这是一篇来自已证抗体库的有关人类 Ku80的综述,是根据48篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ku80 抗体。
Ku80 同义词: KARP-1; KARP1; KU80; KUB2; Ku86; NFIV

圣克鲁斯生物技术
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Ku80抗体(Santa Cruz Biotechnology, sc-5280)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Oncogenesis (2020) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:500; 图 3b
圣克鲁斯生物技术 Ku80抗体(Santa, sc-5280)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3b). Nat Commun (2018) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:2000; 图 5
圣克鲁斯生物技术 Ku80抗体(Santa Cruz, sc-5280)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 Ku80抗体(SantaCruz, sc-5280)被用于被用于免疫印迹在人类样本上 (图 2b). Nucleic Acids Res (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:500; 图 4c
圣克鲁斯生物技术 Ku80抗体(Santa Cruz, B-1)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4c). Virol J (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:500; 图 4c
圣克鲁斯生物技术 Ku80抗体(Santa Cruz, B-1)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4c). Virol J (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Ku80抗体(Santa Cruz Biotechnology, sc-5280)被用于被用于免疫印迹在人类样本上 (图 1). elife (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Ku80抗体(Santa Cruz Biotechnology, sc-5280)被用于被用于免疫印迹在人类样本上 (图 6a). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:500; 图 2, 3
圣克鲁斯生物技术 Ku80抗体(Santa-Cruz, sc-5280)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2, 3). Cell Cycle (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ku80抗体(Santa Cruz Biotechnology Inc, sc-5280)被用于被用于免疫印迹在人类样本上. Mol Cell Proteomics (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ku80抗体(Santa Cruz, sc-5280)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR3468)
  • 免疫印迹; 大鼠; 1:200; 图 7
艾博抗(上海)贸易有限公司 Ku80抗体(Abcam, ab80592)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 7). Am J Cancer Res (2021) ncbi
domestic rabbit 单克隆(EPR3468)
  • 免疫细胞化学; 人类; 图 s5
艾博抗(上海)贸易有限公司 Ku80抗体(Abcam, ab80592)被用于被用于免疫细胞化学在人类样本上 (图 s5). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(EPR3468)
  • 免疫组化; 人类; 1:100; 图 4e
艾博抗(上海)贸易有限公司 Ku80抗体(Abcam, ab80592)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4e). Cell Rep (2019) ncbi
domestic rabbit 单克隆(EPR3468)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Ku80抗体(Abcam, ab80592)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR3468)
  • 免疫印迹; 人类; 1:10,000; 图 3a
艾博抗(上海)贸易有限公司 Ku80抗体(Abcam, Ab80592)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EPR3468)
  • 免疫组化; 人类; 1:500; 图 2
艾博抗(上海)贸易有限公司 Ku80抗体(Abcam, ab80592)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2). Oncol Lett (2015) ncbi
domestic rabbit 单克隆(EPR3468)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Ku80抗体(Abcam, Ab80592)被用于被用于免疫印迹在人类样本上. EMBO J (2013) ncbi
赛默飞世尔
小鼠 单克隆(111)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛默飞世尔 Ku80抗体(Thermo Fisher Scientific, MA5-12933)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Cell Rep (2018) ncbi
小鼠 单克隆(5C5)
  • 免疫印迹; 小鼠; 图 s9a
赛默飞世尔 Ku80抗体(Thermo Fisher Scientific, MA5-15873)被用于被用于免疫印迹在小鼠样本上 (图 s9a). J Clin Invest (2017) ncbi
小鼠 单克隆(111)
  • 免疫印迹; 小鼠; 图 1f
赛默飞世尔 Ku80抗体(Thermo Fisher Scientific, 111)被用于被用于免疫印迹在小鼠样本上 (图 1f). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Ku80抗体(Thermo Scientific, PA5-17454)被用于被用于免疫印迹在人类样本上 (图 3). Cell Rep (2016) ncbi
小鼠 单克隆(111)
  • 免疫沉淀; 人类; 图 1a
  • 免疫印迹; 人类
赛默飞世尔 Ku80抗体(Thermo Scientific, 111)被用于被用于免疫沉淀在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(111)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Ku80抗体(Thermo Scientific, 111)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Med (2015) ncbi
小鼠 单克隆(111)
赛默飞世尔 Ku80抗体(Neomarker, Ab-2)被用于. PLoS ONE (2013) ncbi
小鼠 单克隆(111)
  • 免疫细胞化学; 人类; 1:100; 表 2
  • 免疫印迹; 人类; 1:2000; 表 2
赛默飞世尔 Ku80抗体(Thermo Fisher, 111)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 2) 和 被用于免疫印迹在人类样本上浓度为1:2000 (表 2). J Cell Biol (2013) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C48E7)
  • 免疫组化-冰冻切片; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Ku80抗体(Cell Signaling, 2180)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2e). iScience (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 Ku80抗体(Cell Signaling Technology, 2753)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(C48E7)
  • 免疫细胞化学; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Ku80抗体(Cell Signaling, 2180)被用于被用于免疫细胞化学在人类样本上 (图 2b). Mol Ther Methods Clin Dev (2021) ncbi
domestic rabbit 单克隆(C48E7)
  • 免疫印迹; 人类; 1:5000; 图 1d, 5d
赛信通(上海)生物试剂有限公司 Ku80抗体(CST, 2180)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1d, 5d). Mol Oncol (2021) ncbi
domestic rabbit 单克隆(C48E7)
  • 免疫组化-石蜡切片; 人类; 图 3a, 4d, s1b
赛信通(上海)生物试剂有限公司 Ku80抗体(Cell Signaling, 2180)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a, 4d, s1b). J Clin Invest (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4c
赛信通(上海)生物试剂有限公司 Ku80抗体(Cell Signaling, 2753)被用于被用于免疫印迹在小鼠样本上 (图 s4c). iScience (2020) ncbi
domestic rabbit 单克隆(C48E7)
  • 免疫印迹; 人类; 1:1000; 图 1s1g
赛信通(上海)生物试剂有限公司 Ku80抗体(Cell Signaling, 2180)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1s1g). elife (2020) ncbi
domestic rabbit 单克隆(C48E7)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 Ku80抗体(CST, 2180)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(C48E7)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Ku80抗体(Cell Signaling, 2180)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
domestic rabbit 单克隆(C48E7)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 Ku80抗体(Cell Signaling, 2180)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Radiother Oncol (2017) ncbi
domestic rabbit 单克隆(C48E7)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 s5a
赛信通(上海)生物试剂有限公司 Ku80抗体(Cell Signaling, 2180)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 s5a). Transl Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1a
赛信通(上海)生物试剂有限公司 Ku80抗体(Cell Signaling, 2753)被用于被用于免疫印迹在人类样本上 (图 s1a). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(C48E7)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Ku80抗体(CST, 2180)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Cell Cycle (2016) ncbi
domestic rabbit 单克隆(C48E7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Ku80抗体(Cell signaling, 2180)被用于被用于免疫印迹在人类样本上 (图 4). Arch Pharm Res (2016) ncbi
domestic rabbit 单克隆(C48E7)
  • 免疫沉淀; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Ku80抗体(Cell Signaling, C48E7)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 7). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C48E7)
  • 免疫细胞化学; 人类; 图 s4
赛信通(上海)生物试剂有限公司 Ku80抗体(Cell Signaling Technology, 2180)被用于被用于免疫细胞化学在人类样本上 (图 s4). Genes Dev (2015) ncbi
domestic rabbit 单克隆(C48E7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Ku80抗体(Cell Signaling, 2180)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C48E7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Ku80抗体(Cell Signaling, 2180)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Lett (2015) ncbi
domestic rabbit 单克隆(C48E7)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Ku80抗体(Cell Signaling, 2180s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Cancer Med (2014) ncbi
domestic rabbit 单克隆(C48E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Ku80抗体(Cell Signaling, 2180S)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(C48E7)
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Ku80抗体(Cell Signaling, 2180)被用于被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 7b). Mol Cell (2014) ncbi
碧迪BD
小鼠 单克隆(7/Ku80)
  • 免疫印迹; 人类; 图 4b
碧迪BD Ku80抗体(BD Biosciences, 611360)被用于被用于免疫印迹在人类样本上 (图 4b). J Cell Sci (2016) ncbi
小鼠 单克隆(7/Ku80)
  • 免疫印迹; 人类; 图 3
碧迪BD Ku80抗体(bD Bioscience, 7/Ku80)被用于被用于免疫印迹在人类样本上 (图 3). elife (2016) ncbi
文章列表
  1. Yamasaki S, Tu H, Matsuyama T, Horiuchi M, Hashiguchi T, Sho J, et al. A Genetic modification that reduces ON-bipolar cells in hESC-derived retinas enhances functional integration after transplantation. iScience. 2022;25:103657 pubmed 出版商
  2. Lei X, Cao K, Chen Y, Shen H, Liu Z, Qin H, et al. Nuclear Transglutaminase 2 interacts with topoisomerase II⍺ to promote DNA damage repair in lung cancer cells. J Exp Clin Cancer Res. 2021;40:224 pubmed 出版商
  3. Cao L, Xu C, Yi P, Li H, Lin Y, Cai G, et al. Asparaginyl endopeptidase (AEP) regulates myocardial apoptosis in response to radiation exposure via alterations in NRF2 activation. Am J Cancer Res. 2021;11:1206-1225 pubmed
  4. Salas A, Duarri A, Fontrodona L, Ram xed rez D, Badia A, Isla Magran xe9 H, et al. Cell therapy with hiPSC-derived RPE cells and RPCs prevents visual function loss in a rat model of retinal degeneration. Mol Ther Methods Clin Dev. 2021;20:688-702 pubmed 出版商
  5. Shields C, Potlapalli S, Cuya Smith S, Chappell S, Chen D, Martinez D, et al. Epigenetic regulator BMI1 promotes alveolar rhabdomyosarcoma proliferation and constitutes a novel therapeutic target. Mol Oncol. 2021;: pubmed 出版商
  6. Krzeptowski W, Chudy P, Sokołowski G, Zukowska M, Kusienicka A, Seretny A, et al. Proximity Ligation Assay Detection of Protein-DNA Interactions-Is There a Link between Heme Oxygenase-1 and G-quadruplexes?. Antioxidants (Basel). 2021;10: pubmed 出版商
  7. Mo J, Anastasaki C, Chen Z, Shipman T, Papke J, Yin K, et al. Humanized neurofibroma model from induced pluripotent stem cells delineates tumor pathogenesis and developmental origins. J Clin Invest. 2020;: pubmed 出版商
  8. Chu S, Chabon J, Matovina C, Minehart J, Chen B, Zhang J, et al. Loss of H3K36 Methyltransferase SETD2 Impairs V(D)J Recombination during Lymphoid Development. iScience. 2020;23:100941 pubmed 出版商
  9. Ailiken G, Kitamura K, Hoshino T, Satoh M, Tanaka N, Minamoto T, et al. Post-transcriptional regulation of BRG1 by FIRΔexon2 in gastric cancer. Oncogenesis. 2020;9:26 pubmed 出版商
  10. Onn L, Portillo M, Ilic S, Cleitman G, Stein D, Kaluski S, et al. SIRT6 is a DNA double-strand break sensor. elife. 2020;9: pubmed 出版商
  11. Yap L, Wang J, Moreno Moral A, Chong L, Sun Y, Harmston N, et al. In Vivo Generation of Post-infarct Human Cardiac Muscle by Laminin-Promoted Cardiovascular Progenitors. Cell Rep. 2019;26:3231-3245.e9 pubmed 出版商
  12. Craxton A, Munnur D, Jukes Jones R, Skalka G, Langlais C, Cain K, et al. PAXX and its paralogs synergistically direct DNA polymerase λ activity in DNA repair. Nat Commun. 2018;9:3877 pubmed 出版商
  13. Tay L, Krishnan V, Sankar H, Chong Y, Chuang L, Tan T, et al. RUNX Poly(ADP-Ribosyl)ation and BLM Interaction Facilitate the Fanconi Anemia Pathway of DNA Repair. Cell Rep. 2018;24:1747-1755 pubmed 出版商
  14. Nieborowska Skorska M, Sullivan K, Dasgupta Y, Podszywalow Bartnicka P, Hoser G, Maifrede S, et al. Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells. J Clin Invest. 2017;127:2392-2406 pubmed 出版商
  15. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  16. Zan H, Tat C, Qiu Z, Taylor J, Guerrero J, Shen T, et al. Rad52 competes with Ku70/Ku86 for binding to S-region DSB ends to modulate antibody class-switch DNA recombination. Nat Commun. 2017;8:14244 pubmed 出版商
  17. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  18. Chang V, Tsai Y, Tsai Y, Peng S, Chen S, Chang T, et al. Krüpple-like factor 10 regulates radio-sensitivity of pancreatic cancer via UV radiation resistance-associated gene. Radiother Oncol. 2017;122:476-484 pubmed 出版商
  19. Lee I, Koo K, Jung K, Kim M, Kim I, Hwang K, et al. Neurogenin-2-transduced human neural progenitor cells attenuate neonatal hypoxic-ischemic brain injury. Transl Res. 2017;183:121-136.e9 pubmed 出版商
  20. Noordstra I, Liu Q, Nijenhuis W, Hua S, Jiang K, Baars M, et al. Control of apico-basal epithelial polarity by the microtubule minus-end-binding protein CAMSAP3 and spectraplakin ACF7. J Cell Sci. 2016;129:4278-4288 pubmed
  21. Narayanaswamy P, Tkachuk S, Haller H, Dumler I, Kiyan Y. CHK1 and RAD51 activation after DNA damage is regulated via urokinase receptor/TLR4 signaling. Cell Death Dis. 2016;7:e2383 pubmed 出版商
  22. Li L, Shi L, Yang S, Yan R, Zhang D, Yang J, et al. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun. 2016;7:12235 pubmed 出版商
  23. Bouchet B, Gough R, Ammon Y, van de Willige D, Post H, Jacquemet G, et al. Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions. elife. 2016;5: pubmed 出版商
  24. Mukherjee S, Chakraborty P, Saha P. Phosphorylation of Ku70 subunit by cell cycle kinases modulates the replication related function of Ku heterodimer. Nucleic Acids Res. 2016;44:7755-65 pubmed 出版商
  25. Gilmore J, Sardiu M, Groppe B, Thornton J, Liu X, Dayebgadoh G, et al. WDR76 Co-Localizes with Heterochromatin Related Proteins and Rapidly Responds to DNA Damage. PLoS ONE. 2016;11:e0155492 pubmed 出版商
  26. Guo J, Wang X, Lu X, Jing R, Li J, Li C, et al. Unraveling molecular effects of ADAR1 overexpression in HEK293T cells by label-free quantitative proteomics. Cell Cycle. 2016;15:1591-601 pubmed 出版商
  27. Grundy G, Rulten S, Arribas Bosacoma R, Davidson K, Kozik Z, Oliver A, et al. The Ku-binding motif is a conserved module for recruitment and stimulation of non-homologous end-joining proteins. Nat Commun. 2016;7:11242 pubmed 出版商
  28. Swann J, Murry J, Young J. Cytosolic sulfotransferase 1A1 regulates HIV-1 minus-strand DNA elongation in primary human monocyte-derived macrophages. Virol J. 2016;13:30 pubmed 出版商
  29. Choi Y, Meghani K, Brault M, Leclerc L, He Y, Day T, et al. Platinum and PARP Inhibitor Resistance Due to Overexpression of MicroRNA-622 in BRCA1-Mutant Ovarian Cancer. Cell Rep. 2016;14:429-439 pubmed 出版商
  30. Wang S, Wang Z, Yang Y, Shi M, Sun Z. Overexpression of Ku80 correlates with aggressive clinicopathological features and adverse prognosis in esophageal squamous cell carcinoma. Oncol Lett. 2015;10:2705-2712 pubmed
  31. Son J, Hwang E, Kim J. Systematic analyses of the ultraviolet radiation resistance-associated gene product (UVRAG) protein interactome by tandem affinity purification. Arch Pharm Res. 2016;39:370-9 pubmed 出版商
  32. Bouley J, Saad L, Grall R, Schellenbauer A, Biard D, Paget V, et al. A new phosphorylated form of Ku70 identified in resistant leukemic cells confers fast but unfaithful DNA repair in cancer cell lines. Oncotarget. 2015;6:27980-8000 pubmed 出版商
  33. He S, Zhao Z, Yang Y, O Connell D, Zhang X, Oh S, et al. Truncating mutation in the autophagy gene UVRAG confers oncogenic properties and chemosensitivity in colorectal cancers. Nat Commun. 2015;6:7839 pubmed 出版商
  34. Van Sluis M, McStay B. A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage. Genes Dev. 2015;29:1151-63 pubmed 出版商
  35. Nakajima N, Hagiwara Y, Oike T, Okayasu R, Murakami T, Nakano T, et al. Pre-exposure to ionizing radiation stimulates DNA double strand break end resection, promoting the use of homologous recombination repair. PLoS ONE. 2015;10:e0122582 pubmed 出版商
  36. Laurette P, Strub T, Koludrovic D, Keime C, Le Gras S, Seberg H, et al. Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells. elife. 2015;4: pubmed 出版商
  37. Wu Z, Wang C, Bai M, Li X, Mei Q, Li X, et al. An LRP16-containing preassembly complex contributes to NF-κB activation induced by DNA double-strand breaks. Nucleic Acids Res. 2015;43:3167-79 pubmed 出版商
  38. Raghunandan M, Chaudhury I, Kelich S, Hanenberg H, Sobeck A. FANCD2, FANCJ and BRCA2 cooperate to promote replication fork recovery independently of the Fanconi Anemia core complex. Cell Cycle. 2015;14:342-53 pubmed 出版商
  39. Hirakawa H, Fujisawa H, Masaoka A, Noguchi M, Hirayama R, Takahashi M, et al. The combination of Hsp90 inhibitor 17AAG and heavy-ion irradiation provides effective tumor control in human lung cancer cells. Cancer Med. 2015;4:426-36 pubmed 出版商
  40. Chen Y, Wei M, Wang C, Lee H, Pan S, Gao M, et al. Dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor is an effective radiosensitizer for colorectal cancer. Cancer Lett. 2015;357:582-90 pubmed 出版商
  41. Owonikoko T, Zhang G, Deng X, Rossi M, Switchenko J, Doho G, et al. Poly (ADP) ribose polymerase enzyme inhibitor, veliparib, potentiates chemotherapy and radiation in vitro and in vivo in small cell lung cancer. Cancer Med. 2014;3:1579-94 pubmed 出版商
  42. Dutta B, Yan R, Lim S, Tam J, Sze S. Quantitative profiling of chromatome dynamics reveals a novel role for HP1BP3 in hypoxia-induced oncogenesis. Mol Cell Proteomics. 2014;13:3236-49 pubmed 出版商
  43. Prensner J, Chen W, Iyer M, Cao Q, Ma T, Han S, et al. PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res. 2014;74:1651-60 pubmed 出版商
  44. Zhou Y, Caron P, Legube G, Paull T. Quantitation of DNA double-strand break resection intermediates in human cells. Nucleic Acids Res. 2014;42:e19 pubmed 出版商
  45. Pagotto A, Caballero O, Volkmar N, Devalle S, Simpson A, Lu X, et al. Centrosomal localisation of the cancer/testis (CT) antigens NY-ESO-1 and MAGE-C1 is regulated by proteasome activity in tumour cells. PLoS ONE. 2013;8:e83212 pubmed 出版商
  46. Shibata A, Moiani D, Arvai A, Perry J, Harding S, Genois M, et al. DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol Cell. 2014;53:7-18 pubmed 出版商
  47. Britton S, Coates J, Jackson S. A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J Cell Biol. 2013;202:579-95 pubmed 出版商
  48. Grundy G, Rulten S, Zeng Z, Arribas Bosacoma R, Iles N, Manley K, et al. APLF promotes the assembly and activity of non-homologous end joining protein complexes. EMBO J. 2013;32:112-25 pubmed 出版商