这是一篇来自已证抗体库的有关人类 LAMP-1 (LAMP-1) 的综述,是根据368篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合LAMP-1 抗体。
LAMP-1 同义词: CD107a; LAMPA; LGP120

圣克鲁斯生物技术
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:50; 图 4a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, SC-20011)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4a). Nat Commun (2019) ncbi
小鼠 单克隆(H5G11)
  • 免疫细胞化学; 人类; 图 1f
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-18821)被用于被用于免疫细胞化学在人类样本上 (图 1f). Cell Death Dis (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:50; 图 s2
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, SC-20011)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s2). J Cell Sci (2019) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:200; 图 7b
圣克鲁斯生物技术LAMP-1抗体(Santa, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7b). Nat Commun (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 7b
圣克鲁斯生物技术LAMP-1抗体(Santa, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7b). Nat Commun (2019) ncbi
brown rat 单克隆(1D4B)
  • 免疫组化-自由浮动切片; 小鼠; 1:10; 图 s8c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-19992)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10 (图 s8c). Nat Neurosci (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:100; 图 5a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5a). Nat Commun (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2c). Front Endocrinol (Lausanne) (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 2f
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫印迹在人类样本上 (图 2f). Oncogene (2019) ncbi
小鼠 单克隆(H5G11)
  • 流式细胞仪; 人类; 图 s2c
  • 免疫细胞化学; 人类; 图 2a, 3c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-18821)被用于被用于流式细胞仪在人类样本上 (图 s2c) 和 被用于免疫细胞化学在人类样本上 (图 2a, 3c). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 4a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, H4A3)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2018) ncbi
小鼠 单克隆
  • 流式细胞仪; 人类; 图 4a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, H4A3)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫印迹在人类样本上 (图 5a). Autophagy (2018) ncbi
brown rat 单克隆(1D4B)
  • 免疫组化; brown rat; 1:400; 图 s1
圣克鲁斯生物技术LAMP-1抗体(Santa, sc-19992)被用于被用于免疫组化在brown rat样本上浓度为1:400 (图 s1). J Clin Invest (2018) ncbi
小鼠 单克隆(E-5)
  • 免疫组化; 小鼠; 1:400; 图 s1
圣克鲁斯生物技术LAMP-1抗体(santa, sc-17768)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s1). J Clin Invest (2018) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 小鼠; 1:200; 图 9d
圣克鲁斯生物技术LAMP-1抗体(Santa, sc-17768)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 9d). Cancer Res (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠; 图 s2c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫细胞化学在小鼠样本上 (图 s2c). Neuron (2018) ncbi
小鼠 单克隆(H5G11)
  • 免疫细胞化学; 人类; 图 2e
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, SC-18821)被用于被用于免疫细胞化学在人类样本上 (图 2e). Cell Mol Life Sci (2018) ncbi
brown rat 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 图 3e
圣克鲁斯生物技术LAMP-1抗体(Santa, sc-19992)被用于被用于免疫细胞化学在小鼠样本上 (图 3e). J Immunol (2018) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类; 图 6f
  • 免疫印迹; 人类; 1:1000; 图 6b
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-17768)被用于被用于免疫细胞化学在人类样本上 (图 6f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Mol Ther Nucleic Acids (2017) ncbi
brown rat 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 图 1g
圣克鲁斯生物技术LAMP-1抗体(SantaCruz, sc-19992)被用于被用于免疫细胞化学在小鼠样本上 (图 1g). J Clin Invest (2017) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 图 5g
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-17768)被用于被用于免疫印迹在人类样本上 (图 5g). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 1f
圣克鲁斯生物技术LAMP-1抗体(SantaCruz, SC-20011)被用于被用于免疫细胞化学在人类样本上 (图 1f). FEBS Lett (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫印迹在人类样本上 (图 1c). J Cell Biol (2017) ncbi
brown rat 单克隆(1D4B)
  • 免疫细胞化学; 人类; 1:50; 图 3g
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc19992)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3g). Nat Commun (2017) ncbi
brown rat 单克隆(1D4B)
  • 免疫组化; 小鼠; 1:400; 图 1c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, 1D4B)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1c). J Clin Invest (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:100; 图 4a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4a). Nat Commun (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 s4
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 s4). PLoS ONE (2017) ncbi
brown rat 单克隆(1D4B)
  • 免疫细胞化学; 人类; 图 3b
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, 1D4B)被用于被用于免疫细胞化学在人类样本上 (图 3b). J Cell Biol (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s3a
圣克鲁斯生物技术LAMP-1抗体(Santa cruz, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 s3a). J Cell Biol (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Nat Chem Biol (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠
  • 免疫细胞化学; 人类; 图 1b
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫细胞化学在人类样本上 (图 1b). Sci Rep (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:100; 图 3B
圣克鲁斯生物技术LAMP-1抗体(Santa cruz, SC-20011)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3B). elife (2017) ncbi
brown rat 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 1:500; 图 4a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc19992)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4a). Nat Commun (2017) ncbi
brown rat 单克隆(1D4B)
  • 免疫组化; 小鼠; 1:50; 图 3a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-19992)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3a). Sci Rep (2017) ncbi
小鼠 单克隆(E-5)
  • 免疫组化; 小鼠; 图 s1b
圣克鲁斯生物技术LAMP-1抗体(Santacruz, sc-17768)被用于被用于免疫组化在小鼠样本上 (图 s1b). PLoS Pathog (2017) ncbi
小鼠 单克隆(H5G11)
  • 免疫细胞化学; 人类; 图 e6a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, H5G11)被用于被用于免疫细胞化学在人类样本上 (图 e6a). Nature (2017) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 小鼠; 图 6a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, E-5)被用于被用于免疫印迹在小鼠样本上 (图 6a). PLoS Pathog (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 4a1
圣克鲁斯生物技术LAMP-1抗体(Santa-Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上 (图 4a1). Toxins (Basel) (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 1d
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上 (图 1d). PLoS ONE (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:100; 图 1h
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1h). Nat Commun (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:200; 图 s5a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, SC20011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 s5a). PLoS Genet (2017) ncbi
brown rat 单克隆(1D4B)
  • 免疫印迹; 小鼠; 1:50
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, 1D4B)被用于被用于免疫印迹在小鼠样本上浓度为1:50. Nat Commun (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化; 人类; 图 4c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫组化在人类样本上 (图 4c). Bioconjug Chem (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 小鼠; 图 7e
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-17768)被用于被用于免疫细胞化学在小鼠样本上 (图 7e). Neuropharmacology (2016) ncbi
小鼠 单克隆(H5G11)
  • 免疫印迹; 人类; 图 7e
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-18821)被用于被用于免疫印迹在人类样本上 (图 7e). EMBO Mol Med (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:2000; 图 5d
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, 20011)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5d). Autophagy (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 6b
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上 (图 6b). Autophagy (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; S. cerevisiae; 1:1000; 图 s4
圣克鲁斯生物技术LAMP-1抗体(santa Cruz, sc-20011)被用于被用于免疫印迹在S. cerevisiae样本上浓度为1:1000 (图 s4). Sci Rep (2016) ncbi
brown rat 单克隆(1D4B)
  • 免疫组化; 小鼠; 图 s2c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-19992)被用于被用于免疫组化在小鼠样本上 (图 s2c). Nat Neurosci (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠
  • 免疫细胞化学; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫细胞化学在人类样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化; 人类; 1:100; 图 4a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4a). J Immunol (2016) ncbi
brown rat 单克隆(1D4B)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-19992)被用于被用于免疫印迹在小鼠样本上 (图 3). Autophagy (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:100; 图 4
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, 20011)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Autophagy (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 3
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). elife (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类; 图 4e
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-17768)被用于被用于免疫细胞化学在人类样本上 (图 4e). Science (2016) ncbi
brown rat 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 图 3c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-19992)被用于被用于免疫细胞化学在小鼠样本上 (图 3c). Science (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:200; 表 2
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫印迹在人类样本上浓度为1:200 (表 2). Acta Neuropathol Commun (2016) ncbi
brown rat 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 图 3
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, 1D4B)被用于被用于免疫细胞化学在小鼠样本上 (图 3). J Virol (2016) ncbi
brown rat 单克隆(1D4B)
  • 免疫印迹; 小鼠; 图 s5b
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, 19992)被用于被用于免疫印迹在小鼠样本上 (图 s5b). Sci Rep (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 1
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2016) ncbi
brown rat 单克隆(1D4B)
  • 免疫组化; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-19992)被用于被用于免疫组化在人类样本上. Nature (2016) ncbi
brown rat 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 图 4
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-19992)被用于被用于免疫细胞化学在小鼠样本上 (图 4). Mol Biol Cell (2016) ncbi
brown rat 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 图 1b
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-19992)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). PLoS Pathog (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫细胞化学在人类样本上. Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(H5G11)
  • 免疫细胞化学; 人类; 图 s5
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc18821)被用于被用于免疫细胞化学在人类样本上 (图 s5). Mol Biol Cell (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上. Nat Immunol (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s4b
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫细胞化学在人类样本上 (图 s4b). EMBO J (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫组化; brown rat; 1:100; 图 4
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc17768)被用于被用于免疫组化在brown rat样本上浓度为1:100 (图 4). Hum Mol Genet (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 6
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6). J Cell Biol (2015) ncbi
小鼠 单克隆(H5G11)
  • 免疫印迹; 豚鼠; 图 5
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, H5G11)被用于被用于免疫印迹在豚鼠样本上 (图 5). Methods Mol Biol (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫印迹在人类样本上 (图 3). Cell Oncol (Dordr) (2015) ncbi
小鼠 单克隆(H5G11)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-18821)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2014) ncbi
brown rat 单克隆(1D4B)
  • 免疫细胞化学; brown rat
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, SC-19992)被用于被用于免疫细胞化学在brown rat样本上. Traffic (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; fission yeast; 图 2
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫细胞化学在fission yeast样本上 (图 2). Autophagy (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化; 人类; 1:100
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, Sc-20011)被用于被用于免疫组化在人类样本上浓度为1:100. Brain Pathol (2015) ncbi
brown rat 单克隆(1D4B)
  • 免疫组化; 小鼠; 图 6c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, 1D4B)被用于被用于免疫组化在小鼠样本上 (图 6c). PLoS ONE (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 3
圣克鲁斯生物技术LAMP-1抗体(Santa, sc-20011)被用于被用于免疫细胞化学在人类样本上 (图 3). J Virol (2014) ncbi
小鼠 单克隆(H5G11)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc18821)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2013) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-17768)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotech, sc-17768)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, SC-17768)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Cycle (2012) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 小鼠; 1:250
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-17768)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250. J Comp Neurol (2009) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, H4A3)被用于被用于免疫细胞化学在人类样本上. J Lipid Res (2008) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). elife (2019) ncbi
brown rat 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 图 3b
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫细胞化学在小鼠样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上 (图 4a). Autophagy (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:1000; 图 3s1a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3s1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3g
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在小鼠样本上 (图 3g). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:800; 图 2b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 2b). Cell Death Dis (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 s3e
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫印迹在人类样本上 (图 s3e). Cell Death Differ (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1g
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上 (图 1g). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 2c
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, AB24170)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 2c). Nat Med (2018) ncbi
brown rat 单克隆(1D4B)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6a). Hum Mol Genet (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫组化在小鼠样本上 (图 3). Hum Genet (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3g
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在小鼠样本上 (图 3g). Cell Stem Cell (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s2e
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, 25630)被用于被用于免疫细胞化学在人类样本上 (图 s2e). Cell Host Microbe (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化; brown rat; 图 5d
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫组化在brown rat样本上 (图 5d). Front Mol Neurosci (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; African green monkey; 图 3b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在African green monkey样本上 (图 3b). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 s5a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s5a). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上 (图 5a). J Cell Biol (2018) ncbi
brown rat 单克隆(1D4B)
  • 免疫组化; 人类; 1:1000; 图 8a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, 1D4B)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 8a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4). Cell Mol Gastroenterol Hepatol (2018) ncbi
brown rat 单克隆(1D4B)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Cell Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; brown rat; 1:200; 图 1c
  • 免疫印迹; brown rat; 1:1000; 图 5c
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化在brown rat样本上浓度为1:200 (图 1c) 和 被用于免疫印迹在brown rat样本上浓度为1:1000 (图 5c). Stroke (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, Ab24170)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Am J Pathol (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5c
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上 (图 5c). EMBO J (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化; 人类; 图 1b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫组化在人类样本上 (图 1b). Biol Open (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4m
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上 (图 4m). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; brown rat; 1:100; 表 1
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化在brown rat样本上浓度为1:100 (表 1). Front Cell Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 3a
  • 免疫印迹; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Sci Rep (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 4a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4a). Cell Death Dis (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 黑腹果蝇; 图 2c
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫印迹在黑腹果蝇样本上 (图 2c). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; African green monkey; 1:600; 图 s1a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:600 (图 s1a). J Cell Sci (2017) ncbi
brown rat 单克隆(1D4B)
  • 免疫印迹; 小鼠; 图 s1c
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫印迹在小鼠样本上 (图 s1c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在小鼠样本上 (图 8). Cell Res (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; brown rat; 图 1b
艾博抗(上海)贸易有限公司LAMP-1抗体(AbCam, H4A3)被用于被用于流式细胞仪在brown rat样本上 (图 1b). Front Immunol (2016) ncbi
brown rat 单克隆(1D4B)
  • 免疫组化; 小鼠; 图 7a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫组化在小鼠样本上 (图 7a). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 s4
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, Ab24170)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s4). Sci Rep (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 9b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在人类样本上 (图 9b). J Virol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上 (图 2). Cell Microbiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; brown rat; 1:100; 图 1d
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化-石蜡切片在brown rat样本上浓度为1:100 (图 1d). Front Cell Neurosci (2016) ncbi
brown rat 单克隆(1D4B)
  • 免疫细胞化学; 小鼠
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫细胞化学在人类样本上. PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5
艾博抗(上海)贸易有限公司LAMP-1抗体(abcam, 24170)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Protein Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brown rat; 图 10
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在brown rat样本上 (图 10) 和 被用于免疫印迹在小鼠样本上 (图 8). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:750; 图 5
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上浓度为1:750 (图 5). Mol Brain (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:500; 图 3
艾博抗(上海)贸易有限公司LAMP-1抗体(abcam, ab25630)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在人类样本上 (图 s2). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1000 ng/ml; 图 10
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上浓度为1000 ng/ml (图 10). Part Fibre Toxicol (2016) ncbi
brown rat 单克隆(1D4B)
  • 免疫细胞化学; 人类; 1:300; 图 1
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 1). Front Cell Infect Microbiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2s1
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2s1). elife (2016) ncbi
brown rat 单克隆(1D4B)
  • 免疫印迹; 小鼠; 1:2000; 图 7a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7a). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, 24170)被用于被用于免疫细胞化学在人类样本上 (图 4). Arterioscler Thromb Vasc Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 10 ug/ml; 图 3
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上浓度为10 ug/ml (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 4f
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫印迹在人类样本上 (图 4f). Oncotarget (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:1000; 图 2a
  • 免疫印迹; 人类; 1:1000; 图 2s2g
  • 免疫细胞化学; 小鼠; 1:1000; 图 2c
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2a), 被用于免疫印迹在人类样本上浓度为1:1000 (图 2s2g) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2c). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:20; 图 7d
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 7d). Nat Commun (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 7
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在人类样本上 (图 7). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3). FASEB J (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; African green monkey; 1:200; 图 5b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:200 (图 5b). Nat Commun (2015) ncbi
brown rat 单克隆(1D4B)
  • 免疫印迹; 人类; 1:5000; 图 3b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3b). PLoS ONE (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 s10
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s10). Nat Neurosci (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:300
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam plc, ab25630)被用于被用于免疫印迹在人类样本上浓度为1:300. J Proteomics (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; brown rat; 1:100; 图 5
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在brown rat样本上浓度为1:100 (图 5). Mol Neurobiol (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在人类样本上. Methods Mol Biol (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化-冰冻切片; 小鼠; 图 5f
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5f). EMBO Mol Med (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在人类样本上 (图 1). Nature (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化; 人类; 1:200; 图 4a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4a). Stem Cells (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:100; 图 7
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, Ab25630)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7). PLoS ONE (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在人类样本上. J Cell Sci (2012) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 8d
赛默飞世尔LAMP-1抗体(Thermo, PA1-654A)被用于被用于免疫细胞化学在小鼠样本上 (图 8d). elife (2019) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔LAMP-1抗体(eBioscience, eBioH4A3)被用于被用于流式细胞仪在人类样本上 (图 2a). J Immunol (2018) ncbi
小鼠 单克隆(eBioH4A3)
  • 免疫细胞化学; 人类; 图 3f
赛默飞世尔LAMP-1抗体(eBiosciences, H4A4)被用于被用于免疫细胞化学在人类样本上 (图 3f). Nature (2017) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 图 s1b
赛默飞世尔LAMP-1抗体(eBiosciences, eBioH4A3)被用于被用于流式细胞仪在人类样本上 (图 s1b). J Immunol (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 猕猴; 图 4d
赛默飞世尔LAMP-1抗体(eBioscience, eBioH4A3)被用于被用于流式细胞仪在猕猴样本上 (图 4d). J Immunol (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 免疫细胞化学; 人类; 图 6a
赛默飞世尔LAMP-1抗体(ebioscience, 53-1079-42)被用于被用于免疫细胞化学在人类样本上 (图 6a). J Clin Invest (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 图 1d
赛默飞世尔LAMP-1抗体(eBiosciences, eBioH4A3)被用于被用于流式细胞仪在人类样本上 (图 1d). Clin Immunol (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 猕猴; 图 5a
赛默飞世尔LAMP-1抗体(eBioscience, eBioH4A3)被用于被用于流式细胞仪在猕猴样本上 (图 5a). Front Immunol (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 图 4d
赛默飞世尔LAMP-1抗体(eBioscience, eBioH4A3)被用于被用于流式细胞仪在人类样本上 (图 4d). PLoS Pathog (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 图 7
赛默飞世尔LAMP-1抗体(eBioscience, 15-107942)被用于被用于流式细胞仪在人类样本上 (图 7). Sci Rep (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 猕猴
赛默飞世尔LAMP-1抗体(eBioscience, 11-1079-42)被用于被用于流式细胞仪在猕猴样本上. Nat Med (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔LAMP-1抗体(eBioscience, eBioH4A3)被用于被用于流式细胞仪在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔LAMP-1抗体(eBiosciences, eBioH4A3)被用于被用于流式细胞仪在人类样本上 (图 4a). Sci Rep (2016) ncbi
小鼠 单克隆(Ly1C6)
  • 免疫印迹; 人类; 图 2
赛默飞世尔LAMP-1抗体(Thermo Fisher, MA1?C164)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 图 s3
赛默飞世尔LAMP-1抗体(eBioscience, eBioH4A3)被用于被用于流式细胞仪在人类样本上 (图 s3). J Immunol (2015) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类
赛默飞世尔LAMP-1抗体(eBioscience, ebioH4A3)被用于被用于流式细胞仪在人类样本上. J Virol (2015) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类
赛默飞世尔LAMP-1抗体(eBioscience, eBioH4A3)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类
赛默飞世尔LAMP-1抗体(eBioscience, eBioH4A3)被用于被用于流式细胞仪在人类样本上. Leukemia (2015) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类
赛默飞世尔LAMP-1抗体(eBioscience, eBioH4A3)被用于被用于流式细胞仪在人类样本上. Immunology (2014) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 0.5 ug/ml
赛默飞世尔LAMP-1抗体(eBioscience, H4A3)被用于被用于流式细胞仪在人类样本上浓度为0.5 ug/ml. J Virol (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 2
赛默飞世尔LAMP-1抗体(noco, noca)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (1990) ncbi
BioLegend
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 4c
BioLegendLAMP-1抗体(BioLegend, 328624)被用于被用于流式细胞仪在人类样本上 (图 4c). J Clin Invest (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 4a
BioLegendLAMP-1抗体(Biolegend, 328640)被用于被用于流式细胞仪在人类样本上 (图 4a). Cell (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 猪; 图 3e
BioLegendLAMP-1抗体(BioLegend, 328602)被用于被用于免疫细胞化学在猪样本上 (图 3e). Biochim Biophys Acta Mol Cell Biol Lipids (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 6a
BioLegendLAMP-1抗体(Biolegend, H4A3)被用于被用于流式细胞仪在人类样本上 (图 6a). PLoS Pathog (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 1
BioLegendLAMP-1抗体(Biolegend, H4A3)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS Pathog (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
BioLegendLAMP-1抗体(Biolegend, Clone H4A3)被用于被用于流式细胞仪在人类样本上. Int J Infect Dis (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
BioLegendLAMP-1抗体(Biolegend, Clone H4A3)被用于被用于流式细胞仪在人类样本上. Int J Infect Dis (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 4
BioLegendLAMP-1抗体(Biolegend, H4A3)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 4
BioLegendLAMP-1抗体(BioLegend, H4A3)被用于被用于流式细胞仪在人类样本上 (图 4). J Virol (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠; 1:100; 图 5
BioLegendLAMP-1抗体(Biolegend, H4A3)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5). Vaccine (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 3d
BioLegendLAMP-1抗体(BioLegend, H4A3)被用于被用于流式细胞仪在人类样本上 (图 3d). Blood (2014) ncbi
小鼠 单克隆(H4A3)
BioLegendLAMP-1抗体(BioLegend, H4A3)被用于. J Leukoc Biol (2014) ncbi
Enzo Life Sciences
小鼠 单克隆(Ly1C6)
  • 免疫细胞化学; brown rat; 1:100; 图 8c
Enzo Life SciencesLAMP-1抗体(Enzo Life Sciences, ADI-VAM-EN-001_D)被用于被用于免疫细胞化学在brown rat样本上浓度为1:100 (图 8c). J Gen Physiol (2017) ncbi
小鼠 单克隆(Ly1C6)
  • 免疫细胞化学; brown rat; 1 ug/ml; 图 2c
Enzo Life SciencesLAMP-1抗体(Stressgen Bioreagents, Ly1C6)被用于被用于免疫细胞化学在brown rat样本上浓度为1 ug/ml (图 2c). Glia (2016) ncbi
小鼠 单克隆(Ly1C6)
  • 免疫细胞化学; 人类; 1:100; 图 2
Enzo Life SciencesLAMP-1抗体(Enzo, LY1C6)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Physiol Rep (2015) ncbi
小鼠 单克隆(Ly1C6)
  • 免疫印迹; 小鼠; 1:3000; 图 2
Enzo Life SciencesLAMP-1抗体(Enzo Life Sciences, Ly1C6)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 2). Nat Cell Biol (2015) ncbi
小鼠 单克隆(Ly1C6)
  • 免疫细胞化学; 小鼠
Enzo Life SciencesLAMP-1抗体(Enzo Life Sciences, Ly1C6)被用于被用于免疫细胞化学在小鼠样本上. J Neurosci (2015) ncbi
小鼠 单克隆(Ly1C6)
  • 免疫细胞化学; brown rat; 图 5a
Enzo Life SciencesLAMP-1抗体(Enzo Lifesciences, ADI-VAM-EN001-D)被用于被用于免疫细胞化学在brown rat样本上 (图 5a). Cell Rep (2015) ncbi
小鼠 单克隆(Ly1C6)
  • 免疫印迹; 小鼠; 1:1000
Enzo Life SciencesLAMP-1抗体(Stressgen, VAM-EN001)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Cell Biol (2014) ncbi
安迪生物R&D
小鼠 单克隆(508921)
  • 免疫细胞化学; 人类; 1:100; 图 7
安迪生物R&DLAMP-1抗体(R&D Systems, MAB4800)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7). Autophagy (2017) ncbi
小鼠 单克隆(508921)
  • 免疫印迹; 人类; 图 4b
安迪生物R&DLAMP-1抗体(R&D Systems, MAB4800)被用于被用于免疫印迹在人类样本上 (图 4b). Sci Rep (2017) ncbi
Novus Biologicals
小鼠 单克隆(5H6)
  • 免疫组化; 小鼠; 图 1a
Novus BiologicalsLAMP-1抗体(Novus, NBP2-25154)被用于被用于免疫组化在小鼠样本上 (图 1a). Nat Commun (2018) ncbi
LifeSpan Biosciences
小鼠 单克隆
  • 流式细胞仪; brown rat; 图 1b
LifeSpan BiosciencesLAMP-1抗体(Lifespan, LS-C8580)被用于被用于流式细胞仪在brown rat样本上 (图 1b). Front Immunol (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫印迹在人类样本上 (图 6c). elife (2019) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 3243)被用于被用于免疫印迹在小鼠样本上 (图 s2a). EMBO J (2019) ncbi
domestic rabbit 单克隆(D2D11)
  • proximity ligation assay; 人类; 1:200; 图 5e
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于proximity ligation assay在人类样本上浓度为1:200 (图 5e). Cell Rep (2018) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 1d
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 9091)被用于被用于免疫细胞化学在人类样本上 (图 1d). Cell Metab (2019) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 9091)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2019) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫组化; 人类; 图 3a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, D2D11)被用于被用于免疫组化在人类样本上 (图 3a). J Cell Biol (2018) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 3243)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). J Exp Med (2018) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:200; 图 2d
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 9091)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2d). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:200; 图 3c
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 9091P)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3c). Mol Cell (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 人类; 图 s10a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫印迹在人类样本上 (图 s10a). Autophagy (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫组化; 人类; 图 4
赛信通(上海)生物试剂有限公司LAMP-1抗体(cell signalling, 9091)被用于被用于免疫组化在人类样本上 (图 4). Br J Cancer (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:200; 图 7a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, D2D11)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7a). J Cell Sci (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 4c
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, D2D11)被用于被用于免疫细胞化学在人类样本上 (图 4c). Mol Biol Cell (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 s5a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上 (图 s5a). Nature (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 流式细胞仪; 人类; 图 6a
赛信通(上海)生物试剂有限公司LAMP-1抗体(CST, 9091)被用于被用于流式细胞仪在人类样本上 (图 6a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 2c
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上 (图 2c). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 1e
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上 (图 1e). Nature (2017) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 小鼠; 图 s6f
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 3243)被用于被用于免疫印迹在小鼠样本上 (图 s6f). Nature (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:200; 图 4c
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4c). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:200; 图 3a
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3a) 和 被用于免疫印迹在人类样本上 (图 1c). Autophagy (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 2
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091P)被用于被用于免疫细胞化学在人类样本上 (图 2). Biosci Rep (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 3
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Tech, 9091)被用于被用于免疫细胞化学在人类样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 2
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上 (图 2). Autophagy (2016) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 3243)被用于被用于免疫印迹在小鼠样本上 (图 6c). Am J Physiol Heart Circ Physiol (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫组化; 人类; 1:1000; 图 4a
  • 免疫印迹; 人类; 1:2000; 图 7b
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 7b). Int J Oncol (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell signaling, 9091)被用于被用于免疫印迹在小鼠样本上 (图 6). Autophagy (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 s1a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, D2D11)被用于被用于免疫细胞化学在人类样本上 (图 s1a). EMBO Rep (2016) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 3243)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (表 1). J Neuropathol Exp Neurol (2016) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signalling, 3243)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:400; 图 6
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Tech, 9091)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Tech, CST-9091)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technologies, D2D11)被用于被用于免疫细胞化学在人类样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 s1a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 6
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 9091)被用于被用于免疫细胞化学在人类样本上 (图 6). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:1000; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:100
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Methods Mol Biol (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:200; 图 5
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 9091)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5) 和 被用于免疫印迹在人类样本上 (图 4). Mol Cancer Res (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 2n
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, D2D11)被用于被用于免疫细胞化学在人类样本上 (图 2n). MBio (2015) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 3243)被用于被用于免疫印迹在人类样本上 (图 3a). J Virol (2015) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 人类; 图 7g
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, D2D11)被用于被用于免疫印迹在人类样本上 (图 7g). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, D2D11)被用于被用于免疫细胞化学在人类样本上 (图 4). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, C54H11)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 3
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell signaling, D2D11)被用于被用于免疫细胞化学在人类样本上 (图 3). Cancer Immunol Res (2015) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 9091S)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 3243S)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, C54H11)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, C54H11)被用于被用于免疫印迹在人类样本上. Mol Vis (2014) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Death Dis (2013) ncbi
碧迪BD
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 1e
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 1e). J Immunol (2019) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 1g
碧迪BDLAMP-1抗体(BD Biosciences, 555802)被用于被用于流式细胞仪在人类样本上 (图 1g). Cell (2019) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2d
碧迪BDLAMP-1抗体(BD, 641581)被用于被用于流式细胞仪在人类样本上 (图 2d). Cell (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 s1e
碧迪BDLAMP-1抗体(BD pharmingen, 555798)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1e). J Cell Sci (2019) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 3a
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 3a). Blood (2019) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 5a, 5b, 5f, s6
碧迪BDLAMP-1抗体(BD, 555800)被用于被用于流式细胞仪在人类样本上 (图 5a, 5b, 5f, s6). Cell (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2b
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在人类样本上 (图 2b). Front Immunol (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s6a
碧迪BDLAMP-1抗体(BD Pharmingen, H4A3)被用于被用于流式细胞仪在人类样本上 (图 s6a). Sci Immunol (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 5a
碧迪BDLAMP-1抗体(BD Biosciences, 555801)被用于被用于流式细胞仪在人类样本上 (图 5a). Front Immunol (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 5a
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 5a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 6b
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 6b). Sci Rep (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2a
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 2a). Cancer Immunol Res (2018) ncbi
小鼠 单克隆(25/Lamp-1)
  • 免疫细胞化学; 人类; 1:100; 图 3c, s2b
碧迪BDLAMP-1抗体(BD, 611043)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3c, s2b). EMBO J (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2d
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 2d). J Clin Invest (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 7d
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 7d). J Biol Chem (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 5
碧迪BDLAMP-1抗体(BD Bioscience, H4A3)被用于被用于流式细胞仪在人类样本上 (图 5). J Immunol (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 5b
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 5b). J Immunol (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s6c
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 s6c). Nature (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:1000; 图 3a
碧迪BDLAMP-1抗体(BD Biosciences, 555798)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3a). Neurochem Int (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s6d
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 s6d). Science (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 7a
碧迪BDLAMP-1抗体(BD Biosciences, 555800)被用于被用于流式细胞仪在人类样本上 (图 7a). PLoS ONE (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BDLAMP-1抗体(BD Pharmingen, 641581)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Exp Ther Med (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 2i
碧迪BDLAMP-1抗体(BD, 555798)被用于被用于免疫细胞化学在人类样本上 (图 2i). J Cell Biol (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:2000; 图 s2c
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 s2c). J Cell Sci (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:100; 图 5a
碧迪BDLAMP-1抗体(Becton Dickinson, 555798)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5a). Autophagy (2017) ncbi
小鼠 单克隆(H4A3)
  • 其他; African green monkey; 图 s4
碧迪BDLAMP-1抗体(bd, H4A3)被用于被用于其他在African green monkey样本上 (图 s4). Nature (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 5
碧迪BDLAMP-1抗体(BD, 555802)被用于被用于流式细胞仪在人类样本上 (图 5). Eur J Immunol (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 13b
碧迪BDLAMP-1抗体(BD Biosciences, 555800)被用于被用于流式细胞仪在人类样本上 (图 13b). elife (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 1:10; 图 2b
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 2b). JCI Insight (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 5c
碧迪BDLAMP-1抗体(BD Bioscience, H4A3)被用于被用于流式细胞仪在人类样本上 (图 5c). Sci Rep (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 1f
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在人类样本上 (图 1f). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 表 1
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry A (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:500; 图 4a
碧迪BDLAMP-1抗体(BD Pharmingen, 555798)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Cell Microbiol (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 1
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 1). Mol Biol Cell (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 1e
碧迪BDLAMP-1抗体(BD Biosciences, 561343)被用于被用于流式细胞仪在人类样本上 (图 1e). JCI Insight (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2b
碧迪BDLAMP-1抗体(BD Biosciences, 555802)被用于被用于流式细胞仪在人类样本上 (图 2b). Cell (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 3
碧迪BDLAMP-1抗体(BD Biosciences, 555800)被用于被用于流式细胞仪在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在人类样本上. J Exp Med (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s4d
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 s4d). J Clin Invest (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 猕猴; 图 1b
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在猕猴样本上 (图 1b). J Virol (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2c
碧迪BDLAMP-1抗体(Becton-Dickinson, H4A3)被用于被用于流式细胞仪在人类样本上 (图 2c). J Immunol (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s9f
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在人类样本上 (图 s9f). Nature (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2
碧迪BDLAMP-1抗体(BD Bioscience, 555800)被用于被用于流式细胞仪在人类样本上 (图 2). Oncoimmunology (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 3a
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 3a). J Immunol (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 3f
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在人类样本上 (图 3f). J Clin Invest (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 1a
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 5b
碧迪BDLAMP-1抗体(BD Bioscience, H4A3)被用于被用于流式细胞仪在人类样本上 (图 5b). Nat Commun (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; African green monkey; 图 s1
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在African green monkey样本上 (图 s1). J Med Primatol (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s1a
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 s1a). Science (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s6
碧迪BDLAMP-1抗体(BD Biosciences, 555800)被用于被用于流式细胞仪在人类样本上 (图 s6). EMBO Mol Med (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 4
碧迪BDLAMP-1抗体(BD, 555798)被用于被用于免疫细胞化学在人类样本上 (图 4). Traffic (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 st1
碧迪BDLAMP-1抗体(BD, 555801)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 6
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 6). Oncoimmunology (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2
碧迪BDLAMP-1抗体(BD, 555802)被用于被用于流式细胞仪在人类样本上 (图 2). Oncoimmunology (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 10 ug/ml; 图 3
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上浓度为10 ug/ml (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(25/Lamp-1)
  • 免疫组化; 人类; 图 9
碧迪BDLAMP-1抗体(BD Biosciences, 611042)被用于被用于免疫组化在人类样本上 (图 9). Autophagy (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 1b
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在人类样本上 (图 1b). J Virol (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 5
碧迪BDLAMP-1抗体(BD Pharmingen, H4A3)被用于被用于流式细胞仪在人类样本上 (图 5). Tumour Biol (2016) ncbi
小鼠 单克隆(25/Lamp-1)
  • 免疫印迹; 人类
碧迪BDLAMP-1抗体(BD Biosciences, 611042)被用于被用于免疫印迹在人类样本上. elife (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 2
碧迪BDLAMP-1抗体(BD Biosciences, 555798)被用于被用于免疫细胞化学在人类样本上 (图 2). J Cell Biol (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Pharmingen, 555801)被用于被用于流式细胞仪在人类样本上. Am J Reprod Immunol (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 4
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在人类样本上 (图 4). J Cell Biol (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 4a
碧迪BDLAMP-1抗体(BD Pharmingen, H4A3)被用于被用于流式细胞仪在人类样本上 (图 4a). PLoS ONE (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化; 人类; 图 6d
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于免疫组化在人类样本上 (图 6d). Oncotarget (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 2). J Virol (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Biosciences, 555800)被用于被用于流式细胞仪在人类样本上. Cancer Immunol Immunother (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(25/Lamp-1)
  • 免疫印迹; 人类
碧迪BDLAMP-1抗体(BD Biosciences, 25)被用于被用于免疫印迹在人类样本上. Mol Immunol (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 表 s2
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (表 s2). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 4
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 4). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类
碧迪BDLAMP-1抗体(BD Pharmigen, 555798)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 3
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s3
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 s3). BMC Cancer (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; African green monkey; 图 s3
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于免疫细胞化学在African green monkey样本上 (图 s3). EMBO J (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:1000
碧迪BDLAMP-1抗体(BD, 555798)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上. Arthritis Rheumatol (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s3
碧迪BDLAMP-1抗体(BD Pharmingen, 555801)被用于被用于免疫细胞化学在人类样本上 (图 s3). J Cell Sci (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Pharmingen, H4A3)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2015) ncbi
小鼠 单克隆(25/Lamp-1)
  • 免疫组化-冰冻切片; 人类
碧迪BDLAMP-1抗体(BD Biosciences, 611042)被用于被用于免疫组化-冰冻切片在人类样本上. Ann Neurol (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Pharmingen, H4A3)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Bioscience, H4A3)被用于被用于流式细胞仪在人类样本上. Med Microbiol Immunol (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Bioscience, H4A3)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; African green monkey; 图 4
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在African green monkey样本上 (图 4). PLoS Pathog (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s1b
碧迪BDLAMP-1抗体(BD Biosciences, 555801)被用于被用于流式细胞仪在人类样本上 (图 s1b). Oncotarget (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Pharmingen, H4A3)被用于被用于流式细胞仪在人类样本上. Int J Cancer (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(H4A3)
  • 抑制或激活实验; 人类
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于抑制或激活实验在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上. Int J Cancer (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Biosciences, clone H4A3)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 1
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Immunother (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:1000
碧迪BDLAMP-1抗体(BD Pharmingen, 555798)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Traffic (2014) ncbi
小鼠 单克隆(25/Lamp-1)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 2
碧迪BDLAMP-1抗体(BD Transduction Laboratories, 611043)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 2). Cell Cycle (2013) ncbi
小鼠 单克隆(25/Lamp-1)
  • 免疫印迹; 人类
碧迪BDLAMP-1抗体(BD Transduction Laboratories, 611043)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 2c
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, h4a3)被用于被用于免疫细胞化学在人类样本上 (图 2c). Cell (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s1f
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 s1f). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(G1/139/5)
  • 免疫细胞化学; 人类; 图 5a
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, G1/139/5)被用于被用于免疫细胞化学在人类样本上 (图 5a). Sci Rep (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:1000; 图 1e
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1e). Science (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s1e
Developmental Studies Hybridoma BankLAMP-1抗体(BD Biosciences, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 s1e). EMBO J (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 5d
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫印迹在人类样本上 (图 5d). PLoS ONE (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠; 1:250; 图 9d
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 9d). J Neurosci (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:100; 图 s4d
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s4d). EMBO J (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:5; 图 7c
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:5 (图 7c). Hum Mol Genet (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 7a
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 7a). EMBO J (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 10c
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫印迹在人类样本上 (图 10c). elife (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:400; 图 5b
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 5b). Hum Mol Genet (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 1c
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 1c). J Virol (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 6e
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫印迹在人类样本上 (图 6e). Autophagy (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s6d
Developmental Studies Hybridoma BankLAMP-1抗体(Miltenyi Biotec, H4A3)被用于被用于流式细胞仪在人类样本上 (图 s6d). Cell Rep (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠; 1:300; 图 3
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 3). J Cell Sci (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 2a
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 2a). Microbiologyopen (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 6a
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 6a). J Biol Chem (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠; 1:200; 图 2b
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2b). J Gen Physiol (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 犬; 图 4a
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在犬样本上 (图 4a). J Cell Biol (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 2d
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 2d). J Cell Biol (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:1000; 图 6a
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Nat Commun (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 2b
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2b). PLoS ONE (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 1a
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 1a). EMBO Rep (2016) ncbi
小鼠 单克隆(G1/139/5)
  • 免疫细胞化学; 猪; 1:2; 图 4c
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, G1/139/5)被用于被用于免疫细胞化学在猪样本上浓度为1:2 (图 4c). PLoS Pathog (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 7g
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 7g). PLoS ONE (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 1
Developmental Studies Hybridoma BankLAMP-1抗体(Iowa Univ, H4A3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 1). Neuropathology (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s2
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3-s)被用于被用于免疫细胞化学在人类样本上 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 6a
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫印迹在人类样本上 (图 6a). J Immunol (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 2
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 1a
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 1a). Oncotarget (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化; 人类; 1:100
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫组化在人类样本上浓度为1:100. Data Brief (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s4a
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 s4a). Nat Genet (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:500; 图 6
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3-c)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:250; 图 4
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 4). J Cell Biol (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 s6
  • 免疫印迹; 人类; 1:500; 图 s7
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s6) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 s7). Nat Genet (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 图 5
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3-c)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Autophagy (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 4, 5
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 4, 5). MAbs (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s9f
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 s9f). Nature (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 5
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类
Developmental Studies Hybridoma BankLAMP-1抗体(University of Iowa Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上. J Clin Invest (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 2, 3, 4
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 2, 3, 4). Cardiovasc Res (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2
Developmental Studies Hybridoma BankLAMP-1抗体(Biolegend, H4A3)被用于被用于流式细胞仪在人类样本上 (图 2). J Infect Dis (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; fission yeast; 图 s4
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在fission yeast样本上 (图 s4). Nat Commun (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化-石蜡切片; 人类; 1:1000
Developmental Studies Hybridoma BankLAMP-1抗体(developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Neuropathology (2013) ncbi
默克密理博中国
domestic rabbit 多克隆
  • 免疫细胞化学; brown rat; 图 8c
默克密理博中国LAMP-1抗体(Millipore, AB2971)被用于被用于免疫细胞化学在brown rat样本上 (图 8c). Sci Rep (2017) ncbi
文章列表
  1. Laflamme C, McKeever P, Kumar R, Schwartz J, Kolahdouzan M, Chen C, et al. Implementation of an antibody characterization procedure and application to the major ALS/FTD disease gene C9ORF72. elife. 2019;8: pubmed 出版商
  2. Liao Y, Fernandopulle M, Wang G, Choi H, Hao L, Drerup C, et al. RNA Granules Hitchhike on Lysosomes for Long-Distance Transport, Using Annexin A11 as a Molecular Tether. Cell. 2019;179:147-164.e20 pubmed 出版商
  3. Yagensky O, Kohansal Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, et al. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. elife. 2019;8: pubmed 出版商
  4. Meckiff B, Ladell K, McLaren J, Ryan G, Leese A, James E, et al. Primary EBV Infection Induces an Acute Wave of Activated Antigen-Specific Cytotoxic CD4+ T Cells. J Immunol. 2019;203:1276-1287 pubmed 出版商
  5. Jennewein M, Goldfarb I, Dolatshahi S, Cosgrove C, Noelette F, Krykbaeva M, et al. Fc Glycan-Mediated Regulation of Placental Antibody Transfer. Cell. 2019;: pubmed 出版商
  6. Gauthier L, Morel A, Anceriz N, Rossi B, Blanchard Alvarez A, Grondin G, et al. Multifunctional Natural Killer Cell Engagers Targeting NKp46 Trigger Protective Tumor Immunity. Cell. 2019;177:1701-1713.e16 pubmed 出版商
  7. Pietila M, Sahgal P, Peuhu E, Jäntti N, Paatero I, Närvä E, et al. SORLA regulates endosomal trafficking and oncogenic fitness of HER2. Nat Commun. 2019;10:2340 pubmed 出版商
  8. Slobodnyuk K, Radic N, Ivanova S, Lladó A, Trempolec N, Zorzano A, et al. Autophagy-induced senescence is regulated by p38α signaling. Cell Death Dis. 2019;10:376 pubmed 出版商
  9. Sahgal P, Alanko J, Icha J, Paatero I, Hamidi H, Arjonen A, et al. GGA2 and RAB13 promote activity-dependent β1-integrin recycling. J Cell Sci. 2019;132: pubmed 出版商
  10. Guo M, Hartlova A, Gierlinski M, Prescott A, Castellvi J, Losa J, et al. Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. EMBO J. 2019;38: pubmed 出版商
  11. Ho P, Leung C, Liu H, Pang S, Lam C, Xian J, et al. Age-dependent accumulation of oligomeric SNCA/α-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: role for therapeutic activation of chaperone-mediated autophagy (CMA). Autophagy. 2019;:1-24 pubmed 出版商
  12. Saito T, Kuma A, Sugiura Y, Ichimura Y, Obata M, Kitamura H, et al. Autophagy regulates lipid metabolism through selective turnover of NCoR1. Nat Commun. 2019;10:1567 pubmed 出版商
  13. Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler R, Zhang S, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nat Neurosci. 2019;22:719-728 pubmed 出版商
  14. Sapmaz A, Berlin I, Bos E, Wijdeven R, Janssen H, Konietzny R, et al. USP32 regulates late endosomal transport and recycling through deubiquitylation of Rab7. Nat Commun. 2019;10:1454 pubmed 出版商
  15. Quinney K, Frankel E, Shankar R, Kasberg W, Luong P, Audhya A. Growth factor stimulation promotes multivesicular endosome biogenesis by prolonging recruitment of the late-acting ESCRT machinery. Proc Natl Acad Sci U S A. 2019;116:6858-6867 pubmed 出版商
  16. Zhang J, He J, Johnson J, Rahman F, Gavathiotis E, Cuervo A, et al. Chaperone-Mediated Autophagy Upregulation Rescues Megalin Expression and Localization in Cystinotic Proximal Tubule Cells. Front Endocrinol (Lausanne). 2019;10:21 pubmed 出版商
  17. Yeshaw W, van der Zwaag M, Pinto F, Lahaye L, Faber A, Gómez Sánchez R, et al. Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility. elife. 2019;8: pubmed 出版商
  18. Song K, Gras C, Capin G, Gimber N, Lehmann M, Mohd S, et al. A SEPT1-based scaffold is required for Golgi integrity and function. J Cell Sci. 2019;132: pubmed 出版商
  19. Adams J, Feuerborn M, Molina J, Wilden A, Adhikari B, Budden T, et al. Autophagy-lysosome pathway alterations and alpha-synuclein up-regulation in the subtype of neuronal ceroid lipofuscinosis, CLN5 disease. Sci Rep. 2019;9:151 pubmed 出版商
  20. Wang D, Xu Q, Yuan Q, Jia M, Niu H, Liu X, et al. Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab. Oncogene. 2019;38:3458-3474 pubmed 出版商
  21. Hallner A, Bernson E, Hussein B, Sander F, Brune M, Aurelius J, et al. The HLA-B -21 dimorphism impacts on NK cell education and clinical outcome of immunotherapy in acute myeloid leukemia. Blood. 2019;: pubmed 出版商
  22. Atakpa P, Thillaiappan N, Mataragka S, Prole D, Taylor C. IP3 Receptors Preferentially Associate with ER-Lysosome Contact Sites and Selectively Deliver Ca2+ to Lysosomes. Cell Rep. 2018;25:3180-3193.e7 pubmed 出版商
  23. Andre P, Denis C, Soulas C, Bourbon Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731-1743.e13 pubmed 出版商
  24. Theisen D, Davidson J, Briseño C, Gargaro M, Lauron E, Wang Q, et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science. 2018;362:694-699 pubmed 出版商
  25. Kuranda K, Jean Alphonse P, Leborgne C, Hardet R, Collaud F, Marmier S, et al. Exposure to wild-type AAV drives distinct capsid immunity profiles in humans. J Clin Invest. 2018;128:5267-5279 pubmed 出版商
  26. Shi G, OZOG S, Torbett B, Compton A. mTOR inhibitors lower an intrinsic barrier to virus infection mediated by IFITM3. Proc Natl Acad Sci U S A. 2018;115:E10069-E10078 pubmed 出版商
  27. Bradley T, Peppa D, Pedroza Pacheco I, Li D, Cain D, Henao R, et al. RAB11FIP5 Expression and Altered Natural Killer Cell Function Are Associated with Induction of HIV Broadly Neutralizing Antibody Responses. Cell. 2018;175:387-399.e17 pubmed 出版商
  28. Qiu T, Pei P, Yao X, Jiang L, Wei S, Wang Z, et al. Taurine attenuates arsenic-induced pyroptosis and nonalcoholic steatohepatitis by inhibiting the autophagic-inflammasomal pathway. Cell Death Dis. 2018;9:946 pubmed 出版商
  29. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  30. Son S, Park S, Lee H, Siddiqi F, Lee J, Menzies F, et al. Leucine Signals to mTORC1 via Its Metabolite Acetyl-Coenzyme A. Cell Metab. 2019;29:192-201.e7 pubmed 出版商
  31. Kim H, Mun Y, Lee K, Park Y, Park J, Park J, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;9:3630 pubmed 出版商
  32. Nnah I, Wang B, Saqcena C, Weber G, Bonder E, Bagley D, et al. TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy. 2019;15:151-164 pubmed 出版商
  33. Walwyn Brown K, Guldevall K, Saeed M, Pende D, Önfelt B, MacDonald A, et al. Human NK Cells Lyse Th2-Polarizing Dendritic Cells via NKp30 and DNAM-1. J Immunol. 2018;201:2028-2041 pubmed 出版商
  34. Massaro G, Mattar C, Wong A, Sirka E, Buckley S, Herbert B, et al. Fetal gene therapy for neurodegenerative disease of infants. Nat Med. 2018;24:1317-1323 pubmed 出版商
  35. Mahaweni N, Ehlers F, Sarkar S, Janssen J, Tilanus M, Bos G, et al. NKG2A Expression Is Not per se Detrimental for the Anti-Multiple Myeloma Activity of Activated Natural Killer Cells in an In Vitro System Mimicking the Tumor Microenvironment. Front Immunol. 2018;9:1415 pubmed 出版商
  36. Wang W, Xia Z, Farre J, Subramani S. TRIM37 deficiency induces autophagy through deregulating the MTORC1-TFEB axis. Autophagy. 2018;14:1574-1585 pubmed 出版商
  37. Messenger S, Woo S, Sun Z, Martin T. A Ca2+-stimulated exosome release pathway in cancer cells is regulated by Munc13-4. J Cell Biol. 2018;217:2877-2890 pubmed 出版商
  38. Alissafi T, Hatzioannou A, Mintzas K, Barouni R, Banos A, Sormendi S, et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Invest. 2018;128:3840-3852 pubmed 出版商
  39. Pellegrini L, Hauser D, Li Y, Mamais A, Beilina A, Kumaran R, et al. Proteomic analysis reveals co-ordinated alterations in protein synthesis and degradation pathways in LRRK2 knockout mice. Hum Mol Genet. 2018;27:3257-3271 pubmed 出版商
  40. Galperin M, Farenc C, Mukhopadhyay M, Jayasinghe D, Decroos A, Benati D, et al. CD4+ T cell-mediated HLA class II cross-restriction in HIV controllers. Sci Immunol. 2018;3: pubmed 出版商
  41. Capuano C, Battella S, Pighi C, Franchitti L, Turriziani O, Morrone S, et al. Tumor-Targeting Anti-CD20 Antibodies Mediate In Vitro Expansion of Memory Natural Killer Cells: Impact of CD16 Affinity Ligation Conditions and In Vivo Priming. Front Immunol. 2018;9:1031 pubmed 出版商
  42. Wang L, Feng Y, Yan D, Qin L, Grati M, Mittal R, et al. A dominant variant in the PDE1C gene is associated with nonsyndromic hearing loss. Hum Genet. 2018;137:437-446 pubmed 出版商
  43. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  44. Vera Ramirez L, Vodnala S, Nini R, Hunter K, Green J. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat Commun. 2018;9:1944 pubmed 出版商
  45. Quaranta V, Rainer C, Nielsen S, Raymant M, Ahmed M, Engle D, et al. Macrophage-Derived Granulin Drives Resistance to Immune Checkpoint Inhibition in Metastatic Pancreatic Cancer. Cancer Res. 2018;78:4253-4269 pubmed 出版商
  46. Sedlyarov V, Eichner R, Girardi E, Essletzbichler P, Goldmann U, Nunes Hasler P, et al. The Bicarbonate Transporter SLC4A7 Plays a Key Role in Macrophage Phagosome Acidification. Cell Host Microbe. 2018;23:766-774.e5 pubmed 出版商
  47. Wang E, Pjechova M, Nightingale K, Vlahava V, Patel M, Růcková E, et al. Suppression of costimulation by human cytomegalovirus promotes evasion of cellular immune defenses. Proc Natl Acad Sci U S A. 2018;115:4998-5003 pubmed 出版商
  48. Liu L, An D, Xu J, Shao B, Li X, Shi J. Ac2-26 Induces IKKβ Degradation Through Chaperone-Mediated Autophagy Via HSPB1 in NCM-Treated Microglia. Front Mol Neurosci. 2018;11:76 pubmed 出版商
  49. Skowyra M, Schlesinger P, Naismith T, Hanson P. Triggered recruitment of ESCRT machinery promotes endolysosomal repair. Science. 2018;360: pubmed 出版商
  50. Zhang C, Peng Y, Hublitz P, Zhang H, Dong T. Genetic abrogation of immune checkpoints in antigen-specific cytotoxic T-lymphocyte as a potential alternative to blockade immunotherapy. Sci Rep. 2018;8:5549 pubmed 出版商
  51. Takada N, Naito T, Inoue T, Nakayama K, Takatsu H, Shin H. Phospholipid-flipping activity of P4-ATPase drives membrane curvature. EMBO J. 2018;37: pubmed 出版商
  52. Lim J, Lim J, Kim G, Levine R. Myristoylated methionine sulfoxide reductase A is a late endosomal protein. J Biol Chem. 2018;293:7355-7366 pubmed 出版商
  53. Leeman D, Hebestreit K, Ruetz T, Webb A, McKay A, Pollina E, et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science. 2018;359:1277-1283 pubmed 出版商
  54. Zhao Y, Wu X, Li X, Jiang L, Gui X, Liu Y, et al. TREM2 Is a Receptor for β-Amyloid that Mediates Microglial Function. Neuron. 2018;97:1023-1031.e7 pubmed 出版商
  55. Marrone L, Bus C, Schöndorf D, Fitzgerald J, Kübler M, Schmid B, et al. Generation of iPSCs carrying a common LRRK2 risk allele for in vitro modeling of idiopathic Parkinson's disease. PLoS ONE. 2018;13:e0192497 pubmed 出版商
  56. Oei V, Siernicka M, Graczyk Jarzynka A, Hoel H, Yang W, Palacios D, et al. Intrinsic Functional Potential of NK-Cell Subsets Constrains Retargeting Driven by Chimeric Antigen Receptors. Cancer Immunol Res. 2018;6:467-480 pubmed 出版商
  57. Yurchenko M, Skjesol A, Ryan L, Richard G, Kandasamy R, Wang N, et al. SLAMF1 is required for TLR4-mediated TRAM-TRIF-dependent signaling in human macrophages. J Cell Biol. 2018;217:1411-1429 pubmed 出版商
  58. Carpier J, Zucchetti A, Bataille L, Dogniaux S, Shafaq Zadah M, Bardin S, et al. Rab6-dependent retrograde traffic of LAT controls immune synapse formation and T cell activation. J Exp Med. 2018;215:1245-1265 pubmed 出版商
  59. Mukadam A, Breusegem S, Seaman M. Analysis of novel endosome-to-Golgi retrieval genes reveals a role for PLD3 in regulating endosomal protein sorting and amyloid precursor protein processing. Cell Mol Life Sci. 2018;75:2613-2625 pubmed 出版商
  60. Lagrange B, Benaoudia S, Wallet P, Magnotti F, Provost A, Michal F, et al. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11. Nat Commun. 2018;9:242 pubmed 出版商
  61. Cox C, Lu R, Salcin K, Wilson J. The Endosomal Protein Endotubin Is Required for Enterocyte Differentiation. Cell Mol Gastroenterol Hepatol. 2018;5:145-156 pubmed 出版商
  62. Fletcher K, Ulferts R, Jacquin E, Veith T, Gammoh N, Arasteh J, et al. The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes. EMBO J. 2018;37: pubmed 出版商
  63. Pizzolla A, Nguyen T, Sant S, Jaffar J, Loudovaris T, Mannering S, et al. Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles. J Clin Invest. 2018;128:721-733 pubmed 出版商
  64. Shroff A, Sequeira R, Patel V, Reddy K. Knockout of autophagy gene, ATG5 in mice vaginal cells abrogates cytokine response and pathogen clearance during vaginal infection of Candida albicans. Cell Immunol. 2018;324:59-73 pubmed 出版商
  65. Cribbs A, Hookway E, Wells G, Lindow M, Obad S, Oerum H, et al. Inhibition of histone H3K27 demethylases selectively modulates inflammatory phenotypes of natural killer cells. J Biol Chem. 2018;293:2422-2437 pubmed 出版商
  66. Zhou K, Enkhjargal B, Xie Z, Sun C, Wu L, Malaguit J, et al. Dihydrolipoic Acid Inhibits Lysosomal Rupture and NLRP3 Through Lysosome-Associated Membrane Protein-1/Calcium/Calmodulin-Dependent Protein Kinase II/TAK1 Pathways After Subarachnoid Hemorrhage in Rat. Stroke. 2018;49:175-183 pubmed 出版商
  67. Pugh J, Nemat Gorgani N, Norman P, Guethlein L, Parham P. Human NK Cells Downregulate Zap70 and Syk in Response to Prolonged Activation or DNA Damage. J Immunol. 2018;200:1146-1158 pubmed 出版商
  68. Lee S, Bazick H, Chittoor Vinod V, Al Salihi M, Xia G, Notterpek L. Elevated Peripheral Myelin Protein 22, Reduced Mitotic Potential, and Proteasome Impairment in Dermal Fibroblasts from Charcot-Marie-Tooth Disease Type 1A Patients. Am J Pathol. 2018;188:728-738 pubmed 出版商
  69. Krey J, Dumont R, Wilmarth P, David L, Johnson K, Barr Gillespie P. ELMOD1 Stimulates ARF6-GTP Hydrolysis to Stabilize Apical Structures in Developing Vestibular Hair Cells. J Neurosci. 2018;38:843-857 pubmed 出版商
  70. Iseka F, Goetz B, Mushtaq I, An W, Cypher L, Bielecki T, et al. Role of the EHD Family of Endocytic Recycling Regulators for TCR Recycling and T Cell Function. J Immunol. 2018;200:483-499 pubmed 出版商
  71. Jimenez Orgaz A, Kvainickas A, Nägele H, Denner J, Eimer S, Dengjel J, et al. Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. EMBO J. 2018;37:235-254 pubmed 出版商
  72. Licon Munoz Y, Michel V, Fordyce C, Parra K. F-actin reorganization by V-ATPase inhibition in prostate cancer. Biol Open. 2017;6:1734-1744 pubmed 出版商
  73. Moody H, Lind M, Maher S. MicroRNA-31 Regulates Chemosensitivity in Malignant Pleural Mesothelioma. Mol Ther Nucleic Acids. 2017;8:317-329 pubmed 出版商
  74. Bartolomeo R, Cinque L, De Leonibus C, Forrester A, Salzano A, Monfregola J, et al. mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy. J Clin Invest. 2017;127:3717-3729 pubmed 出版商
  75. Rong X, Wang B, Palladino E, de Aguiar Vallim T, Ford D, Tontonoz P. ER phospholipid composition modulates lipogenesis during feeding and in obesity. J Clin Invest. 2017;127:3640-3651 pubmed 出版商
  76. Liu S, Liu H, Johnston A, Hanna Addams S, Reynoso E, Xiang Y, et al. MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis. Proc Natl Acad Sci U S A. 2017;114:E7450-E7459 pubmed 出版商
  77. Burr M, Sparbier C, Chan Y, Williamson J, Woods K, Beavis P, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017;549:101-105 pubmed 出版商
  78. Zhang X, Lian X, Dai Z, Zheng H, Chen X, Zheng Y. ?3-Deletion Isoform of HLA-A11 Modulates Cytotoxicity of NK Cells: Correlations with HIV-1 Infection of Cells. J Immunol. 2017;199:2030-2042 pubmed 出版商
  79. Wei J, Xu H, Meng W. Noncentrosomal microtubules regulate autophagosome transport through CAMSAP2-EB1 cross-talk. FEBS Lett. 2017;591:2379-2393 pubmed 出版商
  80. Wang W, Xia Z, Farré J, Subramani S. TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import. J Cell Biol. 2017;216:2843-2858 pubmed 出版商
  81. Gorvel L, Korenfeld D, Tung T, Klechevsky E. Dendritic Cell-Derived IL-32?: A Novel Inhibitory Cytokine of NK Cell Function. J Immunol. 2017;199:1290-1300 pubmed 出版商
  82. Olivares O, Mayers J, Gouirand V, Torrence M, Gicquel T, Borge L, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun. 2017;8:16031 pubmed 出版商
  83. Ott P, Hu Z, Keskin D, Shukla S, Sun J, Bozym D, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217-221 pubmed 出版商
  84. Laviolette L, Mermoud J, Calvo I, Olson N, Boukhali M, Steinlein O, et al. Negative regulation of EGFR signalling by the human folliculin tumour suppressor protein. Nat Commun. 2017;8:15866 pubmed 出版商
  85. Alissafi T, Banos A, Boon L, Sparwasser T, Ghigo A, Wing K, et al. Tregs restrain dendritic cell autophagy to ameliorate autoimmunity. J Clin Invest. 2017;127:2789-2804 pubmed 出版商
  86. Wang G, Zhou H, Strulovici Barel Y, Al Hijji M, Ou X, Salit J, et al. Role of OSGIN1 in mediating smoking-induced autophagy in the human airway epithelium. Autophagy. 2017;13:1205-1220 pubmed 出版商
  87. Shiba Fukushima K, Ishikawa K, Inoshita T, Izawa N, Takanashi M, Sato S, et al. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease. Hum Mol Genet. 2017;26:3172-3185 pubmed 出版商
  88. Vidoni C, Secomandi E, Castiglioni A, Melone M, Isidoro C. Resveratrol protects neuronal-like cells expressing mutant Huntingtin from dopamine toxicity by rescuing ATG4-mediated autophagosome formation. Neurochem Int. 2018;117:174-187 pubmed 出版商
  89. Sakamaki J, Wilkinson S, Hahn M, Tasdemir N, O Prey J, Clark W, et al. Bromodomain Protein BRD4 Is a Transcriptional Repressor of Autophagy and Lysosomal Function. Mol Cell. 2017;66:517-532.e9 pubmed 出版商
  90. Yamashita Y, Anczurowski M, Nakatsugawa M, Tanaka M, Kagoya Y, Sinha A, et al. HLA-DP84Gly constitutively presents endogenous peptides generated by the class I antigen processing pathway. Nat Commun. 2017;8:15244 pubmed 出版商
  91. Geraets R, Langin L, Cain J, Parker C, Beraldi R, Kovács A, et al. A tailored mouse model of CLN2 disease: A nonsense mutant for testing personalized therapies. PLoS ONE. 2017;12:e0176526 pubmed 出版商
  92. Stevanović S, Pasetto A, Helman S, Gartner J, Prickett T, Howie B, et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science. 2017;356:200-205 pubmed 出版商
  93. Allison R, Edgar J, Pearson G, Rizo T, Newton T, Günther S, et al. Defects in ER-endosome contacts impact lysosome function in hereditary spastic paraplegia. J Cell Biol. 2017;216:1337-1355 pubmed 出版商
  94. Kaczmarek D, Kokordelis P, Kramer B, Glässner A, Wolter F, Goeser F, et al. Alterations of the NK cell pool in HIV/HCV co-infection. PLoS ONE. 2017;12:e0174465 pubmed 出版商
  95. Wilhelm L, Wendling C, Vedie B, Kobayashi T, Chenard M, Tomasetto C, et al. STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites. EMBO J. 2017;36:1412-1433 pubmed 出版商
  96. Li Q, Xia S, Fang H, Pan J, Jia Y, Deng G. VEGF treatment promotes bone marrow-derived CXCR4+ mesenchymal stromal stem cell differentiation into vessel endothelial cells. Exp Ther Med. 2017;13:449-454 pubmed 出版商
  97. Suresh S, Chavalmane A, Dj V, Yarreiphang H, Rai S, Paul A, et al. A novel autophagy modulator 6-Bio ameliorates SNCA/?-synuclein toxicity. Autophagy. 2017;13:1221-1234 pubmed 出版商
  98. Kang H, Park J, Choi K, Kim Y, Choi H, Jung C, et al. Chemical screening identifies ATM as a target for alleviating senescence. Nat Chem Biol. 2017;13:616-623 pubmed 出版商
  99. Ghadially H, Brown L, Lloyd C, Lewis L, LEWIS A, Dillon J, et al. MHC class I chain-related protein A and B (MICA and MICB) are predominantly expressed intracellularly in tumour and normal tissue. Br J Cancer. 2017;116:1208-1217 pubmed 出版商
  100. Marwaha R, Arya S, Jagga D, Kaur H, Tuli A, Sharma M. The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes. J Cell Biol. 2017;216:1051-1070 pubmed 出版商
  101. Roy N, Pacini G, Berlioz Torrent C, Janvier K. Characterization of E3 ligases involved in lysosomal sorting of the HIV-1 restriction factor BST2. J Cell Sci. 2017;130:1596-1611 pubmed 出版商
  102. Hubber A, Kubori T, Coban C, Matsuzawa T, Ogawa M, Kawabata T, et al. Bacterial secretion system skews the fate of Legionella-containing vacuoles towards LC3-associated phagocytosis. Sci Rep. 2017;7:44795 pubmed 出版商
  103. Kober A, Manavalan A, Tam Amersdorfer C, Holmér A, Saeed A, Fanaee Danesh E, et al. Implications of cerebrovascular ATP-binding cassette transporter G1 (ABCG1) and apolipoprotein M in cholesterol transport at the blood-brain barrier. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862:573-588 pubmed 出版商
  104. Sanger A, Yip Y, Randall T, Pernigo S, Steiner R, Dodding M. SKIP controls lysosome positioning using a composite kinesin-1 heavy and light chain-binding domain. J Cell Sci. 2017;130:1637-1651 pubmed 出版商
  105. Varadaraj A, JENKINS L, Singh P, Chanda A, Snider J, Lee N, et al. TGF-β triggers rapid fibrillogenesis via a novel TβRII-dependent fibronectin-trafficking mechanism. Mol Biol Cell. 2017;28:1195-1207 pubmed 出版商
  106. Miles A, Burr S, Grice G, Nathan J. The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1? prolyl hydroxylation by regulating cellular iron levels. elife. 2017;6: pubmed 出版商
  107. Jacquin E, Leclerc Mercier S, Judon C, Blanchard E, Fraitag S, Florey O. Pharmacological modulators of autophagy activate a parallel noncanonical pathway driving unconventional LC3 lipidation. Autophagy. 2017;13:854-867 pubmed 出版商
  108. Nishimura Y, Gautam R, Chun T, Sadjadpour R, Foulds K, Shingai M, et al. Early antibody therapy can induce long-lasting immunity to SHIV. Nature. 2017;543:559-563 pubmed 出版商
  109. Kim J, Hyun H, Min S, Kang T. Sustained HSP25 Expression Induces Clasmatodendrosis via ER Stress in the Rat Hippocampus. Front Cell Neurosci. 2017;11:47 pubmed 出版商
  110. Sasaki Y, Hidaka T, Ueno T, Akiba Takagi M, Oliva Trejo J, Seki T, et al. Sorting Nexin 9 facilitates podocin endocytosis in the injured podocyte. Sci Rep. 2017;7:43921 pubmed 出版商
  111. Bagh M, Peng S, Chandra G, Zhang Z, Singh S, Pattabiraman N, et al. Misrouting of v-ATPase subunit V0a1 dysregulates lysosomal acidification in a neurodegenerative lysosomal storage disease model. Nat Commun. 2017;8:14612 pubmed 出版商
  112. Cardinaud S, Urrutia A, Rouers A, Coulon P, Kervevan J, Richetta C, et al. Triggering of TLR-3, -4, NOD2, and DC-SIGN reduces viral replication and increases T-cell activation capacity of HIV-infected human dendritic cells. Eur J Immunol. 2017;47:818-829 pubmed 出版商
  113. Pi H, Li M, Tian L, Yang Z, Yu Z, Zhou Z. Enhancing lysosomal biogenesis and autophagic flux by activating the transcription factor EB protects against cadmium-induced neurotoxicity. Sci Rep. 2017;7:43466 pubmed 出版商
  114. Vazquez Cintron E, Beske P, Tenezaca L, Tran B, Oyler J, Glotfelty E, et al. Engineering Botulinum Neurotoxin C1 as a Molecular Vehicle for Intra-Neuronal Drug Delivery. Sci Rep. 2017;7:42923 pubmed 出版商
  115. Peng M, Yin N, Li M. SZT2 dictates GATOR control of mTORC1 signalling. Nature. 2017;543:433-437 pubmed 出版商
  116. Jung J, Nayak A, Schaeffer V, Starzetz T, Kirsch A, Muller S, et al. Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator. elife. 2017;6: pubmed 出版商
  117. Ganesan R, Hos N, Gutierrez S, Fischer J, Stepek J, Daglidu E, et al. Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS Pathog. 2017;13:e1006227 pubmed 出版商
  118. Fielding C, Weekes M, Nobre L, Růcková E, Wilkie G, Paulo J, et al. Control of immune ligands by members of a cytomegalovirus gene expansion suppresses natural killer cell activation. elife. 2017;6: pubmed 出版商
  119. Yuan H, Tan B, Gao S. Tenovin-6 impairs autophagy by inhibiting autophagic flux. Cell Death Dis. 2017;8:e2608 pubmed 出版商
  120. Sugiura A, Mattie S, Prudent J, McBride H. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature. 2017;542:251-254 pubmed 出版商
  121. Koh H, Kim Y, Kim J, Yun J, Jang K, Yang C. Toxoplasma gondii GRA7-Targeted ASC and PLD1 Promote Antibacterial Host Defense via PKCα. PLoS Pathog. 2017;13:e1006126 pubmed 出版商
  122. Zimmermann Meisse G, Prevost G, Jover E. Above and beyond C5a Receptor Targeting by Staphylococcal Leucotoxins: Retrograde Transport of Panton-Valentine Leucocidin and ?-Hemolysin. Toxins (Basel). 2017;9: pubmed 出版商
  123. Vonk J, Yeshaw W, Pinto F, Faber A, Lahaye L, Kanon B, et al. Drosophila Vps13 Is Required for Protein Homeostasis in the Brain. PLoS ONE. 2017;12:e0170106 pubmed 出版商
  124. Hofhuis J, Bersch K, Büssenschütt R, Drzymalski M, Liebetanz D, Nikolaev V, et al. Dysferlin mediates membrane tubulation and links T-tubule biogenesis to muscular dystrophy. J Cell Sci. 2017;130:841-852 pubmed 出版商
  125. Raposo R, de Mulder Rougvie M, Paquin Proulx D, Brailey P, Cabido V, Zdinak P, et al. IFITM1 targets HIV-1 latently infected cells for antibody-dependent cytolysis. JCI Insight. 2017;2:e85811 pubmed 出版商
  126. Prasad A, Kulkarni R, Jiang S, Groopman J. Cocaine Enhances DC to T-cell HIV-1 Transmission by Activating DC-SIGN/LARG/LSP1 Complex and Facilitating Infectious Synapse Formation. Sci Rep. 2017;7:40648 pubmed 出版商
  127. Gao Y, Chen Y, Zhan S, Zhang W, Xiong F, Ge W. Comprehensive proteome analysis of lysosomes reveals the diverse function of macrophages in immune responses. Oncotarget. 2017;8:7420-7440 pubmed 出版商
  128. Borgia D, Malena A, Spinazzi M, Desbats M, Salviati L, Russell A, et al. Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients. Hum Mol Genet. 2017;26:1087-1103 pubmed 出版商
  129. Nakajima S, Aikawa C, Nozawa T, Minowa Nozawa A, Toh H, Nakagawa I. Bcl-xL Affects Group A Streptococcus-Induced Autophagy Directly, by Inhibiting Fusion between Autophagosomes and Lysosomes, and Indirectly, by Inhibiting Bacterial Internalization via Interaction with Beclin 1-UVRAG. PLoS ONE. 2017;12:e0170138 pubmed 出版商
  130. Luo Y, Duan H, Qian Y, Feng L, Wu Z, Wang F, et al. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res. 2017;27:352-372 pubmed 出版商
  131. Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H, Sonnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354 pubmed 出版商
  132. Cianciola N, Chung S, Manor D, Carlin C. Adenovirus Modulates Toll-Like Receptor 4 Signaling by Reprogramming ORP1L-VAP Protein Contacts for Cholesterol Transport from Endosomes to the Endoplasmic Reticulum. J Virol. 2017;91: pubmed 出版商
  133. Muranen T, Iwanicki M, Curry N, Hwang J, DuBois C, Coloff J, et al. Starved epithelial cells uptake extracellular matrix for survival. Nat Commun. 2017;8:13989 pubmed 出版商
  134. Li G, Fu R, Shen H, Zhou J, Hu X, Liu Y, et al. Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels. Oncotarget. 2017;8:10359-10374 pubmed 出版商
  135. Calamita P, Miluzio A, Russo A, Pesce E, Ricciardi S, Khanim F, et al. SBDS-Deficient Cells Have an Altered Homeostatic Equilibrium due to Translational Inefficiency Which Explains their Reduced Fitness and Provides a Logical Framework for Intervention. PLoS Genet. 2017;13:e1006552 pubmed 出版商
  136. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 2017;541:228-232 pubmed 出版商
  137. Sudworth A, Dai K, Vaage J, Kveberg L. Degranulation Response in Cytotoxic Rat Lymphocytes Measured with a Novel CD107a Antibody. Front Immunol. 2016;7:572 pubmed 出版商
  138. Song H, Chiang H, Tseng W, Wu P, Chien C, Leu H, et al. Using CRISPR/Cas9-Mediated GLA Gene Knockout as an In Vitro Drug Screening Model for Fabry Disease. Int J Mol Sci. 2016;17: pubmed
  139. Assadi G, Vesterlund L, Bonfiglio F, Mazzurana L, Cordeddu L, Schepis D, et al. Functional Analyses of the Crohn's Disease Risk Gene LACC1. PLoS ONE. 2016;11:e0168276 pubmed 出版商
  140. Da Ros M, Lehtiniemi T, Olotu O, Fischer D, Zhang F, Vihinen H, et al. FYCO1 and autophagy control the integrity of the haploid male germ cell-specific RNP granules. Autophagy. 2017;13:302-321 pubmed 出版商
  141. Shi B, Huang Q, Birkett R, Doyle R, Dorfleutner A, Stehlik C, et al. SNAPIN is critical for lysosomal acidification and autophagosome maturation in macrophages. Autophagy. 2017;13:285-301 pubmed 出版商
  142. Walenbergh S, Houben T, Rensen S, Bieghs V, Hendrikx T, van Gorp P, et al. Plasma cathepsin D correlates with histological classifications of fatty liver disease in adults and responds to intervention. Sci Rep. 2016;6:38278 pubmed 出版商
  143. Ryan P, Sumaria N, Holland C, Bradford C, Izotova N, Grandjean C, et al. Heterogeneous yet stable Vδ2(+) T-cell profiles define distinct cytotoxic effector potentials in healthy human individuals. Proc Natl Acad Sci U S A. 2016;113:14378-14383 pubmed
  144. Wolfes A, Ahmed S, Awasthi A, Stahlberg M, Rajput A, Magruder D, et al. A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes. J Gen Physiol. 2017;149:149-170 pubmed 出版商
  145. Sambri I, D Alessio R, Ezhova Y, Giuliano T, Sorrentino N, Cacace V, et al. Lysosomal dysfunction disrupts presynaptic maintenance and restoration of presynaptic function prevents neurodegeneration in lysosomal storage diseases. EMBO Mol Med. 2017;9:112-132 pubmed 出版商
  146. Galindo Albarrán A, López Portales O, Gutiérrez Reyna D, Rodríguez Jorge O, Sánchez Villanueva J, Ramirez Pliego O, et al. CD8+ T Cells from Human Neonates Are Biased toward an Innate Immune Response. Cell Rep. 2016;17:2151-2160 pubmed 出版商
  147. Sumatoh H, Teng K, Cheng Y, Newell E. Optimization of mass cytometry sample cryopreservation after staining. Cytometry A. 2017;91:48-61 pubmed 出版商
  148. Cuff A, Robertson F, Stegmann K, Pallett L, Maini M, Davidson B, et al. Eomeshi NK Cells in Human Liver Are Long-Lived and Do Not Recirculate but Can Be Replenished from the Circulation. J Immunol. 2016;197:4283-4291 pubmed
  149. Zhu P, Liang L, Shao X, Luo W, Jiang S, Zhao Q, et al. Host Cellular Protein TRAPPC6AΔ Interacts with Influenza A Virus M2 Protein and Regulates Viral Propagation by Modulating M2 Trafficking. J Virol. 2017;91: pubmed 出版商
  150. Jaber N, Mohd Naim N, Wang Z, Deleon J, Kim S, Zhong H, et al. Vps34 regulates Rab7 and late endocytic trafficking through recruitment of the GTPase-activating protein Armus. J Cell Sci. 2016;129:4424-4435 pubmed
  151. Rofe A, Davis L, Whittingham J, Latimer Bowman E, Wilkinson A, Pryor P. The Rhodococcus equi virulence protein VapA disrupts endolysosome function and stimulates lysosome biogenesis. Microbiologyopen. 2017;6: pubmed 出版商
  152. Malet J, Cossart P, Ribet D. Alteration of epithelial cell lysosomal integrity induced by bacterial cholesterol-dependent cytolysins. Cell Microbiol. 2017;19: pubmed 出版商
  153. Tanaka Y, Ono N, Shima T, Tanaka G, Katoh Y, Nakayama K, et al. The phospholipid flippase ATP9A is required for the recycling pathway from the endosomes to the plasma membrane. Mol Biol Cell. 2016;27:3883-3893 pubmed
  154. Hu X, Valentin A, Dayton F, Kulkarni V, Alicea C, Rosati M, et al. DNA Prime-Boost Vaccine Regimen To Increase Breadth, Magnitude, and Cytotoxicity of the Cellular Immune Responses to Subdominant Gag Epitopes of Simian Immunodeficiency Virus and HIV. J Immunol. 2016;197:3999-4013 pubmed
  155. Roberts B, Svoboda R, Overmiller A, Lewis J, Kowalczyk A, Mahoney M, et al. Palmitoylation of Desmoglein 2 Is a Regulator of Assembly Dynamics and Protein Turnover. J Biol Chem. 2016;291:24857-24865 pubmed
  156. Oon S, Huynh H, Tai T, Ng M, Monaghan K, Biondo M, et al. A cytotoxic anti-IL-3Rα antibody targets key cells and cytokines implicated in systemic lupus erythematosus. JCI Insight. 2016;1:e86131 pubmed 出版商
  157. Rahman N, Ramos Espiritu L, Milner T, Buck J, Levin L. Soluble adenylyl cyclase is essential for proper lysosomal acidification. J Gen Physiol. 2016;148:325-39 pubmed 出版商
  158. Kim S, Roy S, Chen B, Nguyen T, McMonigle R, McCracken A, et al. Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. J Clin Invest. 2016;126:4088-4102 pubmed 出版商
  159. Lu L, Chung A, Rosebrock T, Ghebremichael M, Yu W, Grace P, et al. A Functional Role for Antibodies in Tuberculosis. Cell. 2016;167:433-443.e14 pubmed 出版商
  160. Willemen Y, Van den Bergh J, Bonte S, Anguille S, Heirman C, Stein B, et al. The tumor-associated antigen RHAMM (HMMR/CD168) is expressed by monocyte-derived dendritic cells and presented to T cells. Oncotarget. 2016;7:73960-73970 pubmed 出版商
  161. Wang Y, Ma C, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413-2435 pubmed
  162. Wahid R, Fresnay S, Levine M, Sztein M. Cross-reactive multifunctional CD4+ T cell responses against Salmonella enterica serovars Typhi, Paratyphi A and Paratyphi B in humans following immunization with live oral typhoid vaccine Ty21a. Clin Immunol. 2016;173:87-95 pubmed 出版商
  163. Vargas Inchaustegui D, Ying O, Demberg T, Robert Guroff M. Evaluation of Functional NK Cell Responses in Vaccinated and SIV-Infected Rhesus Macaques. Front Immunol. 2016;7:340 pubmed 出版商
  164. Lee H, Noh H, Mun J, Gu C, Sever S, Park S. Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis. Nat Commun. 2016;7:12799 pubmed 出版商
  165. Żarska M, Novotný F, Havel F, Sramek M, Babelova A, Benada O, et al. Two-Step Mechanism of Cellular Uptake of Cationic Gold Nanoparticles Modified by (16-Mercaptohexadecyl)trimethylammonium Bromide. Bioconjug Chem. 2016;27:2558-2574 pubmed
  166. Landtwing V, Raykova A, Pezzino G, Beziat V, Marcenaro E, Graf C, et al. Cognate HLA absence in trans diminishes human NK cell education. J Clin Invest. 2016;126:3772-3782 pubmed 出版商
  167. Ayala V, Trivett M, Barsov E, Jain S, Piatak M, Trubey C, et al. Adoptive Transfer of Engineered Rhesus Simian Immunodeficiency Virus-Specific CD8+ T Cells Reduces the Number of Transmitted/Founder Viruses Established in Rhesus Macaques. J Virol. 2016;90:9942-9952 pubmed 出版商
  168. Dolat L, Spiliotis E. Septins promote macropinosome maturation and traffic to the lysosome by facilitating membrane fusion. J Cell Biol. 2016;214:517-27 pubmed 出版商
  169. Weikel K, Cacicedo J, Ruderman N, Ido Y. Knockdown of GSK3β increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Biosci Rep. 2016;36: pubmed 出版商
  170. McMillan K, Gallon M, Jellett A, Clairfeuille T, Tilley F, McGough I, et al. Atypical parkinsonism-associated retromer mutant alters endosomal sorting of specific cargo proteins. J Cell Biol. 2016;214:389-99 pubmed 出版商
  171. Luessen D, Hinshaw T, Sun H, Howlett A, MARRS G, McCool B, et al. RGS2 modulates the activity and internalization of dopamine D2 receptors in neuroblastoma N2A cells. Neuropharmacology. 2016;110:297-307 pubmed 出版商
  172. Hervier B, Perez M, Allenbach Y, Devilliers H, Cohen F, Uzunhan Y, et al. Involvement of NK Cells and NKp30 Pathway in Antisynthetase Syndrome. J Immunol. 2016;197:1621-30 pubmed 出版商
  173. Huang L, Stuart C, Takeda K, D Agnillo F, Golding B. Poly(I:C) Induces Human Lung Endothelial Barrier Dysfunction by Disrupting Tight Junction Expression of Claudin-5. PLoS ONE. 2016;11:e0160875 pubmed 出版商
  174. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature. 2016;537:412-428 pubmed 出版商
  175. Demers K, Makedonas G, Buggert M, Eller M, Ratcliffe S, Goonetilleke N, et al. Temporal Dynamics of CD8+ T Cell Effector Responses during Primary HIV Infection. PLoS Pathog. 2016;12:e1005805 pubmed 出版商
  176. Kritikou J, Dahlberg C, Baptista M, Wagner A, Banerjee P, Gwalani L, et al. IL-2 in the tumor microenvironment is necessary for Wiskott-Aldrich syndrome protein deficient NK cells to respond to tumors in vivo. Sci Rep. 2016;6:30636 pubmed 出版商
  177. Peper J, Bösmüller H, Schuster H, Gückel B, Hörzer H, Roehle K, et al. HLA ligandomics identifies histone deacetylase 1 as target for ovarian cancer immunotherapy. Oncoimmunology. 2016;5:e1065369 pubmed 出版商
  178. Kawahara K, Hirata H, Ohbuchi K, Nishi K, Maeda A, Kuniyasu A, et al. The novel monoclonal antibody 9F5 reveals expression of a fragment of GPNMB/osteoactivin processed by furin-like protease(s) in a subpopulation of microglia in neonatal rat brain. Glia. 2016;64:1938-61 pubmed 出版商
  179. Sadallah S, Schmied L, Eken C, Charoudeh H, Amicarella F, Schifferli J. Platelet-Derived Ectosomes Reduce NK Cell Function. J Immunol. 2016;197:1663-71 pubmed 出版商
  180. Want A, Gillespie S, Wang Z, Gordon R, Iomini C, Ritch R, et al. Autophagy and Mitochondrial Dysfunction in Tenon Fibroblasts from Exfoliation Glaucoma Patients. PLoS ONE. 2016;11:e0157404 pubmed 出版商
  181. Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, et al. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome. EMBO Mol Med. 2016;8:1019-38 pubmed 出版商
  182. Fernández B, Fdez E, Gomez Suaga P, Gil F, Molina Villalba I, Ferrer I, et al. Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A. Autophagy. 2016;12:1487-506 pubmed 出版商
  183. Zhang X, Cheng X, Yu L, Yang J, Calvo R, Patnaik S, et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun. 2016;7:12109 pubmed 出版商
  184. Justis A, Hansen B, Beare P, King K, Heinzen R, Gilk S. Interactions between the Coxiella burnetii parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L. Cell Microbiol. 2017;19: pubmed 出版商
  185. Marquer C, Tian H, Yi J, Bastien J, Dall Armi C, Yang Klingler Y, et al. Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism. Nat Commun. 2016;7:11919 pubmed 出版商
  186. Kuramoto K, Wang N, Fan Y, Zhang W, Schoenen F, Frankowski K, et al. Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids. Autophagy. 2016;12:1460-71 pubmed 出版商
  187. Xie N, Yuan K, Zhou L, Wang K, Chen H, Lei Y, et al. PRKAA/AMPK restricts HBV replication through promotion of autophagic degradation. Autophagy. 2016;12:1507-20 pubmed 出版商
  188. Andersson A, Andersson B, Lorell C, Raffetseder J, Larsson M, Blomgran R. Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages. Sci Rep. 2016;6:28171 pubmed 出版商
  189. Xu Y, Chaudhury A, Zhang M, Savoldo B, Metelitsa L, Rodgers J, et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Invest. 2016;126:2678-88 pubmed 出版商
  190. Safaiyan S, Kannaiyan N, Snaidero N, Brioschi S, Biber K, Yona S, et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat Neurosci. 2016;19:995-8 pubmed 出版商
  191. Li W, Jin D, Hata M, Takai S, Yamanishi K, Shen W, et al. Dysfunction of mitochondria and deformed gap junctions in the heart of IL-18-deficient mice. Am J Physiol Heart Circ Physiol. 2016;311:H313-25 pubmed 出版商
  192. Wu X, Zhao L, Chen Z, Ji X, Qiao X, Jin Y, et al. FLCN Maintains the Leucine Level in Lysosome to Stimulate mTORC1. PLoS ONE. 2016;11:e0157100 pubmed 出版商
  193. Ko A, Hyun H, Min S, Kim J. The Differential DRP1 Phosphorylation and Mitochondrial Dynamics in the Regional Specific Astroglial Death Induced by Status Epilepticus. Front Cell Neurosci. 2016;10:124 pubmed 出版商
  194. Vaccari M, Gordon S, Fourati S, Schifanella L, Liyanage N, Cameron M, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med. 2016;22:762-70 pubmed 出版商
  195. Goodier M, Rodríguez Galán A, Lusa C, Nielsen C, Darboe A, Moldoveanu A, et al. Influenza Vaccination Generates Cytokine-Induced Memory-like NK Cells: Impact of Human Cytomegalovirus Infection. J Immunol. 2016;197:313-25 pubmed 出版商
  196. Kwon H, Choi G, Ryu S, Kwon S, Kim S, Booth C, et al. Stepwise phosphorylation of p65 promotes NF-?B activation and NK cell responses during target cell recognition. Nat Commun. 2016;7:11686 pubmed 出版商
  197. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  198. Nakamura T, Furukawa A, Uchida K, Ogawa T, Tamura T, Sakonishi D, et al. Autophagy Induced by Intracellular Infection of Propionibacterium acnes. PLoS ONE. 2016;11:e0156298 pubmed 出版商
  199. Okato A, Goto Y, Kurozumi A, Kato M, Kojima S, Matsushita R, et al. Direct regulation of LAMP1 by tumor-suppressive microRNA-320a in prostate cancer. Int J Oncol. 2016;49:111-22 pubmed 出版商
  200. Bao J, Zheng L, Zhang Q, Li X, Zhang X, Li Z, et al. Deacetylation of TFEB promotes fibrillar A? degradation by upregulating lysosomal biogenesis in microglia. Protein Cell. 2016;7:417-33 pubmed 出版商
  201. Strønen E, Toebes M, Kelderman S, van Buuren M, Yang W, van Rooij N, et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science. 2016;352:1337-41 pubmed 出版商
  202. Yin W, Tong S, Zhang Q, Shao J, Liu Q, Peng H, et al. Functional dichotomy of Vδ2 γδ T cells in chronic hepatitis C virus infections: role in cytotoxicity but not for IFN-γ production. Sci Rep. 2016;6:26296 pubmed 出版商
  203. Jin C, Fotaki G, Ramachandran M, Nilsson B, Essand M, Yu D. Safe engineering of CAR T cells for adoptive cell therapy of cancer using long-term episomal gene transfer. EMBO Mol Med. 2016;8:702-11 pubmed 出版商
  204. Scharn C, Collins A, Nair V, Stamm C, MARCIANO D, Graviss E, et al. Heme Oxygenase-1 Regulates Inflammation and Mycobacterial Survival in Human Macrophages during Mycobacterium tuberculosis Infection. J Immunol. 2016;196:4641-9 pubmed 出版商
  205. Song J, Sun Y, Peluso I, Zeng Y, Yu X, Lu J, et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy. 2016;12:1372-89 pubmed 出版商
  206. Pastore N, Brady O, Diab H, Martina J, Sun L, Huynh T, et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy. 2016;12:1240-58 pubmed 出版商
  207. Karvela M, Baquero P, Kuntz E, Mukhopadhyay A, Mitchell R, Allan E, et al. ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells. Autophagy. 2016;12:936-48 pubmed 出版商
  208. De Filippis L, Halikere A, McGowan H, Moore J, Tischfield J, Hart R, et al. Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells. Mol Brain. 2016;9:51 pubmed 出版商
  209. Rapiteanu R, Davis L, Williamson J, Timms R, Paul Luzio J, Lehner P. A Genetic Screen Identifies a Critical Role for the WDR81-WDR91 Complex in the Trafficking and Degradation of Tetherin. Traffic. 2016;17:940-58 pubmed 出版商
  210. Vieyres G, Welsch K, Gerold G, Gentzsch J, Kahl S, Vondran F, et al. ABHD5/CGI-58, the Chanarin-Dorfman Syndrome Protein, Mobilises Lipid Stores for Hepatitis C Virus Production. PLoS Pathog. 2016;12:e1005568 pubmed 出版商
  211. Starling G, Yip Y, Sanger A, Morton P, Eden E, Dodding M. Folliculin directs the formation of a Rab34-RILP complex to control the nutrient-dependent dynamic distribution of lysosomes. EMBO Rep. 2016;17:823-41 pubmed 出版商
  212. Hernaez B, Guerra M, Salas M, Andres G. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes. PLoS Pathog. 2016;12:e1005595 pubmed 出版商
  213. Li Z, Ji X, Wang W, Liu J, Liang X, Wu H, et al. Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR. PLoS ONE. 2016;11:e0153526 pubmed 出版商
  214. Corcelle Termeau E, Vindeløv S, Hämälistö S, Mograbi B, Keldsbo A, Bräsen J, et al. Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure. Autophagy. 2016;12:833-49 pubmed 出版商
  215. Dimitrova M, Zenarruzabeitia O, Borrego F, Simhadri V. CD300c is uniquely expressed on CD56 bright Natural Killer Cells and differs from CD300a upon ligand recognition. Sci Rep. 2016;6:23942 pubmed 出版商
  216. Krishnan V, White Z, McMahon C, Hodgetts S, Fitzgerald M, Shavlakadze T, et al. A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice. J Neuropathol Exp Neurol. 2016;75:464-78 pubmed 出版商
  217. Hiraku Y, Guo F, Ma N, Yamada T, Wang S, Kawanishi S, et al. Multi-walled carbon nanotube induces nitrative DNA damage in human lung epithelial cells via HMGB1-RAGE interaction and Toll-like receptor 9 activation. Part Fibre Toxicol. 2016;13:16 pubmed 出版商
  218. Pawar K, Sharbati J, Einspanier R, Sharbati S. Mycobacterium bovis BCG Interferes with miR-3619-5p Control of Cathepsin S in the Process of Autophagy. Front Cell Infect Microbiol. 2016;6:27 pubmed 出版商
  219. Gschweitl M, Ulbricht A, Barnes C, Enchev R, Stoffel Studer I, Meyer Schaller N, et al. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. elife. 2016;5:e13841 pubmed 出版商
  220. O Rourke J, Bogdanik L, Yáñez A, Lall D, Wolf A, Muhammad A, et al. C9orf72 is required for proper macrophage and microglial function in mice. Science. 2016;351:1324-9 pubmed 出版商
  221. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  222. Son S, Cha M, Choi H, Kang S, Choi H, Lee M, et al. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy. 2016;12:784-800 pubmed 出版商
  223. Martínez Pizarro A, Desviat L, Ugarte M, Perez B, Richard E. Endoplasmic Reticulum Stress and Autophagy in Homocystinuria Patients with Remethylation Defects. PLoS ONE. 2016;11:e0150357 pubmed 出版商
  224. Simon S, Vignard V, Florenceau L, Dreno B, Khammari A, Lang F, et al. PD-1 expression conditions T cell avidity within an antigen-specific repertoire. Oncoimmunology. 2016;5:e1104448 pubmed
  225. Gao J, Duan Z, Zhang L, Huang X, Long L, Tu J, et al. Failure recovery of circulating NKG2D+CD56dimNK cells in HBV-associated hepatocellular carcinoma after hepatectomy predicts early recurrence. Oncoimmunology. 2016;5:e1048061 pubmed
  226. Ouimet M, Hennessy E, van Solingen C, Koelwyn G, Hussein M, Ramkhelawon B, et al. miRNA Targeting of Oxysterol-Binding Protein-Like 6 Regulates Cholesterol Trafficking and Efflux. Arterioscler Thromb Vasc Biol. 2016;36:942-951 pubmed 出版商
  227. Khazen R, Müller S, Gaudenzio N, Espinosa E, Puissegur M, Valitutti S. Melanoma cell lysosome secretory burst neutralizes the CTL-mediated cytotoxicity at the lytic synapse. Nat Commun. 2016;7:10823 pubmed 出版商
  228. Piras A, Collin L, Grüninger F, Graff C, Rönnbäck A. Autophagic and lysosomal defects in human tauopathies: analysis of post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol Commun. 2016;4:22 pubmed 出版商
  229. Ito M, Nakamura K, Mori F, Miki Y, Tanji K, Wakabayashi K. Novel eosinophilic neuronal cytoplasmic inclusions in the external cuneate nucleus of humans. Neuropathology. 2016;36:441-447 pubmed 出版商
  230. Smith G, Howell G, Phillips C, Muench S, Ponnambalam S, Harrison M. Extracellular and Luminal pH Regulation by Vacuolar H+-ATPase Isoform Expression and Targeting to the Plasma Membrane and Endosomes. J Biol Chem. 2016;291:8500-15 pubmed 出版商
  231. Katzenell S, Leib D. Herpes Simplex Virus and Interferon Signaling Induce Novel Autophagic Clusters in Sensory Neurons. J Virol. 2016;90:4706-4719 pubmed 出版商
  232. Yu L, Wu W, Gu C, Zhong D, Zhao X, Kong Y, et al. Obatoclax impairs lysosomal function to block autophagy in cisplatin-sensitive and -resistant esophageal cancer cells. Oncotarget. 2016;7:14693-707 pubmed 出版商
  233. Zou M, Zhu W, Wang L, Shi L, Gao R, Ou Y, et al. AEG-1/MTDH-activated autophagy enhances human malignant glioma susceptibility to TGF-β1-triggered epithelial-mesenchymal transition. Oncotarget. 2016;7:13122-38 pubmed 出版商
  234. Kim D, Jung J, You E, Ko P, Oh S, Rhee S. mDia1 regulates breast cancer invasion by controlling membrane type 1-matrix metalloproteinase localization. Oncotarget. 2016;7:17829-43 pubmed 出版商
  235. Laura R, Dong D, Reynolds W, Maki R. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation. PLoS ONE. 2016;11:e0149391 pubmed 出版商
  236. Chung V, Tan T, Tan M, Wong M, Kuay K, Yang Z, et al. GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep. 2016;6:19943 pubmed 出版商
  237. Hatori Y, Yan Y, Schmidt K, Furukawa E, Hasan N, Yang N, et al. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway. Nat Commun. 2016;7:10640 pubmed 出版商
  238. Liu Y, Takahashi Y, Desai N, Zhang J, Serfass J, Shi Y, et al. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci Rep. 2016;6:20453 pubmed 出版商
  239. Pérez L, McLetchie S, Gardiner G, Deffit S, Zhou D, Blum J. LAMP-2C Inhibits MHC Class II Presentation of Cytoplasmic Antigens by Disrupting Chaperone-Mediated Autophagy. J Immunol. 2016;196:2457-65 pubmed 出版商
  240. Hayashi H, Al Mamun A, Sakima M, Sato M. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis. J Cell Sci. 2016;129:1210-22 pubmed 出版商
  241. Button R, Vincent J, Strang C, Luo S. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget. 2016;7:5157-75 pubmed 出版商
  242. Circu M, Dykes S, Carroll J, Kelly K, Galiano F, Greer A, et al. A Novel High Content Imaging-Based Screen Identifies the Anti-Helminthic Niclosamide as an Inhibitor of Lysosome Anterograde Trafficking and Prostate Cancer Cell Invasion. PLoS ONE. 2016;11:e0146931 pubmed 出版商
  243. Oda S, Nozawa T, Nozawa Minowa A, Tanaka M, Aikawa C, Harada H, et al. Golgi-Resident GTPase Rab30 Promotes the Biogenesis of Pathogen-Containing Autophagosomes. PLoS ONE. 2016;11:e0147061 pubmed 出版商
  244. Carroll B, Maetzel D, Maddocks O, Otten G, Ratcliff M, Smith G, et al. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. elife. 2016;5: pubmed 出版商
  245. García Prat L, Martínez Vicente M, Perdiguero E, Ortet L, Rodríguez Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529:37-42 pubmed 出版商
  246. Xie C, Ginet V, Sun Y, Koike M, Zhou K, Li T, et al. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy. 2016;12:410-23 pubmed 出版商
  247. Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J, et al. ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun. 2016;7:10060 pubmed 出版商
  248. He J, Johnson J, Monfregola J, Ramadass M, Pestonjamasp K, Napolitano G, et al. Munc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses. Mol Biol Cell. 2016;27:572-87 pubmed 出版商
  249. Vural A, Al Khodor S, Cheung G, Shi C, Srinivasan L, McQuiston T, et al. Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection. J Immunol. 2016;196:846-56 pubmed 出版商
  250. Lee W, Richard J, Lichtfuss M, Smith A, Park J, Courter J, et al. Antibody-Dependent Cellular Cytotoxicity against Reactivated HIV-1-Infected Cells. J Virol. 2016;90:2021-30 pubmed 出版商
  251. Lao Y, Xu N. Autophagy in Cancer Chemoprevention: Identification of Novel Autophagy Modulators with Anticancer Potential. Methods Mol Biol. 2016;1379:151-63 pubmed 出版商
  252. Lyu L, Whitcomb E, Jiang S, Chang M, Gu Y, Duncan M, et al. Unfolded-protein response-associated stabilization of p27(Cdkn1b) interferes with lens fiber cell denucleation, leading to cataract. FASEB J. 2016;30:1087-95 pubmed 出版商
  253. Labani Motlagh A, Israelsson P, Ottander U, Lundin E, Nagaev I, Nagaeva O, et al. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity. Tumour Biol. 2016;37:5455-66 pubmed 出版商
  254. Wands A, Fujita A, McCombs J, Cervin J, Dedic B, Rodriguez A, et al. Fucosylation and protein glycosylation create functional receptors for cholera toxin. elife. 2015;4:e09545 pubmed 出版商
  255. Dumas A, Lê Bury G, Marie Anaïs F, Herit F, Mazzolini J, Guilbert T, et al. The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking. J Cell Biol. 2015;211:359-72 pubmed 出版商
  256. Zhang S, Schneider L, Vick B, Grunert M, Jeremias I, Menche D, et al. Anti-leukemic effects of the V-ATPase inhibitor Archazolid A. Oncotarget. 2015;6:43508-28 pubmed 出版商
  257. Agarwal S, Bell C, Taylor S, Moran R. p53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb. Mol Cancer Res. 2016;14:66-77 pubmed 出版商
  258. Selleck E, Orchard R, Lassen K, Beatty W, Xavier R, Levine B, et al. A Noncanonical Autophagy Pathway Restricts Toxoplasma gondii Growth in a Strain-Specific Manner in IFN-γ-Activated Human Cells. MBio. 2015;6:e01157-15 pubmed 出版商
  259. Dobrinskikh E, Lewis L, Brian Doctor R, Okamura K, Lee M, Altmann C, et al. Shank2 Regulates Renal Albumin Endocytosis. Physiol Rep. 2015;3: pubmed 出版商
  260. Leeansyah E, Svärd J, Dias J, Buggert M, Nyström J, Quigley M, et al. Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection. PLoS Pathog. 2015;11:e1005072 pubmed 出版商
  261. Djurisic S, Skibsted L, Hviid T. A Phenotypic Analysis of Regulatory T Cells and Uterine NK Cells from First Trimester Pregnancies and Associations with HLA-G. Am J Reprod Immunol. 2015;74:427-44 pubmed 出版商
  262. Sabet O, Stockert R, Xouri G, Brüggemann Y, Stanoev A, Bastiaens P. Ubiquitination switches EphA2 vesicular traffic from a continuous safeguard to a finite signalling mode. Nat Commun. 2015;6:8047 pubmed 出版商
  263. Chesarino N, McMichael T, Yount J. E3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3. PLoS Pathog. 2015;11:e1005095 pubmed 出版商
  264. O Donovan T, Rajendran S, O Reilly S, O Sullivan G, McKenna S. Lithium Modulates Autophagy in Esophageal and Colorectal Cancer Cells and Enhances the Efficacy of Therapeutic Agents In Vitro and In Vivo. PLoS ONE. 2015;10:e0134676 pubmed 出版商
  265. Ju X, Yan Y, Liu Q, Li N, Sheng M, Zhang L, et al. Neuraminidase of Influenza A Virus Binds Lysosome-Associated Membrane Proteins Directly and Induces Lysosome Rupture. J Virol. 2015;89:10347-58 pubmed 出版商
  266. Nezich C, Wang C, Fogel A, Youle R. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol. 2015;210:435-50 pubmed 出版商
  267. Scifo E, Szwajda A, Soliymani R, Pezzini F, Bianchi M, Dapkunas A, et al. Quantitative analysis of PPT1 interactome in human neuroblastoma cells. Data Brief. 2015;4:207-16 pubmed 出版商
  268. Currinn H, Guscott B, Balklava Z, Rothnie A, Wassmer T. APP controls the formation of PI(3,5)P(2) vesicles through its binding of the PIKfyve complex. Cell Mol Life Sci. 2016;73:393-408 pubmed 出版商
  269. Hirst J, Edgar J, Borner G, Li S, Sahlender D, Antrobus R, et al. Contributions of epsinR and gadkin to clathrin-mediated intracellular trafficking. Mol Biol Cell. 2015;26:3085-103 pubmed 出版商
  270. Hobbs R, DePianto D, Jacob J, Han M, Chung B, Batazzi A, et al. Keratin-dependent regulation of Aire and gene expression in skin tumor keratinocytes. Nat Genet. 2015;47:933-8 pubmed 出版商
  271. Costantini L, Baloban M, Markwardt M, Rizzo M, Guo F, Verkhusha V, et al. A palette of fluorescent proteins optimized for diverse cellular environments. Nat Commun. 2015;6:7670 pubmed 出版商
  272. Hirata T, Fujita M, Nakamura S, Gotoh K, Motooka D, Murakami Y, et al. Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport. Mol Biol Cell. 2015;26:3071-84 pubmed 出版商
  273. Su X, Yu Y, Zhong Y, Giannopoulou E, Hu X, Liu H, et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015;16:838-849 pubmed 出版商
  274. Munson M, Allen G, Toth R, Campbell D, Lucocq J, Ganley I. mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J. 2015;34:2272-90 pubmed 出版商
  275. Marshall M, Pattu V, Halimani M, Maier Peuschel M, Müller M, Becherer U, et al. VAMP8-dependent fusion of recycling endosomes with the plasma membrane facilitates T lymphocyte cytotoxicity. J Cell Biol. 2015;210:135-51 pubmed 出版商
  276. Cao Q, Zhong X, Zou Y, Murrell Lagnado R, Zhu M, Dong X. Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion. J Cell Biol. 2015;209:879-94 pubmed 出版商
  277. Cimini E, Agrati C, D Offizi G, Vlassi C, Casetti R, Sacchi A, et al. Primary and Chronic HIV Infection Differently Modulates Mucosal Vδ1 and Vδ2 T-Cells Differentiation Profile and Effector Functions. PLoS ONE. 2015;10:e0129771 pubmed 出版商
  278. Kong X, Kase E, Herskedal A, Schjalm C, Damme M, Nesset C, et al. Lack of the Lysosomal Membrane Protein, GLMP, in Mice Results in Metabolic Dysregulation in Liver. PLoS ONE. 2015;10:e0129402 pubmed 出版商
  279. Di Cristofori A, Ferrero S, Bertolini I, Gaudioso G, Russo M, Berno V, et al. The vacuolar H+ ATPase is a novel therapeutic target for glioblastoma. Oncotarget. 2015;6:17514-31 pubmed
  280. Zhao Z, Sagare A, Ma Q, Halliday M, Kong P, Kisler K, et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci. 2015;18:978-87 pubmed 出版商
  281. Milkereit R, Persaud A, Vanoaica L, Guetg A, Verrey F, Rotin D. LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation. Nat Commun. 2015;6:7250 pubmed 出版商
  282. Kaushik S, Cuervo A. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol. 2015;17:759-70 pubmed 出版商
  283. Boddu R, Hull T, Bolisetty S, Hu X, Moehle M, Daher J, et al. Leucine-rich repeat kinase 2 deficiency is protective in rhabdomyolysis-induced kidney injury. Hum Mol Genet. 2015;24:4078-93 pubmed 出版商
  284. Scifo E, Szwajda A, Soliymani R, Pezzini F, Bianchi M, Dapkunas A, et al. Proteomic analysis of the palmitoyl protein thioesterase 1 interactome in SH-SY5Y human neuroblastoma cells. J Proteomics. 2015;123:42-53 pubmed 出版商
  285. Wu Z, Frascaroli G, Bayer C, Schmal T, Mertens T. Interleukin-2 from Adaptive T Cells Enhances Natural Killer Cell Activity against Human Cytomegalovirus-Infected Macrophages. J Virol. 2015;89:6435-41 pubmed 出版商
  286. Zhou J, Amran F, Kramski M, Angelovich T, Elliott J, Hearps A, et al. An NK Cell Population Lacking FcRγ Is Expanded in Chronically Infected HIV Patients. J Immunol. 2015;194:4688-97 pubmed 出版商
  287. Schilling D, Kühnel A, Tetzlaff F, Konrad S, Multhoff G. NZ28-induced inhibition of HSF1, SP1 and NF-κB triggers the loss of the natural killer cell-activating ligands MICA/B on human tumor cells. Cancer Immunol Immunother. 2015;64:599-608 pubmed 出版商
  288. Akizu N, Cantagrel V, Zaki M, Al Gazali L, Wang X, Rosti R, et al. Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat Genet. 2015;47:528-34 pubmed 出版商
  289. Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol. 2015;209:111-28 pubmed 出版商
  290. Underhill S, Wheeler D, Amara S. Differential regulation of two isoforms of the glial glutamate transporter EAAT2 by DLG1 and CaMKII. J Neurosci. 2015;35:5260-70 pubmed 出版商
  291. Axelsson Robertson R, Rao M, Loxton A, Walzl G, Bates M, Zumla A, et al. Frequency of Mycobacterium tuberculosis-specific CD8+ T-cells in the course of anti-tuberculosis treatment. Int J Infect Dis. 2015;32:23-9 pubmed 出版商
  292. Axelsson Robertson R, Ju J, Kim H, Zumla A, Maeurer M. Mycobacterium tuberculosis-specific and MHC class I-restricted CD8+ T-cells exhibit a stem cell precursor-like phenotype in patients with active pulmonary tuberculosis. Int J Infect Dis. 2015;32:13-22 pubmed 出版商
  293. Ivan V, van der Sluijs P. Methods for analysis of AP-3/Rabin4' in regulation of lysosome distribution. Methods Mol Biol. 2015;1298:245-58 pubmed 出版商
  294. Bradley S, Chen Z, Melendez B, Talukder A, Khalili J, Rodríguez Cruz T, et al. BRAFV600E Co-opts a Conserved MHC Class I Internalization Pathway to Diminish Antigen Presentation and CD8+ T-cell Recognition of Melanoma. Cancer Immunol Res. 2015;3:602-9 pubmed 出版商
  295. Kaneko Y, Sullivan R, Dailey T, Vale F, Tajiri N, Borlongan C. Kainic Acid-Induced Golgi Complex Fragmentation/Dispersal Shifts the Proteolysis of Reelin in Primary Rat Neuronal Cells: An In Vitro Model of Early Stage Epilepsy. Mol Neurobiol. 2016;53:1874-1883 pubmed 出版商
  296. Chen M, Hu P, Ling N, Peng H, Lei Y, Hu H, et al. Enhanced functions of peripheral γδ T cells in chronic hepatitis B infection during interferon α treatment in vivo and in vitro. PLoS ONE. 2015;10:e0120086 pubmed 出版商
  297. Ebsen H, Lettau M, Kabelitz D, Janssen O. Subcellular localization and activation of ADAM proteases in the context of FasL shedding in T lymphocytes. Mol Immunol. 2015;65:416-28 pubmed 出版商
  298. Tsai C, Liong K, Gunalan M, Li N, Lim D, Fisher D, et al. Type I IFNs and IL-18 regulate the antiviral response of primary human γδ T cells against dendritic cells infected with Dengue virus. J Immunol. 2015;194:3890-900 pubmed 出版商
  299. Claiborne D, Prince J, Scully E, Macharia G, Micci L, Lawson B, et al. Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4+ T cells, and disease progression. Proc Natl Acad Sci U S A. 2015;112:E1480-9 pubmed 出版商
  300. Gee H, Kim J, Lee M. Analysis of conventional and unconventional trafficking of CFTR and other membrane proteins. Methods Mol Biol. 2015;1270:137-54 pubmed 出版商
  301. Severson J, Serracino H, Mateescu V, Raeburn C, McIntyre R, Sams S, et al. PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer. Cancer Immunol Res. 2015;3:620-30 pubmed 出版商
  302. Rayavarapu R, Heiden B, Pagani N, Shaw M, Shuff S, Zhang S, et al. The role of multicellular aggregation in the survival of ErbB2-positive breast cancer cells during extracellular matrix detachment. J Biol Chem. 2015;290:8722-33 pubmed 出版商
  303. Marquardt N, Béziat V, Nyström S, Hengst J, Ivarsson M, Kekäläinen E, et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol. 2015;194:2467-71 pubmed 出版商
  304. Gotink K, Rovithi M, de Haas R, Honeywell R, Dekker H, Poel D, et al. Cross-resistance to clinically used tyrosine kinase inhibitors sunitinib, sorafenib and pazopanib. Cell Oncol (Dordr). 2015;38:119-29 pubmed 出版商
  305. Widagdo J, Chai Y, Ridder M, Chau Y, Johnson R, Sah P, et al. Activity-Dependent Ubiquitination of GluA1 and GluA2 Regulates AMPA Receptor Intracellular Sorting and Degradation. Cell Rep. 2015;10:783-795 pubmed 出版商
  306. Srivastava R, Khan A, Spencer D, Vahed H, Lopes P, Thai N, et al. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic. J Immunol. 2015;194:2232-48 pubmed 出版商
  307. Khan A, Srivastava R, Spencer D, Garg S, Fremgen D, Vahed H, et al. Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes. J Virol. 2015;89:3776-92 pubmed 出版商
  308. Fionda C, Abruzzese M, Zingoni A, Soriani A, Ricci B, Molfetta R, et al. Nitric oxide donors increase PVR/CD155 DNAM-1 ligand expression in multiple myeloma cells: role of DNA damage response activation. BMC Cancer. 2015;15:17 pubmed 出版商
  309. Lee S, Uchida Y, Wang J, Matsudaira T, Nakagawa T, Kishimoto T, et al. Transport through recycling endosomes requires EHD1 recruitment by a phosphatidylserine translocase. EMBO J. 2015;34:669-88 pubmed 出版商
  310. Kizuka Y, Kitazume S, Fujinawa R, Saito T, Iwata N, Saido T, et al. An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease. EMBO Mol Med. 2015;7:175-89 pubmed 出版商
  311. Rebsamen M, Pochini L, Stasyk T, de Araújo M, Galluccio M, Kandasamy R, et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 2015;519:477-81 pubmed 出版商
  312. Brandstaetter H, Kishi Itakura C, Tumbarello D, Manstein D, Buss F. Loss of functional MYO1C/myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion. Autophagy. 2014;10:2310-23 pubmed 出版商
  313. Cuellar T, Barnes D, Nelson C, Tanguay J, Yu S, Wen X, et al. Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB-siRNA conjugates. Nucleic Acids Res. 2015;43:1189-203 pubmed 出版商
  314. Ram S, Kim D, Ober R, Ward E. The level of HER2 expression is a predictor of antibody-HER2 trafficking behavior in cancer cells. MAbs. 2014;6:1211-9 pubmed 出版商
  315. Boucrot E, Ferreira A, Almeida Souza L, Debard S, Vallis Y, Howard G, et al. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature. 2015;517:460-5 pubmed 出版商
  316. Hagberg N, Theorell J, Hjorton K, Spee P, Eloranta M, Bryceson Y, et al. Functional anti-CD94/NKG2A and anti-CD94/NKG2C autoantibodies in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2015;67:1000-11 pubmed 出版商
  317. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed 出版商
  318. Zhu Y, Jiang J, Saïd Sadier N, Boxx G, Champion C, Tetlow A, et al. Activation of the NLRP3 inflammasome by vault nanoparticles expressing a chlamydial epitope. Vaccine. 2015;33:298-306 pubmed 出版商
  319. Abu Hassan D, Li X, Ryan E, Acott T, Kelley M. Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma. Stem Cells. 2015;33:751-61 pubmed 出版商
  320. Bohnsack R, Warejcka D, Wang L, Gillespie S, Bernstein A, Twining S, et al. Expression of insulin-like growth factor 2 receptor in corneal keratocytes during differentiation and in response to wound healing. Invest Ophthalmol Vis Sci. 2014;55:7697-708 pubmed 出版商
  321. van der Waart A, van de Weem N, Maas F, Kramer C, Kester M, Falkenburg J, et al. Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy. Blood. 2014;124:3490-500 pubmed 出版商
  322. Weiskopf D, Angelo M, Bangs D, Sidney J, Paul S, Peters B, et al. The human CD8+ T cell responses induced by a live attenuated tetravalent dengue vaccine are directed against highly conserved epitopes. J Virol. 2015;89:120-8 pubmed 出版商
  323. Lim D, Yawata N, Selva K, Li N, Tsai C, Yeong L, et al. The combination of type I IFN, TNF-α, and cell surface receptor engagement with dendritic cells enables NK cells to overcome immune evasion by dengue virus. J Immunol. 2014;193:5065-75 pubmed 出版商
  324. de Groen R, Boltjes A, Hou J, Liu B, McPhee F, Friborg J, et al. IFN-λ-mediated IL-12 production in macrophages induces IFN-γ production in human NK cells. Eur J Immunol. 2015;45:250-9 pubmed 出版商
  325. Yang N, Tan S, Ng S, Shi Y, Zhou J, Tan K, et al. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J Biol Chem. 2014;289:33425-41 pubmed 出版商
  326. Rai S, Tanaka H, Suzuki M, Ogoh H, Taniguchi Y, Morita Y, et al. Clathrin assembly protein CALM plays a critical role in KIT signaling by regulating its cellular transport from early to late endosomes in hematopoietic cells. PLoS ONE. 2014;9:e109441 pubmed 出版商
  327. Ye S, Huang Y, Joshi S, Zhang J, Yang F, Zhang G, et al. Platelet secretion and hemostasis require syntaxin-binding protein STXBP5. J Clin Invest. 2014;124:4517-28 pubmed 出版商
  328. Menhofer M, Bartel D, Liebl J, Kubisch R, Busse J, Wagner E, et al. In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor. Cardiovasc Res. 2014;104:303-14 pubmed 出版商
  329. Madhavi V, Ana Sosa Batiz F, Jegaskanda S, Center R, Winnall W, Parsons M, et al. Antibody-dependent effector functions against HIV decline in subjects receiving antiretroviral therapy. J Infect Dis. 2015;211:529-38 pubmed 出版商
  330. Torsvik J, Johansson B, Dalva M, Marie M, Fjeld K, Johansson S, et al. Endocytosis of secreted carboxyl ester lipase in a syndrome of diabetes and pancreatic exocrine dysfunction. J Biol Chem. 2014;289:29097-111 pubmed 出版商
  331. Ginet V, Pittet M, Rummel C, Osterheld M, Meuli R, Clarke P, et al. Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic. Ann Neurol. 2014;76:695-711 pubmed 出版商
  332. Ohue Y, Kurose K, Mizote Y, Matsumoto H, Nishio Y, Isobe M, et al. Prolongation of overall survival in advanced lung adenocarcinoma patients with the XAGE1 (GAGED2a) antibody. Clin Cancer Res. 2014;20:5052-63 pubmed 出版商
  333. Balaji K, French C, Miller J, Colicelli J. The RAB5-GEF function of RIN1 regulates multiple steps during Listeria monocytogenes infection. Traffic. 2014;15:1206-18 pubmed 出版商
  334. Weist B, Schmueck M, Fuehrer H, Sattler A, Reinke P, Babel N. The role of CD4(+) T cells in BKV-specific T cell immunity. Med Microbiol Immunol. 2014;203:395-408 pubmed 出版商
  335. Kira S, Tabata K, Shirahama Noda K, Nozoe A, Yoshimori T, Noda T. Reciprocal conversion of Gtr1 and Gtr2 nucleotide-binding states by Npr2-Npr3 inactivates TORC1 and induces autophagy. Autophagy. 2014;10:1565-78 pubmed 出版商
  336. Buggert M, Tauriainen J, Yamamoto T, Frederiksen J, Ivarsson M, Michaelsson J, et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection. PLoS Pathog. 2014;10:e1004251 pubmed 出版商
  337. Chandran P, Keller A, Weinmann L, Seida A, Braun M, Andreev K, et al. The TGF-?-inducible miR-23a cluster attenuates IFN-? levels and antigen-specific cytotoxicity in human CD8? T cells. J Leukoc Biol. 2014;96:633-45 pubmed 出版商
  338. Pegram H, Purdon T, van Leeuwen D, Curran K, Giralt S, Barker J, et al. IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia. Leukemia. 2015;29:415-22 pubmed 出版商
  339. Jacquelin B, Petitjean G, Kunkel D, Liovat A, Jochems S, Rogers K, et al. Innate immune responses and rapid control of inflammation in African green monkeys treated or not with interferon-alpha during primary SIVagm infection. PLoS Pathog. 2014;10:e1004241 pubmed 出版商
  340. Hagel C, Krasemann S, Löffler J, Puschel K, Magnus T, Glatzel M. Upregulation of Shiga toxin receptor CD77/Gb3 and interleukin-1? expression in the brain of EHEC patients with hemolytic uremic syndrome and neurologic symptoms. Brain Pathol. 2015;25:146-56 pubmed 出版商
  341. Ye S, Li Z, Luo D, Huang B, Chen Y, Zhang X, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5:5439-52 pubmed
  342. Kubach J, Hubo M, Amendt C, Stroh C, Jonuleit H. IgG1 anti-epidermal growth factor receptor antibodies induce CD8-dependent antitumor activity. Int J Cancer. 2015;136:821-30 pubmed 出版商
  343. Vogel K, Thomann S, Vogel B, Schuster P, Schmidt B. Both plasmacytoid dendritic cells and monocytes stimulate natural killer cells early during human herpes simplex virus type 1 infections. Immunology. 2014;143:588-600 pubmed 出版商
  344. Payne T, Blackinton J, Frisbee A, Pickeral J, Sawant S, Vandergrift N, et al. Transcriptional and posttranscriptional regulation of cytokine gene expression in HIV-1 antigen-specific CD8+ T cells that mediate virus inhibition. J Virol. 2014;88:9514-28 pubmed 出版商
  345. Reibring C, El Shahawy M, Hallberg K, Kannius Janson M, Nilsson J, Parkkila S, et al. Expression patterns and subcellular localization of carbonic anhydrases are developmentally regulated during tooth formation. PLoS ONE. 2014;9:e96007 pubmed 出版商
  346. Mace E, Orange J. Lytic immune synapse function requires filamentous actin deconstruction by Coronin 1A. Proc Natl Acad Sci U S A. 2014;111:6708-13 pubmed 出版商
  347. Buggert M, Norstr m M, Salemi M, Hecht F, Karlsson A. Functional avidity and IL-2/perforin production is linked to the emergence of mutations within HLA-B*5701-restricted epitopes and HIV-1 disease progression. J Immunol. 2014;192:4685-96 pubmed 出版商
  348. Bejarano E, Yuste A, Patel B, Stout R, Spray D, Cuervo A. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401-14 pubmed 出版商
  349. Poliakov E, Strunnikova N, Jiang J, Martinez B, Parikh T, Lakkaraju A, et al. Multiple A2E treatments lead to melanization of rod outer segment-challenged ARPE-19 cells. Mol Vis. 2014;20:285-300 pubmed
  350. Prinz P, Mendler A, Brech D, Masouris I, Oberneder R, Noessner E. NK-cell dysfunction in human renal carcinoma reveals diacylglycerol kinase as key regulator and target for therapeutic intervention. Int J Cancer. 2014;135:1832-41 pubmed 出版商
  351. Huttunen M, Waris M, Kajander R, Hyypia T, Marjomaki V. Coxsackievirus A9 infects cells via nonacidic multivesicular bodies. J Virol. 2014;88:5138-51 pubmed 出版商
  352. Poonia B, Pauza C. Levels of CD56+TIM-3- effector CD8 T cells distinguish HIV natural virus suppressors from patients receiving antiretroviral therapy. PLoS ONE. 2014;9:e88884 pubmed 出版商
  353. Cheng J, Fujita A, Yamamoto H, Tatematsu T, Kakuta S, Obara K, et al. Yeast and mammalian autophagosomes exhibit distinct phosphatidylinositol 3-phosphate asymmetries. Nat Commun. 2014;5:3207 pubmed 出版商
  354. Chang S, Kohrt H, Maecker H. Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother. 2014;63:713-9 pubmed 出版商
  355. Poillet L, Pernodet N, Boyer Guittaut M, Adami P, Borg C, Jouvenot M, et al. QSOX1 inhibits autophagic flux in breast cancer cells. PLoS ONE. 2014;9:e86641 pubmed 出版商
  356. Ingle G, Scales S. DropArray™, a wall-less 96-well plate for uptake and immunofluorescence microscopy, confirms CD22 recycles. Traffic. 2014;15:255-72 pubmed 出版商
  357. Hirst J, Borner G, Edgar J, Hein M, Mann M, Buchholz F, et al. Interaction between AP-5 and the hereditary spastic paraplegia proteins SPG11 and SPG15. Mol Biol Cell. 2013;24:2558-69 pubmed 出版商
  358. Bauckman K, Haller E, Flores I, Nanjundan M. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells. Cell Death Dis. 2013;4:e592 pubmed 出版商
  359. Avena P, Anselmo W, Whitaker Menezes D, Wang C, Pestell R, Lamb R, et al. Compartment-specific activation of PPAR? governs breast cancer tumor growth, via metabolic reprogramming and symbiosis. Cell Cycle. 2013;12:1360-70 pubmed 出版商
  360. Al Zoubi M, Salem A, Martinez Outschoorn U, Whitaker Menezes D, Lamb R, Hulit J, et al. Creating a tumor-resistant microenvironment: cell-mediated delivery of TNF? completely prevents breast cancer tumor formation in vivo. Cell Cycle. 2013;12:480-90 pubmed 出版商
  361. Sánchez Alvarez R, Martinez Outschoorn U, Lin Z, Lamb R, Hulit J, Howell A, et al. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention. Cell Cycle. 2013;12:289-301 pubmed 出版商
  362. Sánchez Alvarez R, Martinez Outschoorn U, Lamb R, Hulit J, Howell A, Gandara R, et al. Mitochondrial dysfunction in breast cancer cells prevents tumor growth: understanding chemoprevention with metformin. Cell Cycle. 2013;12:172-82 pubmed 出版商
  363. Salem A, Howell A, Sartini M, Sotgia F, Lisanti M. Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1?, autophagy and ketone body production. Cell Cycle. 2012;11:4167-73 pubmed 出版商
  364. Kon T, Mori F, Tanji K, Miki Y, Kimura T, Wakabayashi K. Giant cell polymyositis and myocarditis associated with myasthenia gravis and thymoma. Neuropathology. 2013;33:281-7 pubmed 出版商
  365. Ma M, Chircop M. SNX9, SNX18 and SNX33 are required for progression through and completion of mitosis. J Cell Sci. 2012;125:4372-82 pubmed 出版商
  366. Clarke J, Emson P, Irvine R. Distribution and neuronal expression of phosphatidylinositol phosphate kinase IIgamma in the mouse brain. J Comp Neurol. 2009;517:296-312 pubmed 出版商
  367. Garver W, Jelinek D, Francis G, Murphy B. The Niemann-Pick C1 gene is downregulated by feedback inhibition of the SREBP pathway in human fibroblasts. J Lipid Res. 2008;49:1090-102 pubmed 出版商
  368. Febbraio M, Silverstein R. Identification and characterization of LAMP-1 as an activation-dependent platelet surface glycoprotein. J Biol Chem. 1990;265:18531-7 pubmed