这是一篇来自已证抗体库的有关人类 LDHA的综述,是根据36篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合LDHA 抗体。
LDHA 同义词: GSD11; HEL-S-133P; LDHM; PIG19

圣克鲁斯生物技术
小鼠 单克隆(E-9)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 LDHA抗体(Santa, sc-137243)被用于被用于免疫印迹在人类样本上 (图 2b). Autophagy (2019) ncbi
小鼠 单克隆(H-10)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 LDHA抗体(Santa Cruz, sc-133123)被用于被用于免疫印迹在人类样本上 (图 2). Pflugers Arch (2016) ncbi
小鼠 单克隆(5)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 LDHA抗体(Santa Cruz, sc-130327)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Biochem Biophys (2016) ncbi
小鼠 单克隆(E-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术 LDHA抗体(Santa Cruz, sc-137243)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(H-10)
  • 免疫印迹; domestic rabbit; 1:100
圣克鲁斯生物技术 LDHA抗体(Santa Cruz Biotechnology, sc-133123)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:100. J Mol Endocrinol (2015) ncbi
小鼠 单克隆(H-10)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 LDHA抗体(Santa Cruz, sc-133123)被用于被用于免疫印迹在人类样本上 (图 1). Cancer Discov (2015) ncbi
小鼠 单克隆(E-9)
  • 免疫组化; 人类; 1:400
圣克鲁斯生物技术 LDHA抗体(Santa Cruz Biotechnology, sc-137243)被用于被用于免疫组化在人类样本上浓度为1:400. Lung Cancer (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR1564)
  • 免疫组化-石蜡切片; 人类; 图 6j
  • 免疫印迹; 人类; 图 1k
艾博抗(上海)贸易有限公司 LDHA抗体(Abcam, ab101562)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6j) 和 被用于免疫印迹在人类样本上 (图 1k). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 7a
艾博抗(上海)贸易有限公司 LDHA抗体(ABcam, ab125683)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7a). J Exp Clin Cancer Res (2017) ncbi
domestic rabbit 单克隆(EPR1564)
  • 免疫组化-冰冻切片; 大鼠; 1:250; 图 5
艾博抗(上海)贸易有限公司 LDHA抗体(Abcam, ab101562)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:250 (图 5). Neuroimage (2016) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(AF9D1)
  • 免疫沉淀; 小鼠; 图 5
  • 免疫印迹; 小鼠; 1:1000; 图 1
亚诺法生技股份有限公司 LDHA抗体(Abnova, MAB2736)被用于被用于免疫沉淀在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Exp Neurol (2015) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 其他; 人类; 1:100; 图 4a
赛默飞世尔 LDHA抗体(Thermo Scientific, PA5-17183)被用于被用于其他在人类样本上浓度为1:100 (图 4a). Nat Chem Biol (2016) ncbi
GeneTex
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
GeneTex LDHA抗体(Genetex, GTX101416)被用于被用于免疫印迹在人类样本上 (图 1e). Oncogene (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4j
赛信通(上海)生物试剂有限公司 LDHA抗体(CST, 2012)被用于被用于免疫印迹在人类样本上 (图 4j). Sci Adv (2020) ncbi
domestic rabbit 单克隆(C4B5)
  • 免疫印迹; 人类; 图 s8b
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling, 3582)被用于被用于免疫印迹在人类样本上 (图 s8b). Cell (2019) ncbi
domestic rabbit 单克隆(C4B5)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 LDHA抗体(CST, 3582)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(C4B5)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling, 3582)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(C4B5)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling, 3582)被用于被用于免疫印迹在人类样本上 (图 2e). Int J Cancer (2018) ncbi
domestic rabbit 单克隆(C4B5)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 LDHA抗体(CST, 3582)被用于被用于免疫印迹在人类样本上 (图 1d). Cancer Metab (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 s3a
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling, 2012)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 s3a). Biochem J (2017) ncbi
domestic rabbit 单克隆(C4B5)
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling, 3582)被用于被用于免疫印迹在人类样本上 (图 5f). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C4B5)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling Technology, 3582)被用于被用于免疫印迹在人类样本上 (图 1a). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 7a
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling Technology, 8176)被用于被用于免疫组化在人类样本上浓度为1:200 (图 7a) 和 被用于免疫印迹在人类样本上 (图 2a). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 s1b
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling, 2012S)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 s1b). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling, 2012)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C4B5)
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling, 3582)被用于被用于免疫印迹在人类样本上 (图 5f). Cell Death Discov (2016) ncbi
domestic rabbit 单克隆(C4B5)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling, C4B5)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C4B5)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling, 3582S)被用于被用于免疫印迹在人类样本上 (图 2g). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C4B5)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling Technology, 3582S)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling Technology, 2012)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling Technology, 2012)被用于被用于免疫印迹在人类样本上 (图 4). Cell Cycle (2016) ncbi
domestic rabbit 单克隆(C28H7)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 2
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling, 3558)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C4B5)
  • 免疫印迹; 人类; 1:1000; 图 1m
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell signaling, 3582)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1m). Nat Cell Biol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling Technology, 2012)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4g
  • 免疫印迹; 小鼠; 1:1000; 图 6l
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling Technology, 2012)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6l). FASEB J (2016) ncbi
domestic rabbit 单克隆(C4B5)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling Technology, 3582)被用于被用于免疫印迹在人类样本上 (图 5a). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C28H7)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 LDHA抗体(Cell Signaling Technology, 3558)被用于被用于免疫印迹在人类样本上 (图 1f). Oncogene (2015) ncbi
文章列表
  1. Zhou Y, Huang Y, Hu K, Zhang Z, Yang J, Wang Z. HIF1A activates the transcription of lncRNA RAET1K to modulate hypoxia-induced glycolysis in hepatocellular carcinoma cells via miR-100-5p. Cell Death Dis. 2020;11:176 pubmed 出版商
  2. Aldonza M, Ku J, Hong J, Kim D, Yu S, Lee M, et al. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Sci Adv. 2020;6:eaav7416 pubmed 出版商
  3. Sanghvi V, Leibold J, Mina M, Mohan P, Berishaj M, Li Z, et al. The Oncogenic Action of NRF2 Depends on De-glycation by Fructosamine-3-Kinase. Cell. 2019;178:807-819.e21 pubmed 出版商
  4. Hou L, Zhao Y, Song G, Ma Y, Jin X, Jin S, et al. Interfering cellular lactate homeostasis overcomes Taxol resistance of breast cancer cells through the microRNA-124-mediated lactate transporter (MCT1) inhibition. Cancer Cell Int. 2019;19:193 pubmed 出版商
  5. Huang X, Gan G, Wang X, Xu T, Xie W. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy. 2019;15:1258-1279 pubmed 出版商
  6. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  7. Qu S, Xue H, Dong X, Lin D, Wu R, Nabavi N, et al. Aneustat (OMN54) has aerobic glycolysis-inhibitory activity and also immunomodulatory activity as indicated by a first-generation PDX prostate cancer model. Int J Cancer. 2018;143:419-429 pubmed 出版商
  8. Yu L, Sun Y, Li J, Wang Y, Zhu Y, Shi Y, et al. Silencing the Girdin gene enhances radio-sensitivity of hepatocellular carcinoma via suppression of glycolytic metabolism. J Exp Clin Cancer Res. 2017;36:110 pubmed 出版商
  9. Miikkulainen P, Högel H, Rantanen K, Suomi T, Kouvonen P, Elo L, et al. HIF prolyl hydroxylase PHD3 regulates translational machinery and glucose metabolism in clear cell renal cell carcinoma. Cancer Metab. 2017;5:5 pubmed 出版商
  10. Zhang J, MacArtney T, Peggie M, Cohen P. Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3. Biochem J. 2017;474:2235-2248 pubmed 出版商
  11. Zhao X, Sun K, Lan Z, Song W, Cheng L, Chi W, et al. Tenofovir and adefovir down-regulate mitochondrial chaperone TRAP1 and succinate dehydrogenase subunit B to metabolically reprogram glucose metabolism and induce nephrotoxicity. Sci Rep. 2017;7:46344 pubmed 出版商
  12. Jin L, Chun J, Pan C, Alesi G, Li D, Magliocca K, et al. Phosphorylation-mediated activation of LDHA promotes cancer cell invasion and tumour metastasis. Oncogene. 2017;36:3797-3806 pubmed 出版商
  13. Thompson J, Nguyen Q, Singh M, Pavesic M, Nesterenko I, Nelson L, et al. Rho-associated kinase 1 inhibition is synthetically lethal with von Hippel-Lindau deficiency in clear cell renal cell carcinoma. Oncogene. 2017;36:1080-1089 pubmed 出版商
  14. Peng M, Yin N, Chhangawala S, Xu K, Leslie C, Li M. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science. 2016;354:481-484 pubmed
  15. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  16. Chen Y, Mahieu N, Huang X, Singh M, Crawford P, Johnson S, et al. Lactate metabolism is associated with mammalian mitochondria. Nat Chem Biol. 2016;12:937-943 pubmed 出版商
  17. Jinesh G, Molina J, Huang L, Laing N, Mills G, Bar Eli M, et al. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis. Cell Death Discov. 2016;2:16003 pubmed 出版商
  18. Broniarek I, Koziel A, Jarmuszkiewicz W. The effect of chronic exposure to high palmitic acid concentrations on the aerobic metabolism of human endothelial EA.hy926 cells. Pflugers Arch. 2016;468:1541-54 pubmed 出版商
  19. Ma T, Fan B, Zhang C, Zhao H, Han C, Gao C, et al. Metabonomics applied in exploring the antitumour mechanism of physapubenolide on hepatocellular carcinoma cells by targeting glycolysis through the Akt-p53 pathway. Sci Rep. 2016;6:29926 pubmed 出版商
  20. Yin C, He D, Chen S, Tan X, Sang N. Exogenous pyruvate facilitates cancer cell adaptation to hypoxia by serving as an oxygen surrogate. Oncotarget. 2016;7:47494-47510 pubmed 出版商
  21. Vanderperre B, Cermakova K, Escoffier J, Kaba M, Bender T, Nef S, et al. MPC1-like Is a Placental Mammal-specific Mitochondrial Pyruvate Carrier Subunit Expressed in Postmeiotic Male Germ Cells. J Biol Chem. 2016;291:16448-61 pubmed 出版商
  22. Amara S, Zheng M, Tiriveedhi V. Oleanolic Acid Inhibits High Salt-Induced Exaggeration of Warburg-like Metabolism in Breast Cancer Cells. Cell Biochem Biophys. 2016;74:427-34 pubmed 出版商
  23. Lim S, Liu H, Madeira da Silva L, Arora R, Liu Z, Phillips J, et al. Immunoregulatory Protein B7-H3 Reprograms Glucose Metabolism in Cancer Cells by ROS-Mediated Stabilization of HIF1?. Cancer Res. 2016;76:2231-42 pubmed 出版商
  24. Wang Q, Xue L, Zhang X, Bu S, Zhu X, Lai D. Autophagy protects ovarian cancer-associated fibroblasts against oxidative stress. Cell Cycle. 2016;15:1376-85 pubmed 出版商
  25. Mohammad G, Olde Damink S, Malago M, Dhar D, Pereira S. Pyruvate Kinase M2 and Lactate Dehydrogenase A Are Overexpressed in Pancreatic Cancer and Correlate with Poor Outcome. PLoS ONE. 2016;11:e0151635 pubmed 出版商
  26. Backes H, Walberer M, Ladwig A, Rueger M, Neumaier B, Endepols H, et al. Glucose consumption of inflammatory cells masks metabolic deficits in the brain. Neuroimage. 2016;128:54-62 pubmed 出版商
  27. Sperber H, Mathieu J, Wang Y, Ferreccio A, Hesson J, Xu Z, et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol. 2015;17:1523-35 pubmed 出版商
  28. Agarwal S, Bell C, Taylor S, Moran R. p53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb. Mol Cancer Res. 2016;14:66-77 pubmed 出版商
  29. Sharma B, Kolhe R, Black S, Keller J, Mivechi N, Satyanarayana A. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells. FASEB J. 2016;30:262-75 pubmed 出版商
  30. Phan L, Chou P, Velazquez Torres G, Samudio I, Parreno K, Huang Y, et al. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming. Nat Commun. 2015;6:7530 pubmed 出版商
  31. Yang X, Zheng K, Lin K, Zheng G, Zou H, Wang J, et al. Energy Metabolism Disorder as a Contributing Factor of Rheumatoid Arthritis: A Comparative Proteomic and Metabolomic Study. PLoS ONE. 2015;10:e0132695 pubmed 出版商
  32. Ramljak S, Schmitz M, Zafar S, Wrede A, Schenkel S, Asif A, et al. Cellular prion protein directly interacts with and enhances lactate dehydrogenase expression under hypoxic conditions. Exp Neurol. 2015;271:155-67 pubmed 出版商
  33. López Ibarra Z, Modrego J, Valero Muñoz M, Rodríguez Sierra P, Zamorano León J, González Cantalapiedra A, et al. Metabolic differences between white and brown fat from fasting rabbits at physiological temperature. J Mol Endocrinol. 2015;54:105-13 pubmed 出版商
  34. Van Rechem C, Black J, Boukhali M, Aryee M, Gräslund S, Haas W, et al. Lysine demethylase KDM4A associates with translation machinery and regulates protein synthesis. Cancer Discov. 2015;5:255-63 pubmed 出版商
  35. Liu X, Yao J, Tripathi D, Ding Z, Xu Y, Sun M, et al. Autophagy mediates HIF2α degradation and suppresses renal tumorigenesis. Oncogene. 2015;34:2450-60 pubmed 出版商
  36. Nair V, Gevaert O, Davidzon G, Plevritis S, West R. NF-κB protein expression associates with (18)F-FDG PET tumor uptake in non-small cell lung cancer: a radiogenomics validation study to understand tumor metabolism. Lung Cancer. 2014;83:189-96 pubmed 出版商