这是一篇来自已证抗体库的有关人类 LAMP-1 (LAMP-1) 的综述,是根据484篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合LAMP-1 抗体。
LAMP-1 同义词: CD107a; LAMPA; LGP120

艾博抗(上海)贸易有限公司
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:500; 图 1b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b). J Biol Chem (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4i
艾博抗(上海)贸易有限公司LAMP-1抗体(abcam, ab24170)被用于被用于免疫印迹在人类样本上 (图 4i). Int J Mol Sci (2022) ncbi
大鼠 单克隆(1D4B)
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫印迹在小鼠样本上 (图 5a). Sci Adv (2022) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s7d
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在人类样本上 (图 s7d). iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 13e
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化在小鼠样本上 (图 13e). Mol Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 2j
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2j). Mol Ther Methods Clin Dev (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Antioxidants (Basel) (2021) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化; 小鼠; 1:500; 图 5d
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5d). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化; 小鼠; 1:500; 图 6g
  • 免疫印迹; 小鼠; 1:500; 图 6c
艾博抗(上海)贸易有限公司LAMP-1抗体(abcam, ab25245)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6g) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 6c). J Neuroinflammation (2021) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化; 小鼠; 1:200; 图 3h
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3h). Mol Neurodegener (2021) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 1:300
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300. Sci Adv (2021) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 人类; 图 1d
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫细胞化学在人类样本上 (图 1d). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:1000; 图 s2a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab62562)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 s2a). Mol Biol Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6d
  • 免疫印迹; 小鼠; 1:20; 图 6c
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, Ab24170)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6d) 和 被用于免疫印迹在小鼠样本上浓度为1:20 (图 6c). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Redox Biol (2021) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8e
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8e). Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 3a). Neurobiol Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在大鼠样本上 (图 1a). Front Cell Dev Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 1d
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 1d). iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
  • 免疫细胞化学; 人类; 1:200; 图 3c
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 3c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 8a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 8a). Nat Commun (2021) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 1:100; 图 6a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6a). J Neurochem (2021) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化; 人类; 1:100
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫组化在人类样本上浓度为1:100. elife (2020) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:1000; 图 s3-4b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3-4b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s14d
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s14d). Nat Commun (2020) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6h
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6h). Acta Neuropathol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 1d
  • 免疫印迹; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化; 小鼠; 1:2000; 图 7a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 7a). J Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). J Neuroinflammation (2020) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:20; 图 4b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, Ab25630)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 4b). Sci Adv (2019) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 人类; 图 2d
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫细胞化学在人类样本上 (图 2d). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 s1g
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 s1g). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; fruit fly ; 1:500; 图 4b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab30687)被用于被用于免疫组化-冰冻切片在fruit fly 样本上浓度为1:500 (图 4b). FEBS Open Bio (2020) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 人类; 1:100; 图 s4e
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab108597)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s4e). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 5d
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5d). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 e1a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在小鼠样本上 (图 e1a). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 e3c
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在小鼠样本上 (图 e3c). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). elife (2019) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 图 3b
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫细胞化学在小鼠样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上 (图 4a). Autophagy (2019) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 图 3a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫细胞化学在小鼠样本上 (图 3a). Cell Rep (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:1000; 图 3s1a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3s1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3g
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在小鼠样本上 (图 3g). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:800; 图 2b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 2b). Cell Death Dis (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 s3e
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫印迹在人类样本上 (图 s3e). Cell Death Differ (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1g
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上 (图 1g). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 2c
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, AB24170)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 2c). Nat Med (2018) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6a). Hum Mol Genet (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫组化在小鼠样本上 (图 3). Hum Genet (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3g
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在小鼠样本上 (图 3g). Cell Stem Cell (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s2e
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, 25630)被用于被用于免疫细胞化学在人类样本上 (图 s2e). Cell Host Microbe (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化; 大鼠; 图 5d
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫组化在大鼠样本上 (图 5d). Front Mol Neurosci (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; African green monkey; 图 3b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在African green monkey样本上 (图 3b). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 s5a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s5a). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上 (图 5a). J Cell Biol (2018) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化; 人类; 1:1000; 图 8a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, 1D4B)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 8a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4). Cell Mol Gastroenterol Hepatol (2018) ncbi
大鼠 单克隆(1D4B)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Cell Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 1c
  • 免疫印迹; 大鼠; 1:1000; 图 5c
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1c) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). Stroke (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, Ab24170)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Am J Pathol (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5c
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上 (图 5c). EMBO J (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化; 人类; 图 1b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫组化在人类样本上 (图 1b). Biol Open (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4m
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上 (图 4m). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:100; 表 1
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化在大鼠样本上浓度为1:100 (表 1). Front Cell Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 3a
  • 免疫印迹; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Sci Rep (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 4a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4a). Cell Death Dis (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; fruit fly ; 图 2c
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫印迹在fruit fly 样本上 (图 2c). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; African green monkey; 1:600; 图 s1a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:600 (图 s1a). J Cell Sci (2017) ncbi
大鼠 单克隆(1D4B)
  • 免疫印迹; 小鼠; 图 s1c
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫印迹在小鼠样本上 (图 s1c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在小鼠样本上 (图 8). Cell Res (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 大鼠; 图 1b
艾博抗(上海)贸易有限公司LAMP-1抗体(AbCam, H4A3)被用于被用于流式细胞仪在大鼠样本上 (图 1b). Front Immunol (2016) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化; 小鼠; 图 7a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫组化在小鼠样本上 (图 7a). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 s4
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, Ab24170)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s4). Sci Rep (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 9b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在人类样本上 (图 9b). J Virol (2017) ncbi
单克隆
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab13523)被用于被用于免疫印迹在大鼠样本上. Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:500; 图 5
艾博抗(上海)贸易有限公司LAMP-1抗体(abcam, ab30687)被用于被用于免疫组化在fruit fly 样本上浓度为1:500 (图 5). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上 (图 2). Cell Microbiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 1d
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 1d). Front Cell Neurosci (2016) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 人类
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫细胞化学在小鼠样本上. PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5
艾博抗(上海)贸易有限公司LAMP-1抗体(abcam, 24170)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Protein Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
  • 免疫印迹; 大鼠; 图 10
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在小鼠样本上 (图 8) 和 被用于免疫印迹在大鼠样本上 (图 10). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:750; 图 5
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上浓度为1:750 (图 5). Mol Brain (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:500; 图 3
艾博抗(上海)贸易有限公司LAMP-1抗体(abcam, ab25630)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在人类样本上 (图 s2). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1 ug/ml; 图 10
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml (图 10). Part Fibre Toxicol (2016) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 人类; 1:300; 图 1
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 1). Front Cell Infect Microbiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2s1
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2s1). elife (2016) ncbi
大鼠 单克隆(1D4B)
  • 免疫印迹; 小鼠; 1:2000; 图 7a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7a). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, 24170)被用于被用于免疫细胞化学在人类样本上 (图 4). Arterioscler Thromb Vasc Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 10 ug/ml; 图 3
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上浓度为10 ug/ml (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 4f
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫印迹在人类样本上 (图 4f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; fruit fly ; 1:500; 图 6
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab30687)被用于被用于免疫细胞化学在fruit fly 样本上浓度为1:500 (图 6). Autophagy (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠; 1:1000; 图 2c
  • 免疫细胞化学; 人类; 1:1000; 图 2a
  • 免疫印迹; 人类; 1:1000; 图 2s2g
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, H4A3)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2c), 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2s2g). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:20; 图 7d
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 7d). Nat Commun (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 7
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在人类样本上 (图 7). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3). FASEB J (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; African green monkey; 1:200; 图 5b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:200 (图 5b). Nat Commun (2015) ncbi
大鼠 单克隆(1D4B)
  • 免疫印迹; 人类; 1:5000; 图 3b
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25245)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3b). PLoS ONE (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 s10
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s10). Nat Neurosci (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:300
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam plc, ab25630)被用于被用于免疫印迹在人类样本上浓度为1:300. J Proteomics (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab24170)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 5). Mol Neurobiol (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在人类样本上. Methods Mol Biol (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化-冰冻切片; 小鼠; 图 5f
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5f). EMBO Mol Med (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在人类样本上 (图 1). Nature (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化; 人类; 1:200; 图 4a
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4a). Stem Cells (2015) ncbi
单克隆
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab13523)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Infect Immun (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:100; 图 7
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, Ab25630)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7). PLoS ONE (2014) ncbi
单克隆
  • 免疫细胞化学; African green monkey; 1:50; 图 1c
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab13523)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:50 (图 1c). Nat Neurosci (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司LAMP-1抗体(Abcam, ab25630)被用于被用于免疫细胞化学在人类样本上. J Cell Sci (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 s5f
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s5f). iScience (2022) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化; 小鼠; 1:1000; 图 e2b
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-19992)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 e2b). EMBO J (2022) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化-石蜡切片; 小鼠; 图 1g
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, 1D4B)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1g). Int J Mol Sci (2022) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 小鼠; 1:200; 图 s6b
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s6b). Mol Neurodegener (2022) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:400
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上浓度为1:400. EMBO Mol Med (2021) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:200; 图 6f
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6f). Cell Death Discov (2021) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 3a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 3a). elife (2021) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 图 3a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 3a). elife (2021) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化; 小鼠; 1:2000; 图 4a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, Sc-19992)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 4a). Cells (2021) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠; 图 4i
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫细胞化学在小鼠样本上 (图 4i). Cell Death Differ (2021) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:100; 图 6e
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6e). J Neurosci (2021) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 1:200; 图 s16a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-19992)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s16a). Diabetologia (2021) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-17768)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Cell Death Dis (2021) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 小鼠; 1:5000; 图 4a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4a). Antioxidants (Basel) (2020) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 1:200; 图 1b
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-19992)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1b). elife (2020) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 小鼠; 1:250; 图 s1a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-17768)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 s1a). Autophagy (2021) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 猕猴; 1:50; 图 7a
圣克鲁斯生物技术LAMP-1抗体(Santa, sc-19992)被用于被用于免疫细胞化学在猕猴样本上浓度为1:50 (图 7a). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠; 1:200; 图 5a
圣克鲁斯生物技术LAMP-1抗体(Santa, SC-20011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5a). elife (2020) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 人类; 图 2f
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotech, SC-19992)被用于被用于免疫细胞化学在人类样本上 (图 2f). Sci Transl Med (2020) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:50; 图 4a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, SC-20011)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4a). Nat Commun (2019) ncbi
小鼠 单克隆(H5G11)
  • 免疫细胞化学; 人类; 图 1f
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-18821)被用于被用于免疫细胞化学在人类样本上 (图 1f). Cell Death Dis (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:50; 图 s2
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, SC-20011)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s2). J Cell Sci (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 7b
圣克鲁斯生物技术LAMP-1抗体(Santa, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7b). Nat Commun (2019) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:200; 图 7b
圣克鲁斯生物技术LAMP-1抗体(Santa, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7b). Nat Commun (2019) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化-自由浮动切片; 小鼠; 1:10; 图 s8c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-19992)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10 (图 s8c). Nat Neurosci (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:100; 图 5a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5a). Nat Commun (2019) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化-冰冻切片; 小鼠; 图 2b
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, 1D4B)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2b). MBio (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2c). Front Endocrinol (Lausanne) (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 2f
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫印迹在人类样本上 (图 2f). Oncogene (2019) ncbi
小鼠 单克隆(H5G11)
  • 流式细胞仪; 人类; 图 s2c
  • 免疫细胞化学; 人类; 图 2a, 3c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-18821)被用于被用于流式细胞仪在人类样本上 (图 s2c) 和 被用于免疫细胞化学在人类样本上 (图 2a, 3c). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 4a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, H4A3)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2018) ncbi
小鼠 单克隆
  • 流式细胞仪; 人类; 图 4a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, H4A3)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫印迹在人类样本上 (图 5a). Autophagy (2018) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化; 大鼠; 1:400; 图 s1
圣克鲁斯生物技术LAMP-1抗体(Santa, sc-19992)被用于被用于免疫组化在大鼠样本上浓度为1:400 (图 s1). J Clin Invest (2018) ncbi
小鼠 单克隆(E-5)
  • 免疫组化; 小鼠; 1:400; 图 s1
圣克鲁斯生物技术LAMP-1抗体(santa, sc-17768)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s1). J Clin Invest (2018) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 小鼠; 1:200; 图 9d
圣克鲁斯生物技术LAMP-1抗体(Santa, sc-17768)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 9d). Cancer Res (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠; 图 s2c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫细胞化学在小鼠样本上 (图 s2c). Neuron (2018) ncbi
小鼠 单克隆(H5G11)
  • 免疫细胞化学; 人类; 图 2e
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, SC-18821)被用于被用于免疫细胞化学在人类样本上 (图 2e). Cell Mol Life Sci (2018) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 图 3e
圣克鲁斯生物技术LAMP-1抗体(Santa, sc-19992)被用于被用于免疫细胞化学在小鼠样本上 (图 3e). J Immunol (2018) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类; 图 6f
  • 免疫印迹; 人类; 1:1000; 图 6b
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-17768)被用于被用于免疫细胞化学在人类样本上 (图 6f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Mol Ther Nucleic Acids (2017) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 图 1g
圣克鲁斯生物技术LAMP-1抗体(SantaCruz, sc-19992)被用于被用于免疫细胞化学在小鼠样本上 (图 1g). J Clin Invest (2017) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 图 5g
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-17768)被用于被用于免疫印迹在人类样本上 (图 5g). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 1f
圣克鲁斯生物技术LAMP-1抗体(SantaCruz, SC-20011)被用于被用于免疫细胞化学在人类样本上 (图 1f). FEBS Lett (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫印迹在人类样本上 (图 1c). J Cell Biol (2017) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 人类; 1:50; 图 3g
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc19992)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3g). Nat Commun (2017) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化; 小鼠; 1:400; 图 1c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, 1D4B)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1c). J Clin Invest (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:100; 图 4a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4a). Nat Commun (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 s4
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 s4). PLoS ONE (2017) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 人类; 图 3b
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, 1D4B)被用于被用于免疫细胞化学在人类样本上 (图 3b). J Cell Biol (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s3a
圣克鲁斯生物技术LAMP-1抗体(Santa cruz, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 s3a). J Cell Biol (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Nat Chem Biol (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠
  • 免疫细胞化学; 人类; 图 1b
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫细胞化学在人类样本上 (图 1b). Sci Rep (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:100; 图 3B
圣克鲁斯生物技术LAMP-1抗体(Santa cruz, SC-20011)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3B). elife (2017) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 1:500; 图 4a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc19992)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4a). Nat Commun (2017) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化; 小鼠; 1:50; 图 3a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-19992)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3a). Sci Rep (2017) ncbi
小鼠 单克隆(E-5)
  • 免疫组化; 小鼠; 图 s1b
圣克鲁斯生物技术LAMP-1抗体(Santacruz, sc-17768)被用于被用于免疫组化在小鼠样本上 (图 s1b). PLoS Pathog (2017) ncbi
小鼠 单克隆(H5G11)
  • 免疫细胞化学; 人类; 图 e6a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, H5G11)被用于被用于免疫细胞化学在人类样本上 (图 e6a). Nature (2017) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 小鼠; 图 6a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, E-5)被用于被用于免疫印迹在小鼠样本上 (图 6a). PLoS Pathog (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 4a1
圣克鲁斯生物技术LAMP-1抗体(Santa-Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上 (图 4a1). Toxins (Basel) (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 1d
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上 (图 1d). PLoS ONE (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:100; 图 1h
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1h). Nat Commun (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:200; 图 s5a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, SC20011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 s5a). PLoS Genet (2017) ncbi
大鼠 单克隆(1D4B)
  • 免疫印迹; 小鼠; 1:50
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, 1D4B)被用于被用于免疫印迹在小鼠样本上浓度为1:50. Nat Commun (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化; 人类; 图 4c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫组化在人类样本上 (图 4c). Bioconjug Chem (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 小鼠; 图 7e
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-17768)被用于被用于免疫细胞化学在小鼠样本上 (图 7e). Neuropharmacology (2016) ncbi
小鼠 单克隆(H5G11)
  • 免疫印迹; 人类; 图 7e
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-18821)被用于被用于免疫印迹在人类样本上 (图 7e). EMBO Mol Med (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:2000; 图 5d
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, 20011)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5d). Autophagy (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 6b
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上 (图 6b). Autophagy (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; brewer's yeast; 1:1000; 图 s4
圣克鲁斯生物技术LAMP-1抗体(santa Cruz, sc-20011)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:1000 (图 s4). Sci Rep (2016) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化; 小鼠; 图 s2c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-19992)被用于被用于免疫组化在小鼠样本上 (图 s2c). Nat Neurosci (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠
  • 免疫细胞化学; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫细胞化学在人类样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化; 人类; 1:100; 图 4a
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4a). J Immunol (2016) ncbi
大鼠 单克隆(1D4B)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-19992)被用于被用于免疫印迹在小鼠样本上 (图 3). Autophagy (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:100; 图 4
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, 20011)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Autophagy (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 3
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). elife (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类; 图 4e
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-17768)被用于被用于免疫细胞化学在人类样本上 (图 4e). Science (2016) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 图 3c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-19992)被用于被用于免疫细胞化学在小鼠样本上 (图 3c). Science (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:200; 表 2
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫印迹在人类样本上浓度为1:200 (表 2). Acta Neuropathol Commun (2016) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 图 3
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, 1D4B)被用于被用于免疫细胞化学在小鼠样本上 (图 3). J Virol (2016) ncbi
大鼠 单克隆(1D4B)
  • 免疫印迹; 小鼠; 图 s5b
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, 19992)被用于被用于免疫印迹在小鼠样本上 (图 s5b). Sci Rep (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 1
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2016) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-19992)被用于被用于免疫组化在人类样本上. Nature (2016) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 图 4
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-19992)被用于被用于免疫细胞化学在小鼠样本上 (图 4). Mol Biol Cell (2016) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 小鼠; 图 1b
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-19992)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). PLoS Pathog (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫细胞化学在人类样本上. Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(H5G11)
  • 免疫细胞化学; 人类; 图 s5
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc18821)被用于被用于免疫细胞化学在人类样本上 (图 s5). Mol Biol Cell (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上. Nat Immunol (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s4b
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫细胞化学在人类样本上 (图 s4b). EMBO J (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫组化; 大鼠; 1:100; 图 4
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc17768)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 4). Hum Mol Genet (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 6
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6). J Cell Biol (2015) ncbi
小鼠 单克隆(H5G11)
  • 免疫印迹; 豚鼠; 图 5
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, H5G11)被用于被用于免疫印迹在豚鼠样本上 (图 5). Methods Mol Biol (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-20011)被用于被用于免疫印迹在人类样本上 (图 3). Cell Oncol (Dordr) (2015) ncbi
小鼠 单克隆(H5G11)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-18821)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2014) ncbi
大鼠 单克隆(1D4B)
  • 免疫细胞化学; 大鼠
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, SC-19992)被用于被用于免疫细胞化学在大鼠样本上. Traffic (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; fission yeast; 图 2
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-20011)被用于被用于免疫细胞化学在fission yeast样本上 (图 2). Autophagy (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化; 人类; 1:100
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, Sc-20011)被用于被用于免疫组化在人类样本上浓度为1:100. Brain Pathol (2015) ncbi
大鼠 单克隆(1D4B)
  • 免疫组化; 小鼠; 图 6c
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, 1D4B)被用于被用于免疫组化在小鼠样本上 (图 6c). PLoS ONE (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 3
圣克鲁斯生物技术LAMP-1抗体(Santa, sc-20011)被用于被用于免疫细胞化学在人类样本上 (图 3). J Virol (2014) ncbi
小鼠 单克隆(H5G11)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc18821)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2013) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, sc-17768)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotech, sc-17768)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz, SC-17768)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Cycle (2012) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 小鼠; 1:250
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, sc-17768)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250. J Comp Neurol (2009) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术LAMP-1抗体(Santa Cruz Biotechnology, H4A3)被用于被用于免疫细胞化学在人类样本上. J Lipid Res (2008) ncbi
BioLegend
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2b
BioLegendLAMP-1抗体(BioLegend, 328608)被用于被用于流式细胞仪在人类样本上 (图 2b). Sci Adv (2022) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s5e, 5e
BioLegendLAMP-1抗体(BioLegend, 328608)被用于被用于流式细胞仪在人类样本上 (图 s5e, 5e). Sci Adv (2022) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:500; 图 3a
BioLegendLAMP-1抗体(BioLegend, 328609)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3a). Invest Ophthalmol Vis Sci (2021) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 1:100; 图 4i
BioLegendLAMP-1抗体(Biolegend, 328634)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 4i). Nat Med (2021) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 1e
BioLegendLAMP-1抗体(Biolegend, 328625)被用于被用于流式细胞仪在人类样本上 (图 1e). Cell Host Microbe (2021) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 7e
BioLegendLAMP-1抗体(Biolegend, 328634)被用于被用于流式细胞仪在人类样本上 (图 7e). Am J Respir Crit Care Med (2021) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 1:200; 图 5d
BioLegendLAMP-1抗体(Biolegend, 328606)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 5d). elife (2020) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 小鼠; 1:200; 图 s2a
BioLegendLAMP-1抗体(BioLegend, H4A3)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s2a). J Exp Med (2020) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 6d
BioLegendLAMP-1抗体(BioLegend, H4A3)被用于被用于流式细胞仪在人类样本上 (图 6d). Nature (2019) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 3f
BioLegendLAMP-1抗体(Biolegend, 328620)被用于被用于流式细胞仪在人类样本上 (图 3f). elife (2019) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 小鼠; 图 5f
BioLegendLAMP-1抗体(Biolegend, 328620)被用于被用于流式细胞仪在小鼠样本上 (图 5f). J Immunother Cancer (2019) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 3d
BioLegendLAMP-1抗体(BioLegend, 328630)被用于被用于流式细胞仪在人类样本上 (图 3d). J Exp Med (2019) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 4d
BioLegendLAMP-1抗体(Biolegend, H4A3)被用于被用于流式细胞仪在人类样本上 (图 4d). Cell Stem Cell (2019) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 4c
BioLegendLAMP-1抗体(BioLegend, 328624)被用于被用于流式细胞仪在人类样本上 (图 4c). J Clin Invest (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 4a
BioLegendLAMP-1抗体(Biolegend, 328640)被用于被用于流式细胞仪在人类样本上 (图 4a). Cell (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; pigs ; 图 3e
BioLegendLAMP-1抗体(BioLegend, 328602)被用于被用于免疫细胞化学在pigs 样本上 (图 3e). Biochim Biophys Acta Mol Cell Biol Lipids (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 6a
BioLegendLAMP-1抗体(Biolegend, H4A3)被用于被用于流式细胞仪在人类样本上 (图 6a). PLoS Pathog (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 1
BioLegendLAMP-1抗体(Biolegend, H4A3)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS Pathog (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
BioLegendLAMP-1抗体(Biolegend, Clone H4A3)被用于被用于流式细胞仪在人类样本上. Int J Infect Dis (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
BioLegendLAMP-1抗体(Biolegend, Clone H4A3)被用于被用于流式细胞仪在人类样本上. Int J Infect Dis (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 4
BioLegendLAMP-1抗体(Biolegend, H4A3)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 4
BioLegendLAMP-1抗体(BioLegend, H4A3)被用于被用于流式细胞仪在人类样本上 (图 4). J Virol (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠; 1:100; 图 5
BioLegendLAMP-1抗体(Biolegend, H4A3)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5). Vaccine (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 3d
BioLegendLAMP-1抗体(BioLegend, H4A3)被用于被用于流式细胞仪在人类样本上 (图 3d). Blood (2014) ncbi
赛默飞世尔
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔LAMP-1抗体(Invitrogen, 11-1079-42)被用于被用于流式细胞仪在人类样本上 (图 3b). Mol Cancer (2022) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔LAMP-1抗体(eBioscience, 12-1079-42)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Clin Invest (2020) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 1:40; 图 3c
赛默飞世尔LAMP-1抗体(Thermo, 15-1079-42)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 3c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 8d
赛默飞世尔LAMP-1抗体(Thermo, PA1-654A)被用于被用于免疫细胞化学在小鼠样本上 (图 8d). elife (2019) ncbi
大鼠 单克隆(eBio1D4B (1D4B))
  • 流式细胞仪; 小鼠; 1:1000; 图 6e
赛默飞世尔LAMP-1抗体(eBioscience, 50-1071-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 6e). elife (2018) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔LAMP-1抗体(eBioscience, eBioH4A3)被用于被用于流式细胞仪在人类样本上 (图 2a). J Immunol (2018) ncbi
小鼠 单克隆(eBioH4A3)
  • 免疫细胞化学; 人类; 图 3f
赛默飞世尔LAMP-1抗体(eBiosciences, H4A4)被用于被用于免疫细胞化学在人类样本上 (图 3f). Nature (2017) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 图 s1b
赛默飞世尔LAMP-1抗体(eBiosciences, eBioH4A3)被用于被用于流式细胞仪在人类样本上 (图 s1b). J Immunol (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 猕猴; 图 4d
赛默飞世尔LAMP-1抗体(eBioscience, eBioH4A3)被用于被用于流式细胞仪在猕猴样本上 (图 4d). J Immunol (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 免疫细胞化学; 人类; 图 6a
赛默飞世尔LAMP-1抗体(ebioscience, 53-1079-42)被用于被用于免疫细胞化学在人类样本上 (图 6a). J Clin Invest (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 图 1d
赛默飞世尔LAMP-1抗体(eBiosciences, eBioH4A3)被用于被用于流式细胞仪在人类样本上 (图 1d). Clin Immunol (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 猕猴; 图 5a
赛默飞世尔LAMP-1抗体(eBioscience, eBioH4A3)被用于被用于流式细胞仪在猕猴样本上 (图 5a). Front Immunol (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 图 4d
赛默飞世尔LAMP-1抗体(eBioscience, eBioH4A3)被用于被用于流式细胞仪在人类样本上 (图 4d). PLoS Pathog (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 图 7
赛默飞世尔LAMP-1抗体(eBioscience, 15-107942)被用于被用于流式细胞仪在人类样本上 (图 7). Sci Rep (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 猕猴
赛默飞世尔LAMP-1抗体(eBioscience, 11-1079-42)被用于被用于流式细胞仪在猕猴样本上. Nat Med (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔LAMP-1抗体(eBioscience, eBioH4A3)被用于被用于流式细胞仪在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔LAMP-1抗体(eBiosciences, eBioH4A3)被用于被用于流式细胞仪在人类样本上 (图 4a). Sci Rep (2016) ncbi
小鼠 单克隆(Ly1C6)
  • 免疫印迹; 人类; 图 2
赛默飞世尔LAMP-1抗体(Thermo Fisher, MA1?C164)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 图 s3
赛默飞世尔LAMP-1抗体(eBioscience, eBioH4A3)被用于被用于流式细胞仪在人类样本上 (图 s3). J Immunol (2015) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类
赛默飞世尔LAMP-1抗体(eBioscience, ebioH4A3)被用于被用于流式细胞仪在人类样本上. J Virol (2015) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类
赛默飞世尔LAMP-1抗体(eBioscience, eBioH4A3)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类
赛默飞世尔LAMP-1抗体(eBioscience, eBioH4A3)被用于被用于流式细胞仪在人类样本上. Leukemia (2015) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类
赛默飞世尔LAMP-1抗体(eBioscience, eBioH4A3)被用于被用于流式细胞仪在人类样本上. Immunology (2014) ncbi
小鼠 单克隆(eBioH4A3)
  • 流式细胞仪; 人类; 0.5 ug/ml
赛默飞世尔LAMP-1抗体(eBioscience, H4A3)被用于被用于流式细胞仪在人类样本上浓度为0.5 ug/ml. J Virol (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 2
赛默飞世尔LAMP-1抗体(noco, noca)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (1990) ncbi
Novus Biologicals
小鼠 单克隆(5.00E+07)
  • 免疫组化; 小鼠; 图 1f
Novus BiologicalsLAMP-1抗体(Novus, NBP2-52721)被用于被用于免疫组化在小鼠样本上 (图 1f). Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 3b
Novus BiologicalsLAMP-1抗体(Novus, NB120-19294)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3b). elife (2020) ncbi
小鼠 单克隆(5H6)
  • 免疫组化; 小鼠; 图 1a
Novus BiologicalsLAMP-1抗体(Novus, NBP2-25154)被用于被用于免疫组化在小鼠样本上 (图 1a). Nat Commun (2018) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(4E9/11)
  • 免疫组化-石蜡切片; pigs ; 1:1000; 图 1
伯乐(Bio-Rad)公司LAMP-1抗体(Biorad, 4E9/11)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:1000 (图 1). PLoS Negl Trop Dis (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:200; 图 7b
赛信通(上海)生物试剂有限公司LAMP-1抗体(CST, 9091)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7b). Nat Cancer (2022) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 9091)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Acta Neuropathol (2021) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 4d
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091T)被用于被用于免疫细胞化学在人类样本上 (图 4d). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell signaling, 9091)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). iScience (2021) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 小鼠; 1:200; 图 3b
赛信通(上海)生物试剂有限公司LAMP-1抗体(cell signaling, 3243)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3b). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 小鼠; 1:2000; 图 3??s1b
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 3243)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3??s1b). elife (2021) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 人类; 1:1000; 图 s5c
  • 免疫印迹; 小鼠; 1:1000; 图 s5c
赛信通(上海)生物试剂有限公司LAMP-1抗体(CST, 3243S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:100; 图 5h
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5h). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 小鼠; 1:500; 图 4g
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4g). Commun Biol (2021) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 9091)被用于被用于免疫细胞化学在人类样本上. EMBO Rep (2021) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 4a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091S)被用于被用于免疫细胞化学在人类样本上 (图 4a). Proc Natl Acad Sci U S A (2020) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:200; 图 1e
赛信通(上海)生物试剂有限公司LAMP-1抗体(CST, 9091)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1e). Alzheimers Res Ther (2020) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 9091)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, D2D11)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1b). Nature (2020) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 1
赛信通(上海)生物试剂有限公司LAMP-1抗体(CST, 9091)被用于被用于免疫细胞化学在人类样本上 (图 1). J Cell Mol Med (2020) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 人类; 图 5a
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 3243)被用于被用于免疫印迹在人类样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 4b). J Agric Food Chem (2019) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司LAMP-1抗体(CST, 3243)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Science (2019) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫印迹在人类样本上 (图 6c). elife (2019) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 人类; 1:3000; 图 4c
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, D2D11)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 4c). Cell Stem Cell (2019) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:100; 图 s3h
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signalling, D2D11)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s3h). Nat Commun (2019) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 3243)被用于被用于免疫印迹在小鼠样本上 (图 s2a). EMBO J (2019) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 3243)被用于被用于免疫印迹在人类样本上 (图 6b). Autophagy (2019) ncbi
domestic rabbit 单克隆(D2D11)
  • proximity ligation assay; 人类; 1:200; 图 5e
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于proximity ligation assay在人类样本上浓度为1:200 (图 5e). Cell Rep (2018) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 1d
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 9091)被用于被用于免疫细胞化学在人类样本上 (图 1d). Cell Metab (2019) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 9091)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2019) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫组化; 人类; 图 3a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, D2D11)被用于被用于免疫组化在人类样本上 (图 3a). J Cell Biol (2018) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 3243)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). J Exp Med (2018) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:200; 图 2d
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 9091)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2d). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:200; 图 3c
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 9091P)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3c). Mol Cell (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 人类; 图 s10a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫印迹在人类样本上 (图 s10a). Autophagy (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫组化; 人类; 图 4
赛信通(上海)生物试剂有限公司LAMP-1抗体(cell signalling, 9091)被用于被用于免疫组化在人类样本上 (图 4). Br J Cancer (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:200; 图 7a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, D2D11)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7a). J Cell Sci (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 4c
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, D2D11)被用于被用于免疫细胞化学在人类样本上 (图 4c). Mol Biol Cell (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 s5a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上 (图 s5a). Nature (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 流式细胞仪; 人类; 图 6a
赛信通(上海)生物试剂有限公司LAMP-1抗体(CST, 9091)被用于被用于流式细胞仪在人类样本上 (图 6a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 2c
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上 (图 2c). Oncotarget (2017) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 小鼠; 图 s6f
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 3243)被用于被用于免疫印迹在小鼠样本上 (图 s6f). Nature (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 1e
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上 (图 1e). Nature (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:200; 图 4c
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4c). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:200; 图 3a
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3a) 和 被用于免疫印迹在人类样本上 (图 1c). Autophagy (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 2
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091P)被用于被用于免疫细胞化学在人类样本上 (图 2). Biosci Rep (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 3
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Tech, 9091)被用于被用于免疫细胞化学在人类样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 2
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上 (图 2). Autophagy (2016) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 3243)被用于被用于免疫印迹在小鼠样本上 (图 6c). Am J Physiol Heart Circ Physiol (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫组化; 人类; 1:1000; 图 4a
  • 免疫印迹; 人类; 1:2000; 图 7b
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 7b). Int J Oncol (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell signaling, 9091)被用于被用于免疫印迹在小鼠样本上 (图 6). Autophagy (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 s1a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, D2D11)被用于被用于免疫细胞化学在人类样本上 (图 s1a). EMBO Rep (2016) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 3243)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (表 1). J Neuropathol Exp Neurol (2016) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signalling, 3243)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:400; 图 6
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Tech, 9091)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Tech, CST-9091)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technologies, D2D11)被用于被用于免疫细胞化学在人类样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 s1a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 6
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 9091)被用于被用于免疫细胞化学在人类样本上 (图 6). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:1000; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:100
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Methods Mol Biol (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:200; 图 5
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 9091)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5) 和 被用于免疫印迹在人类样本上 (图 4). Mol Cancer Res (2016) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 2n
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, D2D11)被用于被用于免疫细胞化学在人类样本上 (图 2n). MBio (2015) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 3243)被用于被用于免疫印迹在人类样本上 (图 3a). J Virol (2015) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 人类; 图 7g
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, D2D11)被用于被用于免疫印迹在人类样本上 (图 7g). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, D2D11)被用于被用于免疫细胞化学在人类样本上 (图 4). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, C54H11)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 图 3
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell signaling, D2D11)被用于被用于免疫细胞化学在人类样本上 (图 3). Cancer Immunol Res (2015) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 3243S)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, 9091S)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling Technology, C54H11)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C54H11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, C54H11)被用于被用于免疫印迹在人类样本上. Mol Vis (2014) ncbi
domestic rabbit 单克隆(D2D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司LAMP-1抗体(Cell Signaling, 9091)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Death Dis (2013) ncbi
碧迪BD
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 1:40; 图 3a, s4a
碧迪BDLAMP-1抗体(BD Biosciences, 555801)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 3a, s4a). J Immunother Cancer (2022) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 1:100; 图 s5g
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s5g). Nature (2021) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 1:50; 图 7d
碧迪BDLAMP-1抗体(BD Pharmingen, 561348)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 7d). elife (2021) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 1:20; 图 s1-3a
碧迪BDLAMP-1抗体(BD Pharmingen, 560664)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s1-3a). elife (2020) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 1a
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 1a). Nat Commun (2020) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s2a
碧迪BDLAMP-1抗体(BD, 562623)被用于被用于流式细胞仪在人类样本上 (图 s2a). Stem Cell Reports (2020) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 1e
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 1e). J Immunol (2019) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 1g
碧迪BDLAMP-1抗体(BD Biosciences, 555802)被用于被用于流式细胞仪在人类样本上 (图 1g). Cell (2019) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2d
碧迪BDLAMP-1抗体(BD, 641581)被用于被用于流式细胞仪在人类样本上 (图 2d). Cell (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 s1e
碧迪BDLAMP-1抗体(BD pharmingen, 555798)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1e). J Cell Sci (2019) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 3a
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 3a). Blood (2019) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 5a, 5b, 5f, s6
碧迪BDLAMP-1抗体(BD, 555800)被用于被用于流式细胞仪在人类样本上 (图 5a, 5b, 5f, s6). Cell (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2b
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在人类样本上 (图 2b). Front Immunol (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s6a
碧迪BDLAMP-1抗体(BD Pharmingen, H4A3)被用于被用于流式细胞仪在人类样本上 (图 s6a). Sci Immunol (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 5a
碧迪BDLAMP-1抗体(BD Biosciences, 555801)被用于被用于流式细胞仪在人类样本上 (图 5a). Front Immunol (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 5a
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 5a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 6b
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 6b). Sci Rep (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2a
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 2a). Cancer Immunol Res (2018) ncbi
小鼠 单克隆(25/Lamp-1)
  • 免疫细胞化学; 人类; 1:100; 图 3c, s2b
碧迪BDLAMP-1抗体(BD, 611043)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3c, s2b). EMBO J (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2d
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 2d). J Clin Invest (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 7d
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 7d). J Biol Chem (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 5
碧迪BDLAMP-1抗体(BD Bioscience, H4A3)被用于被用于流式细胞仪在人类样本上 (图 5). J Immunol (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 5b
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 5b). J Immunol (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s6c
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 s6c). Nature (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:1000; 图 3a
碧迪BDLAMP-1抗体(BD Biosciences, 555798)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3a). Neurochem Int (2018) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s6d
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 s6d). Science (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 7a
碧迪BDLAMP-1抗体(BD Biosciences, 555800)被用于被用于流式细胞仪在人类样本上 (图 7a). PLoS ONE (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BDLAMP-1抗体(BD Pharmingen, 641581)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Exp Ther Med (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 2i
碧迪BDLAMP-1抗体(BD, 555798)被用于被用于免疫细胞化学在人类样本上 (图 2i). J Cell Biol (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:2000; 图 s2c
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 s2c). J Cell Sci (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:100; 图 5a
碧迪BDLAMP-1抗体(Becton Dickinson, 555798)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5a). Autophagy (2017) ncbi
小鼠 单克隆(H4A3)
  • 其他; African green monkey; 图 s4
碧迪BDLAMP-1抗体(bd, H4A3)被用于被用于其他在African green monkey样本上 (图 s4). Nature (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 5
碧迪BDLAMP-1抗体(BD, 555802)被用于被用于流式细胞仪在人类样本上 (图 5). Eur J Immunol (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 13b
碧迪BDLAMP-1抗体(BD Biosciences, 555800)被用于被用于流式细胞仪在人类样本上 (图 13b). elife (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 1:10; 图 2b
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 2b). JCI Insight (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 5c
碧迪BDLAMP-1抗体(BD Bioscience, H4A3)被用于被用于流式细胞仪在人类样本上 (图 5c). Sci Rep (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 1f
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在人类样本上 (图 1f). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 表 1
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry A (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:500; 图 4a
碧迪BDLAMP-1抗体(BD Pharmingen, 555798)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Cell Microbiol (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 1
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 1). Mol Biol Cell (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 1e
碧迪BDLAMP-1抗体(BD Biosciences, 561343)被用于被用于流式细胞仪在人类样本上 (图 1e). JCI Insight (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2b
碧迪BDLAMP-1抗体(BD Biosciences, 555802)被用于被用于流式细胞仪在人类样本上 (图 2b). Cell (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 3
碧迪BDLAMP-1抗体(BD Biosciences, 555800)被用于被用于流式细胞仪在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在人类样本上. J Exp Med (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s4d
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 s4d). J Clin Invest (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 猕猴; 图 1b
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在猕猴样本上 (图 1b). J Virol (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2c
碧迪BDLAMP-1抗体(Becton-Dickinson, H4A3)被用于被用于流式细胞仪在人类样本上 (图 2c). J Immunol (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s9f
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在人类样本上 (图 s9f). Nature (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2
碧迪BDLAMP-1抗体(BD Bioscience, 555800)被用于被用于流式细胞仪在人类样本上 (图 2). Oncoimmunology (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 3a
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 3a). J Immunol (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 3f
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在人类样本上 (图 3f). J Clin Invest (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 1a
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 5b
碧迪BDLAMP-1抗体(BD Bioscience, H4A3)被用于被用于流式细胞仪在人类样本上 (图 5b). Nat Commun (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; African green monkey; 图 s1
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在African green monkey样本上 (图 s1). J Med Primatol (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s1a
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 s1a). Science (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s6
碧迪BDLAMP-1抗体(BD Biosciences, 555800)被用于被用于流式细胞仪在人类样本上 (图 s6). EMBO Mol Med (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 4
碧迪BDLAMP-1抗体(BD, 555798)被用于被用于免疫细胞化学在人类样本上 (图 4). Traffic (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 st1
碧迪BDLAMP-1抗体(BD, 555801)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 6
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 6). Oncoimmunology (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2
碧迪BDLAMP-1抗体(BD, 555802)被用于被用于流式细胞仪在人类样本上 (图 2). Oncoimmunology (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 10 ug/ml; 图 3
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上浓度为10 ug/ml (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(25/Lamp-1)
  • 免疫组化; 人类; 图 9
碧迪BDLAMP-1抗体(BD Biosciences, 611042)被用于被用于免疫组化在人类样本上 (图 9). Autophagy (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 1b
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在人类样本上 (图 1b). J Virol (2016) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 5
碧迪BDLAMP-1抗体(BD Pharmingen, H4A3)被用于被用于流式细胞仪在人类样本上 (图 5). Tumour Biol (2016) ncbi
小鼠 单克隆(25/Lamp-1)
  • 免疫印迹; 人类
碧迪BDLAMP-1抗体(BD Biosciences, 611042)被用于被用于免疫印迹在人类样本上. elife (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 2
碧迪BDLAMP-1抗体(BD Biosciences, 555798)被用于被用于免疫细胞化学在人类样本上 (图 2). J Cell Biol (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Pharmingen, 555801)被用于被用于流式细胞仪在人类样本上. Am J Reprod Immunol (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 4
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在人类样本上 (图 4). J Cell Biol (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 4a
碧迪BDLAMP-1抗体(BD Pharmingen, H4A3)被用于被用于流式细胞仪在人类样本上 (图 4a). PLoS ONE (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化; 人类; 图 6d
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于免疫组化在人类样本上 (图 6d). Oncotarget (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 2). J Virol (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Biosciences, 555800)被用于被用于流式细胞仪在人类样本上. Cancer Immunol Immunother (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(25/Lamp-1)
  • 免疫印迹; 人类
碧迪BDLAMP-1抗体(BD Biosciences, 25)被用于被用于免疫印迹在人类样本上. Mol Immunol (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 表 s2
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (表 s2). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 4
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 4). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类
碧迪BDLAMP-1抗体(BD Pharmigen, 555798)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 3
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s3
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上 (图 s3). BMC Cancer (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; African green monkey; 图 s3
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于免疫细胞化学在African green monkey样本上 (图 s3). EMBO J (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:1000
碧迪BDLAMP-1抗体(BD, 555798)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上. Arthritis Rheumatol (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s3
碧迪BDLAMP-1抗体(BD Pharmingen, 555801)被用于被用于免疫细胞化学在人类样本上 (图 s3). J Cell Sci (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Pharmingen, H4A3)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2015) ncbi
小鼠 单克隆(25/Lamp-1)
  • 免疫组化-冰冻切片; 人类
碧迪BDLAMP-1抗体(BD Biosciences, 611042)被用于被用于免疫组化-冰冻切片在人类样本上. Ann Neurol (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Pharmingen, H4A3)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Bioscience, H4A3)被用于被用于流式细胞仪在人类样本上. Med Microbiol Immunol (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Bioscience, H4A3)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; African green monkey; 图 4
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在African green monkey样本上 (图 4). PLoS Pathog (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s1b
碧迪BDLAMP-1抗体(BD Biosciences, 555801)被用于被用于流式细胞仪在人类样本上 (图 s1b). Oncotarget (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Pharmingen, H4A3)被用于被用于流式细胞仪在人类样本上. Int J Cancer (2015) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(H4A3)
  • 抑制或激活实验; 人类
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于抑制或激活实验在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Biosciences, H4A3)被用于被用于流式细胞仪在人类样本上. Int J Cancer (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类
碧迪BDLAMP-1抗体(BD Biosciences, clone H4A3)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 1
碧迪BDLAMP-1抗体(BD, H4A3)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Immunother (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:1000
碧迪BDLAMP-1抗体(BD Pharmingen, 555798)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Traffic (2014) ncbi
小鼠 单克隆(25/Lamp-1)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 2
碧迪BDLAMP-1抗体(BD Transduction Laboratories, 611043)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 2). Cell Cycle (2013) ncbi
小鼠 单克隆(25/Lamp-1)
  • 免疫印迹; 人类
碧迪BDLAMP-1抗体(BD Transduction Laboratories, 611043)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 1c
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 1c). BMC Biol (2021) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:400; 图 s3a
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s3a). Nat Commun (2021) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 5c
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 5c). EMBO J (2021) ncbi
小鼠 单克隆(H4A3)
  • 其他; 人类; 1:10; 图 s1h
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于其他在人类样本上浓度为1:10 (图 s1h). J Clin Med (2021) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:5000; 图 s5b
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Hybridoma Bank, H4A3)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s5b). Nat Commun (2021) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:500; 图 4g
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4g). Nature (2021) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 2c
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, h4a3)被用于被用于免疫细胞化学在人类样本上 (图 2c). Cell (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 1h
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫印迹在人类样本上 (图 1h). Sci China Life Sci (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s1f
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 s1f). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 2 ug/ml; 图 s1d
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3-s)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml (图 s1d). J Cell Biol (2019) ncbi
小鼠 单克隆(G1/139/5)
  • 免疫细胞化学; 人类; 图 5a
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, G1/139/5)被用于被用于免疫细胞化学在人类样本上 (图 5a). Sci Rep (2019) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:1000; 图 1e
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1e). Science (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s1e
Developmental Studies Hybridoma BankLAMP-1抗体(BD Biosciences, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 s1e). EMBO J (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 5d
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫印迹在人类样本上 (图 5d). PLoS ONE (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠; 1:250; 图 9d
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 9d). J Neurosci (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:100; 图 s4d
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s4d). EMBO J (2018) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:5; 图 7c
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:5 (图 7c). Hum Mol Genet (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 7a
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 7a). EMBO J (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 10c
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫印迹在人类样本上 (图 10c). elife (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:400; 图 5b
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 5b). Hum Mol Genet (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 1c
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 1c). J Virol (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 6e
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫印迹在人类样本上 (图 6e). Autophagy (2017) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 s6d
Developmental Studies Hybridoma BankLAMP-1抗体(Miltenyi Biotec, H4A3)被用于被用于流式细胞仪在人类样本上 (图 s6d). Cell Rep (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠; 1:300; 图 3
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 3). J Cell Sci (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 2a
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 2a). Microbiologyopen (2017) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 6a
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 6a). J Biol Chem (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 小鼠; 1:200; 图 2b
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2b). J Gen Physiol (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 犬; 图 4a
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在犬样本上 (图 4a). J Cell Biol (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 2d
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 2d). J Cell Biol (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 1:1000; 图 6a
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Nat Commun (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 2b
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2b). PLoS ONE (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 1a
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 1a). EMBO Rep (2016) ncbi
小鼠 单克隆(G1/139/5)
  • 免疫细胞化学; pigs ; 1:2; 图 4c
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, G1/139/5)被用于被用于免疫细胞化学在pigs 样本上浓度为1:2 (图 4c). PLoS Pathog (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 7g
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 7g). PLoS ONE (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 1
Developmental Studies Hybridoma BankLAMP-1抗体(Iowa Univ, H4A3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 1). Neuropathology (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s2
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3-s)被用于被用于免疫细胞化学在人类样本上 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫印迹; 人类; 图 6a
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫印迹在人类样本上 (图 6a). J Immunol (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 2
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 1a
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 1a). Oncotarget (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化; 人类; 1:100
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫组化在人类样本上浓度为1:100. Data Brief (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s4a
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 s4a). Nat Genet (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:500; 图 6
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3-c)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:250; 图 4
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 4). J Cell Biol (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 s6
  • 免疫印迹; 人类; 1:500; 图 s7
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s6) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 s7). Nat Genet (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 图 5
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3-c)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Autophagy (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 4, 5
Developmental Studies Hybridoma BankLAMP-1抗体(DSHB, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 4, 5). MAbs (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 s9f
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 s9f). Nature (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 1:200; 图 5
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类
Developmental Studies Hybridoma BankLAMP-1抗体(University of Iowa Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在人类样本上. J Clin Invest (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; 人类; 图 2, 3, 4
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma, H4A3)被用于被用于免疫细胞化学在人类样本上 (图 2, 3, 4). Cardiovasc Res (2014) ncbi
小鼠 单克隆(H4A3)
  • 流式细胞仪; 人类; 图 2
Developmental Studies Hybridoma BankLAMP-1抗体(Biolegend, H4A3)被用于被用于流式细胞仪在人类样本上 (图 2). J Infect Dis (2015) ncbi
小鼠 单克隆(H4A3)
  • 免疫细胞化学; fission yeast; 图 s4
Developmental Studies Hybridoma BankLAMP-1抗体(Developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫细胞化学在fission yeast样本上 (图 s4). Nat Commun (2014) ncbi
小鼠 单克隆(H4A3)
  • 免疫组化-石蜡切片; 人类; 1:1000
Developmental Studies Hybridoma BankLAMP-1抗体(developmental Studies Hybridoma Bank, H4A3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Neuropathology (2013) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 8a
西格玛奥德里奇LAMP-1抗体(Sigma Aldrich, L1418)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 8a). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 s3f
  • 免疫印迹; 小鼠; 1:2000; 图 s1b
西格玛奥德里奇LAMP-1抗体(Sigma-Aldrich, L1418)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 s3f) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s1b). Autophagy (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 鸡; 1:1000; 图 4b
西格玛奥德里奇LAMP-1抗体(Sigma, L1418)被用于被用于免疫细胞化学在鸡样本上浓度为1:1000 (图 4b). Int J Biol Macromol (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:250; 图 4b
  • 免疫细胞化学; 小鼠; 1:250; 图 8a
西格玛奥德里奇LAMP-1抗体(Sigma, L1418)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 4b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 8a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 5e
西格玛奥德里奇LAMP-1抗体(Sigma, L1418)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5e). J Biol Chem (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:300; 图 8a
西格玛奥德里奇LAMP-1抗体(SIGMA, L1418)被用于被用于免疫细胞化学在大鼠样本上浓度为1:300 (图 8a). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5c
  • 免疫印迹; 人类; 图 3c
西格玛奥德里奇LAMP-1抗体(Sigma, L1418)被用于被用于免疫细胞化学在人类样本上 (图 5c) 和 被用于免疫印迹在人类样本上 (图 3c). J Alzheimers Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1b
  • 免疫印迹; 小鼠; 1:1000; 图 1a
西格玛奥德里奇LAMP-1抗体(Sigma, L1418)被用于被用于免疫细胞化学在小鼠样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). JIMD Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 1a
西格玛奥德里奇LAMP-1抗体(Sigma, L1418)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 8
西格玛奥德里奇LAMP-1抗体(Sigma, L1418)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 8). Autophagy (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇LAMP-1抗体(Sigma, L1418)被用于. J Virol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇LAMP-1抗体(Sigma, L1418)被用于. Mol Cell Biol (2015) ncbi
文章列表
  1. Pan R, Yu Y, Zhu H, Zhang W, Qin Y, Ye L, et al. RSPO2 promotes progression of ovarian cancer through dual receptor-mediated FAK/Src signaling activation. iScience. 2022;25:105184 pubmed 出版商
  2. Kiryu Seo S, Matsushita R, Tashiro Y, Yoshimura T, Iguchi Y, Katsuno M, et al. Impaired disassembly of the axon initial segment restricts mitochondrial entry into damaged axons. EMBO J. 2022;41:e110486 pubmed 出版商
  3. Francis V, Alshafie W, Kumar R, Girard M, Brais B, McPherson P. The ARSACS disease protein sacsin controls lysosomal positioning and reformation by regulating microtubule dynamics. J Biol Chem. 2022;298:102320 pubmed 出版商
  4. Gao H, Sun H, Yan N, Zhao P, Xu H, Zheng W, et al. ATP13A2 Declines Zinc-Induced Accumulation of α-Synuclein in a Parkinson's Disease Model. Int J Mol Sci. 2022;23: pubmed 出版商
  5. Singh N, Das B, Zhou J, Hu X, Yan R. Targeted BACE-1 inhibition in microglia enhances amyloid clearance and improved cognitive performance. Sci Adv. 2022;8:eabo3610 pubmed 出版商
  6. Chen P, Katsuyama E, Satyam A, Li H, Rubio J, Jung S, et al. CD38 reduces mitochondrial fitness and cytotoxic T cell response against viral infection in lupus patients by suppressing mitophagy. Sci Adv. 2022;8:eabo4271 pubmed 出版商
  7. Reibring C, El Shahawy M, Hallberg K, Harfe B, Linde A, Gritli Linde A. Loss of BMP2 and BMP4 Signaling in the Dental Epithelium Causes Defective Enamel Maturation and Aberrant Development of Ameloblasts. Int J Mol Sci. 2022;23: pubmed 出版商
  8. Qin L, Wang L, Zhang J, Zhou H, Yang Z, Wang Y, et al. Therapeutic strategies targeting uPAR potentiate anti-PD-1 efficacy in diffuse-type gastric cancer. Sci Adv. 2022;8:eabn3774 pubmed 出版商
  9. Jung K, Son M, Lee S, Kim J, Ko D, Yoo S, et al. Antibody-mediated delivery of a viral MHC-I epitope into the cytosol of target tumor cells repurposes virus-specific CD8+ T cells for cancer immunotherapy. Mol Cancer. 2022;21:102 pubmed 出版商
  10. Bondeson D, Paolella B, Asfaw A, Rothberg M, Skipper T, Langan C, et al. Phosphate dysregulation via the XPR1-KIDINS220 protein complex is a therapeutic vulnerability in ovarian cancer. Nat Cancer. 2022;3:681-695 pubmed 出版商
  11. Zhu J, Pittman S, Dhavale D, French R, Patterson J, Kaleelurrrahuman M, et al. VCP suppresses proteopathic seeding in neurons. Mol Neurodegener. 2022;17:30 pubmed 出版商
  12. Bajor M, Graczyk Jarzynka A, Marhelava K, Burdzińska A, Muchowicz A, Góral A, et al. PD-L1 CAR effector cells induce self-amplifying cytotoxic effects against target cells. J Immunother Cancer. 2022;10: pubmed 出版商
  13. Yoshida J, Ohishi T, Abe H, Ohba S, Inoue H, Usami I, et al. Mitochondrial complex I inhibitors suppress tumor growth through concomitant acidification of the intra- and extracellular environment. iScience. 2021;24:103497 pubmed 出版商
  14. Prabhu A, Kang I, De Pace R, Wassif C, Fujiwara H, Kell P, et al. A human iPSC-derived inducible neuronal model of Niemann-Pick disease, type C1. BMC Biol. 2021;19:218 pubmed 出版商
  15. Stoffel W, Binczek E, Schmidt Soltau I, Brodesser S, Wegner I. High fat / high cholesterol diet does not provoke atherosclerosis in the ω3-and ω6-polyunsaturated fatty acid synthesis-inactivated Δ6-fatty acid desaturase-deficient mouse. Mol Metab. 2021;54:101335 pubmed 出版商
  16. Zin E, Han D, Tran J, Morisson Welch N, Visel M, Kuronen M, et al. Outcomes of progranulin gene therapy in the retina are dependent on time and route of delivery. Mol Ther Methods Clin Dev. 2021;22:40-51 pubmed 出版商
  17. Zhao J, Lu W, Ren Y, Fu Y, Martens Y, Shue F, et al. Apolipoprotein E regulates lipid metabolism and α-synuclein pathology in human iPSC-derived cerebral organoids. Acta Neuropathol. 2021;142:807-825 pubmed 出版商
  18. Ashok A, Chaudhary S, Wise A, Rana N, McDonald D, Kritikos A, et al. Release of Iron-Loaded Ferritin in Sodium Iodate-Induced Model of Age Related Macular Degeneration: An In-Vitro and In-Vivo Study. Antioxidants (Basel). 2021;10: pubmed 出版商
  19. Soldati C, Lopez Fabuel I, Wanderlingh L, García Macia M, Monfregola J, Esposito A, et al. Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype. EMBO Mol Med. 2021;13:e13742 pubmed 出版商
  20. Yoon Y, Go G, Yoon S, Lim J, Lee G, Lee J, et al. Melatonin Treatment Improves Renal Fibrosis via miR-4516/SIAH3/PINK1 Axis. Cells. 2021;10: pubmed 出版商
  21. Glajch K, Moors T, Chen Y, Bechade P, Nam A, Rajsombath M, et al. Wild-type GBA1 increases the α-synuclein tetramer-monomer ratio, reduces lipid-rich aggregates, and attenuates motor and cognitive deficits in mice. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  22. Oberhardt V, Luxenburger H, Kemming J, Schulien I, Ciminski K, Giese S, et al. Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine. Nature. 2021;597:268-273 pubmed 出版商
  23. Escrevente C, Falcão A, Hall M, Lopes da Silva M, Antas P, Mesquita M, et al. Formation of Lipofuscin-Like Autofluorescent Granules in the Retinal Pigment Epithelium Requires Lysosome Dysfunction. Invest Ophthalmol Vis Sci. 2021;62:39 pubmed 出版商
  24. Spiegel J, Patel S, Muffly L, Hossain N, Oak J, Baird J, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med. 2021;27:1419-1431 pubmed 出版商
  25. Takahashi K, Nakamura S, Otsu W, Shimazawa M, Hara H. Progranulin deficiency in Iba-1+ myeloid cells exacerbates choroidal neovascularization by perturbation of lysosomal function and abnormal inflammation. J Neuroinflammation. 2021;18:164 pubmed 出版商
  26. Claes C, Danhash E, Hasselmann J, Chadarevian J, Shabestari S, England W, et al. Plaque-associated human microglia accumulate lipid droplets in a chimeric model of Alzheimer's disease. Mol Neurodegener. 2021;16:50 pubmed 出版商
  27. Birsa N, Ule A, Garone M, Tsang B, Mattedi F, Chong P, et al. FUS-ALS mutants alter FMRP phase separation equilibrium and impair protein translation. Sci Adv. 2021;7: pubmed 出版商
  28. Kasahara Y, Osuka S, Takasaki N, Bayasula -, Koya Y, Nakanishi N, et al. Primate-specific POTE-actin gene could play a role in human folliculogenesis by controlling the proliferation of granulosa cells. Cell Death Discov. 2021;7:186 pubmed 出版商
  29. Mathieu M, Nevo N, Jouve M, Valenzuela J, Maurin M, Verweij F, et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat Commun. 2021;12:4389 pubmed 出版商
  30. Motozono C, Toyoda M, Zahradník J, Saito A, Nasser H, Tan T, et al. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe. 2021;29:1124-1136.e11 pubmed 出版商
  31. Takahashi K, Kanerva K, Vanharanta L, Almeida Souza L, Lietha D, Olkkonen V, et al. ORP2 couples LDL-cholesterol transport to FAK activation by endosomal cholesterol/PI(4,5)P2 exchange. EMBO J. 2021;40:e106871 pubmed 出版商
  32. Nakatani T, Tsujimoto K, Park J, Jo T, Kimura T, Hayama Y, et al. The lysosomal Ragulator complex plays an essential role in leukocyte trafficking by activating myosin II. Nat Commun. 2021;12:3333 pubmed 出版商
  33. Singh M, Zangoui P, Yamanaka Y, Kenney L. Genetic code expansion enables visualization of Salmonella type three secretion system components and secreted effectors. elife. 2021;10: pubmed 出版商
  34. Zhang Y, Chen Y, Li Y, Huang F, Luo B, Yuan Y, et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Ι. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  35. Li Y, Chen L, Li L, Sottas C, Petrillo S, Lazaris A, et al. Cholesterol-binding translocator protein TSPO regulates steatosis and bile acid synthesis in nonalcoholic fatty liver disease. iScience. 2021;24:102457 pubmed 出版商
  36. Manchanda A, Bonventre J, Bugel S, Chatterjee P, Tanguay R, Johnson C. Truncation of the otoferlin transmembrane domain alters the development of hair cells and reduces membrane docking. Mol Biol Cell. 2021;32:1293-1305 pubmed 出版商
  37. Park G, Lee J, Han H, An H, Jin Z, Jeong E, et al. Ablation of dynamin-related protein 1 promotes diabetes-induced synaptic injury in the hippocampus. Cell Death Dis. 2021;12:445 pubmed 出版商
  38. Pramanick A, Chakraborti S, Mahata T, Basak M, Das K, Verma S, et al. G protein β5-ATM complexes drive acetaminophen-induced hepatotoxicity. Redox Biol. 2021;43:101965 pubmed 出版商
  39. Hess M, Krainer I, Filipek P, Witting B, Gutleben K, Vietor I, et al. Advanced Microscopy for Liver and Gut Ultrastructural Pathology in Patients with MVID and PFIC Caused by MYO5B Mutations. J Clin Med. 2021;10: pubmed 出版商
  40. Seol B, Kim Y, Cho Y. Modeling Sialidosis with Neural Precursor Cells Derived from Patient-Derived Induced Pluripotent Stem Cells. Int J Mol Sci. 2021;22: pubmed 出版商
  41. Caballero B, Bourdenx M, Luengo E, Díaz A, Sohn P, Chen X, et al. Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. Nat Commun. 2021;12:2238 pubmed 出版商
  42. Korovila I, Höhn A, Jung T, Grune T, Ott C. Reduced Liver Autophagy in High-Fat Diet Induced Liver Steatosis in New Zealand Obese Mice. Antioxidants (Basel). 2021;10: pubmed 出版商
  43. Bassal M, Liu J, Jankowiak W, Saftig P, Bartsch U. Rapid and Progressive Loss of Multiple Retinal Cell Types in Cathepsin D-Deficient Mice-An Animal Model of CLN10 Disease. Cells. 2021;10: pubmed 出版商
  44. Tamargo Gómez I, Martínez García G, Suarez M, Rey V, Fueyo A, Codina Martínez H, et al. ATG4D is the main ATG8 delipidating enzyme in mammalian cells and protects against cerebellar neurodegeneration. Cell Death Differ. 2021;: pubmed 出版商
  45. Courtland J, Bradshaw T, Waitt G, Soderblom E, Ho T, Rajab A, et al. Genetic disruption of WASHC4 drives endo-lysosomal dysfunction and cognitive-movement impairments in mice and humans. elife. 2021;10: pubmed 出版商
  46. Wang J, Liu B, Xu Y, Yang M, Wang C, Song M, et al. Activation of CREB-mediated autophagy by thioperamide ameliorates β-amyloid pathology and cognition in Alzheimer's disease. Aging Cell. 2021;20:e13333 pubmed 出版商
  47. De Miranda B, Castro S, Rocha E, Bodle C, Johnson K, Greenamyre J. The industrial solvent trichloroethylene induces LRRK2 kinase activity and dopaminergic neurodegeneration in a rat model of Parkinson's disease. Neurobiol Dis. 2021;153:105312 pubmed 出版商
  48. Persaud A, Nair S, Rahman M, Raj R, Weadick B, Nayak D, et al. Facilitative lysosomal transport of bile acids alleviates ER stress in mouse hematopoietic precursors. Nat Commun. 2021;12:1248 pubmed 出版商
  49. Li T, Yin Y, Mu N, Wang Y, Liu M, Chen M, et al. Metformin-Enhanced Cardiac AMP-Activated Protein Kinase/Atrogin-1 Pathways Inhibit Charged Multivesicular Body Protein 2B Accumulation in Ischemia-Reperfusion Injury. Front Cell Dev Biol. 2020;8:621509 pubmed 出版商
  50. Ryan B, Bengoa Vergniory N, Williamson M, Kirkiz E, Roberts R, Corda G, et al. REST protects dopaminergic neurons from mitochondrial and α-synuclein oligomer pathology in an alpha synuclein overexpressing BAC-transgenic mouse model. J Neurosci. 2021;: pubmed 出版商
  51. Tang C, Han J, Dalvi S, Manian K, Winschel L, Volland S, et al. A human model of Batten disease shows role of CLN3 in phagocytosis at the photoreceptor-RPE interface. Commun Biol. 2021;4:161 pubmed 出版商
  52. Fleming Martinez A, D xf6 ppler H, Bastea L, Edenfield B, Patel T, Leitges M, et al. Dysfunctional EGFR and oxidative stress-induced PKD1 signaling drive formation of DCLK1+ pancreatic stem cells. iScience. 2021;24:102019 pubmed 出版商
  53. Zhou H, Qin L, Jiang Q, Murray K, Zhang H, Li B, et al. Caveolae-mediated Tie2 signaling contributes to CCM pathogenesis in a brain endothelial cell-specific Pdcd10-deficient mouse model. Nat Commun. 2021;12:504 pubmed 出版商
  54. Mousavy Gharavy S, Owen B, Millership S, Chabosseau P, Pizza G, Martinez Sanchez A, et al. Sexually dimorphic roles for the type 2 diabetes-associated C2cd4b gene in murine glucose homeostasis. Diabetologia. 2021;64:850-864 pubmed 出版商
  55. Kong Y, Zhao X, Qiu M, Lin Y, Feng P, Li S, et al. Tubular Mas receptor mediates lipid-induced kidney injury. Cell Death Dis. 2021;12:110 pubmed 出版商
  56. Choi G, Lee H, Chae C, Cho J, Jung Y, Kim J, et al. BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects. Nat Commun. 2021;12:487 pubmed 出版商
  57. Venugopalan V, Al Hashimi A, Rehders M, Golchert J, Reinecke V, Homuth G, et al. The Thyroid Hormone Transporter Mct8 Restricts Cathepsin-Mediated Thyroglobulin Processing in Male Mice through Thyroid Auto-Regulatory Mechanisms That Encompass Autophagy. Int J Mol Sci. 2021;22: pubmed 出版商
  58. Chen C, Wang D, Yu Y, Zhao T, Min N, Wu Y, et al. Legumain promotes tubular ferroptosis by facilitating chaperone-mediated autophagy of GPX4 in AKI. Cell Death Dis. 2021;12:65 pubmed 出版商
  59. Lafouresse F, Jugele R, Müller S, Doineau M, Duplan Eche V, Espinosa E, et al. Stochastic asymmetric repartition of lytic machinery in dividing CD8+ T cells generates heterogeneous killing behavior. elife. 2021;10: pubmed 出版商
  60. Stojakovic A, Trushin S, Sheu A, Khalili L, Chang S, Li X, et al. Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition in APP/PS1 female mice. Commun Biol. 2021;4:61 pubmed 出版商
  61. Ben Sasson A, Watson J, Sheffler W, Johnson M, Bittleston A, Somasundaram L, et al. Design of biologically active binary protein 2D materials. Nature. 2021;589:468-473 pubmed 出版商
  62. Tan C, Chang H, Zhou Q, Yu C, Fu N, Sabapathy K, et al. MOAP-1-mediated dissociation of p62/SQSTM1 bodies releases Keap1 and suppresses Nrf2 signaling. EMBO Rep. 2021;:e50854 pubmed 出版商
  63. Snyder M, Sembrat J, Noda K, MYERBURG M, Craig A, Mitash N, et al. Human Lung-Resident Macrophages Colocalize with and Provide Costimulation to PD1hi Tissue-Resident Memory T Cells. Am J Respir Crit Care Med. 2021;203:1230-1244 pubmed 出版商
  64. van Berkel A, Santos T, Shaweis H, van Weering J, Toonen R, Verhage M. Loss of MUNC18-1 leads to retrograde transport defects in neurons. J Neurochem. 2021;157:450-466 pubmed 出版商
  65. Zang R, Case J, Yutuc E, Ma X, Shen S, Gomez Castro M, et al. Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion. Proc Natl Acad Sci U S A. 2020;117:32105-32113 pubmed 出版商
  66. Hall Roberts H, Agarwal D, Obst J, Smith T, Monzón Sandoval J, Di Daniel E, et al. TREM2 Alzheimer's variant R47H causes similar transcriptional dysregulation to knockout, yet only subtle functional phenotypes in human iPSC-derived macrophages. Alzheimers Res Ther. 2020;12:151 pubmed 出版商
  67. Xu J, Wang Y, Hsu C, Negri S, Tower R, Gao Y, et al. Lysosomal protein surface expression discriminates fat- from bone-forming human mesenchymal precursor cells. elife. 2020;9: pubmed 出版商
  68. Bengoa Vergniory N, Faggiani E, Ramos Gonzalez P, Kirkiz E, Connor Robson N, Brown L, et al. CLR01 protects dopaminergic neurons in vitro and in mouse models of Parkinson's disease. Nat Commun. 2020;11:4885 pubmed 出版商
  69. Tseng H, Xiong W, Badeti S, Yang Y, Ma M, Liu T, et al. Efficacy of anti-CD147 chimeric antigen receptors targeting hepatocellular carcinoma. Nat Commun. 2020;11:4810 pubmed 出版商
  70. Ishii K, Pouzolles M, Chien C, Erwin Cohen R, Kohler M, Qin H, et al. Perforin-deficient CAR T cells recapitulate late-onset inflammatory toxicities observed in patients. J Clin Invest. 2020;130:5425-5443 pubmed 出版商
  71. Cignarella F, Filipello F, Bollman B, Cantoni C, Locca A, Mikesell R, et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol. 2020;140:513-534 pubmed 出版商
  72. Lanzillotta C, Zuliani I, Vasavda C, Snyder S, Paul B, Perluigi M, et al. BVR-A Deficiency Leads to Autophagy Impairment through the Dysregulation of AMPK/mTOR Axis in the Brain-Implications for Neurodegeneration. Antioxidants (Basel). 2020;9: pubmed 出版商
  73. Bennstein S, Weinhold S, Manser A, Scherenschlich N, Noll A, Raba K, et al. Umbilical cord blood-derived ILC1-like cells constitute a novel precursor for mature KIR+NKG2A- NK cells. elife. 2020;9: pubmed 出版商
  74. Escamilla Ayala A, Sannerud R, Mondin M, Poersch K, Vermeire W, Paparelli L, et al. Super-resolution microscopy reveals majorly mono- and dimeric presenilin1/γ-secretase at the cell surface. elife. 2020;9: pubmed 出版商
  75. Silva M, Nandi G, Tentarelli S, Gurrell I, Jamier T, Lucente D, et al. Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nat Commun. 2020;11:3258 pubmed 出版商
  76. Long Z, Chen J, Zhao Y, Zhou W, Yao Q, Wang Y, et al. Dynamic changes of autophagic flux induced by Abeta in the brain of postmortem Alzheimer's disease patients, animal models and cell models. Aging (Albany NY). 2020;12:10912-10930 pubmed 出版商
  77. Gunesch J, Dixon A, Ebrahim T, Berrien Elliott M, Tatineni S, Kumar T, et al. CD56 regulates human NK cell cytotoxicity through Pyk2. elife. 2020;9: pubmed 出版商
  78. Saha P, Shumate J, Caldwell J, Elghobashi Meinhardt N, Lu A, Zhang L, et al. Inter-domain dynamics drive cholesterol transport by NPC1 and NPC1L1 proteins. elife. 2020;9: pubmed 出版商
  79. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  80. Brattås P, Hersbach B, Madsen S, Petri R, Jakobsson J, Pircs K. Impact of differential and time-dependent autophagy activation on therapeutic efficacy in a model of Huntington disease. Autophagy. 2021;17:1316-1329 pubmed 出版商
  81. Du T, Zhu G, Chen Y, Shi L, Liu D, Liu Y, et al. Anterior thalamic nucleus stimulation protects hippocampal neurons by activating autophagy in epileptic monkeys. Aging (Albany NY). 2020;12:6324-6339 pubmed 出版商
  82. Adapala N, Swarnkar G, Arra M, Shen J, Mbalaviele G, Ke K, et al. Inflammatory osteolysis is regulated by site-specific ISGylation of the scaffold protein NEMO. elife. 2020;9: pubmed 出版商
  83. Jaynes J, Sable R, Ronzetti M, Bautista W, Knotts Z, Abisoye Ogunniyan A, et al. Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci Transl Med. 2020;12: pubmed 出版商
  84. Okumura G, Iguchi Manaka A, Murata R, Yamashita Kanemaru Y, Shibuya A, Shibuya K. Tumor-derived soluble CD155 inhibits DNAM-1-mediated antitumor activity of natural killer cells. J Exp Med. 2020;217: pubmed 出版商
  85. Meilandt W, Ngu H, Gogineni A, Lalehzadeh G, Lee S, Srinivasan K, et al. Trem2 Deletion Reduces Late-Stage Amyloid Plaque Accumulation, Elevates the Aβ42:Aβ40 Ratio, and Exacerbates Axonal Dystrophy and Dendritic Spine Loss in the PS2APP Alzheimer's Mouse Model. J Neurosci. 2020;40:1956-1974 pubmed 出版商
  86. Deng M, Chen Z, Tan J, Liu H. Down-regulation of SLC35C1 induces colon cancer through over-activating Wnt pathway. J Cell Mol Med. 2020;24:3079-3090 pubmed 出版商
  87. Zhang S, Hu L, Jiang J, Li H, Wu Q, Ooi K, et al. HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. J Neuroinflammation. 2020;17:15 pubmed 出版商
  88. Wang J, Ba G, Han Y, Ming S, Wang M, Fu P, et al. Cyclic GMP-AMP synthase is essential for cytosolic double-stranded DNA and fowl adenovirus serotype 4 triggered innate immune responses in chickens. Int J Biol Macromol. 2020;146:497-507 pubmed 出版商
  89. Even A, Morelli G, Broix L, Scaramuzzino C, Turchetto S, Gladwyn Ng I, et al. ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. Sci Adv. 2019;5:eaax2705 pubmed 出版商
  90. Suzuki D, Flahou C, Yoshikawa N, Stirblyte I, Hayashi Y, Sawaguchi A, et al. iPSC-Derived Platelets Depleted of HLA Class I Are Inert to Anti-HLA Class I and Natural Killer Cell Immunity. Stem Cell Reports. 2020;14:49-59 pubmed 出版商
  91. Palomo Guerrero M, Fadó R, Casas M, Pérez Montero M, Baena M, Helmer P, et al. Sensing of nutrients by CPT1C regulates late endosome/lysosome anterograde transport and axon growth. elife. 2019;8: pubmed 出版商
  92. Stévenin V, Chang Y, Le Toquin Y, Duchateau M, Gianetto Q, Luk C, et al. Dynamic Growth and Shrinkage of the Salmonella-Containing Vacuole Determines the Intracellular Pathogen Niche. Cell Rep. 2019;29:3958-3973.e7 pubmed 出版商
  93. Cserép C, Pósfai B, Lénárt N, Fekete R, László Z, Lele Z, et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science. 2020;367:528-537 pubmed 出版商
  94. Bergkvist L, Du Z, Elovsson G, Appelqvist H, Itzhaki L, Kumita J, et al. Mapping pathogenic processes contributing to neurodegeneration in Drosophila models of Alzheimer's disease. FEBS Open Bio. 2020;10:338-350 pubmed 出版商
  95. Lynn R, Weber E, Sotillo E, Gennert D, Xu P, Good Z, et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 2019;576:293-300 pubmed 出版商
  96. Yokoi A, Villar Prados A, Oliphint P, Zhang J, Song X, De Hoff P, et al. Mechanisms of nuclear content loading to exosomes. Sci Adv. 2019;5:eaax8849 pubmed 出版商
  97. Zhang Y, Cao Y, Chen J, Qin H, Yang L. A New Possible Mechanism by Which Punicalagin Protects against Liver Injury Induced by Type 2 Diabetes Mellitus: Upregulation of Autophagy via the Akt/FoxO3a Signaling Pathway. J Agric Food Chem. 2019;: pubmed 出版商
  98. Datta P, Hendrickson B, Brendalen S, Ruffcorn A, Seo S. The myosin-tail homology domain of centrosomal protein 290 is essential for protein confinement between the inner and outer segments in photoreceptors. J Biol Chem. 2019;294:19119-19136 pubmed 出版商
  99. Lu Y, Zheng Y, Coyaud E, Zhang C, Selvabaskaran A, Yu Y, et al. Palmitoylation of NOD1 and NOD2 is required for bacterial sensing. Science. 2019;366:460-467 pubmed 出版商
  100. Laflamme C, McKeever P, Kumar R, Schwartz J, Kolahdouzan M, Chen C, et al. Implementation of an antibody characterization procedure and application to the major ALS/FTD disease gene C9ORF72. elife. 2019;8: pubmed 出版商
  101. Buchwalter A, Schulte R, Tsai H, Capitanio J, Hetzer M. Selective clearance of the inner nuclear membrane protein emerin by vesicular transport during ER stress. elife. 2019;8: pubmed 出版商
  102. Majer O, Liu B, Woo B, Kreuk L, Van Dis E, Barton G. Release from UNC93B1 reinforces the compartmentalized activation of select TLRs. Nature. 2019;575:371-374 pubmed 出版商
  103. Majer O, Liu B, Kreuk L, Krogan N, Barton G. UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. Nature. 2019;575:366-370 pubmed 出版商
  104. Riessland M, Kolisnyk B, Kim T, Cheng J, Ni J, Pearson J, et al. Loss of SATB1 Induces p21-Dependent Cellular Senescence in Post-mitotic Dopaminergic Neurons. Cell Stem Cell. 2019;25:514-530.e8 pubmed 出版商
  105. Liao Y, Fernandopulle M, Wang G, Choi H, Hao L, Drerup C, et al. RNA Granules Hitchhike on Lysosomes for Long-Distance Transport, Using Annexin A11 as a Molecular Tether. Cell. 2019;179:147-164.e20 pubmed 出版商
  106. Höglinger D, Burgoyne T, Sanchez Heras E, Hartwig P, Colaco A, Newton J, et al. NPC1 regulates ER contacts with endocytic organelles to mediate cholesterol egress. Nat Commun. 2019;10:4276 pubmed 出版商
  107. Moreno Blas D, Gorostieta Salas E, Pommer Alba A, Muciño Hernández G, Gerónimo Olvera C, Maciel Barón L, et al. Cortical neurons develop a senescence-like phenotype promoted by dysfunctional autophagy. Aging (Albany NY). 2019;11:6175-6198 pubmed 出版商
  108. Yagensky O, Kohansal Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, et al. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. elife. 2019;8: pubmed 出版商
  109. Pech M, Fong L, Villalta J, Chan L, Kharbanda S, O Brien J, et al. Systematic identification of cancer cell vulnerabilities to natural killer cell-mediated immune surveillance. elife. 2019;8: pubmed 出版商
  110. Wei J, Luo C, Wang Y, Guo Y, Dai H, Tong C, et al. PD-1 silencing impairs the anti-tumor function of chimeric antigen receptor modified T cells by inhibiting proliferation activity. J Immunother Cancer. 2019;7:209 pubmed 出版商
  111. Meckiff B, Ladell K, McLaren J, Ryan G, Leese A, James E, et al. Primary EBV Infection Induces an Acute Wave of Activated Antigen-Specific Cytotoxic CD4+ T Cells. J Immunol. 2019;203:1276-1287 pubmed 出版商
  112. Jennewein M, Goldfarb I, Dolatshahi S, Cosgrove C, Noelette F, Krykbaeva M, et al. Fc Glycan-Mediated Regulation of Placental Antibody Transfer. Cell. 2019;: pubmed 出版商
  113. Gauthier L, Morel A, Anceriz N, Rossi B, Blanchard Alvarez A, Grondin G, et al. Multifunctional Natural Killer Cell Engagers Targeting NKp46 Trigger Protective Tumor Immunity. Cell. 2019;177:1701-1713.e16 pubmed 出版商
  114. Xiao J, Luo J, Hu A, Xiao T, Li M, Kong Z, et al. Cholesterol transport through the peroxisome-ER membrane contacts tethered by PI(4,5)P2 and extended synaptotagmins. Sci China Life Sci. 2019;: pubmed 出版商
  115. Pietila M, Sahgal P, Peuhu E, Jäntti N, Paatero I, Närvä E, et al. SORLA regulates endosomal trafficking and oncogenic fitness of HER2. Nat Commun. 2019;10:2340 pubmed 出版商
  116. Slobodnyuk K, Radic N, Ivanova S, Lladó A, Trempolec N, Zorzano A, et al. Autophagy-induced senescence is regulated by p38α signaling. Cell Death Dis. 2019;10:376 pubmed 出版商
  117. Sahgal P, Alanko J, Icha J, Paatero I, Hamidi H, Arjonen A, et al. GGA2 and RAB13 promote activity-dependent β1-integrin recycling. J Cell Sci. 2019;132: pubmed 出版商
  118. Fernandez I, Baxter R, Garcia Perez J, Vendrame E, Ranganath T, Kong D, et al. A novel human IL2RB mutation results in T and NK cell-driven immune dysregulation. J Exp Med. 2019;216:1255-1267 pubmed 出版商
  119. Guo M, Hartlova A, Gierlinski M, Prescott A, Castellvi J, Losa J, et al. Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. EMBO J. 2019;38: pubmed 出版商
  120. Ho P, Leung C, Liu H, Pang S, Lam C, Xian J, et al. Age-dependent accumulation of oligomeric SNCA/α-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: role for therapeutic activation of chaperone-mediated autophagy (CMA). Autophagy. 2019;:1-24 pubmed 出版商
  121. Saito T, Kuma A, Sugiura Y, Ichimura Y, Obata M, Kitamura H, et al. Autophagy regulates lipid metabolism through selective turnover of NCoR1. Nat Commun. 2019;10:1567 pubmed 出版商
  122. Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler R, Zhang S, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nat Neurosci. 2019;22:719-728 pubmed 出版商
  123. Sapmaz A, Berlin I, Bos E, Wijdeven R, Janssen H, Konietzny R, et al. USP32 regulates late endosomal transport and recycling through deubiquitylation of Rab7. Nat Commun. 2019;10:1454 pubmed 出版商
  124. Quinney K, Frankel E, Shankar R, Kasberg W, Luong P, Audhya A. Growth factor stimulation promotes multivesicular endosome biogenesis by prolonging recruitment of the late-acting ESCRT machinery. Proc Natl Acad Sci U S A. 2019;116:6858-6867 pubmed 出版商
  125. Cabrera J, Manivanh R, North B, Leib D. The ESCRT-Related ATPase Vps4 Is Modulated by Interferon during Herpes Simplex Virus 1 Infection. MBio. 2019;10: pubmed 出版商
  126. Bae D, Moore K, Mella J, Hayashi S, Hollien J. Degradation of Blos1 mRNA by IRE1 repositions lysosomes and protects cells from stress. J Cell Biol. 2019;218:1118-1127 pubmed 出版商
  127. Losier T, Akuma M, McKee Muir O, LeBlond N, Suk Y, Alsaadi R, et al. AMPK Promotes Xenophagy through Priming of Autophagic Kinases upon Detection of Bacterial Outer Membrane Vesicles. Cell Rep. 2019;26:2150-2165.e5 pubmed 出版商
  128. Zhang J, He J, Johnson J, Rahman F, Gavathiotis E, Cuervo A, et al. Chaperone-Mediated Autophagy Upregulation Rescues Megalin Expression and Localization in Cystinotic Proximal Tubule Cells. Front Endocrinol (Lausanne). 2019;10:21 pubmed 出版商
  129. Yeshaw W, van der Zwaag M, Pinto F, Lahaye L, Faber A, Gómez Sánchez R, et al. Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility. elife. 2019;8: pubmed 出版商
  130. Song K, Gras C, Capin G, Gimber N, Lehmann M, Mohd S, et al. A SEPT1-based scaffold is required for Golgi integrity and function. J Cell Sci. 2019;132: pubmed 出版商
  131. Montel Hagen A, Seet C, Li S, Chick B, Zhu Y, Chang P, et al. Organoid-Induced Differentiation of Conventional T Cells from Human Pluripotent Stem Cells. Cell Stem Cell. 2019;24:376-389.e8 pubmed 出版商
  132. Adams J, Feuerborn M, Molina J, Wilden A, Adhikari B, Budden T, et al. Autophagy-lysosome pathway alterations and alpha-synuclein up-regulation in the subtype of neuronal ceroid lipofuscinosis, CLN5 disease. Sci Rep. 2019;9:151 pubmed 出版商
  133. Xu Y, Ren J, He X, Chen H, Wei T, Feng W. YWHA/14-3-3 proteins recognize phosphorylated TFEB by a noncanonical mode for controlling TFEB cytoplasmic localization. Autophagy. 2019;15:1017-1030 pubmed 出版商
  134. Wang D, Xu Q, Yuan Q, Jia M, Niu H, Liu X, et al. Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab. Oncogene. 2019;38:3458-3474 pubmed 出版商
  135. Hallner A, Bernson E, Hussein B, Sander F, Brune M, Aurelius J, et al. The HLA-B -21 dimorphism impacts on NK cell education and clinical outcome of immunotherapy in acute myeloid leukemia. Blood. 2019;: pubmed 出版商
  136. Hui L, Soliman M, Geiger N, Miller N, Afghah Z, Lakpa K, et al. Acidifying Endolysosomes Prevented Low-Density Lipoprotein-Induced Amyloidogenesis. J Alzheimers Dis. 2019;67:393-410 pubmed 出版商
  137. Wang X, Piersma S, Nelson C, Dai Y, Christensen T, Lazear E, et al. A herpesvirus encoded Qa-1 mimic inhibits natural killer cell cytotoxicity through CD94/NKG2A receptor engagement. elife. 2018;7: pubmed 出版商
  138. Atakpa P, Thillaiappan N, Mataragka S, Prole D, Taylor C. IP3 Receptors Preferentially Associate with ER-Lysosome Contact Sites and Selectively Deliver Ca2+ to Lysosomes. Cell Rep. 2018;25:3180-3193.e7 pubmed 出版商
  139. Andre P, Denis C, Soulas C, Bourbon Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731-1743.e13 pubmed 出版商
  140. Theisen D, Davidson J, Briseño C, Gargaro M, Lauron E, Wang Q, et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science. 2018;362:694-699 pubmed 出版商
  141. Kuranda K, Jean Alphonse P, Leborgne C, Hardet R, Collaud F, Marmier S, et al. Exposure to wild-type AAV drives distinct capsid immunity profiles in humans. J Clin Invest. 2018;128:5267-5279 pubmed 出版商
  142. Shi G, OZOG S, Torbett B, Compton A. mTOR inhibitors lower an intrinsic barrier to virus infection mediated by IFITM3. Proc Natl Acad Sci U S A. 2018;115:E10069-E10078 pubmed 出版商
  143. Bradley T, Peppa D, Pedroza Pacheco I, Li D, Cain D, Henao R, et al. RAB11FIP5 Expression and Altered Natural Killer Cell Function Are Associated with Induction of HIV Broadly Neutralizing Antibody Responses. Cell. 2018;175:387-399.e17 pubmed 出版商
  144. Qiu T, Pei P, Yao X, Jiang L, Wei S, Wang Z, et al. Taurine attenuates arsenic-induced pyroptosis and nonalcoholic steatohepatitis by inhibiting the autophagic-inflammasomal pathway. Cell Death Dis. 2018;9:946 pubmed 出版商
  145. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  146. Son S, Park S, Lee H, Siddiqi F, Lee J, Menzies F, et al. Leucine Signals to mTORC1 via Its Metabolite Acetyl-Coenzyme A. Cell Metab. 2019;29:192-201.e7 pubmed 出版商
  147. Kim H, Mun Y, Lee K, Park Y, Park J, Park J, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;9:3630 pubmed 出版商
  148. Nnah I, Wang B, Saqcena C, Weber G, Bonder E, Bagley D, et al. TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy. 2019;15:151-164 pubmed 出版商
  149. Walwyn Brown K, Guldevall K, Saeed M, Pende D, Önfelt B, MacDonald A, et al. Human NK Cells Lyse Th2-Polarizing Dendritic Cells via NKp30 and DNAM-1. J Immunol. 2018;201:2028-2041 pubmed 出版商
  150. Massaro G, Mattar C, Wong A, Sirka E, Buckley S, Herbert B, et al. Fetal gene therapy for neurodegenerative disease of infants. Nat Med. 2018;24:1317-1323 pubmed 出版商
  151. Mahaweni N, Ehlers F, Sarkar S, Janssen J, Tilanus M, Bos G, et al. NKG2A Expression Is Not per se Detrimental for the Anti-Multiple Myeloma Activity of Activated Natural Killer Cells in an In Vitro System Mimicking the Tumor Microenvironment. Front Immunol. 2018;9:1415 pubmed 出版商
  152. Wang W, Xia Z, Farre J, Subramani S. TRIM37 deficiency induces autophagy through deregulating the MTORC1-TFEB axis. Autophagy. 2018;14:1574-1585 pubmed 出版商
  153. Messenger S, Woo S, Sun Z, Martin T. A Ca2+-stimulated exosome release pathway in cancer cells is regulated by Munc13-4. J Cell Biol. 2018;217:2877-2890 pubmed 出版商
  154. Alissafi T, Hatzioannou A, Mintzas K, Barouni R, Banos A, Sormendi S, et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Invest. 2018;128:3840-3852 pubmed 出版商
  155. Pellegrini L, Hauser D, Li Y, Mamais A, Beilina A, Kumaran R, et al. Proteomic analysis reveals co-ordinated alterations in protein synthesis and degradation pathways in LRRK2 knockout mice. Hum Mol Genet. 2018;27:3257-3271 pubmed 出版商
  156. Galperin M, Farenc C, Mukhopadhyay M, Jayasinghe D, Decroos A, Benati D, et al. CD4+ T cell-mediated HLA class II cross-restriction in HIV controllers. Sci Immunol. 2018;3: pubmed 出版商
  157. Capuano C, Battella S, Pighi C, Franchitti L, Turriziani O, Morrone S, et al. Tumor-Targeting Anti-CD20 Antibodies Mediate In Vitro Expansion of Memory Natural Killer Cells: Impact of CD16 Affinity Ligation Conditions and In Vivo Priming. Front Immunol. 2018;9:1031 pubmed 出版商
  158. Wang L, Feng Y, Yan D, Qin L, Grati M, Mittal R, et al. A dominant variant in the PDE1C gene is associated with nonsyndromic hearing loss. Hum Genet. 2018;137:437-446 pubmed 出版商
  159. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  160. Vera Ramirez L, Vodnala S, Nini R, Hunter K, Green J. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat Commun. 2018;9:1944 pubmed 出版商
  161. Quaranta V, Rainer C, Nielsen S, Raymant M, Ahmed M, Engle D, et al. Macrophage-Derived Granulin Drives Resistance to Immune Checkpoint Inhibition in Metastatic Pancreatic Cancer. Cancer Res. 2018;78:4253-4269 pubmed 出版商
  162. Sedlyarov V, Eichner R, Girardi E, Essletzbichler P, Goldmann U, Nunes Hasler P, et al. The Bicarbonate Transporter SLC4A7 Plays a Key Role in Macrophage Phagosome Acidification. Cell Host Microbe. 2018;23:766-774.e5 pubmed 出版商
  163. Wang E, Pjechova M, Nightingale K, Vlahava V, Patel M, Růcková E, et al. Suppression of costimulation by human cytomegalovirus promotes evasion of cellular immune defenses. Proc Natl Acad Sci U S A. 2018;115:4998-5003 pubmed 出版商
  164. Liu L, An D, Xu J, Shao B, Li X, Shi J. Ac2-26 Induces IKKβ Degradation Through Chaperone-Mediated Autophagy Via HSPB1 in NCM-Treated Microglia. Front Mol Neurosci. 2018;11:76 pubmed 出版商
  165. Skowyra M, Schlesinger P, Naismith T, Hanson P. Triggered recruitment of ESCRT machinery promotes endolysosomal repair. Science. 2018;360: pubmed 出版商
  166. Zhang C, Peng Y, Hublitz P, Zhang H, Dong T. Genetic abrogation of immune checkpoints in antigen-specific cytotoxic T-lymphocyte as a potential alternative to blockade immunotherapy. Sci Rep. 2018;8:5549 pubmed 出版商
  167. Takada N, Naito T, Inoue T, Nakayama K, Takatsu H, Shin H. Phospholipid-flipping activity of P4-ATPase drives membrane curvature. EMBO J. 2018;37: pubmed 出版商
  168. Lim J, Lim J, Kim G, Levine R. Myristoylated methionine sulfoxide reductase A is a late endosomal protein. J Biol Chem. 2018;293:7355-7366 pubmed 出版商
  169. Leeman D, Hebestreit K, Ruetz T, Webb A, McKay A, Pollina E, et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science. 2018;359:1277-1283 pubmed 出版商
  170. Zhao Y, Wu X, Li X, Jiang L, Gui X, Liu Y, et al. TREM2 Is a Receptor for β-Amyloid that Mediates Microglial Function. Neuron. 2018;97:1023-1031.e7 pubmed 出版商
  171. Marrone L, Bus C, Schöndorf D, Fitzgerald J, Kübler M, Schmid B, et al. Generation of iPSCs carrying a common LRRK2 risk allele for in vitro modeling of idiopathic Parkinson's disease. PLoS ONE. 2018;13:e0192497 pubmed 出版商
  172. Oei V, Siernicka M, Graczyk Jarzynka A, Hoel H, Yang W, Palacios D, et al. Intrinsic Functional Potential of NK-Cell Subsets Constrains Retargeting Driven by Chimeric Antigen Receptors. Cancer Immunol Res. 2018;6:467-480 pubmed 出版商
  173. Yurchenko M, Skjesol A, Ryan L, Richard G, Kandasamy R, Wang N, et al. SLAMF1 is required for TLR4-mediated TRAM-TRIF-dependent signaling in human macrophages. J Cell Biol. 2018;217:1411-1429 pubmed 出版商
  174. Carpier J, Zucchetti A, Bataille L, Dogniaux S, Shafaq Zadah M, Bardin S, et al. Rab6-dependent retrograde traffic of LAT controls immune synapse formation and T cell activation. J Exp Med. 2018;215:1245-1265 pubmed 出版商
  175. Mukadam A, Breusegem S, Seaman M. Analysis of novel endosome-to-Golgi retrieval genes reveals a role for PLD3 in regulating endosomal protein sorting and amyloid precursor protein processing. Cell Mol Life Sci. 2018;75:2613-2625 pubmed 出版商
  176. Lagrange B, Benaoudia S, Wallet P, Magnotti F, Provost A, Michal F, et al. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11. Nat Commun. 2018;9:242 pubmed 出版商
  177. Cox C, Lu R, Salcin K, Wilson J. The Endosomal Protein Endotubin Is Required for Enterocyte Differentiation. Cell Mol Gastroenterol Hepatol. 2018;5:145-156 pubmed 出版商
  178. Fletcher K, Ulferts R, Jacquin E, Veith T, Gammoh N, Arasteh J, et al. The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes. EMBO J. 2018;37: pubmed 出版商
  179. Pizzolla A, Nguyen T, Sant S, Jaffar J, Loudovaris T, Mannering S, et al. Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles. J Clin Invest. 2018;128:721-733 pubmed 出版商
  180. Shroff A, Sequeira R, Patel V, Reddy K. Knockout of autophagy gene, ATG5 in mice vaginal cells abrogates cytokine response and pathogen clearance during vaginal infection of Candida albicans. Cell Immunol. 2018;324:59-73 pubmed 出版商
  181. Cribbs A, Hookway E, Wells G, Lindow M, Obad S, Oerum H, et al. Inhibition of histone H3K27 demethylases selectively modulates inflammatory phenotypes of natural killer cells. J Biol Chem. 2018;293:2422-2437 pubmed 出版商
  182. Zhou K, Enkhjargal B, Xie Z, Sun C, Wu L, Malaguit J, et al. Dihydrolipoic Acid Inhibits Lysosomal Rupture and NLRP3 Through Lysosome-Associated Membrane Protein-1/Calcium/Calmodulin-Dependent Protein Kinase II/TAK1 Pathways After Subarachnoid Hemorrhage in Rat. Stroke. 2018;49:175-183 pubmed 出版商
  183. Pugh J, Nemat Gorgani N, Norman P, Guethlein L, Parham P. Human NK Cells Downregulate Zap70 and Syk in Response to Prolonged Activation or DNA Damage. J Immunol. 2018;200:1146-1158 pubmed 出版商
  184. Lee S, Bazick H, Chittoor Vinod V, Al Salihi M, Xia G, Notterpek L. Elevated Peripheral Myelin Protein 22, Reduced Mitotic Potential, and Proteasome Impairment in Dermal Fibroblasts from Charcot-Marie-Tooth Disease Type 1A Patients. Am J Pathol. 2018;188:728-738 pubmed 出版商
  185. Krey J, Dumont R, Wilmarth P, David L, Johnson K, Barr Gillespie P. ELMOD1 Stimulates ARF6-GTP Hydrolysis to Stabilize Apical Structures in Developing Vestibular Hair Cells. J Neurosci. 2018;38:843-857 pubmed 出版商
  186. Iseka F, Goetz B, Mushtaq I, An W, Cypher L, Bielecki T, et al. Role of the EHD Family of Endocytic Recycling Regulators for TCR Recycling and T Cell Function. J Immunol. 2018;200:483-499 pubmed 出版商
  187. Jimenez Orgaz A, Kvainickas A, Nägele H, Denner J, Eimer S, Dengjel J, et al. Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. EMBO J. 2018;37:235-254 pubmed 出版商
  188. Licon Munoz Y, Michel V, Fordyce C, Parra K. F-actin reorganization by V-ATPase inhibition in prostate cancer. Biol Open. 2017;6:1734-1744 pubmed 出版商
  189. Moody H, Lind M, Maher S. MicroRNA-31 Regulates Chemosensitivity in Malignant Pleural Mesothelioma. Mol Ther Nucleic Acids. 2017;8:317-329 pubmed 出版商
  190. Bartolomeo R, Cinque L, De Leonibus C, Forrester A, Salzano A, Monfregola J, et al. mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy. J Clin Invest. 2017;127:3717-3729 pubmed 出版商
  191. Rong X, Wang B, Palladino E, de Aguiar Vallim T, Ford D, Tontonoz P. ER phospholipid composition modulates lipogenesis during feeding and in obesity. J Clin Invest. 2017;127:3640-3651 pubmed 出版商
  192. Liu S, Liu H, Johnston A, Hanna Addams S, Reynoso E, Xiang Y, et al. MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis. Proc Natl Acad Sci U S A. 2017;114:E7450-E7459 pubmed 出版商
  193. Burr M, Sparbier C, Chan Y, Williamson J, Woods K, Beavis P, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017;549:101-105 pubmed 出版商
  194. Zhang X, Lian X, Dai Z, Zheng H, Chen X, Zheng Y. ?3-Deletion Isoform of HLA-A11 Modulates Cytotoxicity of NK Cells: Correlations with HIV-1 Infection of Cells. J Immunol. 2017;199:2030-2042 pubmed 出版商
  195. Wei J, Xu H, Meng W. Noncentrosomal microtubules regulate autophagosome transport through CAMSAP2-EB1 cross-talk. FEBS Lett. 2017;591:2379-2393 pubmed 出版商
  196. Wang W, Xia Z, Farré J, Subramani S. TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import. J Cell Biol. 2017;216:2843-2858 pubmed 出版商
  197. Gorvel L, Korenfeld D, Tung T, Klechevsky E. Dendritic Cell-Derived IL-32?: A Novel Inhibitory Cytokine of NK Cell Function. J Immunol. 2017;199:1290-1300 pubmed 出版商
  198. Olivares O, Mayers J, Gouirand V, Torrence M, Gicquel T, Borge L, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun. 2017;8:16031 pubmed 出版商
  199. Ott P, Hu Z, Keskin D, Shukla S, Sun J, Bozym D, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217-221 pubmed 出版商
  200. Laviolette L, Mermoud J, Calvo I, Olson N, Boukhali M, Steinlein O, et al. Negative regulation of EGFR signalling by the human folliculin tumour suppressor protein. Nat Commun. 2017;8:15866 pubmed 出版商
  201. Alissafi T, Banos A, Boon L, Sparwasser T, Ghigo A, Wing K, et al. Tregs restrain dendritic cell autophagy to ameliorate autoimmunity. J Clin Invest. 2017;127:2789-2804 pubmed 出版商
  202. Shiba Fukushima K, Ishikawa K, Inoshita T, Izawa N, Takanashi M, Sato S, et al. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease. Hum Mol Genet. 2017;26:3172-3185 pubmed 出版商
  203. Vidoni C, Secomandi E, Castiglioni A, Melone M, Isidoro C. Resveratrol protects neuronal-like cells expressing mutant Huntingtin from dopamine toxicity by rescuing ATG4-mediated autophagosome formation. Neurochem Int. 2018;117:174-187 pubmed 出版商
  204. Sakamaki J, Wilkinson S, Hahn M, Tasdemir N, O Prey J, Clark W, et al. Bromodomain Protein BRD4 Is a Transcriptional Repressor of Autophagy and Lysosomal Function. Mol Cell. 2017;66:517-532.e9 pubmed 出版商
  205. Yamashita Y, Anczurowski M, Nakatsugawa M, Tanaka M, Kagoya Y, Sinha A, et al. HLA-DP84Gly constitutively presents endogenous peptides generated by the class I antigen processing pathway. Nat Commun. 2017;8:15244 pubmed 出版商
  206. Geraets R, Langin L, Cain J, Parker C, Beraldi R, Kovács A, et al. A tailored mouse model of CLN2 disease: A nonsense mutant for testing personalized therapies. PLoS ONE. 2017;12:e0176526 pubmed 出版商
  207. Stevanović S, Pasetto A, Helman S, Gartner J, Prickett T, Howie B, et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science. 2017;356:200-205 pubmed 出版商
  208. Allison R, Edgar J, Pearson G, Rizo T, Newton T, Günther S, et al. Defects in ER-endosome contacts impact lysosome function in hereditary spastic paraplegia. J Cell Biol. 2017;216:1337-1355 pubmed 出版商
  209. Kaczmarek D, Kokordelis P, Kramer B, Glässner A, Wolter F, Goeser F, et al. Alterations of the NK cell pool in HIV/HCV co-infection. PLoS ONE. 2017;12:e0174465 pubmed 出版商
  210. Wilhelm L, Wendling C, Vedie B, Kobayashi T, Chenard M, Tomasetto C, et al. STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites. EMBO J. 2017;36:1412-1433 pubmed 出版商
  211. Li Q, Xia S, Fang H, Pan J, Jia Y, Deng G. VEGF treatment promotes bone marrow-derived CXCR4+ mesenchymal stromal stem cell differentiation into vessel endothelial cells. Exp Ther Med. 2017;13:449-454 pubmed 出版商
  212. Suresh S, Chavalmane A, Dj V, Yarreiphang H, Rai S, Paul A, et al. A novel autophagy modulator 6-Bio ameliorates SNCA/?-synuclein toxicity. Autophagy. 2017;13:1221-1234 pubmed 出版商
  213. Kang H, Park J, Choi K, Kim Y, Choi H, Jung C, et al. Chemical screening identifies ATM as a target for alleviating senescence. Nat Chem Biol. 2017;13:616-623 pubmed 出版商
  214. Ghadially H, Brown L, Lloyd C, Lewis L, LEWIS A, Dillon J, et al. MHC class I chain-related protein A and B (MICA and MICB) are predominantly expressed intracellularly in tumour and normal tissue. Br J Cancer. 2017;116:1208-1217 pubmed 出版商
  215. Marwaha R, Arya S, Jagga D, Kaur H, Tuli A, Sharma M. The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes. J Cell Biol. 2017;216:1051-1070 pubmed 出版商
  216. Roy N, Pacini G, Berlioz Torrent C, Janvier K. Characterization of E3 ligases involved in lysosomal sorting of the HIV-1 restriction factor BST2. J Cell Sci. 2017;130:1596-1611 pubmed 出版商
  217. Hubber A, Kubori T, Coban C, Matsuzawa T, Ogawa M, Kawabata T, et al. Bacterial secretion system skews the fate of Legionella-containing vacuoles towards LC3-associated phagocytosis. Sci Rep. 2017;7:44795 pubmed 出版商
  218. Kober A, Manavalan A, Tam Amersdorfer C, Holmér A, Saeed A, Fanaee Danesh E, et al. Implications of cerebrovascular ATP-binding cassette transporter G1 (ABCG1) and apolipoprotein M in cholesterol transport at the blood-brain barrier. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862:573-588 pubmed 出版商
  219. Sanger A, Yip Y, Randall T, Pernigo S, Steiner R, Dodding M. SKIP controls lysosome positioning using a composite kinesin-1 heavy and light chain-binding domain. J Cell Sci. 2017;130:1637-1651 pubmed 出版商
  220. Varadaraj A, JENKINS L, Singh P, Chanda A, Snider J, Lee N, et al. TGF-β triggers rapid fibrillogenesis via a novel TβRII-dependent fibronectin-trafficking mechanism. Mol Biol Cell. 2017;28:1195-1207 pubmed 出版商
  221. Miles A, Burr S, Grice G, Nathan J. The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1? prolyl hydroxylation by regulating cellular iron levels. elife. 2017;6: pubmed 出版商
  222. Jacquin E, Leclerc Mercier S, Judon C, Blanchard E, Fraitag S, Florey O. Pharmacological modulators of autophagy activate a parallel noncanonical pathway driving unconventional LC3 lipidation. Autophagy. 2017;13:854-867 pubmed 出版商
  223. Nishimura Y, Gautam R, Chun T, Sadjadpour R, Foulds K, Shingai M, et al. Early antibody therapy can induce long-lasting immunity to SHIV. Nature. 2017;543:559-563 pubmed 出版商
  224. Kim J, Hyun H, Min S, Kang T. Sustained HSP25 Expression Induces Clasmatodendrosis via ER Stress in the Rat Hippocampus. Front Cell Neurosci. 2017;11:47 pubmed 出版商
  225. Bagh M, Peng S, Chandra G, Zhang Z, Singh S, Pattabiraman N, et al. Misrouting of v-ATPase subunit V0a1 dysregulates lysosomal acidification in a neurodegenerative lysosomal storage disease model. Nat Commun. 2017;8:14612 pubmed 出版商
  226. Cardinaud S, Urrutia A, Rouers A, Coulon P, Kervevan J, Richetta C, et al. Triggering of TLR-3, -4, NOD2, and DC-SIGN reduces viral replication and increases T-cell activation capacity of HIV-infected human dendritic cells. Eur J Immunol. 2017;47:818-829 pubmed 出版商
  227. Pi H, Li M, Tian L, Yang Z, Yu Z, Zhou Z. Enhancing lysosomal biogenesis and autophagic flux by activating the transcription factor EB protects against cadmium-induced neurotoxicity. Sci Rep. 2017;7:43466 pubmed 出版商
  228. Shyng C, Macauley S, Dearborn J, Sands M. Widespread Expression of a Membrane-Tethered Version of the Soluble Lysosomal Enzyme Palmitoyl Protein Thioesterase-1. JIMD Rep. 2017;36:85-92 pubmed 出版商
  229. Peng M, Yin N, Li M. SZT2 dictates GATOR control of mTORC1 signalling. Nature. 2017;543:433-437 pubmed 出版商
  230. Jung J, Nayak A, Schaeffer V, Starzetz T, Kirsch A, Muller S, et al. Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator. elife. 2017;6: pubmed 出版商
  231. Ganesan R, Hos N, Gutierrez S, Fischer J, Stepek J, Daglidu E, et al. Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS Pathog. 2017;13:e1006227 pubmed 出版商
  232. Fielding C, Weekes M, Nobre L, Růcková E, Wilkie G, Paulo J, et al. Control of immune ligands by members of a cytomegalovirus gene expansion suppresses natural killer cell activation. elife. 2017;6: pubmed 出版商
  233. Yuan H, Tan B, Gao S. Tenovin-6 impairs autophagy by inhibiting autophagic flux. Cell Death Dis. 2017;8:e2608 pubmed 出版商
  234. Sugiura A, Mattie S, Prudent J, McBride H. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature. 2017;542:251-254 pubmed 出版商
  235. Koh H, Kim Y, Kim J, Yun J, Jang K, Yang C. Toxoplasma gondii GRA7-Targeted ASC and PLD1 Promote Antibacterial Host Defense via PKCα. PLoS Pathog. 2017;13:e1006126 pubmed 出版商
  236. Zimmermann Meisse G, Prevost G, Jover E. Above and beyond C5a Receptor Targeting by Staphylococcal Leucotoxins: Retrograde Transport of Panton-Valentine Leucocidin and ?-Hemolysin. Toxins (Basel). 2017;9: pubmed 出版商
  237. Vonk J, Yeshaw W, Pinto F, Faber A, Lahaye L, Kanon B, et al. Drosophila Vps13 Is Required for Protein Homeostasis in the Brain. PLoS ONE. 2017;12:e0170106 pubmed 出版商
  238. Hofhuis J, Bersch K, Büssenschütt R, Drzymalski M, Liebetanz D, Nikolaev V, et al. Dysferlin mediates membrane tubulation and links T-tubule biogenesis to muscular dystrophy. J Cell Sci. 2017;130:841-852 pubmed 出版商
  239. Raposo R, de Mulder Rougvie M, Paquin Proulx D, Brailey P, Cabido V, Zdinak P, et al. IFITM1 targets HIV-1 latently infected cells for antibody-dependent cytolysis. JCI Insight. 2017;2:e85811 pubmed 出版商
  240. Prasad A, Kulkarni R, Jiang S, Groopman J. Cocaine Enhances DC to T-cell HIV-1 Transmission by Activating DC-SIGN/LARG/LSP1 Complex and Facilitating Infectious Synapse Formation. Sci Rep. 2017;7:40648 pubmed 出版商
  241. Gao Y, Chen Y, Zhan S, Zhang W, Xiong F, Ge W. Comprehensive proteome analysis of lysosomes reveals the diverse function of macrophages in immune responses. Oncotarget. 2017;8:7420-7440 pubmed 出版商
  242. Borgia D, Malena A, Spinazzi M, Desbats M, Salviati L, Russell A, et al. Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients. Hum Mol Genet. 2017;26:1087-1103 pubmed 出版商
  243. Nakajima S, Aikawa C, Nozawa T, Minowa Nozawa A, Toh H, Nakagawa I. Bcl-xL Affects Group A Streptococcus-Induced Autophagy Directly, by Inhibiting Fusion between Autophagosomes and Lysosomes, and Indirectly, by Inhibiting Bacterial Internalization via Interaction with Beclin 1-UVRAG. PLoS ONE. 2017;12:e0170138 pubmed 出版商
  244. Luo Y, Duan H, Qian Y, Feng L, Wu Z, Wang F, et al. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res. 2017;27:352-372 pubmed 出版商
  245. Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H, Sonnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354 pubmed 出版商
  246. Cianciola N, Chung S, Manor D, Carlin C. Adenovirus Modulates Toll-Like Receptor 4 Signaling by Reprogramming ORP1L-VAP Protein Contacts for Cholesterol Transport from Endosomes to the Endoplasmic Reticulum. J Virol. 2017;91: pubmed 出版商
  247. Muranen T, Iwanicki M, Curry N, Hwang J, DuBois C, Coloff J, et al. Starved epithelial cells uptake extracellular matrix for survival. Nat Commun. 2017;8:13989 pubmed 出版商
  248. Li G, Fu R, Shen H, Zhou J, Hu X, Liu Y, et al. Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels. Oncotarget. 2017;8:10359-10374 pubmed 出版商
  249. Calamita P, Miluzio A, Russo A, Pesce E, Ricciardi S, Khanim F, et al. SBDS-Deficient Cells Have an Altered Homeostatic Equilibrium due to Translational Inefficiency Which Explains their Reduced Fitness and Provides a Logical Framework for Intervention. PLoS Genet. 2017;13:e1006552 pubmed 出版商
  250. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 2017;541:228-232 pubmed 出版商
  251. Sudworth A, Dai K, Vaage J, Kveberg L. Degranulation Response in Cytotoxic Rat Lymphocytes Measured with a Novel CD107a Antibody. Front Immunol. 2016;7:572 pubmed 出版商
  252. Song H, Chiang H, Tseng W, Wu P, Chien C, Leu H, et al. Using CRISPR/Cas9-Mediated GLA Gene Knockout as an In Vitro Drug Screening Model for Fabry Disease. Int J Mol Sci. 2016;17: pubmed
  253. Assadi G, Vesterlund L, Bonfiglio F, Mazzurana L, Cordeddu L, Schepis D, et al. Functional Analyses of the Crohn's Disease Risk Gene LACC1. PLoS ONE. 2016;11:e0168276 pubmed 出版商
  254. Da Ros M, Lehtiniemi T, Olotu O, Fischer D, Zhang F, Vihinen H, et al. FYCO1 and autophagy control the integrity of the haploid male germ cell-specific RNP granules. Autophagy. 2017;13:302-321 pubmed 出版商
  255. Shi B, Huang Q, Birkett R, Doyle R, Dorfleutner A, Stehlik C, et al. SNAPIN is critical for lysosomal acidification and autophagosome maturation in macrophages. Autophagy. 2017;13:285-301 pubmed 出版商
  256. Walenbergh S, Houben T, Rensen S, Bieghs V, Hendrikx T, van Gorp P, et al. Plasma cathepsin D correlates with histological classifications of fatty liver disease in adults and responds to intervention. Sci Rep. 2016;6:38278 pubmed 出版商
  257. Ryan P, Sumaria N, Holland C, Bradford C, Izotova N, Grandjean C, et al. Heterogeneous yet stable Vδ2(+) T-cell profiles define distinct cytotoxic effector potentials in healthy human individuals. Proc Natl Acad Sci U S A. 2016;113:14378-14383 pubmed
  258. Sambri I, D Alessio R, Ezhova Y, Giuliano T, Sorrentino N, Cacace V, et al. Lysosomal dysfunction disrupts presynaptic maintenance and restoration of presynaptic function prevents neurodegeneration in lysosomal storage diseases. EMBO Mol Med. 2017;9:112-132 pubmed 出版商
  259. Galindo Albarrán A, López Portales O, Gutiérrez Reyna D, Rodríguez Jorge O, Sánchez Villanueva J, Ramirez Pliego O, et al. CD8+ T Cells from Human Neonates Are Biased toward an Innate Immune Response. Cell Rep. 2016;17:2151-2160 pubmed 出版商
  260. Sumatoh H, Teng K, Cheng Y, Newell E. Optimization of mass cytometry sample cryopreservation after staining. Cytometry A. 2017;91:48-61 pubmed 出版商
  261. Cuff A, Robertson F, Stegmann K, Pallett L, Maini M, Davidson B, et al. Eomeshi NK Cells in Human Liver Are Long-Lived and Do Not Recirculate but Can Be Replenished from the Circulation. J Immunol. 2016;197:4283-4291 pubmed
  262. Zhu P, Liang L, Shao X, Luo W, Jiang S, Zhao Q, et al. Host Cellular Protein TRAPPC6AΔ Interacts with Influenza A Virus M2 Protein and Regulates Viral Propagation by Modulating M2 Trafficking. J Virol. 2017;91: pubmed 出版商
  263. Jaber N, Mohd Naim N, Wang Z, Deleon J, Kim S, Zhong H, et al. Vps34 regulates Rab7 and late endocytic trafficking through recruitment of the GTPase-activating protein Armus. J Cell Sci. 2016;129:4424-4435 pubmed
  264. Sun H, Zhang M, Cheng K, Li P, Han S, Li R, et al. Resistance of glioma cells to nutrient-deprived microenvironment can be enhanced by CD133-mediated autophagy. Oncotarget. 2016;7:76238-76249 pubmed 出版商
  265. Rofe A, Davis L, Whittingham J, Latimer Bowman E, Wilkinson A, Pryor P. The Rhodococcus equi virulence protein VapA disrupts endolysosome function and stimulates lysosome biogenesis. Microbiologyopen. 2017;6: pubmed 出版商
  266. Malet J, Cossart P, Ribet D. Alteration of epithelial cell lysosomal integrity induced by bacterial cholesterol-dependent cytolysins. Cell Microbiol. 2017;19: pubmed 出版商
  267. Tanaka Y, Ono N, Shima T, Tanaka G, Katoh Y, Nakayama K, et al. The phospholipid flippase ATP9A is required for the recycling pathway from the endosomes to the plasma membrane. Mol Biol Cell. 2016;27:3883-3893 pubmed
  268. Hu X, Valentin A, Dayton F, Kulkarni V, Alicea C, Rosati M, et al. DNA Prime-Boost Vaccine Regimen To Increase Breadth, Magnitude, and Cytotoxicity of the Cellular Immune Responses to Subdominant Gag Epitopes of Simian Immunodeficiency Virus and HIV. J Immunol. 2016;197:3999-4013 pubmed
  269. Roberts B, Svoboda R, Overmiller A, Lewis J, Kowalczyk A, Mahoney M, et al. Palmitoylation of Desmoglein 2 Is a Regulator of Assembly Dynamics and Protein Turnover. J Biol Chem. 2016;291:24857-24865 pubmed
  270. Oon S, Huynh H, Tai T, Ng M, Monaghan K, Biondo M, et al. A cytotoxic anti-IL-3Rα antibody targets key cells and cytokines implicated in systemic lupus erythematosus. JCI Insight. 2016;1:e86131 pubmed 出版商
  271. Rahman N, Ramos Espiritu L, Milner T, Buck J, Levin L. Soluble adenylyl cyclase is essential for proper lysosomal acidification. J Gen Physiol. 2016;148:325-39 pubmed 出版商
  272. Kim S, Roy S, Chen B, Nguyen T, McMonigle R, McCracken A, et al. Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. J Clin Invest. 2016;126:4088-4102 pubmed 出版商
  273. Lu L, Chung A, Rosebrock T, Ghebremichael M, Yu W, Grace P, et al. A Functional Role for Antibodies in Tuberculosis. Cell. 2016;167:433-443.e14 pubmed 出版商
  274. Willemen Y, Van den Bergh J, Bonte S, Anguille S, Heirman C, Stein B, et al. The tumor-associated antigen RHAMM (HMMR/CD168) is expressed by monocyte-derived dendritic cells and presented to T cells. Oncotarget. 2016;7:73960-73970 pubmed 出版商
  275. Wang Y, Ma C, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413-2435 pubmed
  276. Wahid R, Fresnay S, Levine M, Sztein M. Cross-reactive multifunctional CD4+ T cell responses against Salmonella enterica serovars Typhi, Paratyphi A and Paratyphi B in humans following immunization with live oral typhoid vaccine Ty21a. Clin Immunol. 2016;173:87-95 pubmed 出版商
  277. Vargas Inchaustegui D, Ying O, Demberg T, Robert Guroff M. Evaluation of Functional NK Cell Responses in Vaccinated and SIV-Infected Rhesus Macaques. Front Immunol. 2016;7:340 pubmed 出版商
  278. Lee H, Noh H, Mun J, Gu C, Sever S, Park S. Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis. Nat Commun. 2016;7:12799 pubmed 出版商
  279. Żarska M, Novotný F, Havel F, Sramek M, Babelova A, Benada O, et al. Two-Step Mechanism of Cellular Uptake of Cationic Gold Nanoparticles Modified by (16-Mercaptohexadecyl)trimethylammonium Bromide. Bioconjug Chem. 2016;27:2558-2574 pubmed
  280. Landtwing V, Raykova A, Pezzino G, Beziat V, Marcenaro E, Graf C, et al. Cognate HLA absence in trans diminishes human NK cell education. J Clin Invest. 2016;126:3772-3782 pubmed 出版商
  281. Ayala V, Trivett M, Barsov E, Jain S, Piatak M, Trubey C, et al. Adoptive Transfer of Engineered Rhesus Simian Immunodeficiency Virus-Specific CD8+ T Cells Reduces the Number of Transmitted/Founder Viruses Established in Rhesus Macaques. J Virol. 2016;90:9942-9952 pubmed 出版商
  282. Dolat L, Spiliotis E. Septins promote macropinosome maturation and traffic to the lysosome by facilitating membrane fusion. J Cell Biol. 2016;214:517-27 pubmed 出版商
  283. Liu M, Li Y, Liu A, Li R, Su Y, Du J, et al. The exon junction complex regulates the splicing of cell polarity gene dlg1 to control Wingless signaling in development. elife. 2016;5: pubmed 出版商
  284. Weikel K, Cacicedo J, Ruderman N, Ido Y. Knockdown of GSK3β increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Biosci Rep. 2016;36: pubmed 出版商
  285. McMillan K, Gallon M, Jellett A, Clairfeuille T, Tilley F, McGough I, et al. Atypical parkinsonism-associated retromer mutant alters endosomal sorting of specific cargo proteins. J Cell Biol. 2016;214:389-99 pubmed 出版商
  286. Luessen D, Hinshaw T, Sun H, Howlett A, MARRS G, McCool B, et al. RGS2 modulates the activity and internalization of dopamine D2 receptors in neuroblastoma N2A cells. Neuropharmacology. 2016;110:297-307 pubmed 出版商
  287. Hervier B, Perez M, Allenbach Y, Devilliers H, Cohen F, Uzunhan Y, et al. Involvement of NK Cells and NKp30 Pathway in Antisynthetase Syndrome. J Immunol. 2016;197:1621-30 pubmed 出版商
  288. Huang L, Stuart C, Takeda K, D Agnillo F, Golding B. Poly(I:C) Induces Human Lung Endothelial Barrier Dysfunction by Disrupting Tight Junction Expression of Claudin-5. PLoS ONE. 2016;11:e0160875 pubmed 出版商
  289. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature. 2016;537:412-428 pubmed 出版商
  290. Demers K, Makedonas G, Buggert M, Eller M, Ratcliffe S, Goonetilleke N, et al. Temporal Dynamics of CD8+ T Cell Effector Responses during Primary HIV Infection. PLoS Pathog. 2016;12:e1005805 pubmed 出版商
  291. Kritikou J, Dahlberg C, Baptista M, Wagner A, Banerjee P, Gwalani L, et al. IL-2 in the tumor microenvironment is necessary for Wiskott-Aldrich syndrome protein deficient NK cells to respond to tumors in vivo. Sci Rep. 2016;6:30636 pubmed 出版商
  292. Peper J, Bösmüller H, Schuster H, Gückel B, Hörzer H, Roehle K, et al. HLA ligandomics identifies histone deacetylase 1 as target for ovarian cancer immunotherapy. Oncoimmunology. 2016;5:e1065369 pubmed 出版商
  293. Sadallah S, Schmied L, Eken C, Charoudeh H, Amicarella F, Schifferli J. Platelet-Derived Ectosomes Reduce NK Cell Function. J Immunol. 2016;197:1663-71 pubmed 出版商
  294. Tan L, Toops K, Lakkaraju A. Protective responses to sublytic complement in the retinal pigment epithelium. Proc Natl Acad Sci U S A. 2016;113:8789-94 pubmed 出版商
  295. Want A, Gillespie S, Wang Z, Gordon R, Iomini C, Ritch R, et al. Autophagy and Mitochondrial Dysfunction in Tenon Fibroblasts from Exfoliation Glaucoma Patients. PLoS ONE. 2016;11:e0157404 pubmed 出版商
  296. Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, et al. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome. EMBO Mol Med. 2016;8:1019-38 pubmed 出版商
  297. Fernández B, Fdez E, Gomez Suaga P, Gil F, Molina Villalba I, Ferrer I, et al. Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A. Autophagy. 2016;12:1487-506 pubmed 出版商
  298. Zhang X, Cheng X, Yu L, Yang J, Calvo R, Patnaik S, et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun. 2016;7:12109 pubmed 出版商
  299. Justis A, Hansen B, Beare P, King K, Heinzen R, Gilk S. Interactions between the Coxiella burnetii parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L. Cell Microbiol. 2017;19: pubmed 出版商
  300. Marquer C, Tian H, Yi J, Bastien J, Dall Armi C, Yang Klingler Y, et al. Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism. Nat Commun. 2016;7:11919 pubmed 出版商
  301. Kuramoto K, Wang N, Fan Y, Zhang W, Schoenen F, Frankowski K, et al. Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids. Autophagy. 2016;12:1460-71 pubmed 出版商
  302. Xie N, Yuan K, Zhou L, Wang K, Chen H, Lei Y, et al. PRKAA/AMPK restricts HBV replication through promotion of autophagic degradation. Autophagy. 2016;12:1507-20 pubmed 出版商
  303. Andersson A, Andersson B, Lorell C, Raffetseder J, Larsson M, Blomgran R. Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages. Sci Rep. 2016;6:28171 pubmed 出版商
  304. Xu Y, Chaudhury A, Zhang M, Savoldo B, Metelitsa L, Rodgers J, et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Invest. 2016;126:2678-88 pubmed 出版商
  305. Safaiyan S, Kannaiyan N, Snaidero N, Brioschi S, Biber K, Yona S, et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat Neurosci. 2016;19:995-8 pubmed 出版商
  306. Li W, Jin D, Hata M, Takai S, Yamanishi K, Shen W, et al. Dysfunction of mitochondria and deformed gap junctions in the heart of IL-18-deficient mice. Am J Physiol Heart Circ Physiol. 2016;311:H313-25 pubmed 出版商
  307. Wu X, Zhao L, Chen Z, Ji X, Qiao X, Jin Y, et al. FLCN Maintains the Leucine Level in Lysosome to Stimulate mTORC1. PLoS ONE. 2016;11:e0157100 pubmed 出版商
  308. Ko A, Hyun H, Min S, Kim J. The Differential DRP1 Phosphorylation and Mitochondrial Dynamics in the Regional Specific Astroglial Death Induced by Status Epilepticus. Front Cell Neurosci. 2016;10:124 pubmed 出版商
  309. Vaccari M, Gordon S, Fourati S, Schifanella L, Liyanage N, Cameron M, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med. 2016;22:762-70 pubmed 出版商
  310. Goodier M, Rodríguez Galán A, Lusa C, Nielsen C, Darboe A, Moldoveanu A, et al. Influenza Vaccination Generates Cytokine-Induced Memory-like NK Cells: Impact of Human Cytomegalovirus Infection. J Immunol. 2016;197:313-25 pubmed 出版商
  311. Kwon H, Choi G, Ryu S, Kwon S, Kim S, Booth C, et al. Stepwise phosphorylation of p65 promotes NF-?B activation and NK cell responses during target cell recognition. Nat Commun. 2016;7:11686 pubmed 出版商
  312. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  313. Nakamura T, Furukawa A, Uchida K, Ogawa T, Tamura T, Sakonishi D, et al. Autophagy Induced by Intracellular Infection of Propionibacterium acnes. PLoS ONE. 2016;11:e0156298 pubmed 出版商
  314. Okato A, Goto Y, Kurozumi A, Kato M, Kojima S, Matsushita R, et al. Direct regulation of LAMP1 by tumor-suppressive microRNA-320a in prostate cancer. Int J Oncol. 2016;49:111-22 pubmed 出版商
  315. Bao J, Zheng L, Zhang Q, Li X, Zhang X, Li Z, et al. Deacetylation of TFEB promotes fibrillar A? degradation by upregulating lysosomal biogenesis in microglia. Protein Cell. 2016;7:417-33 pubmed 出版商
  316. Strønen E, Toebes M, Kelderman S, van Buuren M, Yang W, van Rooij N, et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science. 2016;352:1337-41 pubmed 出版商
  317. Yin W, Tong S, Zhang Q, Shao J, Liu Q, Peng H, et al. Functional dichotomy of Vδ2 γδ T cells in chronic hepatitis C virus infections: role in cytotoxicity but not for IFN-γ production. Sci Rep. 2016;6:26296 pubmed 出版商
  318. Jin C, Fotaki G, Ramachandran M, Nilsson B, Essand M, Yu D. Safe engineering of CAR T cells for adoptive cell therapy of cancer using long-term episomal gene transfer. EMBO Mol Med. 2016;8:702-11 pubmed 出版商
  319. Scharn C, Collins A, Nair V, Stamm C, MARCIANO D, Graviss E, et al. Heme Oxygenase-1 Regulates Inflammation and Mycobacterial Survival in Human Macrophages during Mycobacterium tuberculosis Infection. J Immunol. 2016;196:4641-9 pubmed 出版商
  320. Song J, Sun Y, Peluso I, Zeng Y, Yu X, Lu J, et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy. 2016;12:1372-89 pubmed 出版商
  321. Pastore N, Brady O, Diab H, Martina J, Sun L, Huynh T, et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy. 2016;12:1240-58 pubmed 出版商
  322. Karvela M, Baquero P, Kuntz E, Mukhopadhyay A, Mitchell R, Allan E, et al. ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells. Autophagy. 2016;12:936-48 pubmed 出版商
  323. De Filippis L, Halikere A, McGowan H, Moore J, Tischfield J, Hart R, et al. Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells. Mol Brain. 2016;9:51 pubmed 出版商
  324. Bolz M, Ruggli N, Borel N, Pluschke G, Ruf M. Local Cellular Immune Responses and Pathogenesis of Buruli Ulcer Lesions in the Experimental Mycobacterium Ulcerans Pig Infection Model. PLoS Negl Trop Dis. 2016;10:e0004678 pubmed 出版商
  325. Rapiteanu R, Davis L, Williamson J, Timms R, Paul Luzio J, Lehner P. A Genetic Screen Identifies a Critical Role for the WDR81-WDR91 Complex in the Trafficking and Degradation of Tetherin. Traffic. 2016;17:940-58 pubmed 出版商
  326. Vieyres G, Welsch K, Gerold G, Gentzsch J, Kahl S, Vondran F, et al. ABHD5/CGI-58, the Chanarin-Dorfman Syndrome Protein, Mobilises Lipid Stores for Hepatitis C Virus Production. PLoS Pathog. 2016;12:e1005568 pubmed 出版商
  327. Starling G, Yip Y, Sanger A, Morton P, Eden E, Dodding M. Folliculin directs the formation of a Rab34-RILP complex to control the nutrient-dependent dynamic distribution of lysosomes. EMBO Rep. 2016;17:823-41 pubmed 出版商
  328. Hernaez B, Guerra M, Salas M, Andres G. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes. PLoS Pathog. 2016;12:e1005595 pubmed 出版商
  329. Li Z, Ji X, Wang W, Liu J, Liang X, Wu H, et al. Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR. PLoS ONE. 2016;11:e0153526 pubmed 出版商
  330. Corcelle Termeau E, Vindeløv S, Hämälistö S, Mograbi B, Keldsbo A, Bräsen J, et al. Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure. Autophagy. 2016;12:833-49 pubmed 出版商
  331. Dimitrova M, Zenarruzabeitia O, Borrego F, Simhadri V. CD300c is uniquely expressed on CD56 bright Natural Killer Cells and differs from CD300a upon ligand recognition. Sci Rep. 2016;6:23942 pubmed 出版商
  332. Krishnan V, White Z, McMahon C, Hodgetts S, Fitzgerald M, Shavlakadze T, et al. A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice. J Neuropathol Exp Neurol. 2016;75:464-78 pubmed 出版商
  333. Hiraku Y, Guo F, Ma N, Yamada T, Wang S, Kawanishi S, et al. Multi-walled carbon nanotube induces nitrative DNA damage in human lung epithelial cells via HMGB1-RAGE interaction and Toll-like receptor 9 activation. Part Fibre Toxicol. 2016;13:16 pubmed 出版商
  334. Pawar K, Sharbati J, Einspanier R, Sharbati S. Mycobacterium bovis BCG Interferes with miR-3619-5p Control of Cathepsin S in the Process of Autophagy. Front Cell Infect Microbiol. 2016;6:27 pubmed 出版商
  335. Gschweitl M, Ulbricht A, Barnes C, Enchev R, Stoffel Studer I, Meyer Schaller N, et al. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. elife. 2016;5:e13841 pubmed 出版商
  336. O Rourke J, Bogdanik L, Yáñez A, Lall D, Wolf A, Muhammad A, et al. C9orf72 is required for proper macrophage and microglial function in mice. Science. 2016;351:1324-9 pubmed 出版商
  337. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  338. Son S, Cha M, Choi H, Kang S, Choi H, Lee M, et al. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy. 2016;12:784-800 pubmed 出版商
  339. Martínez Pizarro A, Desviat L, Ugarte M, Perez B, Richard E. Endoplasmic Reticulum Stress and Autophagy in Homocystinuria Patients with Remethylation Defects. PLoS ONE. 2016;11:e0150357 pubmed 出版商
  340. Simon S, Vignard V, Florenceau L, Dreno B, Khammari A, Lang F, et al. PD-1 expression conditions T cell avidity within an antigen-specific repertoire. Oncoimmunology. 2016;5:e1104448 pubmed
  341. Gao J, Duan Z, Zhang L, Huang X, Long L, Tu J, et al. Failure recovery of circulating NKG2D+CD56dimNK cells in HBV-associated hepatocellular carcinoma after hepatectomy predicts early recurrence. Oncoimmunology. 2016;5:e1048061 pubmed
  342. Ouimet M, Hennessy E, van Solingen C, Koelwyn G, Hussein M, Ramkhelawon B, et al. miRNA Targeting of Oxysterol-Binding Protein-Like 6 Regulates Cholesterol Trafficking and Efflux. Arterioscler Thromb Vasc Biol. 2016;36:942-951 pubmed 出版商
  343. Khazen R, Müller S, Gaudenzio N, Espinosa E, Puissegur M, Valitutti S. Melanoma cell lysosome secretory burst neutralizes the CTL-mediated cytotoxicity at the lytic synapse. Nat Commun. 2016;7:10823 pubmed 出版商
  344. Piras A, Collin L, Grüninger F, Graff C, Rönnbäck A. Autophagic and lysosomal defects in human tauopathies: analysis of post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol Commun. 2016;4:22 pubmed 出版商
  345. Ito M, Nakamura K, Mori F, Miki Y, Tanji K, Wakabayashi K. Novel eosinophilic neuronal cytoplasmic inclusions in the external cuneate nucleus of humans. Neuropathology. 2016;36:441-447 pubmed 出版商
  346. Smith G, Howell G, Phillips C, Muench S, Ponnambalam S, Harrison M. Extracellular and Luminal pH Regulation by Vacuolar H+-ATPase Isoform Expression and Targeting to the Plasma Membrane and Endosomes. J Biol Chem. 2016;291:8500-15 pubmed 出版商
  347. Katzenell S, Leib D. Herpes Simplex Virus and Interferon Signaling Induce Novel Autophagic Clusters in Sensory Neurons. J Virol. 2016;90:4706-4719 pubmed 出版商
  348. Yu L, Wu W, Gu C, Zhong D, Zhao X, Kong Y, et al. Obatoclax impairs lysosomal function to block autophagy in cisplatin-sensitive and -resistant esophageal cancer cells. Oncotarget. 2016;7:14693-707 pubmed 出版商
  349. Zou M, Zhu W, Wang L, Shi L, Gao R, Ou Y, et al. AEG-1/MTDH-activated autophagy enhances human malignant glioma susceptibility to TGF-β1-triggered epithelial-mesenchymal transition. Oncotarget. 2016;7:13122-38 pubmed 出版商
  350. Kim D, Jung J, You E, Ko P, Oh S, Rhee S. mDia1 regulates breast cancer invasion by controlling membrane type 1-matrix metalloproteinase localization. Oncotarget. 2016;7:17829-43 pubmed 出版商
  351. Laura R, Dong D, Reynolds W, Maki R. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation. PLoS ONE. 2016;11:e0149391 pubmed 出版商
  352. Chung V, Tan T, Tan M, Wong M, Kuay K, Yang Z, et al. GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep. 2016;6:19943 pubmed 出版商
  353. Hatori Y, Yan Y, Schmidt K, Furukawa E, Hasan N, Yang N, et al. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway. Nat Commun. 2016;7:10640 pubmed 出版商
  354. Liu Y, Takahashi Y, Desai N, Zhang J, Serfass J, Shi Y, et al. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci Rep. 2016;6:20453 pubmed 出版商
  355. Pérez L, McLetchie S, Gardiner G, Deffit S, Zhou D, Blum J. LAMP-2C Inhibits MHC Class II Presentation of Cytoplasmic Antigens by Disrupting Chaperone-Mediated Autophagy. J Immunol. 2016;196:2457-65 pubmed 出版商
  356. Hayashi H, Al Mamun A, Sakima M, Sato M. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis. J Cell Sci. 2016;129:1210-22 pubmed 出版商
  357. Button R, Vincent J, Strang C, Luo S. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget. 2016;7:5157-75 pubmed 出版商
  358. Circu M, Dykes S, Carroll J, Kelly K, Galiano F, Greer A, et al. A Novel High Content Imaging-Based Screen Identifies the Anti-Helminthic Niclosamide as an Inhibitor of Lysosome Anterograde Trafficking and Prostate Cancer Cell Invasion. PLoS ONE. 2016;11:e0146931 pubmed 出版商
  359. Oda S, Nozawa T, Nozawa Minowa A, Tanaka M, Aikawa C, Harada H, et al. Golgi-Resident GTPase Rab30 Promotes the Biogenesis of Pathogen-Containing Autophagosomes. PLoS ONE. 2016;11:e0147061 pubmed 出版商
  360. Bouché V, Espinosa A, Leone L, Sardiello M, Ballabio A, Botas J. Drosophila Mitf regulates the V-ATPase and the lysosomal-autophagic pathway. Autophagy. 2016;12:484-98 pubmed 出版商
  361. Carroll B, Maetzel D, Maddocks O, Otten G, Ratcliff M, Smith G, et al. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. elife. 2016;5: pubmed 出版商
  362. García Prat L, Martínez Vicente M, Perdiguero E, Ortet L, Rodríguez Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529:37-42 pubmed 出版商
  363. Xie C, Ginet V, Sun Y, Koike M, Zhou K, Li T, et al. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy. 2016;12:410-23 pubmed 出版商
  364. Tognon E, Kobia F, Busi I, Fumagalli A, De Masi F, Vaccari T. Control of lysosomal biogenesis and Notch-dependent tissue patterning by components of the TFEB-V-ATPase axis in Drosophila melanogaster. Autophagy. 2016;12:499-514 pubmed 出版商
  365. Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J, et al. ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun. 2016;7:10060 pubmed 出版商
  366. He J, Johnson J, Monfregola J, Ramadass M, Pestonjamasp K, Napolitano G, et al. Munc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses. Mol Biol Cell. 2016;27:572-87 pubmed 出版商
  367. Vural A, Al Khodor S, Cheung G, Shi C, Srinivasan L, McQuiston T, et al. Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection. J Immunol. 2016;196:846-56 pubmed 出版商
  368. Lee W, Richard J, Lichtfuss M, Smith A, Park J, Courter J, et al. Antibody-Dependent Cellular Cytotoxicity against Reactivated HIV-1-Infected Cells. J Virol. 2016;90:2021-30 pubmed 出版商
  369. Lao Y, Xu N. Autophagy in Cancer Chemoprevention: Identification of Novel Autophagy Modulators with Anticancer Potential. Methods Mol Biol. 2016;1379:151-63 pubmed 出版商
  370. Lyu L, Whitcomb E, Jiang S, Chang M, Gu Y, Duncan M, et al. Unfolded-protein response-associated stabilization of p27(Cdkn1b) interferes with lens fiber cell denucleation, leading to cataract. FASEB J. 2016;30:1087-95 pubmed 出版商
  371. Labani Motlagh A, Israelsson P, Ottander U, Lundin E, Nagaev I, Nagaeva O, et al. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity. Tumour Biol. 2016;37:5455-66 pubmed 出版商
  372. Wands A, Fujita A, McCombs J, Cervin J, Dedic B, Rodriguez A, et al. Fucosylation and protein glycosylation create functional receptors for cholera toxin. elife. 2015;4:e09545 pubmed 出版商
  373. Dumas A, Lê Bury G, Marie Anaïs F, Herit F, Mazzolini J, Guilbert T, et al. The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking. J Cell Biol. 2015;211:359-72 pubmed 出版商
  374. Zhang S, Schneider L, Vick B, Grunert M, Jeremias I, Menche D, et al. Anti-leukemic effects of the V-ATPase inhibitor Archazolid A. Oncotarget. 2015;6:43508-28 pubmed 出版商
  375. Agarwal S, Bell C, Taylor S, Moran R. p53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb. Mol Cancer Res. 2016;14:66-77 pubmed 出版商
  376. Selleck E, Orchard R, Lassen K, Beatty W, Xavier R, Levine B, et al. A Noncanonical Autophagy Pathway Restricts Toxoplasma gondii Growth in a Strain-Specific Manner in IFN-γ-Activated Human Cells. MBio. 2015;6:e01157-15 pubmed 出版商
  377. Leeansyah E, Svärd J, Dias J, Buggert M, Nyström J, Quigley M, et al. Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection. PLoS Pathog. 2015;11:e1005072 pubmed 出版商
  378. Djurisic S, Skibsted L, Hviid T. A Phenotypic Analysis of Regulatory T Cells and Uterine NK Cells from First Trimester Pregnancies and Associations with HLA-G. Am J Reprod Immunol. 2015;74:427-44 pubmed 出版商
  379. Sabet O, Stockert R, Xouri G, Brüggemann Y, Stanoev A, Bastiaens P. Ubiquitination switches EphA2 vesicular traffic from a continuous safeguard to a finite signalling mode. Nat Commun. 2015;6:8047 pubmed 出版商
  380. Chesarino N, McMichael T, Yount J. E3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3. PLoS Pathog. 2015;11:e1005095 pubmed 出版商
  381. O Donovan T, Rajendran S, O Reilly S, O Sullivan G, McKenna S. Lithium Modulates Autophagy in Esophageal and Colorectal Cancer Cells and Enhances the Efficacy of Therapeutic Agents In Vitro and In Vivo. PLoS ONE. 2015;10:e0134676 pubmed 出版商
  382. Ju X, Yan Y, Liu Q, Li N, Sheng M, Zhang L, et al. Neuraminidase of Influenza A Virus Binds Lysosome-Associated Membrane Proteins Directly and Induces Lysosome Rupture. J Virol. 2015;89:10347-58 pubmed 出版商
  383. DiGiuseppe S, Keiffer T, Bienkowska Haba M, Luszczek W, Guion L, Muller M, et al. Topography of the Human Papillomavirus Minor Capsid Protein L2 during Vesicular Trafficking of Infectious Entry. J Virol. 2015;89:10442-52 pubmed 出版商
  384. Nezich C, Wang C, Fogel A, Youle R. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol. 2015;210:435-50 pubmed 出版商
  385. Scifo E, Szwajda A, Soliymani R, Pezzini F, Bianchi M, Dapkunas A, et al. Quantitative analysis of PPT1 interactome in human neuroblastoma cells. Data Brief. 2015;4:207-16 pubmed 出版商
  386. Currinn H, Guscott B, Balklava Z, Rothnie A, Wassmer T. APP controls the formation of PI(3,5)P(2) vesicles through its binding of the PIKfyve complex. Cell Mol Life Sci. 2016;73:393-408 pubmed 出版商
  387. Hirst J, Edgar J, Borner G, Li S, Sahlender D, Antrobus R, et al. Contributions of epsinR and gadkin to clathrin-mediated intracellular trafficking. Mol Biol Cell. 2015;26:3085-103 pubmed 出版商
  388. Hobbs R, DePianto D, Jacob J, Han M, Chung B, Batazzi A, et al. Keratin-dependent regulation of Aire and gene expression in skin tumor keratinocytes. Nat Genet. 2015;47:933-8 pubmed 出版商
  389. Costantini L, Baloban M, Markwardt M, Rizzo M, Guo F, Verkhusha V, et al. A palette of fluorescent proteins optimized for diverse cellular environments. Nat Commun. 2015;6:7670 pubmed 出版商
  390. Hirata T, Fujita M, Nakamura S, Gotoh K, Motooka D, Murakami Y, et al. Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport. Mol Biol Cell. 2015;26:3071-84 pubmed 出版商
  391. Su X, Yu Y, Zhong Y, Giannopoulou E, Hu X, Liu H, et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015;16:838-849 pubmed 出版商
  392. Munson M, Allen G, Toth R, Campbell D, Lucocq J, Ganley I. mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J. 2015;34:2272-90 pubmed 出版商
  393. Marshall M, Pattu V, Halimani M, Maier Peuschel M, Müller M, Becherer U, et al. VAMP8-dependent fusion of recycling endosomes with the plasma membrane facilitates T lymphocyte cytotoxicity. J Cell Biol. 2015;210:135-51 pubmed 出版商
  394. Cao Q, Zhong X, Zou Y, Murrell Lagnado R, Zhu M, Dong X. Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion. J Cell Biol. 2015;209:879-94 pubmed 出版商
  395. Verma S, Mohapatra G, Ahmad S, Rana S, Jain S, Khalsa J, et al. Salmonella Engages Host MicroRNAs To Modulate SUMOylation: a New Arsenal for Intracellular Survival. Mol Cell Biol. 2015;35:2932-46 pubmed 出版商
  396. Cimini E, Agrati C, D Offizi G, Vlassi C, Casetti R, Sacchi A, et al. Primary and Chronic HIV Infection Differently Modulates Mucosal Vδ1 and Vδ2 T-Cells Differentiation Profile and Effector Functions. PLoS ONE. 2015;10:e0129771 pubmed 出版商
  397. Kong X, Kase E, Herskedal A, Schjalm C, Damme M, Nesset C, et al. Lack of the Lysosomal Membrane Protein, GLMP, in Mice Results in Metabolic Dysregulation in Liver. PLoS ONE. 2015;10:e0129402 pubmed 出版商
  398. Di Cristofori A, Ferrero S, Bertolini I, Gaudioso G, Russo M, Berno V, et al. The vacuolar H+ ATPase is a novel therapeutic target for glioblastoma. Oncotarget. 2015;6:17514-31 pubmed
  399. Zhao Z, Sagare A, Ma Q, Halliday M, Kong P, Kisler K, et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci. 2015;18:978-87 pubmed 出版商
  400. Milkereit R, Persaud A, Vanoaica L, Guetg A, Verrey F, Rotin D. LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation. Nat Commun. 2015;6:7250 pubmed 出版商
  401. Boddu R, Hull T, Bolisetty S, Hu X, Moehle M, Daher J, et al. Leucine-rich repeat kinase 2 deficiency is protective in rhabdomyolysis-induced kidney injury. Hum Mol Genet. 2015;24:4078-93 pubmed 出版商
  402. Scifo E, Szwajda A, Soliymani R, Pezzini F, Bianchi M, Dapkunas A, et al. Proteomic analysis of the palmitoyl protein thioesterase 1 interactome in SH-SY5Y human neuroblastoma cells. J Proteomics. 2015;123:42-53 pubmed 出版商
  403. Wu Z, Frascaroli G, Bayer C, Schmal T, Mertens T. Interleukin-2 from Adaptive T Cells Enhances Natural Killer Cell Activity against Human Cytomegalovirus-Infected Macrophages. J Virol. 2015;89:6435-41 pubmed 出版商
  404. Zhou J, Amran F, Kramski M, Angelovich T, Elliott J, Hearps A, et al. An NK Cell Population Lacking FcRγ Is Expanded in Chronically Infected HIV Patients. J Immunol. 2015;194:4688-97 pubmed 出版商
  405. Schilling D, Kühnel A, Tetzlaff F, Konrad S, Multhoff G. NZ28-induced inhibition of HSF1, SP1 and NF-κB triggers the loss of the natural killer cell-activating ligands MICA/B on human tumor cells. Cancer Immunol Immunother. 2015;64:599-608 pubmed 出版商
  406. Akizu N, Cantagrel V, Zaki M, Al Gazali L, Wang X, Rosti R, et al. Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat Genet. 2015;47:528-34 pubmed 出版商
  407. Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol. 2015;209:111-28 pubmed 出版商
  408. Axelsson Robertson R, Rao M, Loxton A, Walzl G, Bates M, Zumla A, et al. Frequency of Mycobacterium tuberculosis-specific CD8+ T-cells in the course of anti-tuberculosis treatment. Int J Infect Dis. 2015;32:23-9 pubmed 出版商
  409. Axelsson Robertson R, Ju J, Kim H, Zumla A, Maeurer M. Mycobacterium tuberculosis-specific and MHC class I-restricted CD8+ T-cells exhibit a stem cell precursor-like phenotype in patients with active pulmonary tuberculosis. Int J Infect Dis. 2015;32:13-22 pubmed 出版商
  410. Ivan V, van der Sluijs P. Methods for analysis of AP-3/Rabin4' in regulation of lysosome distribution. Methods Mol Biol. 2015;1298:245-58 pubmed 出版商
  411. Bradley S, Chen Z, Melendez B, Talukder A, Khalili J, Rodríguez Cruz T, et al. BRAFV600E Co-opts a Conserved MHC Class I Internalization Pathway to Diminish Antigen Presentation and CD8+ T-cell Recognition of Melanoma. Cancer Immunol Res. 2015;3:602-9 pubmed 出版商
  412. Kaneko Y, Sullivan R, Dailey T, Vale F, Tajiri N, Borlongan C. Kainic Acid-Induced Golgi Complex Fragmentation/Dispersal Shifts the Proteolysis of Reelin in Primary Rat Neuronal Cells: An In Vitro Model of Early Stage Epilepsy. Mol Neurobiol. 2016;53:1874-1883 pubmed 出版商
  413. Chen M, Hu P, Ling N, Peng H, Lei Y, Hu H, et al. Enhanced functions of peripheral γδ T cells in chronic hepatitis B infection during interferon α treatment in vivo and in vitro. PLoS ONE. 2015;10:e0120086 pubmed 出版商
  414. Ebsen H, Lettau M, Kabelitz D, Janssen O. Subcellular localization and activation of ADAM proteases in the context of FasL shedding in T lymphocytes. Mol Immunol. 2015;65:416-28 pubmed 出版商
  415. Tsai C, Liong K, Gunalan M, Li N, Lim D, Fisher D, et al. Type I IFNs and IL-18 regulate the antiviral response of primary human γδ T cells against dendritic cells infected with Dengue virus. J Immunol. 2015;194:3890-900 pubmed 出版商
  416. Claiborne D, Prince J, Scully E, Macharia G, Micci L, Lawson B, et al. Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4+ T cells, and disease progression. Proc Natl Acad Sci U S A. 2015;112:E1480-9 pubmed 出版商
  417. Gee H, Kim J, Lee M. Analysis of conventional and unconventional trafficking of CFTR and other membrane proteins. Methods Mol Biol. 2015;1270:137-54 pubmed 出版商
  418. Severson J, Serracino H, Mateescu V, Raeburn C, McIntyre R, Sams S, et al. PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer. Cancer Immunol Res. 2015;3:620-30 pubmed 出版商
  419. Rayavarapu R, Heiden B, Pagani N, Shaw M, Shuff S, Zhang S, et al. The role of multicellular aggregation in the survival of ErbB2-positive breast cancer cells during extracellular matrix detachment. J Biol Chem. 2015;290:8722-33 pubmed 出版商
  420. Marquardt N, Béziat V, Nyström S, Hengst J, Ivarsson M, Kekäläinen E, et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol. 2015;194:2467-71 pubmed 出版商
  421. Gotink K, Rovithi M, de Haas R, Honeywell R, Dekker H, Poel D, et al. Cross-resistance to clinically used tyrosine kinase inhibitors sunitinib, sorafenib and pazopanib. Cell Oncol (Dordr). 2015;38:119-29 pubmed 出版商
  422. Srivastava R, Khan A, Spencer D, Vahed H, Lopes P, Thai N, et al. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic. J Immunol. 2015;194:2232-48 pubmed 出版商
  423. Khan A, Srivastava R, Spencer D, Garg S, Fremgen D, Vahed H, et al. Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes. J Virol. 2015;89:3776-92 pubmed 出版商
  424. Fionda C, Abruzzese M, Zingoni A, Soriani A, Ricci B, Molfetta R, et al. Nitric oxide donors increase PVR/CD155 DNAM-1 ligand expression in multiple myeloma cells: role of DNA damage response activation. BMC Cancer. 2015;15:17 pubmed 出版商
  425. Lee S, Uchida Y, Wang J, Matsudaira T, Nakagawa T, Kishimoto T, et al. Transport through recycling endosomes requires EHD1 recruitment by a phosphatidylserine translocase. EMBO J. 2015;34:669-88 pubmed 出版商
  426. Kizuka Y, Kitazume S, Fujinawa R, Saito T, Iwata N, Saido T, et al. An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease. EMBO Mol Med. 2015;7:175-89 pubmed 出版商
  427. Rebsamen M, Pochini L, Stasyk T, de Araújo M, Galluccio M, Kandasamy R, et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 2015;519:477-81 pubmed 出版商
  428. Brandstaetter H, Kishi Itakura C, Tumbarello D, Manstein D, Buss F. Loss of functional MYO1C/myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion. Autophagy. 2014;10:2310-23 pubmed 出版商
  429. Cuellar T, Barnes D, Nelson C, Tanguay J, Yu S, Wen X, et al. Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB-siRNA conjugates. Nucleic Acids Res. 2015;43:1189-203 pubmed 出版商
  430. Ram S, Kim D, Ober R, Ward E. The level of HER2 expression is a predictor of antibody-HER2 trafficking behavior in cancer cells. MAbs. 2014;6:1211-9 pubmed 出版商
  431. Boucrot E, Ferreira A, Almeida Souza L, Debard S, Vallis Y, Howard G, et al. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature. 2015;517:460-5 pubmed 出版商
  432. Hagberg N, Theorell J, Hjorton K, Spee P, Eloranta M, Bryceson Y, et al. Functional anti-CD94/NKG2A and anti-CD94/NKG2C autoantibodies in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2015;67:1000-11 pubmed 出版商
  433. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed 出版商
  434. Zhu Y, Jiang J, Saïd Sadier N, Boxx G, Champion C, Tetlow A, et al. Activation of the NLRP3 inflammasome by vault nanoparticles expressing a chlamydial epitope. Vaccine. 2015;33:298-306 pubmed 出版商
  435. Abu Hassan D, Li X, Ryan E, Acott T, Kelley M. Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma. Stem Cells. 2015;33:751-61 pubmed 出版商
  436. Bohnsack R, Warejcka D, Wang L, Gillespie S, Bernstein A, Twining S, et al. Expression of insulin-like growth factor 2 receptor in corneal keratocytes during differentiation and in response to wound healing. Invest Ophthalmol Vis Sci. 2014;55:7697-708 pubmed 出版商
  437. van der Waart A, van de Weem N, Maas F, Kramer C, Kester M, Falkenburg J, et al. Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy. Blood. 2014;124:3490-500 pubmed 出版商
  438. Weiskopf D, Angelo M, Bangs D, Sidney J, Paul S, Peters B, et al. The human CD8+ T cell responses induced by a live attenuated tetravalent dengue vaccine are directed against highly conserved epitopes. J Virol. 2015;89:120-8 pubmed 出版商
  439. Lim D, Yawata N, Selva K, Li N, Tsai C, Yeong L, et al. The combination of type I IFN, TNF-α, and cell surface receptor engagement with dendritic cells enables NK cells to overcome immune evasion by dengue virus. J Immunol. 2014;193:5065-75 pubmed 出版商
  440. de Groen R, Boltjes A, Hou J, Liu B, McPhee F, Friborg J, et al. IFN-λ-mediated IL-12 production in macrophages induces IFN-γ production in human NK cells. Eur J Immunol. 2015;45:250-9 pubmed 出版商
  441. Yang N, Tan S, Ng S, Shi Y, Zhou J, Tan K, et al. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J Biol Chem. 2014;289:33425-41 pubmed 出版商
  442. Pereira L, Pinto R, Silva D, Moreira A, Beitzinger C, Oliveira P, et al. Intracellular trafficking of AIP56, an NF-κB-cleaving toxin from Photobacterium damselae subsp. piscicida. Infect Immun. 2014;82:5270-85 pubmed 出版商
  443. Rai S, Tanaka H, Suzuki M, Ogoh H, Taniguchi Y, Morita Y, et al. Clathrin assembly protein CALM plays a critical role in KIT signaling by regulating its cellular transport from early to late endosomes in hematopoietic cells. PLoS ONE. 2014;9:e109441 pubmed 出版商
  444. Ye S, Huang Y, Joshi S, Zhang J, Yang F, Zhang G, et al. Platelet secretion and hemostasis require syntaxin-binding protein STXBP5. J Clin Invest. 2014;124:4517-28 pubmed 出版商
  445. Menhofer M, Bartel D, Liebl J, Kubisch R, Busse J, Wagner E, et al. In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor. Cardiovasc Res. 2014;104:303-14 pubmed 出版商
  446. Madhavi V, Ana Sosa Batiz F, Jegaskanda S, Center R, Winnall W, Parsons M, et al. Antibody-dependent effector functions against HIV decline in subjects receiving antiretroviral therapy. J Infect Dis. 2015;211:529-38 pubmed 出版商
  447. Torsvik J, Johansson B, Dalva M, Marie M, Fjeld K, Johansson S, et al. Endocytosis of secreted carboxyl ester lipase in a syndrome of diabetes and pancreatic exocrine dysfunction. J Biol Chem. 2014;289:29097-111 pubmed 出版商
  448. Ginet V, Pittet M, Rummel C, Osterheld M, Meuli R, Clarke P, et al. Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic. Ann Neurol. 2014;76:695-711 pubmed 出版商
  449. Ohue Y, Kurose K, Mizote Y, Matsumoto H, Nishio Y, Isobe M, et al. Prolongation of overall survival in advanced lung adenocarcinoma patients with the XAGE1 (GAGED2a) antibody. Clin Cancer Res. 2014;20:5052-63 pubmed 出版商
  450. Balaji K, French C, Miller J, Colicelli J. The RAB5-GEF function of RIN1 regulates multiple steps during Listeria monocytogenes infection. Traffic. 2014;15:1206-18 pubmed 出版商
  451. Weist B, Schmueck M, Fuehrer H, Sattler A, Reinke P, Babel N. The role of CD4(+) T cells in BKV-specific T cell immunity. Med Microbiol Immunol. 2014;203:395-408 pubmed 出版商
  452. Kira S, Tabata K, Shirahama Noda K, Nozoe A, Yoshimori T, Noda T. Reciprocal conversion of Gtr1 and Gtr2 nucleotide-binding states by Npr2-Npr3 inactivates TORC1 and induces autophagy. Autophagy. 2014;10:1565-78 pubmed 出版商
  453. Buggert M, Tauriainen J, Yamamoto T, Frederiksen J, Ivarsson M, Michaelsson J, et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection. PLoS Pathog. 2014;10:e1004251 pubmed 出版商
  454. Pegram H, Purdon T, van Leeuwen D, Curran K, Giralt S, Barker J, et al. IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia. Leukemia. 2015;29:415-22 pubmed 出版商
  455. Jacquelin B, Petitjean G, Kunkel D, Liovat A, Jochems S, Rogers K, et al. Innate immune responses and rapid control of inflammation in African green monkeys treated or not with interferon-alpha during primary SIVagm infection. PLoS Pathog. 2014;10:e1004241 pubmed 出版商
  456. Hagel C, Krasemann S, Löffler J, Puschel K, Magnus T, Glatzel M. Upregulation of Shiga toxin receptor CD77/Gb3 and interleukin-1? expression in the brain of EHEC patients with hemolytic uremic syndrome and neurologic symptoms. Brain Pathol. 2015;25:146-56 pubmed 出版商
  457. Ye S, Li Z, Luo D, Huang B, Chen Y, Zhang X, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5:5439-52 pubmed
  458. Kubach J, Hubo M, Amendt C, Stroh C, Jonuleit H. IgG1 anti-epidermal growth factor receptor antibodies induce CD8-dependent antitumor activity. Int J Cancer. 2015;136:821-30 pubmed 出版商
  459. Vogel K, Thomann S, Vogel B, Schuster P, Schmidt B. Both plasmacytoid dendritic cells and monocytes stimulate natural killer cells early during human herpes simplex virus type 1 infections. Immunology. 2014;143:588-600 pubmed 出版商
  460. Payne T, Blackinton J, Frisbee A, Pickeral J, Sawant S, Vandergrift N, et al. Transcriptional and posttranscriptional regulation of cytokine gene expression in HIV-1 antigen-specific CD8+ T cells that mediate virus inhibition. J Virol. 2014;88:9514-28 pubmed 出版商
  461. Reibring C, El Shahawy M, Hallberg K, Kannius Janson M, Nilsson J, Parkkila S, et al. Expression patterns and subcellular localization of carbonic anhydrases are developmentally regulated during tooth formation. PLoS ONE. 2014;9:e96007 pubmed 出版商
  462. Mace E, Orange J. Lytic immune synapse function requires filamentous actin deconstruction by Coronin 1A. Proc Natl Acad Sci U S A. 2014;111:6708-13 pubmed 出版商
  463. Buggert M, Norstr m M, Salemi M, Hecht F, Karlsson A. Functional avidity and IL-2/perforin production is linked to the emergence of mutations within HLA-B*5701-restricted epitopes and HIV-1 disease progression. J Immunol. 2014;192:4685-96 pubmed 出版商
  464. Poliakov E, Strunnikova N, Jiang J, Martinez B, Parikh T, Lakkaraju A, et al. Multiple A2E treatments lead to melanization of rod outer segment-challenged ARPE-19 cells. Mol Vis. 2014;20:285-300 pubmed
  465. Prinz P, Mendler A, Brech D, Masouris I, Oberneder R, Noessner E. NK-cell dysfunction in human renal carcinoma reveals diacylglycerol kinase as key regulator and target for therapeutic intervention. Int J Cancer. 2014;135:1832-41 pubmed 出版商
  466. Huttunen M, Waris M, Kajander R, Hyypia T, Marjomaki V. Coxsackievirus A9 infects cells via nonacidic multivesicular bodies. J Virol. 2014;88:5138-51 pubmed 出版商
  467. Poonia B, Pauza C. Levels of CD56+TIM-3- effector CD8 T cells distinguish HIV natural virus suppressors from patients receiving antiretroviral therapy. PLoS ONE. 2014;9:e88884 pubmed 出版商
  468. Cheng J, Fujita A, Yamamoto H, Tatematsu T, Kakuta S, Obara K, et al. Yeast and mammalian autophagosomes exhibit distinct phosphatidylinositol 3-phosphate asymmetries. Nat Commun. 2014;5:3207 pubmed 出版商
  469. Chang S, Kohrt H, Maecker H. Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother. 2014;63:713-9 pubmed 出版商
  470. Poillet L, Pernodet N, Boyer Guittaut M, Adami P, Borg C, Jouvenot M, et al. QSOX1 inhibits autophagic flux in breast cancer cells. PLoS ONE. 2014;9:e86641 pubmed 出版商
  471. Fan X, Jin W, Lu J, Wang J, Wang Y. Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat Neurosci. 2014;17:471-80 pubmed 出版商
  472. Ingle G, Scales S. DropArray™, a wall-less 96-well plate for uptake and immunofluorescence microscopy, confirms CD22 recycles. Traffic. 2014;15:255-72 pubmed 出版商
  473. Hirst J, Borner G, Edgar J, Hein M, Mann M, Buchholz F, et al. Interaction between AP-5 and the hereditary spastic paraplegia proteins SPG11 and SPG15. Mol Biol Cell. 2013;24:2558-69 pubmed 出版商
  474. Bauckman K, Haller E, Flores I, Nanjundan M. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells. Cell Death Dis. 2013;4:e592 pubmed 出版商
  475. Avena P, Anselmo W, Whitaker Menezes D, Wang C, Pestell R, Lamb R, et al. Compartment-specific activation of PPAR? governs breast cancer tumor growth, via metabolic reprogramming and symbiosis. Cell Cycle. 2013;12:1360-70 pubmed 出版商
  476. Al Zoubi M, Salem A, Martinez Outschoorn U, Whitaker Menezes D, Lamb R, Hulit J, et al. Creating a tumor-resistant microenvironment: cell-mediated delivery of TNF? completely prevents breast cancer tumor formation in vivo. Cell Cycle. 2013;12:480-90 pubmed 出版商
  477. Sánchez Alvarez R, Martinez Outschoorn U, Lin Z, Lamb R, Hulit J, Howell A, et al. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention. Cell Cycle. 2013;12:289-301 pubmed 出版商
  478. Sánchez Alvarez R, Martinez Outschoorn U, Lamb R, Hulit J, Howell A, Gandara R, et al. Mitochondrial dysfunction in breast cancer cells prevents tumor growth: understanding chemoprevention with metformin. Cell Cycle. 2013;12:172-82 pubmed 出版商
  479. Salem A, Howell A, Sartini M, Sotgia F, Lisanti M. Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1?, autophagy and ketone body production. Cell Cycle. 2012;11:4167-73 pubmed 出版商
  480. Kon T, Mori F, Tanji K, Miki Y, Kimura T, Wakabayashi K. Giant cell polymyositis and myocarditis associated with myasthenia gravis and thymoma. Neuropathology. 2013;33:281-7 pubmed 出版商
  481. Ma M, Chircop M. SNX9, SNX18 and SNX33 are required for progression through and completion of mitosis. J Cell Sci. 2012;125:4372-82 pubmed 出版商
  482. Clarke J, Emson P, Irvine R. Distribution and neuronal expression of phosphatidylinositol phosphate kinase IIgamma in the mouse brain. J Comp Neurol. 2009;517:296-312 pubmed 出版商
  483. Garver W, Jelinek D, Francis G, Murphy B. The Niemann-Pick C1 gene is downregulated by feedback inhibition of the SREBP pathway in human fibroblasts. J Lipid Res. 2008;49:1090-102 pubmed 出版商
  484. Febbraio M, Silverstein R. Identification and characterization of LAMP-1 as an activation-dependent platelet surface glycoprotein. J Biol Chem. 1990;265:18531-7 pubmed