这是一篇来自已证抗体库的有关人类 LC3的综述,是根据135篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合LC3 抗体。
LC3 同义词: ATG8E; LC3; LC3A; MAP1ALC3; MAP1BLC3

Novus Biologicals
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 1:500; 图 3a
Novus Biologicals LC3抗体(Novus Biologicals, NB100-2331)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). J Neurochem (2018) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 1a
Novus Biologicals LC3抗体(Novus Biologicals, NB100-2331)被用于被用于免疫印迹在人类样本上 (图 1a). Biochem Biophys Res Commun (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 1:50; 图 10a
Novus Biologicals LC3抗体(Novus, NB100-2331)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 10a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
Novus Biologicals LC3抗体(Novus Biologicals, NB100-2331)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 大鼠; 1:500; 图 3
Novus Biologicals LC3抗体(Novus Biologicals, NB100-2331)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 斑马鱼; 1:2000; 图 5
Novus Biologicals LC3抗体(novusbio, NB100-2331)被用于被用于免疫印迹在斑马鱼样本上浓度为1:2000 (图 5). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 图 2
Novus Biologicals LC3抗体(Novus Biologicals, NB 100-2331)被用于被用于免疫印迹在小鼠样本上 (图 2). Aging Cell (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠
Novus Biologicals LC3抗体(Novus Biologicals, NB100-2331)被用于被用于免疫印迹在小鼠样本上. Nature (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals LC3抗体(Novus Biologicals, NB100-2331)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals LC3抗体(Novus Biologicals, NB 100-2331)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals LC3抗体(Novus, NB100-2331)被用于. Mol Pharmacol (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals LC3抗体(NovusBiologicals, NB100-2331)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals LC3抗体(Novus Biologicals, NB100-2331)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals LC3抗体(Novus Biologicals, NB100-2331)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals LC3抗体(Novus Biologicals, NB 100-2331)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals LC3抗体(Novus Biologicals, NB-100-2331)被用于. Comp Biochem Physiol A Mol Integr Physiol (2015) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 LC3抗体(Pierce, PA1-16931)被用于被用于免疫印迹在人类样本上 (图 4a). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 8
赛默飞世尔 LC3抗体(Thermo Scientific, PA1-C16,931)被用于被用于免疫印迹在大鼠样本上 (图 8). J Nutr Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2a
赛默飞世尔 LC3抗体(Thermo Fisher Scientific, PA1-16931)被用于被用于免疫印迹在人类样本上 (图 s2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 LC3抗体(Thermo, PA116931)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 LC3抗体(Thermo, PA5-22731)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 LC3抗体(Thermo Fisher Scientific, PA1-16931)被用于. Mol Neurobiol (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 5d
  • 免疫印迹; 小鼠; 1:1000; 图 6e
艾博抗(上海)贸易有限公司 LC3抗体(Abcam, ab128025)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 LC3抗体(Abcam, ab62720)被用于被用于免疫印迹在小鼠样本上 (图 2a). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(EP1528Y)
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 LC3抗体(Abcam, ab52628)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). PLoS ONE (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:100; 图 2d
圣克鲁斯生物技术 LC3抗体(Santa Cruz, sc-398822)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 2d). Mol Neurobiol (2018) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 图 2h
  • 免疫印迹; 小鼠; 图 5a
圣克鲁斯生物技术 LC3抗体(Santa Cruz Biotechnology, sc-398822)被用于被用于免疫印迹在大鼠样本上 (图 2h) 和 被用于免疫印迹在小鼠样本上 (图 5a). PLoS ONE (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(166AT1234)
  • 免疫细胞化学; 小鼠; 1:1000; 图 5h
西格玛奥德里奇 LC3抗体(Sigma-Aldrich, SAB1305552)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5h). Front Immunol (2019) ncbi
伯乐(Bio-Rad)公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
伯乐(Bio-Rad)公司 LC3抗体(AbD Serotec, AHP2167T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). BMC Complement Altern Med (2016) ncbi
亚诺法生技股份有限公司
亚诺法生技股份有限公司 LC3抗体(Abnova, H00084557-P01)被用于. Cancer Biol Ther (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 大鼠; 1:1000; 图 2e, 4e
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 4599)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2e, 4e). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling Technology, D3U4C)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS Pathog (2020) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 1:400; 图 5c
  • 免疫印迹; 人类; 1:400; 图 5a
赛信通(上海)生物试剂有限公司 LC3抗体(CST, 12741)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 5c) 和 被用于免疫印迹在人类样本上浓度为1:400 (图 5a). Int J Oncol (2020) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling Technology, 12741)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). Front Immunol (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 大鼠; 图 3a
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫印迹在大鼠样本上 (图 3a). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 5a
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫印迹在人类样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 4b). J Agric Food Chem (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 1:1000; 图 6s2a
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 4599)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6s2a). elife (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司 LC3抗体(CST, 12741s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 7b, 1i
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫印迹在小鼠样本上 (图 7b, 1i). Cell (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 2f
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, D3U4C)被用于被用于免疫印迹在人类样本上 (图 2f) 和 被用于免疫印迹在小鼠样本上 (图 2e). Science (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 4c
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Aging Cell (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling Technology, 12741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 LC3抗体(CST, 12741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Proc Natl Acad Sci U S A (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫印迹在人类样本上 (图 5b). Sci Rep (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 s4k
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling Technology, 12741)被用于被用于免疫印迹在小鼠样本上 (图 s4k). Stem Cell Reports (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫印迹在小鼠样本上 (图 6c). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 4b
  • 免疫印迹; 人类; 1:1000; 图 4c, 4e
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4c, 4e). Oncogene (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling Technology, 12741)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫组化; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫组化在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 大鼠; 图 5a
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling Technology, 12741)被用于被用于免疫印迹在大鼠样本上 (图 5a). Front Mol Neurosci (2018) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 1:500; 图 4d
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4d) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a). Sci Rep (2018) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 4599S)被用于被用于免疫印迹在人类样本上 (图 3b). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 s9f
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫印迹在人类样本上 (图 s9f). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 1:1000; 图 8c
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling Technologies, 12741)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫组化-石蜡切片; 小鼠; 图 3d
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling Technology, 12741)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d) 和 被用于免疫印迹在小鼠样本上 (图 3a). J Cell Biochem (2017) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 4599)被用于被用于免疫印迹在小鼠样本上 (图 8a). Biochem Pharmacol (2017) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫组化-石蜡切片; 小鼠; 图 6c
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling Technology, 4599)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c) 和 被用于免疫印迹在小鼠样本上 (图 6b). Front Immunol (2017) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 图 3D
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 4599)被用于被用于免疫印迹在小鼠样本上 (图 3D). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 2a). Autophagy (2017) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫细胞化学; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Singaling, 12741)被用于被用于免疫细胞化学在小鼠样本上 (图 5d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 4599)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). Austin J Med Oncol (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 图 8g
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, D3U4C)被用于被用于免疫细胞化学在人类样本上 (图 8g) 和 被用于免疫印迹在人类样本上 (图 8a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫印迹在人类样本上 (图 1d). Autophagy (2016) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling Technology, 4599)被用于被用于免疫印迹在小鼠样本上 (图 6). Eneuro (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Steroid Biochem Mol Biol (2017) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫印迹在小鼠样本上 (图 5d). Am J Physiol Endocrinol Metab (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling Technology, D3U4C)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6). J Transl Med (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 1:50; 图 6
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling Tech, CST-12741)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 6) 和 被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 3
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling technology, 12741)被用于被用于免疫印迹在小鼠样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 s5). Aging Cell (2016) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫细胞化学; 人类; 图 s1a
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 4599)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫印迹在小鼠样本上 (图 5d). Neuropharmacology (2016) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling Technology, 4599)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 1:100; 图 4a
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, D3U4C)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:1000. Sci Rep (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 3
  • 免疫组化; 小鼠; 1:400; 图 s5
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling Technology, 12741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3) 和 被用于免疫组化在小鼠样本上浓度为1:400 (图 s5). Nature (2016) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 4599)被用于被用于免疫印迹在小鼠样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 大鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling Technology, D3U4C)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2f). Endocrinology (2016) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 图 6
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 4599)被用于被用于免疫印迹在小鼠样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 6). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 LC3抗体(Cell signaling, 12741S)被用于被用于免疫印迹在小鼠样本上 (图 3). J Cell Mol Med (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling technologies, 4599)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Nat Med (2015) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, CST-12741)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 s6a
赛信通(上海)生物试剂有限公司 LC3抗体(Cell signaling, 12741)被用于被用于免疫印迹在人类样本上 (图 s6a). Nat Genet (2015) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling Technology, 12741)被用于被用于免疫印迹在人类样本上 (图 s6). Breast Cancer Res Treat (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 图 3c, 4a
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 4599)被用于被用于免疫印迹在人类样本上 (图 3c, 4a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 4599)被用于被用于免疫印迹在人类样本上 (图 3). Nat Immunol (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 犬; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 LC3抗体(Cell signaling, 4599)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 5). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 4599)被用于被用于免疫印迹在人类样本上 (图 4). elife (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 4599P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 LC3抗体(Cell signaling, 12741)被用于被用于免疫印迹在小鼠样本上 (图 3). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 大鼠; 1:1000
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling Technology, 4599)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. Neurobiol Dis (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 图 9
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling Technology, 4599)被用于被用于免疫印迹在人类样本上 (图 9). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 12741)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h). Mol Neurodegener (2014) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 LC3抗体(Cell Signaling, 4599)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 LC3抗体(细胞, 4599)被用于被用于免疫印迹在小鼠样本上. Neuroscience (2014) ncbi
Abcepta
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5b
Abcepta LC3抗体(Abgent, 1805a)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5b). Autophagy (2017) ncbi
domestic rabbit 多克隆
Abcepta LC3抗体(Abgent, AP1805a)被用于. Autophagy (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:500; 图 4
Abcepta LC3抗体(Abgent, AM1800a)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 9
Abcepta LC3抗体(Abgent, AM1800a)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 9). Autophagy (2015) ncbi
MBL International
小鼠 单克隆(4E+12)
  • 免疫细胞化学; 猕猴; 1:100; 图 7a
MBL International LC3抗体(MBL, M152-3)被用于被用于免疫细胞化学在猕猴样本上浓度为1:100 (图 7a). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(4E+12)
  • 免疫细胞化学; 人类; 1:200; 图 4c
MBL International LC3抗体(MBL, M152-3)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4c). Nat Commun (2020) ncbi
小鼠 单克隆(4E+12)
  • 免疫细胞化学; 小鼠; 1:200; 图 1c
MBL International LC3抗体(MBL, M152-3)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1c). J Neuroinflammation (2020) ncbi
小鼠 单克隆(4E+12)
  • 免疫印迹; 小鼠; 1:1000; 图 5c
MBL International LC3抗体(MBL, M152-3)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Nat Commun (2019) ncbi
小鼠 单克隆(4E+12)
  • 免疫细胞化学; 人类; 图 7a
MBL International LC3抗体(MBL International, 4E12)被用于被用于免疫细胞化学在人类样本上 (图 7a). J Clin Invest (2019) ncbi
小鼠 单克隆(4E+12)
  • 免疫细胞化学; 人类; 图 4e
MBL International LC3抗体(MBL International, M152-3)被用于被用于免疫细胞化学在人类样本上 (图 4e). PLoS ONE (2017) ncbi
小鼠 单克隆(4E+12)
  • 免疫细胞化学; 小鼠; 图 1b
  • 免疫印迹; 小鼠; 图 1m
MBL International LC3抗体(MBL, M152-3)被用于被用于免疫细胞化学在小鼠样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上 (图 1m). Mol Cell (2017) ncbi
小鼠 单克隆(4E+12)
  • 免疫细胞化学; 人类; 图 1f
MBL International LC3抗体(MBL, M152-3)被用于被用于免疫细胞化学在人类样本上 (图 1f). FEBS Lett (2017) ncbi
小鼠 单克隆(4E+12)
  • mass cytometry; 人类; 图 1j
  • 流式细胞仪; 人类; 图 2f
MBL International LC3抗体(MBL, 3E1)被用于被用于mass cytometry在人类样本上 (图 1j) 和 被用于流式细胞仪在人类样本上 (图 2f). Science (2017) ncbi
小鼠 单克隆(4E+12)
  • 流式细胞仪; 人类; 图 st12
MBL International LC3抗体(MBL, 3E1)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
小鼠 单克隆(4E+12)
  • 流式细胞仪; 人类; 图 s6b
MBL International LC3抗体(MBL International, M152-3)被用于被用于流式细胞仪在人类样本上 (图 s6b). Nature (2016) ncbi
小鼠 单克隆(4E+12)
  • 免疫细胞化学; 人类; 1:400; 图 1
MBL International LC3抗体(MBL Medical & Biological laboratories Co, M152-3)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(4E+12)
  • 免疫组化-石蜡切片; 人类; 图 6b
MBL International LC3抗体(MBL Medical & Biological Laboratories, M152-3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6b). Autophagy (2016) ncbi
小鼠 单克隆(4E+12)
  • 免疫印迹; 小鼠; 图 5a
MBL International LC3抗体(MBL, M152-3)被用于被用于免疫印迹在小鼠样本上 (图 5a). J Gerontol A Biol Sci Med Sci (2017) ncbi
小鼠 单克隆(4E+12)
  • 免疫细胞化学; 小鼠; 图 4
MBL International LC3抗体(MBL, M152-3)被用于被用于免疫细胞化学在小鼠样本上 (图 4). Int J Mol Sci (2016) ncbi
小鼠 单克隆(4E+12)
  • 免疫细胞化学; 小鼠; 1:300; 图 2g
  • 免疫印迹; 小鼠; 1:2000; 图 2c
MBL International LC3抗体(MBL, M152-3)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 2g) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2c). Autophagy (2016) ncbi
小鼠 单克隆(4E+12)
  • 免疫组化; 小鼠; 1:100; 图 4
MBL International LC3抗体(MBL, 4E12)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). Brain (2016) ncbi
小鼠 单克隆(4E+12)
  • 免疫细胞化学; 人类; 1:100; 图 e3
MBL International LC3抗体(MBL International, 4E12)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 e3). Nature (2016) ncbi
小鼠 单克隆(4E+12)
  • 免疫细胞化学; 人类; 1:10; 图 2e
MBL International LC3抗体(MBL, M152-3)被用于被用于免疫细胞化学在人类样本上浓度为1:10 (图 2e). Oncotarget (2015) ncbi
小鼠 单克隆(4E+12)
  • 免疫细胞化学; 人类; 图 2b
MBL International LC3抗体(MBL, M152-3)被用于被用于免疫细胞化学在人类样本上 (图 2b). Autophagy (2015) ncbi
小鼠 单克隆(4E+12)
  • 免疫细胞化学; 人类; 1:100; 图 1
MBL International LC3抗体(MBL International, M152-3)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(4E+12)
  • 免疫细胞化学; 人类; 图 s6b
MBL International LC3抗体(MBL, M152-3B)被用于被用于免疫细胞化学在人类样本上 (图 s6b). Hum Mol Genet (2015) ncbi
小鼠 单克隆(4E+12)
  • 免疫印迹; 人类; 图 1a, 1b
  • 免疫印迹; 小鼠; 图 1f, 1g
MBL International LC3抗体(MBL, M152-3)被用于被用于免疫印迹在人类样本上 (图 1a, 1b) 和 被用于免疫印迹在小鼠样本上 (图 1f, 1g). Autophagy (2016) ncbi
小鼠 单克隆(4E+12)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
MBL International LC3抗体(MBL International, M152-3)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Autophagy (2014) ncbi
小鼠 单克隆(4E+12)
  • 免疫细胞化学; 小鼠; 1:200
MBL International LC3抗体(MBL, M152-3)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Nat Cell Biol (2014) ncbi
小鼠 单克隆(4E+12)
  • 免疫细胞化学; 人类
MBL International LC3抗体(MBL, M152-3)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(4E+12)
  • 免疫印迹; 小鼠
MBL International LC3抗体(MBL, M152-3)被用于被用于免疫印迹在小鼠样本上. Autophagy (2012) ncbi
小鼠 单克隆(4E+12)
  • 免疫印迹; 小鼠; 1:2000
MBL International LC3抗体(MBL International, 4E12)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. PLoS ONE (2012) ncbi
Nanotools
小鼠 单克隆(2G6)
  • 其他; 小鼠; 1:200; 图 6
Nanotools LC3抗体(Nanotools, 0260C100/LC3-2G6)被用于被用于其他在小鼠样本上浓度为1:200 (图 6). elife (2020) ncbi
小鼠 单克隆(2G6)
  • 免疫印迹; 人类; 图 ev2b
Nanotools LC3抗体(NanoTools, 0260-100)被用于被用于免疫印迹在人类样本上 (图 ev2b). EMBO J (2018) ncbi
小鼠 单克隆(2G6)
  • 免疫组化; 小鼠; 1:500; 图 6m
  • 免疫印迹; 小鼠; 1:100; 图 2e
Nanotools LC3抗体(Nanotools, 0260-100/LC3-2G6)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6m) 和 被用于免疫印迹在小鼠样本上浓度为1:100 (图 2e). Nat Neurosci (2018) ncbi
小鼠 单克隆(2G6)
  • 免疫印迹; 人类; 1:2000; 图 4b
Nanotools LC3抗体(Nano Tools, 0260-100/LC3-2G6)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4b). PLoS Biol (2017) ncbi
小鼠 单克隆(2G6)
  • 免疫印迹; 人类; 1:2000; 图 3e
Nanotools LC3抗体(Nano Tools, 0260-100/LC3-2G6)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3e). Sci Rep (2016) ncbi
小鼠 单克隆(2G6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
Nanotools LC3抗体(NanoTools, 0260-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(2G6)
  • 免疫印迹; 人类; 图 8
Nanotools LC3抗体(Nanotools, 0260-100)被用于被用于免疫印迹在人类样本上 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(2G6)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
Nanotools LC3抗体(nanoTools, 0260-100)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
文章列表
  1. Du T, Zhu G, Chen Y, Shi L, Liu D, Liu Y, et al. Anterior thalamic nucleus stimulation protects hippocampal neurons by activating autophagy in epileptic monkeys. Aging (Albany NY). 2020;12:6324-6339 pubmed 出版商
  2. Yan S, Ding H, Peng J, Wang X, Pang C, Wei J, et al. Down-regulation of protease-activated receptor 2 ameliorated osteoarthritis in rats through regulation of MAPK/NF-κB signaling pathway in vivo and in vitro. Biosci Rep. 2020;40: pubmed 出版商
  3. Gain C, Malik S, Bhattacharjee S, Ghosh A, Robertson E, Das B, et al. Proteasomal inhibition triggers viral oncoprotein degradation via autophagy-lysosomal pathway. PLoS Pathog. 2020;16:e1008105 pubmed 出版商
  4. Budzik J, Swaney D, Jimenez Morales D, Johnson J, Garelis N, Repasy T, et al. Dynamic post-translational modification profiling of Mycobacterium tuberculosis-infected primary macrophages. elife. 2020;9: pubmed 出版商
  5. Boukhalfa A, Nascimbeni A, Ramel D, Dupont N, Hirsch E, Gayral S, et al. PI3KC2α-dependent and VPS34-independent generation of PI3P controls primary cilium-mediated autophagy in response to shear stress. Nat Commun. 2020;11:294 pubmed 出版商
  6. Ye X, Zhu M, Che X, Wang H, Liang X, Wu C, et al. Lipopolysaccharide induces neuroinflammation in microglia by activating the MTOR pathway and downregulating Vps34 to inhibit autophagosome formation. J Neuroinflammation. 2020;17:18 pubmed 出版商
  7. Zhang S, Hu L, Jiang J, Li H, Wu Q, Ooi K, et al. HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. J Neuroinflammation. 2020;17:15 pubmed 出版商
  8. Hong Z, Wang Z, Zhou B, Wang J, Tong H, Liao Y, et al. Effects of evodiamine on PI3K/Akt and MAPK/ERK signaling pathways in pancreatic cancer cells. Int J Oncol. 2020;56:783-793 pubmed 出版商
  9. Liu T, Han S, Dai Q, Zheng J, Liu C, Li S, et al. IL-17A-Mediated Excessive Autophagy Aggravated Neuronal Ischemic Injuries via Src-PP2B-mTOR Pathway. Front Immunol. 2019;10:2952 pubmed 出版商
  10. Huang X, Ni B, Xi Y, Chu X, Zhang R, You H. Protease-activated receptor 2 (PAR-2) antagonist AZ3451 as a novel therapeutic agent for osteoarthritis. Aging (Albany NY). 2019;11:12532-12545 pubmed 出版商
  11. Zhang Y, Thery F, Wu N, Luhmann E, Dussurget O, Foecke M, et al. The in vivo ISGylome links ISG15 to metabolic pathways and autophagy upon Listeria monocytogenes infection. Nat Commun. 2019;10:5383 pubmed 出版商
  12. Zhang Y, Cao Y, Chen J, Qin H, Yang L. A New Possible Mechanism by Which Punicalagin Protects against Liver Injury Induced by Type 2 Diabetes Mellitus: Upregulation of Autophagy via the Akt/FoxO3a Signaling Pathway. J Agric Food Chem. 2019;: pubmed 出版商
  13. Zhou C, Wang M, Yang J, Xiong H, Wang Y, Tang J. Integral membrane protein 2A inhibits cell growth in human breast cancer via enhancing autophagy induction. Cell Commun Signal. 2019;17:105 pubmed 出版商
  14. Stavoe A, Gopal P, Gubas A, Tooze S, Holzbaur E. Expression of WIPI2B counteracts age-related decline in autophagosome biogenesis in neurons. elife. 2019;8: pubmed 出版商
  15. Malik N, Yan H, Moshkovich N, Palangat M, Yang H, Sanchez V, et al. The transcription factor CBFB suppresses breast cancer through orchestrating translation and transcription. Nat Commun. 2019;10:2071 pubmed 出版商
  16. Dang A, Teles R, Weiss D, Parvatiyar K, Sarno E, Ochoa M, et al. IL-26 contributes to host defense against intracellular bacteria. J Clin Invest. 2019;129:1926-1939 pubmed 出版商
  17. Zhou B, Kreuzer J, Kumsta C, Wu L, Kamer K, Cedillo L, et al. Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension. Cell. 2019;177:299-314.e16 pubmed 出版商
  18. Vodnala S, Eil R, Kishton R, Sukumar M, Yamamoto T, Ha N, et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science. 2019;363: pubmed 出版商
  19. Song C, Zhang J, Qi S, Liu Z, Zhang X, Zheng Y, et al. Cardiolipin remodeling by ALCAT1 links mitochondrial dysfunction to Parkinson's diseases. Aging Cell. 2019;18:e12941 pubmed 出版商
  20. Tapia D, Jimenez T, Zamora C, Espinoza J, Rizzo R, González Cárdenas A, et al. KDEL receptor regulates secretion by lysosome relocation- and autophagy-dependent modulation of lipid-droplet turnover. Nat Commun. 2019;10:735 pubmed 出版商
  21. Chun J, Zhang J, Wilkins M, Subramanian B, Riella C, Magraner J, et al. Recruitment of APOL1 kidney disease risk variants to lipid droplets attenuates cell toxicity. Proc Natl Acad Sci U S A. 2019;116:3712-3721 pubmed 出版商
  22. Mukhopadhyay U, Chanda S, Patra U, Mukherjee A, Rana S, Mukherjee A, et al. Synchronized Orchestration of miR-99b and let-7g Positively Regulates Rotavirus Infection by Modulating Autophagy. Sci Rep. 2019;9:1318 pubmed 出版商
  23. Narayana Y, Gadgil C, Mote R, Rajan R, Subramanyam D. Clathrin-Mediated Endocytosis Regulates a Balance between Opposing Signals to Maintain the Pluripotent State of Embryonic Stem Cells. Stem Cell Reports. 2019;12:152-164 pubmed 出版商
  24. Liu N, Luo J, Kuang D, Xu S, Duan Y, Xia Y, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression. J Clin Invest. 2019;129:631-646 pubmed 出版商
  25. Wnuk A, Rzemieniec J, Staroń J, Litwa E, Lasoń W, Bojarski A, et al. Prenatal Exposure to Benzophenone-3 Impairs Autophagy, Disrupts RXRs/PPARγ Signaling, and Alters Epigenetic and Post-Translational Statuses in Brain Neurons. Mol Neurobiol. 2018;: pubmed 出版商
  26. Zhang J, Tan P, Guo L, Gong J, Ma J, Li J, et al. p53-dependent autophagic degradation of TET2 modulates cancer therapeutic resistance. Oncogene. 2019;38:1905-1919 pubmed 出版商
  27. Rivera Reyes A, Ye S, E Marino G, Egolf S, E Ciotti G, Chor S, et al. YAP1 enhances NF-κB-dependent and independent effects on clock-mediated unfolded protein responses and autophagy in sarcoma. Cell Death Dis. 2018;9:1108 pubmed 出版商
  28. Vera Ramirez L, Vodnala S, Nini R, Hunter K, Green J. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat Commun. 2018;9:1944 pubmed 出版商
  29. Liu L, An D, Xu J, Shao B, Li X, Shi J. Ac2-26 Induces IKKβ Degradation Through Chaperone-Mediated Autophagy Via HSPB1 in NCM-Treated Microglia. Front Mol Neurosci. 2018;11:76 pubmed 出版商
  30. Nguyen H, Noguchi S, Sugie K, Matsuo Y, Nguyen C, Koito H, et al. Small-Vessel Vasculopathy Due to Aberrant Autophagy in LAMP-2 Deficiency. Sci Rep. 2018;8:3326 pubmed 出版商
  31. Zaffagnini G, Savova A, Danieli A, Romanov J, Tremel S, Ebner M, et al. p62 filaments capture and present ubiquitinated cargos for autophagy. EMBO J. 2018;37: pubmed 出版商
  32. Gstrein T, Edwards A, Přistoupilová A, Leca I, Breuss M, Pilat Carotta S, et al. Mutations in Vps15 perturb neuronal migration in mice and are associated with neurodevelopmental disease in humans. Nat Neurosci. 2018;21:207-217 pubmed 出版商
  33. Watanabe S, Komine O, Endo F, Wakasugi K, Yamanaka K. Intracerebroventricular administration of Cystatin C ameliorates disease in SOD1-linked amyotrophic lateral sclerosis mice. J Neurochem. 2018;145:80-89 pubmed 出版商
  34. Merrill N, Schipper J, Karnes J, Kauffman A, Martin K, Mackeigan J. PI3K-C2? knockdown decreases autophagy and maturation of endocytic vesicles. PLoS ONE. 2017;12:e0184909 pubmed 出版商
  35. Zhao Y, Chen Y, Miao G, Zhao H, Qu W, Li D, et al. The ER-Localized Transmembrane Protein EPG-3/VMP1 Regulates SERCA Activity to Control ER-Isolation Membrane Contacts for Autophagosome Formation. Mol Cell. 2017;67:974-989.e6 pubmed 出版商
  36. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  37. Wei J, Xu H, Meng W. Noncentrosomal microtubules regulate autophagosome transport through CAMSAP2-EB1 cross-talk. FEBS Lett. 2017;591:2379-2393 pubmed 出版商
  38. Liu C, Choi H, Johnson Z, Tian J, Shapiro I, Risbud M. Lack of evidence for involvement of TonEBP and hyperosmotic stimulus in induction of autophagy in the nucleus pulposus. Sci Rep. 2017;7:4543 pubmed 出版商
  39. See P, Dutertre C, Chen J, Günther P, McGovern N, Irac S, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356: pubmed 出版商
  40. Villani A, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356: pubmed 出版商
  41. Xiao Y, Yang Z, Wu Q, Jiang X, Yuan Y, Chang W, et al. Cucurbitacin B Protects Against Pressure Overload Induced Cardiac Hypertrophy. J Cell Biochem. 2017;118:3899-3910 pubmed 出版商
  42. Jacquin E, Leclerc Mercier S, Judon C, Blanchard E, Fraitag S, Florey O. Pharmacological modulators of autophagy activate a parallel noncanonical pathway driving unconventional LC3 lipidation. Autophagy. 2017;13:854-867 pubmed 出版商
  43. Mu Y, Yan W, Yin T, Zhang Y, Li J, Yang J. Diet-induced obesity impairs spermatogenesis: a potential role for autophagy. Sci Rep. 2017;7:43475 pubmed 出版商
  44. Samuel S, Ghosh S, Majeed Y, Arunachalam G, Emara M, Ding H, et al. Metformin represses glucose starvation induced autophagic response in microvascular endothelial cells and promotes cell death. Biochem Pharmacol. 2017;132:118-132 pubmed 出版商
  45. de Oliveira R, Vicente Miranda H, Francelle L, Pinho R, Szego E, Martinho R, et al. The mechanism of sirtuin 2-mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease. PLoS Biol. 2017;15:e2000374 pubmed 出版商
  46. Wu H, Zhao X, Wang F, Jiang Q, Shi L, Gong M, et al. Mouse Testicular Cell Type-Specific Antiviral Response against Mumps Virus Replication. Front Immunol. 2017;8:117 pubmed 出版商
  47. Kemter E, Frohlich T, Arnold G, Wolf E, Wanke R. Mitochondrial Dysregulation Secondary to Endoplasmic Reticulum Stress in Autosomal Dominant Tubulointerstitial Kidney Disease - UMOD (ADTKD-UMOD). Sci Rep. 2017;7:42970 pubmed 出版商
  48. Yuan H, Tan B, Gao S. Tenovin-6 impairs autophagy by inhibiting autophagic flux. Cell Death Dis. 2017;8:e2608 pubmed 出版商
  49. Villar V, Nguyen T, Delcroix V, Terés S, Bouchecareilh M, Salin B, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124 pubmed 出版商
  50. Capizzi M, Strappazzon F, Cianfanelli V, Papaleo E, Cecconi F. MIR7-3HG, a MYC-dependent modulator of cell proliferation, inhibits autophagy by a regulatory loop involving AMBRA1. Autophagy. 2017;13:554-566 pubmed 出版商
  51. Suzuki J, Nakajima W, Suzuki H, Asano Y, Tanaka N. Chaperone-mediated autophagy promotes lung cancer cell survival through selective stabilization of the pro-survival protein, MCL1. Biochem Biophys Res Commun. 2017;482:1334-1340 pubmed 出版商
  52. Mukhopadhyay C, Triplett A, Bargar T, HECKMAN C, Wagner K, Naramura M. Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A. 2016;113:E8228-E8237 pubmed 出版商
  53. Ribeiro C, Sarrami Forooshani R, Setiawan L, Zijlstra Willems E, van Hamme J, Tigchelaar W, et al. Receptor usage dictates HIV-1 restriction by human TRIM5? in dendritic cell subsets. Nature. 2016;540:448-452 pubmed 出版商
  54. Vicente Miranda H, Gomes M, Branco Santos J, Breda C, Lázaro D, Lopes L, et al. Glycation potentiates neurodegeneration in models of Huntington's disease. Sci Rep. 2016;6:36798 pubmed 出版商
  55. Zou P, Liu L, Zheng L, Payne K, Manjili M, Idowu M, et al. Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment. Oxid Med Cell Longev. 2016;2016:4085727 pubmed
  56. Mercado Pimentel M, Igarashi S, Dunn A, Behbahani M, Miller C, Read C, et al. The Novel Small Molecule Inhibitor, OSU-T315, Suppresses Vestibular Schwannoma and Meningioma Growth by Inhibiting PDK2 Function in the AKT Pathway Activation. Austin J Med Oncol. 2016;3: pubmed
  57. Tazi M, Dakhlallah D, Caution K, Gerber M, Chang S, Khalil H, et al. Elevated Mirc1/Mir17-92 cluster expression negatively regulates autophagy and CFTR (cystic fibrosis transmembrane conductance regulator) function in CF macrophages. Autophagy. 2016;12:2026-2037 pubmed
  58. Cao L, Zhang L, Zhao X, Zhang Y. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0161025 pubmed 出版商
  59. Hu Z, Zhong Z, Huang S, Wen H, Chen X, Chu H, et al. Decreased expression of Beclin?1 is significantly associated with a poor prognosis in oral tongue squamous cell carcinoma. Mol Med Rep. 2016;14:1567-73 pubmed 出版商
  60. Choi H, Merceron C, Mangiavini L, Seifert E, Schipani E, Shapiro I, et al. Hypoxia promotes noncanonical autophagy in nucleus pulposus cells independent of MTOR and HIF1A signaling. Autophagy. 2016;12:1631-46 pubmed 出版商
  61. Andersson A, Andersson B, Lorell C, Raffetseder J, Larsson M, Blomgran R. Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages. Sci Rep. 2016;6:28171 pubmed 出版商
  62. Shruthi K, Reddy S, Reddy P, Shivalingam P, Harishankar N, Reddy G. Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system. J Nutr Biochem. 2016;33:73-81 pubmed 出版商
  63. Wang H, Wang R, Carrera I, Xu S, Lakshmana M. TFEB Overexpression in the P301S Model of Tauopathy Mitigates Increased PHF1 Levels and Lipofuscin Puncta and Rescues Memory Deficits. Eneuro. 2016;3: pubmed 出版商
  64. Otto C, Hahlbrock T, Eich K, Karaaslan F, Jürgens C, Germer C, et al. Antiproliferative and antimetabolic effects behind the anticancer property of fermented wheat germ extract. BMC Complement Altern Med. 2016;16:160 pubmed 出版商
  65. Pereira D, Simões A, Gomes S, Castro R, Carvalho T, Rodrigues C, et al. MEK5/ERK5 signaling inhibition increases colon cancer cell sensitivity to 5-fluorouracil through a p53-dependent mechanism. Oncotarget. 2016;7:34322-40 pubmed 出版商
  66. Hossini A, Quast A, Plötz M, Grauel K, Exner T, Küchler J, et al. PI3K/AKT Signaling Pathway Is Essential for Survival of Induced Pluripotent Stem Cells. PLoS ONE. 2016;11:e0154770 pubmed 出版商
  67. Silva S, Levy D, Ruiz J, de Melo T, Isaac C, Fidelis M, et al. Oxysterols in adipose tissue-derived mesenchymal stem cell proliferation and death. J Steroid Biochem Mol Biol. 2017;169:164-175 pubmed 出版商
  68. Stephenson E, Ragauskas A, Jaligama S, Redd J, Parvathareddy J, Peloquin M, et al. Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice. Am J Physiol Endocrinol Metab. 2016;310:E1003-15 pubmed 出版商
  69. Follo C, Barbone D, Richards W, Bueno R, Broaddus V. Autophagy initiation correlates with the autophagic flux in 3D models of mesothelioma and with patient outcome. Autophagy. 2016;12:1180-94 pubmed 出版商
  70. Tamura Y, Matsunaga Y, Kitaoka Y, Hatta H. Effects of Heat Stress Treatment on Age-dependent Unfolded Protein Response in Different Types of Skeletal Muscle. J Gerontol A Biol Sci Med Sci. 2017;72:299-308 pubmed 出版商
  71. Zhuang H, Tian W, Li W, Zhang X, Wang J, Yang Y, et al. Autophagic Cell Death and Apoptosis Jointly Mediate Cisatracurium Besylate-Induced Cell Injury. Int J Mol Sci. 2016;17:515 pubmed 出版商
  72. Kumar R, Narasimhan M, Shanmugam G, Hong J, Devarajan A, Palaniappan S, et al. Abrogation of Nrf2 impairs antioxidant signaling and promotes atrial hypertrophy in response to high-intensity exercise stress. J Transl Med. 2016;14:86 pubmed 出版商
  73. Son S, Cha M, Choi H, Kang S, Choi H, Lee M, et al. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy. 2016;12:784-800 pubmed 出版商
  74. Jennewein L, Ronellenfitsch M, Antonietti P, Ilina E, Jung J, Stadel D, et al. Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget. 2016;7:20016-32 pubmed 出版商
  75. Piras A, Collin L, Grüninger F, Graff C, Rönnbäck A. Autophagic and lysosomal defects in human tauopathies: analysis of post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol Commun. 2016;4:22 pubmed 出版商
  76. Zou M, Zhu W, Wang L, Shi L, Gao R, Ou Y, et al. AEG-1/MTDH-activated autophagy enhances human malignant glioma susceptibility to TGF-β1-triggered epithelial-mesenchymal transition. Oncotarget. 2016;7:13122-38 pubmed 出版商
  77. Han X, Tai H, Wang X, Wang Z, Zhou J, Wei X, et al. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation. Aging Cell. 2016;15:416-27 pubmed 出版商
  78. Chung V, Tan T, Tan M, Wong M, Kuay K, Yang Z, et al. GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep. 2016;6:19943 pubmed 出版商
  79. Jacob F, Yonis A, Cuello F, Luther P, Schulze T, Eder A, et al. Analysis of Tyrosine Kinase Inhibitor-Mediated Decline in Contractile Force in Rat Engineered Heart Tissue. PLoS ONE. 2016;11:e0145937 pubmed 出版商
  80. Bühler A, Kustermann M, Bummer T, Rottbauer W, Sandri M, Just S. Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish. Int J Mol Sci. 2016;17: pubmed 出版商
  81. Duncan J, Zhang X, Wang N, Johnson S, Harris S, Udemgba C, et al. Binge ethanol exposure increases the Krüppel-like factor 11-monoamine oxidase (MAO) pathway in rats: Examining the use of MAO inhibitors to prevent ethanol-induced brain injury. Neuropharmacology. 2016;105:329-340 pubmed 出版商
  82. Peng Y, Kim M, Hullinger R, O Riordan K, Burger C, Pehar M, et al. Improved proteostasis in the secretory pathway rescues Alzheimer's disease in the mouse. Brain. 2016;139:937-52 pubmed 出版商
  83. Ruiz A, Rockfield S, Taran N, Haller E, Engelman R, Flores I, et al. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis. Cell Death Dis. 2016;7:e2059 pubmed 出版商
  84. Ketel K, Krauss M, Nicot A, Puchkov D, Wieffer M, Müller R, et al. A phosphoinositide conversion mechanism for exit from endosomes. Nature. 2016;529:408-12 pubmed 出版商
  85. Pawar K, Hanisch C, Palma Vera S, Einspanier R, Sharbati S. Down regulated lncRNA MEG3 eliminates mycobacteria in macrophages via autophagy. Sci Rep. 2016;6:19416 pubmed 出版商
  86. Li W, Zou J, Yue F, Song K, Chen Q, McKeehan W, et al. Defects in MAP1S-mediated autophagy cause reduction in mouse lifespans especially when fibronectin is overexpressed. Aging Cell. 2016;15:370-9 pubmed 出版商
  87. García Prat L, Martínez Vicente M, Perdiguero E, Ortet L, Rodríguez Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529:37-42 pubmed 出版商
  88. Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich M, Lim R, et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature. 2016;529:216-20 pubmed 出版商
  89. Altuntas S, Rossin F, Marsella C, D Eletto M, Diaz Hidalgo L, Farrace M, et al. The transglutaminase type 2 and pyruvate kinase isoenzyme M2 interplay in autophagy regulation. Oncotarget. 2015;6:44941-54 pubmed 出版商
  90. Chen Y, Tsou B, Hu S, Ma H, Liu X, Yen Y, et al. Autophagy induction causes a synthetic lethal sensitization to ribonucleotide reductase inhibition in breast cancer cells. Oncotarget. 2016;7:1984-99 pubmed 出版商
  91. Mercau M, Repetto E, Perez M, Martinez Calejman C, Sánchez Puch S, Finkielstein C, et al. Moderate Exercise Prevents Functional Remodeling of the Anterior Pituitary Gland in Diet-Induced Insulin Resistance in Rats: Role of Oxidative Stress and Autophagy. Endocrinology. 2016;157:1135-45 pubmed 出版商
  92. Song K, Hu W, Yue F, Zou J, Li W, Chen Q, et al. Transforming Growth Factor TGFβ Increases Levels of Microtubule-Associated Protein MAP1S and Autophagy Flux in Pancreatic Ductal Adenocarcinomas. PLoS ONE. 2015;10:e0143150 pubmed 出版商
  93. Draganov D, Gopalakrishna Pillai S, Chen Y, Zuckerman N, Moeller S, Wang C, et al. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep. 2015;5:16222 pubmed 出版商
  94. Hu J, Man W, Shen M, Zhang M, Lin J, Wang T, et al. Luteolin alleviates post-infarction cardiac dysfunction by up-regulating autophagy through Mst1 inhibition. J Cell Mol Med. 2016;20:147-56 pubmed 出版商
  95. Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, et al. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 2015;6:39839-54 pubmed 出版商
  96. Kharaziha P, Chioureas D, Baltatzis G, Fonseca P, Rodriguez P, Gogvadze V, et al. Sorafenib-induced defective autophagy promotes cell death by necroptosis. Oncotarget. 2015;6:37066-82 pubmed 出版商
  97. Xiong R, Zhou W, Siegel D, Kitson R, Freed C, Moody C, et al. A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity. Mol Pharmacol. 2015;88:1045-54 pubmed 出版商
  98. Herranz D, Ambesi Impiombato A, Sudderth J, Sánchez Martín M, Belver L, Tosello V, et al. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat Med. 2015;21:1182-9 pubmed 出版商
  99. Koukourakis M, Kalamida D, Giatromanolaki A, Zois C, Sivridis E, Pouliliou S, et al. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines. PLoS ONE. 2015;10:e0137675 pubmed 出版商
  100. Ray A, Vasudevan S, Sengupta S. 6-Shogaol Inhibits Breast Cancer Cells and Stem Cell-Like Spheroids by Modulation of Notch Signaling Pathway and Induction of Autophagic Cell Death. PLoS ONE. 2015;10:e0137614 pubmed 出版商
  101. Colecchia D, Rossi M, Sasdelli F, Sanzone S, Strambi A, Chiariello M. MAPK15 mediates BCR-ABL1-induced autophagy and regulates oncogene-dependent cell proliferation and tumor formation. Autophagy. 2015;11:1790-802 pubmed 出版商
  102. Moreau K, Ghislat G, Hochfeld W, Renna M, Zavodszky E, Runwal G, et al. Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nat Commun. 2015;6:8045 pubmed 出版商
  103. Saliba J, Saint Martin C, Di Stefano A, Lenglet G, Marty C, Keren B, et al. Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies. Nat Genet. 2015;47:1131-40 pubmed 出版商
  104. Sakabe I, Hu R, Jin L, Clarke R, Kasid U. TMEM33: a new stress-inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling. Breast Cancer Res Treat. 2015;153:285-97 pubmed 出版商
  105. Zhen Y, Li W. Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A(D251E) mutation. Autophagy. 2015;11:1608-22 pubmed 出版商
  106. Irimia J, Tagliabracci V, Meyer C, Segvich D, DePaoli Roach A, Roach P. Muscle glycogen remodeling and glycogen phosphate metabolism following exhaustive exercise of wild type and laforin knockout mice. J Biol Chem. 2015;290:22686-98 pubmed 出版商
  107. Yang S, Lin H, Chang V, Chen C, Liu Y, Wang J, et al. Lovastatin overcomes gefitinib resistance through TNF-α signaling in human cholangiocarcinomas with different LKB1 statuses in vitro and in vivo. Oncotarget. 2015;6:23857-73 pubmed
  108. Su X, Yu Y, Zhong Y, Giannopoulou E, Hu X, Liu H, et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015;16:838-849 pubmed 出版商
  109. Nadeau M, Rico C, Tsoi M, Vivancos M, Filimon S, Paquet M, et al. Pharmacological targeting of valosin containing protein (VCP) induces DNA damage and selectively kills canine lymphoma cells. BMC Cancer. 2015;15:479 pubmed 出版商
  110. Hirst J, Edgar J, Esteves T, Darios F, Madeo M, Chang J, et al. Loss of AP-5 results in accumulation of aberrant endolysosomes: defining a new type of lysosomal storage disease. Hum Mol Genet. 2015;24:4984-96 pubmed 出版商
  111. Unni A, Lockwood W, Zejnullahu K, Lee Lin S, Varmus H. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. elife. 2015;4:e06907 pubmed 出版商
  112. Ferreira J, Soares A, Ramalho J, Pereira P, Girao H. K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy. Sci Rep. 2015;5:10210 pubmed 出版商
  113. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  114. Luo T, Fu J, Xu A, Su B, Ren Y, Li N, et al. PSMD10/gankyrin induces autophagy to promote tumor progression through cytoplasmic interaction with ATG7 and nuclear transactivation of ATG7 expression. Autophagy. 2016;12:1355-71 pubmed 出版商
  115. Ozeki N, Hase N, Hiyama T, Yamaguchi H, Kawai R, Kondo A, et al. Interleukin-1β-induced autophagy-related gene 5 regulates proliferation of embryonic stem cell-derived odontoblastic cells. PLoS ONE. 2015;10:e0124542 pubmed 出版商
  116. Brohée L, Demine S, Willems J, Arnould T, Colige A, Deroanne C. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget. 2015;6:11264-80 pubmed
  117. Zhang W, Hou J, Wang X, Jiang R, Yin Y, Ji J, et al. PTPRO-mediated autophagy prevents hepatosteatosis and tumorigenesis. Oncotarget. 2015;6:9420-33 pubmed
  118. Harris White M, Ferbas K, Johnson M, Eslami P, Poteshkina A, Venkova K, et al. A cell-penetrating ester of the neural metabolite lanthionine ketimine stimulates autophagy through the mTORC1 pathway: Evidence for a mechanism of action with pharmacological implications for neurodegenerative pathologies. Neurobiol Dis. 2015;84:60-8 pubmed 出版商
  119. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  120. Ulasov I, Shah N, Kaverina N, Lee H, Lin B, Lieber A, et al. Tamoxifen improves cytopathic effect of oncolytic adenovirus in primary glioblastoma cells mediated through autophagy. Oncotarget. 2015;6:3977-87 pubmed
  121. Kommaddi R, Jean Charles P, Shenoy S. Phosphorylation of the deubiquitinase USP20 by protein kinase A regulates post-endocytic trafficking of β2 adrenergic receptors to autophagosomes during physiological stress. J Biol Chem. 2015;290:8888-903 pubmed 出版商
  122. Zou J, Li W, Misra A, Yue F, Song K, Chen Q, et al. The viral restriction factor tetherin prevents leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) from association with beclin 1 and B-cell CLL/lymphoma 2 (Bcl-2) and enhances autophagy and mitophagy. J Biol Chem. 2015;290:7269-79 pubmed 出版商
  123. Brandstaetter H, Kishi Itakura C, Tumbarello D, Manstein D, Buss F. Loss of functional MYO1C/myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion. Autophagy. 2014;10:2310-23 pubmed 出版商
  124. Wilson W, Baumgarner B, Watanabe W, Alam M, Kinsey S. Effects of resveratrol on growth and skeletal muscle physiology of juvenile southern flounder. Comp Biochem Physiol A Mol Integr Physiol. 2015;183:27-35 pubmed 出版商
  125. Cho S, Yun S, Jo C, Lee D, Choi K, Song J, et al. SUMO1 promotes Aβ production via the modulation of autophagy. Autophagy. 2015;11:100-12 pubmed 出版商
  126. Giatromanolaki A, Sivridis E, Mitrakas A, Kalamida D, Zois C, Haider S, et al. Autophagy and lysosomal related protein expression patterns in human glioblastoma. Cancer Biol Ther. 2014;15:1468-78 pubmed 出版商
  127. Lonskaya I, Hebron M, Chen W, Schachter J, Moussa C. Tau deletion impairs intracellular β-amyloid-42 clearance and leads to more extracellular plaque deposition in gene transfer models. Mol Neurodegener. 2014;9:46 pubmed 出版商
  128. Guo W, Liu R, Bhardwaj G, Yang J, Changou C, Ma A, et al. Targeting Btk/Etk of prostate cancer cells by a novel dual inhibitor. Cell Death Dis. 2014;5:e1409 pubmed 出版商
  129. Zhong Y, Morris D, Jin L, Patel M, Karunakaran S, Fu Y, et al. Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing Beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels. J Biol Chem. 2014;289:26021-37 pubmed 出版商
  130. Morgado A, Xavier J, Dionísio P, Ribeiro M, Dias R, Sebastião A, et al. MicroRNA-34a Modulates Neural Stem Cell Differentiation by Regulating Expression of Synaptic and Autophagic Proteins. Mol Neurobiol. 2015;51:1168-83 pubmed 出版商
  131. Bejarano E, Yuste A, Patel B, Stout R, Spray D, Cuervo A. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401-14 pubmed 出版商
  132. Li W, Zhang X, Zhuang H, Chen H, Chen Y, Tian W, et al. MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX. J Biol Chem. 2014;289:10691-701 pubmed 出版商
  133. Wang H, Lewsadder M, Dorn E, Xu S, Lakshmana M. RanBP9 overexpression reduces dendritic arbor and spine density. Neuroscience. 2014;265:253-62 pubmed 出版商
  134. Liu S, Hartleben B, Kretz O, Wiech T, Igarashi P, Mizushima N, et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy. 2012;8:826-37 pubmed 出版商
  135. Morris C, Stanton M, Manthey K, Oh K, Wagner K. A knockout of the Tsg101 gene leads to decreased expression of ErbB receptor tyrosine kinases and induction of autophagy prior to cell death. PLoS ONE. 2012;7:e34308 pubmed 出版商