这是一篇来自已证抗体库的有关人类 LEF1的综述,是根据48篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合LEF1 抗体。
LEF1 同义词: LEF-1; TCF10; TCF1ALPHA; TCF7L3

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR2029Y)
  • 免疫组化; 小鼠; 1:250; 图 5b
艾博抗(上海)贸易有限公司 LEF1抗体(Abcam, ab137872)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 5b). elife (2020) ncbi
domestic rabbit 单克隆(EPR2029Y)
  • 染色质免疫沉淀 ; 人类; 1:50; 图 6k
  • 免疫印迹; 人类; 1:200; 图 6g
艾博抗(上海)贸易有限公司 LEF1抗体(Abcam, ab137872)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:50 (图 6k) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 6g). Nat Commun (2019) ncbi
  • 免疫印迹; 人类; 1:500; 图 6
艾博抗(上海)贸易有限公司 LEF1抗体(Abcam, ab85052)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EPR2029Y)
  • 免疫组化-石蜡切片; 小鼠; 图 6b
艾博抗(上海)贸易有限公司 LEF1抗体(Abcam, ab137872)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b). Oncogene (2016) ncbi
domestic rabbit 单克隆(EP2030Y)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 LEF1抗体(abcam, ab53293)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). J Clin Endocrinol Metab (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-10)
  • 免疫印迹; 人类; 图 6a
  • 免疫印迹; 小鼠; 图 1c
圣克鲁斯生物技术 LEF1抗体(Santa Cruz, sc-374412)被用于被用于免疫印迹在人类样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上 (图 1c). Sci Rep (2020) ncbi
小鼠 单克隆(REMB1)
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 LEF1抗体(SCBT, REMB1)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(3H5)
  • 免疫细胞化学; 人类
亚诺法生技股份有限公司 LEF1抗体(Abnova, H00051176-M01)被用于被用于免疫细胞化学在人类样本上. J Cell Sci (2015) ncbi
赛默飞世尔
小鼠 单克隆(REMB6)
赛默飞世尔 LEF1抗体(Thermo Scientific, 01674297)被用于. PLoS ONE (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C12A5)
  • 免疫组化; 小鼠; 图 2s1a
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, 2230S)被用于被用于免疫组化在小鼠样本上 (图 2s1a). elife (2020) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫组化; 小鼠; 1:300; 图 1a
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, C12A5)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1a). elife (2020) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 7b
赛信通(上海)生物试剂有限公司 LEF1抗体(CST, 2230)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 7b). elife (2020) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling Technology, 2230)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2020) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫细胞化学; 小鼠; 1:2000; 图 s4t
  • 免疫印迹; 小鼠; 1:1000; 图 4i
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling,, 2230)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 s4t) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4i). Nat Commun (2019) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 LEF1抗体(CST, 2230)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫印迹; 人类; 图 4h
赛信通(上海)生物试剂有限公司 LEF1抗体(CST, 2230)被用于被用于免疫印迹在人类样本上 (图 4h). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫印迹; 人类; 图 ex8j
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, 2230S)被用于被用于免疫印迹在人类样本上 (图 ex8j). Nature (2019) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫组化; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, C12A5)被用于被用于免疫组化在小鼠样本上 (图 1b). elife (2019) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1b
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell signaling, 2230)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(C12A5)
  • 流式细胞仪; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 LEF1抗体(eBiosciences, C12A5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2019) ncbi
domestic rabbit 单克隆(C12A5)
  • 流式细胞仪; 人类; 1:50; 图 s6a
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, 8490)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s6a). Dev Cell (2019) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, 2230)被用于被用于免疫印迹在人类样本上 (图 2a). Exp Dermatol (2018) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫组化; 小鼠; 1:500; 图 7a
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, 2230)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7a). J Cell Biol (2018) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫细胞化学; 小鼠; 1:200; 图 8a
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell signaling, 2230)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 8a). Dev Biol (2017) ncbi
domestic rabbit 单克隆(C18A7)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling Technology, 2286S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Biol Open (2017) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, C12A5)被用于被用于免疫印迹在人类样本上 (图 6c). Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫组化; 人类; 图 6a
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, C12A5)被用于被用于免疫组化在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 6b). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫组化; 小鼠; 1:250; 表 1
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, 2230)被用于被用于免疫组化在小鼠样本上浓度为1:250 (表 1). elife (2016) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫组化; 小鼠; 1:100; 图 s7d
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, 2230)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s7d). Development (2016) ncbi
  • 染色质免疫沉淀 ; 人类; 图 2
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, 9383)被用于被用于染色质免疫沉淀 在人类样本上 (图 2). J Neuroinflammation (2016) ncbi
domestic rabbit 单克隆(C12A5)
  • EMSA; 人类; 图 2h
赛信通(上海)生物试剂有限公司 LEF1抗体(CST, 2230S)被用于被用于EMSA在人类样本上 (图 2h). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 6e
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell signaling, 2230)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 6e). Int J Biol Sci (2016) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, 2230)被用于被用于免疫印迹在小鼠样本上 (图 6a). Oncogene (2016) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, 2230S)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C18A7)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, 2286)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4). Clin Exp Metastasis (2016) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫组化; 小鼠; 1:100; 图 4d
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling Technology, 2230)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4d). elife (2016) ncbi
domestic rabbit 单克隆(C18A7)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, 2286)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Reproduction (2015) ncbi
domestic rabbit 单克隆(C18A7)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signalling, C18A7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). elife (2015) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell signaling, 2230P)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫细胞化学; 小鼠; 1:100; 图 s3d
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, 2230)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s3d). Development (2015) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signalling, 22305)被用于被用于免疫印迹在人类样本上 (图 3b). Nucleic Acids Res (2015) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6n-s
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, C12A5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6n-s). BMC Biol (2015) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 1
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, 2230)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 1). Development (2014) ncbi
domestic rabbit 单克隆(C12A5)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling, 2230)被用于被用于染色质免疫沉淀 在小鼠样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling Technology, C12A5)被用于被用于免疫印迹在人类样本上 (图 5). Cell (2014) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling Technology, 2230)被用于被用于免疫印迹在人类样本上 (图 4). Carcinogenesis (2014) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling Technology, C12A5)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Pathol (2013) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫组化-石蜡切片; 小鼠; 1:75
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signaling Technology, 2230)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:75. Dev Biol (2013) ncbi
domestic rabbit 单克隆(C12A5)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 LEF1抗体(Cell Signalling, C12A5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nucleic Acids Res (2012) ncbi
文章列表
  1. Rattner A, Terrillion C, Jou C, Kleven T, Hu S, Williams J, et al. Developmental, cellular, and behavioral phenotypes in a mouse model of congenital hypoplasia of the dentate gyrus. elife. 2020;9: pubmed 出版商
  2. Tan Y, Sementino E, Liu Z, Cai K, Testa J. Wnt signaling mediates oncogenic synergy between Akt and Dlx5 in T-cell lymphomagenesis by enhancing cholesterol synthesis. Sci Rep. 2020;10:15837 pubmed 出版商
  3. Vidal V, Jian Motamedi F, Rekima S, Gregoire E, Szenker Ravi E, Leushacke M, et al. R-spondin signalling is essential for the maintenance and differentiation of mouse nephron progenitors. elife. 2020;9: pubmed 出版商
  4. Matos I, Asare A, Levorse J, Ouspenskaia T, de la Cruz Racelis J, Schuhmacher L, et al. Progenitors oppositely polarize WNT activators and inhibitors to orchestrate tissue development. elife. 2020;9: pubmed 出版商
  5. Engelbrecht E, Lévesque M, He L, Vanlandewijck M, Nitzsche A, Niazi H, et al. Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. elife. 2020;9: pubmed 出版商
  6. Chen X, Xiong X, Cui D, Yang F, Wei D, Li H, et al. DEPTOR is an in vivo tumor suppressor that inhibits prostate tumorigenesis via the inactivation of mTORC1/2 signals. Oncogene. 2020;39:1557-1571 pubmed 出版商
  7. Pedone E, Postiglione L, Aulicino F, Rocca D, Montes Olivas S, Khazim M, et al. A tunable dual-input system for on-demand dynamic gene expression regulation. Nat Commun. 2019;10:4481 pubmed 出版商
  8. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  9. Li Q, Lai Q, He C, Fang Y, Yan Q, Zhang Y, et al. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res. 2019;38:334 pubmed 出版商
  10. Parolia A, Cieslik M, Chu S, Xiao L, Ouchi T, Zhang Y, et al. Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature. 2019;: pubmed 出版商
  11. Wang Y, Sabbagh M, Gu X, Rattner A, Williams J, Nathans J. Beta-catenin signaling regulates barrier-specific gene expression in circumventricular organ and ocular vasculatures. elife. 2019;8: pubmed 出版商
  12. Krimpenfort P, Snoek M, Lambooij J, Song J, van der Weide R, Bhaskaran R, et al. A natural WNT signaling variant potently synergizes with Cdkn2ab loss in skin carcinogenesis. Nat Commun. 2019;10:1425 pubmed 出版商
  13. Xing S, Gai K, Li X, Shao P, Zeng Z, Zhao X, et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J Exp Med. 2019;: pubmed 出版商
  14. Sahara M, Santoro F, Sohlmér J, Zhou C, Witman N, Leung C, et al. Population and Single-Cell Analysis of Human Cardiogenesis Reveals Unique LGR5 Ventricular Progenitors in Embryonic Outflow Tract. Dev Cell. 2019;48:475-490.e7 pubmed 出版商
  15. Ji Q, Xu X, Kang L, Xu Y, Xiao J, Goodman S, et al. Hematopoietic PBX-interacting protein mediates cartilage degeneration during the pathogenesis of osteoarthritis. Nat Commun. 2019;10:313 pubmed 出版商
  16. Zhou L, Jing J, Wang H, Wu X, Lu Z. Decorin promotes proliferation and migration of ORS keratinocytes and maintains hair anagen in mice. Exp Dermatol. 2018;27:1237-1244 pubmed 出版商
  17. Hoefert J, Bjerke G, Wang D, Yi R. The microRNA-200 family coordinately regulates cell adhesion and proliferation in hair morphogenesis. J Cell Biol. 2018;217:2185-2204 pubmed 出版商
  18. Yu W, Li X, Eliason S, Romero Bustillos M, Ries R, Cao H, et al. Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation. Dev Biol. 2017;429:44-55 pubmed 出版商
  19. Ye S, Zhang T, Tong C, Zhou X, He K, Ban Q, et al. Depletion of Tcf3 and Lef1 maintains mouse embryonic stem cell self-renewal. Biol Open. 2017;6:511-517 pubmed 出版商
  20. Subramaniam M, Cicek M, Pitel K, Bruinsma E, Nelson Holte M, Withers S, et al. TIEG1 modulates ?-catenin sub-cellular localization and enhances Wnt signaling in bone. Nucleic Acids Res. 2017;45:5170-5182 pubmed 出版商
  21. Barnes L, Saurat J, Kaya G. Senescent Atrophic Epidermis Retains Lrig1+ Stem Cells and Loses Wnt Signaling, a Phenotype Shared with CD44KO Mice. PLoS ONE. 2017;12:e0169452 pubmed 出版商
  22. Bassett E, Tokarew N, Allemano E, Mazerolle C, Morin K, Mears A, et al. Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. elife. 2016;5: pubmed 出版商
  23. Lian G, Dettenhofer M, Lu J, Downing M, Chenn A, Wong T, et al. Filamin A- and formin 2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development. 2016;143:4509-4520 pubmed
  24. Lutgen V, Narasipura S, Sharma A, Min S, Al Harthi L. β-Catenin signaling positively regulates glutamate uptake and metabolism in astrocytes. J Neuroinflammation. 2016;13:242 pubmed 出版商
  25. Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, et al. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep. 2016;14:1891-900 pubmed 出版商
  26. Guo Y, Wang L, Li B, Xu H, Yang J, Zheng L, et al. Wnt/?-catenin pathway transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling. Oncotarget. 2016;7:42513-42526 pubmed 出版商
  27. Petit F, Deng C, Jamin S. Partial Müllerian Duct Retention in Smad4 Conditional Mutant Male Mice. Int J Biol Sci. 2016;12:667-76 pubmed 出版商
  28. Lu C, Thoeni C, Connor A, Kawabe H, Gallinger S, Rotin D. Intestinal knockout of Nedd4 enhances growth of Apcmin tumors. Oncogene. 2016;35:5839-5849 pubmed 出版商
  29. Kim J, Lee H, Park K, Choi Y, Nam J, Hong I. CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: a novel therapeutic approach for liver cancer treatment. Oncotarget. 2016;7:20395-409 pubmed 出版商
  30. Bleckmann A, Conradi L, Menck K, Schmick N, Schubert A, Rietkötter E, et al. β-catenin-independent WNT signaling and Ki67 in contrast to the estrogen receptor status are prognostic and associated with poor prognosis in breast cancer liver metastases. Clin Exp Metastasis. 2016;33:309-23 pubmed 出版商
  31. Franco C, Jones M, Bernabeu M, Vion A, Barbacena P, Fan J, et al. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling. elife. 2016;5:e07727 pubmed 出版商
  32. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  33. Xiong W, Zhang L, Yu L, Xie W, Man Y, Xiong Y, et al. Estradiol promotes cells invasion by activating β-catenin signaling pathway in endometriosis. Reproduction. 2015;150:507-16 pubmed 出版商
  34. Jamieson C, Lui C, Brocardo M, Martino Echarri E, Henderson B. Rac1 augments Wnt signaling by stimulating β-catenin-lymphoid enhancer factor-1 complex assembly independent of β-catenin nuclear import. J Cell Sci. 2015;128:3933-46 pubmed 出版商
  35. Bebee T, Park J, Sheridan K, Warzecha C, Cieply B, Rohacek A, et al. The splicing regulators Esrp1 and Esrp2 direct an epithelial splicing program essential for mammalian development. elife. 2015;4: pubmed 出版商
  36. Yuri S, Nishikawa M, Yanagawa N, Jo O, Yanagawa N. Maintenance of Mouse Nephron Progenitor Cells in Aggregates with Gamma-Secretase Inhibitor. PLoS ONE. 2015;10:e0129242 pubmed 出版商
  37. Yang N, Li L, Eguether T, Sundberg J, Pazour G, Chen J. Intraflagellar transport 27 is essential for hedgehog signaling but dispensable for ciliogenesis during hair follicle morphogenesis. Development. 2015;142:2194-202 pubmed 出版商
  38. Beltran M, Aparicio Prat E, Mazzolini R, Millanes Romero A, Massó P, Jenner R, et al. Splicing of a non-coding antisense transcript controls LEF1 gene expression. Nucleic Acids Res. 2015;43:5785-97 pubmed 出版商
  39. Shaikh L, Zhou J, Teo A, Garg S, Neogi S, Figg N, et al. LGR5 Activates Noncanonical Wnt Signaling and Inhibits Aldosterone Production in the Human Adrenal. J Clin Endocrinol Metab. 2015;100:E836-44 pubmed 出版商
  40. Gay M, Valenta T, Herr P, Paratore Hari L, Basler K, Sommer L. Distinct adhesion-independent functions of β-catenin control stage-specific sensory neurogenesis and proliferation. BMC Biol. 2015;13:24 pubmed 出版商
  41. Cui C, Yin M, Sima J, Childress V, Michel M, Piao Y, et al. Involvement of Wnt, Eda and Shh at defined stages of sweat gland development. Development. 2014;141:3752-60 pubmed 出版商
  42. Landin Malt A, Cesario J, Tang Z, Brown S, Jeong J. Identification of a face enhancer reveals direct regulation of LIM homeobox 8 (Lhx8) by wingless-int (WNT)/β-catenin signaling. J Biol Chem. 2014;289:30289-301 pubmed 出版商
  43. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, et al. YAP/TAZ incorporation in the ?-catenin destruction complex orchestrates the Wnt response. Cell. 2014;158:157-70 pubmed 出版商
  44. Zhu Z, Liu Y, Li K, Liu J, Wang H, Sun B, et al. Protein tyrosine phosphatase receptor U (PTPRU) is required for glioma growth and motility. Carcinogenesis. 2014;35:1901-10 pubmed 出版商
  45. Shaw Hallgren G, Chmielarska Masoumi K, Zarrizi R, Hellman U, Karlsson P, Helou K, et al. Association of nuclear-localized Nemo-like kinase with heat-shock protein 27 inhibits apoptosis in human breast cancer cells. PLoS ONE. 2014;9:e96506 pubmed 出版商
  46. Xu Y, Xu Y, Liao L, Zhou N, Theissen S, Liao X, et al. Inducible knockout of Twist1 in young and adult mice prolongs hair growth cycle and has mild effects on general health, supporting Twist1 as a preferential cancer target. Am J Pathol. 2013;183:1281-1292 pubmed 出版商
  47. Lewis A, Vasudevan H, O Neill A, Soriano P, Bush J. The widely used Wnt1-Cre transgene causes developmental phenotypes by ectopic activation of Wnt signaling. Dev Biol. 2013;379:229-34 pubmed 出版商
  48. Wallmen B, Schrempp M, Hecht A. Intrinsic properties of Tcf1 and Tcf4 splice variants determine cell-type-specific Wnt/?-catenin target gene expression. Nucleic Acids Res. 2012;40:9455-69 pubmed 出版商