这是一篇来自已证抗体库的有关人类 MAP1LC3B的综述,是根据582篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合MAP1LC3B 抗体。
MAP1LC3B 同义词: ATG8F; LC3B; MAP1A/1BLC3; MAP1LC3B-a

西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样本上 (图 3a). J Cell Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猕猴; 1:1000; 图 6a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在猕猴样本上浓度为1:1000 (图 6a). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:400; 图 7f
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 7f). Front Physiol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上 (图 1a). Autophagy (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上 (图 3c). Transl Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 2e
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2e). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b, 7b
  • 免疫印迹; 小鼠; 图 7a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样本上 (图 6b, 7b) 和 被用于免疫印迹在小鼠样本上 (图 7a). Autophagy (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 7a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7a). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s6d
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在小鼠样本上 (图 s6d). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5f
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5f). J Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 8a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 8a). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 8f
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫沉淀在人类样本上 (图 8f). Autophagy (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5f
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5f). Cardiovasc Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上 (图 2e). Nucleic Acids Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1k
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1k). EMBO J (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6n, 6a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6n, 6a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6c). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1f
西格玛奥德里奇 MAP1LC3B抗体(Sigma Aldrich, L7543)被用于被用于免疫印迹在小鼠样本上 (图 1f). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Metabolism (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 4i
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4i). Nat Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4e
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫细胞化学在人类样本上 (图 4e). Dev Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 6a
  • 免疫印迹; 小鼠; 1:1000; 图 2a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
西格玛奥德里奇 MAP1LC3B抗体(Sigma Aldrich, L7543)被用于被用于免疫印迹在小鼠样本上 (图 2b). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样本上 (图 3b). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 5b
  • 免疫细胞化学; 人类; 1:1000; 图 4b
  • 免疫印迹; 人类; 1:1000; 图 3d
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫沉淀在人类样本上 (图 5b), 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Neurochem Int (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1
西格玛奥德里奇 MAP1LC3B抗体(Abcam, L7543)被用于被用于免疫印迹在小鼠样本上 (图 s1). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
  • 免疫组化; 小鼠; 图 4a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上 (图 3a) 和 被用于免疫组化在小鼠样本上 (图 4a). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). J Neuroinflammation (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上 (图 1b). Redox Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 3a
  • 免疫印迹; 小鼠; 1:1000; 图 1b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5d
  • 免疫印迹; 小鼠; 图 5b
西格玛奥德里奇 MAP1LC3B抗体(Sigma Aldrich, L7543)被用于被用于免疫组化在小鼠样本上 (图 5d) 和 被用于免疫印迹在小鼠样本上 (图 5b). PLoS Pathog (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
  • 免疫印迹; 大鼠; 图 6a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样本上 (图 4a) 和 被用于免疫印迹在大鼠样本上 (图 6a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1k
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样本上 (图 1k) 和 被用于免疫印迹在人类样本上 (图 1a). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样本上 (图 1b). Eur J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上 (图 4b). Int J Mol Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Exp Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2a). Radiother Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 1b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1b
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫组化在人类样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1a). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Hum Mol Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2d
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在人类样本上 (图 2d) 和 被用于免疫印迹在人类样本上 (图 2a). Biochim Biophys Acta Mol Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上 (图 2f). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样本上 (图 4a). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 S1
  • 免疫印迹; 小鼠; 1:1000; 图 1E
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 S1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1E). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3a
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在人类样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 3b). Int J Nanomedicine (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:5000; 图 s1c
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在人类样本上浓度为1:5000 (图 s1c). EMBO Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
  • 免疫印迹; 大鼠; 图 2a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上 (图 2d) 和 被用于免疫印迹在大鼠样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:500; 图 3c
  • 免疫印迹; 大鼠; 1:2000; 图 1a
西格玛奥德里奇 MAP1LC3B抗体(sigma, L7543)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 3c) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 1a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1b
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在人类样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:3000; 图 1d
  • 免疫印迹; 人类; 1:3000; 图 1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫组化在人类样本上浓度为1:3000 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 1a). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 7a
  • 免疫印迹; 小鼠; 图 5d
西格玛奥德里奇 MAP1LC3B抗体(sigma, L7543)被用于被用于免疫细胞化学在小鼠样本上 (图 7a) 和 被用于免疫印迹在小鼠样本上 (图 5d). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样本上 (图 2d). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 4). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5c
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L-7543)被用于被用于免疫印迹在小鼠样本上 (图 5c). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 2c
  • 免疫印迹; 小鼠; 图 1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2c) 和 被用于免疫印迹在小鼠样本上 (图 1a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7c
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样本上 (图 7c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; African green monkey; 图 7c
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫细胞化学在African green monkey样本上 (图 7c). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L-7543)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2a). Neurochem Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 2a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2a). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样本上 (图 3). Autophagy (2016) ncbi
小鼠 单克隆(LC3B-6)
  • 免疫印迹; 人类; 图 3
  • 免疫组化; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, SAB4200361)被用于被用于免疫印迹在人类样本上 (图 3), 被用于免疫组化在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 5
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在人类样本上 (图 4). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上 (图 3). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 4). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3d
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3d). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于被用于免疫印迹在小鼠样本上 (图 2c). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样本上 (图 1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s2
西格玛奥德里奇 MAP1LC3B抗体(Sigma Aldrich, L7543)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s2). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于被用于免疫印迹在人类样本上 (图 1). J Immunol (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. Nature (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(MBL, L7543)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(SigmaAldrich, L7543)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于. EMBO Mol Med (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. J Cell Biol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. Acta Pharmacol Sin (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于. Int J Mol Sci (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于. J Leukoc Biol (2015) ncbi
小鼠 单克隆(LC3B-6)
  • 免疫细胞化学; 人类; 1:100
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, SAB4200361)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Leukoc Biol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. J Virol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L-7543)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. elife (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. Arch Toxicol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于. Cell Death Differ (2015) ncbi
小鼠 单克隆(LC3B-6)
  • 免疫组化-石蜡切片; 人类; 图 5a
  • 免疫印迹; 人类; 图 5b
西格玛奥德里奇 MAP1LC3B抗体(SigmaAldrich, SAB4200361)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 5b). J Biol Chem (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于. Biochim Biophys Acta (2015) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 1:1000; 图 5s2b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5s2b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 2a). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s2a
  • 免疫印迹; 人类; 图 2a
Novus Biologicals MAP1LC3B抗体(NOVUS, NB100-2220)被用于被用于免疫细胞化学在人类样本上 (图 s2a) 和 被用于免疫印迹在人类样本上 (图 2a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:20,000; 图 6h
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 6h). Autophagy (2019) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 5a
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫印迹在人类样本上 (图 5a). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1c
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100?C2220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2a
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). J Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3g
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, 100-2220)被用于被用于免疫印迹在人类样本上 (图 3g). Front Mol Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8c
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 5a). Autophagy (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 豚鼠; 图 7b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在豚鼠样本上 (图 7b). Biomed Res Int (2019) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 4b
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫印迹在人类样本上 (图 4b). Oncogene (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 1a). Autophagy (2018) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 图 s8d
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于被用于免疫印迹在小鼠样本上 (图 s8d). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(1251A)
  • 免疫细胞化学; 人类; 图 4a
Novus Biologicals MAP1LC3B抗体(NOVUS, NBP-24689)被用于被用于免疫细胞化学在人类样本上 (图 4a). Dev Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 3c). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 1b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1b). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 2a). Front Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Death Differ (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 4b
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4b). J Lipid Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5g
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5g). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2f
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 2f). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 2c). PLoS Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 1f
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1f). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 2c). Cell Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
  • 免疫印迹; 人类; 图 e4d
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB 100-2220)被用于被用于免疫印迹在小鼠样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 e4d). Nature (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化; 大鼠; 1:200; 图 3
  • 免疫印迹; 大鼠; 1:1000; 图 1a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1a). Am J Transl Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
  • 免疫印迹; 斑马鱼; 图 3d
Novus Biologicals MAP1LC3B抗体(Novus, NB 100-2220)被用于被用于免疫印迹在人类样本上 (图 5b) 和 被用于免疫印迹在斑马鱼样本上 (图 3d). Cell Chem Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4d
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8c
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8c). J Nutr Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 5a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-222055)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5a). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 3a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB00-2220)被用于被用于免疫印迹在小鼠样本上 (图 3d). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1f
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). EMBO Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1h
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 1h). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3f
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 3f). Autophagy (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). J Huntingtons Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 5a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NN100-2220)被用于被用于免疫组化在人类样本上 (图 5a). J Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
Novus Biologicals MAP1LC3B抗体(Novus biological, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 5b). Front Cell Infect Microbiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Genet Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
Novus Biologicals MAP1LC3B抗体(NovusBio, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 4e). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 1e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 6
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 3). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Drug Des Devel Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上. Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 2d
  • 免疫印迹; 人类; 1:1000; 图 5b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Nat Commun (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 5
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, 600-1384)被用于被用于免疫印迹在人类样本上 (图 5). J Immunol (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 6
Novus Biologicals MAP1LC3B抗体(Novusbio, NB600-1384)被用于被用于免疫印迹在人类样本上 (图 6). Neurobiol Dis (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 3
  • 免疫印迹; 人类; 图 1a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000 (图 3) 和 被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). J Pharmacol Exp Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 10
  • 免疫细胞化学; 小鼠; 图 7
  • 免疫印迹; 小鼠; 图 1
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在大鼠样本上 (图 10), 被用于免疫细胞化学在小鼠样本上 (图 7) 和 被用于免疫印迹在小鼠样本上 (图 1). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 6). Autophagy (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 1:1000; 图 2
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 6). J Nanobiotechnology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:2000; 图 s2
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在斑马鱼样本上浓度为1:2000 (图 s2). Hum Mol Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上. Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
  • 免疫印迹; 人类; 1:1000; 图 s1
Novus Biologicals MAP1LC3B抗体(Novus, NB 100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 3). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 1
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 7
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 7). Traffic (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2e
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2e). J Mol Cell Cardiol (2016) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB100?C2220)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于. Mol Pharmacol (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s4b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s4b). Kidney Int (2016) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220SS)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB-100-2220)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220SS)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于. Biochim Biophys Acta (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, 100-2220)被用于被用于免疫印迹在人类样本上 (图 2). Leukemia (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在大鼠样本上 (图 5). Nutr Neurosci (2016) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus Biologicals;, NB600- 1384)被用于. Nature (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Life Sci (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. PLoS Pathog (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, 100-2220)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于. Nat Cell Biol (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Cell Signal (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(novus Biologicals, NB100-2220)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于. Exp Neurol (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于. Toxicol Lett (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Nat Neurosci (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. J Neurosci (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于. Nat Genet (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于. Oncogene (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于. Sci Signal (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Nat Cell Biol (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB100-2220)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(novus Biologicals, NB600-1384)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(NOVUS Biologicals, NB100-2220)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于. J Clin Invest (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于. Nucleic Acids Res (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6d
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, Ab48394)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 6b
  • 免疫印迹; 小鼠; 图 3a, 11b
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫细胞化学在小鼠样本上 (图 6b) 和 被用于免疫印迹在小鼠样本上 (图 3a, 11b). Theranostics (2020) ncbi
  • 免疫印迹; 小鼠; 图 1h, 3c
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab63817)被用于被用于免疫印迹在小鼠样本上 (图 1h, 3c). Front Physiol (2020) ncbi
domestic rabbit 单克隆(EPR18709)
  • 免疫印迹; 小鼠; 1:1000; 图 3a, 3b, 4b, s8a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab192890)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a, 3b, 4b, s8a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, Cambridge, UK, ab48394)被用于被用于免疫印迹在小鼠样本上 (图 4a). FASEB J (2020) ncbi
domestic rabbit 单克隆(EPR18709)
  • 免疫印迹; 人类; 1:2000; 图 4a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab192890)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Front Endocrinol (Lausanne) (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 2a). J Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5b
  • 免疫印迹; 小鼠; 图 3c
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫细胞化学在小鼠样本上 (图 5b) 和 被用于免疫印迹在小鼠样本上 (图 3c). Sci Adv (2019) ncbi
domestic rabbit 单克隆(EPR18709)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
  • 免疫印迹; 大鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab192890)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6b
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Santa Cruz Biotechnology, ab51520)被用于被用于免疫印迹在小鼠样本上 (图 6b). Biomolecules (2019) ncbi
domestic rabbit 单克隆(EPR18709)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab192890)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在小鼠样本上 (图 2a). EMBO J (2018) ncbi
  • 免疫组化; 小鼠; 1:500; 图 2c
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab63817)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2c). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样本上 (图 5a). Curr Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫细胞化学在大鼠样本上. Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于被用于免疫印迹在人类样本上 (图 2a). J Cell Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s3c
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫组化在小鼠样本上 (图 s3c). PLoS Genet (2017) ncbi
  • 免疫细胞化学; 人类; 1:100; 图 2d
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab63817)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2d). Nucleus (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab483941)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Mol Neurobiol (2017) ncbi
  • 免疫印迹; 小鼠; 1:1000; 图 5e
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab63817)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于被用于免疫印迹在人类样本上 (图 4c). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在小鼠样本上 (图 8). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在大鼠样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Cell Death Dis (2016) ncbi
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab63817)被用于被用于免疫印迹在人类样本上 (图 2). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 5
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 5a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫组化在人类样本上 (图 5a). Cancer Genomics Proteomics (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于被用于免疫印迹在小鼠样本上 (图 2). EMBO J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2). Hum Mol Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). J Physiol Biochem (2016) ncbi
  • 免疫组化; 人类; 1:100
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab63817)被用于被用于免疫组化在人类样本上浓度为1:100. Histochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1500; 图 3
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1500 (图 3). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 9
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫组化在人类样本上 (图 9). Autophagy (2016) ncbi
  • 免疫细胞化学; 人类; 图 10.a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab63817,)被用于被用于免疫细胞化学在人类样本上 (图 10.a). Cell Cycle (2015) ncbi
赛默飞世尔
domestic rabbit 多克隆
赛默飞世尔 MAP1LC3B抗体(Thermo Fisher, PA1-16930)被用于. Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 MAP1LC3B抗体(Pierce, PA1-16931)被用于被用于免疫印迹在人类样本上 (图 4a). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 6
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA5-32254)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 6). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 8
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-C16,931)被用于被用于免疫印迹在大鼠样本上 (图 8). J Nutr Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2a
赛默飞世尔 MAP1LC3B抗体(Thermo Fisher Scientific, PA1-16931)被用于被用于免疫印迹在人类样本上 (图 s2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 1:500; 图 1
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-16930)被用于被用于免疫印迹在牛样本上浓度为1:500 (图 1). J Dairy Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-16930)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-C16930)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAP1LC3B抗体(Thermo, PA116931)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-46286)被用于. Biol Reprod (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAP1LC3B抗体(Thermo, PA5-22731)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-46286)被用于. Methods (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAP1LC3B抗体(Thermo Fisher Scientific, PA1-16931)被用于. Mol Neurobiol (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(G-9)
  • 免疫细胞化学; 小鼠; 1:50; 图 5f
  • 免疫印迹; 小鼠; 1:100; 图 6s2a
圣克鲁斯生物技术 MAP1LC3B抗体(Santa, sc-376404)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 5f) 和 被用于免疫印迹在小鼠样本上浓度为1:100 (图 6s2a). elife (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:100; 图 2d
圣克鲁斯生物技术 MAP1LC3B抗体(Santa Cruz, sc-398822)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 2d). Mol Neurobiol (2018) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术 MAP1LC3B抗体(Santa Cruz, sc-376404)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(G-2)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 MAP1LC3B抗体(Santa Cruz, sc271625)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Cell Biol (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 图 2h
  • 免疫印迹; 小鼠; 图 5a
圣克鲁斯生物技术 MAP1LC3B抗体(Santa Cruz Biotechnology, sc-398822)被用于被用于免疫印迹在大鼠样本上 (图 2h) 和 被用于免疫印迹在小鼠样本上 (图 5a). PLoS ONE (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫细胞化学; 大鼠; 图 2b
圣克鲁斯生物技术 MAP1LC3B抗体(Santa Cruz, sc-376404)被用于被用于免疫细胞化学在大鼠样本上 (图 2b). Sci Rep (2015) ncbi
Enzo Life Sciences
小鼠 单克隆(5F10)
  • 免疫印迹; 小鼠; 1:750; 图 4f
Enzo Life Sciences MAP1LC3B抗体(Enzo Life Sciences, ALX80308)被用于被用于免疫印迹在小鼠样本上浓度为1:750 (图 4f). J Biol Chem (2018) ncbi
小鼠 单克隆(2G6)
  • 免疫细胞化学; 人类; 1:1000; 图 1c
  • 免疫印迹; 人类; 1:1000; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 6a
Enzo Life Sciences MAP1LC3B抗体(Enzo Lifesciences, 2G6)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1c), 被用于免疫印迹在人类样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Toxicol Sci (2016) ncbi
小鼠 单克隆(2G6)
  • 免疫细胞化学; 人类; 1:250; 图 1c
Enzo Life Sciences MAP1LC3B抗体(Enzo/Nanotools, LC3-2G6)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1c). elife (2016) ncbi
小鼠 单克隆(5F10)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
Enzo Life Sciences MAP1LC3B抗体(Enzo Life Sciences, 5F10)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Immunol (2013) ncbi
小鼠 单克隆(5F10)
  • 免疫细胞化学; 大鼠
  • 免疫印迹; 大鼠
Enzo Life Sciences MAP1LC3B抗体(Enzo Life sciences, ALX80308)被用于被用于免疫细胞化学在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Autophagy (2013) ncbi
小鼠 单克隆(2G6)
  • 免疫细胞化学; 大鼠
  • 免疫印迹; 大鼠
Enzo Life Sciences MAP1LC3B抗体(Enzo Life sciences, ALX80308)被用于被用于免疫细胞化学在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Autophagy (2013) ncbi
GeneTex
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200; 图 4a
GeneTex MAP1LC3B抗体(GeneTex, GTX127375)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 4a). J Clin Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
GeneTex MAP1LC3B抗体(Genetex, GTX127375)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2
GeneTex MAP1LC3B抗体(GeneTex, GTX82986)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
GeneTex MAP1LC3B抗体(GeneTex, GTX127375)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Genomics Proteomics (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
GeneTex MAP1LC3B抗体(Genetex, GTX 82986)被用于被用于免疫印迹在人类样本上 (图 4). Cell Death Dis (2016) ncbi
武汉三鹰
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
武汉三鹰 MAP1LC3B抗体(Proteintech, 14600-1-AP)被用于被用于免疫印迹在小鼠样本上 (图 5b). Drug Des Devel Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2e
武汉三鹰 MAP1LC3B抗体(Proteintech, 14600-1-AP)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Int J Biol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2g
武汉三鹰 MAP1LC3B抗体(Proteintech, 18725-1-AP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 8d
  • 免疫印迹; 人类; 1:5000; 图 8d
武汉三鹰 MAP1LC3B抗体(Proteintech, 14600-1-AP)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8d) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 8d). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
武汉三鹰 MAP1LC3B抗体(Proteintech, 14600-1-AP)被用于被用于免疫印迹在人类样本上 (图 3d). Int J Mol Med (2017) ncbi
北京傲锐东源
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 s1d
北京傲锐东源 MAP1LC3B抗体(Origene, TA301543)被用于被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 s1d). Autophagy (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
北京傲锐东源 MAP1LC3B抗体(OriGene, TA301543)被用于被用于免疫印迹在人类样本上 (图 3). Onco Targets Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
北京傲锐东源 MAP1LC3B抗体(Origene, TA301543)被用于被用于免疫印迹在人类样本上 (图 1). Front Pharmacol (2016) ncbi
亚诺法生技股份有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 s2
  • 免疫印迹; 小鼠; 1:3000; 图 1
亚诺法生技股份有限公司 MAP1LC3B抗体(Abnova, PAB12534)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s2) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1). Am J Pathol (2016) ncbi
亚诺法生技股份有限公司 MAP1LC3B抗体(Abnova, H00081631-P01)被用于. Cancer Biol Ther (2014) ncbi
伯乐(Bio-Rad)公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
伯乐(Bio-Rad)公司 MAP1LC3B抗体(AbD Serotec, AHP2167T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). BMC Complement Altern Med (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Metabolism (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在人类样本上 (图 3c). Front Cell Neurosci (2020) ncbi
domestic rabbit 单克隆(D11)
  • 免疫组化-石蜡切片; 大鼠; 图 2a
  • 免疫印迹; 大鼠; 1:1000; 图 2e, 4e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2e, 4e). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D3U4C)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS Pathog (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a, 1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 4108)被用于被用于免疫印迹在人类样本上 (图 3a, 1d). Am J Cancer Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775S)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 3a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Int J Mol Med (2020) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 1:400; 图 5c
  • 免疫印迹; 人类; 1:400; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 12741)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 5c) 和 被用于免疫印迹在人类样本上浓度为1:400 (图 5a). Int J Oncol (2020) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 12741)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). Front Immunol (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 大鼠; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在大鼠样本上 (图 3a). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1b, 4f, s7b
  • 免疫印迹; 人类; 1:1000; 图 7k, 7i
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b, 4f, s7b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 7k, 7i). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于被用于免疫印迹在小鼠样本上 (图 6a). Oxid Med Cell Longev (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s5b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5b). Sci Rep (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 5a
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在人类样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 4b). J Agric Food Chem (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 图 1d
  • 免疫组化-冰冻切片; 人类; 图 5a
  • 免疫细胞化学; 人类; 图 3e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775S)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 1d), 被用于免疫组化-冰冻切片在人类样本上 (图 5a) 和 被用于免疫细胞化学在人类样本上 (图 3e). J Clin Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signal Technology, 4108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Front Physiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4j, 6g, 6k, 8a
  • 免疫印迹; 人类; 1:1000; 图 2a, e1c, e1g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4j, 6g, 6k, 8a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a, e1c, e1g). EMBO Mol Med (2019) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 4e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4e). Aging Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1g). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1b
  • 免疫印迹; 人类; 图 1g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1g). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 图 3f
  • 免疫印迹; 人类; 图 3g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于被用于免疫细胞化学在人类样本上 (图 3f) 和 被用于免疫印迹在人类样本上 (图 3g). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫印迹在人类样本上 (图 4b). Autophagy (2019) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上 (图 5a). Am J Transl Res (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫印迹在人类样本上 (图 2a). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在人类样本上 (图 3c). Cells (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样本上 (图 6a). Antioxid Redox Signal (2019) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 图 3c
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于被用于免疫细胞化学在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 3a). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1500; 图 1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在大鼠样本上浓度为1:1500 (图 1c). Exp Ther Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1c
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775S)被用于被用于免疫细胞化学在人类样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 5a). Am J Physiol Cell Physiol (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 12741s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 s8k
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫印迹在人类样本上 (图 s8k). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 7b, 1i
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在小鼠样本上 (图 7b, 1i). Cell (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 2f
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D3U4C)被用于被用于免疫印迹在人类样本上 (图 2f) 和 被用于免疫印迹在小鼠样本上 (图 2e). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Neurobiol Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上 (图 3a). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 4c
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Aging Cell (2019) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 小鼠; 1:200; 图 6f
  • 免疫印迹; 小鼠; 1:500; 图 8a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 6f) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 8a). J Neurosci (2019) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于被用于免疫印迹在人类样本上. elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样本上 (图 2c). Front Endocrinol (Lausanne) (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 12741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 12741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Proc Natl Acad Sci U S A (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在人类样本上 (图 5b). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3d
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 4108)被用于被用于免疫组化在小鼠样本上 (图 3d) 和 被用于免疫印迹在小鼠样本上 (图 2b). Front Physiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775s)被用于被用于免疫细胞化学在人类样本上 (图 s2a). Cell Death Differ (2019) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 图 e3b
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在人类样本上 (图 e3b) 和 被用于免疫印迹在人类样本上 (图 1b). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 e3b
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样本上 (图 e3b) 和 被用于免疫印迹在人类样本上 (图 1b). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). J Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 9e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9e). Invest Ophthalmol Vis Sci (2019) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 图 1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D11; 3868)被用于被用于免疫细胞化学在人类样本上 (图 1d). J Cell Biol (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 s4k
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 12741)被用于被用于免疫印迹在小鼠样本上 (图 s4k). Stem Cell Reports (2019) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 图 4c
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在人类样本上 (图 4c) 和 被用于免疫印迹在人类样本上 (图 1b). Biochem Biophys Res Commun (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在小鼠样本上 (图 6c). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 3b
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling, 4108)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3b) 和 被用于免疫印迹在小鼠样本上 (图 3a). Autophagy (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 4b
  • 免疫印迹; 人类; 1:1000; 图 4c, 4e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4c, 4e). Oncogene (2019) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 12741)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cst, 2775)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS ONE (2018) ncbi
domestic rabbit 单克隆(D11)
  • 免疫组化-石蜡切片; 人类; 图 s1a, s1b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1a, s1b). Oncogene (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在小鼠样本上 (图 5e). FASEB J (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s6a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在人类样本上 (图 s6a). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于被用于免疫印迹在人类样本上 (图 4e). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6f). Autophagy (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3a). Nat Cell Biol (2018) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫印迹在人类样本上 (图 1c). Oncoimmunology (2018) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫组化; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫组化在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775S)被用于被用于免疫印迹在小鼠样本上 (图 1e). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 大鼠; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 12741)被用于被用于免疫印迹在大鼠样本上 (图 5a). Front Mol Neurosci (2018) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 小鼠; 1:200; 图 1h
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1h). Science (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 1:500; 图 4d
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4d) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1g, 2e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling, 4108)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g, 2e). EMBO J (2018) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Cell Immunol (2018) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 图 4d
  • 免疫印迹; 人类; 图 4i
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technologies, 3868)被用于被用于免疫细胞化学在人类样本上 (图 4d) 和 被用于免疫印迹在人类样本上 (图 4i). Dev Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上 (图 1d). Dev Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 5h
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Am J Pathol (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s7b
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样本上 (图 s7b) 和 被用于免疫印迹在人类样本上 (图 5a). Autophagy (2018) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 1:100; 图 6d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6d). EMBO J (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 4g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 27755)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4g). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Endocrinology (2018) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 5c
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling, 3868)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 小鼠; 图 1a
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell signalling, 3868)被用于被用于免疫印迹在小鼠样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 3a). Genes Dev (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 s4e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775s)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 s4e). Cell Rep (2017) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 s9f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在人类样本上 (图 s9f). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 1:1000; 图 8c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technologies, 12741)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8c). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 4108s)被用于被用于免疫印迹在人类样本上 (图 2). Tumour Biol (2017) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Cell (2017) ncbi
domestic rabbit 单克隆(D11)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 6c
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 6c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Autophagy (2017) ncbi
domestic rabbit 单克隆(D11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1d
  • 免疫印迹; 人类; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3h). Mol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1500; 图 1b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775S)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 1b). Mol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775S)被用于被用于免疫印迹在人类样本上 (图 2a). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 10c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于流式细胞仪在人类样本上 (图 10c). Gene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
  • 免疫印迹; African green monkey; 图 9a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775S)被用于被用于免疫印迹在小鼠样本上 (图 5a) 和 被用于免疫印迹在African green monkey样本上 (图 9a). Mol Biol Cell (2017) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 图 6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell signalling, 3868)被用于被用于免疫细胞化学在人类样本上 (图 6). Neoplasia (2017) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫组化-石蜡切片; 小鼠; 图 3d
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 12741)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d) 和 被用于免疫印迹在小鼠样本上 (图 3a). J Cell Biochem (2017) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 图 s3a
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在人类样本上 (图 s3a) 和 被用于免疫印迹在人类样本上 (图 2b). Cancer Immunol Res (2017) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 s8a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s8a). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上 (图 8a). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样本上 (图 6e). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 小鼠; 图 2c
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在小鼠样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上 (图 8a). Biochem Pharmacol (2017) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling, D11)被用于被用于免疫印迹在人类样本上 (图 4b). Tumour Biol (2017) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 小鼠; 图 3D
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在小鼠样本上 (图 3D). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在人类样本上 (图 2b). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1a
  • 免疫印迹; 人类; 图 1s1g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775)被用于被用于免疫细胞化学在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1s1g). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). FASEB J (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 6b
  • 免疫印迹; 小鼠; 1:2000; 图 6a
  • 免疫印迹; 人类; 1:2000; 图 1a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在小鼠样本上 (图 6b), 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 小鼠; 图 4c
  • 免疫印迹; 人类; 图 4a,4d,4H,4i,,5F
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 3868)被用于被用于免疫印迹在小鼠样本上 (图 4c) 和 被用于免疫印迹在人类样本上 (图 4a,4d,4H,4i,,5F). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7g). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上 (图 3e). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 牛; 图 6a
  • 免疫印迹; 牛; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 27755)被用于被用于免疫沉淀在牛样本上 (图 6a) 和 被用于免疫印迹在牛样本上浓度为1:1000 (图 5a). Vet Comp Oncol (2017) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上 (图 2g). Hum Mol Genet (2017) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 4b
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在小鼠样本上 (图 4b) 和 被用于免疫印迹在小鼠样本上 (图 4a). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样本上 (图 5a). Autophagy (2017) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 s4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200; 图 5c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 5c). Hum Mol Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在人类样本上 (图 7a). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
  • 免疫组化; 人类; 图 7b
  • 免疫印迹; 人类; 图 5j
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell signalling, 2775)被用于被用于免疫印迹在小鼠样本上 (图 5a), 被用于免疫组化在人类样本上 (图 7b) 和 被用于免疫印迹在人类样本上 (图 5j). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 27755)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 2a). Autophagy (2017) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 2a). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). Neurobiol Aging (2017) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫细胞化学; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Singaling, 12741)被用于被用于免疫细胞化学在小鼠样本上 (图 5d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6c
  • 免疫印迹; 小鼠; 图 6e
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫组化在小鼠样本上 (图 6c), 被用于免疫印迹在小鼠样本上 (图 6e) 和 被用于免疫印迹在人类样本上 (图 6e). Autophagy (2017) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上 (图 1c). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Mol Med Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
  • 免疫印迹; 大鼠; 图 3d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样本上 (图 2a) 和 被用于免疫印迹在大鼠样本上 (图 3d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2e
  • 免疫印迹; 小鼠; 图 2a
  • 免疫印迹; 大鼠; 图 3d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2e), 被用于免疫印迹在小鼠样本上 (图 2a) 和 被用于免疫印迹在大鼠样本上 (图 3d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫印迹在人类样本上 (图 2f). Nat Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 6a
  • 免疫细胞化学; African green monkey; 图 6b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775S)被用于被用于免疫细胞化学在人类样本上 (图 6a) 和 被用于免疫细胞化学在African green monkey样本上 (图 6b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样本上 (图 3d). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s4j
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4j). Nature (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 1b). Biochem Biophys Res Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5f
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5f) 和 被用于免疫印迹在小鼠样本上 (图 1b). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775 s)被用于被用于免疫印迹在小鼠样本上. Cell Death Discov (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 4108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Autophagy (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 大鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2a). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 5
  • 免疫印迹; 人类; 1:400; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:400 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 4108)被用于被用于免疫印迹在人类样本上 (图 3d). Eur J Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样本上 (图 6). J Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3c
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell signalling, 2775)被用于被用于免疫细胞化学在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Toxicol Appl Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 6a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 4108)被用于被用于免疫细胞化学在人类样本上 (图 6a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). Austin J Med Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样本上 (图 1g). Biol Open (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D11)被用于被用于免疫印迹在小鼠样本上 (图 2d). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫组化在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 3b). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D11)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上 (图 3). Mar Drugs (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Abcam, 3868S)被用于被用于免疫印迹在人类样本上 (图 3). Biosci Rep (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 图 8g
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D3U4C)被用于被用于免疫细胞化学在人类样本上 (图 8g) 和 被用于免疫印迹在人类样本上 (图 8a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在大鼠样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2) 和 被用于免疫印迹在人类样本上 (图 4). Int J Oncol (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 5c
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775 S)被用于被用于流式细胞仪在人类样本上 (图 5c) 和 被用于免疫印迹在人类样本上 (图 5b). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在大鼠样本上 (图 4c). Biochem J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
  • 免疫细胞化学; 小鼠; 图 2d
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样本上 (图 1a), 被用于免疫细胞化学在小鼠样本上 (图 2d) 和 被用于免疫印迹在小鼠样本上 (图 1b). Autophagy (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 3d,4b,7b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 3868P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d,4b,7b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:250; 图 3j
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 3j
  • 免疫印迹; 小鼠; 1:2000; 图 2g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250 (图 3j), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 3j) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2g). Autophagy (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样本上 (图 1c). BMC Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 8d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在大鼠样本上 (图 8d). ACS Nano (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫细胞化学在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在人类样本上 (图 1d). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样本上 (图 1c). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 s1). Mol Cell Oncol (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 1:5000; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, 3868)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 4108)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1d). Cell Cycle (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样本上 (图 8). Skelet Muscle (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 鸡; 图 7
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫印迹在鸡样本上 (图 7). Biochem J (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6d
  • 免疫细胞化学; 人类; 1:200; 图 3b
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6d), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 3b) 和 被用于免疫印迹在人类样本上 (图 3f). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Nutrients (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:1000; 图 s1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 s1c). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样本上 (图 s1). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2). Mol Brain (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell Signaling Tech, 2775)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Steroid Biochem Mol Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样本上 (图 s5b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在小鼠样本上 (图 5d). Am J Physiol Endocrinol Metab (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫组化-石蜡切片; 人类; 图 4b
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4b), 被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 1a). Autophagy (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 s1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上 (图 s1c). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 4
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫组化在大鼠样本上 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Int J Med Sci (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫印迹在人类样本上 (图 2). Cell Cycle (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于被用于免疫细胞化学在人类样本上 (图 4). Onco Targets Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 S8
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 S8). Aging Cell (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 大鼠; 图 6
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在大鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在人类样本上 (图 1). Autophagy (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D3U4C)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6). J Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样本上 (图 7c). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, 2775)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样本上 (图 6c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (表 1). J Neuropathol Exp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s1e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signalling technology, 2775)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1e). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在牛样本上 (图 3a). Mol Cells (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样本上 (图 2c). Genes Dev (2016) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于. elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫细胞化学在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, 2775)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 1:50; 图 6
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, CST-12741)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 6) 和 被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 10a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样本上 (图 10a). J Mol Cell Cardiol (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 3
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling technology, 12741)被用于被用于免疫印迹在小鼠样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 s5). Aging Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 仓鼠; 1:200; 图 3d
  • 免疫细胞化学; 人类; 1:200; 图 3d
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在仓鼠样本上浓度为1:200 (图 3d), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 3d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Int J Biochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 2
  • 免疫印迹; 人类; 1:500; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫印迹在人类样本上 (图 3). elife (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在小鼠样本上 (图 5d). Neuropharmacology (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling, 3868)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 1:100; 图 4a
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D3U4C)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:1000. Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 s16
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 s16). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫沉淀; 小鼠; 1:1000; 图 6a
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫沉淀在小鼠样本上浓度为1:1000 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图 3
  • 免疫组化; 小鼠; 1:400; 图 s5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 12741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3) 和 被用于免疫组化在小鼠样本上浓度为1:400 (图 s5). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Abcam, 4108)被用于被用于免疫印迹在小鼠样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 9
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在小鼠样本上 (图 9). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在小鼠样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 大鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D3U4C)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2f). Endocrinology (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 s4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signal, 3868)被用于被用于免疫印迹在人类样本上 (图 s4). Stem Cell Reports (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling, 3868)被用于被用于免疫印迹在小鼠样本上 (图 6). Biochem Pharmacol (2016) ncbi
domestic rabbit 单克隆(D11)
  • 免疫组化; 人类; 图 5a
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technologies, 3868)被用于被用于免疫组化在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 5c). Free Radic Biol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样本上 (图 4). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 S1
  • 免疫印迹; 小鼠; 1:1000; 图 1B
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 S1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1B). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2). Endocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在小鼠样本上 (图 2a). Am J Physiol Renal Physiol (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 12741S)被用于被用于免疫印迹在小鼠样本上 (图 3). J Cell Mol Med (2016) ncbi
domestic rabbit 单克隆(D11)
  • 染色质免疫沉淀 ; 人类; 图 2
  • 免疫沉淀; 人类; 图 1
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于染色质免疫沉淀 在人类样本上 (图 2), 被用于免疫沉淀在人类样本上 (图 1), 被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1). Nature (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于被用于免疫印迹在人类样本上 (图 2a). J Neurochem (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于被用于免疫印迹在人类样本上 (图 2f). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108S)被用于被用于免疫印迹在人类样本上 (图 2a). J Crohns Colitis (2016) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, CST-12741)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 s6a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 12741)被用于被用于免疫印迹在人类样本上 (图 s6a). Nat Genet (2015) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 12741)被用于被用于免疫印迹在人类样本上 (图 s6). Breast Cancer Res Treat (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D11)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Autophagy (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫细胞化学在人类样本上. Nature (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 3c, 4a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上 (图 3c, 4a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上 (图 3). Nat Immunol (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 1d
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 图 s16
  • 免疫印迹; 人类; 1:1000; 图 s14
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于被用于免疫细胞化学在人类样本上 (图 s16) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s14). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 3868)被用于被用于免疫细胞化学在人类样本上 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D11)
  • 流式细胞仪; 人类; 图 3b
  • 免疫组化; 人类; 图 2c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D11)被用于被用于流式细胞仪在人类样本上 (图 3b) 和 被用于免疫组化在人类样本上 (图 2c). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; pigs ; 图 7
  • 免疫组化; 小鼠; 图 8
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868s)被用于被用于免疫印迹在pigs 样本上 (图 7), 被用于免疫组化在小鼠样本上 (图 8) 和 被用于免疫印迹在小鼠样本上 (图 8). Autophagy (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 图 2d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于被用于免疫细胞化学在人类样本上 (图 2d). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫印迹在大鼠样本上 (图 1). Kidney Int (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D11)被用于被用于免疫印迹在人类样本上 (图 2a). Biochem J (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(New England Biolabs, 3868)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000. EMBO Mol Med (2015) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 12741)被用于被用于免疫印迹在小鼠样本上 (图 3). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于被用于免疫细胞化学在小鼠样本上. Vasc Cell (2014) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图 1,2,3,4,5,6,7
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell signaling, 3868S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1,2,3,4,5,6,7). EMBO J (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于被用于免疫印迹在人类样本上 (图 3). Exp Mol Med (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D11)被用于被用于免疫印迹在人类样本上 (图 4c). Oncogene (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上 (图 6). Aging Cell (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Signaling Technology, 3868)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 大鼠; 1:250
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250. Oxid Med Cell Longev (2014) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于被用于免疫印迹在大鼠样本上 (图 4). Cell Cycle (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上 (图 6). Cell Cycle (2014) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 大鼠; 图 4f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D11)被用于被用于免疫印迹在大鼠样本上 (图 4f). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫组化-石蜡切片; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. PLoS Genet (2014) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在小鼠样本上. Biomaterials (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology Inc., 3868)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Carcinog (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h). Mol Neurodegener (2014) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于被用于免疫印迹在小鼠样本上 (图 1). Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D11)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上浓度为1:500. Int J Clin Exp Pathol (2014) ncbi
domestic rabbit 单克隆(D11)
  • 免疫组化-石蜡切片; 人类; 1:75
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 3868)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:75. Int J Ophthalmol (2014) ncbi
domestic rabbit 单克隆(D11)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Nature (2014) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
domestic rabbit 单克隆(D11)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫印迹在大鼠样本上. Kidney Int (2014) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在人类样本上 (图 1). Free Radic Biol Med (2014) ncbi
domestic rabbit 单克隆(D11)
  • 免疫细胞化学; 人类; 1:1000; 图 3
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Commun (2013) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Death Dis (2013) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Cell Biochem Funct (2013) ncbi
domestic rabbit 单克隆(D11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling Technology, D11)被用于被用于免疫印迹在人类样本上. PLoS ONE (2012) ncbi
Abcepta
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:100; 表 1
Abcepta MAP1LC3B抗体(Abgent, AP1802a)被用于被用于免疫组化在大鼠样本上浓度为1:100 (表 1). Front Cell Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 6c
  • 免疫印迹; 人类; 图 1b
Abcepta MAP1LC3B抗体(Abgent, AP1802a)被用于被用于免疫组化在人类样本上 (图 6c) 和 被用于免疫印迹在人类样本上 (图 1b). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 4
Abcepta MAP1LC3B抗体(Abgent, 11668-019AP-1802a)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 4). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:25; 图 7
Abcepta MAP1LC3B抗体(Abgent, AP1802a)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:25 (图 7). Cell Death Dis (2016) ncbi
文章列表
  1. Silva M, Nandi G, Tentarelli S, Gurrell I, Jamier T, Lucente D, et al. Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nat Commun. 2020;11:3258 pubmed 出版商
  2. Yamano K, Kikuchi R, Kojima W, Hayashida R, Koyano F, Kawawaki J, et al. Critical role of mitochondrial ubiquitination and the OPTN-ATG9A axis in mitophagy. J Cell Biol. 2020;219: pubmed 出版商
  3. Giraud Gatineau A, Coya J, Maure A, Biton A, Thomson M, Bernard E, et al. The antibiotic bedaquiline activates host macrophage innate immune resistance to bacterial infection. elife. 2020;9: pubmed 出版商
  4. Du T, Zhu G, Chen Y, Shi L, Liu D, Liu Y, et al. Anterior thalamic nucleus stimulation protects hippocampal neurons by activating autophagy in epileptic monkeys. Aging (Albany NY). 2020;12:6324-6339 pubmed 出版商
  5. Zhang W, Zhou M, Lu W, Gong J, Gao F, Li Y, et al. CNTNAP4 deficiency in dopaminergic neurons initiates parkinsonian phenotypes. Theranostics. 2020;10:3000-3021 pubmed 出版商
  6. Sozen E, Yazgan B, Tok O, Demirel T, Ercan F, Proto J, et al. Cholesterol induced autophagy via IRE1/JNK pathway promotes autophagic cell death in heart tissue. Metabolism. 2020;106:154205 pubmed 出版商
  7. Mahameed M, Boukeileh S, Obiedat A, Darawshi O, Dipta P, Rimon A, et al. Pharmacological induction of selective endoplasmic reticulum retention as a strategy for cancer therapy. Nat Commun. 2020;11:1304 pubmed 出版商
  8. Huang Z, Zhao J, Wang W, Zhou J, Zhang J. Depletion of LncRNA NEAT1 Rescues Mitochondrial Dysfunction Through NEDD4L-Dependent PINK1 Degradation in Animal Models of Alzheimer's Disease. Front Cell Neurosci. 2020;14:28 pubmed 出版商
  9. Yan S, Ding H, Peng J, Wang X, Pang C, Wei J, et al. Down-regulation of protease-activated receptor 2 ameliorated osteoarthritis in rats through regulation of MAPK/NF-κB signaling pathway in vivo and in vitro. Biosci Rep. 2020;40: pubmed 出版商
  10. Li X, Zhu Q, Zheng R, Yan J, Wei M, Fan Y, et al. Puerarin Attenuates Diabetic Nephropathy by Promoting Autophagy in Podocytes. Front Physiol. 2020;11:73 pubmed 出版商
  11. Arc Chagnaud C, Py G, Fovet T, Roumanille R, Demangel R, Pagano A, et al. Evaluation of an Antioxidant and Anti-inflammatory Cocktail Against Human Hypoactivity-Induced Skeletal Muscle Deconditioning. Front Physiol. 2020;11:71 pubmed 出版商
  12. Gain C, Malik S, Bhattacharjee S, Ghosh A, Robertson E, Das B, et al. Proteasomal inhibition triggers viral oncoprotein degradation via autophagy-lysosomal pathway. PLoS Pathog. 2020;16:e1008105 pubmed 出版商
  13. Zhuang X, Wang S, Tan Y, Song J, Zhu Z, Wang Z, et al. Pharmacological enhancement of TFEB-mediated autophagy alleviated neuronal death in oxidative stress-induced Parkinson's disease models. Cell Death Dis. 2020;11:128 pubmed 出版商
  14. Liu K, Yu Q, Li H, Xie C, Wu Y, Ma D, et al. BIRC7 promotes epithelial-mesenchymal transition and metastasis in papillary thyroid carcinoma through restraining autophagy. Am J Cancer Res. 2020;10:78-94 pubmed
  15. Chávez M, Morales R, Lopez Crisosto C, Roa J, Allende M, Lavandero S. Autophagy Activation in Zebrafish Heart Regeneration. Sci Rep. 2020;10:2191 pubmed 出版商
  16. Viana G, Priestman D, Platt F, Khan S, Tomatsu S, Pshezhetsky A. Brain Pathology in Mucopolysaccharidoses (MPS) Patients with Neurological Forms. J Clin Med. 2020;9: pubmed 出版商
  17. Xiang S, Chen K, Xu L, Wang T, Guo C. Bergenin Exerts Hepatoprotective Effects by Inhibiting the Release of Inflammatory Factors, Apoptosis and Autophagy via the PPAR-γ Pathway. Drug Des Devel Ther. 2020;14:129-143 pubmed 出版商
  18. Jiang G, Xin R, Yuan W, Zhang L, Meng X, Sun W, et al. Ligustrazine ameliorates acute kidney injury through downregulation of NOD2‑mediated inflammation. Int J Mol Med. 2020;45:731-742 pubmed 出版商
  19. Cassidy L, Young A, Young C, Soilleux E, Fielder E, Weigand B, et al. Temporal inhibition of autophagy reveals segmental reversal of ageing with increased cancer risk. Nat Commun. 2020;11:307 pubmed 出版商
  20. Boukhalfa A, Nascimbeni A, Ramel D, Dupont N, Hirsch E, Gayral S, et al. PI3KC2α-dependent and VPS34-independent generation of PI3P controls primary cilium-mediated autophagy in response to shear stress. Nat Commun. 2020;11:294 pubmed 出版商
  21. Zhou Q, Zhu L, Qiu W, Liu Y, Yang F, Chen W, et al. Nicotinamide Riboside Enhances Mitochondrial Proteostasis and Adult Neurogenesis through Activation of Mitochondrial Unfolded Protein Response Signaling in the Brain of ALS SOD1G93A Mice. Int J Biol Sci. 2020;16:284-297 pubmed 出版商
  22. Hong Z, Wang Z, Zhou B, Wang J, Tong H, Liao Y, et al. Effects of evodiamine on PI3K/Akt and MAPK/ERK signaling pathways in pancreatic cancer cells. Int J Oncol. 2020;56:783-793 pubmed 出版商
  23. Liu T, Han S, Dai Q, Zheng J, Liu C, Li S, et al. IL-17A-Mediated Excessive Autophagy Aggravated Neuronal Ischemic Injuries via Src-PP2B-mTOR Pathway. Front Immunol. 2019;10:2952 pubmed 出版商
  24. Lieberman O, Frier M, McGuirt A, Griffey C, Rafikian E, Yang M, et al. Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy. elife. 2020;9: pubmed 出版商
  25. Huang Y, Gu C, Wang Q, Xu L, Chen J, Zhou W, et al. The protective effort of GPCR kinase 2-interacting protein-1 in neurons via promoting Beclin1-Parkin induced mitophagy at the early stage of spinal cord ischemia-reperfusion injury. FASEB J. 2020;34:2055-2074 pubmed 出版商
  26. Zheng X, Yang Z, Gu Q, Xia F, Fu Y, Liu P, et al. The protease activity of human ATG4B is regulated by reversible oxidative modification. Autophagy. 2019;: pubmed 出版商
  27. Huang X, Ni B, Xi Y, Chu X, Zhang R, You H. Protease-activated receptor 2 (PAR-2) antagonist AZ3451 as a novel therapeutic agent for osteoarthritis. Aging (Albany NY). 2019;11:12532-12545 pubmed 出版商
  28. Quach C, Song Y, Guo H, Li S, Maazi H, Fung M, et al. A truncating mutation in the autophagy gene UVRAG drives inflammation and tumorigenesis in mice. Nat Commun. 2019;10:5681 pubmed 出版商
  29. Zuo Z, Ji M, Zhao K, Su Z, Li P, Hou D, et al. CD47 Deficiency Attenuates Isoproterenol-Induced Cardiac Remodeling in Mice. Oxid Med Cell Longev. 2019;2019:7121763 pubmed 出版商
  30. Wu Y, Chen K, Xing G, Li L, Ma B, Hu Z, et al. Phospholipid remodeling is critical for stem cell pluripotency by facilitating mesenchymal-to-epithelial transition. Sci Adv. 2019;5:eaax7525 pubmed 出版商
  31. Gao H, Zhang J, Ren X. PD-L1 regulates tumorigenesis and autophagy of ovarian cancer by activating mTORC signaling. Biosci Rep. 2019;39: pubmed 出版商
  32. Chen W, Wang Q, Xu X, Saxton B, Tessema M, Leng S, et al. Vasorin/ATIA Promotes Cigarette Smoke-Induced Transformation of Human Bronchial Epithelial Cells by Suppressing Autophagy-Mediated Apoptosis. Transl Oncol. 2020;13:32-41 pubmed 出版商
  33. Park S, Jeon P, Jun Y, Park J, Lee S, Lee S, et al. Monitoring LC3- or GABARAP-positive autophagic membranes using modified RavZ-based probes. Sci Rep. 2019;9:16593 pubmed 出版商
  34. Zhang Y, Cao Y, Chen J, Qin H, Yang L. A New Possible Mechanism by Which Punicalagin Protects against Liver Injury Induced by Type 2 Diabetes Mellitus: Upregulation of Autophagy via the Akt/FoxO3a Signaling Pathway. J Agric Food Chem. 2019;: pubmed 出版商
  35. Shin H, Park H, Shin N, Kwon H, Yin Y, Hwang J, et al. Pink1-Mediated Chondrocytic Mitophagy Contributes to Cartilage Degeneration in Osteoarthritis. J Clin Med. 2019;8: pubmed 出版商
  36. Wang X, Zhao L, Ajay A, Jiao B, Zhang X, Wang C, et al. QiDiTangShen Granules Activate Renal Nutrient-Sensing Associated Autophagy in db/db Mice. Front Physiol. 2019;10:1224 pubmed 出版商
  37. Lin T, Chan H, Chen S, Sarvagalla S, Chen P, Coumar M, et al. BIRC5/Survivin is a novel ATG12-ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. Autophagy. 2019;:1-18 pubmed 出版商
  38. Chen G, Xie W, Nah J, Sauvat A, Liu P, Pietrocola F, et al. 3,4-Dimethoxychalcone induces autophagy through activation of the transcription factors TFE3 and TFEB. EMBO Mol Med. 2019;11:e10469 pubmed 出版商
  39. Zhao X, Nedvetsky P, Stanchi F, Vion A, Popp O, Zühlke K, et al. Endothelial PKA activity regulates angiogenesis by limiting autophagy through phosphorylation of ATG16L1. elife. 2019;8: pubmed 出版商
  40. di Meco A, Pratico D. Early-life exposure to high-fat diet influences brain health in aging mice. Aging Cell. 2019;18:e13040 pubmed 出版商
  41. Martin Hurtado A, Martin Morales R, Robledinos Antón N, Blanco R, Palacios Blanco I, Lastres Becker I, et al. NRF2-dependent gene expression promotes ciliogenesis and Hedgehog signaling. Sci Rep. 2019;9:13896 pubmed 出版商
  42. Oleinik N, Kim J, Roth B, Selvam S, Gooz M, Johnson R, et al. Mitochondrial protein import is regulated by p17/PERMIT to mediate lipid metabolism and cellular stress. Sci Adv. 2019;5:eaax1978 pubmed 出版商
  43. Liu G, Zhang Q, Xia L, Shi M, Cai J, Zhang H, et al. RNA-binding protein CELF6 is cell cycle regulated and controls cancer cell proliferation by stabilizing p21. Cell Death Dis. 2019;10:688 pubmed 出版商
  44. Li J, Shi K, Sabet Z, Fu W, Zhou H, Xu S, et al. New power of self-assembling carbonic anhydrase inhibitor: Short peptide-constructed nanofibers inspire hypoxic cancer therapy. Sci Adv. 2019;5:eaax0937 pubmed 出版商
  45. Tang C, Han H, Liu Z, Liu Y, Yin L, Cai J, et al. Activation of BNIP3-mediated mitophagy protects against renal ischemia-reperfusion injury. Cell Death Dis. 2019;10:677 pubmed 出版商
  46. Zhang B, Chen H, Ouyang J, Xie Y, Chen L, Tan Q, et al. SQSTM1-dependent autophagic degradation of PKM2 inhibits the production of mature IL1B/IL-1β and contributes to LIPUS-mediated anti-inflammatory effect. Autophagy. 2019;:1-17 pubmed 出版商
  47. Liu H, Feng X, Yang B, Tong R, Lu Y, Chen D, et al. Dimethyl fumarate suppresses hepatocellular carcinoma progression via activating SOCS3/JAK1/STAT3 signaling pathway. Am J Transl Res. 2019;11:4713-4725 pubmed
  48. Zhou C, Wang M, Yang J, Xiong H, Wang Y, Tang J. Integral membrane protein 2A inhibits cell growth in human breast cancer via enhancing autophagy induction. Cell Commun Signal. 2019;17:105 pubmed 出版商
  49. Gao L, Wang Z, Lu D, Huang J, Liu J, Hong L. Paeonol induces cytoprotective autophagy via blocking the Akt/mTOR pathway in ovarian cancer cells. Cell Death Dis. 2019;10:609 pubmed 出版商
  50. He R, Wang M, Zhao C, Shen M, Yu Y, He L, et al. TFEB-driven autophagy potentiates TGF-β induced migration in pancreatic cancer cells. J Exp Clin Cancer Res. 2019;38:340 pubmed 出版商
  51. Yang M, Chen P, Liu J, Zhu S, Kroemer G, Klionsky D, et al. Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv. 2019;5:eaaw2238 pubmed 出版商
  52. Dorsch L, Schuldt M, dos Remedios C, Schinkel A, de Jong P, Michels M, et al. Protein Quality Control Activation and Microtubule Remodeling in Hypertrophic Cardiomyopathy. Cells. 2019;8: pubmed 出版商
  53. Stavoe A, Gopal P, Gubas A, Tooze S, Holzbaur E. Expression of WIPI2B counteracts age-related decline in autophagosome biogenesis in neurons. elife. 2019;8: pubmed 出版商
  54. Grossmann D, Berenguer Escuder C, Bellet M, Scheibner D, Bohler J, Massart F, et al. Mutations in RHOT1 Disrupt Endoplasmic Reticulum-Mitochondria Contact Sites Interfering with Calcium Homeostasis and Mitochondrial Dynamics in Parkinson's Disease. Antioxid Redox Signal. 2019;31:1213-1234 pubmed 出版商
  55. Ni Z, Kuang L, Chen H, Xie Y, Zhang B, Ouyang J, et al. The exosome-like vesicles from osteoarthritic chondrocyte enhanced mature IL-1β production of macrophages and aggravated synovitis in osteoarthritis. Cell Death Dis. 2019;10:522 pubmed 出版商
  56. Suo L, Chang X, Xu N, Ji H. The Anti-proliferative Activity of GnRH Through Downregulation of the Akt/ERK Pathways in Pancreatic Cancer. Front Endocrinol (Lausanne). 2019;10:370 pubmed 出版商
  57. Zhang L, Feng Q, Wang Z, Liu P, Cui S. Progesterone receptor antagonist provides palliative effects for uterine leiomyoma through a Bcl-2/Beclin1-dependent mechanism. Biosci Rep. 2019;39: pubmed 出版商
  58. Wu Y, Xu H, Li Y, Huang D, Chen L, Hu Y, et al. miRNA-344b-1-3p modulates the autophagy of NR8383 cells during Aspergillus fumigatus infection via TLR2. Exp Ther Med. 2019;18:139-146 pubmed 出版商
  59. Peng H, Yang F, Hu Q, Sun J, Peng C, Zhao Y, et al. The ubiquitin-specific protease USP8 directly deubiquitinates SQSTM1/p62 to suppress its autophagic activity. Autophagy. 2019;:1-11 pubmed 出版商
  60. Jung S, Choe S, Woo H, Jeong H, An H, Moon H, et al. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy. 2019;:1-19 pubmed 出版商
  61. Kumar V, Ayasolla K, Jha A, Mishra A, Vashistha H, Lan X, et al. Disrupted APOL1-miR193a Axis Dedifferentiates Podocytes through Autophagy Blockade in APOL1 Risk Milieu. Am J Physiol Cell Physiol. 2019;: pubmed 出版商
  62. Malik N, Yan H, Moshkovich N, Palangat M, Yang H, Sanchez V, et al. The transcription factor CBFB suppresses breast cancer through orchestrating translation and transcription. Nat Commun. 2019;10:2071 pubmed 出版商
  63. Duan W, Guo M, Yi L, Zhang J, Bi Y, Liu Y, et al. Deletion of Tbk1 disrupts autophagy and reproduces behavioral and locomotor symptoms of FTD-ALS in mice. Aging (Albany NY). 2019;11:2457-2476 pubmed 出版商
  64. Xu D, Li X, Shao F, Lv G, Lv H, Lee J, et al. The protein kinase activity of fructokinase A specifies the antioxidant responses of tumor cells by phosphorylating p62. Sci Adv. 2019;5:eaav4570 pubmed 出版商
  65. Zheng J, Croteau D, Bohr V, Akbari M. Diminished OPA1 expression and impaired mitochondrial morphology and homeostasis in Aprataxin-deficient cells. Nucleic Acids Res. 2019;: pubmed 出版商
  66. Saito T, Kuma A, Sugiura Y, Ichimura Y, Obata M, Kitamura H, et al. Autophagy regulates lipid metabolism through selective turnover of NCoR1. Nat Commun. 2019;10:1567 pubmed 出版商
  67. Zhou B, Kreuzer J, Kumsta C, Wu L, Kamer K, Cedillo L, et al. Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension. Cell. 2019;177:299-314.e16 pubmed 出版商
  68. Vodnala S, Eil R, Kishton R, Sukumar M, Yamamoto T, Ha N, et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science. 2019;363: pubmed 出版商
  69. Judith D, Jefferies H, Boeing S, Frith D, Snijders A, Tooze S. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ. J Cell Biol. 2019;218:1634-1652 pubmed 出版商
  70. Li L, Kang H, Zhang Q, D Agati V, Al Awqati Q, Lin F. FoxO3 activation in hypoxic tubules prevents chronic kidney disease. J Clin Invest. 2019;129:2374-2389 pubmed 出版商
  71. Chang H, Di T, Wang Y, Zeng X, Li G, Wan Q, et al. Seipin deletion in mice enhances phosphorylation and aggregation of tau protein through reduced neuronal PPARγ and insulin resistance. Neurobiol Dis. 2019;127:350-361 pubmed 出版商
  72. Ao Y, Zhang J, Liu Z, Qian M, Li Y, Wu Z, et al. Lamin A buffers CK2 kinase activity to modulate aging in a progeria mouse model. Sci Adv. 2019;5:eaav5078 pubmed 出版商
  73. Shao J, Miao C, Geng Z, Gu M, Wu Y, Li Q. Effect of eNOS on Ischemic Postconditioning-Induced Autophagy against Ischemia/Reperfusion Injury in Mice. Biomed Res Int. 2019;2019:5201014 pubmed 出版商
  74. Li Z, Tian Y, Qu L, Mao J, Zhong H. AAV-Mig-6 Increase the Efficacy of TAE in VX2 Rabbit Model, Is Associated With JNK Mediated Autophagy. J Cancer. 2019;10:1060-1069 pubmed 出版商
  75. Park H, Chung K, An H, Gim J, Hong J, Woo H, et al. Parkin Promotes Mitophagic Cell Death in Adult Hippocampal Neural Stem Cells Following Insulin Withdrawal. Front Mol Neurosci. 2019;12:46 pubmed 出版商
  76. Carballo Carbajal I, Laguna A, Romero Gimenez J, Cuadros T, Bove J, Martinez Vicente M, et al. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis. Nat Commun. 2019;10:973 pubmed 出版商
  77. Song C, Zhang J, Qi S, Liu Z, Zhang X, Zheng Y, et al. Cardiolipin remodeling by ALCAT1 links mitochondrial dysfunction to Parkinson's diseases. Aging Cell. 2019;18:e12941 pubmed 出版商
  78. Hass D, Barnstable C. Mitochondrial Uncoupling Protein 2 Knock-out Promotes Mitophagy to Decrease Retinal Ganglion Cell Death in a Mouse Model of Glaucoma. J Neurosci. 2019;39:3582-3596 pubmed 出版商
  79. Wang H, Wang X, Zhang K, Wang Q, Cao X, Wang Z, et al. Rapid depletion of ESCRT protein Vps4 underlies injury-induced autophagic impediment and Wallerian degeneration. Sci Adv. 2019;5:eaav4971 pubmed 出版商
  80. Bae D, Moore K, Mella J, Hayashi S, Hollien J. Degradation of Blos1 mRNA by IRE1 repositions lysosomes and protects cells from stress. J Cell Biol. 2019;218:1118-1127 pubmed 出版商
  81. Huang X, Gan G, Wang X, Xu T, Xie W. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy. 2019;15:1258-1279 pubmed 出版商
  82. Yambire K, Fernández Mosquera L, Steinfeld R, Mühle C, Ikonen E, Milosevic I, et al. Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases. elife. 2019;8: pubmed 出版商
  83. Zhang J, He J, Johnson J, Rahman F, Gavathiotis E, Cuervo A, et al. Chaperone-Mediated Autophagy Upregulation Rescues Megalin Expression and Localization in Cystinotic Proximal Tubule Cells. Front Endocrinol (Lausanne). 2019;10:21 pubmed 出版商
  84. Zhang Y, Jiang Q, Xie S, Wu X, Zhou J, Sun H. Lead Induced Ototoxicity and Neurotoxicity in Adult Guinea Pig. Biomed Res Int. 2019;2019:3626032 pubmed 出版商
  85. Tapia D, Jimenez T, Zamora C, Espinoza J, Rizzo R, González Cárdenas A, et al. KDEL receptor regulates secretion by lysosome relocation- and autophagy-dependent modulation of lipid-droplet turnover. Nat Commun. 2019;10:735 pubmed 出版商
  86. Chun J, Zhang J, Wilkins M, Subramanian B, Riella C, Magraner J, et al. Recruitment of APOL1 kidney disease risk variants to lipid droplets attenuates cell toxicity. Proc Natl Acad Sci U S A. 2019;116:3712-3721 pubmed 出版商
  87. Mukhopadhyay U, Chanda S, Patra U, Mukherjee A, Rana S, Mukherjee A, et al. Synchronized Orchestration of miR-99b and let-7g Positively Regulates Rotavirus Infection by Modulating Autophagy. Sci Rep. 2019;9:1318 pubmed 出版商
  88. Yang Z, Huang C, Wu Y, Chen B, Zhang W, Zhang J. Autophagy Protects the Blood-Brain Barrier Through Regulating the Dynamic of Claudin-5 in Short-Term Starvation. Front Physiol. 2019;10:2 pubmed 出版商
  89. Ranek M, Kokkonen Simon K, Chen A, Dunkerly Eyring B, Vera M, Oeing C, et al. PKG1-modified TSC2 regulates mTORC1 activity to counter adverse cardiac stress. Nature. 2019;566:264-269 pubmed 出版商
  90. Sano H, Namekata K, Kimura A, Shitara H, Guo X, Harada C, et al. Differential effects of N-acetylcysteine on retinal degeneration in two mouse models of normal tension glaucoma. Cell Death Dis. 2019;10:75 pubmed 出版商
  91. Feng X, Jia Y, Zhang Y, Ma F, Zhu Y, Hong X, et al. Ubiquitination of UVRAG by SMURF1 promotes autophagosome maturation and inhibits hepatocellular carcinoma growth. Autophagy. 2019;15:1130-1149 pubmed 出版商
  92. Dong X, Yang Y, Zhou Y, Bi X, Zhao N, Zhang Z, et al. Glutathione S-transferases P1 protects breast cancer cell from adriamycin-induced cell death through promoting autophagy. Cell Death Differ. 2019;: pubmed 出版商
  93. Nassour J, Radford R, Correia A, Fusté J, Schoell B, Jauch A, et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature. 2019;565:659-663 pubmed 出版商
  94. Wang D, Xu Q, Yuan Q, Jia M, Niu H, Liu X, et al. Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab. Oncogene. 2019;38:3458-3474 pubmed 出版商
  95. Chao H, Lin C, Zuo Q, Liu Y, Xiao M, Xu X, et al. Cardiolipin-Dependent Mitophagy Guides Outcome after Traumatic Brain Injury. J Neurosci. 2019;39:1930-1943 pubmed 出版商
  96. Wysokińska E, Cichos J, Kowalczyk A, Karbowiak M, Strzadała L, Bednarkiewicz A, et al. Toxicity Mechanism of Low Doses of NaGdF₄:Yb3+,Er3+ Upconverting Nanoparticles in Activated Macrophage Cell Lines. Biomolecules. 2019;9: pubmed 出版商
  97. Jassim A, Inman D. Evidence of Hypoxic Glial Cells in a Model of Ocular Hypertension. Invest Ophthalmol Vis Sci. 2019;60:1-15 pubmed 出版商
  98. Zhang J, Sheng J, Dong L, Xu Y, Yu L, Liu Y, et al. Cardiomyocyte-specific loss of RMP causes myocardial dysfunction and heart failure. Cardiovasc Res. 2018;: pubmed 出版商
  99. Cui Y, Carosi J, Yang Z, Ariotti N, Kerr M, Parton R, et al. Retromer has a selective function in cargo sorting via endosome transport carriers. J Cell Biol. 2019;218:615-631 pubmed 出版商
  100. Narayana Y, Gadgil C, Mote R, Rajan R, Subramanyam D. Clathrin-Mediated Endocytosis Regulates a Balance between Opposing Signals to Maintain the Pluripotent State of Embryonic Stem Cells. Stem Cell Reports. 2019;12:152-164 pubmed 出版商
  101. Nitta A, Hori K, Tanida I, Igarashi A, Deyama Y, Ueno T, et al. Blocking LC3 lipidation and ATG12 conjugation reactions by ATG7 mutant protein containing C572S. Biochem Biophys Res Commun. 2019;508:521-526 pubmed 出版商
  102. Liu N, Luo J, Kuang D, Xu S, Duan Y, Xia Y, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression. J Clin Invest. 2019;129:631-646 pubmed 出版商
  103. Rai S, Arasteh M, Jefferson M, Pearson T, Wang Y, Zhang W, et al. The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis. Autophagy. 2019;15:599-612 pubmed 出版商
  104. Wnuk A, Rzemieniec J, Staroń J, Litwa E, Lasoń W, Bojarski A, et al. Prenatal Exposure to Benzophenone-3 Impairs Autophagy, Disrupts RXRs/PPARγ Signaling, and Alters Epigenetic and Post-Translational Statuses in Brain Neurons. Mol Neurobiol. 2018;: pubmed 出版商
  105. Zhang J, Tan P, Guo L, Gong J, Ma J, Li J, et al. p53-dependent autophagic degradation of TET2 modulates cancer therapeutic resistance. Oncogene. 2019;38:1905-1919 pubmed 出版商
  106. Rivera Reyes A, Ye S, E Marino G, Egolf S, E Ciotti G, Chor S, et al. YAP1 enhances NF-κB-dependent and independent effects on clock-mediated unfolded protein responses and autophagy in sarcoma. Cell Death Dis. 2018;9:1108 pubmed 出版商
  107. Cheruiyot A, Li S, Nickless A, Roth R, Fitzpatrick J, You Z. Compound C inhibits nonsense-mediated RNA decay independently of AMPK. PLoS ONE. 2018;13:e0204978 pubmed 出版商
  108. Huang X, Wang X, Yuan X, Wu W, Lobie P, Wu Z. XIAP facilitates breast and colon carcinoma growth via promotion of p62 depletion through ubiquitination-dependent proteasomal degradation. Oncogene. 2019;38:1448-1460 pubmed 出版商
  109. Qiu T, Pei P, Yao X, Jiang L, Wei S, Wang Z, et al. Taurine attenuates arsenic-induced pyroptosis and nonalcoholic steatohepatitis by inhibiting the autophagic-inflammasomal pathway. Cell Death Dis. 2018;9:946 pubmed 出版商
  110. Gallot Y, Bohnert K, Straughn A, Xiong G, Hindi S, Kumar A. PERK regulates skeletal muscle mass and contractile function in adult mice. FASEB J. 2019;33:1946-1962 pubmed 出版商
  111. Liu X, Cai S, Zhang C, Liu Z, Luo J, Xing B, et al. Deacetylation of NAT10 by Sirt1 promotes the transition from rRNA biogenesis to autophagy upon energy stress. Nucleic Acids Res. 2018;46:9601-9616 pubmed 出版商
  112. Jena K, Kolapalli S, Mehto S, Nath P, Das B, Sahoo P, et al. TRIM16 controls assembly and degradation of protein aggregates by modulating the p62-NRF2 axis and autophagy. EMBO J. 2018;37: pubmed 出版商
  113. Song K, Kim J, Lee Y, Bae H, Lee H, Woo S, et al. Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance. J Clin Invest. 2018;128:4098-4114 pubmed 出版商
  114. Gubbiotti M, Seifert E, Rodeck U, Hoek J, Iozzo R. Metabolic reprogramming of murine cardiomyocytes during autophagy requires the extracellular nutrient sensor decorin. J Biol Chem. 2018;293:16940-16950 pubmed 出版商
  115. Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed 出版商
  116. Liu Z, Qin Q, Wu C, Li H, Shou J, Yang Y, et al. Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop. Nat Commun. 2018;9:2789 pubmed 出版商
  117. Lin X, Cui M, Xu D, Hong D, Xia Y, Xu C, et al. Liver-specific deletion of Eva1a/Tmem166 aggravates acute liver injury by impairing autophagy. Cell Death Dis. 2018;9:768 pubmed 出版商
  118. Wang H, Bu L, Wang C, Zhang Y, Zhou H, Zhang X, et al. The Hsp70 inhibitor 2-phenylethynesulfonamide inhibits replication and carcinogenicity of Epstein-Barr virus by inhibiting the molecular chaperone function of Hsp70. Cell Death Dis. 2018;9:734 pubmed 出版商
  119. Pajares M, Rojo A, Arias E, Díaz Carretero A, Cuervo A, Cuadrado A. Transcription factor NFE2L2/NRF2 modulates chaperone-mediated autophagy through the regulation of LAMP2A. Autophagy. 2018;14:1310-1322 pubmed 出版商
  120. Wang W, Xia Z, Farre J, Subramani S. TRIM37 deficiency induces autophagy through deregulating the MTORC1-TFEB axis. Autophagy. 2018;14:1574-1585 pubmed 出版商
  121. Rapino F, Delaunay S, Rambow F, Zhou Z, Tharun L, de Tullio P, et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature. 2018;558:605-609 pubmed 出版商
  122. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed 出版商
  123. Chhipa R, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, et al. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol. 2018;20:823-835 pubmed 出版商
  124. Yang M, Li C, Zhu S, Cao L, Kroemer G, Zeh H, et al. TFAM is a novel mediator of immunogenic cancer cell death. Oncoimmunology. 2018;7:e1431086 pubmed 出版商
  125. Vera Ramirez L, Vodnala S, Nini R, Hunter K, Green J. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat Commun. 2018;9:1944 pubmed 出版商
  126. Hartlova A, Herbst S, Peltier J, Rodgers A, Bilkei Gorzo O, Fearns A, et al. LRRK2 is a negative regulator of Mycobacterium tuberculosis phagosome maturation in macrophages. EMBO J. 2018;37: pubmed 出版商
  127. Liu H, Jiang W, Chen X, Chang G, Zhao L, Li X, et al. Skeletal muscle-specific Sidt2 knockout in mice induced muscular dystrophy-like phenotype. Metabolism. 2018;85:259-270 pubmed 出版商
  128. Perot B, Boussier J, Yatim N, Rossman J, Ingersoll M, Albert M. Autophagy diminishes the early interferon-? response to influenza A virus resulting in differential expression of interferon-stimulated genes. Cell Death Dis. 2018;9:539 pubmed 出版商
  129. Liu L, An D, Xu J, Shao B, Li X, Shi J. Ac2-26 Induces IKKβ Degradation Through Chaperone-Mediated Autophagy Via HSPB1 in NCM-Treated Microglia. Front Mol Neurosci. 2018;11:76 pubmed 出版商
  130. Puri C, Vicinanza M, Ashkenazi A, Gratian M, Zhang Q, Bento C, et al. The RAB11A-Positive Compartment Is a Primary Platform for Autophagosome Assembly Mediated by WIPI2 Recognition of PI3P-RAB11A. Dev Cell. 2018;45:114-131.e8 pubmed 出版商
  131. Leeman D, Hebestreit K, Ruetz T, Webb A, McKay A, Pollina E, et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science. 2018;359:1277-1283 pubmed 出版商
  132. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  133. Marrone L, Bus C, Schöndorf D, Fitzgerald J, Kübler M, Schmid B, et al. Generation of iPSCs carrying a common LRRK2 risk allele for in vitro modeling of idiopathic Parkinson's disease. PLoS ONE. 2018;13:e0192497 pubmed 出版商
  134. Hsu C, Lee E, Gordon K, Paz E, Shen W, Ohnishi K, et al. MAP4K3 mediates amino acid-dependent regulation of autophagy via phosphorylation of TFEB. Nat Commun. 2018;9:942 pubmed 出版商
  135. Nguyen H, Noguchi S, Sugie K, Matsuo Y, Nguyen C, Koito H, et al. Small-Vessel Vasculopathy Due to Aberrant Autophagy in LAMP-2 Deficiency. Sci Rep. 2018;8:3326 pubmed 出版商
  136. Agod Z, Pazmandi K, Bencze D, Vereb G, Biro T, Szabo A, et al. Signaling Lymphocyte Activation Molecule Family 5 Enhances Autophagy and Fine-Tunes Cytokine Response in Monocyte-Derived Dendritic Cells via Stabilization of Interferon Regulatory Factor 8. Front Immunol. 2018;9:62 pubmed 出版商
  137. Victor M, Richner M, Olsen H, Lee S, Monteys A, Ma C, et al. Striatal neurons directly converted from Huntington's disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat Neurosci. 2018;21:341-352 pubmed 出版商
  138. Chen K, Dai H, Yuan J, Chen J, Lin L, Zhang W, et al. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy. Cell Death Dis. 2018;9:105 pubmed 出版商
  139. Goiran T, Duplan E, Rouland L, El Manaa W, Lauritzen I, Dunys J, et al. Nuclear p53-mediated repression of autophagy involves PINK1 transcriptional down-regulation. Cell Death Differ. 2018;25:873-884 pubmed 出版商
  140. Fletcher K, Ulferts R, Jacquin E, Veith T, Gammoh N, Arasteh J, et al. The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes. EMBO J. 2018;37: pubmed 出版商
  141. Shroff A, Sequeira R, Patel V, Reddy K. Knockout of autophagy gene, ATG5 in mice vaginal cells abrogates cytokine response and pathogen clearance during vaginal infection of Candida albicans. Cell Immunol. 2018;324:59-73 pubmed 出版商
  142. Smith M, Harley M, Kemp A, Wills J, Lee M, Arends M, et al. CCPG1 Is a Non-canonical Autophagy Cargo Receptor Essential for ER-Phagy and Pancreatic ER Proteostasis. Dev Cell. 2018;44:217-232.e11 pubmed 出版商
  143. Guo H, Chitiprolu M, Roncevic L, Javalet C, Hemming F, Trung M, et al. Atg5 Disassociates the V1V0-ATPase to Promote Exosome Production and Tumor Metastasis Independent of Canonical Macroautophagy. Dev Cell. 2017;43:716-730.e7 pubmed 出版商
  144. Lee S, Bazick H, Chittoor Vinod V, Al Salihi M, Xia G, Notterpek L. Elevated Peripheral Myelin Protein 22, Reduced Mitotic Potential, and Proteasome Impairment in Dermal Fibroblasts from Charcot-Marie-Tooth Disease Type 1A Patients. Am J Pathol. 2018;188:728-738 pubmed 出版商
  145. Takanezawa Y, Nakamura R, Harada R, Sone Y, Uraguchi S, Kiyono M. Sequestosome1/p62 protects mouse embryonic fibroblasts against low-dose methylercury-induced cytotoxicity and is involved in clearance of ubiquitinated proteins. Sci Rep. 2017;7:16735 pubmed 出版商
  146. Sun H, Krauss R, Chang J, Teng B. PCSK9 deficiency reduces atherosclerosis, apolipoprotein B secretion, and endothelial dysfunction. J Lipid Res. 2018;59:207-223 pubmed 出版商
  147. Ni Z, HE J, Wu Y, Hu C, Dai X, Yan X, et al. AKT-mediated phosphorylation of ATG4B impairs mitochondrial activity and enhances the Warburg effect in hepatocellular carcinoma cells. Autophagy. 2018;14:685-701 pubmed 出版商
  148. Jimenez Orgaz A, Kvainickas A, Nägele H, Denner J, Eimer S, Dengjel J, et al. Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. EMBO J. 2018;37:235-254 pubmed 出版商
  149. Bansal M, Moharir S, Sailasree S, Sirohi K, Sudhakar C, Sarathi D, et al. Optineurin promotes autophagosome formation by recruiting the autophagy-related Atg12-5-16L1 complex to phagophores containing the Wipi2 protein. J Biol Chem. 2018;293:132-147 pubmed 出版商
  150. Lüningschrör P, Binotti B, Dombert B, Heimann P, Pérez Lara A, Slotta C, et al. Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun. 2017;8:678 pubmed 出版商
  151. Hos N, Ganesan R, Gutierrez S, Hos D, Klimek J, Abdullah Z, et al. Type I interferon enhances necroptosis of Salmonella Typhimurium-infected macrophages by impairing antioxidative stress responses. J Cell Biol. 2017;216:4107-4121 pubmed 出版商
  152. Viana Huete V, Guillen C, García G, Fernandez S, García Aguilar A, Kahn C, et al. Male Brown Fat-Specific Double Knockout of IGFIR/IR: Atrophy, Mitochondrial Fission Failure, Impaired Thermogenesis, and Obesity. Endocrinology. 2018;159:323-340 pubmed 出版商
  153. Xu Y, Wang Y, Yao A, Xu Z, Dou H, Shen S, et al. Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway. Sci Rep. 2017;7:11776 pubmed 出版商
  154. Merrill N, Schipper J, Karnes J, Kauffman A, Martin K, Mackeigan J. PI3K-C2? knockdown decreases autophagy and maturation of endocytic vesicles. PLoS ONE. 2017;12:e0184909 pubmed 出版商
  155. Ruan H, Ma Y, Torres S, Zhang B, Feriod C, Heck R, et al. Calcium-dependent O-GlcNAc signaling drives liver autophagy in adaptation to starvation. Genes Dev. 2017;31:1655-1665 pubmed 出版商
  156. Bartolomeo R, Cinque L, De Leonibus C, Forrester A, Salzano A, Monfregola J, et al. mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy. J Clin Invest. 2017;127:3717-3729 pubmed 出版商
  157. Tseng J, Xie L, Song S, Xie Y, Allen L, Ajit D, et al. The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology. Cell Rep. 2017;20:2169-2183 pubmed 出版商
  158. Rocchi A, Yamamoto S, Ting T, Fan Y, SADLEIR K, Wang Y, et al. A Becn1 mutation mediates hyperactive autophagic sequestration of amyloid oligomers and improved cognition in Alzheimer's disease. PLoS Genet. 2017;13:e1006962 pubmed 出版商
  159. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  160. Joachim J, Razi M, Judith D, Wirth M, Calamita E, Encheva V, et al. Centriolar Satellites Control GABARAP Ubiquitination and GABARAP-Mediated Autophagy. Curr Biol. 2017;27:2123-2136.e7 pubmed 出版商
  161. Liu C, Choi H, Johnson Z, Tian J, Shapiro I, Risbud M. Lack of evidence for involvement of TonEBP and hyperosmotic stimulus in induction of autophagy in the nucleus pulposus. Sci Rep. 2017;7:4543 pubmed 出版商
  162. Button R, Roberts S, Willis T, Hanemann C, Luo S. Accumulation of autophagosomes confers cytotoxicity. J Biol Chem. 2017;292:13599-13614 pubmed 出版商
  163. Zhou Y, Huang N, Wu J, Zhen N, Li N, Li Y, et al. Silencing of NRAGE induces autophagy via AMPK/Ulk1/Atg13 signaling pathway in NSCLC cells. Tumour Biol. 2017;39:1010428317709676 pubmed 出版商
  164. Dai S, Dulcey A, Hu X, Wassif C, Porter F, Austin C, et al. Methyl-β-cyclodextrin restores impaired autophagy flux in Niemann-Pick C1-deficient cells through activation of AMPK. Autophagy. 2017;13:1435-1451 pubmed 出版商
  165. Tan Y, Ci Y, Dai X, Wu F, Guo J, Liu D, et al. Cullin 3SPOP ubiquitin E3 ligase promotes the poly-ubiquitination and degradation of HDAC6. Oncotarget. 2017;8:47890-47901 pubmed 出版商
  166. Tan S, Chadha S, Liu Y, Gabasova E, Perera D, Ahmed K, et al. A Class of Environmental and Endogenous Toxins Induces BRCA2 Haploinsufficiency and Genome Instability. Cell. 2017;169:1105-1118.e15 pubmed 出版商
  167. Wang G, Zhou H, Strulovici Barel Y, Al Hijji M, Ou X, Salit J, et al. Role of OSGIN1 in mediating smoking-induced autophagy in the human airway epithelium. Autophagy. 2017;13:1205-1220 pubmed 出版商
  168. Vidoni C, Secomandi E, Castiglioni A, Melone M, Isidoro C. Resveratrol protects neuronal-like cells expressing mutant Huntingtin from dopamine toxicity by rescuing ATG4-mediated autophagosome formation. Neurochem Int. 2018;117:174-187 pubmed 出版商
  169. Sakamaki J, Wilkinson S, Hahn M, Tasdemir N, O Prey J, Clark W, et al. Bromodomain Protein BRD4 Is a Transcriptional Repressor of Autophagy and Lysosomal Function. Mol Cell. 2017;66:517-532.e9 pubmed 出版商
  170. Nayar U, Sadek J, Reichel J, Hernandez Hopkins D, Akar G, Barelli P, et al. Identification of a nucleoside analog active against adenosine kinase-expressing plasma cell malignancies. J Clin Invest. 2017;127:2066-2080 pubmed 出版商
  171. Wu D, Adamopoulos I. Loss of WDFY3 ameliorates severity of serum transfer-induced arthritis independently of autophagy. Cell Immunol. 2017;316:61-69 pubmed 出版商
  172. Ashkenazi A, Bento C, Ricketts T, Vicinanza M, Siddiqi F, Pavel M, et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature. 2017;545:108-111 pubmed 出版商
  173. Banerjee B, Koner D, Lal P, Saha N. Unique mitochondrial localization of arginase 1 and 2 in hepatocytes of air-breathing walking catfish, Clarias batrachus and their differential expression patterns under hyper-ammonia stress. Gene. 2017;622:13-22 pubmed 出版商
  174. Kaufman D, Papillon J, Larose L, Iwawaki T, Cybulsky A. Deletion of inositol-requiring enzyme-1? in podocytes disrupts glomerular capillary integrity and autophagy. Mol Biol Cell. 2017;28:1636-1651 pubmed 出版商
  175. Xiao Z, Gaertner S, Morresi Hauf A, Genzel R, Duell T, Ullrich A, et al. Metformin Triggers Autophagy to Attenuate Drug-Induced Apoptosis in NSCLC Cells, with Minor Effects on Tumors of Diabetic Patients. Neoplasia. 2017;19:385-395 pubmed 出版商
  176. Xiao Y, Yang Z, Wu Q, Jiang X, Yuan Y, Chang W, et al. Cucurbitacin B Protects Against Pressure Overload Induced Cardiac Hypertrophy. J Cell Biochem. 2017;118:3899-3910 pubmed 出版商
  177. Gao Y, Zhuang Z, Gao S, Li X, Zhang Z, Ye Z, et al. Tetrahydrocurcumin reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury. Am J Transl Res. 2017;9:887-899 pubmed
  178. Wassermann Dozorets R, Rubinstein M. C/EBPβ LIP augments cell death by inducing osteoglycin. Cell Death Dis. 2017;8:e2733 pubmed 出版商
  179. Zhang Y, Nguyen D, Olzomer E, Poon G, Cole N, Puvanendran A, et al. Rescue of Pink1 Deficiency by Stress-Dependent Activation of Autophagy. Cell Chem Biol. 2017;24:471-480.e4 pubmed 出版商
  180. Zhang X, Fan J, Wang S, Li Y, Wang Y, Li S, et al. Targeting CD47 and Autophagy Elicited Enhanced Antitumor Effects in Non-Small Cell Lung Cancer. Cancer Immunol Res. 2017;5:363-375 pubmed 出版商
  181. Suresh S, Chavalmane A, Dj V, Yarreiphang H, Rai S, Paul A, et al. A novel autophagy modulator 6-Bio ameliorates SNCA/?-synuclein toxicity. Autophagy. 2017;13:1221-1234 pubmed 出版商
  182. Xu Q, Zhu N, Chen S, Zhao P, Ren H, Zhu S, et al. E3 Ubiquitin Ligase Nedd4 Promotes Japanese Encephalitis Virus Replication by Suppressing Autophagy in Human Neuroblastoma Cells. Sci Rep. 2017;7:45375 pubmed 出版商
  183. Kang H, Park J, Choi K, Kim Y, Choi H, Jung C, et al. Chemical screening identifies ATM as a target for alleviating senescence. Nat Chem Biol. 2017;13:616-623 pubmed 出版商
  184. Vodret S, Bortolussi G, Jašprová J, Vitek L, Muro A. Inflammatory signature of cerebellar neurodegeneration during neonatal hyperbilirubinemia in Ugt1 -/- mouse model. J Neuroinflammation. 2017;14:64 pubmed 出版商
  185. Marwaha R, Arya S, Jagga D, Kaur H, Tuli A, Sharma M. The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes. J Cell Biol. 2017;216:1051-1070 pubmed 出版商
  186. Fajardo V, Gamu D, Mitchell A, Bloemberg D, Bombardier E, Chambers P, et al. Sarcolipin deletion exacerbates soleus muscle atrophy and weakness in phospholamban overexpressing mice. PLoS ONE. 2017;12:e0173708 pubmed 出版商
  187. Mu Y, Yan W, Yin T, Zhang Y, Li J, Yang J. Diet-induced obesity impairs spermatogenesis: a potential role for autophagy. Sci Rep. 2017;7:43475 pubmed 出版商
  188. Kim J, Hyun H, Min S, Kang T. Sustained HSP25 Expression Induces Clasmatodendrosis via ER Stress in the Rat Hippocampus. Front Cell Neurosci. 2017;11:47 pubmed 出版商
  189. Samuel S, Ghosh S, Majeed Y, Arunachalam G, Emara M, Ding H, et al. Metformin represses glucose starvation induced autophagic response in microvascular endothelial cells and promotes cell death. Biochem Pharmacol. 2017;132:118-132 pubmed 出版商
  190. Park S, Choi Y, Jung N, Kim J, Oh S, Yu Y, et al. Autophagy induction in the skeletal myogenic differentiation of human tonsil-derived mesenchymal stem cells. Int J Mol Med. 2017;39:831-840 pubmed 出版商
  191. Xu J, Wu Y, Lu G, Xie S, Ma Z, Chen Z, et al. Importance of ROS-mediated autophagy in determining apoptotic cell death induced by physapubescin B. Redox Biol. 2017;12:198-207 pubmed 出版商
  192. Møller A, Kampmann U, Hedegaard J, Thorsen K, Nordentoft I, Vendelbo M, et al. Altered gene expression and repressed markers of autophagy in skeletal muscle of insulin resistant patients with type 2 diabetes. Sci Rep. 2017;7:43775 pubmed 出版商
  193. Pi H, Li M, Tian L, Yang Z, Yu Z, Zhou Z. Enhancing lysosomal biogenesis and autophagic flux by activating the transcription factor EB protects against cadmium-induced neurotoxicity. Sci Rep. 2017;7:43466 pubmed 出版商
  194. Datta S, Choudhury D, Das A, Das Mukherjee D, Das N, Roy S, et al. Paclitaxel resistance development is associated with biphasic changes in reactive oxygen species, mitochondrial membrane potential and autophagy with elevated energy production capacity in lung cancer cells: A chronological study. Tumour Biol. 2017;39:1010428317694314 pubmed 出版商
  195. Kemter E, Frohlich T, Arnold G, Wolf E, Wanke R. Mitochondrial Dysregulation Secondary to Endoplasmic Reticulum Stress in Autosomal Dominant Tubulointerstitial Kidney Disease - UMOD (ADTKD-UMOD). Sci Rep. 2017;7:42970 pubmed 出版商
  196. Vazquez Cintron E, Beske P, Tenezaca L, Tran B, Oyler J, Glotfelty E, et al. Engineering Botulinum Neurotoxin C1 as a Molecular Vehicle for Intra-Neuronal Drug Delivery. Sci Rep. 2017;7:42923 pubmed 出版商
  197. Kovacs T, Billes V, Komlos M, Hotzi B, Manzéger A, Tarnóci A, et al. The small molecule AUTEN-99 (autophagy enhancer-99) prevents the progression of neurodegenerative symptoms. Sci Rep. 2017;7:42014 pubmed 出版商
  198. Wolfson R, Chantranupong L, Wyant G, Gu X, Orozco J, Shen K, et al. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature. 2017;543:438-442 pubmed 出版商
  199. Delaney J, Patel C, Willis K, Haghighiabyaneh M, Axelrod J, Tancioni I, et al. Haploinsufficiency networks identify targetable patterns of allelic deficiency in low mutation ovarian cancer. Nat Commun. 2017;8:14423 pubmed 出版商
  200. Jung J, Nayak A, Schaeffer V, Starzetz T, Kirsch A, Muller S, et al. Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator. elife. 2017;6: pubmed 出版商
  201. Tsai C, Li C, Cheng Y, Lee C, Liao P, Lin C, et al. The inhibition of lung cancer cell migration by AhR-regulated autophagy. Sci Rep. 2017;7:41927 pubmed 出版商
  202. Qian Q, Liu Q, Zhou D, Pan H, Liu Z, He F, et al. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway. FASEB J. 2017;31:2104-2113 pubmed 出版商
  203. Ganesan R, Hos N, Gutierrez S, Fischer J, Stepek J, Daglidu E, et al. Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS Pathog. 2017;13:e1006227 pubmed 出版商
  204. Zhao H, Li X, Zhao T, Zhang H, Yan M, Dong X, et al. Tangshen formula attenuates diabetic renal injuries by upregulating autophagy via inhibition of PLZF expression. PLoS ONE. 2017;12:e0171475 pubmed 出版商
  205. Chen S, Jing Y, Kang X, Yang L, Wang D, Zhang W, et al. Histone H2B monoubiquitination is a critical epigenetic switch for the regulation of autophagy. Nucleic Acids Res. 2017;45:1144-1158 pubmed 出版商
  206. Roy D, Mondal S, Khurana A, Jung D, Hoffmann R, He X, et al. Loss of HSulf-1: The Missing Link between Autophagy and Lipid Droplets in Ovarian Cancer. Sci Rep. 2017;7:41977 pubmed 出版商
  207. Hammerling B, Najor R, Cortez M, Shires S, Leon L, Gonzalez E, et al. A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance. Nat Commun. 2017;8:14050 pubmed 出版商
  208. Liu J, Wang H, Gu J, Deng T, Yuan Z, Hu B, et al. BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy. 2017;13:739-753 pubmed 出版商
  209. Feng L, Zhang J, Zhu N, Ding Q, Zhang X, Yu J, et al. Ubiquitin ligase SYVN1/HRD1 facilitates degradation of the SERPINA1 Z variant/?-1-antitrypsin Z variant via SQSTM1/p62-dependent selective autophagy. Autophagy. 2017;13:686-702 pubmed 出版商
  210. Russo V, Inglese C, Avallone L, Roperto F, Abate C, Zizzo N, et al. Sigma 2 receptor expression levels in blood and bladder from healthy and bladder cancer cattle. Vet Comp Oncol. 2017;15:1503-1512 pubmed 出版商
  211. Kim M, Deng H, Wong Y, Siddique T, Krainc D. The Parkinson's disease-linked protein TMEM230 is required for Rab8a-mediated secretory vesicle trafficking and retromer trafficking. Hum Mol Genet. 2017;26:729-741 pubmed 出版商
  212. Villar V, Nguyen T, Delcroix V, Terés S, Bouchecareilh M, Salin B, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124 pubmed 出版商
  213. Bonhoure A, Vallentin A, Martin M, Senff Ribeiro A, Amson R, Telerman A, et al. Acetylation of translationally controlled tumor protein promotes its degradation through chaperone-mediated autophagy. Eur J Cell Biol. 2017;96:83-98 pubmed 出版商
  214. Zhang C, Yan J, Xiao Y, Shen Y, Wang J, Ge W, et al. Inhibition of Autophagic Degradation Process Contributes to Claudin-2 Expression Increase and Epithelial Tight Junction Dysfunction in TNF-α Treated Cell Monolayers. Int J Mol Sci. 2017;18: pubmed 出版商
  215. Shin S, Kim J, Lee J, Son Y, Lee M, Kim H, et al. Docosahexaenoic acid-mediated protein aggregates may reduce proteasome activity and delay myotube degradation during muscle atrophy in vitro. Exp Mol Med. 2017;49:e287 pubmed 出版商
  216. Chang V, Tsai Y, Tsai Y, Peng S, Chen S, Chang T, et al. Krüpple-like factor 10 regulates radio-sensitivity of pancreatic cancer via UV radiation resistance-associated gene. Radiother Oncol. 2017;122:476-484 pubmed 出版商
  217. Ma K, Fu W, Tang M, Zhang C, Hou T, Li R, et al. PTK2-mediated degradation of ATG3 impedes cancer cells susceptible to DNA damage treatment. Autophagy. 2017;13:579-591 pubmed 出版商
  218. Shen Z, Zheng Y, Wu J, Chen Y, Wu X, Zhou Y, et al. PARK2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window. Autophagy. 2017;13:473-485 pubmed 出版商
  219. Nascimbeni A, Fanin M, Angelini C, Sandri M. Autophagy dysregulation in Danon disease. Cell Death Dis. 2017;8:e2565 pubmed 出版商
  220. Ruf S, Heberle A, Langelaar Makkinje M, Gelino S, Wilkinson D, Gerbeth C, et al. PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy. Autophagy. 2017;13:486-505 pubmed 出版商
  221. Squillaro T, Antonucci I, Alessio N, Esposito A, Cipollaro M, Melone M, et al. Impact of lysosomal storage disorders on biology of mesenchymal stem cells: Evidences from in vitro silencing of glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes. J Cell Physiol. 2017;232:3454-3467 pubmed 出版商
  222. Coccia M, Rossi A, Riccio A, Trotta E, Santoro M. Human NF-κB repressing factor acts as a stress-regulated switch for ribosomal RNA processing and nucleolar homeostasis surveillance. Proc Natl Acad Sci U S A. 2017;114:1045-1050 pubmed 出版商
  223. Granato M, Rizzello C, Gilardini Montani M, Cuomo L, Vitillo M, Santarelli R, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem. 2017;41:124-136 pubmed 出版商
  224. Borgia D, Malena A, Spinazzi M, Desbats M, Salviati L, Russell A, et al. Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients. Hum Mol Genet. 2017;26:1087-1103 pubmed 出版商
  225. Zhang L, Dai F, Cui L, Zhou B, Guo Y. Up-regulation of the active form of small GTPase Rab13 promotes macroautophagy in vascular endothelial cells. Biochim Biophys Acta Mol Cell Res. 2017;1864:613-624 pubmed 出版商
  226. Sun A, Wei J, Childress C, Shaw J, Peng K, Shao G, et al. The E3 ubiquitin ligase NEDD4 is an LC3-interactive protein and regulates autophagy. Autophagy. 2017;13:522-537 pubmed 出版商
  227. Wang Q, Wu S, Zhu H, Ding Y, Dai X, Ouyang C, et al. Deletion of PRKAA triggers mitochondrial fission by inhibiting the autophagy-dependent degradation of DNM1L. Autophagy. 2017;13:404-422 pubmed 出版商
  228. Jiang C, Diao F, Sang Y, Xu N, Zhu R, Wang X, et al. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet. 2017;13:e1006535 pubmed 出版商
  229. Salmina K, Huna A, Inashkina I, Belyayev A, Krigerts J, Paštová L, et al. Nucleolar aggresomes mediate release of pericentric heterochromatin and nuclear destruction of genotoxically treated cancer cells. Nucleus. 2017;8:205-221 pubmed 出版商
  230. Li G, Fu R, Shen H, Zhou J, Hu X, Liu Y, et al. Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels. Oncotarget. 2017;8:10359-10374 pubmed 出版商
  231. Pietrocola F, Demont Y, Castoldi F, Enot D, Durand S, Semeraro M, et al. Metabolic effects of fasting on human and mouse blood in vivo. Autophagy. 2017;13:567-578 pubmed 出版商
  232. Capizzi M, Strappazzon F, Cianfanelli V, Papaleo E, Cecconi F. MIR7-3HG, a MYC-dependent modulator of cell proliferation, inhibits autophagy by a regulatory loop involving AMBRA1. Autophagy. 2017;13:554-566 pubmed 出版商
  233. Laporte A, Barrott J, Yao R, Poulin N, Brodin B, Jones K, et al. HDAC and Proteasome Inhibitors Synergize to Activate Pro-Apoptotic Factors in Synovial Sarcoma. PLoS ONE. 2017;12:e0169407 pubmed 出版商
  234. Ugun Klusek A, Tatham M, Elkharaz J, Constantin Teodosiu D, Lawler K, Mohamed H, et al. Continued 26S proteasome dysfunction in mouse brain cortical neurons impairs autophagy and the Keap1-Nrf2 oxidative defence pathway. Cell Death Dis. 2017;8:e2531 pubmed 出版商
  235. Hosoya M, Fujioka M, Sone T, Okamoto S, Akamatsu W, Ukai H, et al. Cochlear Cell Modeling Using Disease-Specific iPSCs Unveils a Degenerative Phenotype and Suggests Treatments for Congenital Progressive Hearing Loss. Cell Rep. 2017;18:68-81 pubmed 出版商
  236. Kim H, Lee S, Kim C, Kim Y, Ju W, Kim S. Subcellular localization of FOXO3a as a potential biomarker of response to combined treatment with inhibitors of PI3K and autophagy in PIK3CA-mutant cancer cells. Oncotarget. 2017;8:6608-6622 pubmed 出版商
  237. Wei Y, Chiang W, Sumpter R, Mishra P, Levine B. Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell. 2017;168:224-238.e10 pubmed 出版商
  238. Yeung P, Lai A, Son H, Zhang X, Hwang O, Chung S, et al. Aldose reductase deficiency leads to oxidative stress-induced dopaminergic neuronal loss and autophagic abnormality in an animal model of Parkinson's disease. Neurobiol Aging. 2017;50:119-133 pubmed 出版商
  239. Mukhopadhyay C, Triplett A, Bargar T, HECKMAN C, Wagner K, Naramura M. Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A. 2016;113:E8228-E8237 pubmed 出版商
  240. Da Ros M, Lehtiniemi T, Olotu O, Fischer D, Zhang F, Vihinen H, et al. FYCO1 and autophagy control the integrity of the haploid male germ cell-specific RNP granules. Autophagy. 2017;13:302-321 pubmed 出版商
  241. Shi B, Huang Q, Birkett R, Doyle R, Dorfleutner A, Stehlik C, et al. SNAPIN is critical for lysosomal acidification and autophagosome maturation in macrophages. Autophagy. 2017;13:285-301 pubmed 出版商
  242. Pavel M, Imarisio S, Menzies F, Jimenez Sanchez M, Siddiqi F, Wu X, et al. CCT complex restricts neuropathogenic protein aggregation via autophagy. Nat Commun. 2016;7:13821 pubmed 出版商
  243. Yan H, Gao Y, Zhang Y. Inhibition of JNK suppresses autophagy and attenuates insulin resistance in a rat model of nonalcoholic fatty liver disease. Mol Med Rep. 2017;15:180-186 pubmed 出版商
  244. Shen M, Jiang Y, Guan Z, Cao Y, Sun S, Liu H. FSH protects mouse granulosa cells from oxidative damage by repressing mitophagy. Sci Rep. 2016;6:38090 pubmed 出版商
  245. Su F, Myers V, Knezevic T, Wang J, Gao E, Madesh M, et al. Bcl-2-associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCI Insight. 2016;1:e90931 pubmed 出版商
  246. Li J, Chen T, Xiao M, Li N, Wang S, Su H, et al. Mouse Sirt3 promotes autophagy in AngII-induced myocardial hypertrophy through the deacetylation of FoxO1. Oncotarget. 2016;7:86648-86659 pubmed 出版商
  247. Cramer S, Saha A, Liu J, Tadi S, Tiziani S, Yan W, et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med. 2017;23:120-127 pubmed 出版商
  248. Tábara L, Escalante R. VMP1 Establishes ER-Microdomains that Regulate Membrane Contact Sites and Autophagy. PLoS ONE. 2016;11:e0166499 pubmed 出版商
  249. Shi D, Liu Y, Xi R, Zou W, Wu L, Zhang Z, et al. Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells. Int J Nanomedicine. 2016;11:5823-5835 pubmed
  250. Sakata K, Araki K, Nakano H, Nishina T, Komazawa Sakon S, Murai S, et al. Novel method to rescue a lethal phenotype through integration of target gene onto the X-chromosome. Sci Rep. 2016;6:37200 pubmed 出版商
  251. Cao L, Riascos Bernal D, Chinnasamy P, Dunaway C, Hou R, Pujato M, et al. Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature. 2016;539:575-578 pubmed 出版商
  252. Lee M, Sumpter R, Zou Z, Sirasanagandla S, Wei Y, Mishra P, et al. Peroxisomal protein PEX13 functions in selective autophagy. EMBO Rep. 2017;18:48-60 pubmed 出版商
  253. Li D, Xie B, Wu X, Li J, Ding Y, Wen X, et al. Late-stage inhibition of autophagy enhances calreticulin surface exposure. Oncotarget. 2016;7:80842-80854 pubmed 出版商
  254. Huang Z, Her L. The Ubiquitin Receptor ADRM1 Modulates HAP40-Induced Proteasome Activity. Mol Neurobiol. 2017;54:7382-7400 pubmed 出版商
  255. Cai Y, Yang L, Hu G, Chen X, Niu F, Yuan L, et al. Regulation of morphine-induced synaptic alterations: Role of oxidative stress, ER stress, and autophagy. J Cell Biol. 2016;215:245-258 pubmed
  256. Zhou J, Ge L, Jia C, Zheng X, Cui H, Zong R, et al. ROS-mediated Different Homeostasis of Murine Corneal Epithelial Progenitor Cell Line under Oxidative Stress. Sci Rep. 2016;6:36481 pubmed 出版商
  257. Lim J, Kim H, Nguyen K, Cho K. The role of TLR9 in stress-dependent autophagy formation. Biochem Biophys Res Commun. 2016;481:219-226 pubmed 出版商
  258. Fan Y, Wang N, Rocchi A, Zhang W, Vassar R, Zhou Y, et al. Identification of natural products with neuronal and metabolic benefits through autophagy induction. Autophagy. 2017;13:41-56 pubmed 出版商
  259. Sun H, Zhang M, Cheng K, Li P, Han S, Li R, et al. Resistance of glioma cells to nutrient-deprived microenvironment can be enhanced by CD133-mediated autophagy. Oncotarget. 2016;7:76238-76249 pubmed 出版商
  260. Han J, Bae J, Choi C, Choi S, Kang H, Jo E, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy. 2016;12:2326-2343 pubmed
  261. Liu L, Tao Z, Zheng L, Brooke J, Smith C, Liu D, et al. FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes. Cell Death Discov. 2016;2:16066 pubmed
  262. Yao J, Jia L, Feathers K, Lin C, Khan N, Klionsky D, et al. Autophagy-mediated catabolism of visual transduction proteins prevents retinal degeneration. Autophagy. 2016;12:2439-2450 pubmed
  263. Yang M, Wang B, Miao L, Xu X, He X. Autophagy is involved in aldosterone‑induced mesangial cell proliferation. Mol Med Rep. 2016;14:4638-4642 pubmed 出版商
  264. Wang H, Chen S, Lo W. Identification of Cofilin-1 Induces G0/G1 Arrest and Autophagy in Angiotensin-(1-7)-treated Human Aortic Endothelial Cells from iTRAQ Quantitative Proteomics. Sci Rep. 2016;6:35372 pubmed 出版商
  265. Zou P, Liu L, Zheng L, Payne K, Manjili M, Idowu M, et al. Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment. Oxid Med Cell Longev. 2016;2016:4085727 pubmed
  266. Zhao Y, Fan D, Ru B, Cheng K, Hu S, Zhang J, et al. 6-C-(E-phenylethenyl)naringenin induces cell growth inhibition and cytoprotective autophagy in colon cancer cells. Eur J Cancer. 2016;68:38-50 pubmed 出版商
  267. Gupta S, Zeglinski M, Rattan S, Landry N, Ghavami S, Wigle J, et al. Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts. Oncotarget. 2016;7:78516-78531 pubmed 出版商
  268. Figueroa González G, García Castillo V, Coronel Hernández J, López Urrutia E, León Cabrera S, Arias Romero L, et al. Anti-inflammatory and Antitumor Activity of a Triple Therapy for a Colitis-Related Colorectal Cancer. J Cancer. 2016;7:1632-1644 pubmed
  269. Moosavi M, Sharifi M, Ghafary S, Mohammadalipour Z, Khataee A, Rahmati M, et al. Photodynamic N-TiO2 Nanoparticle Treatment Induces Controlled ROS-mediated Autophagy and Terminal Differentiation of Leukemia Cells. Sci Rep. 2016;6:34413 pubmed 出版商
  270. Vodicka P, Chase K, Iuliano M, Tousley A, Valentine D, Sapp E, et al. Autophagy Activation by Transcription Factor EB (TFEB) in Striatum of HDQ175/Q7 Mice. J Huntingtons Dis. 2016;5:249-260 pubmed
  271. Chaabane W, Appell M. Interconnections between apoptotic and autophagic pathways during thiopurine-induced toxicity in cancer cells: the role of reactive oxygen species. Oncotarget. 2016;7:75616-75634 pubmed 出版商
  272. White S, McDermott M, Sufit R, Kosmac K, Bugg A, Gonzalez Freire M, et al. Walking performance is positively correlated to calf muscle fiber size in peripheral artery disease subjects, but fibers show aberrant mitophagy: an observational study. J Transl Med. 2016;14:284 pubmed 出版商
  273. Wei R, Lin S, Wu W, Chen L, Li C, Chen H, et al. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells. Toxicol Appl Pharmacol. 2016;311:88-98 pubmed 出版商
  274. Kim S, Roy S, Chen B, Nguyen T, McMonigle R, McCracken A, et al. Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. J Clin Invest. 2016;126:4088-4102 pubmed 出版商
  275. Dragich J, Kuwajima T, Hirose Ikeda M, Yoon M, Eenjes E, Bosco J, et al. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. elife. 2016;5: pubmed 出版商
  276. Mercado Pimentel M, Igarashi S, Dunn A, Behbahani M, Miller C, Read C, et al. The Novel Small Molecule Inhibitor, OSU-T315, Suppresses Vestibular Schwannoma and Meningioma Growth by Inhibiting PDK2 Function in the AKT Pathway Activation. Austin J Med Oncol. 2016;3: pubmed
  277. Hernandez Tiedra S, Fabrias G, Davila D, Salanueva I, Casas J, Montes L, et al. Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy. 2016;12:2213-2229 pubmed
  278. Park S, Han S, Choi I, Kim B, Park S, Joe E, et al. Interplay between Leucine-Rich Repeat Kinase 2 (LRRK2) and p62/SQSTM-1 in Selective Autophagy. PLoS ONE. 2016;11:e0163029 pubmed 出版商
  279. Hubert V, Peschel A, Langer B, Groger M, Rees A, Kain R. LAMP-2 is required for incorporating syntaxin-17 into autophagosomes and for their fusion with lysosomes. Biol Open. 2016;5:1516-1529 pubmed 出版商
  280. Teo W, Kerr M, Teasdale R. MTMR4 Is Required for the Stability of the Salmonella-Containing Vacuole. Front Cell Infect Microbiol. 2016;6:91 pubmed 出版商
  281. Qin Y, Liu Y, Hao W, Decker Y, Tomic I, Menger M, et al. Stimulation of TLR4 Attenuates Alzheimer's Disease-Related Symptoms and Pathology in Tau-Transgenic Mice. J Immunol. 2016;197:3281-3292 pubmed
  282. Heulot M, Chevalier N, Puyal J, Margue C, Michel S, Kreis S, et al. The TAT-RasGAP317-326 anti-cancer peptide can kill in a caspase-, apoptosis-, and necroptosis-independent manner. Oncotarget. 2016;7:64342-64359 pubmed 出版商
  283. Cudré Cung H, Zavadakova P, Do Vale Pereira S, Remacle N, Henry H, Ivanisevic J, et al. Ammonium accumulation is a primary effect of 2-methylcitrate exposure in an in vitro model for brain damage in methylmalonic aciduria. Mol Genet Metab. 2016;119:57-67 pubmed 出版商
  284. Conlon D, Thomas T, Fedotova T, Hernandez Ono A, Di Paolo G, Chan R, et al. Inhibition of apolipoprotein B synthesis stimulates endoplasmic reticulum autophagy that prevents steatosis. J Clin Invest. 2016;126:3852-3867 pubmed 出版商
  285. Peng Y, Miao H, Wu S, Yang W, Zhang Y, Xie G, et al. ABHD5 interacts with BECN1 to regulate autophagy and tumorigenesis of colon cancer independent of PNPLA2. Autophagy. 2016;12:2167-2182 pubmed
  286. Mirkheshti N, Park S, Jiang S, Cropper J, Werner S, Song C, et al. Dual targeting of androgen receptor and mTORC1 by salinomycin in prostate cancer. Oncotarget. 2016;7:62240-62254 pubmed 出版商
  287. Lin M, Liu H, Xiong Q, Niu H, Cheng Z, Yamamoto A, et al. Ehrlichia secretes Etf-1 to induce autophagy and capture nutrients for its growth through RAB5 and class III phosphatidylinositol 3-kinase. Autophagy. 2016;12:2145-2166 pubmed
  288. Ratovitski E. Tumor Protein (TP)-p53 Members as Regulators of Autophagy in Tumor Cells upon Marine Drug Exposure. Mar Drugs. 2016;14: pubmed 出版商
  289. Sukseree S, Chen Y, Laggner M, Gruber F, Petit V, Nagelreiter I, et al. Tyrosinase-Cre-Mediated Deletion of the Autophagy Gene Atg7 Leads to Accumulation of the RPE65 Variant M450 in the Retinal Pigment Epithelium of C57BL/6 Mice. PLoS ONE. 2016;11:e0161640 pubmed 出版商
  290. Weikel K, Cacicedo J, Ruderman N, Ido Y. Knockdown of GSK3β increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Biosci Rep. 2016;36: pubmed 出版商
  291. Jo Y, Park N, Park S, Kim B, Shin J, Jo D, et al. O-GlcNAcylation of ATG4B positively regulates autophagy by increasing its hydroxylase activity. Oncotarget. 2016;7:57186-57196 pubmed 出版商
  292. Cao L, Zhang L, Zhao X, Zhang Y. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0161025 pubmed 出版商
  293. Gao Y, Liu Y, Hong L, Yang Z, Cai X, Chen X, et al. Golgi-associated LC3 lipidation requires V-ATPase in noncanonical autophagy. Cell Death Dis. 2016;7:e2330 pubmed 出版商
  294. Karanasios E, Walker S, Okkenhaug H, Manifava M, Hummel E, Zimmermann H, et al. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nat Commun. 2016;7:12420 pubmed 出版商
  295. Ogasawara R, Fujita S, Hornberger T, Kitaoka Y, Makanae Y, Nakazato K, et al. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep. 2016;6:31142 pubmed 出版商
  296. Zhang A, He W, Shi H, Huang X, Ji G. Natural compound oblongifolin C inhibits autophagic flux, and induces apoptosis and mitochondrial dysfunction in human cholangiocarcinoma QBC939 cells. Mol Med Rep. 2016;14:3179-83 pubmed 出版商
  297. Xu S, Law B, Mok S, Leung E, Fan X, Coghi P, et al. Autophagic degradation of epidermal growth factor receptor in gefitinib-resistant lung cancer by celastrol. Int J Oncol. 2016;49:1576-88 pubmed 出版商
  298. Xing Y, Cao R, Hu H. TLR and NLRP3 inflammasome-dependent innate immune responses to tumor-derived autophagosomes (DRibbles). Cell Death Dis. 2016;7:e2322 pubmed 出版商
  299. Bartlett J, Trivedi P, Yeung P, Kienesberger P, Pulinilkunnil T. Doxorubicin impairs cardiomyocyte viability by suppressing transcription factor EB expression and disrupting autophagy. Biochem J. 2016;473:3769-3789 pubmed
  300. Wang Y, Sun H, Wang J, Wang H, Meng L, Xu C, et al. DNA-PK-mediated phosphorylation of EZH2 regulates the DNA damage-induced apoptosis to maintain T-cell genomic integrity. Cell Death Dis. 2016;7:e2316 pubmed 出版商
  301. Wang J, Zhang J, Lee Y, Koh P, Ng S, Bao F, et al. Quantitative chemical proteomics profiling of de novo protein synthesis during starvation-mediated autophagy. Autophagy. 2016;12:1931-1944 pubmed
  302. Wang J, Zhou J, Kho D, Reiners J, Wu G. Role for DUSP1 (dual-specificity protein phosphatase 1) in the regulation of autophagy. Autophagy. 2016;12:1791-1803 pubmed
  303. Grinshtein N, Rioseco C, Marcellus R, UEHLING D, Aman A, Lun X, et al. Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. Oncotarget. 2016;7:59360-59376 pubmed 出版商
  304. Buckingham E, Jarosinski K, Jackson W, Carpenter J, Grose C. Exocytosis of Varicella-Zoster Virus Virions Involves a Convergence of Endosomal and Autophagy Pathways. J Virol. 2016;90:8673-85 pubmed 出版商
  305. Geng J, Li J, Huang T, Zhao K, Chen Q, Guo W, et al. A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria. Mol Med Rep. 2016;14:1970-8 pubmed 出版商
  306. Pajares M, Jiménez Moreno N, García Yagüe A, Escoll M, De Ceballos M, Van Leuven F, et al. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy. 2016;12:1902-1916 pubmed
  307. Diez H, Benitez M, Fernandez S, Torres Aleman I, Garrido J, Wandosell F. Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation. Biochim Biophys Acta. 2016;1863:2574-2583 pubmed 出版商
  308. Song M, Wang Y, Shang Z, Liu X, Xie D, Wang Q, et al. Bystander autophagy mediated by radiation-induced exosomal miR-7-5p in non-targeted human bronchial epithelial cells. Sci Rep. 2016;6:30165 pubmed 出版商
  309. Cholanians A, Phan A, Ditzel E, Camenisch T, Lau S, Monks T. From the Cover: Arsenic Induces Accumulation of α-Synuclein: Implications for Synucleinopathies and Neurodegeneration. Toxicol Sci. 2016;153:271-81 pubmed 出版商
  310. Liu C, Yue R, Yang Y, Cui Y, Yang L, Zhao D, et al. AIM2 inhibits autophagy and IFN-? production during M. bovis infection. Oncotarget. 2016;7:46972-46987 pubmed 出版商
  311. Hewitt G, Carroll B, Sarallah R, Correia Melo C, Ogrodnik M, Nelson G, et al. SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy. 2016;12:1917-1930 pubmed
  312. Zea A, Stewart T, Ascani J, Tate D, Finkel Jimenez B, Wilk A, et al. Activation of the IL-2 Receptor in Podocytes: A Potential Mechanism for Podocyte Injury in Idiopathic Nephrotic Syndrome?. PLoS ONE. 2016;11:e0157907 pubmed 出版商
  313. Pan H, Zhong X, Lee S. Sustained activation of mTORC1 in macrophages increases AMPKα-dependent autophagy to maintain cellular homeostasis. BMC Biochem. 2016;17:14 pubmed 出版商
  314. Shen P, Chen M, He M, Chen L, Song Y, Xiao P, et al. Inhibition of ER?/ERK/P62 cascades induces "autophagic switch" in the estrogen receptor-positive breast cancer cells exposed to gemcitabine. Oncotarget. 2016;7:48501-48516 pubmed 出版商
  315. Bramini M, Sacchetti S, Armirotti A, Rocchi A, Vazquez E, León Castellanos V, et al. Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano. 2016;10:7154-71 pubmed 出版商
  316. Dejesus R, Moretti F, McAllister G, Wang Z, Bergman P, Liu S, et al. Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62. elife. 2016;5: pubmed 出版商
  317. Davis M, Delaney J, Patel C, Storgard R, Stupack D. Nelfinavir is effective against human cervical cancer cells in vivo: a potential treatment modality in resource-limited settings. Drug Des Devel Ther. 2016;10:1837-46 pubmed 出版商
  318. Hamlin A, Basford J, Jaeschke A, Hui D. LRP1 Protein Deficiency Exacerbates Palmitate-induced Steatosis and Toxicity in Hepatocytes. J Biol Chem. 2016;291:16610-9 pubmed 出版商
  319. Choi H, Merceron C, Mangiavini L, Seifert E, Schipani E, Shapiro I, et al. Hypoxia promotes noncanonical autophagy in nucleus pulposus cells independent of MTOR and HIF1A signaling. Autophagy. 2016;12:1631-46 pubmed 出版商
  320. Shin H, Kim H, Oh S, Lee J, Kee M, Ko H, et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature. 2016;534:553-7 pubmed 出版商
  321. Gómez Sánchez R, Yakhine Diop S, Bravo San Pedro J, Pizarro Estrella E, Rodríguez Arribas M, Climent V, et al. PINK1 deficiency enhances autophagy and mitophagy induction. Mol Cell Oncol. 2016;3:e1046579 pubmed 出版商
  322. Kuramoto K, Wang N, Fan Y, Zhang W, Schoenen F, Frankowski K, et al. Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids. Autophagy. 2016;12:1460-71 pubmed 出版商
  323. Andersson A, Andersson B, Lorell C, Raffetseder J, Larsson M, Blomgran R. Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages. Sci Rep. 2016;6:28171 pubmed 出版商
  324. Lee J, Takahama S, Zhang G, Tomarev S, Ye Y. Unconventional secretion of misfolded proteins promotes adaptation to proteasome dysfunction in mammalian cells. Nat Cell Biol. 2016;18:765-76 pubmed 出版商
  325. Wijdeven R, Janssen H, Nahidiazar L, Janssen L, Jalink K, Berlin I, et al. Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway. Nat Commun. 2016;7:11808 pubmed 出版商
  326. Bouchard G, Therriault H, Geha S, Bérubé Lauzière Y, Bujold R, Saucier C, et al. Stimulation of triple negative breast cancer cell migration and metastases formation is prevented by chloroquine in a pre-irradiated mouse model. BMC Cancer. 2016;16:361 pubmed 出版商
  327. Cheng M, Liu L, Lao Y, Liao W, Liao M, Luo X, et al. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis. Oncotarget. 2016;7:42274-42287 pubmed 出版商
  328. Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, et al. Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis. J Immunol. 2016;197:504-16 pubmed 出版商
  329. Ando K, Tomimura K, Sazdovitch V, Suain V, Yilmaz Z, Authelet M, et al. Level of PICALM, a key component of clathrin-mediated endocytosis, is correlated with levels of phosphotau and autophagy-related proteins and is associated with tau inclusions in AD, PSP and Pick disease. Neurobiol Dis. 2016;94:32-43 pubmed 出版商
  330. Shruthi K, Reddy S, Reddy P, Shivalingam P, Harishankar N, Reddy G. Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system. J Nutr Biochem. 2016;33:73-81 pubmed 出版商
  331. Zeng J, Jing Y, Shi R, Pan X, Lai F, Liu W, et al. Autophagy regulates biliary differentiation of hepatic progenitor cells through Notch1 signaling pathway. Cell Cycle. 2016;15:1602-10 pubmed 出版商
  332. Foltz S, Luan J, Call J, Patel A, Peissig K, Fortunato M, et al. Four-week rapamycin treatment improves muscular dystrophy in a fukutin-deficient mouse model of dystroglycanopathy. Skelet Muscle. 2016;6:20 pubmed 出版商
  333. Adams O, Dislich B, Berezowska S, Schläfli A, Seiler C, Kröll D, et al. Prognostic relevance of autophagy markers LC3B and p62 in esophageal adenocarcinomas. Oncotarget. 2016;7:39241-39255 pubmed 出版商
  334. Otto C, Hahlbrock T, Eich K, Karaaslan F, Jürgens C, Germer C, et al. Antiproliferative and antimetabolic effects behind the anticancer property of fermented wheat germ extract. BMC Complement Altern Med. 2016;16:160 pubmed 出版商
  335. Barnard R, Regan D, Hansen R, Maycotte P, Thorburn A, Gustafson D. Autophagy Inhibition Delays Early but Not Late-Stage Metastatic Disease. J Pharmacol Exp Ther. 2016;358:282-93 pubmed 出版商
  336. Gao B, Han Y, Wang L, Lin Y, Sun Z, Lu W, et al. Eicosapentaenoic acid attenuates dexamethasome-induced apoptosis by inducing adaptive autophagy via GPR120 in murine bone marrow-derived mesenchymal stem cells. Cell Death Dis. 2016;7:e2235 pubmed 出版商
  337. Elimam H, Papillon J, Kaufman D, Guillemette J, Aoudjit L, Gross R, et al. Genetic Ablation of Calcium-independent Phospholipase A2? Induces Glomerular Injury in Mice. J Biol Chem. 2016;291:14468-82 pubmed 出版商
  338. Lin K, Cheng S, Tsai S, Tsai J, Lin C, Cheung C. Delivery of a survivin promoter-driven antisense survivin-expressing plasmid DNA as a cancer therapeutic: a proof-of-concept study. Onco Targets Ther. 2016;9:2601-13 pubmed 出版商
  339. Droubi A, Bulley S, Clarke J, Irvine R. Nuclear localizations of phosphatidylinositol 5-phosphate 4-kinases ? and ? are dynamic and independently regulated during starvation-induced stress. Biochem J. 2016;473:2155-63 pubmed 出版商
  340. Wang L, Yokoyama K, Lin C, Chen T, Hsiao H, Chiang P, et al. Knockout of ho-1 protects the striatum from ferrous iron-induced injury in a male-specific manner in mice. Sci Rep. 2016;6:26358 pubmed 出版商
  341. Ranjan A, Srivastava S. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis. Sci Rep. 2016;6:26165 pubmed 出版商
  342. Koskela A, Reinisalo M, Petrovski G, Sinha D, Olmiere C, Karjalainen R, et al. Nutraceutical with Resveratrol and Omega-3 Fatty Acids Induces Autophagy in ARPE-19 Cells. Nutrients. 2016;8: pubmed 出版商
  343. Deng H, Mi M. Resveratrol Attenuates A?25-35 Caused Neurotoxicity by Inducing Autophagy Through the TyrRS-PARP1-SIRT1 Signaling Pathway. Neurochem Res. 2016;41:2367-79 pubmed 出版商
  344. Liu L, Wang C, Lin Y, Xi Y, Li H, Shi S, et al. Suppression of calcium?sensing receptor ameliorates cardiac hypertrophy through inhibition of autophagy. Mol Med Rep. 2016;14:111-20 pubmed 出版商
  345. Park S, Yi H, Suh N, Park Y, Koh J, Jeong S, et al. Inhibition of EHMT2/G9a epigenetically increases the transcription of Beclin-1 via an increase in ROS and activation of NF-?B. Oncotarget. 2016;7:39796-39808 pubmed 出版商
  346. Song J, Sun Y, Peluso I, Zeng Y, Yu X, Lu J, et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy. 2016;12:1372-89 pubmed 出版商
  347. Wei Z, Yuan Y, Jaouen F, Ma M, Hao C, Zhang Z, et al. SLC35D3 increases autophagic activity in midbrain dopaminergic neurons by enhancing BECN1-ATG14-PIK3C3 complex formation. Autophagy. 2016;12:1168-79 pubmed 出版商
  348. Huang G, Zhang F, Ye Q, Wang H. The circadian clock regulates autophagy directly through the nuclear hormone receptor Nr1d1/Rev-erb? and indirectly via Cebpb/(C/ebp?) in zebrafish. Autophagy. 2016;12:1292-309 pubmed 出版商
  349. Pastore N, Brady O, Diab H, Martina J, Sun L, Huynh T, et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy. 2016;12:1240-58 pubmed 出版商
  350. Karvela M, Baquero P, Kuntz E, Mukhopadhyay A, Mitchell R, Allan E, et al. ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells. Autophagy. 2016;12:936-48 pubmed 出版商
  351. Ting W, Yang J, Kuo C, Xiao Z, Lu X, Yeh Y, et al. Environmental tobacco smoke increases autophagic effects but decreases longevity associated with Sirt-1 protein expression in young C57BL mice hearts. Oncotarget. 2016;7:39017-39025 pubmed 出版商
  352. Xue H, Yuan G, Guo X, Liu Q, Zhang J, Gao X, et al. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy. 2016;12:1129-52 pubmed 出版商
  353. De Filippis L, Halikere A, McGowan H, Moore J, Tischfield J, Hart R, et al. Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells. Mol Brain. 2016;9:51 pubmed 出版商
  354. Onesto E, Colombrita C, Gumina V, Borghi M, Dusi S, Doretti A, et al. Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts. Acta Neuropathol Commun. 2016;4:47 pubmed 出版商
  355. Pereira D, Simões A, Gomes S, Castro R, Carvalho T, Rodrigues C, et al. MEK5/ERK5 signaling inhibition increases colon cancer cell sensitivity to 5-fluorouracil through a p53-dependent mechanism. Oncotarget. 2016;7:34322-40 pubmed 出版商
  356. Silva S, Levy D, Ruiz J, de Melo T, Isaac C, Fidelis M, et al. Oxysterols in adipose tissue-derived mesenchymal stem cell proliferation and death. J Steroid Biochem Mol Biol. 2017;169:164-175 pubmed 出版商
  357. Krall A, Xu S, Graeber T, Braas D, Christofk H. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun. 2016;7:11457 pubmed 出版商
  358. Huang Q, Zhan L, Cao H, Li J, Lyu Y, Guo X, et al. Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways. Autophagy. 2016;12:999-1014 pubmed 出版商
  359. Xu J, Li J, Wang J, Chi Y, Zhang K, Cui R. Heme oxygenase?1 protects H2O2?insulted glomerular mesangial cells from excessive autophagy. Mol Med Rep. 2016;13:5269-75 pubmed 出版商
  360. Swiader A, Nahapetyan H, Faccini J, D Angelo R, Mucher E, Elbaz M, et al. Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids. Oncotarget. 2016;7:28821-35 pubmed 出版商
  361. Stephenson E, Ragauskas A, Jaligama S, Redd J, Parvathareddy J, Peloquin M, et al. Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice. Am J Physiol Endocrinol Metab. 2016;310:E1003-15 pubmed 出版商
  362. Chen K, Lin C, Huang C, Chen S, Wu S, Chiang H, et al. Dual Roles of 17-? Estradiol in Estrogen Receptor-dependent Growth Inhibition in Renal Cell Carcinoma. Cancer Genomics Proteomics. 2016;13:219-30 pubmed
  363. Rodriguez Ortiz C, Flores J, Valenzuela J, Rodriguez G, Zumkehr J, Tran D, et al. The Myoblast C2C12 Transfected with Mutant Valosin-Containing Protein Exhibits Delayed Stress Granule Resolution on Oxidative Stress. Am J Pathol. 2016;186:1623-34 pubmed 出版商
  364. Sellier C, Campanari M, Julie Corbier C, Gaucherot A, Kolb Cheynel I, Oulad Abdelghani M, et al. Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO J. 2016;35:1276-97 pubmed 出版商
  365. Zhang Q, Gao M, Zhang Y, Song Y, Cheng H, Zhou R. The germline-enriched Ppp1r36 promotes autophagy. Sci Rep. 2016;6:24609 pubmed 出版商
  366. Follo C, Barbone D, Richards W, Bueno R, Broaddus V. Autophagy initiation correlates with the autophagic flux in 3D models of mesothelioma and with patient outcome. Autophagy. 2016;12:1180-94 pubmed 出版商
  367. Pryde K, Smith H, Chau K, Schapira A. PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. J Cell Biol. 2016;213:163-71 pubmed 出版商
  368. Qi Y, Qiu Q, Gu X, Tian Y, Zhang Y. ATM mediates spermidine-induced mitophagy via PINK1 and Parkin regulation in human fibroblasts. Sci Rep. 2016;6:24700 pubmed 出版商
  369. Angelini C, Nascimbeni A, Cenacchi G, Tasca E. Lipolysis and lipophagy in lipid storage myopathies. Biochim Biophys Acta. 2016;1862:1367-73 pubmed 出版商
  370. Lai C, Tsai C, Kuo W, Ho T, Day C, Pai P, et al. Multi-Strain Probiotics Inhibit Cardiac Myopathies and Autophagy to Prevent Heart Injury in High-Fat Diet-Fed Rats. Int J Med Sci. 2016;13:277-85 pubmed 出版商
  371. Nivon M, Fort L, Muller P, Richet E, Simon S, Guey B, et al. NF?B is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation. Mol Biol Cell. 2016;27:1712-27 pubmed 出版商
  372. Wang Q, Xue L, Zhang X, Bu S, Zhu X, Lai D. Autophagy protects ovarian cancer-associated fibroblasts against oxidative stress. Cell Cycle. 2016;15:1376-85 pubmed 出版商
  373. Xiao L, Shi X, Zhang Y, Zhu Y, Zhu L, Tian W, et al. YAP induces cisplatin resistance through activation of autophagy in human ovarian carcinoma cells. Onco Targets Ther. 2016;9:1105-14 pubmed 出版商
  374. Lee J, Kuo C, Tsai S, Cheng S, Chen S, Chan H, et al. Inhibition of HDAC3- and HDAC6-Promoted Survivin Expression Plays an Important Role in SAHA-Induced Autophagy and Viability Reduction in Breast Cancer Cells. Front Pharmacol. 2016;7:81 pubmed 出版商
  375. Basisty N, Dai D, Gagnidze A, Gitari L, Fredrickson J, Maina Y, et al. Mitochondrial-targeted catalase is good for the old mouse proteome, but not for the young: 'reverse' antagonistic pleiotropy?. Aging Cell. 2016;15:634-45 pubmed 出版商
  376. Wohlgemuth S, Ramirez Lee Y, Tao S, Monteiro A, Ahmed B, Dahl G. Short communication: Effect of heat stress on markers of autophagy in the mammary gland during the dry period. J Dairy Sci. 2016;99:4875-4880 pubmed 出版商
  377. Zhuang H, Tian W, Li W, Zhang X, Wang J, Yang Y, et al. Autophagic Cell Death and Apoptosis Jointly Mediate Cisatracurium Besylate-Induced Cell Injury. Int J Mol Sci. 2016;17:515 pubmed 出版商
  378. Ren J, Li J, Liu X, Feng Y, Gui Y, Yang J, et al. Quercetin Inhibits Fibroblast Activation and Kidney Fibrosis Involving the Suppression of Mammalian Target of Rapamycin and β-catenin Signaling. Sci Rep. 2016;6:23968 pubmed 出版商
  379. Dey A, Mustafi S, Saha S, Kumar Dhar Dwivedi S, Mukherjee P, Bhattacharya R. Inhibition of BMI1 induces autophagy-mediated necroptosis. Autophagy. 2016;12:659-70 pubmed 出版商
  380. Kumar R, Narasimhan M, Shanmugam G, Hong J, Devarajan A, Palaniappan S, et al. Abrogation of Nrf2 impairs antioxidant signaling and promotes atrial hypertrophy in response to high-intensity exercise stress. J Transl Med. 2016;14:86 pubmed 出版商
  381. Park J, Jung C, Seo M, Otto N, Grunwald D, Kim K, et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy. 2016;12:547-64 pubmed 出版商
  382. Phelps Polirer K, Abt M, Smith D, Yeh E. Co-Targeting of JNK and HUNK in Resistant HER2-Positive Breast Cancer. PLoS ONE. 2016;11:e0153025 pubmed 出版商
  383. Lin T, Chang Y, Lee S, Campbell M, Wang T, Shen S, et al. REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling. Oncotarget. 2016;7:26137-51 pubmed 出版商
  384. Krishnan V, White Z, McMahon C, Hodgetts S, Fitzgerald M, Shavlakadze T, et al. A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice. J Neuropathol Exp Neurol. 2016;75:464-78 pubmed 出版商
  385. Prieto J, León M, Ponsoda X, Sendra R, Bort R, Ferrer Lorente R, et al. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat Commun. 2016;7:11124 pubmed 出版商
  386. Xia X, Che Y, Gao Y, Zhao S, Ao C, Yang H, et al. Arginine Supplementation Recovered the IFN-?-Mediated Decrease in Milk Protein and Fat Synthesis by Inhibiting the GCN2/eIF2? Pathway, Which Induces Autophagy in Primary Bovine Mammary Epithelial Cells. Mol Cells. 2016;39:410-7 pubmed 出版商
  387. Chen S, Wang C, Yeo S, Liang C, Okamoto T, Sun S, et al. Distinct roles of autophagy-dependent and -independent functions of FIP200 revealed by generation and analysis of a mutant knock-in mouse model. Genes Dev. 2016;30:856-69 pubmed 出版商
  388. Viringipurampeer I, Metcalfe A, Bashar A, Sivak O, Yanai A, Mohammadi Z, et al. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration. Hum Mol Genet. 2016;25:1501-16 pubmed 出版商
  389. Gschweitl M, Ulbricht A, Barnes C, Enchev R, Stoffel Studer I, Meyer Schaller N, et al. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. elife. 2016;5:e13841 pubmed 出版商
  390. Lopes V, Loitto V, Audinot J, Bayat N, Gutleb A, Cristobal S. Dose-dependent autophagic effect of titanium dioxide nanoparticles in human HaCaT cells at non-cytotoxic levels. J Nanobiotechnology. 2016;14:22 pubmed 出版商
  391. Relic B, Charlier E, Deroyer C, Malaise O, Neuville S, Desoroux A, et al. BAY 11-7085 induces glucocorticoid receptor activation and autophagy that collaborate with apoptosis to induce human synovial fibroblast cell death. Oncotarget. 2016;7:23370-82 pubmed 出版商
  392. Soeda J, Mouralidarane A, Cordero P, Li J, Nguyen V, Carter R, et al. Maternal obesity alters endoplasmic reticulum homeostasis in offspring pancreas. J Physiol Biochem. 2016;72:281-91 pubmed 出版商
  393. Ruparelia A, Oorschot V, Ramm G, Bryson Richardson R. FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency. Hum Mol Genet. 2016;25:2131-2142 pubmed
  394. Beaumatin F, El Dhaybi M, Lasserre J, Salin B, Moyer M, Verdier M, et al. N52 monodeamidated Bcl‑xL shows impaired oncogenic properties in vivo and in vitro. Oncotarget. 2016;7:17129-43 pubmed 出版商
  395. Choi W, de Poot S, Lee J, Kim J, Han D, Kim Y, et al. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat Commun. 2016;7:10963 pubmed 出版商
  396. Yeo S, Itahana Y, Guo A, Han R, Iwamoto K, Nguyen H, et al. Transglutaminase 2 contributes to a TP53-induced autophagy program to prevent oncogenic transformation. elife. 2016;5:e07101 pubmed 出版商
  397. Jennewein L, Ronellenfitsch M, Antonietti P, Ilina E, Jung J, Stadel D, et al. Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget. 2016;7:20016-32 pubmed 出版商
  398. Scotton C, Bovolenta M, Schwartz E, Falzarano M, Martoni E, Passarelli C, et al. Deep RNA profiling identified CLOCK and molecular clock genes as pathophysiological signatures in collagen VI myopathy. J Cell Sci. 2016;129:1671-84 pubmed 出版商
  399. Datan E, Roy S, Germain G, Zali N, McLean J, Golshan G, et al. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death Dis. 2016;7:e2127 pubmed 出版商
  400. Saveljeva S, Cleary P, Mnich K, Ayo A, Pakos Zebrucka K, Patterson J, et al. Endoplasmic reticulum stress-mediated induction of SESTRIN 2 potentiates cell survival. Oncotarget. 2016;7:12254-66 pubmed 出版商
  401. Colangelo T, Polcaro G, Ziccardi P, Muccillo L, Galgani M, Pucci B, et al. The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells. Cell Death Dis. 2016;7:e2108 pubmed 出版商
  402. Yu L, Wu W, Gu C, Zhong D, Zhao X, Kong Y, et al. Obatoclax impairs lysosomal function to block autophagy in cisplatin-sensitive and -resistant esophageal cancer cells. Oncotarget. 2016;7:14693-707 pubmed 出版商
  403. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  404. Zou M, Zhu W, Wang L, Shi L, Gao R, Ou Y, et al. AEG-1/MTDH-activated autophagy enhances human malignant glioma susceptibility to TGF-β1-triggered epithelial-mesenchymal transition. Oncotarget. 2016;7:13122-38 pubmed 出版商
  405. Li M, Lu G, Hu J, Shen X, Ju J, Gao Y, et al. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy. Stem Cell Reports. 2016;6:396-410 pubmed 出版商
  406. Cao L, Qin X, Peterson M, Haller S, Wilson K, Hu N, et al. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity. J Mol Cell Cardiol. 2016;92:185-95 pubmed 出版商
  407. Han X, Tai H, Wang X, Wang Z, Zhou J, Wei X, et al. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation. Aging Cell. 2016;15:416-27 pubmed 出版商
  408. Stojcheva N, Schechtmann G, Sass S, Roth P, Florea A, Stefanski A, et al. MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM. Oncotarget. 2016;7:12937-50 pubmed 出版商
  409. Zhang W, Shi H, Zhang M, Liu B, Mao S, Li L, et al. Poly C binding protein 1 represses autophagy through downregulation of LC3B to promote tumor cell apoptosis in starvation. Int J Biochem Cell Biol. 2016;73:127-136 pubmed 出版商
  410. Lei Y, Kansy B, Li J, Cong L, Liu Y, Trivedi S, et al. EGFR-targeted mAb therapy modulates autophagy in head and neck squamous cell carcinoma through NLRX1-TUFM protein complex. Oncogene. 2016;35:4698-707 pubmed 出版商
  411. Kim N, Kim M, Sung P, Bae Y, Shin E, Yoo J. Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A. Nat Commun. 2016;7:10631 pubmed 出版商
  412. Gerashchenko B, Salmina K, Eglitis J, Huna A, Grjunberga V, Erenpreisa J. Disentangling the aneuploidy and senescence paradoxes: a study of triploid breast cancers non-responsive to neoadjuvant therapy. Histochem Cell Biol. 2016;145:497-508 pubmed 出版商
  413. Liu Y, Takahashi Y, Desai N, Zhang J, Serfass J, Shi Y, et al. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci Rep. 2016;6:20453 pubmed 出版商
  414. Ouyang F, Huang H, Zhang M, Chen M, Huang H, Huang F, et al. HMGB1 induces apoptosis and EMT in association with increased autophagy following H/R injury in cardiomyocytes. Int J Mol Med. 2016;37:679-89 pubmed 出版商
  415. Wu X, Fleming A, Ricketts T, Pavel M, Virgin H, Menzies F, et al. Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun. 2016;7:10533 pubmed 出版商
  416. Gentry E, Henderson B, Arrant A, Gearing M, Feng Y, Riddle N, et al. Rho Kinase Inhibition as a Therapeutic for Progressive Supranuclear Palsy and Corticobasal Degeneration. J Neurosci. 2016;36:1316-23 pubmed 出版商
  417. Button R, Vincent J, Strang C, Luo S. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget. 2016;7:5157-75 pubmed 出版商
  418. Kim M, Sandford E, Gatica D, Qiu Y, Liu X, Zheng Y, et al. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. elife. 2016;5: pubmed 出版商
  419. Duncan J, Zhang X, Wang N, Johnson S, Harris S, Udemgba C, et al. Binge ethanol exposure increases the Krüppel-like factor 11-monoamine oxidase (MAO) pathway in rats: Examining the use of MAO inhibitors to prevent ethanol-induced brain injury. Neuropharmacology. 2016;105:329-340 pubmed 出版商
  420. Goulielmaki M, Koustas E, Moysidou E, Vlassi M, Sasazuki T, Shirasawa S, et al. BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells. Oncotarget. 2016;7:9188-221 pubmed 出版商
  421. Puente C, Hendrickson R, Jiang X. Nutrient-regulated Phosphorylation of ATG13 Inhibits Starvation-induced Autophagy. J Biol Chem. 2016;291:6026-35 pubmed 出版商
  422. Ruiz A, Rockfield S, Taran N, Haller E, Engelman R, Flores I, et al. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis. Cell Death Dis. 2016;7:e2059 pubmed 出版商
  423. Pawar K, Hanisch C, Palma Vera S, Einspanier R, Sharbati S. Down regulated lncRNA MEG3 eliminates mycobacteria in macrophages via autophagy. Sci Rep. 2016;6:19416 pubmed 出版商
  424. Zhou Q, Yen A, Rymarczyk G, Asai H, Trengrove C, Aziz N, et al. Impairment of PARK14-dependent Ca(2+) signalling is a novel determinant of Parkinson's disease. Nat Commun. 2016;7:10332 pubmed 出版商
  425. Cloonan S, Glass K, Laucho Contreras M, Bhashyam A, Cervo M, Pabón M, et al. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med. 2016;22:163-74 pubmed 出版商
  426. Mukherjee R, Chakrabarti O. Ubiquitin-mediated regulation of the E3 ligase GP78 by MGRN1 in trans affects mitochondrial homeostasis. J Cell Sci. 2016;129:757-73 pubmed 出版商
  427. Carroll B, Maetzel D, Maddocks O, Otten G, Ratcliff M, Smith G, et al. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. elife. 2016;5: pubmed 出版商
  428. Wu B, Yu L, Wang Y, Wang H, Li C, Yin Y, et al. Aldehyde dehydrogenase 2 activation in aged heart improves the autophagy by reducing the carbonyl modification on SIRT1. Oncotarget. 2016;7:2175-88 pubmed 出版商
  429. Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich M, Lim R, et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature. 2016;529:216-20 pubmed 出版商
  430. Zhao F, Huang W, Zhang Z, Mao L, Han Y, Yan J, et al. Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells. Oncotarget. 2016;7:5366-82 pubmed 出版商
  431. Kraft L, Manral P, Dowler J, Kenworthy A. Nuclear LC3 Associates with Slowly Diffusing Complexes that Survey the Nucleolus. Traffic. 2016;17:369-99 pubmed 出版商
  432. Xie C, Ginet V, Sun Y, Koike M, Zhou K, Li T, et al. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy. 2016;12:410-23 pubmed 出版商
  433. Yang X, Liang L, Zong C, Lai F, Zhu P, Liu Y, et al. Kupffer cells-dependent inflammation in the injured liver increases recruitment of mesenchymal stem cells in aging mice. Oncotarget. 2016;7:1084-95 pubmed 出版商
  434. Wang Y, Xu S, Xu W, Yang H, Hu P, Li Y. Sodium formate induces autophagy and apoptosis via the JNK signaling pathway of photoreceptor cells. Mol Med Rep. 2016;13:1111-8 pubmed 出版商
  435. Chen Y, Tsou B, Hu S, Ma H, Liu X, Yen Y, et al. Autophagy induction causes a synthetic lethal sensitization to ribonucleotide reductase inhibition in breast cancer cells. Oncotarget. 2016;7:1984-99 pubmed 出版商
  436. Mercau M, Repetto E, Perez M, Martinez Calejman C, Sánchez Puch S, Finkielstein C, et al. Moderate Exercise Prevents Functional Remodeling of the Anterior Pituitary Gland in Diet-Induced Insulin Resistance in Rats: Role of Oxidative Stress and Autophagy. Endocrinology. 2016;157:1135-45 pubmed 出版商
  437. Vural A, Al Khodor S, Cheung G, Shi C, Srinivasan L, McQuiston T, et al. Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection. J Immunol. 2016;196:846-56 pubmed 出版商
  438. Stotland A, Gottlieb R. α-MHC MitoTimer mouse: In vivo mitochondrial turnover model reveals remarkable mitochondrial heterogeneity in the heart. J Mol Cell Cardiol. 2016;90:53-8 pubmed 出版商
  439. Schwab A, Ebert A. Neurite Aggregation and Calcium Dysfunction in iPSC-Derived Sensory Neurons with Parkinson's Disease-Related LRRK2 G2019S Mutation. Stem Cell Reports. 2015;5:1039-1052 pubmed 出版商
  440. Kimmey J, Huynh J, Weiss L, Park S, Kambal A, Debnath J, et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature. 2015;528:565-9 pubmed 出版商
  441. Martínez Zamora A, Meseguer S, Esteve J, Villarroya M, Aguado C, Enríquez J, et al. Defective Expression of the Mitochondrial-tRNA Modifying Enzyme GTPBP3 Triggers AMPK-Mediated Adaptive Responses Involving Complex I Assembly Factors, Uncoupling Protein 2, and the Mitochondrial Pyruvate Carrier. PLoS ONE. 2015;10:e0144273 pubmed 出版商
  442. Yasuda K, Takahashi M, Mori N. Mdm20 Modulates Actin Remodeling through the mTORC2 Pathway via Its Effect on Rictor Expression. PLoS ONE. 2015;10:e0142943 pubmed 出版商
  443. McIlroy G, Tammireddy S, Maskrey B, Grant L, Doherty M, Watson D, et al. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue. Biochem Pharmacol. 2016;100:86-97 pubmed 出版商
  444. Pettersen K, Monsen V, HakvÃ¥g Pettersen C, Overland H, Pettersen G, Samdal H, et al. DHA-induced stress response in human colon cancer cells - Focus on oxidative stress and autophagy. Free Radic Biol Med. 2016;90:158-72 pubmed 出版商
  445. Huang Y, Chen Y, Lai Y, Cheng C, Lin T, Su Y, et al. Resveratrol alleviates the cytotoxicity induced by the radiocontrast agent, ioxitalamate, by reducing the production of reactive oxygen species in HK-2 human renal proximal tubule epithelial cells in vitro. Int J Mol Med. 2016;37:83-91 pubmed 出版商
  446. Sin J, Andres A, Taylor D, Weston T, Hiraumi Y, Stotland A, et al. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy. 2016;12:369-80 pubmed 出版商
  447. Wang Z, Liu N, Liu K, Zhou G, Gan J, Wang Z, et al. Autophagy mediated CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis. Autophagy. 2015;11:2358-69 pubmed 出版商
  448. Chrisam M, Pirozzi M, Castagnaro S, Blaauw B, Polishchuck R, Cecconi F, et al. Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice. Autophagy. 2015;11:2142-52 pubmed 出版商
  449. Lesmana R, Sinha R, Singh B, Zhou J, Ohba K, Wu Y, et al. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle. Endocrinology. 2016;157:23-38 pubmed 出版商
  450. Alnasser H, Guan Q, Zhang F, Gleave M, Nguan C, Du C. Requirement of clusterin expression for prosurvival autophagy in hypoxic kidney tubular epithelial cells. Am J Physiol Renal Physiol. 2016;310:F160-73 pubmed 出版商
  451. Majumder P, Chakrabarti O. Mahogunin regulates fusion between amphisomes/MVBs and lysosomes via ubiquitination of TSG101. Cell Death Dis. 2015;6:e1970 pubmed 出版商
  452. Hu J, Man W, Shen M, Zhang M, Lin J, Wang T, et al. Luteolin alleviates post-infarction cardiac dysfunction by up-regulating autophagy through Mst1 inhibition. J Cell Mol Med. 2016;20:147-56 pubmed 出版商
  453. Dou Z, Xu C, Donahue G, Shimi T, Pan J, Zhu J, et al. Autophagy mediates degradation of nuclear lamina. Nature. 2015;527:105-9 pubmed 出版商
  454. Lin C, Chen Y, Lin C, Chen Y, Lo G, Lee P, et al. Amiodarone as an autophagy promoter reduces liver injury and enhances liver regeneration and survival in mice after partial hepatectomy. Sci Rep. 2015;5:15807 pubmed 出版商
  455. Ivankovic D, Chau K, Schapira A, Gegg M. Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy. J Neurochem. 2016;136:388-402 pubmed 出版商
  456. Chauhan S, Ahmed Z, Bradfute S, Arko Mensah J, Mandell M, Won Choi S, et al. Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nat Commun. 2015;6:8620 pubmed 出版商
  457. Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, et al. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 2015;6:39839-54 pubmed 出版商
  458. Olsvik H, Lamark T, Takagi K, Larsen K, Evjen G, Øvervatn A, et al. FYCO1 Contains a C-terminally Extended, LC3A/B-preferring LC3-interacting Region (LIR) Motif Required for Efficient Maturation of Autophagosomes during Basal Autophagy. J Biol Chem. 2015;290:29361-74 pubmed 出版商
  459. van Geldermalsen M, Wang Q, Nagarajah R, Marshall A, Thoeng A, Gao D, et al. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene. 2016;35:3201-8 pubmed 出版商
  460. Marchi S, Corricelli M, Trapani E, Bravi L, Pittaro A, Delle Monache S, et al. Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Mol Med. 2015;7:1403-17 pubmed 出版商
  461. Levin A, Koelink P, Bloemendaal F, Vos A, D Haens G, van den Brink G, et al. Autophagy Contributes to the Induction of Anti-TNF Induced Macrophages. J Crohns Colitis. 2016;10:323-9 pubmed 出版商
  462. Xiong R, Zhou W, Siegel D, Kitson R, Freed C, Moody C, et al. A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity. Mol Pharmacol. 2015;88:1045-54 pubmed 出版商
  463. Sorrell S, Golder Z, Johnstone D, Frankl F. Renal peroxiredoxin 6 interacts with anion exchanger 1 and plays a novel role in pH homeostasis. Kidney Int. 2016;89:105-112 pubmed 出版商
  464. Granato M, Santarelli R, Filardi M, Gonnella R, Farina A, Torrisi M, et al. The activation of KSHV lytic cycle blocks autophagy in PEL cells. Autophagy. 2015;11:1978-1986 pubmed 出版商
  465. Koukourakis M, Kalamida D, Giatromanolaki A, Zois C, Sivridis E, Pouliliou S, et al. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines. PLoS ONE. 2015;10:e0137675 pubmed 出版商
  466. Pellegrini C, Columbaro M, Capanni C, D Apice M, Cavallo C, Murdocca M, et al. All-trans retinoic acid and rapamycin normalize Hutchinson Gilford progeria fibroblast phenotype. Oncotarget. 2015;6:29914-28 pubmed 出版商
  467. Ray A, Vasudevan S, Sengupta S. 6-Shogaol Inhibits Breast Cancer Cells and Stem Cell-Like Spheroids by Modulation of Notch Signaling Pathway and Induction of Autophagic Cell Death. PLoS ONE. 2015;10:e0137614 pubmed 出版商
  468. Granato M, Gilardini Montani M, Filardi M, Faggioni A, Cirone M. Capsaicin triggers immunogenic PEL cell death, stimulates DCs and reverts PEL-induced immune suppression. Oncotarget. 2015;6:29543-54 pubmed 出版商
  469. De Leo A, Colavita F, Ciccosanti F, Fimia G, Lieberman P, Mattia E. Inhibition of autophagy in EBV-positive Burkitt's lymphoma cells enhances EBV lytic genes expression and replication. Cell Death Dis. 2015;6:e1876 pubmed 出版商
  470. Xia H, Najafov A, Geng J, Galan Acosta L, Han X, Guo Y, et al. Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. J Cell Biol. 2015;210:705-16 pubmed 出版商
  471. Wong P, Feng Y, Wang J, Shi R, Jiang X. Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nat Commun. 2015;6:8048 pubmed 出版商
  472. Moreau K, Ghislat G, Hochfeld W, Renna M, Zavodszky E, Runwal G, et al. Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nat Commun. 2015;6:8045 pubmed 出版商
  473. Saliba J, Saint Martin C, Di Stefano A, Lenglet G, Marty C, Keren B, et al. Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies. Nat Genet. 2015;47:1131-40 pubmed 出版商
  474. Sakabe I, Hu R, Jin L, Clarke R, Kasid U. TMEM33: a new stress-inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling. Breast Cancer Res Treat. 2015;153:285-97 pubmed 出版商
  475. Zhen Y, Li W. Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A(D251E) mutation. Autophagy. 2015;11:1608-22 pubmed 出版商
  476. Triplett J, Tramutola A, Swomley A, Kirk J, Grimes K, Lewis K, et al. Age-related changes in the proteostasis network in the brain of the naked mole-rat: Implications promoting healthy longevity. Biochim Biophys Acta. 2015;1852:2213-24 pubmed 出版商
  477. Hermanova I, Arruabarrena Aristorena A, Valis K, Nůsková H, Alberich Jorda M, Fiser K, et al. Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia. 2016;30:209-18 pubmed 出版商
  478. Johansson I, Monsen V, Pettersen K, Mildenberger J, Misund K, Kaarniranta K, et al. The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells. Autophagy. 2015;11:1636-51 pubmed 出版商
  479. Chesser A, Ganeshan V, Yang J, Johnson G. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutr Neurosci. 2016;19:21-31 pubmed 出版商
  480. Wu H, Jiang Z, Ding P, Shao L, Liu R. Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells. Sci Rep. 2015;5:12291 pubmed 出版商
  481. Zhang L, Dai F, Sheng P, Chen Z, Xu Q, Guo Y. Resveratrol analogue 3,4,4'-trihydroxy-trans-stilbene induces apoptosis and autophagy in human non-small-cell lung cancer cells in vitro. Acta Pharmacol Sin. 2015;36:1256-65 pubmed 出版商
  482. Artero Castro A, Perez Alea M, Feliciano A, Leal J, Genestar M, Castellvi J, et al. Disruption of the ribosomal P complex leads to stress-induced autophagy. Autophagy. 2015;11:1499-519 pubmed 出版商
  483. Perera R, Stoykova S, Nicolay B, Ross K, Fitamant J, Boukhali M, et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature. 2015;524:361-5 pubmed 出版商
  484. Wang I, Sun K, Tsai T, Chen C, Chang S, Yu T, et al. MiR-20a-5p mediates hypoxia-induced autophagy by targeting ATG16L1 in ischemic kidney injury. Life Sci. 2015;136:133-41 pubmed 出版商
  485. Yang S, Lin H, Chang V, Chen C, Liu Y, Wang J, et al. Lovastatin overcomes gefitinib resistance through TNF-α signaling in human cholangiocarcinomas with different LKB1 statuses in vitro and in vivo. Oncotarget. 2015;6:23857-73 pubmed
  486. Felzen V, Hiebel C, Koziollek Drechsler I, Reißig S, Wolfrum U, Kögel D, et al. Estrogen receptor α regulates non-canonical autophagy that provides stress resistance to neuroblastoma and breast cancer cells and involves BAG3 function. Cell Death Dis. 2015;6:e1812 pubmed 出版商
  487. Su X, Yu Y, Zhong Y, Giannopoulou E, Hu X, Liu H, et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015;16:838-849 pubmed 出版商
  488. Metge B, Mitra A, Chen D, Shevde L, Samant R. N-Myc and STAT Interactor regulates autophagy and chemosensitivity in breast cancer cells. Sci Rep. 2015;5:11995 pubmed 出版商
  489. Ohashi A, Ohori M, Iwai K, Nakayama Y, Nambu T, Morishita D, et al. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells. Nat Commun. 2015;6:7668 pubmed 出版商
  490. Wang J, Ma L, Tang X, Zhang X, Qiao Y, Shi Y, et al. Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells. Oncotarget. 2015;6:24075-91 pubmed
  491. Campbell G, Rawat P, Bruckman R, Spector S. Human Immunodeficiency Virus Type 1 Nef Inhibits Autophagy through Transcription Factor EB Sequestration. PLoS Pathog. 2015;11:e1005018 pubmed 出版商
  492. Macvicar T, Mannack L, Lees R, Lane J. Targeted siRNA Screens Identify ER-to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells. Int J Mol Sci. 2015;16:13356-80 pubmed 出版商
  493. Riz I, Hawley T, Hawley R. KLF4-SQSTM1/p62-associated prosurvival autophagy contributes to carfilzomib resistance in multiple myeloma models. Oncotarget. 2015;6:14814-31 pubmed
  494. Giordano C, Lemaire C, Li T, Kimoff R, Petrof B. Autophagy-associated atrophy and metabolic remodeling of the mouse diaphragm after short-term intermittent hypoxia. PLoS ONE. 2015;10:e0131068 pubmed 出版商
  495. Liu K, Frazier W. Phosphorylation of the BNIP3 C-Terminus Inhibits Mitochondrial Damage and Cell Death without Blocking Autophagy. PLoS ONE. 2015;10:e0129667 pubmed 出版商
  496. Huna A, Salmina K, Erenpreisa J, Vazquez Martin A, Krigerts J, Inashkina I, et al. Role of stress-activated OCT4A in the cell fate decisions of embryonal carcinoma cells treated with etoposide. Cell Cycle. 2015;14:2969-84 pubmed 出版商
  497. Hu G, McQuiston T, Bernard A, Park Y, Qiu J, Vural A, et al. A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat Cell Biol. 2015;17:930-942 pubmed 出版商
  498. Song H, Pu J, Wang L, Wu L, Xiao J, Liu Q, et al. ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation. Autophagy. 2015;11:1308-25 pubmed 出版商
  499. Cha Molstad H, Sung K, Hwang J, Kim K, Yu J, Yoo Y, et al. Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat Cell Biol. 2015;17:917-29 pubmed 出版商
  500. Park S, Choi S, Yoo S, Nah J, Jeong E, Kim H, et al. Pyruvate stimulates mitophagy via PINK1 stabilization. Cell Signal. 2015;27:1824-30 pubmed 出版商
  501. Ruozi G, Bortolotti F, Falcione A, Dal Ferro M, Ukovich L, Macedo A, et al. AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia. Nat Commun. 2015;6:7388 pubmed 出版商
  502. Yuan J, Zhang Y, Sheng Y, Fu X, Cheng H, Zhou R. MYBL2 guides autophagy suppressor VDAC2 in the developing ovary to inhibit autophagy through a complex of VDAC2-BECN1-BCL2L1 in mammals. Autophagy. 2015;11:1081-98 pubmed 出版商
  503. Cui J, Bai X, Sun X, Cai G, Hong Q, Ding R, et al. Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models. Sci Rep. 2015;5:11256 pubmed 出版商
  504. Huang C, Lee C, Lin H, Chen M, Lin C, Chang J. Autophagy-Regulated ROS from Xanthine Oxidase Acts as an Early Effector for Triggering Late Mitochondria-Dependent Apoptosis in Cathepsin S-Targeted Tumor Cells. PLoS ONE. 2015;10:e0128045 pubmed 出版商
  505. Yen C, Chiang W, Liu S, Lin C, Liao K, Lin C, et al. Impacts of autophagy-inducing ingredient of areca nut on tumor cells. PLoS ONE. 2015;10:e0128011 pubmed 出版商
  506. Sun T, Li X, Zhang P, Chen W, Zhang H, Li D, et al. Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat Commun. 2015;6:7215 pubmed 出版商
  507. Milkereit R, Persaud A, Vanoaica L, Guetg A, Verrey F, Rotin D. LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation. Nat Commun. 2015;6:7250 pubmed 出版商
  508. Li J, Ren J, Liu X, Jiang L, He W, Yuan W, et al. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis. Kidney Int. 2015;88:515-27 pubmed 出版商
  509. Ferreira J, Soares A, Ramalho J, Pereira P, Girao H. K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy. Sci Rep. 2015;5:10210 pubmed 出版商
  510. Del Mar N, von Buttlar X, Yu A, Guley N, Reiner A, Honig M. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments. Exp Neurol. 2015;271:53-71 pubmed 出版商
  511. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  512. Kim Y, Kang Y, Lee N, Kim K, Hwang Y, Kim H, et al. Uvrag targeting by Mir125a and Mir351 modulates autophagy associated with Ewsr1 deficiency. Autophagy. 2015;11:796-811 pubmed 出版商
  513. Mauro Lizcano M, Esteban Martínez L, Seco E, Serrano Puebla A, García Ledo L, Figueiredo Pereira C, et al. New method to assess mitophagy flux by flow cytometry. Autophagy. 2015;11:833-43 pubmed 出版商
  514. Shi Y, Tan S, Ng S, Zhou J, Yang N, Koo G, et al. Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy. 2015;11:769-84 pubmed 出版商
  515. Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236:43-59 pubmed 出版商
  516. Zhao J, Molitor T, Langston J, Nichols R. LRRK2 dephosphorylation increases its ubiquitination. Biochem J. 2015;469:107-20 pubmed 出版商
  517. Laguna A, Schintu N, Nobre A, Alvarsson A, Volakakis N, Jacobsen J, et al. Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson's disease. Nat Neurosci. 2015;18:826-35 pubmed 出版商
  518. Itoh H, Matsuo H, Kitamura N, Yamamoto S, Higuchi T, Takematsu H, et al. Enhancement of neutrophil autophagy by an IVIG preparation against multidrug-resistant bacteria as well as drug-sensitive strains. J Leukoc Biol. 2015;98:107-17 pubmed 出版商
  519. Marsh N, Wareham A, White B, Miskiewicz E, Landry J, MacPhee D. HSPB8 and the Cochaperone BAG3 Are Highly Expressed During the Synthetic Phase of Rat Myometrium Programming During Pregnancy. Biol Reprod. 2015;92:131 pubmed 出版商
  520. Ozeki N, Hase N, Hiyama T, Yamaguchi H, Kawai R, Kondo A, et al. Interleukin-1β-induced autophagy-related gene 5 regulates proliferation of embryonic stem cell-derived odontoblastic cells. PLoS ONE. 2015;10:e0124542 pubmed 出版商
  521. Meidhof S, Brabletz S, Lehmann W, Preca B, Mock K, Ruh M, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 2015;7:831-47 pubmed 出版商
  522. Vashist S, Ureña L, Gonzalez Hernandez M, Choi J, de Rougemont A, Rocha Pereira J, et al. Molecular chaperone Hsp90 is a therapeutic target for noroviruses. J Virol. 2015;89:6352-63 pubmed 出版商
  523. Kett L, Stiller B, Bernath M, Tasset I, Blesa J, Jackson Lewis V, et al. α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2. J Neurosci. 2015;35:5724-42 pubmed 出版商
  524. Akizu N, Cantagrel V, Zaki M, Al Gazali L, Wang X, Rosti R, et al. Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat Genet. 2015;47:528-34 pubmed 出版商
  525. Zhao J, Song Q, Wang L, Dong X, Yang X, Bai X, et al. Detrusor myocyte autophagy protects the bladder function via inhibiting the inflammation in cyclophosphamide-induced cystitis in rats. PLoS ONE. 2015;10:e0122597 pubmed 出版商
  526. Zhang W, Hou J, Wang X, Jiang R, Yin Y, Ji J, et al. PTPRO-mediated autophagy prevents hepatosteatosis and tumorigenesis. Oncotarget. 2015;6:9420-33 pubmed
  527. Zhang T, Dong K, Liang W, Xu D, Xia H, Geng J, et al. G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L. elife. 2015;4:e06734 pubmed 出版商
  528. Leclere L, Fransolet M, Côté F, Cambier P, Arnould T, Van Cutsem P, et al. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells. PLoS ONE. 2015;10:e0115831 pubmed 出版商
  529. Roost M, van Iperen L, De Melo Bernardo A, Mummery C, Carlotti F, de Koning E, et al. Lymphangiogenesis and angiogenesis during human fetal pancreas development. Vasc Cell. 2014;6:22 pubmed 出版商
  530. Strohecker A, Joshi S, Possemato R, Abraham R, Sabatini D, White E. Identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel autophagy regulator by high content shRNA screening. Oncogene. 2015;34:5662-76 pubmed 出版商
  531. Desantis A, Bruno T, Catena V, De Nicola F, Goeman F, Iezzi S, et al. Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy. EMBO J. 2015;34:1214-30 pubmed 出版商
  532. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  533. Wengrod J, Wang D, Weiss S, Zhong H, Osman I, Gardner L. Phosphorylation of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma. Sci Signal. 2015;8:ra27 pubmed 出版商
  534. Ma Y, Yang H, Xu L, Huang Y, Dai H, KANG X. Testosterone regulates the autophagic clearance of androgen binding protein in rat Sertoli cells. Sci Rep. 2015;5:8894 pubmed 出版商
  535. Yi Y, Kang H, Bae E, Oh S, Seong Y, Bae I. β-TrCP1 degradation is a novel action mechanism of PI3K/mTOR inhibitors in triple-negative breast cancer cells. Exp Mol Med. 2015;47:e143 pubmed 出版商
  536. Medina D, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and ​TFEB. Nat Cell Biol. 2015;17:288-99 pubmed
  537. Pedro J, Wei Y, Sica V, Maiuri M, Zou Z, Kroemer G, et al. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy. 2015;11:452-9 pubmed 出版商
  538. Ulbricht A, Gehlert S, Leciejewski B, Schiffer T, Bloch W, Höhfeld J. Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle. Autophagy. 2015;11:538-46 pubmed 出版商
  539. Sanjurjo L, Amézaga N, Aran G, Naranjo Gómez M, Arias L, Armengol C, et al. The human CD5L/AIM-CD36 axis: A novel autophagy inducer in macrophages that modulates inflammatory responses. Autophagy. 2015;11:487-502 pubmed 出版商
  540. Jabir M, Hopkins L, Ritchie N, Ullah I, Bayes H, Li D, et al. Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy. Autophagy. 2015;11:166-82 pubmed 出版商
  541. Young C, Sinadinos A, Lefebvre A, Chan P, Arkle S, Vaudry D, et al. A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90. Autophagy. 2015;11:113-30 pubmed 出版商
  542. Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 2015;11:253-70 pubmed 出版商
  543. Nisar R, Hanson P, He L, Taylor R, Blain P, Morris C. Diquat causes caspase-independent cell death in SH-SY5Y cells by production of ROS independently of mitochondria. Arch Toxicol. 2015;89:1811-25 pubmed 出版商
  544. Shi S, Wang Q, Xu J, Jang J, Padilla M, Nyunoya T, et al. Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis. Oncotarget. 2015;6:1640-51 pubmed
  545. Kim E, Shin J, Park S, Jo Y, Kim J, Kang I, et al. Inhibition of autophagy suppresses sertraline-mediated primary ciliogenesis in retinal pigment epithelium cells. PLoS ONE. 2015;10:e0118190 pubmed 出版商
  546. Kommaddi R, Jean Charles P, Shenoy S. Phosphorylation of the deubiquitinase USP20 by protein kinase A regulates post-endocytic trafficking of β2 adrenergic receptors to autophagosomes during physiological stress. J Biol Chem. 2015;290:8888-903 pubmed 出版商
  547. Greenall S, Donoghue J, van Sinderen M, Dubljevic V, Budiman S, Devlin M, et al. EGFRvIII-mediated transactivation of receptor tyrosine kinases in glioma: mechanism and therapeutic implications. Oncogene. 2015;34:5277-87 pubmed 出版商
  548. Guerrero A, Iglesias C, Raguz S, Floridia E, Gil J, Pombo C, et al. The cerebral cavernous malformation 3 gene is necessary for senescence induction. Aging Cell. 2015;14:274-83 pubmed 出版商
  549. Rohatgi R, Janusis J, Leonard D, Bellvé K, Fogarty K, Baehrecke E, et al. Beclin 1 regulates growth factor receptor signaling in breast cancer. Oncogene. 2015;34:5352-62 pubmed 出版商
  550. Arel Dubeau A, Longpré F, Bournival J, Tremblay C, Demers Lamarche J, Haskova P, et al. Cucurbitacin E has neuroprotective properties and autophagic modulating activities on dopaminergic neurons. Oxid Med Cell Longev. 2014;2014:425496 pubmed 出版商
  551. Zhou Z, Doggett T, Sene A, Apte R, Ferguson T. Autophagy supports survival and phototransduction protein levels in rod photoreceptors. Cell Death Differ. 2015;22:488-98 pubmed 出版商
  552. Liu S, Sarkar C, Dinizo M, Faden A, Koh E, Lipinski M, et al. Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis. 2015;6:e1582 pubmed 出版商
  553. Valianou M, Cox A, Pichette B, Hartley S, Paladhi U, Astrinidis A. Pharmacological inhibition of Polo-like kinase 1 (PLK1) by BI-2536 decreases the viability and survival of hamartin and tuberin deficient cells via induction of apoptosis and attenuation of autophagy. Cell Cycle. 2015;14:399-407 pubmed 出版商
  554. Bueno M, Lai Y, Romero Y, Brands J, St Croix C, Kamga C, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest. 2015;125:521-38 pubmed 出版商
  555. Mudie S, Bandarra D, Batie M, Biddlestone J, Moniz S, Ortmann B, et al. PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia. Cell Cycle. 2014;13:3878-91 pubmed 出版商
  556. Sykora P, Misiak M, Wang Y, Ghosh S, Leandro G, Liu D, et al. DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. Nucleic Acids Res. 2015;43:943-59 pubmed 出版商
  557. Mir S, George N, Zahoor L, Harms R, Guinn Z, SARVETNICK N. Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death. J Biol Chem. 2015;290:6071-85 pubmed 出版商
  558. Bifsha P, Yang J, Fisher R, Drouin J. Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra. PLoS Genet. 2014;10:e1004863 pubmed 出版商
  559. Chen G, Meng C, Lin K, Tuan H, Yang H, Chen C, et al. Graphene oxide as a chemosensitizer: diverted autophagic flux, enhanced nuclear import, elevated necrosis and improved antitumor effects. Biomaterials. 2015;40:12-22 pubmed 出版商
  560. Varga M, Fodor E, Vellai T. Autophagy in zebrafish. Methods. 2015;75:172-80 pubmed 出版商
  561. Kaushik G, Venugopal A, Ramamoorthy P, Standing D, Subramaniam D, Umar S, et al. Honokiol inhibits melanoma stem cells by targeting notch signaling. Mol Carcinog. 2015;54:1710-21 pubmed 出版商
  562. Porter K, Hirt J, Stamer W, Liton P. Autophagic dysregulation in glaucomatous trabecular meshwork cells. Biochim Biophys Acta. 2015;1852:379-85 pubmed 出版商
  563. Giatromanolaki A, Sivridis E, Mitrakas A, Kalamida D, Zois C, Haider S, et al. Autophagy and lysosomal related protein expression patterns in human glioblastoma. Cancer Biol Ther. 2014;15:1468-78 pubmed 出版商
  564. Zhang L, Dai F, Cui L, Jing H, Fan P, Tan X, et al. Novel role for TRPC4 in regulation of macroautophagy by a small molecule in vascular endothelial cells. Biochim Biophys Acta. 2015;1853:377-87 pubmed 出版商
  565. Kim T, Kim H, Kang Y, Yoon S, Lee J, Choi W, et al. Psammaplin A induces Sirtuin 1-dependent autophagic cell death in doxorubicin-resistant MCF-7/adr human breast cancer cells and xenografts. Biochim Biophys Acta. 2015;1850:401-10 pubmed 出版商
  566. Lonskaya I, Hebron M, Chen W, Schachter J, Moussa C. Tau deletion impairs intracellular β-amyloid-42 clearance and leads to more extracellular plaque deposition in gene transfer models. Mol Neurodegener. 2014;9:46 pubmed 出版商
  567. Roe N, Xu X, Kandadi M, Hu N, Pang J, Weiser Evans M, et al. Targeted deletion of PTEN in cardiomyocytes renders cardiac contractile dysfunction through interruption of Pink1-AMPK signaling and autophagy. Biochim Biophys Acta. 2015;1852:290-8 pubmed 出版商
  568. Nitta T, Sato Y, Ren X, Harada K, Sasaki M, Hirano S, et al. Autophagy may promote carcinoma cell invasion and correlate with poor prognosis in cholangiocarcinoma. Int J Clin Exp Pathol. 2014;7:4913-21 pubmed
  569. Liu Y, Wan S, Zhang P, Zhang W, Zheng J, Lin J, et al. Expression levels of autophagy related proteins and their prognostic significance in retinocytoma and retinoblastoma. Int J Ophthalmol. 2014;7:594-601 pubmed 出版商
  570. Li L, Wu P, Lee J, Li P, Hsieh W, Ho C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS ONE. 2014;9:e104203 pubmed 出版商
  571. Morgado A, Xavier J, Dionísio P, Ribeiro M, Dias R, Sebastião A, et al. MicroRNA-34a Modulates Neural Stem Cell Differentiation by Regulating Expression of Synaptic and Autophagic Proteins. Mol Neurobiol. 2015;51:1168-83 pubmed 出版商
  572. Brown D, LASSEGUE B, Lee M, Zafari R, Long J, Saavedra H, et al. Poldip2 knockout results in perinatal lethality, reduced cellular growth and increased autophagy of mouse embryonic fibroblasts. PLoS ONE. 2014;9:e96657 pubmed 出版商
  573. Mancias J, Wang X, Gygi S, Harper J, Kimmelman A. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509:105-9 pubmed 出版商
  574. Porter K, Jeyabalan N, Liton P. MTOR-independent induction of autophagy in trabecular meshwork cells subjected to biaxial stretch. Biochim Biophys Acta. 2014;1843:1054-62 pubmed 出版商
  575. Li J, Xu Z, Jiang L, Mao J, Zeng Z, Fang L, et al. Rictor/mTORC2 protects against cisplatin-induced tubular cell death and acute kidney injury. Kidney Int. 2014;86:86-102 pubmed 出版商
  576. Rubio N, Verrax J, Dewaele M, Verfaillie T, Johansen T, Piette J, et al. p38(MAPK)-regulated induction of p62 and NBR1 after photodynamic therapy promotes autophagic clearance of ubiquitin aggregates and reduces reactive oxygen species levels by supporting Nrf2-antioxidant signaling. Free Radic Biol Med. 2014;67:292-303 pubmed 出版商
  577. Gurkar A, Chu K, Raj L, Bouley R, Lee S, Kim Y, et al. Identification of ROCK1 kinase as a critical regulator of Beclin1-mediated autophagy during metabolic stress. Nat Commun. 2013;4:2189 pubmed 出版商
  578. Yuan Y, Tang A, Castoreno A, Kuo S, Wang Q, Kuballa P, et al. Gossypol and an HMT G9a inhibitor act in synergy to induce cell death in pancreatic cancer cells. Cell Death Dis. 2013;4:e690 pubmed 出版商
  579. Parekh V, Wu L, Boyd K, Williams J, Gaddy J, Olivares Villagómez D, et al. Impaired autophagy, defective T cell homeostasis, and a wasting syndrome in mice with a T cell-specific deletion of Vps34. J Immunol. 2013;190:5086-101 pubmed 出版商
  580. Willis M, Min J, Wang S, McDonough H, Lockyer P, Wadosky K, et al. Carboxyl terminus of Hsp70-interacting protein (CHIP) is required to modulate cardiac hypertrophy and attenuate autophagy during exercise. Cell Biochem Funct. 2013;31:724-35 pubmed 出版商
  581. Sirohi K, Chalasani M, Sudhakar C, Kumari A, Radha V, Swarup G. M98K-OPTN induces transferrin receptor degradation and RAB12-mediated autophagic death in retinal ganglion cells. Autophagy. 2013;9:510-27 pubmed 出版商
  582. Newman A, Scholefield C, Kemp A, Newman M, McIver E, Kamal A, et al. TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-κB signalling. PLoS ONE. 2012;7:e50672 pubmed 出版商