这是一篇来自已证抗体库的有关人类 MAP1LC3B的综述,是根据616篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合MAP1LC3B 抗体。
MAP1LC3B 同义词: ATG8F; LC3B; MAP1A/1BLC3; MAP1LC3B-a; microtubule-associated proteins 1A/1B light chain 3B; MAP1 light chain 3-like protein 2; MAP1A/MAP1B LC3 B; MAP1A/MAP1B light chain 3 B; autophagy-related ubiquitin-like modifier LC3 B

Novus Biologicals
兔 多克隆
  • 免疫印迹; 人类; 1:3000; 图 1b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上浓度为1:3000 (图 1b). Nat Commun (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上 (图 6a). Cell Death Differ (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5g
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 5g). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2f
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样品上 (图 2f). J Clin Invest (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2c
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样品上 (图 2c). Cell Immunol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1a
  • 免疫印迹; 人类; 图 e4d
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB 100-2220)被用于被用于免疫印迹在小鼠样品上 (图 1a) 和 被用于免疫印迹在人类样品上 (图 e4d). Nature (2017) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:200; 图 3
  • 免疫印迹; 大鼠; 1:1000; 图 1a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于被用于免疫组化在大鼠样品上浓度为1:200 (图 3) 和 被用于免疫印迹在大鼠样品上浓度为1:1000 (图 1a). Am J Transl Res (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4d
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4d). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8c
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 8c). J Nutr Biochem (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 5a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-222055)被用于被用于免疫细胞化学在人类样品上浓度为1:200 (图 5a). Cell Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 1b). Cell (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:3000; 图 3a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上浓度为1:3000 (图 3a). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3d
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB00-2220)被用于被用于免疫印迹在小鼠样品上 (图 3d). JCI Insight (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1f
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1f). EMBO Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1h
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上 (图 1h). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 5a). J Cell Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3f
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样品上 (图 3f). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3a). J Huntingtons Dis (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 5a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NN100-2220)被用于被用于免疫组化在人类样品上 (图 5a). J Transl Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5b
Novus Biologicals MAP1LC3B抗体(Novus biological, NB100-2220)被用于被用于免疫印迹在人类样品上 (图 5b). Front Cell Infect Microbiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. Mol Genet Metab (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4e
Novus Biologicals MAP1LC3B抗体(NovusBio, NB100-2220)被用于被用于免疫印迹在人类样品上 (图 4e). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1e
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样品上 (图 1e). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 6
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样品上浓度为1:5000 (图 6). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样品上 (图 3). elife (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫细胞化学在人类样品上 (图 3) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 3). Drug Des Devel Ther (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上. Autophagy (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 2d
  • 免疫印迹; 人类; 1:1000; 图 5b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫细胞化学在人类样品上浓度为1:400 (图 2d) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 5b). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, 600-1384)被用于被用于免疫印迹在人类样品上 (图 5). J Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
Novus Biologicals MAP1LC3B抗体(Novusbio, NB600-1384)被用于被用于免疫印迹在人类样品上 (图 6). Neurobiol Dis (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 3
  • 免疫印迹; 人类; 图 1a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:4000 (图 3) 和 被用于免疫印迹在人类样品上 (图 1a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1a). J Pharmacol Exp Ther (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上 (图 4b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 7
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 大鼠; 图 10
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫细胞化学在小鼠样品上 (图 7), 被用于免疫印迹在小鼠样品上 (图 1) 和 被用于免疫印迹在大鼠样品上 (图 10). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB100-2220)被用于被用于免疫印迹在小鼠样品上 (图 6). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上 (图 6). J Nanobiotechnology (2016) ncbi
兔 多克隆
  • 免疫印迹; 斑马鱼; 1:2000; 图 s2
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在斑马鱼样品上浓度为1:2000 (图 s2). Hum Mol Genet (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样品上. Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
  • 免疫印迹; 人类; 1:1000; 图 s1
Novus Biologicals MAP1LC3B抗体(Novus, NB 100-2220)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 6) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样品上 (图 3). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 1
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上浓度为1:10,000 (图 1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 3). J Cell Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图 7
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样品上浓度为1:5000 (图 7). Traffic (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2e
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图 2e). J Mol Cell Cardiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上 (图 1). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB100?C2220)被用于被用于免疫印迹在小鼠样品上 (图 1). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫印迹在人类样品上 (图 4). Mol Pharmacol (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s4b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图 s4b). Kidney Int (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220SS)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图 1a
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫印迹在人类样品上浓度为1:5000 (图 1a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图 1a
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样品上浓度为1:5000 (图 1a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7b
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB-100-2220)被用于被用于免疫印迹在人类样品上 (图 7b). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220SS)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4a). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:4000; 图 1
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上浓度为1:4000 (图 1). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在大鼠样品上. Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, 100-2220)被用于被用于免疫印迹在人类样品上 (图 2). Leukemia (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 5
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在大鼠样品上 (图 5). Nutr Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:600; 图 8
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样品上浓度为1:600 (图 8). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
Novus Biologicals MAP1LC3B抗体(Novus Biologicals;, NB600- 1384)被用于被用于免疫细胞化学在人类样品上. Nature (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:200
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫细胞化学在人类样品上浓度为1:100 和 被用于免疫印迹在人类样品上浓度为1:200. Life Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上 (图 1a). PLoS Pathog (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, 100-2220)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫印迹在人类样品上 (图 5). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上. Cell Signal (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s5
Novus Biologicals MAP1LC3B抗体(novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上 (图 s5). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 s7
  • 免疫印迹; 人类; 图 s7
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于被用于免疫细胞化学在人类样品上 (图 s7) 和 被用于免疫印迹在人类样品上 (图 s7). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
  • 免疫组化; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于被用于免疫细胞化学在小鼠样品上 和 被用于免疫组化在小鼠样品上. Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 8
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样品上 (图 8). Autophagy (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
  • 免疫印迹; 大鼠
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫细胞化学在人类样品上, 被用于免疫印迹在人类样品上 和 被用于免疫印迹在大鼠样品上. Toxicol Lett (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 S6
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样品上 (图 S6). Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样品上. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫印迹在人类样品上 (图 2). Nat Genet (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫印迹在人类样品上 (图 4). Oncogene (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫印迹在人类样品上 (图 2). Sci Signal (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 6
  • 免疫细胞化学; 小鼠; 1:400; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 6
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫细胞化学在人类样品上, 被用于免疫印迹在人类样品上 (图 6), 被用于免疫细胞化学在小鼠样品上浓度为1:400 (图 6) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 6). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠; 1:1000; 图 2
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫沉淀在小鼠样品上 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2). Autophagy (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 3
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫组化在人类样品上 (图 3). Autophagy (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 4a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫细胞化学在人类样品上 (图 4b) 和 被用于免疫印迹在人类样品上 (图 4a). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1f
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB100-2220)被用于被用于免疫印迹在小鼠样品上 (图 1f). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
  • 免疫印迹; 小鼠; 图 5
Novus Biologicals MAP1LC3B抗体(novus Biologicals, NB600-1384)被用于被用于免疫印迹在人类样品上 (图 5) 和 被用于免疫印迹在小鼠样品上 (图 5). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3c
Novus Biologicals MAP1LC3B抗体(NOVUS Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上 (图 3c). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 9
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样品上 (图 9). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:200
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在大鼠样品上浓度为1:200. Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫组化在小鼠样品上. J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样品上 (图 2). Nucleic Acids Res (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s7
  • 免疫印迹; 小鼠; 1:1000; 图 1
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图 s7) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1). Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4). Nat Cell Biol (2014) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:250
  • 免疫组化-冰冻切片; 小鼠
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus biological, NB100-2220)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:250, 被用于免疫组化-冰冻切片在小鼠样品上, 被用于免疫细胞化学在小鼠样品上 和 被用于免疫印迹在小鼠样品上. Brain (2014) ncbi
兔 多克隆
  • 流式细胞仪; 狗; 1:40
  • 免疫印迹; 狗; 1:1000
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于流式细胞仪在狗样品上浓度为1:40 和 被用于免疫印迹在狗样品上浓度为1:1000. Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 牛
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在牛样品上. Biomed Res Int (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫印迹在小鼠样品上. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于被用于免疫印迹在人类样品上. DNA Repair (Amst) (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫印迹在小鼠样品上. J Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样品上. Cell Physiol Biochem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5e
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上 (图 5e). Int J Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus Biologics, NB100-2220)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于被用于免疫印迹在大鼠样品上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 4
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫细胞化学在人类样品上 和 被用于免疫印迹在人类样品上 (图 4). Med Microbiol Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样品上. Biochem Biophys Res Commun (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
  • 免疫印迹; 大鼠
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样品上, 被用于免疫印迹在人类样品上 和 被用于免疫印迹在大鼠样品上. Biomaterials (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于被用于免疫印迹在人类样品上. Neuromolecular Med (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1000
  • 免疫印迹; 大鼠
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000 和 被用于免疫印迹在大鼠样品上. BMC Nephrol (2013) ncbi
艾博抗(上海)贸易有限公司
兔 多克隆
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样品上 (图 5a). Curr Biol (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫细胞化学在大鼠样品上. Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于被用于免疫印迹在人类样品上 (图 2a). J Cell Physiol (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 s3c
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫组化在小鼠样品上 (图 s3c). PLoS Genet (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样品上 (图 2c). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab483941)被用于被用于免疫印迹在小鼠样品上浓度为1:500. Mol Neurobiol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于被用于免疫印迹在人类样品上 (图 4c). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在小鼠样品上 (图 8). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样品上 (图 4) 和 被用于免疫印迹在大鼠样品上 (图 4). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2a). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于被用于免疫细胞化学在小鼠样品上浓度为1:100 (图 1) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (图 1). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:3000; 图 5
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于被用于免疫印迹在人类样品上浓度为1:3000 (图 5). Autophagy (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 5a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫组化在人类样品上 (图 5a). Cancer Genomics Proteomics (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于被用于免疫印迹在小鼠样品上 (图 2). EMBO J (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 2). Hum Mol Genet (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 7). J Physiol Biochem (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 4b). Int J Mol Med (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1500; 图 3
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1500 (图 3). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 9
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫组化在人类样品上 (图 9). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 1
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab62721)被用于被用于免疫印迹在大鼠样品上 (图 1). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab128025)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2a). Circ Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在小鼠样品上. Biochem Biophys Res Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 狗; 图 4a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, 48394)被用于被用于免疫组化在狗样品上 (图 4a). PLoS Genet (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(AbCam, ab48394)被用于被用于免疫印迹在小鼠样品上. Vasc Cell (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 2a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:300 (图 2a). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200. Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab128025)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3). Cell Metab (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 8
  • 免疫印迹; 大鼠; 1:500; 图 9
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500 (图 8) 和 被用于免疫印迹在大鼠样品上浓度为1:500 (图 9). J Mol Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样品上. Ann Neurol (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 1a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 1a). J Mol Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在小鼠样品上浓度为1:500. Toxicology (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在大鼠样品上浓度为1:500. Lab Invest (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200; 图 6
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样品上浓度为1:200 (图 6). Autophagy (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab62721)被用于被用于免疫印迹在大鼠样品上. Exp Gerontol (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫细胞化学在人类样品上 和 被用于免疫印迹在人类样品上. Cell Cycle (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样品上. Cell Cycle (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:3000
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于被用于免疫印迹在人类样品上浓度为1:3000. PLoS ONE (2012) ncbi
赛默飞世尔
兔 多克隆
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 MAP1LC3B抗体(Pierce, PA1-16931)被用于被用于免疫印迹在人类样品上 (图 4a). Oxid Med Cell Longev (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 6
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA5-32254)被用于被用于免疫印迹在小鼠样品上浓度为1:10,000 (图 6). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 8
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-C16,931)被用于被用于免疫印迹在大鼠样品上 (图 8). J Nutr Biochem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s2a
赛默飞世尔 MAP1LC3B抗体(Thermo Fisher Scientific, PA1-16931)被用于被用于免疫印迹在人类样品上 (图 s2a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 牛; 1:500; 图 1
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-16930)被用于被用于免疫印迹在牛样品上浓度为1:500 (图 1). J Dairy Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-16930)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3). J Cell Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-C16930)被用于被用于免疫印迹在小鼠样品上 (图 1). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5
赛默飞世尔 MAP1LC3B抗体(Thermo, PA116931)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 5). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-46286)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. Biol Reprod (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5e
赛默飞世尔 MAP1LC3B抗体(Thermo, PA5-22731)被用于被用于免疫印迹在小鼠样品上 (图 5e). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 斑马鱼; 表 2
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-46286)被用于被用于免疫印迹在斑马鱼样品上 (表 2). Methods (2015) ncbi
兔 多克隆
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PAI-16930)被用于. Oncotarget (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛默飞世尔 MAP1LC3B抗体(Thermo Fisher Scientific, PA1-16931)被用于被用于免疫印迹在小鼠样品上. Mol Neurobiol (2015) ncbi
兔 多克隆
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PAI-16930)被用于. J Virol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 免疫细胞化学; 小鼠; 1:200
  • 免疫印迹; 小鼠
赛默飞世尔 MAP1LC3B抗体(Thermo Fisher Scientific, PA1-16931)被用于被用于免疫印迹在人类样品上, 被用于免疫细胞化学在小鼠样品上浓度为1:200 和 被用于免疫印迹在小鼠样品上. Antioxid Redox Signal (2014) ncbi
GeneTex
兔 多克隆
  • 免疫印迹; 人类; 图 2a
GeneTex MAP1LC3B抗体(Genetex, GTX127375)被用于被用于免疫印迹在人类样品上 (图 2a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2
GeneTex MAP1LC3B抗体(GeneTex, GTX82986)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
GeneTex MAP1LC3B抗体(GeneTex, GTX127375)被用于被用于免疫印迹在人类样品上 (图 3). Cancer Genomics Proteomics (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
GeneTex MAP1LC3B抗体(Genetex, GTX 82986)被用于被用于免疫印迹在人类样品上 (图 4). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2
GeneTex MAP1LC3B抗体(Gene Tex, GTX127375)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
GeneTex MAP1LC3B抗体(GeneTex, GTX127375)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Neuropharmacology (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术 MAP1LC3B抗体(Santa Cruz, sc-376404)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(G-2)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 MAP1LC3B抗体(Santa Cruz, sc271625)被用于被用于免疫细胞化学在人类样品上 (图 3) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 2). Nat Cell Biol (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 5a
  • 免疫印迹; 大鼠; 图 2h
圣克鲁斯生物技术 MAP1LC3B抗体(Santa Cruz Biotechnology, sc-398822)被用于被用于免疫印迹在小鼠样品上 (图 5a) 和 被用于免疫印迹在大鼠样品上 (图 2h). PLoS ONE (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫细胞化学; 大鼠; 图 2b
圣克鲁斯生物技术 MAP1LC3B抗体(Santa Cruz, sc-376404)被用于被用于免疫细胞化学在大鼠样品上 (图 2b). Sci Rep (2015) ncbi
北京傲锐东源
兔 多克隆
  • 免疫印迹; 人类; 图 3
北京傲锐东源 MAP1LC3B抗体(OriGene, TA301543)被用于被用于免疫印迹在人类样品上 (图 3). Onco Targets Ther (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
北京傲锐东源 MAP1LC3B抗体(Origene, TA301543)被用于被用于免疫印迹在人类样品上 (图 1). Front Pharmacol (2016) ncbi
伯乐(Bio-Rad)公司
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
伯乐(Bio-Rad)公司 MAP1LC3B抗体(AbD Serotec, AHP2167T)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4). BMC Complement Altern Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
伯乐(Bio-Rad)公司 MAP1LC3B抗体(Serotec, AHP2167)被用于被用于免疫印迹在人类样品上 (图 6). PLoS ONE (2015) ncbi
武汉三鹰
兔 多克隆
  • 免疫印迹; 人类; 图 3d
武汉三鹰 MAP1LC3B抗体(Proteintech, 14600-1-AP)被用于被用于免疫印迹在人类样品上 (图 3d). Int J Mol Med (2017) ncbi
赛信通(上海)生物试剂有限公司
兔 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于其他在人类样品上 (图 4c). Cancer Cell (2018) ncbi
兔 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 1:500; 图 4d
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 4d) 和 被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 4a). Sci Rep (2018) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3a). Cell Immunol (2018) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 5h
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样品上浓度为1:200 (图 5h) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 5a). Am J Pathol (2018) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 s7b
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样品上 (图 s7b) 和 被用于免疫印迹在人类样品上 (图 5a). Autophagy (2018) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 人类; 1:100; 图 6d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 6d). EMBO J (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2a). Endocrinology (2018) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 5c
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling, 3868)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5c) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5d). Sci Rep (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 3a
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell signalling, 3868)被用于被用于免疫印迹在人类样品上 (图 3a) 和 被用于免疫印迹在小鼠样品上 (图 1a). Genes Dev (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 s4e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775s)被用于被用于免疫细胞化学在人类样品上浓度为1:300 (图 s4e). Cell Rep (2017) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 s9f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在人类样品上 (图 s9f). J Clin Invest (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 4108s)被用于被用于免疫印迹在人类样品上 (图 2). Tumour Biol (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868s)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2a). Autophagy (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3e). Cell (2017) ncbi
兔 单克隆(D11)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 6c
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:800 (图 6c) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 3b). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775S)被用于被用于免疫印迹在人类样品上 (图 2a). J Clin Invest (2017) ncbi
兔 多克隆
  • 流式细胞仪; 人类; 图 10c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于流式细胞仪在人类样品上 (图 10c). Gene (2017) ncbi
兔 多克隆
  • 免疫印迹; African green monkey; 图 9a
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775S)被用于被用于免疫印迹在African green monkey样品上 (图 9a) 和 被用于免疫印迹在小鼠样品上 (图 5a). Mol Biol Cell (2017) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 人类; 图 6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell signalling, 3868)被用于被用于免疫细胞化学在人类样品上 (图 6). Neoplasia (2017) ncbi
兔 单克隆(D3U4C)
  • 免疫组化-石蜡切片; 小鼠; 图 3d
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 12741)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 3d) 和 被用于免疫印迹在小鼠样品上 (图 3a). J Cell Biochem (2017) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 人类; 图 s3a
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在人类样品上 (图 s3a) 和 被用于免疫印迹在人类样品上 (图 2b). Cancer Immunol Res (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样品上 (图 5a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 s8a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (图 s8a). Nat Chem Biol (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样品上 (图 8a). J Cell Biol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样品上 (图 6e). PLoS ONE (2017) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2a). Sci Rep (2017) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 小鼠; 图 2c
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在小鼠样品上 (图 2c) 和 被用于免疫印迹在小鼠样品上 (图 8a). Biochem Pharmacol (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样品上 (图 2a). Sci Rep (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling, D11)被用于被用于免疫印迹在人类样品上 (图 4b). Tumour Biol (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 图 3D
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在小鼠样品上 (图 3D). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1d
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1d) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 7a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在人类样品上 (图 2b). Nature (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 1a
  • 免疫印迹; 人类; 图 1s1g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775)被用于被用于免疫细胞化学在人类样品上 (图 1a) 和 被用于免疫印迹在人类样品上 (图 1s1g). elife (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5c). FASEB J (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 6b
  • 免疫印迹; 小鼠; 1:2000; 图 6a
  • 免疫印迹; 人类; 1:2000; 图 1a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在小鼠样品上 (图 6b), 被用于免疫印迹在小鼠样品上浓度为1:2000 (图 6a) 和 被用于免疫印迹在人类样品上浓度为1:2000 (图 1a). Nucleic Acids Res (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 4a,4d,4H,4i,,5F
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 3868)被用于被用于免疫印迹在人类样品上 (图 4a,4d,4H,4i,,5F) 和 被用于免疫印迹在小鼠样品上 (图 4c). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 7g). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样品上 (图 3e). Autophagy (2017) ncbi
兔 多克隆
  • 免疫沉淀; 牛; 图 6a
  • 免疫印迹; 牛; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 27755)被用于被用于免疫沉淀在牛样品上 (图 6a) 和 被用于免疫印迹在牛样品上浓度为1:1000 (图 5a). Vet Comp Oncol (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样品上 (图 2g). Hum Mol Genet (2017) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4c). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 4b
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在小鼠样品上 (图 4b) 和 被用于免疫印迹在小鼠样品上 (图 4a). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上 (图 5a). Autophagy (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 s4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s4c). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200; 图 5c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:200 (图 5c). Hum Mol Genet (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在人类样品上 (图 7a). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5a
  • 免疫组化; 人类; 图 7b
  • 免疫印迹; 人类; 图 5j
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell signalling, 2775)被用于被用于免疫印迹在小鼠样品上 (图 5a), 被用于免疫组化在人类样品上 (图 7b) 和 被用于免疫印迹在人类样品上 (图 5j). Autophagy (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 27755)被用于被用于免疫细胞化学在人类样品上 (图 2b) 和 被用于免疫印迹在人类样品上 (图 2a). Autophagy (2017) ncbi
兔 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫细胞化学在人类样品上 (图 2b) 和 被用于免疫印迹在人类样品上 (图 2a). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5a). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 8a). Neurobiol Aging (2017) ncbi
兔 单克隆(D3U4C)
  • 免疫细胞化学; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Singaling, 12741)被用于被用于免疫细胞化学在小鼠样品上 (图 5d). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 6c
  • 免疫印迹; 小鼠; 图 6e
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫组化在小鼠样品上 (图 6c), 被用于免疫印迹在小鼠样品上 (图 6e) 和 被用于免疫印迹在人类样品上 (图 6e). Autophagy (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样品上 (图 1c). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 2b). Mol Med Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 3d
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在大鼠样品上 (图 3d) 和 被用于免疫印迹在小鼠样品上 (图 2a). Oncotarget (2016) ncbi
兔 单克隆(D11)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2e
  • 免疫印迹; 小鼠; 图 2a
  • 免疫印迹; 大鼠; 图 3d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图 2e), 被用于免疫印迹在小鼠样品上 (图 2a) 和 被用于免疫印迹在大鼠样品上 (图 3d). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫印迹在人类样品上 (图 2f). Nat Med (2017) ncbi
兔 多克隆
  • 免疫细胞化学; African green monkey; 图 6b
  • 免疫细胞化学; 人类; 图 6a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775S)被用于被用于免疫细胞化学在African green monkey样品上 (图 6b) 和 被用于免疫细胞化学在人类样品上 (图 6a). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样品上 (图 3d). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s4j
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775S)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s4j). Nature (2016) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在人类样品上 (图 2b) 和 被用于免疫印迹在人类样品上 (图 1b). Biochem Biophys Res Commun (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5f
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 5f) 和 被用于免疫印迹在小鼠样品上 (图 1b). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775 s)被用于被用于免疫印迹在小鼠样品上. Cell Death Discov (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 4108)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1c). Autophagy (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 大鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 2a). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 5
  • 免疫印迹; 人类; 1:400; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样品上浓度为1:400 (图 5) 和 被用于免疫印迹在人类样品上浓度为1:400 (图 5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 4108)被用于被用于免疫印迹在人类样品上 (图 3d). Eur J Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样品上 (图 6). J Cancer (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 3c
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell signalling, 2775)被用于被用于免疫细胞化学在人类样品上 (图 3c) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 3f). Toxicol Appl Pharmacol (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 6a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 4108)被用于被用于免疫细胞化学在人类样品上 (图 6a). J Clin Invest (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6g). Austin J Med Oncol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样品上 (图 1g). Biol Open (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D11)被用于被用于免疫印迹在小鼠样品上 (图 2d). J Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上 (图 7a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫组化在小鼠样品上 (图 3c) 和 被用于免疫印迹在小鼠样品上 (图 3b). J Clin Invest (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D11)被用于被用于免疫印迹在人类样品上 (图 2a). Oncotarget (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样品上 (图 3). Mar Drugs (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Abcam, 3868S)被用于被用于免疫印迹在人类样品上 (图 3). Biosci Rep (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 图 8g
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D3U4C)被用于被用于免疫细胞化学在人类样品上 (图 8g) 和 被用于免疫印迹在人类样品上 (图 8a). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在大鼠样品上 (图 2). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样品上浓度为1:200 (图 2) 和 被用于免疫印迹在人类样品上 (图 4). Int J Oncol (2016) ncbi
兔 多克隆
  • 流式细胞仪; 人类; 图 5c
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775 S)被用于被用于流式细胞仪在人类样品上 (图 5c) 和 被用于免疫印迹在人类样品上 (图 5b). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在大鼠样品上 (图 4c). Biochem J (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在人类样品上. Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1a
  • 免疫细胞化学; 小鼠; 图 2d
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上 (图 1a), 被用于免疫细胞化学在小鼠样品上 (图 2d) 和 被用于免疫印迹在小鼠样品上 (图 1b). Autophagy (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 3d,4b,7b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 3868P)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3d,4b,7b). Oncotarget (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 1:250; 图 3j
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 3j
  • 免疫印迹; 小鼠; 1:2000; 图 2g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:250 (图 3j), 被用于免疫组化-石蜡切片在小鼠样品上浓度为1:250 (图 3j) 和 被用于免疫印迹在小鼠样品上浓度为1:2000 (图 2g). Autophagy (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3c). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样品上 (图 1c). BMC Biochem (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 图 8d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在大鼠样品上 (图 8d). ACS Nano (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫细胞化学在小鼠样品上 (图 3) 和 被用于免疫印迹在小鼠样品上 (图 3). J Biol Chem (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在人类样品上 (图 1d). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样品上 (图 1c). Nature (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在小鼠样品上 (图 4) 和 被用于免疫印迹在小鼠样品上 (图 s1). Mol Cell Oncol (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:5000; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, 3868)被用于被用于免疫印迹在人类样品上浓度为1:5000 (图 3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 4108)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 1d). Cell Cycle (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样品上 (图 8). Skelet Muscle (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样品上 (图 4a). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 鸡; 图 7
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫印迹在鸡样品上 (图 7). Biochem J (2016) ncbi
兔 单克隆(D11)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6d
  • 免疫细胞化学; 人类; 1:200; 图 3b
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图 6d), 被用于免疫细胞化学在人类样品上浓度为1:200 (图 3b) 和 被用于免疫印迹在人类样品上 (图 3f). Sci Rep (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1b). Nutrients (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 斑马鱼; 1:1000; 图 s1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在斑马鱼样品上浓度为1:1000 (图 s1c). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上 (图 s1). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样品上 (图 5a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样品上浓度为1:400 (图 2). Mol Brain (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell Signaling Tech, 2775)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). Acta Neuropathol Commun (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4). J Steroid Biochem Mol Biol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样品上 (图 1a). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s5b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上 (图 s5b). Oncotarget (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在小鼠样品上 (图 5d). Am J Physiol Endocrinol Metab (2016) ncbi
兔 单克隆(D11)
  • 免疫组化-石蜡切片; 人类; 图 4b
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫组化-石蜡切片在人类样品上 (图 4b), 被用于免疫细胞化学在人类样品上 (图 2a) 和 被用于免疫印迹在人类样品上 (图 1a). Autophagy (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 s1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样品上 (图 s1c). J Cell Biol (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 图 4
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫组化在大鼠样品上 (图 4) 和 被用于免疫印迹在大鼠样品上浓度为1:1000 (图 3). Int J Med Sci (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫印迹在人类样品上 (图 2). Cell Cycle (2016) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于被用于免疫细胞化学在人类样品上 (图 4). Onco Targets Ther (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 S8
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 S8). Aging Cell (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 大鼠; 图 6
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在大鼠样品上 (图 6) 和 被用于免疫印迹在小鼠样品上 (图 4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在人类样品上 (图 1). Autophagy (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D3U4C)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图 6). J Transl Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上 (图 7c). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, 2775)被用于被用于免疫印迹在人类样品上 (图 3). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上 (图 6c). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (表 1). J Neuropathol Exp Neurol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s1e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signalling technology, 2775)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s1e). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 牛; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在牛样品上 (图 3a). Mol Cells (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上 (图 2c). Genes Dev (2016) ncbi
兔 多克隆
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于. elife (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样品上 (图 5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, 2775)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). Oncotarget (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 1:50; 图 6
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, CST-12741)被用于被用于免疫细胞化学在人类样品上浓度为1:50 (图 6) 和 被用于免疫印迹在人类样品上 (图 2). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 4) 和 被用于免疫印迹在小鼠样品上 (图 4). Stem Cell Reports (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 10a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样品上 (图 10a). J Mol Cell Cardiol (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 3
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling technology, 12741)被用于被用于免疫印迹在小鼠样品上 (图 3) 和 被用于免疫印迹在人类样品上 (图 s5). Aging Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在人类样品上 (图 5). Oncotarget (2016) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 仓鼠; 1:200; 图 3d
  • 免疫细胞化学; 人类; 1:200; 图 3d
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在仓鼠样品上浓度为1:200 (图 3d), 被用于免疫细胞化学在人类样品上浓度为1:200 (图 3d) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 1d). Int J Biochem Cell Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上 (图 5). Oncogene (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 2
  • 免疫印迹; 人类; 1:500; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 2) 和 被用于免疫印迹在人类样品上浓度为1:500 (图 2). Nat Commun (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫印迹在人类样品上 (图 3). elife (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在小鼠样品上 (图 5d). Neuropharmacology (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling, 3868)被用于被用于免疫印迹在人类样品上 (图 1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1). Cell Death Dis (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 1:100; 图 4a
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D3U4C)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 4a) 和 被用于免疫印迹在人类样品上浓度为1:1000. Sci Rep (2016) ncbi
兔 多克隆
  • immunohistochemistry - free floating section; 小鼠; 图 s16
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于immunohistochemistry - free floating section在小鼠样品上 (图 s16). Nat Commun (2016) ncbi
兔 单克隆(D11)
  • 免疫沉淀; 小鼠; 1:1000; 图 6a
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫沉淀在小鼠样品上浓度为1:1000 (图 6a) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3a). Oncotarget (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 3
  • 免疫组化; 小鼠; 1:400; 图 s5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 12741)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3) 和 被用于免疫组化在小鼠样品上浓度为1:400 (图 s5). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Abcam, 4108)被用于被用于免疫印迹在小鼠样品上 (图 5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 9
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在小鼠样品上 (图 9). Mol Med Rep (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在小鼠样品上 (图 1). Oncotarget (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 大鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D3U4C)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 2f). Endocrinology (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 s4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signal, 3868)被用于被用于免疫印迹在人类样品上 (图 s4). Stem Cell Reports (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫印迹在人类样品上 (图 5). PLoS ONE (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling, 3868)被用于被用于免疫印迹在小鼠样品上 (图 6). Biochem Pharmacol (2016) ncbi
兔 单克隆(D11)
  • 免疫组化; 人类; 图 5a
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technologies, 3868)被用于被用于免疫组化在人类样品上 (图 5a) 和 被用于免疫印迹在人类样品上 (图 5c). Free Radic Biol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上 (图 4). Int J Mol Med (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 S1
  • 免疫印迹; 小鼠; 1:1000; 图 1B
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫细胞化学在小鼠样品上浓度为1:100 (图 S1) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1B). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 2). Endocrinology (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样品上 (图 2a). Am J Physiol Renal Physiol (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 12741S)被用于被用于免疫印迹在小鼠样品上 (图 3). J Cell Mol Med (2016) ncbi
兔 单克隆(D11)
  • 染色质免疫沉淀 ; 人类; 图 2
  • 免疫沉淀; 人类; 图 1
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于染色质免疫沉淀 在人类样品上 (图 2), 被用于免疫沉淀在人类样品上 (图 1), 被用于免疫细胞化学在人类样品上 (图 3) 和 被用于免疫印迹在人类样品上 (图 1). Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样品上 (图 3). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫印迹在人类样品上 (图 2a). J Neurochem (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫细胞化学在人类样品上 (图 1) 和 被用于免疫印迹在人类样品上 (图 1). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108S)被用于被用于免疫沉淀在人类样品上 (图 2) 和 被用于免疫印迹在人类样品上 (图 2). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫细胞化学在小鼠样品上 (图 2) 和 被用于免疫印迹在小鼠样品上 (图 1). J Cell Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2). Mol Med Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上 (图 2f). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108S)被用于被用于免疫印迹在人类样品上 (图 2a). J Crohns Colitis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在人类样品上 (图 1d). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 猪; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于被用于免疫印迹在猪样品上浓度为1:1000. Am J Physiol Endocrinol Metab (2015) ncbi
兔 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, CST-12741)被用于被用于免疫细胞化学在人类样品上 (图 5) 和 被用于免疫印迹在人类样品上 (图 6). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 3g). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, #2775)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:400; 图 4
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在大鼠样品上浓度为1:400 (图 4) 和 被用于免疫印迹在大鼠样品上浓度为1:1000 (图 1). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4). Nat Chem (2015) ncbi
兔 多克隆
  • 其他; 小鼠; 1:500; 图 s1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于其他在小鼠样品上浓度为1:500 (图 s1). Front Microbiol (2015) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 s6a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 12741)被用于被用于免疫印迹在人类样品上 (图 s6a). Nat Genet (2015) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 12741)被用于被用于免疫印迹在人类样品上 (图 s6). Breast Cancer Res Treat (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在人类样品上. Mol Med Rep (2015) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D11)被用于被用于免疫细胞化学在人类样品上 (图 2) 和 被用于免疫印迹在人类样品上 (图 1). Autophagy (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 3b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫细胞化学在人类样品上 (图 3b). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, 4108S)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 s2,5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫细胞化学在人类样品上 (图 s2,5a). Autophagy (2015) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫细胞化学在人类样品上. Nature (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 3c, 4a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样品上 (图 3c, 4a). Oncotarget (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样品上 (图 3). Nat Immunol (2015) ncbi
兔 单克隆(D11)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 1d
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:4000 (图 1d) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 1e). Sci Rep (2015) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 人类; 图 s16
  • 免疫印迹; 人类; 1:1000; 图 s14
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于被用于免疫细胞化学在人类样品上 (图 s16) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 s14). Nat Commun (2015) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 3868)被用于被用于免疫细胞化学在人类样品上 (图 4). Oncotarget (2015) ncbi
兔 单克隆(D11)
  • 流式细胞仪; 人类; 图 3b
  • 免疫组化; 人类; 图 2c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D11)被用于被用于流式细胞仪在人类样品上 (图 3b) 和 被用于免疫组化在人类样品上 (图 2c). PLoS Pathog (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于被用于免疫印迹在小鼠样品上 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775s)被用于被用于免疫印迹在人类样品上浓度为1:1000. Am J Physiol Endocrinol Metab (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 2b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775S)被用于被用于免疫印迹在大鼠样品上 (图 2b). Mol Med Rep (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 猪; 图 7
  • 免疫组化; 小鼠; 图 8
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868s)被用于被用于免疫印迹在猪样品上 (图 7), 被用于免疫组化在小鼠样品上 (图 8) 和 被用于免疫印迹在小鼠样品上 (图 8). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在小鼠样品上 (图 3e). J Cell Biol (2015) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 人类; 图 2d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于被用于免疫细胞化学在人类样品上 (图 2d). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; African green monkey; 1:1000; 图 1i
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在African green monkey样品上浓度为1:1000 (图 1i). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 和 被用于免疫印迹在小鼠样品上浓度为1:1000. Eur J Pharmacol (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 3e
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫细胞化学在人类样品上 (图 3e) 和 被用于免疫印迹在人类样品上 (图 3b). Cell Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于被用于免疫印迹在人类样品上. Oncol Rep (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫印迹在大鼠样品上 (图 1). Kidney Int (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 s7
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫细胞化学在小鼠样品上浓度为1:100 (图 s7). Nat Cell Biol (2015) ncbi
兔 单克隆(D11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868P)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 5). Cell Death Dis (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D11)被用于被用于免疫印迹在人类样品上 (图 2a). Biochem J (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling technology, 4108S)被用于被用于免疫细胞化学在人类样品上. Appl Microbiol Biotechnol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(New England Biolabs, 3868)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样品上浓度为1:1000. EMBO Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 f6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technologies, 2775S)被用于被用于免疫印迹在小鼠样品上 (图 f6). Sci Signal (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 s7
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样品上浓度为1:200 (图 s7). Nat Genet (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5). Mol Med Rep (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫细胞化学在小鼠样品上 (图 2f). Free Radic Biol Med (2015) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 12741)被用于被用于免疫印迹在小鼠样品上 (图 3). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫细胞化学在人类样品上. Methods Mol Biol (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775S)被用于被用于免疫细胞化学在人类样品上 (图 2). Autophagy (2015) ncbi
兔 多克隆
  • 其他; 小鼠; 图 3d
  • 免疫印迹; 小鼠; 图 s1k
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 4108)被用于被用于其他在小鼠样品上 (图 3d) 和 被用于免疫印迹在小鼠样品上 (图 s1k). Nat Immunol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在大鼠样品上 (图 4a). PLoS ONE (2015) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于被用于免疫细胞化学在小鼠样品上. Vasc Cell (2014) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 1,2,3,4,5,6,7
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell signaling, 3868S)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1,2,3,4,5,6,7). EMBO J (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在大鼠样品上. Cell Biol Toxicol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在人类样品上浓度为1:500. J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在人类样品上. Cancer Lett (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上 (图 4). Autophagy (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫细胞化学在人类样品上. J Virol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1,2
  • 免疫印迹; 人类; 图 1,2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology Inc., 4108S)被用于被用于免疫印迹在小鼠样品上 (图 1,2) 和 被用于免疫印迹在人类样品上 (图 1,2). Oncogene (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于被用于免疫印迹在人类样品上 (图 3). Exp Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4b). Autophagy (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, #2775)被用于被用于免疫细胞化学在人类样品上 和 被用于免疫印迹在人类样品上. J Cell Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775S)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). Biochem J (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在大鼠样品上. World J Gastroenterol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775)被用于被用于免疫印迹在大鼠样品上. Exp Cell Res (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D11)被用于被用于免疫印迹在人类样品上 (图 4c). Oncogene (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样品上 (图 6). Aging Cell (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在小鼠样品上 (图 1a). Autophagy (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Signaling Technology, 3868)被用于被用于免疫印迹在人类样品上 (图 2). Oncogene (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108S)被用于被用于免疫细胞化学在人类样品上浓度为1:200 和 被用于免疫印迹在人类样品上浓度为1:1000. Biochem Biophys Res Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上. Mol Cancer Ther (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology., 4108S)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Nat Commun (2015) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 大鼠; 1:250
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在大鼠样品上浓度为1:250. Oxid Med Cell Longev (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在小鼠样品上. Cell Death Dis (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于被用于免疫印迹在大鼠样品上 (图 4). Cell Cycle (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样品上 (图 6). Cell Cycle (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:400
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫细胞化学在人类样品上浓度为1:400. Biochem Pharmacol (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 大鼠; 图 4f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D11)被用于被用于免疫印迹在大鼠样品上 (图 4f). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样品上 (图 3b). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500
  • 免疫组化; 人类; 1:200
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于被用于免疫细胞化学在人类样品上浓度为1:500, 被用于免疫组化在人类样品上浓度为1:200 和 被用于免疫印迹在人类样品上浓度为1:1000. Cancer Lett (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108S)被用于被用于免疫组化-石蜡切片在小鼠样品上. Am J Pathol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:50
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样品上浓度为1:50. Hum Mol Genet (2015) ncbi
兔 单克隆(D11)
  • 免疫组化-石蜡切片; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50. PLoS Genet (2014) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在小鼠样品上. Biomaterials (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology Inc., 3868)被用于被用于免疫印迹在人类样品上 (图 3a). Mol Carcinog (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于被用于免疫印迹在人类样品上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫印迹在人类样品上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 s2
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫细胞化学在人类样品上 (图 s2) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 s2). Stem Cells Dev (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3d; 3g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上 (图 3d; 3g). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫细胞化学在人类样品上 (图 4) 和 被用于免疫印迹在人类样品上 (图 1). Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 7d
  • 免疫印迹; 小鼠; 1:2000; 图 4a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 7d) 和 被用于免疫印迹在小鼠样品上浓度为1:2000 (图 4a). Nat Cell Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1d). PLoS Med (2014) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3h). Mol Neurodegener (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样品上 (图 1). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108S)被用于被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在小鼠样品上. Mol Reprod Dev (2014) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于被用于免疫印迹在小鼠样品上 (图 1). Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 和 被用于免疫细胞化学在人类样品上浓度为1:200. Am J Pathol (2014) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D11)被用于被用于免疫细胞化学在人类样品上浓度为1:200 和 被用于免疫印迹在人类样品上浓度为1:500. Int J Clin Exp Pathol (2014) ncbi
兔 单克隆(D11)
  • 免疫组化-石蜡切片; 人类; 1:75
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 3868)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:75. Int J Ophthalmol (2014) ncbi
兔 多克隆
  • 免疫印迹; 秀丽隐杆线虫; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775s)被用于被用于免疫印迹在秀丽隐杆线虫样品上 (图 4). Autophagy (2014) ncbi
兔 单克隆(D11)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫组化-石蜡切片在人类样品上 和 被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technologies, 2775)被用于被用于免疫印迹在人类样品上 (图 3). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上 (图 3). Cancer Biol Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775S)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4). Autophagy (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫细胞化学在小鼠样品上. J Cardiovasc Pharmacol (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775S)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 7) 和 被用于免疫印迹在小鼠样品上 (图 6). Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在小鼠样品上. Toxicology (2014) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于被用于免疫印迹在人类样品上. Cell Death Differ (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于被用于免疫印迹在小鼠样品上. Cell Death Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Nat Cell Biol (2014) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在人类样品上浓度为1:200. Nature (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上浓度为1:2000. Nature (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫组化在大鼠样品上浓度为1:100 和 被用于免疫印迹在大鼠样品上浓度为1:1000. Exp Neurol (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫细胞化学在大鼠样品上 和 被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于被用于免疫印迹在人类样品上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在人类样品上 (图 1). Biochem Biophys Res Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在大鼠样品上. Am J Physiol Heart Circ Physiol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(D11)
  • 免疫印迹; 大鼠
  • 免疫组化-冰冻切片; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫印迹在大鼠样品上 和 被用于免疫组化-冰冻切片在小鼠样品上. Kidney Int (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5, 7
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样品上 (图 5, 7). J Cell Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
  • 免疫细胞化学; African green monkey
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在小鼠样品上 和 被用于免疫细胞化学在African green monkey样品上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于被用于免疫细胞化学在人类样品上浓度为1:200 和 被用于免疫印迹在人类样品上. Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在人类样品上. Int J Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1,000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在大鼠样品上浓度为1:1,000. J Neurosci Res (2014) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样品上 (图 1). Free Radic Biol Med (2014) ncbi
兔 多克隆
  • 流式细胞仪; 猪; 1:300
  • 免疫细胞化学; 猪; 1:200
  • 免疫印迹; 猪
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775S)被用于被用于流式细胞仪在猪样品上浓度为1:300, 被用于免疫细胞化学在猪样品上浓度为1:200 和 被用于免疫印迹在猪样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在人类样品上. Neurobiol Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. ASN Neuro (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technologies, 2775)被用于被用于免疫细胞化学在人类样品上浓度为1:100 和 被用于免疫印迹在人类样品上浓度为1:500. Endocrinology (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400. Food Chem Toxicol (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于被用于免疫印迹在小鼠样品上. Biochem J (2013) ncbi
兔 单克隆(D11)
  • 免疫细胞化学; 人类; 1:1000; 图 3
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (图 3) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 1). Nat Commun (2013) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫印迹在人类样品上浓度为1:1000. Cell Death Dis (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样品上浓度为1:200. Am J Physiol Cell Physiol (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫细胞化学在小鼠样品上 (图 3) 和 被用于免疫印迹在小鼠样品上 (图 3). Autophagy (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). Cell Death Dis (2013) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在小鼠样品上浓度为1:2000. Cell Biochem Funct (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling Technology, 4108)被用于被用于免疫细胞化学在大鼠样品上 和 被用于免疫印迹在大鼠样品上. Autophagy (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2012) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling Technology, D11)被用于被用于免疫印迹在人类样品上. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样品上浓度为1:100 和 被用于免疫印迹在人类样品上浓度为1:1000. J Cell Mol Med (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:400
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在小鼠样品上浓度为1:400 和 被用于免疫印迹在小鼠样品上浓度为1:1000. Traffic (2012) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technologies, 2775)被用于被用于免疫细胞化学在小鼠样品上. J Biol Chem (2010) ncbi
西格玛奥德里奇
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s6c). Nat Commun (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5a). Metabolism (2018) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 4i
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (图 4i). Nat Neurosci (2018) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 6a
  • 免疫印迹; 小鼠; 1:1000; 图 2a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 6a) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于被用于免疫印迹在小鼠样品上 (图 5b). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫沉淀; 人类; 图 5b
  • 免疫细胞化学; 人类; 1:1000; 图 4b
  • 免疫印迹; 人类; 1:1000; 图 3d
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫沉淀在人类样品上 (图 5b), 被用于免疫细胞化学在人类样品上浓度为1:1000 (图 4b) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 3d). Neurochem Int (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s1
西格玛奥德里奇 MAP1LC3B抗体(Abcam, L7543)被用于被用于免疫印迹在小鼠样品上 (图 s1). Cell Death Dis (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a
  • 免疫组化; 小鼠; 图 4a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 3a) 和 被用于免疫组化在小鼠样品上 (图 4a). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 8). J Neuroinflammation (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 1b). Redox Biol (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:250; 图 3a
  • 免疫印迹; 小鼠; 1:1000; 图 1b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫组化在小鼠样品上浓度为1:250 (图 3a) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1b). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a,4a,4i,4j
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于被用于免疫印迹在人类样品上 (图 3a,4a,4i,4j). Int J Mol Sci (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 5d
  • 免疫印迹; 小鼠; 图 5b
西格玛奥德里奇 MAP1LC3B抗体(Sigma Aldrich, L7543)被用于被用于免疫组化在小鼠样品上 (图 5d) 和 被用于免疫印迹在小鼠样品上 (图 5b). PLoS Pathog (2017) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 6a
  • 免疫印迹; 小鼠; 图 4a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在大鼠样品上 (图 6a) 和 被用于免疫印迹在小鼠样品上 (图 4a). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 1k
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 1a) 和 被用于免疫印迹在小鼠样品上 (图 1k). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样品上 (图 1b). Eur J Cell Biol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 4b). Int J Mol Sci (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 5b). Exp Mol Med (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 2a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 2a). Radiother Oncol (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 1b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400 (图 5a) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1b). Autophagy (2017) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 1b
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫组化在人类样品上 (图 1b) 和 被用于免疫印迹在人类样品上 (图 1a). Cell Death Dis (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5b). Hum Mol Genet (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 2d
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在人类样品上 (图 2d) 和 被用于免疫印迹在人类样品上 (图 2a). Biochim Biophys Acta Mol Cell Res (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 2E
  • 免疫印迹; 小鼠; 1:2000; 图 2A
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 (图 2E) 和 被用于免疫印迹在小鼠样品上浓度为1:2000 (图 2A). Redox Biol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2500; 图 s1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于被用于免疫印迹在人类样品上浓度为1:2500 (图 s1). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2f
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 2f). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样品上 (图 4a). Cell Death Dis (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 S1
  • 免疫印迹; 小鼠; 1:1000; 图 1E
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在小鼠样品上浓度为1:100 (图 S1) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1E). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 3a
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在人类样品上 (图 3a) 和 被用于免疫印迹在人类样品上 (图 3b). Int J Nanomedicine (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:5000; 图 s1c
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在人类样品上浓度为1:5000 (图 s1c). EMBO Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 2a
  • 免疫印迹; 人类; 图 2d
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在大鼠样品上 (图 2a) 和 被用于免疫印迹在人类样品上 (图 2d). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500; 图 3c
  • 免疫印迹; 大鼠; 1:2000; 图 1a
西格玛奥德里奇 MAP1LC3B抗体(sigma, L7543)被用于被用于免疫组化在大鼠样品上浓度为1:500 (图 3c) 和 被用于免疫印迹在大鼠样品上浓度为1:2000 (图 1a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 1b
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在人类样品上 (图 1b) 和 被用于免疫印迹在人类样品上 (图 1a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:3000; 图 1d
  • 免疫印迹; 人类; 1:3000; 图 1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫组化在人类样品上浓度为1:3000 (图 1d) 和 被用于免疫印迹在人类样品上浓度为1:3000 (图 1a). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 4a). Autophagy (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 7a
  • 免疫印迹; 小鼠; 图 5d
西格玛奥德里奇 MAP1LC3B抗体(sigma, L7543)被用于被用于免疫细胞化学在小鼠样品上 (图 7a) 和 被用于免疫印迹在小鼠样品上 (图 5d). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 2). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2d
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样品上 (图 2d). Autophagy (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在人类样品上 (图 1) 和 被用于免疫印迹在人类样品上 (图 4). J Virol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5c
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L-7543)被用于被用于免疫印迹在小鼠样品上 (图 5c). Biochim Biophys Acta (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 2c
  • 免疫印迹; 小鼠; 图 1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 2c) 和 被用于免疫印迹在小鼠样品上 (图 1a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7c
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样品上 (图 7c). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3d
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 3d). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫细胞化学; African green monkey; 图 7c
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫细胞化学在African green monkey样品上 (图 7c). Nat Cell Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:600; 图 2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于被用于免疫印迹在大鼠样品上浓度为1:600 (图 2). Exp Ther Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 2b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L-7543)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 2a). Neurochem Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 2a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在小鼠样品上浓度为1:5000 (图 2a). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样品上 (图 3). Autophagy (2016) ncbi
小鼠 单克隆(LC3B-6)
  • 免疫组化; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, SAB4200361)被用于被用于免疫组化在小鼠样品上 (图 2), 被用于免疫印迹在小鼠样品上 (图 2) 和 被用于免疫印迹在人类样品上 (图 3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 5
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样品上 (图 4). Biochim Biophys Acta (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 3). Mol Biol Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样品上 (图 4) 和 被用于免疫印迹在人类样品上 (图 1). Int J Mol Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于被用于免疫印迹在人类样品上 (图 3). Autophagy (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1b
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于被用于免疫细胞化学在小鼠样品上浓度为1:500 (图 1b). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 6). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3d
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 3d). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于被用于免疫印迹在人类样品上 (图 1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2c
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在小鼠样品上 (图 2c). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4d
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 4d). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样品上 (图 1). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样品上浓度为1:3000 (图 3). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s2
西格玛奥德里奇 MAP1LC3B抗体(Sigma Aldrich, L7543)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 s2). Nat Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 1). J Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样品上 (图 4). Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 MAP1LC3B抗体(MBL, L7543)被用于被用于免疫印迹在人类样品上 (图 6). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1A
  • 免疫细胞化学; 小鼠; 图 1B
  • 免疫印迹; 小鼠; 图 1D
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫组化-石蜡切片在小鼠样品上 (图 1A), 被用于免疫细胞化学在小鼠样品上 (图 1B) 和 被用于免疫印迹在小鼠样品上 (图 1D). Autophagy (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100-1:200; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在人类样品上浓度为1:100-1:200 (图 1) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(SigmaAldrich, L7543)被用于被用于免疫细胞化学在人类样品上 和 被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样品上 (图 3). PLoS Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样品上. Biochem Pharmacol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1). EMBO Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 1) 和 被用于免疫印迹在小鼠样品上 (图 5). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图 1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样品上浓度为1:5000 (图 1a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图 1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于被用于免疫印迹在人类样品上浓度为1:5000 (图 1a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:8000; 图 2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上浓度为1:8000 (图 2). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 1). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 1
  • 免疫印迹; 人类; 1:3000; 图 5
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样品上浓度为1:3000 (图 1) 和 被用于免疫印迹在人类样品上浓度为1:3000 (图 5). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于被用于免疫印迹在大鼠样品上 和 被用于免疫印迹在人类样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样品上浓度为1:1000. J Agric Food Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在小鼠样品上 (图 2). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 4). Acta Pharmacol Sin (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 2). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样品上 (图 2). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:500
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500. Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样品上 (图 7). Int J Mol Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于被用于免疫印迹在人类样品上 (图 7). Int J Mol Sci (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在人类样品上 (图 4) 和 被用于免疫印迹在人类样品上 (图 4). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 1). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s8
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 s8). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 猪; 1:2000; 图 3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在猪样品上浓度为1:2000 (图 3). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于被用于免疫印迹在人类样品上 (图 3). Oncotarget (2015) ncbi
兔 多克隆
  • 其他; 人类; 1:100; 图 2
  • proximity ligation assay; 人类; 1:100; 图 1
  • 免疫细胞化学; 人类; 1:100; 图 1
  • 免疫印迹; 人类; 1:3000; 图 s3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于被用于其他在人类样品上浓度为1:100 (图 2), 被用于proximity ligation assay在人类样品上浓度为1:100 (图 1), 被用于免疫细胞化学在人类样品上浓度为1:100 (图 1) 和 被用于免疫印迹在人类样品上浓度为1:3000 (图 s3). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a, 2b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 2a, 2b). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样品上 (图 1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1, 6
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样品上 (图 1, 6). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样品上 (图 1). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样品上浓度为1:500. J Leukoc Biol (2015) ncbi
小鼠 单克隆(LC3B-6)
  • 免疫细胞化学; 人类; 1:100
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, SAB4200361)被用于被用于免疫细胞化学在人类样品上浓度为1:100. J Leukoc Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样品上. J Virol (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 2
  • 免疫印迹; 大鼠; 1:600; 图 1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L-7543)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:300 (图 2) 和 被用于免疫印迹在大鼠样品上浓度为1:600 (图 1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1b
  • 免疫印迹; 小鼠; 图 1d
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 1b) 和 被用于免疫印迹在小鼠样品上 (图 1d). elife (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:250
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在人类样品上浓度为1:250. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500
  • 免疫印迹; 人类; 1:5000
  • 免疫细胞化学; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:5000
  • 免疫细胞化学; 小鼠; 1:500
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在人类样品上浓度为1:500, 被用于免疫印迹在人类样品上浓度为1:5000, 被用于免疫细胞化学在大鼠样品上浓度为1:500, 被用于免疫印迹在大鼠样品上浓度为1:5000, 被用于免疫细胞化学在小鼠样品上浓度为1:500 和 被用于免疫印迹在小鼠样品上浓度为1:5000. Anal Biochem (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 1h
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在大鼠样品上 (图 1h). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich Corp, L8918)被用于被用于免疫细胞化学在小鼠样品上 和 被用于免疫印迹在小鼠样品上. J Cell Mol Med (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在人类样品上. Methods Mol Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4c
  • 免疫细胞化学; 小鼠; 图 2a
  • 免疫印迹; 小鼠; 1:1000; 图 3a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4c), 被用于免疫细胞化学在小鼠样品上 (图 2a) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3a). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5). Arch Toxicol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样品上. Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样品上浓度为1:2000. Cell Death Differ (2015) ncbi
小鼠 单克隆(LC3B-6)
  • 免疫组化-石蜡切片; 人类; 图 5a
  • 免疫印迹; 人类; 图 5b
西格玛奥德里奇 MAP1LC3B抗体(SigmaAldrich, SAB4200361)被用于被用于免疫组化-石蜡切片在人类样品上 (图 5a) 和 被用于免疫印迹在人类样品上 (图 5b). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于被用于免疫印迹在小鼠样品上 和 被用于免疫印迹在大鼠样品上. J Lipid Res (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫细胞化学在人类样品上 和 被用于免疫印迹在人类样品上. Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在大鼠样品上. Life Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于被用于免疫印迹在大鼠样品上. Redox Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma Aldrich, L-7543)被用于被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于被用于免疫印迹在人类样品上. J Nutr Biochem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 (图 2). Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543,)被用于被用于免疫印迹在大鼠样品上. J Physiol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 大鼠; 图 6
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在小鼠样品上 (图 2) 和 被用于免疫印迹在大鼠样品上 (图 6). Oxid Med Cell Longev (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 3). Biochim Biophys Acta (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样品上 (图 4). Cell Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1b
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1b). Cell Death Dis (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:500
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫组化在大鼠样品上浓度为1:500 和 被用于免疫印迹在大鼠样品上浓度为1:500. Cell Death Dis (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在人类样品上. Curr Mol Med (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L754)被用于被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫沉淀; 人类; 图 3
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫沉淀在人类样品上 (图 3), 被用于免疫细胞化学在人类样品上 (图 3) 和 被用于免疫印迹在人类样品上 (图 3). J Cell Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫沉淀在人类样品上 和 被用于免疫印迹在人类样品上 (图 1). J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:3000
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于被用于免疫印迹在人类样品上浓度为1:3000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L-7543)被用于被用于免疫印迹在人类样品上 (图 2). Nat Chem Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于被用于免疫印迹在小鼠样品上 (图 5). Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样品上浓度为1:1000. Autophagy (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于被用于免疫印迹在人类样品上. Methods Mol Biol (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样品上. Oncogene (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于被用于免疫印迹在人类样品上. Mol Pharm (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样品上 和 被用于免疫印迹在小鼠样品上. Autophagy (2012) ncbi
百奇生物
兔 多克隆
  • 免疫组化; 大鼠; 1:100; 表 1
百奇生物 MAP1LC3B抗体(Abgent, AP1802a)被用于被用于免疫组化在大鼠样品上浓度为1:100 (表 1). Front Cell Neurosci (2017) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 6c
  • 免疫印迹; 人类; 图 1b
百奇生物 MAP1LC3B抗体(Abgent, AP1802a)被用于被用于免疫组化在人类样品上 (图 6c) 和 被用于免疫印迹在人类样品上 (图 1b). Autophagy (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 4
百奇生物 MAP1LC3B抗体(Abgent, 11668-019AP-1802a)被用于被用于免疫细胞化学在人类样品上 (图 1) 和 被用于免疫印迹在人类样品上 (图 4). J Virol (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:25; 图 7
百奇生物 MAP1LC3B抗体(Abgent, AP1802a)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:25 (图 7). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
百奇生物 MAP1LC3B抗体(Abgent, AP1802a)被用于被用于免疫印迹在人类样品上 (图 3). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
百奇生物 MAP1LC3B抗体(Abgent, AP1802a)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 2
百奇生物 MAP1LC3B抗体(Abgent, AP1802a)被用于被用于免疫细胞化学在小鼠样品上 (图 2). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
百奇生物 MAP1LC3B抗体(Abgent, AP1802a)被用于被用于免疫印迹在人类样品上 (图 2). J Virol (2011) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
百奇生物 MAP1LC3B抗体(Abgent, AP-1802)被用于被用于免疫印迹在小鼠样品上. J Biol Chem (2010) ncbi
文章列表
  1. Liu Z, Qin Q, Wu C, Li H, Shou J, Yang Y, et al. Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop. Nat Commun. 2018;9:2789 pubmed 出版商
  2. Liu H, Jiang W, Chen X, Chang G, Zhao L, Li X, et al. Skeletal muscle-specific Sidt2 knockout in mice induced muscular dystrophy-like phenotype. Metabolism. 2018;85:259-270 pubmed 出版商
  3. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  4. Hsu C, Lee E, Gordon K, Paz E, Shen W, Ohnishi K, et al. MAP4K3 mediates amino acid-dependent regulation of autophagy via phosphorylation of TFEB. Nat Commun. 2018;9:942 pubmed 出版商
  5. Nguyen H, Noguchi S, Sugie K, Matsuo Y, Nguyen C, Koito H, et al. Small-Vessel Vasculopathy Due to Aberrant Autophagy in LAMP-2 Deficiency. Sci Rep. 2018;8:3326 pubmed 出版商
  6. Victor M, Richner M, Olsen H, Lee S, Monteys A, Ma C, et al. Striatal neurons directly converted from Huntington's disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat Neurosci. 2018;21:341-352 pubmed 出版商
  7. Goiran T, Duplan E, Rouland L, El Manaa W, Lauritzen I, Dunys J, et al. Nuclear p53-mediated repression of autophagy involves PINK1 transcriptional down-regulation. Cell Death Differ. 2018;25:873-884 pubmed 出版商
  8. Shroff A, Sequeira R, Patel V, Reddy K. Knockout of autophagy gene, ATG5 in mice vaginal cells abrogates cytokine response and pathogen clearance during vaginal infection of Candida albicans. Cell Immunol. 2018;324:59-73 pubmed 出版商
  9. Lee S, Bazick H, Chittoor Vinod V, Al Salihi M, Xia G, Notterpek L. Elevated Peripheral Myelin Protein 22, Reduced Mitotic Potential, and Proteasome Impairment in Dermal Fibroblasts from Charcot-Marie-Tooth Disease Type 1A Patients. Am J Pathol. 2018;188:728-738 pubmed 出版商
  10. Takanezawa Y, Nakamura R, Harada R, Sone Y, Uraguchi S, Kiyono M. Sequestosome1/p62 protects mouse embryonic fibroblasts against low-dose methylercury-induced cytotoxicity and is involved in clearance of ubiquitinated proteins. Sci Rep. 2017;7:16735 pubmed 出版商
  11. Ni Z, HE J, Wu Y, Hu C, Dai X, Yan X, et al. AKT-mediated phosphorylation of ATG4B impairs mitochondrial activity and enhances the Warburg effect in hepatocellular carcinoma cells. Autophagy. 2018;14:685-701 pubmed 出版商
  12. Jimenez Orgaz A, Kvainickas A, Nägele H, Denner J, Eimer S, Dengjel J, et al. Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. EMBO J. 2018;37:235-254 pubmed 出版商
  13. Lüningschrör P, Binotti B, Dombert B, Heimann P, Pérez Lara A, Slotta C, et al. Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun. 2017;8:678 pubmed 出版商
  14. Viana Huete V, Guillén C, García G, Fernández S, García Aguilar A, Kahn C, et al. Male Brown Fat-Specific Double Knockout of IGFIR/IR: Atrophy, Mitochondrial Fission Failure, Impaired Thermogenesis, and Obesity. Endocrinology. 2018;159:323-340 pubmed 出版商
  15. Xu Y, Wang Y, Yao A, Xu Z, Dou H, Shen S, et al. Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway. Sci Rep. 2017;7:11776 pubmed 出版商
  16. Ruan H, Ma Y, Torres S, Zhang B, Feriod C, Heck R, et al. Calcium-dependent O-GlcNAc signaling drives liver autophagy in adaptation to starvation. Genes Dev. 2017;31:1655-1665 pubmed 出版商
  17. Bartolomeo R, Cinque L, De Leonibus C, Forrester A, Salzano A, Monfregola J, et al. mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy. J Clin Invest. 2017;127:3717-3729 pubmed 出版商
  18. Tseng J, Xie L, Song S, Xie Y, Allen L, Ajit D, et al. The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology. Cell Rep. 2017;20:2169-2183 pubmed 出版商
  19. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  20. Joachim J, Razi M, Judith D, Wirth M, Calamita E, Encheva V, et al. Centriolar Satellites Control GABARAP Ubiquitination and GABARAP-Mediated Autophagy. Curr Biol. 2017;27:2123-2136.e7 pubmed 出版商
  21. Zhou Y, Huang N, Wu J, Zhen N, Li N, Li Y, et al. Silencing of NRAGE induces autophagy via AMPK/Ulk1/Atg13 signaling pathway in NSCLC cells. Tumour Biol. 2017;39:1010428317709676 pubmed 出版商
  22. Dai S, Dulcey A, Hu X, Wassif C, Porter F, Austin C, et al. Methyl-β-cyclodextrin restores impaired autophagy flux in Niemann-Pick C1-deficient cells through activation of AMPK. Autophagy. 2017;13:1435-1451 pubmed 出版商
  23. Tan S, Chadha S, Liu Y, Gabasova E, Perera D, Ahmed K, et al. A Class of Environmental and Endogenous Toxins Induces BRCA2 Haploinsufficiency and Genome Instability. Cell. 2017;169:1105-1118.e15 pubmed 出版商
  24. Wang G, Zhou H, Strulovici Barel Y, Al Hijji M, Ou X, Salit J, et al. Role of OSGIN1 in mediating smoking-induced autophagy in the human airway epithelium. Autophagy. 2017;13:1205-1220 pubmed 出版商
  25. Bustos V, Pulina M, Kelahmetoglu Y, Sinha S, Gorelick F, Flajolet M, et al. Bidirectional regulation of A? levels by Presenilin 1. Proc Natl Acad Sci U S A. 2017;114:7142-7147 pubmed 出版商
  26. Vidoni C, Secomandi E, Castiglioni A, Melone M, Isidoro C. Resveratrol protects neuronal-like cells expressing mutant Huntingtin from dopamine toxicity by rescuing ATG4-mediated autophagosome formation. Neurochem Int. 2018;117:174-187 pubmed 出版商
  27. Nayar U, Sadek J, Reichel J, Hernandez Hopkins D, Akar G, Barelli P, et al. Identification of a nucleoside analog active against adenosine kinase-expressing plasma cell malignancies. J Clin Invest. 2017;127:2066-2080 pubmed 出版商
  28. Wu D, Adamopoulos I. Loss of WDFY3 ameliorates severity of serum transfer-induced arthritis independently of autophagy. Cell Immunol. 2017;316:61-69 pubmed 出版商
  29. Ashkenazi A, Bento C, Ricketts T, Vicinanza M, Siddiqi F, Pavel M, et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature. 2017;545:108-111 pubmed 出版商
  30. Banerjee B, Koner D, Lal P, Saha N. Unique mitochondrial localization of arginase 1 and 2 in hepatocytes of air-breathing walking catfish, Clarias batrachus and their differential expression patterns under hyper-ammonia stress. Gene. 2017;622:13-22 pubmed 出版商
  31. Kaufman D, Papillon J, Larose L, Iwawaki T, Cybulsky A. Deletion of inositol-requiring enzyme-1? in podocytes disrupts glomerular capillary integrity and autophagy. Mol Biol Cell. 2017;28:1636-1651 pubmed 出版商
  32. Xiao Z, Gaertner S, Morresi Hauf A, Genzel R, Duell T, Ullrich A, et al. Metformin Triggers Autophagy to Attenuate Drug-Induced Apoptosis in NSCLC Cells, with Minor Effects on Tumors of Diabetic Patients. Neoplasia. 2017;19:385-395 pubmed 出版商
  33. Xiao Y, Yang Z, Wu Q, Jiang X, Yuan Y, Chang W, et al. Cucurbitacin B Protects Against Pressure Overload Induced Cardiac Hypertrophy. J Cell Biochem. 2017;118:3899-3910 pubmed 出版商
  34. Gao Y, Zhuang Z, Gao S, Li X, Zhang Z, Ye Z, et al. Tetrahydrocurcumin reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury. Am J Transl Res. 2017;9:887-899 pubmed
  35. Wassermann Dozorets R, Rubinstein M. C/EBPβ LIP augments cell death by inducing osteoglycin. Cell Death Dis. 2017;8:e2733 pubmed 出版商
  36. Zhang X, Fan J, Wang S, Li Y, Wang Y, Li S, et al. Targeting CD47 and Autophagy Elicited Enhanced Antitumor Effects in Non-Small Cell Lung Cancer. Cancer Immunol Res. 2017;5:363-375 pubmed 出版商
  37. Suresh S, Chavalmane A, Dj V, Yarreiphang H, Rai S, Paul A, et al. A novel autophagy modulator 6-Bio ameliorates SNCA/?-synuclein toxicity. Autophagy. 2017;13:1221-1234 pubmed 出版商
  38. Xu Q, Zhu N, Chen S, Zhao P, Ren H, Zhu S, et al. E3 Ubiquitin Ligase Nedd4 Promotes Japanese Encephalitis Virus Replication by Suppressing Autophagy in Human Neuroblastoma Cells. Sci Rep. 2017;7:45375 pubmed 出版商
  39. Kang H, Park J, Choi K, Kim Y, Choi H, Jung C, et al. Chemical screening identifies ATM as a target for alleviating senescence. Nat Chem Biol. 2017;13:616-623 pubmed 出版商
  40. Vodret S, Bortolussi G, Jašprová J, Vitek L, Muro A. Inflammatory signature of cerebellar neurodegeneration during neonatal hyperbilirubinemia in Ugt1 -/- mouse model. J Neuroinflammation. 2017;14:64 pubmed 出版商
  41. Marwaha R, Arya S, Jagga D, Kaur H, Tuli A, Sharma M. The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes. J Cell Biol. 2017;216:1051-1070 pubmed 出版商
  42. Fajardo V, Gamu D, Mitchell A, Bloemberg D, Bombardier E, Chambers P, et al. Sarcolipin deletion exacerbates soleus muscle atrophy and weakness in phospholamban overexpressing mice. PLoS ONE. 2017;12:e0173708 pubmed 出版商
  43. Mu Y, Yan W, Yin T, Zhang Y, Li J, Yang J. Diet-induced obesity impairs spermatogenesis: a potential role for autophagy. Sci Rep. 2017;7:43475 pubmed 出版商
  44. Kim J, Hyun H, Min S, Kang T. Sustained HSP25 Expression Induces Clasmatodendrosis via ER Stress in the Rat Hippocampus. Front Cell Neurosci. 2017;11:47 pubmed 出版商
  45. Samuel S, Ghosh S, Majeed Y, Arunachalam G, Emara M, Ding H, et al. Metformin represses glucose starvation induced autophagic response in microvascular endothelial cells and promotes cell death. Biochem Pharmacol. 2017;132:118-132 pubmed 出版商
  46. Park S, Choi Y, Jung N, Kim J, Oh S, Yu Y, et al. Autophagy induction in the skeletal myogenic differentiation of human tonsil-derived mesenchymal stem cells. Int J Mol Med. 2017;39:831-840 pubmed 出版商
  47. Xu J, Wu Y, Lu G, Xie S, Ma Z, Chen Z, et al. Importance of ROS-mediated autophagy in determining apoptotic cell death induced by physapubescin B. Redox Biol. 2017;12:198-207 pubmed 出版商
  48. Møller A, Kampmann U, Hedegaard J, Thorsen K, Nordentoft I, Vendelbo M, et al. Altered gene expression and repressed markers of autophagy in skeletal muscle of insulin resistant patients with type 2 diabetes. Sci Rep. 2017;7:43775 pubmed 出版商
  49. Pi H, Li M, Tian L, Yang Z, Yu Z, Zhou Z. Enhancing lysosomal biogenesis and autophagic flux by activating the transcription factor EB protects against cadmium-induced neurotoxicity. Sci Rep. 2017;7:43466 pubmed 出版商
  50. Datta S, Choudhury D, Das A, Das Mukherjee D, Das N, Roy S, et al. Paclitaxel resistance development is associated with biphasic changes in reactive oxygen species, mitochondrial membrane potential and autophagy with elevated energy production capacity in lung cancer cells: A chronological study. Tumour Biol. 2017;39:1010428317694314 pubmed 出版商
  51. Kemter E, Frohlich T, Arnold G, Wolf E, Wanke R. Mitochondrial Dysregulation Secondary to Endoplasmic Reticulum Stress in Autosomal Dominant Tubulointerstitial Kidney Disease - UMOD (ADTKD-UMOD). Sci Rep. 2017;7:42970 pubmed 出版商
  52. Vazquez Cintron E, Beske P, Tenezaca L, Tran B, Oyler J, Glotfelty E, et al. Engineering Botulinum Neurotoxin C1 as a Molecular Vehicle for Intra-Neuronal Drug Delivery. Sci Rep. 2017;7:42923 pubmed 出版商
  53. Li Y, Chang Y, Ye N, Dai D, Chen Y, Zhang N, et al. Advanced Glycation End Products Inhibit the Proliferation of Human Umbilical Vein Endothelial Cells by Inhibiting Cathepsin D. Int J Mol Sci. 2017;18: pubmed 出版商
  54. Kovacs T, Billes V, Komlos M, Hotzi B, Manzéger A, Tarnóci A, et al. The small molecule AUTEN-99 (autophagy enhancer-99) prevents the progression of neurodegenerative symptoms. Sci Rep. 2017;7:42014 pubmed 出版商
  55. Wolfson R, Chantranupong L, Wyant G, Gu X, Orozco J, Shen K, et al. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature. 2017;543:438-442 pubmed 出版商
  56. Delaney J, Patel C, Willis K, Haghighiabyaneh M, Axelrod J, Tancioni I, et al. Haploinsufficiency networks identify targetable patterns of allelic deficiency in low mutation ovarian cancer. Nat Commun. 2017;8:14423 pubmed 出版商
  57. Jung J, Nayak A, Schaeffer V, Starzetz T, Kirsch A, Muller S, et al. Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator. elife. 2017;6: pubmed 出版商
  58. Tsai C, Li C, Cheng Y, Lee C, Liao P, Lin C, et al. The inhibition of lung cancer cell migration by AhR-regulated autophagy. Sci Rep. 2017;7:41927 pubmed 出版商
  59. Qian Q, Liu Q, Zhou D, Pan H, Liu Z, He F, et al. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway. FASEB J. 2017;31:2104-2113 pubmed 出版商
  60. Ganesan R, Hos N, Gutierrez S, Fischer J, Stepek J, Daglidu E, et al. Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS Pathog. 2017;13:e1006227 pubmed 出版商
  61. Zhao H, Li X, Zhao T, Zhang H, Yan M, Dong X, et al. Tangshen formula attenuates diabetic renal injuries by upregulating autophagy via inhibition of PLZF expression. PLoS ONE. 2017;12:e0171475 pubmed 出版商
  62. Chen S, Jing Y, Kang X, Yang L, Wang D, Zhang W, et al. Histone H2B monoubiquitination is a critical epigenetic switch for the regulation of autophagy. Nucleic Acids Res. 2017;45:1144-1158 pubmed 出版商
  63. Roy D, Mondal S, Khurana A, Jung D, Hoffmann R, He X, et al. Loss of HSulf-1: The Missing Link between Autophagy and Lipid Droplets in Ovarian Cancer. Sci Rep. 2017;7:41977 pubmed 出版商
  64. Hammerling B, Najor R, Cortez M, Shires S, Leon L, Gonzalez E, et al. A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance. Nat Commun. 2017;8:14050 pubmed 出版商
  65. Liu J, Wang H, Gu J, Deng T, Yuan Z, Hu B, et al. BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy. 2017;13:739-753 pubmed 出版商
  66. Feng L, Zhang J, Zhu N, Ding Q, Zhang X, Yu J, et al. Ubiquitin ligase SYVN1/HRD1 facilitates degradation of the SERPINA1 Z variant/?-1-antitrypsin Z variant via SQSTM1/p62-dependent selective autophagy. Autophagy. 2017;13:686-702 pubmed 出版商
  67. Russo V, Inglese C, Avallone L, Roperto F, Abate C, Zizzo N, et al. Sigma 2 receptor expression levels in blood and bladder from healthy and bladder cancer cattle. Vet Comp Oncol. 2017;15:1503-1512 pubmed 出版商
  68. Kim M, Deng H, Wong Y, Siddique T, Krainc D. The Parkinson's disease-linked protein TMEM230 is required for Rab8a-mediated secretory vesicle trafficking and retromer trafficking. Hum Mol Genet. 2017;26:729-741 pubmed 出版商
  69. Villar V, Nguyen T, Delcroix V, Terés S, Bouchecareilh M, Salin B, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124 pubmed 出版商
  70. Bonhoure A, Vallentin A, Martin M, Senff Ribeiro A, Amson R, Telerman A, et al. Acetylation of translationally controlled tumor protein promotes its degradation through chaperone-mediated autophagy. Eur J Cell Biol. 2017;96:83-98 pubmed 出版商
  71. Zhang C, Yan J, Xiao Y, Shen Y, Wang J, Ge W, et al. Inhibition of Autophagic Degradation Process Contributes to Claudin-2 Expression Increase and Epithelial Tight Junction Dysfunction in TNF-? Treated Cell Monolayers. Int J Mol Sci. 2017;18: pubmed 出版商
  72. Shin S, Kim J, Lee J, Son Y, Lee M, Kim H, et al. Docosahexaenoic acid-mediated protein aggregates may reduce proteasome activity and delay myotube degradation during muscle atrophy in vitro. Exp Mol Med. 2017;49:e287 pubmed 出版商
  73. Chang V, Tsai Y, Tsai Y, Peng S, Chen S, Chang T, et al. Krüpple-like factor 10 regulates radio-sensitivity of pancreatic cancer via UV radiation resistance-associated gene. Radiother Oncol. 2017;122:476-484 pubmed 出版商
  74. Ma K, Fu W, Tang M, Zhang C, Hou T, Li R, et al. PTK2-mediated degradation of ATG3 impedes cancer cells susceptible to DNA damage treatment. Autophagy. 2017;13:579-591 pubmed 出版商
  75. Shen Z, Zheng Y, Wu J, Chen Y, Wu X, Zhou Y, et al. PARK2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window. Autophagy. 2017;13:473-485 pubmed 出版商
  76. Nascimbeni A, Fanin M, Angelini C, Sandri M. Autophagy dysregulation in Danon disease. Cell Death Dis. 2017;8:e2565 pubmed 出版商
  77. Ruf S, Heberle A, Langelaar Makkinje M, Gelino S, Wilkinson D, Gerbeth C, et al. PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy. Autophagy. 2017;13:486-505 pubmed 出版商
  78. Squillaro T, Antonucci I, Alessio N, Esposito A, Cipollaro M, Melone M, et al. Impact of lysosomal storage disorders on biology of mesenchymal stem cells: Evidences from in vitro silencing of glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes. J Cell Physiol. 2017;232:3454-3467 pubmed 出版商
  79. Coccia M, Rossi A, Riccio A, Trotta E, Santoro M. Human NF-κB repressing factor acts as a stress-regulated switch for ribosomal RNA processing and nucleolar homeostasis surveillance. Proc Natl Acad Sci U S A. 2017;114:1045-1050 pubmed 出版商
  80. Granato M, Rizzello C, Gilardini Montani M, Cuomo L, Vitillo M, Santarelli R, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem. 2017;41:124-136 pubmed 出版商
  81. Borgia D, Malena A, Spinazzi M, Desbats M, Salviati L, Russell A, et al. Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients. Hum Mol Genet. 2017;26:1087-1103 pubmed 出版商
  82. Zhang L, Dai F, Cui L, Zhou B, Guo Y. Up-regulation of the active form of small GTPase Rab13 promotes macroautophagy in vascular endothelial cells. Biochim Biophys Acta Mol Cell Res. 2017;1864:613-624 pubmed 出版商
  83. Sun A, Wei J, Childress C, Shaw J, Peng K, Shao G, et al. The E3 ubiquitin ligase NEDD4 is an LC3-interactive protein and regulates autophagy. Autophagy. 2017;13:522-537 pubmed 出版商
  84. Wang Q, Wu S, Zhu H, Ding Y, Dai X, Ouyang C, et al. Deletion of PRKAA triggers mitochondrial fission by inhibiting the autophagy-dependent degradation of DNM1L. Autophagy. 2017;13:404-422 pubmed 出版商
  85. Jiang C, Diao F, Sang Y, Xu N, Zhu R, Wang X, et al. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet. 2017;13:e1006535 pubmed 出版商
  86. Redmann M, Wani W, Volpicelli Daley L, Darley Usmar V, Zhang J. Trehalose does not improve neuronal survival on exposure to alpha-synuclein pre-formed fibrils. Redox Biol. 2017;11:429-437 pubmed 出版商
  87. Piccolella M, Crippa V, Cristofani R, Rusmini P, Galbiati M, Cicardi M, et al. The small heat shock protein B8 (HSPB8) modulates proliferation and migration of breast cancer cells. Oncotarget. 2017;8:10400-10415 pubmed 出版商
  88. Li G, Fu R, Shen H, Zhou J, Hu X, Liu Y, et al. Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels. Oncotarget. 2017;8:10359-10374 pubmed 出版商
  89. Pietrocola F, Demont Y, Castoldi F, Enot D, Durand S, Semeraro M, et al. Metabolic effects of fasting on human and mouse blood in vivo. Autophagy. 2017;13:567-578 pubmed 出版商
  90. Capizzi M, Strappazzon F, Cianfanelli V, Papaleo E, Cecconi F. MIR7-3HG, a MYC-dependent modulator of cell proliferation, inhibits autophagy by a regulatory loop involving AMBRA1. Autophagy. 2017;13:554-566 pubmed 出版商
  91. Laporte A, Barrott J, Yao R, Poulin N, Brodin B, Jones K, et al. HDAC and Proteasome Inhibitors Synergize to Activate Pro-Apoptotic Factors in Synovial Sarcoma. PLoS ONE. 2017;12:e0169407 pubmed 出版商
  92. Ugun Klusek A, Tatham M, Elkharaz J, Constantin Teodosiu D, Lawler K, Mohamed H, et al. Continued 26S proteasome dysfunction in mouse brain cortical neurons impairs autophagy and the Keap1-Nrf2 oxidative defence pathway. Cell Death Dis. 2017;8:e2531 pubmed 出版商
  93. Hosoya M, Fujioka M, Sone T, Okamoto S, Akamatsu W, Ukai H, et al. Cochlear Cell Modeling Using Disease-Specific iPSCs Unveils a Degenerative Phenotype and Suggests Treatments for Congenital Progressive Hearing Loss. Cell Rep. 2017;18:68-81 pubmed 出版商
  94. Kim H, Lee S, Kim C, Kim Y, Ju W, Kim S. Subcellular localization of FOXO3a as a potential biomarker of response to combined treatment with inhibitors of PI3K and autophagy in PIK3CA-mutant cancer cells. Oncotarget. 2017;8:6608-6622 pubmed 出版商
  95. Wei Y, Chiang W, Sumpter R, Mishra P, Levine B. Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell. 2017;168:224-238.e10 pubmed 出版商
  96. Yeung P, Lai A, Son H, Zhang X, Hwang O, Chung S, et al. Aldose reductase deficiency leads to oxidative stress-induced dopaminergic neuronal loss and autophagic abnormality in an animal model of Parkinson's disease. Neurobiol Aging. 2017;50:119-133 pubmed 出版商
  97. Mukhopadhyay C, Triplett A, Bargar T, HECKMAN C, Wagner K, Naramura M. Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A. 2016;113:E8228-E8237 pubmed 出版商
  98. Da Ros M, Lehtiniemi T, Olotu O, Fischer D, Zhang F, Vihinen H, et al. FYCO1 and autophagy control the integrity of the haploid male germ cell-specific RNP granules. Autophagy. 2017;13:302-321 pubmed 出版商
  99. Shi B, Huang Q, Birkett R, Doyle R, Dorfleutner A, Stehlik C, et al. SNAPIN is critical for lysosomal acidification and autophagosome maturation in macrophages. Autophagy. 2017;13:285-301 pubmed 出版商
  100. Pavel M, Imarisio S, Menzies F, Jimenez Sanchez M, Siddiqi F, Wu X, et al. CCT complex restricts neuropathogenic protein aggregation via autophagy. Nat Commun. 2016;7:13821 pubmed 出版商
  101. Yan H, Gao Y, Zhang Y. Inhibition of JNK suppresses autophagy and attenuates insulin resistance in a rat model of nonalcoholic fatty liver disease. Mol Med Rep. 2017;15:180-186 pubmed 出版商
  102. Shen M, Jiang Y, Guan Z, Cao Y, Sun S, Liu H. FSH protects mouse granulosa cells from oxidative damage by repressing mitophagy. Sci Rep. 2016;6:38090 pubmed 出版商
  103. Su F, Myers V, Knezevic T, Wang J, Gao E, Madesh M, et al. Bcl-2-associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCI Insight. 2016;1:e90931 pubmed
  104. Li J, Chen T, Xiao M, Li N, Wang S, Su H, et al. Mouse Sirt3 promotes autophagy in AngII-induced myocardial hypertrophy through the deacetylation of FoxO1. Oncotarget. 2016;7:86648-86659 pubmed 出版商
  105. Cramer S, Saha A, Liu J, Tadi S, Tiziani S, Yan W, et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med. 2017;23:120-127 pubmed 出版商
  106. Tábara L, Escalante R. VMP1 Establishes ER-Microdomains that Regulate Membrane Contact Sites and Autophagy. PLoS ONE. 2016;11:e0166499 pubmed 出版商
  107. Shi D, Liu Y, Xi R, Zou W, Wu L, Zhang Z, et al. Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells. Int J Nanomedicine. 2016;11:5823-5835 pubmed
  108. Sakata K, Araki K, Nakano H, Nishina T, Komazawa Sakon S, Murai S, et al. Novel method to rescue a lethal phenotype through integration of target gene onto the X-chromosome. Sci Rep. 2016;6:37200 pubmed 出版商
  109. Cao L, Riascos Bernal D, Chinnasamy P, Dunaway C, Hou R, Pujato M, et al. Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature. 2016;539:575-578 pubmed 出版商
  110. Lee M, Sumpter R, Zou Z, Sirasanagandla S, Wei Y, Mishra P, et al. Peroxisomal protein PEX13 functions in selective autophagy. EMBO Rep. 2017;18:48-60 pubmed 出版商
  111. Li D, Xie B, Wu X, Li J, Ding Y, Wen X, et al. Late-stage inhibition of autophagy enhances calreticulin surface exposure. Oncotarget. 2016;7:80842-80854 pubmed 出版商
  112. Huang Z, Her L. The Ubiquitin Receptor ADRM1 Modulates HAP40-Induced Proteasome Activity. Mol Neurobiol. 2017;54:7382-7400 pubmed 出版商
  113. Cai Y, Yang L, Hu G, Chen X, Niu F, Yuan L, et al. Regulation of morphine-induced synaptic alterations: Role of oxidative stress, ER stress, and autophagy. J Cell Biol. 2016;215:245-258 pubmed
  114. Lim J, Kim H, Nguyen K, Cho K. The role of TLR9 in stress-dependent autophagy formation. Biochem Biophys Res Commun. 2016;481:219-226 pubmed 出版商
  115. Fan Y, Wang N, Rocchi A, Zhang W, Vassar R, Zhou Y, et al. Identification of natural products with neuronal and metabolic benefits through autophagy induction. Autophagy. 2017;13:41-56 pubmed 出版商
  116. Sun H, Zhang M, Cheng K, Li P, Han S, Li R, et al. Resistance of glioma cells to nutrient-deprived microenvironment can be enhanced by CD133-mediated autophagy. Oncotarget. 2016;7:76238-76249 pubmed 出版商
  117. Han J, Bae J, Choi C, Choi S, Kang H, Jo E, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy. 2016;12:2326-2343 pubmed
  118. Liu L, Tao Z, Zheng L, Brooke J, Smith C, Liu D, et al. FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes. Cell Death Discov. 2016;2:16066 pubmed
  119. Yao J, Jia L, Feathers K, Lin C, Khan N, Klionsky D, et al. Autophagy-mediated catabolism of visual transduction proteins prevents retinal degeneration. Autophagy. 2016;12:2439-2450 pubmed
  120. Yang M, Wang B, Miao L, Xu X, He X. Autophagy is involved in aldosterone?induced mesangial cell proliferation. Mol Med Rep. 2016;14:4638-4642 pubmed 出版商
  121. Wang H, Chen S, Lo W. Identification of Cofilin-1 Induces G0/G1 Arrest and Autophagy in Angiotensin-(1-7)-treated Human Aortic Endothelial Cells from iTRAQ Quantitative Proteomics. Sci Rep. 2016;6:35372 pubmed 出版商
  122. Zou P, Liu L, Zheng L, Payne K, Manjili M, Idowu M, et al. Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment. Oxid Med Cell Longev. 2016;2016:4085727 pubmed
  123. Zhao Y, Fan D, Ru B, Cheng K, Hu S, Zhang J, et al. 6-C-(E-phenylethenyl)naringenin induces cell growth inhibition and cytoprotective autophagy in colon cancer cells. Eur J Cancer. 2016;68:38-50 pubmed 出版商
  124. Gupta S, Zeglinski M, Rattan S, Landry N, Ghavami S, Wigle J, et al. Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts. Oncotarget. 2016;7:78516-78531 pubmed 出版商
  125. Figueroa González G, García Castillo V, Coronel Hernández J, López Urrutia E, León Cabrera S, Arias Romero L, et al. Anti-inflammatory and Antitumor Activity of a Triple Therapy for a Colitis-Related Colorectal Cancer. J Cancer. 2016;7:1632-1644 pubmed
  126. Moosavi M, Sharifi M, Ghafary S, Mohammadalipour Z, Khataee A, Rahmati M, et al. Photodynamic N-TiO2 Nanoparticle Treatment Induces Controlled ROS-mediated Autophagy and Terminal Differentiation of Leukemia Cells. Sci Rep. 2016;6:34413 pubmed 出版商
  127. Vodicka P, Chase K, Iuliano M, Tousley A, Valentine D, Sapp E, et al. Autophagy Activation by Transcription Factor EB (TFEB) in Striatum of HDQ175/Q7 Mice. J Huntingtons Dis. 2016;5:249-260 pubmed
  128. Chaabane W, Appell M. Interconnections between apoptotic and autophagic pathways during thiopurine-induced toxicity in cancer cells: the role of reactive oxygen species. Oncotarget. 2016;7:75616-75634 pubmed 出版商
  129. White S, McDermott M, Sufit R, Kosmac K, Bugg A, Gonzalez Freire M, et al. Walking performance is positively correlated to calf muscle fiber size in peripheral artery disease subjects, but fibers show aberrant mitophagy: an observational study. J Transl Med. 2016;14:284 pubmed 出版商
  130. Wei R, Lin S, Wu W, Chen L, Li C, Chen H, et al. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells. Toxicol Appl Pharmacol. 2016;311:88-98 pubmed 出版商
  131. Kim S, Roy S, Chen B, Nguyen T, McMonigle R, McCracken A, et al. Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. J Clin Invest. 2016;126:4088-4102 pubmed 出版商
  132. Dragich J, Kuwajima T, Hirose Ikeda M, Yoon M, Eenjes E, Bosco J, et al. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. elife. 2016;5: pubmed 出版商
  133. Mercado Pimentel M, Igarashi S, Dunn A, Behbahani M, Miller C, Read C, et al. The Novel Small Molecule Inhibitor, OSU-T315, Suppresses Vestibular Schwannoma and Meningioma Growth by Inhibiting PDK2 Function in the AKT Pathway Activation. Austin J Med Oncol. 2016;3: pubmed
  134. Hernandez Tiedra S, Fabrias G, Davila D, Salanueva I, Casas J, Montes L, et al. Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy. 2016;12:2213-2229 pubmed
  135. Park S, Han S, Choi I, Kim B, Park S, Joe E, et al. Interplay between Leucine-Rich Repeat Kinase 2 (LRRK2) and p62/SQSTM-1 in Selective Autophagy. PLoS ONE. 2016;11:e0163029 pubmed 出版商
  136. Hubert V, Peschel A, Langer B, Groger M, Rees A, Kain R. LAMP-2 is required for incorporating syntaxin-17 into autophagosomes and for their fusion with lysosomes. Biol Open. 2016;5:1516-1529 pubmed 出版商
  137. Teo W, Kerr M, Teasdale R. MTMR4 Is Required for the Stability of the Salmonella-Containing Vacuole. Front Cell Infect Microbiol. 2016;6:91 pubmed 出版商
  138. Qin Y, Liu Y, Hao W, Decker Y, Tomic I, Menger M, et al. Stimulation of TLR4 Attenuates Alzheimer's Disease-Related Symptoms and Pathology in Tau-Transgenic Mice. J Immunol. 2016;197:3281-3292 pubmed
  139. Heulot M, Chevalier N, Puyal J, Margue C, Michel S, Kreis S, et al. The TAT-RasGAP317-326 anti-cancer peptide can kill in a caspase-, apoptosis-, and necroptosis-independent manner. Oncotarget. 2016;7:64342-64359 pubmed 出版商
  140. Cudré Cung H, Zavadakova P, Do Vale Pereira S, Remacle N, Henry H, Ivanisevic J, et al. Ammonium accumulation is a primary effect of 2-methylcitrate exposure in an in vitro model for brain damage in methylmalonic aciduria. Mol Genet Metab. 2016;119:57-67 pubmed 出版商
  141. Conlon D, Thomas T, Fedotova T, Hernandez Ono A, Di Paolo G, Chan R, et al. Inhibition of apolipoprotein B synthesis stimulates endoplasmic reticulum autophagy that prevents steatosis. J Clin Invest. 2016;126:3852-3867 pubmed 出版商
  142. Peng Y, Miao H, Wu S, Yang W, Zhang Y, Xie G, et al. ABHD5 interacts with BECN1 to regulate autophagy and tumorigenesis of colon cancer independent of PNPLA2. Autophagy. 2016;12:2167-2182 pubmed
  143. Mirkheshti N, Park S, Jiang S, Cropper J, Werner S, Song C, et al. Dual targeting of androgen receptor and mTORC1 by salinomycin in prostate cancer. Oncotarget. 2016;7:62240-62254 pubmed 出版商
  144. Lin M, Liu H, Xiong Q, Niu H, Cheng Z, Yamamoto A, et al. Ehrlichia secretes Etf-1 to induce autophagy and capture nutrients for its growth through RAB5 and class III phosphatidylinositol 3-kinase. Autophagy. 2016;12:2145-2166 pubmed
  145. Ratovitski E. Tumor Protein (TP)-p53 Members as Regulators of Autophagy in Tumor Cells upon Marine Drug Exposure. Mar Drugs. 2016;14: pubmed 出版商
  146. Sukseree S, Chen Y, Laggner M, Gruber F, Petit V, Nagelreiter I, et al. Tyrosinase-Cre-Mediated Deletion of the Autophagy Gene Atg7 Leads to Accumulation of the RPE65 Variant M450 in the Retinal Pigment Epithelium of C57BL/6 Mice. PLoS ONE. 2016;11:e0161640 pubmed 出版商
  147. Weikel K, Cacicedo J, Ruderman N, Ido Y. Knockdown of GSK3β increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Biosci Rep. 2016;36: pubmed 出版商
  148. Jo Y, Park N, Park S, Kim B, Shin J, Jo D, et al. O-GlcNAcylation of ATG4B positively regulates autophagy by increasing its hydroxylase activity. Oncotarget. 2016;7:57186-57196 pubmed 出版商
  149. Cao L, Zhang L, Zhao X, Zhang Y. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0161025 pubmed 出版商
  150. Gao Y, Liu Y, Hong L, Yang Z, Cai X, Chen X, et al. Golgi-associated LC3 lipidation requires V-ATPase in noncanonical autophagy. Cell Death Dis. 2016;7:e2330 pubmed 出版商
  151. Karanasios E, Walker S, Okkenhaug H, Manifava M, Hummel E, Zimmermann H, et al. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nat Commun. 2016;7:12420 pubmed 出版商
  152. Ogasawara R, Fujita S, Hornberger T, Kitaoka Y, Makanae Y, Nakazato K, et al. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep. 2016;6:31142 pubmed 出版商
  153. Zhang A, He W, Shi H, Huang X, Ji G. Natural compound oblongifolin C inhibits autophagic flux, and induces apoptosis and mitochondrial dysfunction in human cholangiocarcinoma QBC939 cells. Mol Med Rep. 2016;14:3179-83 pubmed 出版商
  154. Xu S, Law B, Mok S, Leung E, Fan X, Coghi P, et al. Autophagic degradation of epidermal growth factor receptor in gefitinib-resistant lung cancer by celastrol. Int J Oncol. 2016;49:1576-88 pubmed 出版商
  155. Xing Y, Cao R, Hu H. TLR and NLRP3 inflammasome-dependent innate immune responses to tumor-derived autophagosomes (DRibbles). Cell Death Dis. 2016;7:e2322 pubmed 出版商
  156. Bartlett J, Trivedi P, Yeung P, Kienesberger P, Pulinilkunnil T. Doxorubicin impairs cardiomyocyte viability by suppressing transcription factor EB expression and disrupting autophagy. Biochem J. 2016;473:3769-3789 pubmed
  157. Wang Y, Sun H, Wang J, Wang H, Meng L, Xu C, et al. DNA-PK-mediated phosphorylation of EZH2 regulates the DNA damage-induced apoptosis to maintain T-cell genomic integrity. Cell Death Dis. 2016;7:e2316 pubmed 出版商
  158. Wang J, Zhang J, Lee Y, Koh P, Ng S, Bao F, et al. Quantitative chemical proteomics profiling of de novo protein synthesis during starvation-mediated autophagy. Autophagy. 2016;12:1931-1944 pubmed
  159. Wang J, Zhou J, Kho D, Reiners J, Wu G. Role for DUSP1 (dual-specificity protein phosphatase 1) in the regulation of autophagy. Autophagy. 2016;12:1791-1803 pubmed
  160. Grinshtein N, Rioseco C, Marcellus R, UEHLING D, Aman A, Lun X, et al. Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. Oncotarget. 2016;7:59360-59376 pubmed 出版商
  161. Buckingham E, Jarosinski K, Jackson W, Carpenter J, Grose C. Exocytosis of Varicella-Zoster Virus Virions Involves a Convergence of Endosomal and Autophagy Pathways. J Virol. 2016;90:8673-85 pubmed 出版商
  162. Geng J, Li J, Huang T, Zhao K, Chen Q, Guo W, et al. A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria. Mol Med Rep. 2016;14:1970-8 pubmed 出版商
  163. Pajares M, Jiménez Moreno N, García Yagüe A, Escoll M, De Ceballos M, Van Leuven F, et al. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy. 2016;12:1902-1916 pubmed
  164. Diez H, Benitez M, Fernandez S, Torres Aleman I, Garrido J, Wandosell F. Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation. Biochim Biophys Acta. 2016;1863:2574-2583 pubmed 出版商
  165. Song M, Wang Y, Shang Z, Liu X, Xie D, Wang Q, et al. Bystander autophagy mediated by radiation-induced exosomal miR-7-5p in non-targeted human bronchial epithelial cells. Sci Rep. 2016;6:30165 pubmed 出版商
  166. Liu C, Yue R, Yang Y, Cui Y, Yang L, Zhao D, et al. AIM2 inhibits autophagy and IFN-? production during M. bovis infection. Oncotarget. 2016;7:46972-46987 pubmed 出版商
  167. Hewitt G, Carroll B, Sarallah R, Correia Melo C, Ogrodnik M, Nelson G, et al. SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy. 2016;12:1917-1930 pubmed
  168. Zea A, Stewart T, Ascani J, Tate D, Finkel Jimenez B, Wilk A, et al. Activation of the IL-2 Receptor in Podocytes: A Potential Mechanism for Podocyte Injury in Idiopathic Nephrotic Syndrome?. PLoS ONE. 2016;11:e0157907 pubmed 出版商
  169. Pan H, Zhong X, Lee S. Sustained activation of mTORC1 in macrophages increases AMPKα-dependent autophagy to maintain cellular homeostasis. BMC Biochem. 2016;17:14 pubmed 出版商
  170. Shen P, Chen M, He M, Chen L, Song Y, Xiao P, et al. Inhibition of ER?/ERK/P62 cascades induces "autophagic switch" in the estrogen receptor-positive breast cancer cells exposed to gemcitabine. Oncotarget. 2016;7:48501-48516 pubmed 出版商
  171. Bramini M, Sacchetti S, Armirotti A, Rocchi A, Vazquez E, León Castellanos V, et al. Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano. 2016;10:7154-71 pubmed 出版商
  172. Zhang X, Cheng X, Yu L, Yang J, Calvo R, Patnaik S, et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun. 2016;7:12109 pubmed 出版商
  173. Dejesus R, Moretti F, McAllister G, Wang Z, Bergman P, Liu S, et al. Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62. elife. 2016;5: pubmed 出版商
  174. Davis M, Delaney J, Patel C, Storgard R, Stupack D. Nelfinavir is effective against human cervical cancer cells in vivo: a potential treatment modality in resource-limited settings. Drug Des Devel Ther. 2016;10:1837-46 pubmed 出版商
  175. Hamlin A, Basford J, Jaeschke A, Hui D. LRP1 Protein Deficiency Exacerbates Palmitate-induced Steatosis and Toxicity in Hepatocytes. J Biol Chem. 2016;291:16610-9 pubmed 出版商
  176. Choi H, Merceron C, Mangiavini L, Seifert E, Schipani E, Shapiro I, et al. Hypoxia promotes noncanonical autophagy in nucleus pulposus cells independent of MTOR and HIF1A signaling. Autophagy. 2016;12:1631-46 pubmed 出版商
  177. Shin H, Kim H, Oh S, Lee J, Kee M, Ko H, et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature. 2016;534:553-7 pubmed 出版商
  178. Gómez Sánchez R, Yakhine Diop S, Bravo San Pedro J, Pizarro Estrella E, Rodríguez Arribas M, Climent V, et al. PINK1 deficiency enhances autophagy and mitophagy induction. Mol Cell Oncol. 2016;3:e1046579 pubmed 出版商
  179. Kuramoto K, Wang N, Fan Y, Zhang W, Schoenen F, Frankowski K, et al. Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids. Autophagy. 2016;12:1460-71 pubmed 出版商
  180. Andersson A, Andersson B, Lorell C, Raffetseder J, Larsson M, Blomgran R. Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages. Sci Rep. 2016;6:28171 pubmed 出版商
  181. Lee J, Takahama S, Zhang G, Tomarev S, Ye Y. Unconventional secretion of misfolded proteins promotes adaptation to proteasome dysfunction in mammalian cells. Nat Cell Biol. 2016;18:765-76 pubmed 出版商
  182. Gui L, Liu B, Lv G. Hypoxia induces autophagy in cardiomyocytes via a hypoxia-inducible factor 1-dependent mechanism. Exp Ther Med. 2016;11:2233-2239 pubmed
  183. Wijdeven R, Janssen H, Nahidiazar L, Janssen L, Jalink K, Berlin I, et al. Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway. Nat Commun. 2016;7:11808 pubmed 出版商
  184. Bouchard G, Therriault H, Geha S, Bérubé Lauzière Y, Bujold R, Saucier C, et al. Stimulation of triple negative breast cancer cell migration and metastases formation is prevented by chloroquine in a pre-irradiated mouse model. BMC Cancer. 2016;16:361 pubmed 出版商
  185. Cheng M, Liu L, Lao Y, Liao W, Liao M, Luo X, et al. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis. Oncotarget. 2016;7:42274-42287 pubmed 出版商
  186. Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, et al. Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis. J Immunol. 2016;197:504-16 pubmed 出版商
  187. Ando K, Tomimura K, Sazdovitch V, Suain V, Yilmaz Z, Authelet M, et al. Level of PICALM, a key component of clathrin-mediated endocytosis, is correlated with levels of phosphotau and autophagy-related proteins and is associated with tau inclusions in AD, PSP and Pick disease. Neurobiol Dis. 2016;94:32-43 pubmed 出版商
  188. Shruthi K, Reddy S, Reddy P, Shivalingam P, Harishankar N, Reddy G. Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system. J Nutr Biochem. 2016;33:73-81 pubmed 出版商
  189. Zeng J, Jing Y, Shi R, Pan X, Lai F, Liu W, et al. Autophagy regulates biliary differentiation of hepatic progenitor cells through Notch1 signaling pathway. Cell Cycle. 2016;15:1602-10 pubmed 出版商
  190. Foltz S, Luan J, Call J, Patel A, Peissig K, Fortunato M, et al. Four-week rapamycin treatment improves muscular dystrophy in a fukutin-deficient mouse model of dystroglycanopathy. Skelet Muscle. 2016;6:20 pubmed 出版商
  191. Adams O, Dislich B, Berezowska S, Schläfli A, Seiler C, Kröll D, et al. Prognostic relevance of autophagy markers LC3B and p62 in esophageal adenocarcinomas. Oncotarget. 2016;7:39241-39255 pubmed 出版商
  192. Otto C, Hahlbrock T, Eich K, Karaaslan F, Jürgens C, Germer C, et al. Antiproliferative and antimetabolic effects behind the anticancer property of fermented wheat germ extract. BMC Complement Altern Med. 2016;16:160 pubmed 出版商
  193. Barnard R, Regan D, Hansen R, Maycotte P, Thorburn A, Gustafson D. Autophagy Inhibition Delays Early but Not Late-Stage Metastatic Disease. J Pharmacol Exp Ther. 2016;358:282-93 pubmed 出版商
  194. Gao B, Han Y, Wang L, Lin Y, Sun Z, Lu W, et al. Eicosapentaenoic acid attenuates dexamethasome-induced apoptosis by inducing adaptive autophagy via GPR120 in murine bone marrow-derived mesenchymal stem cells. Cell Death Dis. 2016;7:e2235 pubmed 出版商
  195. Elimam H, Papillon J, Kaufman D, Guillemette J, Aoudjit L, Gross R, et al. Genetic Ablation of Calcium-independent Phospholipase A2? Induces Glomerular Injury in Mice. J Biol Chem. 2016;291:14468-82 pubmed 出版商
  196. Lin K, Cheng S, Tsai S, Tsai J, Lin C, Cheung C. Delivery of a survivin promoter-driven antisense survivin-expressing plasmid DNA as a cancer therapeutic: a proof-of-concept study. Onco Targets Ther. 2016;9:2601-13 pubmed 出版商
  197. Droubi A, Bulley S, Clarke J, Irvine R. Nuclear localizations of phosphatidylinositol 5-phosphate 4-kinases ? and ? are dynamic and independently regulated during starvation-induced stress. Biochem J. 2016;473:2155-63 pubmed 出版商
  198. Wang L, Yokoyama K, Lin C, Chen T, Hsiao H, Chiang P, et al. Knockout of ho-1 protects the striatum from ferrous iron-induced injury in a male-specific manner in mice. Sci Rep. 2016;6:26358 pubmed 出版商
  199. Ranjan A, Srivastava S. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis. Sci Rep. 2016;6:26165 pubmed 出版商
  200. Koskela A, Reinisalo M, Petrovski G, Sinha D, Olmiere C, Karjalainen R, et al. Nutraceutical with Resveratrol and Omega-3 Fatty Acids Induces Autophagy in ARPE-19 Cells. Nutrients. 2016;8: pubmed 出版商
  201. Deng H, Mi M. Resveratrol Attenuates A?25-35 Caused Neurotoxicity by Inducing Autophagy Through the TyrRS-PARP1-SIRT1 Signaling Pathway. Neurochem Res. 2016;41:2367-79 pubmed 出版商
  202. Liu L, Wang C, Lin Y, Xi Y, Li H, Shi S, et al. Suppression of calcium?sensing receptor ameliorates cardiac hypertrophy through inhibition of autophagy. Mol Med Rep. 2016;14:111-20 pubmed 出版商
  203. Park S, Yi H, Suh N, Park Y, Koh J, Jeong S, et al. Inhibition of EHMT2/G9a epigenetically increases the transcription of Beclin-1 via an increase in ROS and activation of NF-?B. Oncotarget. 2016;7:39796-39808 pubmed 出版商
  204. Song J, Sun Y, Peluso I, Zeng Y, Yu X, Lu J, et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy. 2016;12:1372-89 pubmed 出版商
  205. Wei Z, Yuan Y, Jaouen F, Ma M, Hao C, Zhang Z, et al. SLC35D3 increases autophagic activity in midbrain dopaminergic neurons by enhancing BECN1-ATG14-PIK3C3 complex formation. Autophagy. 2016;12:1168-79 pubmed 出版商
  206. Huang G, Zhang F, Ye Q, Wang H. The circadian clock regulates autophagy directly through the nuclear hormone receptor Nr1d1/Rev-erb? and indirectly via Cebpb/(C/ebp?) in zebrafish. Autophagy. 2016;12:1292-309 pubmed 出版商
  207. Pastore N, Brady O, Diab H, Martina J, Sun L, Huynh T, et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy. 2016;12:1240-58 pubmed 出版商
  208. Karvela M, Baquero P, Kuntz E, Mukhopadhyay A, Mitchell R, Allan E, et al. ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells. Autophagy. 2016;12:936-48 pubmed 出版商
  209. Ting W, Yang J, Kuo C, Xiao Z, Lu X, Yeh Y, et al. Environmental tobacco smoke increases autophagic effects but decreases longevity associated with Sirt-1 protein expression in young C57BL mice hearts. Oncotarget. 2016;7:39017-39025 pubmed 出版商
  210. Xue H, Yuan G, Guo X, Liu Q, Zhang J, Gao X, et al. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy. 2016;12:1129-52 pubmed 出版商
  211. De Filippis L, Halikere A, McGowan H, Moore J, Tischfield J, Hart R, et al. Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells. Mol Brain. 2016;9:51 pubmed 出版商
  212. Onesto E, Colombrita C, Gumina V, Borghi M, Dusi S, Doretti A, et al. Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts. Acta Neuropathol Commun. 2016;4:47 pubmed 出版商
  213. Pereira D, Simões A, Gomes S, Castro R, Carvalho T, Rodrigues C, et al. MEK5/ERK5 signaling inhibition increases colon cancer cell sensitivity to 5-fluorouracil through a p53-dependent mechanism. Oncotarget. 2016;7:34322-40 pubmed 出版商
  214. Silva S, Levy D, Ruiz J, de Melo T, Isaac C, Fidelis M, et al. Oxysterols in adipose tissue-derived mesenchymal stem cell proliferation and death. J Steroid Biochem Mol Biol. 2017;169:164-175 pubmed 出版商
  215. Krall A, Xu S, Graeber T, Braas D, Christofk H. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun. 2016;7:11457 pubmed 出版商
  216. Huang Q, Zhan L, Cao H, Li J, Lyu Y, Guo X, et al. Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways. Autophagy. 2016;12:999-1014 pubmed 出版商
  217. Xu J, Li J, Wang J, Chi Y, Zhang K, Cui R. Heme oxygenase?1 protects H2O2?insulted glomerular mesangial cells from excessive autophagy. Mol Med Rep. 2016;13:5269-75 pubmed 出版商
  218. Swiader A, Nahapetyan H, Faccini J, D Angelo R, Mucher E, Elbaz M, et al. Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids. Oncotarget. 2016;7:28821-35 pubmed 出版商
  219. Stephenson E, Ragauskas A, Jaligama S, Redd J, Parvathareddy J, Peloquin M, et al. Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice. Am J Physiol Endocrinol Metab. 2016;310:E1003-15 pubmed 出版商
  220. Chen K, Lin C, Huang C, Chen S, Wu S, Chiang H, et al. Dual Roles of 17-? Estradiol in Estrogen Receptor-dependent Growth Inhibition in Renal Cell Carcinoma. Cancer Genomics Proteomics. 2016;13:219-30 pubmed
  221. Sellier C, Campanari M, Julie Corbier C, Gaucherot A, Kolb Cheynel I, Oulad Abdelghani M, et al. Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO J. 2016;35:1276-97 pubmed 出版商
  222. Zhang Q, Gao M, Zhang Y, Song Y, Cheng H, Zhou R. The germline-enriched Ppp1r36 promotes autophagy. Sci Rep. 2016;6:24609 pubmed 出版商
  223. Follo C, Barbone D, Richards W, Bueno R, Broaddus V. Autophagy initiation correlates with the autophagic flux in 3D models of mesothelioma and with patient outcome. Autophagy. 2016;12:1180-94 pubmed 出版商
  224. Pryde K, Smith H, Chau K, Schapira A. PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. J Cell Biol. 2016;213:163-71 pubmed 出版商
  225. Qi Y, Qiu Q, Gu X, Tian Y, Zhang Y. ATM mediates spermidine-induced mitophagy via PINK1 and Parkin regulation in human fibroblasts. Sci Rep. 2016;6:24700 pubmed 出版商
  226. Angelini C, Nascimbeni A, Cenacchi G, Tasca E. Lipolysis and lipophagy in lipid storage myopathies. Biochim Biophys Acta. 2016;1862:1367-73 pubmed 出版商
  227. Lai C, Tsai C, Kuo W, Ho T, Day C, Pai P, et al. Multi-Strain Probiotics Inhibit Cardiac Myopathies and Autophagy to Prevent Heart Injury in High-Fat Diet-Fed Rats. Int J Med Sci. 2016;13:277-85 pubmed 出版商
  228. Nivon M, Fort L, Muller P, Richet E, Simon S, Guey B, et al. NF?B is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation. Mol Biol Cell. 2016;27:1712-27 pubmed 出版商
  229. Wang Q, Xue L, Zhang X, Bu S, Zhu X, Lai D. Autophagy protects ovarian cancer-associated fibroblasts against oxidative stress. Cell Cycle. 2016;15:1376-85 pubmed 出版商
  230. Xiao L, Shi X, Zhang Y, Zhu Y, Zhu L, Tian W, et al. YAP induces cisplatin resistance through activation of autophagy in human ovarian carcinoma cells. Onco Targets Ther. 2016;9:1105-14 pubmed 出版商
  231. Lee J, Kuo C, Tsai S, Cheng S, Chen S, Chan H, et al. Inhibition of HDAC3- and HDAC6-Promoted Survivin Expression Plays an Important Role in SAHA-Induced Autophagy and Viability Reduction in Breast Cancer Cells. Front Pharmacol. 2016;7:81 pubmed 出版商
  232. Basisty N, Dai D, Gagnidze A, Gitari L, Fredrickson J, Maina Y, et al. Mitochondrial-targeted catalase is good for the old mouse proteome, but not for the young: 'reverse' antagonistic pleiotropy?. Aging Cell. 2016;15:634-45 pubmed 出版商
  233. Wohlgemuth S, Ramirez Lee Y, Tao S, Monteiro A, Ahmed B, Dahl G. Short communication: Effect of heat stress on markers of autophagy in the mammary gland during the dry period. J Dairy Sci. 2016;99:4875-4880 pubmed 出版商
  234. Zhuang H, Tian W, Li W, Zhang X, Wang J, Yang Y, et al. Autophagic Cell Death and Apoptosis Jointly Mediate Cisatracurium Besylate-Induced Cell Injury. Int J Mol Sci. 2016;17:515 pubmed 出版商
  235. Ren J, Li J, Liu X, Feng Y, Gui Y, Yang J, et al. Quercetin Inhibits Fibroblast Activation and Kidney Fibrosis Involving the Suppression of Mammalian Target of Rapamycin and ?-catenin Signaling. Sci Rep. 2016;6:23968 pubmed 出版商
  236. Dey A, Mustafi S, Saha S, Kumar Dhar Dwivedi S, Mukherjee P, Bhattacharya R. Inhibition of BMI1 induces autophagy-mediated necroptosis. Autophagy. 2016;12:659-70 pubmed 出版商
  237. Kumar R, Narasimhan M, Shanmugam G, Hong J, Devarajan A, Palaniappan S, et al. Abrogation of Nrf2 impairs antioxidant signaling and promotes atrial hypertrophy in response to high-intensity exercise stress. J Transl Med. 2016;14:86 pubmed 出版商
  238. Park J, Jung C, Seo M, Otto N, Grunwald D, Kim K, et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy. 2016;12:547-64 pubmed 出版商
  239. Phelps Polirer K, Abt M, Smith D, Yeh E. Co-Targeting of JNK and HUNK in Resistant HER2-Positive Breast Cancer. PLoS ONE. 2016;11:e0153025 pubmed 出版商
  240. Lin T, Chang Y, Lee S, Campbell M, Wang T, Shen S, et al. REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling. Oncotarget. 2016;7:26137-51 pubmed 出版商
  241. Krishnan V, White Z, McMahon C, Hodgetts S, Fitzgerald M, Shavlakadze T, et al. A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice. J Neuropathol Exp Neurol. 2016;75:464-78 pubmed 出版商
  242. Prieto J, León M, Ponsoda X, Sendra R, Bort R, Ferrer Lorente R, et al. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat Commun. 2016;7:11124 pubmed 出版商
  243. Xia X, Che Y, Gao Y, Zhao S, Ao C, Yang H, et al. Arginine Supplementation Recovered the IFN-?-Mediated Decrease in Milk Protein and Fat Synthesis by Inhibiting the GCN2/eIF2? Pathway, Which Induces Autophagy in Primary Bovine Mammary Epithelial Cells. Mol Cells. 2016;39:410-7 pubmed 出版商
  244. Chen S, Wang C, Yeo S, Liang C, Okamoto T, Sun S, et al. Distinct roles of autophagy-dependent and -independent functions of FIP200 revealed by generation and analysis of a mutant knock-in mouse model. Genes Dev. 2016;30:856-69 pubmed 出版商
  245. Viringipurampeer I, Metcalfe A, Bashar A, Sivak O, Yanai A, Mohammadi Z, et al. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration. Hum Mol Genet. 2016;25:1501-16 pubmed 出版商
  246. Gschweitl M, Ulbricht A, Barnes C, Enchev R, Stoffel Studer I, Meyer Schaller N, et al. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. elife. 2016;5:e13841 pubmed 出版商
  247. Lopes V, Loitto V, Audinot J, Bayat N, Gutleb A, Cristobal S. Dose-dependent autophagic effect of titanium dioxide nanoparticles in human HaCaT cells at non-cytotoxic levels. J Nanobiotechnology. 2016;14:22 pubmed 出版商
  248. Relic B, Charlier E, Deroyer C, Malaise O, Neuville S, Desoroux A, et al. BAY 11-7085 induces glucocorticoid receptor activation and autophagy that collaborate with apoptosis to induce human synovial fibroblast cell death. Oncotarget. 2016;7:23370-82 pubmed 出版商
  249. Bretin A, Carrière J, Dalmasso G, Bergougnoux A, B chir W, Maurin A, et al. Activation of the EIF2AK4-EIF2A/eIF2?-ATF4 pathway triggers autophagy response to Crohn disease-associated adherent-invasive Escherichia coli infection. Autophagy. 2016;12:770-83 pubmed 出版商
  250. Soeda J, Mouralidarane A, Cordero P, Li J, Nguyen V, Carter R, et al. Maternal obesity alters endoplasmic reticulum homeostasis in offspring pancreas. J Physiol Biochem. 2016;72:281-91 pubmed 出版商
  251. Ruparelia A, Oorschot V, Ramm G, Bryson Richardson R. FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency. Hum Mol Genet. 2016;25:2131-2142 pubmed
  252. Crippa V, D Agostino V, Cristofani R, Rusmini P, Cicardi M, Messi E, et al. Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases. Sci Rep. 2016;6:22827 pubmed 出版商
  253. Beaumatin F, El Dhaybi M, Lasserre J, Salin B, Moyer M, Verdier M, et al. N52 monodeamidated Bcl‑xL shows impaired oncogenic properties in vivo and in vitro. Oncotarget. 2016;7:17129-43 pubmed 出版商
  254. Choi W, de Poot S, Lee J, Kim J, Han D, Kim Y, et al. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat Commun. 2016;7:10963 pubmed 出版商
  255. Yeo S, Itahana Y, Guo A, Han R, Iwamoto K, Nguyen H, et al. Transglutaminase 2 contributes to a TP53-induced autophagy program to prevent oncogenic transformation. elife. 2016;5:e07101 pubmed 出版商
  256. Jennewein L, Ronellenfitsch M, Antonietti P, Ilina E, Jung J, Stadel D, et al. Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget. 2016;7:20016-32 pubmed 出版商
  257. Scotton C, Bovolenta M, Schwartz E, Falzarano M, Martoni E, Passarelli C, et al. Deep RNA profiling identified CLOCK and molecular clock genes as pathophysiological signatures in collagen VI myopathy. J Cell Sci. 2016;129:1671-84 pubmed 出版商
  258. Datan E, Roy S, Germain G, Zali N, McLean J, Golshan G, et al. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death Dis. 2016;7:e2127 pubmed 出版商
  259. Saveljeva S, Cleary P, Mnich K, Ayo A, Pakos Zebrucka K, Patterson J, et al. Endoplasmic reticulum stress-mediated induction of SESTRIN 2 potentiates cell survival. Oncotarget. 2016;7:12254-66 pubmed 出版商
  260. Colangelo T, Polcaro G, Ziccardi P, Muccillo L, Galgani M, Pucci B, et al. The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells. Cell Death Dis. 2016;7:e2108 pubmed 出版商
  261. Yu L, Wu W, Gu C, Zhong D, Zhao X, Kong Y, et al. Obatoclax impairs lysosomal function to block autophagy in cisplatin-sensitive and -resistant esophageal cancer cells. Oncotarget. 2016;7:14693-707 pubmed 出版商
  262. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  263. Zou M, Zhu W, Wang L, Shi L, Gao R, Ou Y, et al. AEG-1/MTDH-activated autophagy enhances human malignant glioma susceptibility to TGF-β1-triggered epithelial-mesenchymal transition. Oncotarget. 2016;7:13122-38 pubmed 出版商
  264. Li M, Lu G, Hu J, Shen X, Ju J, Gao Y, et al. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy. Stem Cell Reports. 2016;6:396-410 pubmed 出版商
  265. Cao L, Qin X, Peterson M, Haller S, Wilson K, Hu N, et al. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity. J Mol Cell Cardiol. 2016;92:185-95 pubmed 出版商
  266. Han X, Tai H, Wang X, Wang Z, Zhou J, Wei X, et al. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation. Aging Cell. 2016;15:416-27 pubmed 出版商
  267. Stojcheva N, Schechtmann G, Sass S, Roth P, Florea A, Stefanski A, et al. MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM. Oncotarget. 2016;7:12937-50 pubmed 出版商
  268. Zhang W, Shi H, Zhang M, Liu B, Mao S, Li L, et al. Poly C binding protein 1 represses autophagy through downregulation of LC3B to promote tumor cell apoptosis in starvation. Int J Biochem Cell Biol. 2016;73:127-136 pubmed 出版商
  269. Lei Y, Kansy B, Li J, Cong L, Liu Y, Trivedi S, et al. EGFR-targeted mAb therapy modulates autophagy in head and neck squamous cell carcinoma through NLRX1-TUFM protein complex. Oncogene. 2016;35:4698-707 pubmed 出版商
  270. Kim N, Kim M, Sung P, Bae Y, Shin E, Yoo J. Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A. Nat Commun. 2016;7:10631 pubmed 出版商
  271. Liu Y, Takahashi Y, Desai N, Zhang J, Serfass J, Shi Y, et al. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci Rep. 2016;6:20453 pubmed 出版商
  272. Ouyang F, Huang H, Zhang M, Chen M, Huang H, Huang F, et al. HMGB1 induces apoptosis and EMT in association with increased autophagy following H/R injury in cardiomyocytes. Int J Mol Med. 2016;37:679-89 pubmed 出版商
  273. Wu X, Fleming A, Ricketts T, Pavel M, Virgin H, Menzies F, et al. Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun. 2016;7:10533 pubmed 出版商
  274. Gentry E, Henderson B, Arrant A, Gearing M, Feng Y, Riddle N, et al. Rho Kinase Inhibition as a Therapeutic for Progressive Supranuclear Palsy and Corticobasal Degeneration. J Neurosci. 2016;36:1316-23 pubmed 出版商
  275. Button R, Vincent J, Strang C, Luo S. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget. 2016;7:5157-75 pubmed 出版商
  276. Kim M, Sandford E, Gatica D, Qiu Y, Liu X, Zheng Y, et al. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. elife. 2016;5: pubmed 出版商
  277. Duncan J, Zhang X, Wang N, Johnson S, Harris S, Udemgba C, et al. Binge ethanol exposure increases the Krüppel-like factor 11-monoamine oxidase (MAO) pathway in rats: Examining the use of MAO inhibitors to prevent ethanol-induced brain injury. Neuropharmacology. 2016;105:329-340 pubmed 出版商
  278. Goulielmaki M, Koustas E, Moysidou E, Vlassi M, Sasazuki T, Shirasawa S, et al. BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells. Oncotarget. 2016;7:9188-221 pubmed 出版商
  279. Puente C, Hendrickson R, Jiang X. Nutrient-regulated Phosphorylation of ATG13 Inhibits Starvation-induced Autophagy. J Biol Chem. 2016;291:6026-35 pubmed 出版商
  280. Ruiz A, Rockfield S, Taran N, Haller E, Engelman R, Flores I, et al. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis. Cell Death Dis. 2016;7:e2059 pubmed 出版商
  281. Pawar K, Hanisch C, Palma Vera S, Einspanier R, Sharbati S. Down regulated lncRNA MEG3 eliminates mycobacteria in macrophages via autophagy. Sci Rep. 2016;6:19416 pubmed 出版商
  282. Zhou Q, Yen A, Rymarczyk G, Asai H, Trengrove C, Aziz N, et al. Impairment of PARK14-dependent Ca(2+) signalling is a novel determinant of Parkinson's disease. Nat Commun. 2016;7:10332 pubmed 出版商
  283. Cloonan S, Glass K, Laucho Contreras M, Bhashyam A, Cervo M, Pabón M, et al. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med. 2016;22:163-74 pubmed 出版商
  284. Mukherjee R, Chakrabarti O. Ubiquitin-mediated regulation of the E3 ligase GP78 by MGRN1 in trans affects mitochondrial homeostasis. J Cell Sci. 2016;129:757-73 pubmed 出版商
  285. Wu B, Yu L, Wang Y, Wang H, Li C, Yin Y, et al. Aldehyde dehydrogenase 2 activation in aged heart improves the autophagy by reducing the carbonyl modification on SIRT1. Oncotarget. 2016;7:2175-88 pubmed 出版商
  286. Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich M, Lim R, et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature. 2016;529:216-20 pubmed 出版商
  287. Zhao F, Huang W, Zhang Z, Mao L, Han Y, Yan J, et al. Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells. Oncotarget. 2016;7:5366-82 pubmed 出版商
  288. Kraft L, Manral P, Dowler J, Kenworthy A. Nuclear LC3 Associates with Slowly Diffusing Complexes that Survey the Nucleolus. Traffic. 2016;17:369-99 pubmed 出版商
  289. Xie C, Ginet V, Sun Y, Koike M, Zhou K, Li T, et al. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy. 2016;12:410-23 pubmed 出版商
  290. Yang X, Liang L, Zong C, Lai F, Zhu P, Liu Y, et al. Kupffer cells-dependent inflammation in the injured liver increases recruitment of mesenchymal stem cells in aging mice. Oncotarget. 2016;7:1084-95 pubmed 出版商
  291. Wang Y, Xu S, Xu W, Yang H, Hu P, Li Y. Sodium formate induces autophagy and apoptosis via the JNK signaling pathway of photoreceptor cells. Mol Med Rep. 2016;13:1111-8 pubmed 出版商
  292. Chen Y, Tsou B, Hu S, Ma H, Liu X, Yen Y, et al. Autophagy induction causes a synthetic lethal sensitization to ribonucleotide reductase inhibition in breast cancer cells. Oncotarget. 2016;7:1984-99 pubmed 出版商
  293. Mercau M, Repetto E, Perez M, Martinez Calejman C, Sánchez Puch S, Finkielstein C, et al. Moderate Exercise Prevents Functional Remodeling of the Anterior Pituitary Gland in Diet-Induced Insulin Resistance in Rats: Role of Oxidative Stress and Autophagy. Endocrinology. 2016;157:1135-45 pubmed 出版商
  294. Vural A, Al Khodor S, Cheung G, Shi C, Srinivasan L, McQuiston T, et al. Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection. J Immunol. 2016;196:846-56 pubmed 出版商
  295. Stotland A, Gottlieb R. α-MHC MitoTimer mouse: In vivo mitochondrial turnover model reveals remarkable mitochondrial heterogeneity in the heart. J Mol Cell Cardiol. 2016;90:53-8 pubmed 出版商
  296. Schwab A, Ebert A. Neurite Aggregation and Calcium Dysfunction in iPSC-Derived Sensory Neurons with Parkinson's Disease-Related LRRK2 G2019S Mutation. Stem Cell Reports. 2015;5:1039-1052 pubmed 出版商
  297. Wang J, Cao Y, Li Q, Yang Y, Jin M, Chen D, et al. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy. 2015;11:2057-2073 pubmed 出版商
  298. Kimmey J, Huynh J, Weiss L, Park S, Kambal A, Debnath J, et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature. 2015;528:565-9 pubmed 出版商
  299. Martínez Zamora A, Meseguer S, Esteve J, Villarroya M, Aguado C, Enríquez J, et al. Defective Expression of the Mitochondrial-tRNA Modifying Enzyme GTPBP3 Triggers AMPK-Mediated Adaptive Responses Involving Complex I Assembly Factors, Uncoupling Protein 2, and the Mitochondrial Pyruvate Carrier. PLoS ONE. 2015;10:e0144273 pubmed 出版商
  300. Yasuda K, Takahashi M, Mori N. Mdm20 Modulates Actin Remodeling through the mTORC2 Pathway via Its Effect on Rictor Expression. PLoS ONE. 2015;10:e0142943 pubmed 出版商
  301. McIlroy G, Tammireddy S, Maskrey B, Grant L, Doherty M, Watson D, et al. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue. Biochem Pharmacol. 2016;100:86-97 pubmed 出版商
  302. Pettersen K, Monsen V, HakvÃ¥g Pettersen C, Overland H, Pettersen G, Samdal H, et al. DHA-induced stress response in human colon cancer cells - Focus on oxidative stress and autophagy. Free Radic Biol Med. 2016;90:158-72 pubmed 出版商
  303. Huang Y, Chen Y, Lai Y, Cheng C, Lin T, Su Y, et al. Resveratrol alleviates the cytotoxicity induced by the radiocontrast agent, ioxitalamate, by reducing the production of reactive oxygen species in HK-2 human renal proximal tubule epithelial cells in vitro. Int J Mol Med. 2016;37:83-91 pubmed 出版商
  304. Sin J, Andres A, Taylor D, Weston T, Hiraumi Y, Stotland A, et al. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy. 2016;12:369-80 pubmed 出版商
  305. Wang Z, Liu N, Liu K, Zhou G, Gan J, Wang Z, et al. Autophagy mediated CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis. Autophagy. 2015;11:2358-69 pubmed 出版商
  306. Chrisam M, Pirozzi M, Castagnaro S, Blaauw B, Polishchuck R, Cecconi F, et al. Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice. Autophagy. 2015;11:2142-52 pubmed 出版商
  307. Lesmana R, Sinha R, Singh B, Zhou J, Ohba K, Wu Y, et al. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle. Endocrinology. 2016;157:23-38 pubmed 出版商
  308. Alnasser H, Guan Q, Zhang F, Gleave M, Nguan C, Du C. Requirement of clusterin expression for prosurvival autophagy in hypoxic kidney tubular epithelial cells. Am J Physiol Renal Physiol. 2016;310:F160-73 pubmed 出版商
  309. Majumder P, Chakrabarti O. Mahogunin regulates fusion between amphisomes/MVBs and lysosomes via ubiquitination of TSG101. Cell Death Dis. 2015;6:e1970 pubmed 出版商
  310. Hu J, Man W, Shen M, Zhang M, Lin J, Wang T, et al. Luteolin alleviates post-infarction cardiac dysfunction by up-regulating autophagy through Mst1 inhibition. J Cell Mol Med. 2016;20:147-56 pubmed 出版商
  311. Dou Z, Xu C, Donahue G, Shimi T, Pan J, Zhu J, et al. Autophagy mediates degradation of nuclear lamina. Nature. 2015;527:105-9 pubmed 出版商
  312. Lin C, Chen Y, Lin C, Chen Y, Lo G, Lee P, et al. Amiodarone as an autophagy promoter reduces liver injury and enhances liver regeneration and survival in mice after partial hepatectomy. Sci Rep. 2015;5:15807 pubmed 出版商
  313. Antonucci L, Fagman J, Kim J, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A. 2015;112:E6166-74 pubmed 出版商
  314. Ivankovic D, Chau K, Schapira A, Gegg M. Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy. J Neurochem. 2016;136:388-402 pubmed 出版商
  315. Chauhan S, Ahmed Z, Bradfute S, Arko Mensah J, Mandell M, Won Choi S, et al. Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nat Commun. 2015;6:8620 pubmed 出版商
  316. Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, et al. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 2015;6:39839-54 pubmed 出版商
  317. Wang Y, Kuramitsu Y, Baron B, Kitagawa T, Tokuda K, Akada J, et al. CGK733-induced LC3 II formation is positively associated with the expression of cyclin-dependent kinase inhibitor p21Waf1/Cip1 through modulation of the AMPK and PERK/CHOP signaling pathways. Oncotarget. 2015;6:39692-701 pubmed 出版商
  318. Eino A, Kageyama S, Uemura T, Annoh H, Saito T, Narita I, et al. Sqstm1-GFP knock-in mice reveal dynamic actions of Sqstm1 during autophagy and under stress conditions in living cells. J Cell Sci. 2015;128:4453-61 pubmed 出版商
  319. Olsvik H, Lamark T, Takagi K, Larsen K, Evjen G, Øvervatn A, et al. FYCO1 Contains a C-terminally Extended, LC3A/B-preferring LC3-interacting Region (LIR) Motif Required for Efficient Maturation of Autophagosomes during Basal Autophagy. J Biol Chem. 2015;290:29361-74 pubmed 出版商
  320. Sinadinos A, Young C, Al Khalidi R, Teti A, Kalinski P, Mohamad S, et al. P2RX7 purinoceptor: a therapeutic target for ameliorating the symptoms of duchenne muscular dystrophy. PLoS Med. 2015;12:e1001888 pubmed 出版商
  321. Song G, Li Y, Lin L, Cao Y. Anti-autophagic and anti-apoptotic effects of memantine in a SH-SY5Y cell model of Alzheimer's disease via mammalian target of rapamycin-dependent and -independent pathways. Mol Med Rep. 2015;12:7615-22 pubmed 出版商
  322. van Geldermalsen M, Wang Q, Nagarajah R, Marshall A, Thoeng A, Gao D, et al. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene. 2016;35:3201-8 pubmed 出版商
  323. Mattiolo P, Yuste V, Boix J, Ribas J. Autophagy exacerbates caspase-dependent apoptotic cell death after short times of starvation. Biochem Pharmacol. 2015;98:573-86 pubmed 出版商
  324. Marchi S, Corricelli M, Trapani E, Bravi L, Pittaro A, Delle Monache S, et al. Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Mol Med. 2015;7:1403-17 pubmed 出版商
  325. Levin A, Koelink P, Bloemendaal F, Vos A, D Haens G, van den Brink G, et al. Autophagy Contributes to the Induction of Anti-TNF Induced Macrophages. J Crohns Colitis. 2016;10:323-9 pubmed 出版商
  326. Kharaziha P, Chioureas D, Baltatzis G, Fonseca P, Rodriguez P, Gogvadze V, et al. Sorafenib-induced defective autophagy promotes cell death by necroptosis. Oncotarget. 2015;6:37066-82 pubmed 出版商
  327. Xiong R, Zhou W, Siegel D, Kitson R, Freed C, Moody C, et al. A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity. Mol Pharmacol. 2015;88:1045-54 pubmed 出版商
  328. Sorrell S, Golder Z, Johnstone D, Frankl F. Renal peroxiredoxin 6 interacts with anion exchanger 1 and plays a novel role in pH homeostasis. Kidney Int. 2016;89:105-112 pubmed 出版商
  329. Haim Y, Bluher M, Slutsky N, Goldstein N, Kloting N, Harman Boehm I, et al. Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1. Autophagy. 2015;11:2074-2088 pubmed 出版商
  330. Granato M, Santarelli R, Filardi M, Gonnella R, Farina A, Torrisi M, et al. The activation of KSHV lytic cycle blocks autophagy in PEL cells. Autophagy. 2015;11:1978-1986 pubmed 出版商
  331. Koukourakis M, Kalamida D, Giatromanolaki A, Zois C, Sivridis E, Pouliliou S, et al. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines. PLoS ONE. 2015;10:e0137675 pubmed 出版商
  332. Columbus D, Steinhoff Wagner J, Suryawan A, Nguyen H, Hernandez Garcia A, Fiorotto M, et al. Impact of prolonged leucine supplementation on protein synthesis and lean growth in neonatal pigs. Am J Physiol Endocrinol Metab. 2015;309:E601-10 pubmed 出版商
  333. Pellegrini C, Columbaro M, Capanni C, D Apice M, Cavallo C, Murdocca M, et al. All-trans retinoic acid and rapamycin normalize Hutchinson Gilford progeria fibroblast phenotype. Oncotarget. 2015;6:29914-28 pubmed 出版商
  334. Ray A, Vasudevan S, Sengupta S. 6-Shogaol Inhibits Breast Cancer Cells and Stem Cell-Like Spheroids by Modulation of Notch Signaling Pathway and Induction of Autophagic Cell Death. PLoS ONE. 2015;10:e0137614 pubmed 出版商
  335. Zhang J, Tripathi D, Jing J, Alexander A, Kim J, Powell R, et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol. 2015;17:1259-1269 pubmed 出版商
  336. Granato M, Gilardini Montani M, Filardi M, Faggioni A, Cirone M. Capsaicin triggers immunogenic PEL cell death, stimulates DCs and reverts PEL-induced immune suppression. Oncotarget. 2015;6:29543-54 pubmed 出版商
  337. De Leo A, Colavita F, Ciccosanti F, Fimia G, Lieberman P, Mattia E. Inhibition of autophagy in EBV-positive Burkitt's lymphoma cells enhances EBV lytic genes expression and replication. Cell Death Dis. 2015;6:e1876 pubmed 出版商
  338. Xia H, Najafov A, Geng J, Galan Acosta L, Han X, Guo Y, et al. Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. J Cell Biol. 2015;210:705-16 pubmed 出版商
  339. Noritake K, Aki T, Funakoshi T, Unuma K, Uemura K. Direct Exposure to Ethanol Disrupts Junctional Cell-Cell Contact and Hippo-YAP Signaling in HL-1 Murine Atrial Cardiomyocytes. PLoS ONE. 2015;10:e0136952 pubmed 出版商
  340. Wang L, Hao H, Wang J, Wang X, Zhang S, Du Y, et al. Decreased autophagy: a major factor for cardiomyocyte death induced by β1-adrenoceptor autoantibodies. Cell Death Dis. 2015;6:e1862 pubmed 出版商
  341. Wong P, Feng Y, Wang J, Shi R, Jiang X. Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nat Commun. 2015;6:8048 pubmed 出版商
  342. Cavieres V, González A, Muñoz V, Yefi C, Bustamante H, Barraza R, et al. Tetrahydrohyperforin Inhibits the Proteolytic Processing of Amyloid Precursor Protein and Enhances Its Degradation by Atg5-Dependent Autophagy. PLoS ONE. 2015;10:e0136313 pubmed 出版商
  343. Wang Z, Li S, Ren R, Li J, Cui X. Recombinant Buckwheat Trypsin Inhibitor Induces Mitophagy by Directly Targeting Mitochondria and Causes Mitochondrial Dysfunction in Hep G2 Cells. J Agric Food Chem. 2015;63:7795-804 pubmed 出版商
  344. Cañeque T, Gomes F, Mai T, Maestri G, Malacria M, Rodriguez R. Synthesis of marmycin A and investigation into its cellular activity. Nat Chem. 2015;7:744-51 pubmed 出版商
  345. Moreau K, Ghislat G, Hochfeld W, Renna M, Zavodszky E, Runwal G, et al. Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nat Commun. 2015;6:8045 pubmed 出版商
  346. Chiang C, Uzoma I, Lane D, MemiÅ¡ević V, Alem F, Yao K, et al. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection. Front Microbiol. 2015;6:683 pubmed 出版商
  347. Saliba J, Saint Martin C, Di Stefano A, Lenglet G, Marty C, Keren B, et al. Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies. Nat Genet. 2015;47:1131-40 pubmed 出版商
  348. Sakabe I, Hu R, Jin L, Clarke R, Kasid U. TMEM33: a new stress-inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling. Breast Cancer Res Treat. 2015;153:285-97 pubmed 出版商
  349. Zhen Y, Li W. Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A(D251E) mutation. Autophagy. 2015;11:1608-22 pubmed 出版商
  350. Triplett J, Tramutola A, Swomley A, Kirk J, Grimes K, Lewis K, et al. Age-related changes in the proteostasis network in the brain of the naked mole-rat: Implications promoting healthy longevity. Biochim Biophys Acta. 2015;1852:2213-24 pubmed 出版商
  351. Hermanova I, Arruabarrena Aristorena A, Valis K, Nůsková H, Alberich Jorda M, Fiser K, et al. Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia. 2016;30:209-18 pubmed 出版商
  352. Ruan Y, Hu K, Chen H. Autophagy inhibition enhances isorhamnetin‑induced mitochondria‑dependent apoptosis in non‑small cell lung cancer cells. Mol Med Rep. 2015;12:5796-806 pubmed 出版商
  353. Johansson I, Monsen V, Pettersen K, Mildenberger J, Misund K, Kaarniranta K, et al. The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells. Autophagy. 2015;11:1636-51 pubmed 出版商
  354. Coutts A, La Thangue N. Actin nucleation by WH2 domains at the autophagosome. Nat Commun. 2015;6:7888 pubmed 出版商
  355. Sargsyan A, Cai J, Fandino L, Labasky M, Forostyan T, Colosimo L, et al. Rapid parallel measurements of macroautophagy and mitophagy in mammalian cells using a single fluorescent biosensor. Sci Rep. 2015;5:12397 pubmed 出版商
  356. Chesser A, Ganeshan V, Yang J, Johnson G. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutr Neurosci. 2016;19:21-31 pubmed 出版商
  357. Drießen S, Berleth N, Friesen O, Löffler A, Böhler P, Hieke N, et al. Deubiquitinase inhibition by WP1130 leads to ULK1 aggregation and blockade of autophagy. Autophagy. 2015;11:1458-70 pubmed 出版商
  358. Wu H, Jiang Z, Ding P, Shao L, Liu R. Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells. Sci Rep. 2015;5:12291 pubmed 出版商
  359. Zhang L, Dai F, Sheng P, Chen Z, Xu Q, Guo Y. Resveratrol analogue 3,4,4'-trihydroxy-trans-stilbene induces apoptosis and autophagy in human non-small-cell lung cancer cells in vitro. Acta Pharmacol Sin. 2015;36:1256-65 pubmed 出版商
  360. Artero Castro A, Perez Alea M, Feliciano A, Leal J, Genestar M, Castellvi J, et al. Disruption of the ribosomal P complex leads to stress-induced autophagy. Autophagy. 2015;11:1499-519 pubmed 出版商
  361. Perera R, Stoykova S, Nicolay B, Ross K, Fitamant J, Boukhali M, et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature. 2015;524:361-5 pubmed 出版商
  362. Wang I, Sun K, Tsai T, Chen C, Chang S, Yu T, et al. MiR-20a-5p mediates hypoxia-induced autophagy by targeting ATG16L1 in ischemic kidney injury. Life Sci. 2015;136:133-41 pubmed 出版商
  363. Yang S, Lin H, Chang V, Chen C, Liu Y, Wang J, et al. Lovastatin overcomes gefitinib resistance through TNF-α signaling in human cholangiocarcinomas with different LKB1 statuses in vitro and in vivo. Oncotarget. 2015;6:23857-73 pubmed
  364. Felzen V, Hiebel C, Koziollek Drechsler I, Reißig S, Wolfrum U, Kögel D, et al. Estrogen receptor α regulates non-canonical autophagy that provides stress resistance to neuroblastoma and breast cancer cells and involves BAG3 function. Cell Death Dis. 2015;6:e1812 pubmed 出版商
  365. Zajkowski T, Nieznanska H, Nieznanski K. Stabilization of microtubular cytoskeleton protects neurons from toxicity of N-terminal fragment of cytosolic prion protein. Biochim Biophys Acta. 2015;1853:2228-39 pubmed 出版商
  366. Su X, Yu Y, Zhong Y, Giannopoulou E, Hu X, Liu H, et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015;16:838-849 pubmed 出版商
  367. Metge B, Mitra A, Chen D, Shevde L, Samant R. N-Myc and STAT Interactor regulates autophagy and chemosensitivity in breast cancer cells. Sci Rep. 2015;5:11995 pubmed 出版商
  368. Ohashi A, Ohori M, Iwai K, Nakayama Y, Nambu T, Morishita D, et al. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells. Nat Commun. 2015;6:7668 pubmed 出版商
  369. Wang J, Ma L, Tang X, Zhang X, Qiao Y, Shi Y, et al. Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells. Oncotarget. 2015;6:24075-91 pubmed
  370. Campbell G, Rawat P, Bruckman R, Spector S. Human Immunodeficiency Virus Type 1 Nef Inhibits Autophagy through Transcription Factor EB Sequestration. PLoS Pathog. 2015;11:e1005018 pubmed 出版商
  371. Kubli D, Cortez M, Moyzis A, Najor R, Lee Y, Gustafsson Ã. PINK1 Is Dispensable for Mitochondrial Recruitment of Parkin and Activation of Mitophagy in Cardiac Myocytes. PLoS ONE. 2015;10:e0130707 pubmed 出版商
  372. Macvicar T, Mannack L, Lees R, Lane J. Targeted siRNA Screens Identify ER-to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells. Int J Mol Sci. 2015;16:13356-80 pubmed 出版商
  373. Riz I, Hawley T, Hawley R. KLF4-SQSTM1/p62-associated prosurvival autophagy contributes to carfilzomib resistance in multiple myeloma models. Oncotarget. 2015;6:14814-31 pubmed
  374. Cases O, Joseph A, Obry A, Santin M, Ben Yacoub S, Pâques M, et al. Foxg1-Cre Mediated Lrp2 Inactivation in the Developing Mouse Neural Retina, Ciliary and Retinal Pigment Epithelia Models Congenital High Myopia. PLoS ONE. 2015;10:e0129518 pubmed 出版商
  375. Giordano C, Lemaire C, Li T, Kimoff R, Petrof B. Autophagy-associated atrophy and metabolic remodeling of the mouse diaphragm after short-term intermittent hypoxia. PLoS ONE. 2015;10:e0131068 pubmed 出版商
  376. Liu K, Frazier W. Phosphorylation of the BNIP3 C-Terminus Inhibits Mitochondrial Damage and Cell Death without Blocking Autophagy. PLoS ONE. 2015;10:e0129667 pubmed 出版商
  377. Hu G, McQuiston T, Bernard A, Park Y, Qiu J, Vural A, et al. A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat Cell Biol. 2015;17:930-942 pubmed 出版商
  378. Wu P, Yen J, Kou M, Wu M. Luteolin and Apigenin Attenuate 4-Hydroxy-2-Nonenal-Mediated Cell Death through Modulation of UPR, Nrf2-ARE and MAPK Pathways in PC12 Cells. PLoS ONE. 2015;10:e0130599 pubmed 出版商
  379. Song H, Pu J, Wang L, Wu L, Xiao J, Liu Q, et al. ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation. Autophagy. 2015;11:1308-25 pubmed 出版商
  380. Li C, Siragy H. (Pro)renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose. Am J Physiol Endocrinol Metab. 2015;309:E302-10 pubmed 出版商
  381. Wang J, Wu J, Wu H, Liu X, Chen Y, Wu J, et al. Liraglutide protects pancreatic ?-cells against free fatty acids in vitro and affects glucolipid metabolism in apolipoprotein E-/- mice by activating autophagy. Mol Med Rep. 2015;12:4210-4218 pubmed 出版商
  382. Cha Molstad H, Sung K, Hwang J, Kim K, Yu J, Yoo Y, et al. Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat Cell Biol. 2015;17:917-29 pubmed 出版商
  383. Park S, Choi S, Yoo S, Nah J, Jeong E, Kim H, et al. Pyruvate stimulates mitophagy via PINK1 stabilization. Cell Signal. 2015;27:1824-30 pubmed 出版商
  384. Ruozi G, Bortolotti F, Falcione A, Dal Ferro M, Ukovich L, Macedo A, et al. AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia. Nat Commun. 2015;6:7388 pubmed 出版商
  385. Yuan J, Zhang Y, Sheng Y, Fu X, Cheng H, Zhou R. MYBL2 guides autophagy suppressor VDAC2 in the developing ovary to inhibit autophagy through a complex of VDAC2-BECN1-BCL2L1 in mammals. Autophagy. 2015;11:1081-98 pubmed 出版商
  386. Xie C, Wei D, Zhao L, Marchetto S, Mei L, Borg J, et al. Erbin is a novel substrate of the Sag-βTrCP E3 ligase that regulates KrasG12D-induced skin tumorigenesis. J Cell Biol. 2015;209:721-37 pubmed 出版商
  387. Cui J, Bai X, Sun X, Cai G, Hong Q, Ding R, et al. Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models. Sci Rep. 2015;5:11256 pubmed 出版商
  388. Song M, Gong G, Burelle Y, Gustafsson Ã, Kitsis R, Matkovich S, et al. Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts. Circ Res. 2015;117:346-51 pubmed 出版商
  389. García Cano J, Ambroise G, Pascual Serra R, Carrión M, Serrano Oviedo L, Ortega Muelas M, et al. Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance. Oncotarget. 2015;6:15551-65 pubmed
  390. Gauthier T, Claude Taupin A, Delage Mourroux R, Boyer Guittaut M, Hervouet E. Proximity Ligation In situ Assay is a Powerful Tool to Monitor Specific ATG Protein Interactions following Autophagy Induction. PLoS ONE. 2015;10:e0128701 pubmed 出版商
  391. Huang C, Lee C, Lin H, Chen M, Lin C, Chang J. Autophagy-Regulated ROS from Xanthine Oxidase Acts as an Early Effector for Triggering Late Mitochondria-Dependent Apoptosis in Cathepsin S-Targeted Tumor Cells. PLoS ONE. 2015;10:e0128045 pubmed 出版商
  392. Luan Q, Jin L, Jiang C, Tay K, Lai F, Liu X, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975-94 pubmed 出版商
  393. Yen C, Chiang W, Liu S, Lin C, Liao K, Lin C, et al. Impacts of autophagy-inducing ingredient of areca nut on tumor cells. PLoS ONE. 2015;10:e0128011 pubmed 出版商
  394. Herms A, Bosch M, Reddy B, Schieber N, Fajardo A, Rupérez C, et al. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nat Commun. 2015;6:7176 pubmed 出版商
  395. Sun T, Li X, Zhang P, Chen W, Zhang H, Li D, et al. Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat Commun. 2015;6:7215 pubmed 出版商
  396. Huang Z, Han Z, Ye B, Dai Z, Shan P, Lu Z, et al. Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes. Eur J Pharmacol. 2015;762:1-10 pubmed 出版商
  397. Sujobert P, Poulain L, Paubelle E, Zylbersztejn F, Grenier A, Lambert M, et al. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia. Cell Rep. 2015;11:1446-57 pubmed 出版商
  398. Milkereit R, Persaud A, Vanoaica L, Guetg A, Verrey F, Rotin D. LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation. Nat Commun. 2015;6:7250 pubmed 出版商
  399. Moon J, Eo S, Lee J, Park S. Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell death. Oncol Rep. 2015;34:375-81 pubmed 出版商
  400. Li J, Ren J, Liu X, Jiang L, He W, Yuan W, et al. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis. Kidney Int. 2015;88:515-27 pubmed 出版商
  401. Kaushik S, Cuervo A. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol. 2015;17:759-70 pubmed 出版商
  402. Ferreira J, Soares A, Ramalho J, Pereira P, Girao H. K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy. Sci Rep. 2015;5:10210 pubmed 出版商
  403. Del Mar N, von Buttlar X, Yu A, Guley N, Reiner A, Honig M. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments. Exp Neurol. 2015;271:53-71 pubmed 出版商
  404. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  405. Kim Y, Kang Y, Lee N, Kim K, Hwang Y, Kim H, et al. Uvrag targeting by Mir125a and Mir351 modulates autophagy associated with Ewsr1 deficiency. Autophagy. 2015;11:796-811 pubmed 出版商
  406. Mauro Lizcano M, Esteban Martínez L, Seco E, Serrano Puebla A, García Ledo L, Figueiredo Pereira C, et al. New method to assess mitophagy flux by flow cytometry. Autophagy. 2015;11:833-43 pubmed 出版商
  407. Shi Y, Tan S, Ng S, Zhou J, Yang N, Koo G, et al. Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy. 2015;11:769-84 pubmed 出版商
  408. Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236:43-59 pubmed 出版商
  409. Zhao J, Molitor T, Langston J, Nichols R. LRRK2 dephosphorylation increases its ubiquitination. Biochem J. 2015;469:107-20 pubmed 出版商
  410. Kitagawa T, Okita H, Baron B, Tokuda K, Nakamura M, Wang Y, et al. Mutant screening for oncogenes of Ewing's sarcoma using yeast. Appl Microbiol Biotechnol. 2015;99:6737-44 pubmed 出版商
  411. Qiao S, Dennis M, Song X, Vadysirisack D, Salunke D, Nash Z, et al. A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity. Nat Commun. 2015;6:7014 pubmed 出版商
  412. Laguna A, Schintu N, Nobre A, Alvarsson A, Volakakis N, Jacobsen J, et al. Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson's disease. Nat Neurosci. 2015;18:826-35 pubmed 出版商
  413. Itoh H, Matsuo H, Kitamura N, Yamamoto S, Higuchi T, Takematsu H, et al. Enhancement of neutrophil autophagy by an IVIG preparation against multidrug-resistant bacteria as well as drug-sensitive strains. J Leukoc Biol. 2015;98:107-17 pubmed 出版商
  414. Marsh N, Wareham A, White B, Miskiewicz E, Landry J, MacPhee D. HSPB8 and the Cochaperone BAG3 Are Highly Expressed During the Synthetic Phase of Rat Myometrium Programming During Pregnancy. Biol Reprod. 2015;92:131 pubmed 出版商
  415. Ozeki N, Hase N, Hiyama T, Yamaguchi H, Kawai R, Kondo A, et al. Interleukin-1β-induced autophagy-related gene 5 regulates proliferation of embryonic stem cell-derived odontoblastic cells. PLoS ONE. 2015;10:e0124542 pubmed 出版商
  416. Lee S, Kim M, Lim W, Kim T, Kang C. Strenuous exercise induces mitochondrial damage in skeletal muscle of old mice. Biochem Biophys Res Commun. 2015;461:354-60 pubmed 出版商
  417. Kyöstilä K, Syrjä P, Jagannathan V, Chandrasekar G, Jokinen T, Seppälä E, et al. A missense change in the ATG4D gene links aberrant autophagy to a neurodegenerative vacuolar storage disease. PLoS Genet. 2015;11:e1005169 pubmed 出版商
  418. Meidhof S, Brabletz S, Lehmann W, Preca B, Mock K, Ruh M, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 2015;7:831-47 pubmed 出版商
  419. Chung J, Bauer D, Ghamari A, Nizzi C, Deck K, Kingsley P, et al. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability. Sci Signal. 2015;8:ra34 pubmed 出版商
  420. Milan G, Romanello V, Pescatore F, Armani A, Paik J, Frasson L, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun. 2015;6:6670 pubmed 出版商
  421. Vashist S, Ureña L, Gonzalez Hernandez M, Choi J, de Rougemont A, Rocha Pereira J, et al. Molecular chaperone Hsp90 is a therapeutic target for noroviruses. J Virol. 2015;89:6352-63 pubmed 出版商
  422. Kett L, Stiller B, Bernath M, Tasset I, Blesa J, Jackson Lewis V, et al. α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2. J Neurosci. 2015;35:5724-42 pubmed 出版商
  423. Akizu N, Cantagrel V, Zaki M, Al Gazali L, Wang X, Rosti R, et al. Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat Genet. 2015;47:528-34 pubmed 出版商
  424. Chuang W, Su C, Lin P, Lin C, Chen Y. Sann-Joong-Kuey-Jian-Tang induces autophagy in HepG2 cells via regulation of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and p38 mitogen-activated protein kinase pathways. Mol Med Rep. 2015;12:1677-84 pubmed 出版商
  425. Pilar Valdecantos M, Prieto Hontoria P, Pardo V, Módol T, Santamaría B, Weber M, et al. Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes. Free Radic Biol Med. 2015;84:263-278 pubmed 出版商
  426. Zhao J, Song Q, Wang L, Dong X, Yang X, Bai X, et al. Detrusor myocyte autophagy protects the bladder function via inhibiting the inflammation in cyclophosphamide-induced cystitis in rats. PLoS ONE. 2015;10:e0122597 pubmed 出版商
  427. Zhang W, Hou J, Wang X, Jiang R, Yin Y, Ji J, et al. PTPRO-mediated autophagy prevents hepatosteatosis and tumorigenesis. Oncotarget. 2015;6:9420-33 pubmed
  428. Zhang T, Dong K, Liang W, Xu D, Xia H, Geng J, et al. G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L. elife. 2015;4:e06734 pubmed 出版商
  429. Sharifi M, Mowers E, Drake L, Macleod K. Measuring autophagy in stressed cells. Methods Mol Biol. 2015;1292:129-50 pubmed 出版商
  430. Crauwels P, Bohn R, Thomas M, Gottwalt S, Jäckel F, Krämer S, et al. Apoptotic-like Leishmania exploit the host's autophagy machinery to reduce T-cell-mediated parasite elimination. Autophagy. 2015;11:285-97 pubmed 出版商
  431. Zhang Q, Kuang H, Chen C, Yan J, Do Umehara H, Liu X, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458-66 pubmed 出版商
  432. McMillan E, Paré M, Baechler B, Graham D, Rush J, Quadrilatero J. Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise. PLoS ONE. 2015;10:e0119382 pubmed 出版商
  433. Leclere L, Fransolet M, Côté F, Cambier P, Arnould T, Van Cutsem P, et al. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells. PLoS ONE. 2015;10:e0115831 pubmed 出版商
  434. Girard B, Regan Anderson T, Welch S, Nicely J, Seewaldt V, OSTRANDER J. Cytoplasmic PELP1 and ERRgamma protect human mammary epithelial cells from Tam-induced cell death. PLoS ONE. 2015;10:e0121206 pubmed 出版商
  435. Roost M, van Iperen L, De Melo Bernardo A, Mummery C, Carlotti F, de Koning E, et al. Lymphangiogenesis and angiogenesis during human fetal pancreas development. Vasc Cell. 2014;6:22 pubmed 出版商
  436. Strohecker A, Joshi S, Possemato R, Abraham R, Sabatini D, White E. Identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel autophagy regulator by high content shRNA screening. Oncogene. 2015;34:5662-76 pubmed 出版商
  437. Desantis A, Bruno T, Catena V, De Nicola F, Goeman F, Iezzi S, et al. Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy. EMBO J. 2015;34:1214-30 pubmed 出版商
  438. Yang M, Zhao H, Guo L, Zhang Q, Zhao L, Bai S, et al. Autophagy-based survival prognosis in human colorectal carcinoma. Oncotarget. 2015;6:7084-103 pubmed
  439. Opperman C, Sishi B. Tumor necrosis factor alpha stimulates p62 accumulation and enhances proteasome activity independently of ROS. Cell Biol Toxicol. 2015;31:83-94 pubmed 出版商
  440. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  441. Wengrod J, Wang D, Weiss S, Zhong H, Osman I, Gardner L. Phosphorylation of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma. Sci Signal. 2015;8:ra27 pubmed 出版商
  442. Prosser S, Morrison C. Centrin2 regulates CP110 removal in primary cilium formation. J Cell Biol. 2015;208:693-701 pubmed 出版商
  443. Yang H, Ma Y, Zhou Y, Xu L, Chen X, Ding W, et al. Autophagy contributes to the enrichment and survival of colorectal cancer stem cells under oxaliplatin treatment. Cancer Lett. 2015;361:128-36 pubmed 出版商
  444. Eriksen A, Torgersen M, Holm K, Abrahamsen G, Spurkland A, Moskaug J, et al. Retinoic acid-induced IgG production in TLR-activated human primary B cells involves ULK1-mediated autophagy. Autophagy. 2015;11:460-71 pubmed 出版商
  445. Gómez Sánchez R, Pizarro Estrella E, Yakhine Diop S, Rodríguez Arribas M, Bravo San Pedro J, Fuentes J, et al. Routine Western blot to check autophagic flux: cautions and recommendations. Anal Biochem. 2015;477:13-20 pubmed 出版商
  446. Ma Y, Yang H, Xu L, Huang Y, Dai H, KANG X. Testosterone regulates the autophagic clearance of androgen binding protein in rat Sertoli cells. Sci Rep. 2015;5:8894 pubmed 出版商
  447. Pène V, Li Q, Sodroski C, Hsu C, Liang T. Dynamic Interaction of Stress Granules, DDX3X, and IKK-α Mediates Multiple Functions in Hepatitis C Virus Infection. J Virol. 2015;89:5462-77 pubmed 出版商
  448. Bikkavilli R, Avasarala S, Van Scoyk M, Arcaroli J, Brzezinski C, Zhang W, et al. Wnt7a is a novel inducer of β-catenin-independent tumor-suppressive cellular senescence in lung cancer. Oncogene. 2015;34:5317-28 pubmed 出版商
  449. Yi Y, Kang H, Bae E, Oh S, Seong Y, Bae I. β-TrCP1 degradation is a novel action mechanism of PI3K/mTOR inhibitors in triple-negative breast cancer cells. Exp Mol Med. 2015;47:e143 pubmed 出版商
  450. Gorbunov N, McDaniel D, Zhai M, Liao P, Garrison B, Kiang J. Autophagy and mitochondrial remodelling in mouse mesenchymal stromal cells challenged with Staphylococcus epidermidis. J Cell Mol Med. 2015;19:1133-50 pubmed 出版商
  451. Medina D, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and ​TFEB. Nat Cell Biol. 2015;17:288-99 pubmed
  452. Pedro J, Wei Y, Sica V, Maiuri M, Zou Z, Kroemer G, et al. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy. 2015;11:452-9 pubmed 出版商
  453. Guo S, Liang Y, Murphy S, Huang A, Shen H, Kelly D, et al. A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applications. Autophagy. 2015;11:560-72 pubmed 出版商
  454. Ulbricht A, Gehlert S, Leciejewski B, Schiffer T, Bloch W, Höhfeld J. Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle. Autophagy. 2015;11:538-46 pubmed 出版商
  455. Sanjurjo L, Amézaga N, Aran G, Naranjo Gómez M, Arias L, Armengol C, et al. The human CD5L/AIM-CD36 axis: A novel autophagy inducer in macrophages that modulates inflammatory responses. Autophagy. 2015;11:487-502 pubmed 出版商
  456. Luo M, Wong S, Chan M, Yu L, Yu S, Wu F, et al. Autophagy Mediates HBx-Induced Nuclear Factor-κB Activation and Release of IL-6, IL-8, and CXCL2 in Hepatocytes. J Cell Physiol. 2015;230:2382-9 pubmed 出版商
  457. Gee H, Kim J, Lee M. Analysis of conventional and unconventional trafficking of CFTR and other membrane proteins. Methods Mol Biol. 2015;1270:137-54 pubmed 出版商
  458. Jabir M, Hopkins L, Ritchie N, Ullah I, Bayes H, Li D, et al. Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy. Autophagy. 2015;11:166-82 pubmed 出版商
  459. Young C, Sinadinos A, Lefebvre A, Chan P, Arkle S, Vaudry D, et al. A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90. Autophagy. 2015;11:113-30 pubmed 出版商
  460. Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 2015;11:253-70 pubmed 出版商
  461. Bauckman K, Haller E, Taran N, Rockfield S, Ruiz Rivera A, Nanjundan M. Iron alters cell survival in a mitochondria-dependent pathway in ovarian cancer cells. Biochem J. 2015;466:401-13 pubmed 出版商
  462. Nisar R, Hanson P, He L, Taylor R, Blain P, Morris C. Diquat causes caspase-independent cell death in SH-SY5Y cells by production of ROS independently of mitochondria. Arch Toxicol. 2015;89:1811-25 pubmed 出版商
  463. Hung S, Huang W, Liou H, Fu W. LC3 overexpression reduces Aβ neurotoxicity through increasing α7nAchR expression and autophagic activity in neurons and mice. Neuropharmacology. 2015;93:243-51 pubmed 出版商
  464. Pantazi E, Zaouali M, Bejaoui M, Folch Puy E, Ben Abdennebi H, Varela A, et al. Sirtuin 1 in rat orthotopic liver transplantation: an IGL-1 preservation solution approach. World J Gastroenterol. 2015;21:1765-74 pubmed 出版商
  465. Szalai P, Hagen L, Sætre F, Luhr M, Sponheim M, Øverbye A, et al. Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs. Exp Cell Res. 2015;333:21-38 pubmed 出版商
  466. Shi S, Wang Q, Xu J, Jang J, Padilla M, Nyunoya T, et al. Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis. Oncotarget. 2015;6:1640-51 pubmed
  467. Kim E, Shin J, Park S, Jo Y, Kim J, Kang I, et al. Inhibition of autophagy suppresses sertraline-mediated primary ciliogenesis in retinal pigment epithelium cells. PLoS ONE. 2015;10:e0118190 pubmed 出版商
  468. Kommaddi R, Jean Charles P, Shenoy S. Phosphorylation of the deubiquitinase USP20 by protein kinase A regulates post-endocytic trafficking of β2 adrenergic receptors to autophagosomes during physiological stress. J Biol Chem. 2015;290:8888-903 pubmed 出版商
  469. Greenall S, Donoghue J, van Sinderen M, Dubljevic V, Budiman S, Devlin M, et al. EGFRvIII-mediated transactivation of receptor tyrosine kinases in glioma: mechanism and therapeutic implications. Oncogene. 2015;34:5277-87 pubmed 出版商
  470. Guerrero A, Iglesias C, Raguz S, Floridia E, Gil J, Pombo C, et al. The cerebral cavernous malformation 3 gene is necessary for senescence induction. Aging Cell. 2015;14:274-83 pubmed 出版商
  471. Liu K, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M, et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy. 2015;11:271-84 pubmed 出版商
  472. Rohatgi R, Janusis J, Leonard D, Bellvé K, Fogarty K, Baehrecke E, et al. Beclin 1 regulates growth factor receptor signaling in breast cancer. Oncogene. 2015;34:5352-62 pubmed 出版商
  473. Ren A, Qiu Y, Cui H, Fu G. Inhibition of H3K9 methyltransferase G9a induces autophagy and apoptosis in oral squamous cell carcinoma. Biochem Biophys Res Commun. 2015;459:10-7 pubmed 出版商
  474. Wang S, Chen X, Hu J, Jiang J, Li Y, Chan Salis K, et al. ATF4 Gene Network Mediates Cellular Response to the Anticancer PAD Inhibitor YW3-56 in Triple-Negative Breast Cancer Cells. Mol Cancer Ther. 2015;14:877-88 pubmed 出版商
  475. Kanayama M, Inoue M, Danzaki K, Hammer G, He Y, Shinohara M. Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. Nat Commun. 2015;6:5779 pubmed 出版商
  476. Song M, Mihara K, Chen Y, Scorrano L, Dorn G. Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab. 2015;21:273-85 pubmed 出版商
  477. Arel Dubeau A, Longpré F, Bournival J, Tremblay C, Demers Lamarche J, Haskova P, et al. Cucurbitacin E has neuroprotective properties and autophagic modulating activities on dopaminergic neurons. Oxid Med Cell Longev. 2014;2014:425496 pubmed 出版商
  478. Zhou Z, Doggett T, Sene A, Apte R, Ferguson T. Autophagy supports survival and phototransduction protein levels in rod photoreceptors. Cell Death Differ. 2015;22:488-98 pubmed 出版商
  479. Liu L, Zou P, Zheng L, Linarelli L, Amarell S, Passaro A, et al. Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death Dis. 2015;6:e1586 pubmed 出版商
  480. Liu S, Sarkar C, Dinizo M, Faden A, Koh E, Lipinski M, et al. Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis. 2015;6:e1582 pubmed 出版商
  481. Valianou M, Cox A, Pichette B, Hartley S, Paladhi U, Astrinidis A. Pharmacological inhibition of Polo-like kinase 1 (PLK1) by BI-2536 decreases the viability and survival of hamartin and tuberin deficient cells via induction of apoptosis and attenuation of autophagy. Cell Cycle. 2015;14:399-407 pubmed 出版商
  482. Bueno M, Lai Y, Romero Y, Brands J, St Croix C, Kamga C, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest. 2015;125:521-38 pubmed 出版商
  483. Mudie S, Bandarra D, Batie M, Biddlestone J, Moniz S, Ortmann B, et al. PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia. Cell Cycle. 2014;13:3878-91 pubmed 出版商
  484. Wiggins H, Wymant J, Solfa F, Hiscox S, Taylor K, Westwell A, et al. Disulfiram-induced cytotoxicity and endo-lysosomal sequestration of zinc in breast cancer cells. Biochem Pharmacol. 2015;93:332-42 pubmed 出版商
  485. Sykora P, Misiak M, Wang Y, Ghosh S, Leandro G, Liu D, et al. DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. Nucleic Acids Res. 2015;43:943-59 pubmed 出版商
  486. Mir S, George N, Zahoor L, Harms R, Guinn Z, SARVETNICK N. Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death. J Biol Chem. 2015;290:6071-85 pubmed 出版商
  487. Zanotto Filho A, Braganhol E, Klafke K, Figueiró F, Terra S, Paludo F, et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 2015;358:220-31 pubmed 出版商
  488. Fiorini C, Cordani M, Gotte G, Picone D, Donadelli M. Onconase induces autophagy sensitizing pancreatic cancer cells to gemcitabine and activates Akt/mTOR pathway in a ROS-dependent manner. Biochim Biophys Acta. 2015;1853:549-60 pubmed 出版商
  489. Jaishy B, Zhang Q, Chung H, Riehle C, Soto J, Jenkins S, et al. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity. J Lipid Res. 2015;56:546-61 pubmed 出版商
  490. Di Sante G, Pestell T, Casimiro M, Bisetto S, Powell M, Lisanti M, et al. Loss of Sirt1 promotes prostatic intraepithelial neoplasia, reduces mitophagy, and delays PARK2 translocation to mitochondria. Am J Pathol. 2015;185:266-79 pubmed 出版商
  491. Singh K, Lovren F, Pan Y, Quan A, Ramadan A, Matkar P, et al. The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition. J Biol Chem. 2015;290:2547-59 pubmed 出版商
  492. Durán I, Nevarez L, Sarukhanov A, Wu S, Lee K, Krejci P, et al. HSP47 and FKBP65 cooperate in the synthesis of type I procollagen. Hum Mol Genet. 2015;24:1918-28 pubmed 出版商
  493. Bifsha P, Yang J, Fisher R, Drouin J. Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra. PLoS Genet. 2014;10:e1004863 pubmed 出版商
  494. Chen G, Meng C, Lin K, Tuan H, Yang H, Chen C, et al. Graphene oxide as a chemosensitizer: diverted autophagic flux, enhanced nuclear import, elevated necrosis and improved antitumor effects. Biomaterials. 2015;40:12-22 pubmed 出版商
  495. Varga M, Fodor E, Vellai T. Autophagy in zebrafish. Methods. 2015;75:172-80 pubmed 出版商
  496. Kaushik G, Venugopal A, Ramamoorthy P, Standing D, Subramaniam D, Umar S, et al. Honokiol inhibits melanoma stem cells by targeting notch signaling. Mol Carcinog. 2015;54:1710-21 pubmed 出版商
  497. Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden A, Lipinski M. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy. 2014;10:2208-22 pubmed 出版商
  498. Porter K, Hirt J, Stamer W, Liton P. Autophagic dysregulation in glaucomatous trabecular meshwork cells. Biochim Biophys Acta. 2015;1852:379-85 pubmed 出版商
  499. Zhang L, Dai F, Cui L, Jing H, Fan P, Tan X, et al. Novel role for TRPC4 in regulation of macroautophagy by a small molecule in vascular endothelial cells. Biochim Biophys Acta. 2015;1853:377-87 pubmed 出版商
  500. Liu H, Xie Q, Xin B, Liu J, Liu Y, Li Y, et al. Inhibition of autophagy recovers cardiac dysfunction and atrophy in response to tail-suspension. Life Sci. 2015;121:1-9 pubmed 出版商
  501. Yang S, Xia C, Li S, Du L, Zhang L, Zhou R. Defective mitophagy driven by dysregulation of rheb and KIF5B contributes to mitochondrial reactive oxygen species (ROS)-induced nod-like receptor 3 (NLRP3) dependent proinflammatory response and aggravates lipotoxicity. Redox Biol. 2014;3:63-71 pubmed 出版商
  502. Kim T, Kim H, Kang Y, Yoon S, Lee J, Choi W, et al. Psammaplin A induces Sirtuin 1-dependent autophagic cell death in doxorubicin-resistant MCF-7/adr human breast cancer cells and xenografts. Biochim Biophys Acta. 2015;1850:401-10 pubmed 出版商
  503. Lu W, Han L, Su L, Zhao J, Zhang Y, Zhang S, et al. A 3'UTR-associated RNA, FLJ11812 maintains stemness of human embryonic stem cells by targeting miR-4459. Stem Cells Dev. 2015;24:1133-40 pubmed 出版商
  504. Leyk J, Goldbaum O, Noack M, Richter Landsberg C. Inhibition of HDAC6 modifies tau inclusion body formation and impairs autophagic clearance. J Mol Neurosci. 2015;55:1031-46 pubmed 出版商
  505. Nakashima H, Nguyen T, Goins W, Chiocca E. Interferon-stimulated gene 15 (ISG15) and ISG15-linked proteins can associate with members of the selective autophagic process, histone deacetylase 6 (HDAC6) and SQSTM1/p62. J Biol Chem. 2015;290:1485-95 pubmed 出版商
  506. Rovetta A, Peña D, Hernández Del Pino R, Recalde G, Pellegrini J, Bigi F, et al. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis. Autophagy. 2014;10:2109-21 pubmed 出版商
  507. He W, Hu C, Hou J, Fan L, Xu Y, Liu M, et al. Microtubule-associated protein 1 light chain 3 interacts with and contributes to growth inhibiting effect of PML. PLoS ONE. 2014;9:e113089 pubmed 出版商
  508. BOWMAN C, Ayer D, Dynlacht B. Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs. Nat Cell Biol. 2014;16:1202-14 pubmed 出版商
  509. Gassen N, Hartmann J, Zschocke J, Stepan J, Häfner K, Zellner A, et al. Association of FKBP51 with priming of autophagy pathways and mediation of antidepressant treatment response: evidence in cells, mice, and humans. PLoS Med. 2014;11:e1001755 pubmed 出版商
  510. Lonskaya I, Hebron M, Chen W, Schachter J, Moussa C. Tau deletion impairs intracellular β-amyloid-42 clearance and leads to more extracellular plaque deposition in gene transfer models. Mol Neurodegener. 2014;9:46 pubmed 出版商
  511. Guo H, Chitiprolu M, Gagnon D, Meng L, Perez Iratxeta C, Lagace D, et al. Autophagy supports genomic stability by degrading retrotransposon RNA. Nat Commun. 2014;5:5276 pubmed 出版商
  512. Dowdle W, Nyfeler B, Nagel J, Elling R, Liu S, Triantafellow E, et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol. 2014;16:1069-79 pubmed 出版商
  513. Yang N, Tan S, Ng S, Shi Y, Zhou J, Tan K, et al. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J Biol Chem. 2014;289:33425-41 pubmed 出版商
  514. Wang Y, Kuramitsu Y, Tokuda K, Baron B, Kitagawa T, Akada J, et al. Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer. PLoS ONE. 2014;9:e109076 pubmed 出版商
  515. Yang D, Stavrides P, Saito M, Kumar A, Rodriguez Navarro J, Pawlik M, et al. Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting lysosomal proteolytic deficits. Brain. 2014;137:3300-18 pubmed 出版商
  516. McGinnis L, Pelech S, Kinsey W. Post-ovulatory aging of oocytes disrupts kinase signaling pathways and lysosome biogenesis. Mol Reprod Dev. 2014;81:928-45 pubmed 出版商
  517. Roe N, Xu X, Kandadi M, Hu N, Pang J, Weiser Evans M, et al. Targeted deletion of PTEN in cardiomyocytes renders cardiac contractile dysfunction through interruption of Pink1-AMPK signaling and autophagy. Biochim Biophys Acta. 2015;1852:290-8 pubmed 出版商
  518. Perez Chanona E, Muhlbauer M, Jobin C. The microbiota protects against ischemia/reperfusion-induced intestinal injury through nucleotide-binding oligomerization domain-containing protein 2 (NOD2) signaling. Am J Pathol. 2014;184:2965-75 pubmed 出版商
  519. Nitta T, Sato Y, Ren X, Harada K, Sasaki M, Hirano S, et al. Autophagy may promote carcinoma cell invasion and correlate with poor prognosis in cholangiocarcinoma. Int J Clin Exp Pathol. 2014;7:4913-21 pubmed
  520. Liu J, Zheng L, Ma L, Wang B, Zhao Y, Wu N, et al. Oleanolic acid inhibits proliferation and invasiveness of Kras-transformed cells via autophagy. J Nutr Biochem. 2014;25:1154-1160 pubmed 出版商
  521. Liu Y, Wan S, Zhang P, Zhang W, Zheng J, Lin J, et al. Expression levels of autophagy related proteins and their prognostic significance in retinocytoma and retinoblastoma. Int J Ophthalmol. 2014;7:594-601 pubmed 出版商
  522. Ginet V, Pittet M, Rummel C, Osterheld M, Meuli R, Clarke P, et al. Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic. Ann Neurol. 2014;76:695-711 pubmed 出版商
  523. Guo B, Huang J, Wu W, Feng D, Wang X, Chen Y, et al. The nascent polypeptide-associated complex is essential for autophagic flux. Autophagy. 2014;10:1738-48 pubmed 出版商
  524. Li L, Wu P, Lee J, Li P, Hsieh W, Ho C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS ONE. 2014;9:e104203 pubmed 出版商
  525. Noack M, Richter Landsberg C. Activation of autophagy by rapamycin does not protect oligodendrocytes against protein aggregate formation and cell death induced by proteasomal inhibition. J Mol Neurosci. 2015;55:99-108 pubmed 出版商
  526. Meng G, Xia M, Wang D, Chen A, Wang Y, Wang H, et al. Mitophagy promotes replication of oncolytic Newcastle disease virus by blocking intrinsic apoptosis in lung cancer cells. Oncotarget. 2014;5:6365-74 pubmed
  527. Hamouda M, Belhacene N, Puissant A, Colosetti P, Robert G, Jacquel A, et al. The small heat shock protein B8 (HSPB8) confers resistance to bortezomib by promoting autophagic removal of misfolded proteins in multiple myeloma cells. Oncotarget. 2014;5:6252-66 pubmed
  528. Desideri E, Vegliante R, Cardaci S, Nepravishta R, Paci M, Ciriolo M. MAPK14/p38?-dependent modulation of glucose metabolism affects ROS levels and autophagy during starvation. Autophagy. 2014;10:1652-65 pubmed 出版商
  529. Domitrovic R, Cvijanovic O, Susnić V, Katalinić N. Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury. Toxicology. 2014;324:98-107 pubmed 出版商
  530. Corpeno R, Dworkin B, Cacciani N, Salah H, Bergman H, Ravara B, et al. Time course analysis of mechanical ventilation-induced diaphragm contractile muscle dysfunction in the rat. J Physiol. 2014;592:3859-80 pubmed 出版商
  531. Baraz R, Cisterne A, Saunders P, Hewson J, Thien M, Weiss J, et al. mTOR inhibition by everolimus in childhood acute lymphoblastic leukemia induces caspase-independent cell death. PLoS ONE. 2014;9:e102494 pubmed 出版商
  532. Barnard R, Wittenburg L, Amaravadi R, Gustafson D, Thorburn A, Thamm D. Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma. Autophagy. 2014;10:1415-25 pubmed 出版商
  533. Morgado A, Xavier J, Dionísio P, Ribeiro M, Dias R, Sebastião A, et al. MicroRNA-34a Modulates Neural Stem Cell Differentiation by Regulating Expression of Synaptic and Autophagic Proteins. Mol Neurobiol. 2015;51:1168-83 pubmed 出版商
  534. Lau H, Ramanujulu P, Guo D, Yang T, Wirawan M, Casey P, et al. An improved isoprenylcysteine carboxylmethyltransferase inhibitor induces cancer cell death and attenuates tumor growth in vivo. Cancer Biol Ther. 2014;15:1280-91 pubmed 出版商
  535. Nassif M, Valenzuela V, Rojas Rivera D, Vidal R, Matus S, Castillo K, et al. Pathogenic role of BECN1/Beclin 1 in the development of amyotrophic lateral sclerosis. Autophagy. 2014;10:1256-71 pubmed 出版商
  536. Zielniok K, Motyl T, Gajewska M. Functional interactions between 17 ? -estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures. Biomed Res Int. 2014;2014:382653 pubmed 出版商
  537. Li S, Wang W, Niu T, Wang H, Li B, Shao L, et al. Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction. Oxid Med Cell Longev. 2014;2014:748524 pubmed 出版商
  538. Lin L, Xu J, Ye Y, Ge J, Zou Y, Liu X. Isosorbide dinitrate inhibits mechanical stress-induced cardiac hypertrophy and autophagy through downregulation of angiotensin II type 1 receptor. J Cardiovasc Pharmacol. 2015;65:1-7 pubmed 出版商
  539. Costes S, Gurlo T, Rivera J, Butler P. UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in ?-cells: evidence of interplay between the ubiquitin/proteasome system and autophagy. Autophagy. 2014;10:1004-14 pubmed 出版商
  540. Ambrosi G, Ghezzi C, Sepe S, Milanese C, Payan Gomez C, Bombardieri C, et al. Bioenergetic and proteolytic defects in fibroblasts from patients with sporadic Parkinson's disease. Biochim Biophys Acta. 2014;1842:1385-94 pubmed 出版商
  541. Wang H, Wan H, Li X, Liu W, Chen Q, Wang Y, et al. Atg7 is required for acrosome biogenesis during spermatogenesis in mice. Cell Res. 2014;24:852-69 pubmed 出版商
  542. Chen K, Wang C, Tsai M, Wu C, Yang H, Chen L, et al. Interconnections between autophagy and the coagulation cascade in hepatocellular carcinoma. Cell Death Dis. 2014;5:e1244 pubmed 出版商
  543. Yang S, Xia C, Li S, Du L, Zhang L, Hu Y. Mitochondrial dysfunction driven by the LRRK2-mediated pathway is associated with loss of Purkinje cells and motor coordination deficits in diabetic rat model. Cell Death Dis. 2014;5:e1217 pubmed 出版商
  544. Watanabe M, Funakoshi T, Unuma K, Aki T, Uemura K. Activation of the ubiquitin-proteasome system against arsenic trioxide cardiotoxicity involves ubiquitin ligase Parkin for mitochondrial homeostasis. Toxicology. 2014;322:43-50 pubmed 出版商
  545. Brown D, LASSEGUE B, Lee M, Zafari R, Long J, Saavedra H, et al. Poldip2 knockout results in perinatal lethality, reduced cellular growth and increased autophagy of mouse embryonic fibroblasts. PLoS ONE. 2014;9:e96657 pubmed 出版商
  546. Cazanave S, Wang X, Zhou H, Rahmani M, Grant S, Durrant D, et al. Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ. 2014;21:1303-12 pubmed 出版商
  547. Stein L, Wozniak D, Dearborn J, Kubota S, Apte R, Izumi Y, et al. Expression of Nampt in hippocampal and cortical excitatory neurons is critical for cognitive function. J Neurosci. 2014;34:5800-15 pubmed 出版商
  548. Gonzalez Rodriguez A, Mayoral R, Agra N, Valdecantos M, Pardo V, Miquilena Colina M, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 2014;5:e1179 pubmed 出版商
  549. Zhao X, Gao S, Ren H, Huang H, Ji W, Hao J. Inhibition of autophagy strengthens celastrol-induced apoptosis in human pancreatic cancer in vitro and in vivo models. Curr Mol Med. 2014;14:555-63 pubmed
  550. Bejarano E, Yuste A, Patel B, Stout R, Spray D, Cuervo A. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401-14 pubmed 出版商
  551. Akkad H, Corpeno R, Larsson L. Masseter muscle myofibrillar protein synthesis and degradation in an experimental critical illness myopathy model. PLoS ONE. 2014;9:e92622 pubmed 出版商
  552. Mancias J, Wang X, Gygi S, Harper J, Kimmelman A. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509:105-9 pubmed 出版商
  553. Akbari M, Keijzers G, Maynard S, Scheibye Knudsen M, Desler C, Hickson I, et al. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair. DNA Repair (Amst). 2014;16:44-53 pubmed 出版商
  554. Loukil A, Zonca M, Rebouissou C, Baldin V, Coux O, Biard Piechaczyk M, et al. High-resolution live-cell imaging reveals novel cyclin A2 degradation foci involving autophagy. J Cell Sci. 2014;127:2145-50 pubmed 出版商
  555. Carloni S, Albertini M, Galluzzi L, Buonocore G, Proietti F, Balduini W. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways. Exp Neurol. 2014;255:103-12 pubmed 出版商
  556. Mackeh R, Lorin S, Ratier A, Mejdoubi Charef N, Baillet A, Bruneel A, et al. Reactive oxygen species, AMP-activated protein kinase, and the transcription cofactor p300 regulate ?-tubulin acetyltransferase-1 (?TAT-1/MEC-17)-dependent microtubule hyperacetylation during cell stress. J Biol Chem. 2014;289:11816-28 pubmed 出版商
  557. Ekman M, Uvelius B, Albinsson S, Swärd K. HIF-mediated metabolic switching in bladder outlet obstruction mitigates the relaxing effect of mitochondrial inhibition. Lab Invest. 2014;94:557-68 pubmed 出版商
  558. Lin L, Tang C, Xu J, Ye Y, Weng L, Wei W, et al. Mechanical stress triggers cardiomyocyte autophagy through angiotensin II type 1 receptor-mediated p38MAP kinase independently of angiotensin II. PLoS ONE. 2014;9:e89629 pubmed 出版商
  559. Porter K, Jeyabalan N, Liton P. MTOR-independent induction of autophagy in trabecular meshwork cells subjected to biaxial stretch. Biochim Biophys Acta. 2014;1843:1054-62 pubmed 出版商
  560. Maruyama Y, Sou Y, Kageyama S, Takahashi T, Ueno T, Tanaka K, et al. LC3B is indispensable for selective autophagy of p62 but not basal autophagy. Biochem Biophys Res Commun. 2014;446:309-15 pubmed 出版商
  561. Xia M, Gonzalez P, Li C, Meng G, Jiang A, Wang H, et al. Mitophagy enhances oncolytic measles virus replication by mitigating DDX58/RIG-I-like receptor signaling. J Virol. 2014;88:5152-64 pubmed 出版商
  562. Li W, Zhang X, Zhuang H, Chen H, Chen Y, Tian W, et al. MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX. J Biol Chem. 2014;289:10691-701 pubmed 出版商
  563. Ohshima J, Lee Y, Sasai M, Saitoh T, Su Ma J, Kamiyama N, et al. Role of mouse and human autophagy proteins in IFN-?-induced cell-autonomous responses against Toxoplasma gondii. J Immunol. 2014;192:3328-35 pubmed 出版商
  564. Mellor K, Varma U, Stapleton D, Delbridge L. Cardiomyocyte glycophagy is regulated by insulin and exposure to high extracellular glucose. Am J Physiol Heart Circ Physiol. 2014;306:H1240-5 pubmed 出版商
  565. Chang P, Wang T, Chang Y, Chu C, Lee C, Hsu H, et al. Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells. PLoS ONE. 2014;9:e88556 pubmed 出版商
  566. Poillet L, Pernodet N, Boyer Guittaut M, Adami P, Borg C, Jouvenot M, et al. QSOX1 inhibits autophagic flux in breast cancer cells. PLoS ONE. 2014;9:e86641 pubmed 出版商
  567. Li J, Xu Z, Jiang L, Mao J, Zeng Z, Fang L, et al. Rictor/mTORC2 protects against cisplatin-induced tubular cell death and acute kidney injury. Kidney Int. 2014;86:86-102 pubmed 出版商
  568. Zemljic Harpf A, Godoy J, Platoshyn O, Asfaw E, Busija A, Domenighetti A, et al. Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci. 2014;127:1104-16 pubmed 出版商
  569. Kang J, Cho H, Lee S. Melatonin inhibits mTOR-dependent autophagy during liver ischemia/reperfusion. Cell Physiol Biochem. 2014;33:23-36 pubmed 出版商
  570. Xia Q, Cai Y, Peng R, Wu G, Shi Y, Jiang W. The CDK1 inhibitor RO3306 improves the response of BRCA-pro?cient breast cancer cells to PARP inhibition. Int J Oncol. 2014;44:735-44 pubmed 出版商
  571. Baldo B, Soylu R, Petersen A. Maintenance of basal levels of autophagy in Huntington's disease mouse models displaying metabolic dysfunction. PLoS ONE. 2013;8:e83050 pubmed 出版商
  572. Lai A, Lan C, Hasan S, Brown M, McLaurin J. scyllo-Inositol promotes robust mutant Huntingtin protein degradation. J Biol Chem. 2014;289:3666-76 pubmed 出版商
  573. Xavier J, Morgado A, Sola S, Rodrigues C. Mitochondrial translocation of p53 modulates neuronal fate by preventing differentiation-induced mitochondrial stress. Antioxid Redox Signal. 2014;21:1009-24 pubmed 出版商
  574. Brot S, Auger C, Bentata R, Rogemond V, Ménigoz S, Chounlamountri N, et al. Collapsin response mediator protein 5 (CRMP5) induces mitophagy, thereby regulating mitochondrion numbers in dendrites. J Biol Chem. 2014;289:2261-76 pubmed 出版商
  575. Zhan Z, Xie X, Cao H, Zhou X, Zhang X, Fan H, et al. Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy. 2014;10:257-68 pubmed 出版商
  576. Wang W, Wang Y, Chen H, Xing Y, Li F, Zhang Q, et al. Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway. Nat Chem Biol. 2014;10:133-40 pubmed 出版商
  577. Sisinni L, Maddalena F, Lettini G, Condelli V, Matassa D, Esposito F, et al. TRAP1 role in endoplasmic reticulum stress protection favors resistance to anthracyclins in breast carcinoma cells. Int J Oncol. 2014;44:573-82 pubmed 出版商
  578. Tan S, Shui G, Zhou J, Shi Y, Huang J, Xia D, et al. Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway. Autophagy. 2014;10:226-42 pubmed 出版商
  579. Edrey Y, Oddo S, Cornelius C, Caccamo A, Calabrese V, Buffenstein R. Oxidative damage and amyloid-? metabolism in brain regions of the longest-lived rodents. J Neurosci Res. 2014;92:195-205 pubmed 出版商
  580. Rubio N, Verrax J, Dewaele M, Verfaillie T, Johansen T, Piette J, et al. p38(MAPK)-regulated induction of p62 and NBR1 after photodynamic therapy promotes autophagic clearance of ubiquitin aggregates and reduces reactive oxygen species levels by supporting Nrf2-antioxidant signaling. Free Radic Biol Med. 2014;67:292-303 pubmed 出版商
  581. Xu Y, Zhang J, Tian C, Ren K, Yan Y, Wang K, et al. Overexpression of p62/SQSTM1 promotes the degradations of abnormally accumulated PrP mutants in cytoplasm and relieves the associated cytotoxicities via autophagy-lysosome-dependent way. Med Microbiol Immunol. 2014;203:73-84 pubmed 出版商
  582. Yang Z, Xu Y, Xu L, Maccauro G, Rossi B, Chen Y, et al. Regulation of autophagy via PERK-eIF2? effectively relieve the radiation myelitis induced by iodine-125. PLoS ONE. 2013;8:e76819 pubmed 出版商
  583. Manzoni C, Mamais A, Dihanich S, McGoldrick P, Devine M, Zerle J, et al. Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation. Biochem Biophys Res Commun. 2013;441:862-6 pubmed 出版商
  584. Gómez Sánchez R, Gegg M, Bravo San Pedro J, Niso Santano M, Alvarez Erviti L, Pizarro Estrella E, et al. Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression. Neurobiol Dis. 2014;62:426-40 pubmed 出版商
  585. Chittoor V, Sooyeon L, Rangaraju S, Nicks J, Schmidt J, Madorsky I, et al. Biochemical characterization of protein quality control mechanisms during disease progression in the C22 mouse model of CMT1A. ASN Neuro. 2013;5:e00128 pubmed 出版商
  586. Wei P, Zhang L, Nethi S, Barui A, Lin J, Zhou W, et al. Accelerating the clearance of mutant huntingtin protein aggregates through autophagy induction by europium hydroxide nanorods. Biomaterials. 2014;35:899-907 pubmed 出版商
  587. Peng Y, Shi Y, Ding Z, Ke A, Gu C, Hui B, et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy. 2013;9:2056-68 pubmed 出版商
  588. Chen M, Yi L, Jin X, Liang X, Zhou Y, Zhang T, et al. Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway. Autophagy. 2013;9:2033-45 pubmed 出版商
  589. Kyathanahalli C, Marks J, Nye K, Lao B, Albrecht E, Aberdeen G, et al. Cross-species withdrawal of MCL1 facilitates postpartum uterine involution in both the mouse and baboon. Endocrinology. 2013;154:4873-84 pubmed 出版商
  590. Armstrong A, Mattsson N, Appelqvist H, Janefjord C, Sandin L, Agholme L, et al. Lysosomal network proteins as potential novel CSF biomarkers for Alzheimer's disease. Neuromolecular Med. 2014;16:150-60 pubmed 出版商
  591. Fedorova L, Tamirisa A, Kennedy D, Haller S, Budnyy G, Shapiro J, et al. Mitochondrial impairment in the five-sixth nephrectomy model of chronic renal failure: proteomic approach. BMC Nephrol. 2013;14:209 pubmed 出版商
  592. Domitrovic R, Cvijanovic O, Pernjak Pugel E, Skoda M, Mikelić L, Crncevic Orlic Z. Berberine exerts nephroprotective effect against cisplatin-induced kidney damage through inhibition of oxidative/nitrosative stress, inflammation, autophagy and apoptosis. Food Chem Toxicol. 2013;62:397-406 pubmed 出版商
  593. Lee I, Yun J, Finkel T. The emerging links between sirtuins and autophagy. Methods Mol Biol. 2013;1077:259-71 pubmed 出版商
  594. Ramírez Peinado S, León Annicchiarico C, Galindo Moreno J, Iurlaro R, Caro Maldonado A, Prehn J, et al. Glucose-starved cells do not engage in prosurvival autophagy. J Biol Chem. 2013;288:30387-98 pubmed 出版商
  595. Bartolomé A, López Herradón A, Portal Nuñez S, García Aguilar A, Esbrit P, Benito M, et al. Autophagy impairment aggravates the inhibitory effects of high glucose on osteoblast viability and function. Biochem J. 2013;455:329-37 pubmed 出版商
  596. Gurkar A, Chu K, Raj L, Bouley R, Lee S, Kim Y, et al. Identification of ROCK1 kinase as a critical regulator of Beclin1-mediated autophagy during metabolic stress. Nat Commun. 2013;4:2189 pubmed 出版商
  597. He W, Wang Q, Srinivasan B, Xu J, Padilla M, Li Z, et al. A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy. Oncogene. 2014;33:3004-13 pubmed 出版商
  598. Yuan Y, Tang A, Castoreno A, Kuo S, Wang Q, Kuballa P, et al. Gossypol and an HMT G9a inhibitor act in synergy to induce cell death in pancreatic cancer cells. Cell Death Dis. 2013;4:e690 pubmed 出版商
  599. Itakura A, McCarty O. Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy. Am J Physiol Cell Physiol. 2013;305:C348-54 pubmed 出版商
  600. Roy S, Stevens M, So L, Edinger A. Reciprocal effects of rab7 deletion in activated and neglected T cells. Autophagy. 2013;9:1009-23 pubmed 出版商
  601. Bauckman K, Haller E, Flores I, Nanjundan M. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells. Cell Death Dis. 2013;4:e592 pubmed 出版商
  602. Willis M, Min J, Wang S, McDonough H, Lockyer P, Wadosky K, et al. Carboxyl terminus of Hsp70-interacting protein (CHIP) is required to modulate cardiac hypertrophy and attenuate autophagy during exercise. Cell Biochem Funct. 2013;31:724-35 pubmed 出版商
  603. Posimo J, Titler A, Choi H, Unnithan A, Leak R. Neocortex and allocortex respond differentially to cellular stress in vitro and aging in vivo. PLoS ONE. 2013;8:e58596 pubmed 出版商
  604. Luo L, Lu A, Wang Y, Hong A, Chen Y, Hu J, et al. Chronic resistance training activates autophagy and reduces apoptosis of muscle cells by modulating IGF-1 and its receptors, Akt/mTOR and Akt/FOXO3a signaling in aged rats. Exp Gerontol. 2013;48:427-36 pubmed 出版商
  605. Sirohi K, Chalasani M, Sudhakar C, Kumari A, Radha V, Swarup G. M98K-OPTN induces transferrin receptor degradation and RAB12-mediated autophagic death in retinal ganglion cells. Autophagy. 2013;9:510-27 pubmed 出版商
  606. Suetta C, Frandsen U, Jensen L, Jensen M, Jespersen J, Hvid L, et al. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy. PLoS ONE. 2012;7:e51238 pubmed 出版商
  607. Sánchez Alvarez R, Martinez Outschoorn U, Lin Z, Lamb R, Hulit J, Howell A, et al. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention. Cell Cycle. 2013;12:289-301 pubmed 出版商
  608. Sánchez Alvarez R, Martinez Outschoorn U, Lamb R, Hulit J, Howell A, Gandara R, et al. Mitochondrial dysfunction in breast cancer cells prevents tumor growth: understanding chemoprevention with metformin. Cell Cycle. 2013;12:172-82 pubmed 出版商
  609. Woessner D, Lim C. Disrupting BCR-ABL in combination with secondary leukemia-specific pathways in CML cells leads to enhanced apoptosis and decreased proliferation. Mol Pharm. 2013;10:270-7 pubmed 出版商
  610. Newman A, Scholefield C, Kemp A, Newman M, McIver E, Kamal A, et al. TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-?B signalling. PLoS ONE. 2012;7:e50672 pubmed 出版商
  611. Giansanti V, Rodriguez G, Savoldelli M, Gioia R, Forlino A, Mazzini G, et al. Characterization of stress response in human retinal epithelial cells. J Cell Mol Med. 2013;17:103-15 pubmed 出版商
  612. Vandergaast R, Fredericksen B. West Nile virus (WNV) replication is independent of autophagy in mammalian cells. PLoS ONE. 2012;7:e45800 pubmed 出版商
  613. Durieux A, Vassilopoulos S, Laine J, Fraysse B, Brinas L, Prudhon B, et al. A centronuclear myopathy--dynamin 2 mutation impairs autophagy in mice. Traffic. 2012;13:869-79 pubmed 出版商
  614. Tanida I, Yamasaki M, Komatsu M, Ueno T. The FAP motif within human ATG7, an autophagy-related E1-like enzyme, is essential for the E2-substrate reaction of LC3 lipidation. Autophagy. 2012;8:88-97 pubmed 出版商
  615. Su W, Chao T, Huang Y, Weng S, Jeng K, Lai M. Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J Virol. 2011;85:10561-71 pubmed 出版商
  616. Walls K, Ghosh A, Franklin A, Klocke B, Ballestas M, Shacka J, et al. Lysosome dysfunction triggers Atg7-dependent neural apoptosis. J Biol Chem. 2010;285:10497-507 pubmed 出版商