mouse brain. Cells Tissues Organs. 2013;198:398-404 pubmed 出版商
  1760. López Rivera E, Jayaraman P, Parikh F, Davies M, Ekmekcioglu S, Izadmehr S, et al. Inducible nitric oxide synthase drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2. Cancer Res. 2014;74:1067-78 pubmed 出版商
  1761. Maire C, Ramkissoon S, Hayashi M, Haidar S, Ramkissoon L, diTomaso E, et al. Pten loss in Olig2 expressing neural progenitor cells and oligodendrocytes leads to interneuron dysplasia and leukodystrophy. Stem Cells. 2014;32:313-26 pubmed 出版商
  1762. McClendon E, Chen K, Gong X, Sharifnia E, Hagen M, Cai V, et al. Prenatal cerebral ischemia triggers dysmaturation of caudate projection neurons. Ann Neurol. 2014;75:508-24 pubmed 出版商
  1763. Rossi M, Fuligni F, Ciccone M, Agostinelli C, Righi S, Luciani M, et al. Hsa-miR-15a and Hsa-miR-16-1 expression is not related to proliferation centers abundance and other prognostic factors in chronic lymphocytic leukemia. Biomed Res Int. 2013;2013:715391 pubmed 出版商
  1764. Stratmann A, Fecher D, Wangorsch G, Göttlich C, Walles T, Walles H, et al. Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Mol Oncol. 2014;8:351-65 pubmed 出版商
  1765. Bignon A, Gaudin F, Hemon P, Tharinger H, Mayol K, Walzer T, et al. CCR1 inhibition ameliorates the progression of lupus nephritis in NZB/W mice. J Immunol. 2014;192:886-96 pubmed 出版商
  1766. Kim E, Gasper D, Lee S, Plisch E, Svaren J, Suresh M. Bach2 regulates homeostasis of Foxp3+ regulatory T cells and protects against fatal lung disease in mice. J Immunol. 2014;192:985-95 pubmed 出版商
  1767. Balko J, Giltnane J, Wang K, Schwarz L, Young C, Cook R, et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 2014;4:232-45 pubmed 出版商
  1768. Osada M, Singh V, Wu K, Sant Angelo D, Pezzano M. Label retention identifies a multipotent mesenchymal stem cell-like population in the postnatal thymus. PLoS ONE. 2013;8:e83024 pubmed 出版商
  1769. Li A, Jiao Y, Yong K, Wang F, Gao C, Yan B, et al. SALL4 is a new target in endometrial cancer. Oncogene. 2015;34:63-72 pubmed 出版商
  1770. Pishas K, Neuhaus S, Clayer M, Schreiber A, Lawrence D, Perugini M, et al. Nutlin-3a efficacy in sarcoma predicted by transcriptomic and epigenetic profiling. Cancer Res. 2014;74:921-31 pubmed 出版商
  1771. Metcalfe C, Kljavin N, Ybarra R, De Sauvage F. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell. 2014;14:149-59 pubmed 出版商
  1772. Cavnar M, Zeng S, Kim T, Sorenson E, Ocuin L, Balachandran V, et al. KIT oncogene inhibition drives intratumoral macrophage M2 polarization. J Exp Med. 2013;210:2873-86 pubmed 出版商
  1773. Zhu C, Sun Y, Gao J, Wang X, Plesnila N, Blomgren K. Inhaled nitric oxide protects males but not females from neonatal mouse hypoxia-ischemia brain injury. Transl Stroke Res. 2013;4:201-7 pubmed 出版商
  1774. Harisis G, Lewis A, Southwell B, Hutson J. Hoxa-11 maintains cell proliferation in the mouse gubernaculum to facilitate testicular descent. J Pediatr Surg. 2013;48:2431-6 pubmed 出版商
  1775. Jones H, Gold M, Giannico G, Troutman A, Vnencak Jones C, Schultenover S, et al. Lymphoepithelioma-like carcinoma of the endometrium: immunophenotypic characterization of a rare tumor with microsatellite instability testing. Int J Gynecol Pathol. 2014;33:64-73 pubmed 出版商
  1776. Brandt J, Silveira L, Grassi T, Anselmo Franci J, Fávaro W, Felisbino S, et al. Indole-3-carbinol attenuates the deleterious gestational effects of bisphenol A exposure on the prostate gland of male F1 rats. Reprod Toxicol. 2014;43:56-66 pubmed 出版商
  1777. Navis A, Niclou S, Fack F, Stieber D, van Lith S, Verrijp K, et al. Increased mitochondrial activity in a novel IDH1-R132H mutant human oligodendroglioma xenograft model: in situ detection of 2-HG and ?-KG. Acta Neuropathol Commun. 2013;1:18 pubmed 出版商
  1778. Wang J, Chen J, Miller D, Li W. Synergistic combination of novel tubulin inhibitor ABI-274 and vemurafenib overcome vemurafenib acquired resistance in BRAFV600E melanoma. Mol Cancer Ther. 2014;13:16-26 pubmed 出版商
  1779. Chaudary N, Pintilie M, Schwock J, Dhani N, Clarke B, Milosevic M, et al. Characterization of the Tumor-Microenvironment in Patient-Derived Cervix Xenografts (OCICx). Cancers (Basel). 2012;4:821-45 pubmed 出版商
  1780. Elakoum R, Gauchotte G, Oussalah A, Wissler M, Clément Duchêne C, Vignaud J, et al. CARM1 and PRMT1 are dysregulated in lung cancer without hierarchical features. Biochimie. 2014;97:210-8 pubmed 出版商
  1781. Formiga F, Pelacho B, Garbayo E, Imbuluzqueta I, Díaz Herráez P, Abizanda G, et al. Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration. J Control Release. 2014;173:132-9 pubmed 出版商
  1782. Blanco F, Sanduja S, Deane N, Blackshear P, Dixon D. Transforming growth factor ? regulates P-body formation through induction of the mRNA decay factor tristetraprolin. Mol Cell Biol. 2014;34:180-95 pubmed 出版商
  1783. Lutwama F, Kagina B, Wajja A, Waiswa F, Mansoor N, Kirimunda S, et al. Distinct T-cell responses when BCG vaccination is delayed from birth to 6 weeks of age in Ugandan infants. J Infect Dis. 2014;209:887-97 pubmed 出版商
  1784. Li Q, Coulson H, Klaassen Z, Sharma S, Ramalingam P, Moses K, et al. Emerging association between androgen deprivation therapy and male meningioma: significant expression of luteinizing hormone-releasing hormone receptor in male meningioma. Prostate Cancer Prostatic Dis. 2013;16:387-90 pubmed 出版商
  1785. Yu L, Cheng H, Yang S. Clinicopathological and extensive immunohistochemical study of a type II pleuropulmonary blastoma. Fetal Pediatr Pathol. 2014;33:1-8 pubmed 出版商
  1786. Sun X, Zhang M, El Zataari M, Owyang S, Eaton K, Liu M, et al. TLR2 mediates Helicobacter pylori-induced tolerogenic immune response in mice. PLoS ONE. 2013;8:e74595 pubmed 出版商
  1787. Al Jaberi N, Lindsay S, Sarma S, Bayatti N, Clowry G. The early fetal development of human neocortical GABAergic interneurons. Cereb Cortex. 2015;25:631-45 pubmed 出版商
  1788. Rader J, Russell M, Hart L, Nakazawa M, Belcastro L, Martinez D, et al. Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin Cancer Res. 2013;19:6173-82 pubmed 出版商
  1789. Kusafuka K, Onitsuka T, Muramatsu K, Miki T, Murai C, Suda T, et al. Salivary duct carcinoma with rhabdoid features: report of 2 cases with immunohistochemical and ultrastructural analyses. Head Neck. 2014;36:E28-35 pubmed 出版商
  1790. Absalon S, Kochanek D, Raghavan V, Krichevsky A. MiR-26b, upregulated in Alzheimer's disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci. 2013;33:14645-59 pubmed 出版商
  1791. Rungarunlert S, Klincumhom N, Tharasanit T, Techakumphu M, Pirity M, Dinnyes A. Slow turning lateral vessel bioreactor improves embryoid body formation and cardiogenic differentiation of mouse embryonic stem cells. Cell Reprogram. 2013;15:443-58 pubmed 出版商
  1792. Kotagiri P, Chance S, Szele F, Esiri M. Subventricular zone cytoarchitecture changes in autism. Dev Neurobiol. 2014;74:25-41 pubmed 出版商
  1793. Povinelli B, Nemeth M. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor. Stem Cells. 2014;32:105-15 pubmed 出版商
  1794. Dai J, Brooks Y, Lefort K, Getsios S, Dotto G. The retinoid-related orphan receptor ROR? promotes keratinocyte differentiation via FOXN1. PLoS ONE. 2013;8:e70392 pubmed 出版商
  1795. Xu Y, Xu Y, Liao L, Zhou N, Theissen S, Liao X, et al. Inducible knockout of Twist1 in young and adult mice prolongs hair growth cycle and has mild effects on general health, supporting Twist1 as a preferential cancer target. Am J Pathol. 2013;183:1281-1292 pubmed 出版商
  1796. Yuan J, Zhang D, Wang L, Liu M, Mao J, Yin Y, et al. No evidence for neo-oogenesis may link to ovarian senescence in adult monkey. Stem Cells. 2013;31:2538-50 pubmed 出版商
  1797. Saurat N, Andersson T, Vasistha N, Molnár Z, Livesey F. Dicer is required for neural stem cell multipotency and lineage progression during cerebral cortex development. Neural Dev. 2013;8:14 pubmed 出版商
  1798. Sun X, Bartos A, Whitsett J, Dey S. Uterine deletion of Gp130 or Stat3 shows implantation failure with increased estrogenic responses. Mol Endocrinol. 2013;27:1492-501 pubmed 出版商
  1799. Stacchini A, Aliberti S, Pacchioni D, Demurtas A, Isolato G, Gazzera C, et al. Flow cytometry significantly improves the diagnostic value of fine needle aspiration cytology of lymphoproliferative lesions of salivary glands. Cytopathology. 2014;25:231-40 pubmed 出版商
  1800. Shintaku M, Yoneda H, Hirato J, Nagaishi M, Okabe H. Gliosarcoma with ependymal and PNET-like differentiation. Clin Neuropathol. 2013;32:508-14 pubmed 出版商
  1801. Nobs L, Nestel S, Kulik A, Nitsch C, Atanasoski S. Cyclin D1 is required for proliferation of Olig2-expressing progenitor cells in the injured cerebral cortex. Glia. 2013;61:1443-55 pubmed 出版商
  1802. Pristerà A, Saraulli D, Farioli Vecchioli S, Strimpakos G, Costanzi M, Di Certo M, et al. Impact of N-tau on adult hippocampal neurogenesis, anxiety, and memory. Neurobiol Aging. 2013;34:2551-63 pubmed 出版商
  1803. Novikova L, Smirnova I, Rawal S, Dotson A, Benedict S, Stehno Bittel L. Variations in rodent models of type 1 diabetes: islet morphology. J Diabetes Res. 2013;2013:965832 pubmed 出版商
  1804. Yucel G, Altindag B, Gomez Ospina N, Rana A, Panagiotakos G, Lara M, et al. State-dependent signaling by Cav1.2 regulates hair follicle stem cell function. Genes Dev. 2013;27:1217-22 pubmed 出版商
  1805. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498:492-6 pubmed 出版商
  1806. Im S, Choi H, Yoo C, Jung J, Jeon Y, Suh Y, et al. Hedgehog related protein expression in breast cancer: gli-2 is associated with poor overall survival. Korean J Pathol. 2013;47:116-23 pubmed 出版商
  1807. Wu X, Zheng P. Undifferentiated embryonic cell transcription factor-1 (UTF1) inhibits the growth of cervical cancer cells by transactivating p27Kip1. Carcinogenesis. 2013;34:1660-8 pubmed 出版商
  1808. El Zaatari M, Kao J, Tessier A, Bai L, Hayes M, Fontaine C, et al. Gli1 deletion prevents Helicobacter-induced gastric metaplasia and expansion of myeloid cell subsets. PLoS ONE. 2013;8:e58935 pubmed 出版商
  1809. Michael S, Sorg H, Peck C, Koch L, Deiwick A, Chichkov B, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE. 2013;8:e57741 pubmed 出版商
  1810. DeFalco T, Saraswathula A, Briot A, Iruela Arispe M, Capel B. Testosterone levels influence mouse fetal Leydig cell progenitors through notch signaling. Biol Reprod. 2013;88:91 pubmed 出版商
  1811. Toker A, Engelbert D, Garg G, Polansky J, Floess S, Miyao T, et al. Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J Immunol. 2013;190:3180-8 pubmed 出版商
  1812. Yakkioui Y, Temel Y, Creytens D, Jahanshahi A, Fleischeuer R, Santegoeds R, et al. A comparison of cell-cycle markers in skull base and sacral chordomas. World Neurosurg. 2014;82:e311-8 pubmed 出版商
  1813. McKinnell C, Mitchell R, Morris K, Anderson R, Kelnar C, Wallace W, et al. Perinatal germ cell development and differentiation in the male marmoset (Callithrix jacchus): similarities with the human and differences from the rat. Hum Reprod. 2013;28:886-96 pubmed 出版商
  1814. Chun J, O Brien R, Song M, Wondrasch B, Berry S. Injection of vessel-derived stem cells prevents dilated cardiomyopathy and promotes angiogenesis and endogenous cardiac stem cell proliferation in mdx/utrn-/- but not aged mdx mouse models for duchenne muscular dystrophy. Stem Cells Transl Med. 2013;2:68-80 pubmed 出版商
  1815. Kishida S, Mu P, Miyakawa S, Fujiwara M, Abe T, Sakamoto K, et al. Midkine promotes neuroblastoma through Notch2 signaling. Cancer Res. 2013;73:1318-27 pubmed 出版商
  1816. Nakanishi Y, Seno H, Fukuoka A, Ueo T, Yamaga Y, Maruno T, et al. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nat Genet. 2013;45:98-103 pubmed 出版商
  1817. Walton R, Parmentier T, Wolfe J. Postnatal neural precursor cell regions in the rostral subventricular zone, hippocampal subgranular zone and cerebellum of the dog (Canis lupus familiaris). Histochem Cell Biol. 2013;139:415-29 pubmed 出版商
  1818. Azim K, Fiorelli R, Zweifel S, Hurtado Chong A, Yoshikawa K, Slomianka L, et al. 3-dimensional examination of the adult mouse subventricular zone reveals lineage-specific microdomains. PLoS ONE. 2012;7:e49087 pubmed 出版商
  1819. Nguyen L, Fifis T, Malcontenti Wilson C, Chan L, Costa P, Nikfarjam M, et al. Spatial morphological and molecular differences within solid tumors may contribute to the failure of vascular disruptive agent treatments. BMC Cancer. 2012;12:522 pubmed 出版商
  1820. Viana L, Affonso R, Silva S, Denadai M, Matos D, Salinas de Souza C, et al. Relationship between the expression of the extracellular matrix genes SPARC, SPP1, FN1, ITGA5 and ITGAV and clinicopathological parameters of tumor progression and colorectal cancer dissemination. Oncology. 2013;84:81-91 pubmed 出版商
  1821. Gallagher S, Kofman A, Huszar J, Dannenberg J, Depinho R, Braun R, et al. Distinct requirements for Sin3a in perinatal male gonocytes and differentiating spermatogonia. Dev Biol. 2013;373:83-94 pubmed 出版商
  1822. Syu L, El Zaatari M, Eaton K, Liu Z, Tetarbe M, Keeley T, et al. Transgenic expression of interferon-? in mouse stomach leads to inflammation, metaplasia, and dysplasia. Am J Pathol. 2012;181:2114-25 pubmed 出版商
  1823. Büttner M, Kufer V, Brunner K, Hartmann A, Amann K, Agaimy A. Benign mesenchymal tumours and tumour-like lesions in end-stage renal disease. Histopathology. 2013;62:229-36 pubmed 出版商
  1824. Plotnik D, Asher C, Chu S, Miyaoka R, Garwin G, Johnson B, et al. Levels of human equilibrative nucleoside transporter-1 are higher in proliferating regions of A549 tumor cells grown as tumor xenografts in vivo. Nucl Med Biol. 2012;39:1161-6 pubmed 出版商
  1825. Farioli Vecchioli S, Micheli L, Saraulli D, Ceccarelli M, Cannas S, Scardigli R, et al. Btg1 is Required to Maintain the Pool of Stem and Progenitor Cells of the Dentate Gyrus and Subventricular Zone. Front Neurosci. 2012;6:124 pubmed 出版商
  1826. Rotondo F, Bernardo M, Scheithauer B, Latif S, Bogaev C, Sav A, et al. Atypical pituitary adenoma with neurocytic transformation. Appl Immunohistochem Mol Morphol. 2014;22:72-6 pubmed 出版商
  1827. Krolewski R, Packard A, Schwob J. Global expression profiling of globose basal cells and neurogenic progression within the olfactory epithelium. J Comp Neurol. 2013;521:833-59 pubmed 出版商
  1828. Konsavage W, Jin G, Yochum G. The Myc 3' Wnt-responsive element regulates homeostasis and regeneration in the mouse intestinal tract. Mol Cell Biol. 2012;32:3891-902 pubmed 出版商
  1829. Garcia Ovejero D, Arevalo Martin A, Paniagua Torija B, Sierra Palomares Y, Molina Holgado E. A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord. J Comp Neurol. 2013;521:233-51 pubmed 出版商
  1830. Xanthoulis A, Kotsinas A, Tiniakos D, Fiska A, Tentes A, Kyroudi A, et al. The relationship between E2F family members and tumor growth in colorectal adenocarcinomas: A comparative immunohistochemical study of 100 cases. Appl Immunohistochem Mol Morphol. 2014;22:471-7 pubmed 出版商
  1831. Farahani R, Sarrafpour B, Simonian M, Li Q, Hunter N. Directed glia-assisted angiogenesis in a mature neurosensory structure: pericytes mediate an adaptive response in human dental pulp that maintains blood-barrier function. J Comp Neurol. 2012;520:3803-26 pubmed 出版商
  1832. Zogbi C, Tesser R, Encinas G, Miraglia S, Stumpp T. Gonocyte development in rats: proliferation, distribution and death revisited. Histochem Cell Biol. 2012;138:305-22 pubmed 出版商
  1833. Gallardo A, Lerma E, Escuin D, Tibau A, Munoz J, Ojeda B, et al. Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br J Cancer. 2012;106:1367-73 pubmed 出版商
  1834. Schneider L, d Adda di Fagagna F. Neural stem cells exposed to BrdU lose their global DNA methylation and undergo astrocytic differentiation. Nucleic Acids Res. 2012;40:5332-42 pubmed 出版商
  1835. Sui Y, Horne M, Stanić D. Reduced proliferation in the adult mouse subventricular zone increases survival of olfactory bulb interneurons. PLoS ONE. 2012;7:e31549 pubmed 出版商
  1836. Zeng M, Southern P, Reilly C, Beilman G, Chipman J, Schacker T, et al. Lymphoid tissue damage in HIV-1 infection depletes naïve T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathog. 2012;8:e1002437 pubmed 出版商
  1837. Augustin M, Ali Asim Mahar M, Lakkisto P, Tikkanen I, Vento A, Pätilä T, et al. Heat shock attenuates VEGF expression in three-dimensional myoblast sheets deteriorating therapeutic efficacy in heart failure. Med Sci Monit. 2011;17:BR345-53 pubmed
  1838. Yamada Y, Yamamoto H, Ohishi Y, Nishiyama K, Fukuhara M, Saitou T, et al. Sclerosing variant of perivascular epithelioid cell tumor in the female genital organs. Pathol Int. 2011;61:768-72 pubmed 出版商
  1839. Ager E, Wen S, Chan J, Chong W, Neo J, Christophi C. Altered efficacy of AT1R-targeted treatment after spontaneous cancer cell-AT1R upregulation. BMC Cancer. 2011;11:274 pubmed 出版商
  1840. Liu D, Kadota K, Ueno M, Nakashima N, Yokomise H, Huang C. Adenoviral vector expressing short hairpin RNA targeting Wnt2B has an effective antitumour activity against Wnt2B2-overexpressing tumours. Eur J Cancer. 2012;48:1208-18 pubmed 出版商
  1841. Meyer D, Brinkhaus H, Müller U, Muller M, Cardiff R, Bentires Alj M. Luminal expression of PIK3CA mutant H1047R in the mammary gland induces heterogeneous tumors. Cancer Res. 2011;71:4344-51 pubmed 出版商
  1842. Petrilli G, Lorenzi L, Paracchini R, Ubiali A, Schumacher R, Cabassa P, et al. Epstein-Barr virus-associated adrenal smooth muscle tumors and disseminated diffuse large B-cell lymphoma in a child with common variable immunodeficiency: a case report and review of the literature. Int J Surg Pathol. 2014;22:712-21 pubmed 出版商
  1843. Navis A, Hamans B, Claes A, Heerschap A, Jeuken J, Wesseling P, et al. Effects of targeting the VEGF and PDGF pathways in diffuse orthotopic glioma models. J Pathol. 2011;223:626-34 pubmed 出版商
  1844. Hailemariam S, Vosbeck J, Cathomas G, Zlobec I, Mattarelli G, Eichenberger T, et al. Can molecular markers stratify the diagnostic value of high-grade prostatic intraepithelial neoplasia?. Hum Pathol. 2011;42:702-9 pubmed 出版商
  1845. Farioli Vecchioli S, Saraulli D, Costanzi M, Leonardi L, Cinà I, Micheli L, et al. Impaired terminal differentiation of hippocampal granule neurons and defective contextual memory in PC3/Tis21 knockout mice. PLoS ONE. 2009;4:e8339 pubmed 出版商
  1846. Bijl N, Sokolovic M, Vrins C, Langeveld M, Moerland P, Ottenhoff R, et al. Modulation of glycosphingolipid metabolism significantly improves hepatic insulin sensitivity and reverses hepatic steatosis in mice. Hepatology. 2009;50:1431-41 pubmed 出版商
  1847. Sporn J, Kustatscher G, Hothorn T, Collado M, Serrano M, Muley T, et al. Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene. 2009;28:3423-8 pubmed 出版商
  1848. Singer B, Jutkiewicz E, Fuller C, Lichtenwalner R, Zhang H, Velander A, et al. Conditional ablation and recovery of forebrain neurogenesis in the mouse. J Comp Neurol. 2009;514:567-82 pubmed 出版商
  1849. Gauster M, Siwetz M, Huppertz B. Fusion of villous trophoblast can be visualized by localizing active caspase 8. Placenta. 2009;30:547-50 pubmed 出版商
  1850. Schauer I, Ressler S, Rowley D. Keratinocyte-derived chemokine induces prostate epithelial hyperplasia and reactive stroma in a novel transgenic mouse model. Prostate. 2009;69:373-84 pubmed 出版商
  1851. Sahlin L, Stjernholm Vladic Y, Roos N, Masironi B, Ekman Ordeberg G. Impaired leukocyte influx in cervix of postterm women not responding to prostaglandin priming. Reprod Biol Endocrinol. 2008;6:36 pubmed 出版商
  1852. Gunia S, May M, Scholmann K, Störkel S, Hoschke B, Koch S, et al. Expression of alpha-methylacyl-CoA racemase correlates with histopathologic grading in noninvasive bladder cancer. Virchows Arch. 2008;453:165-70 pubmed 出版商
  1853. Sawada K, Mitra A, Radjabi A, Bhaskar V, Kistner E, Tretiakova M, et al. Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Res. 2008;68:2329-39 pubmed 出版商
  1854. Pecchi E, Dallaporta M, Charrier C, Pio J, Jean A, Moyse E, et al. Glial fibrillary acidic protein (GFAP)-positive radial-like cells are present in the vicinity of proliferative progenitors in the nucleus tractus solitarius of adult rat. J Comp Neurol. 2007;501:353-68 pubmed
  1855. Tran P, Banisadr G, Ren D, Chenn A, Miller R. Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain. J Comp Neurol. 2007;500:1007-33 pubmed