这是一篇来自已证抗体库的有关人类 MAP1LC3B的综述,是根据337篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合MAP1LC3B 抗体。
MAP1LC3B 同义词: ATG8F; LC3B; MAP1A/1BLC3; MAP1LC3B-a; microtubule-associated proteins 1A/1B light chain 3B; MAP1 light chain 3-like protein 2; MAP1A/MAP1B LC3 B; MAP1A/MAP1B light chain 3 B; autophagy-related ubiquitin-like modifier LC3 B

Novus Biologicals
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图6
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在小鼠样品上浓度为1:5000 (图6). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在人类样品上 (图3). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上. Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
Novus Biologicals MAP1LC3B抗体(Novusbio, NB600-1384)被用于免疫印迹在人类样品上 (图6). Neurobiol Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
  • 免疫印迹; 大鼠; 图10
  • 细胞化学; 小鼠; 图7
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在小鼠样品上 (图1) 和 在大鼠样品上 (图10) 和 免疫细胞化学在小鼠样品上 (图7). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图6
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB100-2220)被用于免疫印迹在小鼠样品上 (图6). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图2
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于免疫印迹在人类样品上浓度为1:1000 (图2). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上 (图6). J Nanobiotechnology (2016) ncbi
兔 多克隆
  • 免疫印迹; 斑马鱼; 1:2000; 图s2
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在斑马鱼样品上浓度为1:2000 (图s2). Hum Mol Genet (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图s1
  • 免疫印迹; 小鼠; 1:1000; 图6
Novus Biologicals MAP1LC3B抗体(Novus, NB 100-2220)被用于免疫印迹在人类样品上浓度为1:1000 (图s1) 和 在小鼠样品上浓度为1:1000 (图6). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在人类样品上 (图3). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:10,000; 图1
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上浓度为1:10,000 (图1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图3
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上浓度为1:2000 (图3). J Cell Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图7
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在人类样品上浓度为1:5000 (图7). Traffic (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上 (图1). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB100?C2220)被用于免疫印迹在小鼠样品上 (图1). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图1
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220SS)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图1a
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于免疫印迹在人类样品上浓度为1:5000 (图1a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图1a
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在人类样品上浓度为1:5000 (图1a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图4a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220SS)被用于免疫印迹在人类样品上浓度为1:1000 (图4a). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:4000; 图1
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上浓度为1:4000 (图1). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在大鼠样品上. Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图5
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在大鼠样品上 (图5). Nutr Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:600; 图8
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在人类样品上浓度为1:600 (图8). Sci Rep (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
Novus Biologicals MAP1LC3B抗体(Novus Biologicals;, NB600- 1384)被用于免疫细胞化学在人类样品上. Nature (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:200
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫细胞化学在人类样品上浓度为1:100 和 免疫印迹在人类样品上浓度为1:200. Life Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于免疫印迹在人类样品上 (图5). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上. Cell Signal (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图s5
Novus Biologicals MAP1LC3B抗体(novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上浓度为1:5000 (图s5). Nat Commun (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 图s7
  • 免疫印迹; 人类; 1:2000; 图s7
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于免疫细胞化学在人类样品上 (图s7) 和 免疫印迹在人类样品上浓度为1:2000 (图s7). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于免疫组化在小鼠样品上. Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图8
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在小鼠样品上 (图8). Autophagy (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
  • 免疫印迹; 大鼠
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于免疫细胞化学在人类样品上 和 免疫印迹在大鼠样品上. Toxicol Lett (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图S6
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在小鼠样品上浓度为1:2000 (图S6). Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在小鼠样品上浓度为1:5000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于免疫印迹在人类样品上 (图4). Oncogene (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于免疫印迹在人类样品上 (图2). Sci Signal (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:400; 图6
  • 免疫印迹; 人类; 1:1000; 图6
  • 免疫印迹; 小鼠; 1:1000; 图6
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫细胞化学在小鼠样品上浓度为1:400 (图6) 和 免疫印迹在人类样品上浓度为1:1000 (图6) 和 在小鼠样品上浓度为1:1000 (图6). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图2
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹 (基因敲减); 小鼠; 图1f
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB100-2220)被用于免疫印迹 (基因敲减)在小鼠样品上 (图1f). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
  • 免疫印迹; 小鼠; 图5
Novus Biologicals MAP1LC3B抗体(novus Biologicals, NB600-1384)被用于免疫印迹在人类样品上 (图5) 和 在小鼠样品上 (图5). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图9
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在人类样品上 (图9). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:200
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在大鼠样品上浓度为1:200. Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫组化在小鼠样品上. J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在小鼠样品上 (图2). Nucleic Acids Res (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:200; 图s7
  • 免疫印迹; 小鼠; 1:1000; 图1
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图s7) 和 免疫印迹在小鼠样品上浓度为1:1000 (图1). Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图4
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Nat Cell Biol (2014) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:250
Novus Biologicals MAP1LC3B抗体(Novus biological, NB100-2220)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:250. Brain (2014) ncbi
兔 多克隆
  • FC; 狗; 1:40
  • 免疫印迹; 狗; 1:1000
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于流式细胞仪在狗样品上浓度为1:40 和 免疫印迹在狗样品上浓度为1:1000. Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 牛
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在牛样品上. Biomed Res Int (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于免疫印迹在小鼠样品上浓度为1:2000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于免疫印迹在人类样品上. DNA Repair (Amst) (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于免疫印迹在小鼠样品上. J Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在小鼠样品上. Cell Physiol Biochem (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
Novus Biologicals MAP1LC3B抗体(Novus Biologics, NB100-2220)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:3000
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于免疫印迹在大鼠样品上浓度为1:3000. J Biol Chem (2014) ncbi
兔 多克隆
  • 细胞化学; 人类
  • 免疫印迹; 人类
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫细胞化学在人类样品上 和 免疫印迹在人类样品上. Med Microbiol Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上. Biochem Biophys Res Commun (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在人类样品上. Biomaterials (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于免疫印迹在人类样品上浓度为1:1000. Neuromolecular Med (2014) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:1000
  • 免疫印迹; 大鼠; 1:1000
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000 和 免疫印迹在大鼠样品上浓度为1:1000. BMC Nephrol (2013) ncbi
艾博抗(上海)贸易有限公司
兔 多克隆
  • 免疫印迹; 小鼠; 图8
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在小鼠样品上 (图8). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
  • 免疫印迹; 大鼠; 图4
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在人类样品上 (图4) 和 在大鼠样品上 (图4). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图1
  • 细胞化学; 小鼠; 1:100; 图1
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1) 和 免疫细胞化学在小鼠样品上浓度为1:100 (图1). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:400; 图1
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (图1). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:3000; 图5
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于免疫印迹在人类样品上浓度为1:3000 (图5). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于免疫印迹在小鼠样品上 (图2). EMBO J (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500; 图2
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在大鼠样品上浓度为1:500 (图2). Hum Mol Genet (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图4b
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于免疫印迹在大鼠样品上浓度为1:1000 (图4b). Int J Mol Med (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1500; 图3
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1500 (图3). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图9
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫组化在人类样品上 (图9). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图1
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab62721)被用于免疫印迹在大鼠样品上 (图1). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在小鼠样品上. Biochem Biophys Res Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(AbCam, ab48394)被用于免疫印迹在小鼠样品上. Vasc Cell (2014) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:200
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于免疫细胞化学在小鼠样品上浓度为1:200. Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在人类样品上. Ann Neurol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在小鼠样品上浓度为1:500. Toxicology (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在大鼠样品上浓度为1:500. Lab Invest (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在人类样品上浓度为1:200. Autophagy (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab62721)被用于免疫印迹在大鼠样品上. Exp Gerontol (2013) ncbi
兔 多克隆
  • 细胞化学; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫细胞化学在人类样品上 和 免疫印迹在人类样品上. Cell Cycle (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在人类样品上. Cell Cycle (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:3000
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于免疫印迹在人类样品上浓度为1:3000. PLoS ONE (2012) ncbi
赛默飞世尔
兔 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图6
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA5-32254)被用于免疫印迹在小鼠样品上浓度为1:10,000 (图6). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图8
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-C16,931)被用于免疫印迹在大鼠样品上 (图8). J Nutr Biochem (2016) ncbi
兔 多克隆
  • 免疫印迹; 牛; 1:500; 图1
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-16930)被用于免疫印迹在牛样品上浓度为1:500 (图1). J Dairy Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-16930)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). J Cell Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-C16930)被用于免疫印迹在小鼠样品上 (图1). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图5
赛默飞世尔 MAP1LC3B抗体(Thermo, PA116931)被用于免疫印迹在小鼠样品上浓度为1:500 (图5). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-46286)被用于免疫印迹在大鼠样品上浓度为1:1000. Biol Reprod (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5e
赛默飞世尔 MAP1LC3B抗体(Thermo, PA5-22731)被用于免疫印迹在小鼠样品上 (图5e). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 斑马鱼; 表2
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-46286)被用于免疫印迹在斑马鱼样品上 (表2). Methods (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛默飞世尔 MAP1LC3B抗体(Thermo Fisher Scientific, PA1-16931)被用于免疫印迹在小鼠样品上. Mol Neurobiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛默飞世尔 MAP1LC3B抗体(Thermo Fisher Scientific, PA1-16931)被用于免疫印迹在小鼠样品上. Antioxid Redox Signal (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:500; 图3
圣克鲁斯生物技术 MAP1LC3B抗体(Santa Cruz, sc-376404)被用于免疫印迹在人类样品上浓度为1:500 (图3). Sci Rep (2016) ncbi
小鼠 单克隆(G-2)
  • 细胞化学; 人类; 图3
  • 免疫印迹; 人类; 1:1000; 图2
圣克鲁斯生物技术 MAP1LC3B抗体(Santa Cruz, sc271625)被用于免疫细胞化学在人类样品上 (图3) 和 免疫印迹在人类样品上浓度为1:1000 (图2). Nat Cell Biol (2015) ncbi
小鼠 单克隆(G-9)
  • 细胞化学; 大鼠; 图2b
圣克鲁斯生物技术 MAP1LC3B抗体(Santa Cruz, sc-376404)被用于免疫细胞化学在大鼠样品上 (图2b). Sci Rep (2015) ncbi
未注明
  • 细胞化学; 人类
为了研究保护性自体吞噬与凋亡缺陷肿瘤细胞trail耐受的关连,采用了Santa Cruz的抗map-lc3抗体进行免疫细胞化学试验。J Biol Chem (2008) ncbi
北京傲锐东源
兔 多克隆
  • 免疫印迹; 人类; 图3
北京傲锐东源 MAP1LC3B抗体(OriGene, TA301543)被用于免疫印迹在人类样品上 (图3). Onco Targets Ther (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
北京傲锐东源 MAP1LC3B抗体(Origene, TA301543)被用于免疫印迹在人类样品上 (图1). Front Pharmacol (2016) ncbi
GeneTex
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图2
GeneTex MAP1LC3B抗体(GeneTex, GTX82986)被用于免疫印迹在小鼠样品上浓度为1:2000 (图2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
GeneTex MAP1LC3B抗体(GeneTex, GTX127375)被用于免疫印迹在小鼠样品上浓度为1:1000. Neuropharmacology (2015) ncbi
亚诺法生技股份有限公司
兔 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图1
  • 细胞化学; 小鼠; 1:500; 图s2
亚诺法生技股份有限公司 MAP1LC3B抗体(Abnova, PAB12534)被用于免疫印迹在小鼠样品上浓度为1:3000 (图1) 和 免疫细胞化学在小鼠样品上浓度为1:500 (图s2). Am J Pathol (2016) ncbi
  • 免疫组化-P; 人类; 图1
  • 免疫印迹; 人类; 图7
亚诺法生技股份有限公司 MAP1LC3B抗体(Abnova, H00081631-P01)被用于免疫组化-石蜡切片在人类样品上 (图1) 和 免疫印迹在人类样品上 (图7). Cancer Biol Ther (2014) ncbi
Enzo Life Sciences
小鼠 单克隆(5F10)
  • 免疫印迹; 小鼠
  • 细胞化学; 小鼠
Enzo Life Sciences MAP1LC3B抗体(Enzo Life Sciences, 5F10)被用于免疫印迹在小鼠样品上 和 免疫细胞化学在小鼠样品上. J Immunol (2013) ncbi
小鼠 单克隆(2G6)
  • 细胞化学; 大鼠
  • 免疫印迹; 大鼠
Enzo Life Sciences MAP1LC3B抗体(Enzo Life sciences, ALX80308)被用于免疫细胞化学在大鼠样品上 和 免疫印迹在大鼠样品上. Autophagy (2013) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(D11)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上 (图3). Mar Drugs (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在人类样品上. Cell Death Dis (2016) ncbi
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
  • 细胞化学; 小鼠; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫印迹在小鼠样品上 (图3) 和 免疫细胞化学在小鼠样品上 (图3). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图s1
  • 细胞化学; 小鼠; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图s1) 和 免疫细胞化学在小鼠样品上 (图4). Mol Cell Oncol (2016) ncbi
  • 免疫印迹; 人类; 1:5000; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, 3868)被用于免疫印迹在人类样品上浓度为1:5000 (图3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 鸡; 图7
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫印迹在鸡样品上 (图7). Biochem J (2016) ncbi
  • 免疫印迹; 大鼠; 1:1000; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在大鼠样品上浓度为1:1000 (图2). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图s1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图s1). Autophagy (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于免疫印迹在人类样品上浓度为1:1000 (图4). J Steroid Biochem Mol Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在人类样品上浓度为1:1000 (图5). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图3
  • 免疫组化; 大鼠; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在大鼠样品上浓度为1:1000 (图3) 和 免疫组化在大鼠样品上 (图4). Int J Med Sci (2016) ncbi
兔 单克隆(D11)
  • 细胞化学; 人类; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于免疫细胞化学在人类样品上 (图4). Onco Targets Ther (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图S8
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在小鼠样品上浓度为1:1000 (图S8). Aging Cell (2016) ncbi
  • 免疫印迹; 小鼠; 图4
  • 免疫印迹; 大鼠; 图6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在小鼠样品上 (图4) 和 在大鼠样品上 (图6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上 (图1). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, 2775)被用于免疫印迹在人类样品上 (图3). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000; 表1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (表1). J Neuropathol Exp Neurol (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 图5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫细胞化学在人类样品上 (图5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, 2775)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Oncotarget (2016) ncbi
兔 单克隆(D3U4C)
  • 细胞化学; 人类; 1:50; 图6
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, CST-12741)被用于免疫细胞化学在人类样品上浓度为1:50 (图6) 和 免疫印迹在人类样品上 (图2). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在人类样品上 (图5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图5). Oncogene (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling, 3868)被用于免疫印迹在人类样品上 (图1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). Autophagy (2016) ncbi
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在小鼠样品上 (图1). Oncotarget (2016) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signal, 3868)被用于免疫印迹在人类样品上. Stem Cell Reports (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图4). Int J Mol Med (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:100; 图S1
  • 免疫印迹; 小鼠; 1:1000; 图1B
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图S1) 和 免疫印迹在小鼠样品上浓度为1:1000 (图1B). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在大鼠样品上浓度为1:500 (图2). Endocrinology (2016) ncbi
兔 单克隆(D11)
  • ChIP; 人类; 图2
  • 细胞化学; 人类; 图3
  • 免疫印迹; 人类; 图1
  • 免疫沉淀; 人类; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于染色质免疫沉淀 在人类样品上 (图2), 免疫细胞化学在人类样品上 (图3), 免疫印迹在人类样品上 (图1), 和 免疫沉淀在人类样品上 (图1). Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图3). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫印迹 (基因敲减); 人类; 图4
  • 免疫沉淀; 人类; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108S)被用于免疫印迹 (基因敲减)在人类样品上 (图4) 和 免疫沉淀在人类样品上 (图2). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在人类样品上浓度为1:1000 (图2). Mol Med Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108S)被用于免疫印迹在人类样品上 (图2a). J Crohns Colitis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上 (图1d). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 猪; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于免疫印迹在猪样品上浓度为1:1000. Am J Physiol Endocrinol Metab (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图3g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在大鼠样品上浓度为1:1000 (图3g). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, #2775)被用于免疫印迹在小鼠样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:400; 图4
  • 免疫印迹; 大鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫细胞化学在大鼠样品上浓度为1:400 (图4) 和 免疫印迹在大鼠样品上浓度为1:1000 (图1). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Nat Chem (2015) ncbi
兔 多克隆
  • 其他; 小鼠; 1:500; 图s1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于其他在小鼠样品上浓度为1:500 (图s1). Front Microbiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上. Mol Med Rep (2015) ncbi
  • 细胞化学; 人类; 图2
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D11)被用于免疫细胞化学在人类样品上 (图2) 和 免疫印迹在人类样品上 (图1). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, 4108S)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Sci Rep (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫细胞化学在人类样品上. Autophagy (2015) ncbi
兔 单克隆(D11)
  • 细胞化学; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于免疫细胞化学在人类样品上. Nature (2015) ncbi
兔 单克隆(D11)
  • 细胞化学; 人类; 图s16
  • 免疫印迹; 人类; 1:1000; 图s14
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于免疫细胞化学在人类样品上 (图s16) 和 免疫印迹在人类样品上浓度为1:1000 (图s14). Nat Commun (2015) ncbi
  • 细胞化学; 人类; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 3868)被用于免疫细胞化学在人类样品上 (图4). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775s)被用于免疫印迹在人类样品上浓度为1:1000. Am J Physiol Endocrinol Metab (2015) ncbi
兔 单克隆(D11)
  • 免疫组化; 小鼠; 图8
  • 免疫印迹; 猪; 图7
  • 免疫印迹; 小鼠; 图8
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868s)被用于免疫组化在小鼠样品上 (图8) 和 免疫印迹在猪样品上 (图7) 和 在小鼠样品上 (图8). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上 (图3e). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 和 免疫印迹在小鼠样品上浓度为1:1000. Eur J Pharmacol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于免疫印迹在人类样品上. Oncol Rep (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:100; 图s7
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图s7). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling technology, 4108S)被用于免疫细胞化学在人类样品上. Appl Microbiol Biotechnol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图f6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technologies, 2775S)被用于免疫印迹在小鼠样品上 (图f6). Sci Signal (2015) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 12741)被用于免疫印迹在小鼠样品上 (图3). Oncotarget (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫细胞化学在人类样品上. Methods Mol Biol (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775S)被用于免疫细胞化学在人类样品上 (图2). Autophagy (2015) ncbi
  • 细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于免疫细胞化学在小鼠样品上. Vasc Cell (2014) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell signaling, 3868S)被用于免疫印迹在人类样品上浓度为1:1000. EMBO J (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在大鼠样品上. Cell Biol Toxicol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上浓度为1:500. J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上. Cancer Lett (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图4). Autophagy (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫细胞化学在人类样品上. J Virol (2015) ncbi
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于免疫印迹在人类样品上 (图3). Exp Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图1
  • 免疫印迹; 小鼠; 1:1000; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:1000 (图1) 和 在小鼠样品上浓度为1:1000 (图2). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 细胞化学; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, #2775)被用于免疫印迹在人类样品上 和 免疫细胞化学在人类样品上. J Cell Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775S)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Biochem J (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在大鼠样品上. World J Gastroenterol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775)被用于免疫印迹在大鼠样品上. Exp Cell Res (2015) ncbi
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上 (图6). Aging Cell (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:200
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108S)被用于免疫细胞化学在人类样品上浓度为1:200 和 免疫印迹在人类样品上浓度为1:1000. Biochem Biophys Res Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上. Mol Cancer Ther (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology., 4108S)被用于免疫印迹在小鼠样品上浓度为1:1000. Nat Commun (2015) ncbi
  • 细胞化学; 大鼠; 1:250
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫细胞化学在大鼠样品上浓度为1:250. Oxid Med Cell Longev (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上. Cell Death Dis (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 大鼠; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于免疫印迹在大鼠样品上 (图4). Cell Cycle (2015) ncbi
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上 (图6). Cell Cycle (2014) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:400
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫细胞化学在人类样品上浓度为1:400. Biochem Pharmacol (2015) ncbi
  • 免疫印迹; 大鼠; 图4f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D11)被用于免疫印迹在大鼠样品上 (图4f). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图3b). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
  • 细胞化学; 人类; 1:500
  • 免疫组化; 人类; 1:200
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于免疫印迹在人类样品上浓度为1:1000, 免疫细胞化学在人类样品上浓度为1:500, 和 免疫组化在人类样品上浓度为1:200. Cancer Lett (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108S)被用于免疫组化-石蜡切片在小鼠样品上. Am J Pathol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:50
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫细胞化学在人类样品上浓度为1:50. Hum Mol Genet (2015) ncbi
兔 单克隆(D11)
  • 免疫组化-P; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50. PLoS Genet (2014) ncbi
兔 单克隆(D11)
  • 细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫细胞化学在小鼠样品上. Biomaterials (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于免疫印迹在人类样品上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于免疫印迹在人类样品上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图s2
  • 细胞化学; 人类; 图s2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上浓度为1:1000 (图s2) 和 免疫细胞化学在人类样品上 (图s2). Stem Cells Dev (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
  • 细胞化学; 人类; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上 (图1) 和 免疫细胞化学在人类样品上 (图4). Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图7d
  • 免疫印迹; 小鼠; 1:2000; 图4a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:2000 (图7d) 和 在小鼠样品上浓度为1:2000 (图4a). Nat Cell Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1d). PLoS Med (2014) ncbi
兔 多克隆
  • 细胞化学; 人类; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫细胞化学在人类样品上 (图1). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108S)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上. Mol Reprod Dev (2014) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于免疫印迹在小鼠样品上 (图1). Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:200
  • 细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 和 免疫细胞化学在人类样品上浓度为1:200. Am J Pathol (2014) ncbi
  • 细胞化学; 人类; 1:200
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D11)被用于免疫细胞化学在人类样品上浓度为1:200 和 免疫印迹在人类样品上浓度为1:500. Int J Clin Exp Pathol (2014) ncbi
  • 免疫组化-P; 人类; 1:75
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 3868)被用于免疫组化-石蜡切片在人类样品上浓度为1:75. Int J Ophthalmol (2014) ncbi
兔 多克隆
  • 免疫印迹; 秀丽隐杆线虫; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775s)被用于免疫印迹在秀丽隐杆线虫样品上 (图4). Autophagy (2014) ncbi
兔 单克隆(D11)
  • 免疫组化-P; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于免疫组化-石蜡切片在人类样品上 和 免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图3). Cancer Biol Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775S)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4). Autophagy (2014) ncbi
兔 多克隆
  • 细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫细胞化学在小鼠样品上. J Cardiovasc Pharmacol (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图7
  • 免疫印迹; 小鼠; 图6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775S)被用于免疫组化-石蜡切片在小鼠样品上 (图7) 和 免疫印迹在小鼠样品上 (图6). Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上. Toxicology (2014) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于免疫印迹在人类样品上. Cell Death Differ (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于免疫印迹在小鼠样品上. Cell Death Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上浓度为1:1000. Nat Cell Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:2000. Nature (2014) ncbi
  • 细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫细胞化学在人类样品上浓度为1:200. Nature (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫组化在大鼠样品上浓度为1:100 和 免疫印迹在大鼠样品上浓度为1:1000. Exp Neurol (2014) ncbi
兔 多克隆
  • 细胞化学; 大鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫细胞化学在大鼠样品上 和 免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于免疫印迹在人类样品上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上 (图1). Biochem Biophys Res Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在大鼠样品上. Am J Physiol Heart Circ Physiol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
  • 免疫组化-F; 小鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于免疫组化-冰冻切片在小鼠样品上 和 免疫印迹在大鼠样品上. Kidney Int (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5, 7
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图5, 7). J Cell Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
  • 细胞化学; African green monkey
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上 和 免疫细胞化学在African green monkey样品上. J Biol Chem (2014) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:200
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于免疫细胞化学在人类样品上浓度为1:200 和 免疫印迹在人类样品上. Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上. Int J Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1,000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在大鼠样品上浓度为1:1,000. J Neurosci Res (2014) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上 (图1). Free Radic Biol Med (2014) ncbi
兔 多克隆
  • FC; 猪; 1:300
  • 细胞化学; 猪; 1:200
  • 免疫印迹; 猪
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775S)被用于流式细胞仪在猪样品上浓度为1:300, 免疫细胞化学在猪样品上浓度为1:200, 和 免疫印迹在猪样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上. Neurobiol Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上浓度为1:1000. ASN Neuro (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
  • 细胞化学; 人类; 1:100
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technologies, 2775)被用于免疫印迹在人类样品上浓度为1:500 和 免疫细胞化学在人类样品上浓度为1:100. Endocrinology (2013) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:400
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400. Food Chem Toxicol (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于免疫印迹在小鼠样品上. Biochem J (2013) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于免疫印迹在人类样品上浓度为1:1000. Cell Death Dis (2013) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫细胞化学在人类样品上浓度为1:200. Am J Physiol Cell Physiol (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
  • 细胞化学; 小鼠; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在小鼠样品上 (图3) 和 免疫细胞化学在小鼠样品上 (图3). Autophagy (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:1000. Cell Death Dis (2013) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在小鼠样品上浓度为1:2000. Cell Biochem Funct (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在大鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
  • 细胞化学; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling Technology, 4108)被用于免疫印迹在大鼠样品上 和 免疫细胞化学在大鼠样品上. Autophagy (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2012) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling Technology, D11)被用于免疫印迹在人类样品上. PLoS ONE (2012) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫细胞化学在人类样品上浓度为1:100 和 免疫印迹在人类样品上浓度为1:1000. J Cell Mol Med (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
为了研究GSK3-TIP60-ULK1信号通路在自噬中的作用,Cell Signaling Technology的兔抗LC3B抗体被用于蛋白质印迹实验。Science (2012) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:400
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫细胞化学在小鼠样品上浓度为1:400 和 免疫印迹在小鼠样品上浓度为1:1000. Traffic (2012) ncbi
兔 多克隆
  • 细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technologies, 2775)被用于免疫细胞化学在小鼠样品上. J Biol Chem (2010) ncbi
西格玛奥德里奇
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上浓度为1:2000 (图2). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
  • 细胞化学; 人类; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图4) 和 免疫细胞化学在人类样品上 (图1). J Virol (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:600; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在大鼠样品上浓度为1:600 (图2). Exp Ther Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图5
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L-7543)被用于免疫印迹在小鼠样品上浓度为1:2000 (图5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上 (图3). Autophagy (2016) ncbi
小鼠 单克隆(LC3B-6)
  • 免疫印迹; 人类; 图3
  • 免疫印迹; 小鼠; 图2
  • 免疫组化; 小鼠; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, SAB4200361)被用于免疫印迹在人类样品上 (图3) 和 在小鼠样品上 (图2) 和 免疫组化在小鼠样品上 (图2). Sci Rep (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500; 图5
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫细胞化学在人类样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图3). Mol Biol Cell (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500; 图1b
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于免疫细胞化学在小鼠样品上浓度为1:500 (图1b). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图6). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图3d
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上浓度为1:2000 (图3d). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在人类样品上 (图1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上 (图1). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上浓度为1:3000 (图3). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图s2
西格玛奥德里奇 MAP1LC3B抗体(Sigma Aldrich, L7543)被用于免疫印迹在小鼠样品上浓度为1:2000 (图s2). Nat Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图1). J Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上 (图4). Nature (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图1A
  • 细胞化学; 小鼠; 图1B
  • 免疫印迹; 小鼠; 图1D
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫组化-石蜡切片在小鼠样品上 (图1A), 免疫细胞化学在小鼠样品上 (图1B), 和 免疫印迹在小鼠样品上 (图1D). Autophagy (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(SigmaAldrich, L7543)被用于免疫细胞化学在人类样品上 和 免疫印迹在人类样品上. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上 (图3). PLoS Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上. Biochem Pharmacol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). EMBO Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
  • 免疫印迹; 小鼠; 图5
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图1) 和 在小鼠样品上 (图5). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于免疫印迹在人类样品上浓度为1:5000 (图1a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上浓度为1:5000 (图1a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:8000; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上浓度为1:8000 (图2). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图1). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 免疫印迹; 大鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于免疫印迹在人类样品上 和 在大鼠样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上浓度为1:1000. J Agric Food Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在小鼠样品上 (图2). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图2). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上 (图2). Cell Death Dis (2015) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:500
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫细胞化学在大鼠样品上浓度为1:500. Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于免疫印迹在人类样品上 (图7). Int J Mol Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上 (图7). Int J Mol Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
  • 细胞化学; 人类; 图4
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图4) 和 免疫细胞化学在人类样品上 (图4). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图1). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图s8
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上浓度为1:2000 (图s8). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 猪; 1:2000; 图3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在猪样品上浓度为1:2000 (图3). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在人类样品上 (图3). Oncotarget (2015) ncbi
兔 多克隆
  • 其他; 人类; 1:100; 图2
  • PLA; 人类; 1:100; 图1
  • 免疫印迹; 人类; 1:3000; 图s3
  • 细胞化学; 人类; 1:100; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于其他在人类样品上浓度为1:100 (图2), proximity ligation assay在人类样品上浓度为1:100 (图1), 免疫印迹在人类样品上浓度为1:3000 (图s3), 和 免疫细胞化学在人类样品上浓度为1:100 (图1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上 (图1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1, 6
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上 (图1, 6). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上 (图1). Autophagy (2015) ncbi
小鼠 单克隆(LC3B-6)
  • 细胞化学; 人类; 1:100
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, SAB4200361)被用于免疫细胞化学在人类样品上浓度为1:100. J Leukoc Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上浓度为1:500. J Leukoc Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上. J Virol (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:300; 图2
  • 免疫印迹; 大鼠; 1:600; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L-7543)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:300 (图2) 和 免疫印迹在大鼠样品上浓度为1:600 (图1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1b
  • 免疫印迹; 小鼠; 图1d
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图1b) 和 在小鼠样品上 (图1d). elife (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:250
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫细胞化学在人类样品上浓度为1:250. PLoS ONE (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500
  • 细胞化学; 小鼠; 1:500
  • 细胞化学; 大鼠; 1:500
  • 免疫印迹; 人类; 1:5000
  • 免疫印迹; 小鼠; 1:5000
  • 免疫印迹; 大鼠; 1:5000
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫细胞化学在人类样品上浓度为1:500, 在小鼠样品上浓度为1:500, 和 在大鼠样品上浓度为1:500 和 免疫印迹在人类样品上浓度为1:5000, 在小鼠样品上浓度为1:5000, 和 在大鼠样品上浓度为1:5000. Anal Biochem (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图1h
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在大鼠样品上 (图1h). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
  • 细胞化学; 小鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich Corp, L8918)被用于免疫印迹在小鼠样品上 和 免疫细胞化学在小鼠样品上. J Cell Mol Med (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫细胞化学在人类样品上. Methods Mol Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图5
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上浓度为1:1000 (图5). Arch Toxicol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上. Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上浓度为1:2000. Cell Death Differ (2015) ncbi
小鼠 单克隆(LC3B-6)
  • 免疫组化-P; 人类; 图5a
  • 免疫印迹; 人类; 图5b
西格玛奥德里奇 MAP1LC3B抗体(SigmaAldrich, SAB4200361)被用于免疫组化-石蜡切片在人类样品上 (图5a) 和 免疫印迹在人类样品上 (图5b). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在小鼠样品上 和 在大鼠样品上. J Lipid Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 细胞化学; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上 和 免疫细胞化学在人类样品上. Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在大鼠样品上. Life Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在大鼠样品上. Redox Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma Aldrich, L-7543)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于免疫印迹在人类样品上. J Nutr Biochem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图2). Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543,)被用于免疫印迹在大鼠样品上. J Physiol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
  • 免疫印迹; 大鼠; 图6
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在小鼠样品上 (图2) 和 在大鼠样品上 (图6). Oxid Med Cell Longev (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上浓度为1:500 (图3). Biochim Biophys Acta (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上 (图4). Cell Res (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:500
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫组化在大鼠样品上浓度为1:500 和 免疫印迹在大鼠样品上浓度为1:500. Cell Death Dis (2014) ncbi
兔 多克隆
  • 细胞化学; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫细胞化学在人类样品上. Curr Mol Med (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L754)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
  • 细胞化学; 人类; 图3
  • 免疫沉淀; 人类; 图3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图3), 免疫细胞化学在人类样品上 (图3), 和 免疫沉淀在人类样品上 (图3). J Cell Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫沉淀在人类样品上 和 免疫印迹在人类样品上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:3000
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在人类样品上浓度为1:3000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L-7543)被用于免疫印迹在人类样品上 (图2). Nat Chem Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在小鼠样品上 (图5). Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上浓度为1:1000. Autophagy (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在人类样品上. Methods Mol Biol (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上. Oncogene (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于免疫印迹在人类样品上. Mol Pharm (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 和 在小鼠样品上. Autophagy (2012) ncbi
未注明
  • 免疫印迹; 人类
为了研究LAPTM5在神经母细胞瘤侵润方面的作用,采用Sigma公司的LC3B抗体,进行了蛋白印记实验。PLoS ONE (2009) ncbi
兔 多克隆
  • 免疫印迹; 人类
为研究Bif-1在调控细胞自噬和肿瘤发生过程中的分子机制,采用了Sigma公司的兔抗人LC3多克隆抗体(Cat.#: L8918)进行Western免疫印迹实验。Nat Cell Biol (2007) ncbi
百奇生物
兔 多克隆
  • 免疫印迹; 人类; 图4
  • 细胞化学; 人类; 图1
百奇生物 MAP1LC3B抗体(Abgent, 11668-019AP-1802a)被用于免疫印迹在人类样品上 (图4) 和 免疫细胞化学在人类样品上 (图1). J Virol (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:25; 图7
百奇生物 MAP1LC3B抗体(Abgent, AP1802a)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:25 (图7). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
百奇生物 MAP1LC3B抗体(Abgent, AP1802a)被用于免疫印迹在人类样品上 (图3). Autophagy (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 图2
百奇生物 MAP1LC3B抗体(Abgent, AP1802a)被用于免疫细胞化学在小鼠样品上 (图2). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
百奇生物 MAP1LC3B抗体(Abgent, AP1802a)被用于免疫印迹在人类样品上 (图2). J Virol (2011) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
百奇生物 MAP1LC3B抗体(Abgent, AP-1802)被用于免疫印迹在小鼠样品上. J Biol Chem (2010) ncbi
未注明
  • 免疫组化; 人类
为了研究UPR在调控自噬基因MAP1LC3B 和 ATG5表达中的作用,采用了Abgent公司的抗MAP1LC3B剪切片段抗体产品,进行了免疫组化实验。J Clin Invest (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究药物洗脱支架诱导自噬从而对内皮组织的修复进行抑制,采用了Abgent的抗LC3B进行免疫印迹实验。 Am J Pathol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究Egr-1对香烟烟雾诱发的呼慢性阻塞性肺病细胞自噬的促进作用,采用了Abgent的抗LC3B抗体进行免疫印迹实验。PLoS ONE (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究如何通过基于基因标签的方法检测mTOR是p73的一个调控因子,采用了Abgent的抗MAP1LC3B抗体进行免疫印迹实验。Mol Cell Biol (2008) ncbi
未注明
  • 免疫印迹; 人类
为研究外伤性脑损伤后自噬途径的分子调控机理,采用了Abgent的抗LC-3兔多克隆抗体(Catalog # AP1802a,0.25 mg/m)进行western免疫印迹实验。J Cereb Blood Flow Metab (2008) ncbi
MBL International
未注明
  • 免疫印迹; 人类
为了研究微管相关蛋白1轻链beta 3和与自噬相关基因5通过介导吞噬泡和自噬小体的形成而不是启动自噬,以及未折叠蛋白反应在肿瘤微环境缺氧的介导中有着重要作用,采用了MBL公司微管相关蛋白1轻链beta 3抗体,进行蛋白质印记实验。J Clin Invest (2010) ncbi
文章列表
  1. Joanna M Dragich et al. (2016). "Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain".PMID 27648578
  2. Sangwook Park et al. (2016). "Interplay between Leucine-Rich Repeat Kinase 2 (LRRK2) and p62/SQSTM-1 in Selective Autophagy".PMID 27631370
  3. Edward A Ratovitski et al. (2016). "Tumor Protein (TP)-p53 Members as Regulators of Autophagy in Tumor Cells upon Marine Drug Exposure".PMID 27537898
  4. Supawadee Sukseree et al. (2016). "Tyrosinase-Cre-Mediated Deletion of the Autophagy Gene Atg7 Leads to Accumulation of the RPE65 Variant M450 in the Retinal Pigment Epithelium of C57BL/6 Mice".PMID 27537685
  5. Eleftherios Karanasios et al. (2016). "Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles".PMID 27510922
  6. Y Wang et al. (2016). "DNA-PK-mediated phosphorylation of EZH2 regulates the DNA damage-induced apoptosis to maintain T-cell genomic integrity".PMID 27468692
  7. Erin M Buckingham et al. (2016). "Exocytosis of Varicella-Zoster Virus Virions Involves a Convergence of Endosomal and Autophagy Pathways".PMID 27440906
  8. Ji Geng et al. (2016). "A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria".PMID 27432745
  9. Man Song et al. (2016). "Bystander autophagy mediated by radiation-induced exosomal miR-7-5p in non-targeted human bronchial epithelial cells".PMID 27417393
  10. Arnold H Zea et al. (2016). "Activation of the IL-2 Receptor in Podocytes: A Potential Mechanism for Podocyte Injury in Idiopathic Nephrotic Syndrome?".PMID 27389192
  11. Rowena Dejesus et al. (2016). "Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62".PMID 27351204
  12. Allyson N Hamlin et al. (2016). "LRP1 Protein Deficiency Exacerbates Palmitate-induced Steatosis and Toxicity in Hepatocytes".PMID 27317662
  13. Rubén Gómez-Sánchez et al. (2016). "PINK1 deficiency enhances autophagy and mitophagy induction".PMID 27308585
  14. Kenta Kuramoto et al. (2016). "Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids".PMID 27305347
  15. Anna Maria Andersson et al. (2016). "Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages".PMID 27302320
  16. Lan Gui et al. (2016). "Hypoxia induces autophagy in cardiomyocytes via a hypoxia-inducible factor 1-dependent mechanism".PMID 27284306
  17. Gina Bouchard et al. (2016). "Stimulation of triple negative breast cancer cell migration and metastases formation is prevented by chloroquine in a pre-irradiated mouse model".PMID 27282478
  18. Kunie Ando et al. (2016). "Level of PICALM, a key component of clathrin-mediated endocytosis, is correlated with levels of phosphotau and autophagy-related proteins and is associated with tau inclusions in AD, PSP and Pick disease".PMID 27260836
  19. Karnam Shruthi et al. (2016). "Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system".PMID 27260470
  20. B Gao et al. (2016). "Eicosapentaenoic acid attenuates dexamethasome-induced apoptosis by inducing adaptive autophagy via GPR120 in murine bone marrow-derived mesenchymal stem cells".PMID 27228350
  21. Kun Yuan Lin et al. (2016). "Delivery of a survivin promoter-driven antisense survivin-expressing plasmid DNA as a cancer therapeutic: a proof-of-concept study".PMID 27217778
  22. Alaa Droubi et al. (2016). "Nuclear localizations of phosphatidylinositol 5-phosphate 4-kinases α and β are dynamic and independently regulated during starvation-induced stress".PMID 27208178
  23. Li Fang Wang et al. (2016). "Knockout of ho-1 protects the striatum from ferrous iron-induced injury in a male-specific manner in mice".PMID 27198537
  24. Lei Liu et al. (2016). "Suppression of calcium‑sensing receptor ameliorates cardiac hypertrophy through inhibition of autophagy".PMID 27176663
  25. Ju Xian Song et al. (2016). "A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition".PMID 27172265
  26. Nunzia Pastore et al. (2016). "TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages".PMID 27171064
  27. Maria Karvela et al. (2016). "ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells".PMID 27168493
  28. Hao Xue et al. (2016). "A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway".PMID 27163161
  29. Suelen Feitoza Silva et al. (2016). "Oxysterols in adipose tissue-derived mesenchymal stem cell proliferation and death".PMID 27133385
  30. Abigail S Krall et al. (2016). "Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor".PMID 27126896
  31. Qichao Huang et al. (2016). "Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways".PMID 27124102
  32. Carlos J Rodriguez-Ortiz et al. (2016). "The Myoblast C2C12 Transfected with Mutant Valosin-Containing Protein Exhibits Delayed Stress Granule Resolution on Oxidative Stress".PMID 27106764
  33. Chantal Sellier et al. (2016). "Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death".PMID 27103069
  34. Qinghua Zhang et al. (2016). "The germline-enriched Ppp1r36 promotes autophagy".PMID 27098880
  35. Yongmei Qi et al. (2016). "ATM mediates spermidine-induced mitophagy via PINK1 and Parkin regulation in human fibroblasts".PMID 27089984
  36. Chao Hung Lai et al. (2016). "Multi-Strain Probiotics Inhibit Cardiac Myopathies and Autophagy to Prevent Heart Injury in High-Fat Diet-Fed Rats".PMID 27076784
  37. Mathieu Nivon et al. (2016). "NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation".PMID 27075172
  38. Lan Xiao et al. (2016). "YAP induces cisplatin resistance through activation of autophagy in human ovarian carcinoma cells".PMID 27073322
  39. Jane Ying Chieh Lee et al. (2016). "Inhibition of HDAC3- and HDAC6-Promoted Survivin Expression Plays an Important Role in SAHA-Induced Autophagy and Viability Reduction in Breast Cancer Cells".PMID 27065869
  40. Nathan Basisty et al. (2016). "Mitochondrial-targeted catalase is good for the old mouse proteome, but not for the young: 'reverse' antagonistic pleiotropy?".PMID 27061426
  41. S E Wohlgemuth et al. (2016). "Short communication: Effect of heat stress on markers of autophagy in the mammary gland during the dry period".PMID 27060813
  42. Jiafa Ren et al. (2016). "Quercetin Inhibits Fibroblast Activation and Kidney Fibrosis Involving the Suppression of Mammalian Target of Rapamycin and β-catenin Signaling".PMID 27052477
  43. Anindya Dey et al. (2016). "Inhibition of BMI1 induces autophagy-mediated necroptosis".PMID 27050456
  44. Kendall Phelps-Polirer et al. (2016). "Co-Targeting of JNK and HUNK in Resistant HER2-Positive Breast Cancer".PMID 27045589
  45. Vidya S Krishnan et al. (2016). "A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice".PMID 27030741
  46. Ishaq A Viringipurampeer et al. (2016). "NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration".PMID 27008885
  47. Michaela Gschweitl et al. (2016). "A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes".PMID 27008177
  48. Viviana R Lopes et al. (2016). "Dose-dependent autophagic effect of titanium dioxide nanoparticles in human HaCaT cells at non-cytotoxic levels".PMID 27001369
  49. Avnika A Ruparelia et al. (2016). "FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency".PMID 26969713
  50. Valeria Crippa et al. (2016). "Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases".PMID 26961006
  51. Florian Beaumatin et al. (2016). "N52 monodeamidated Bcl‑xL shows impaired oncogenic properties in vivo and in vitro".PMID 26958941
  52. Won Hoon Choi et al. (2016). "Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation".PMID 26957043
  53. Lukas Jennewein et al. (2016). "Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas".PMID 26956048
  54. Chiara Scotton et al. (2016). "Deep RNA profiling identified CLOCK and molecular clock genes as pathophysiological signatures in collagen VI myopathy".PMID 26945058
  55. Le Yu et al. (2016). "Obatoclax impairs lysosomal function to block autophagy in cisplatin-sensitive and -resistant esophageal cancer cells".PMID 26910910
  56. Agnieszka M Kabat et al. (2016). "The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation".PMID 26910010
  57. Meijuan Zou et al. (2016). "AEG-1/MTDH-activated autophagy enhances human malignant glioma susceptibility to TGF-β1-triggered epithelial-mesenchymal transition".PMID 26909607
  58. Nina Stojcheva et al. (2016). "MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM".PMID 26887050
  59. Y Lei et al. (2016). "EGFR-targeted mAb therapy modulates autophagy in head and neck squamous cell carcinoma through NLRX1-TUFM protein complex".PMID 26876213
  60. Fan Ouyang et al. (2016). "HMGB1 induces apoptosis and EMT in association with increased autophagy following H/R injury in cardiomyocytes".PMID 26847839
  61. Xiaoting Wu et al. (2016). "Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis".PMID 26837467
  62. Erik G Gentry et al. (2016). "Rho Kinase Inhibition as a Therapeutic for Progressive Supranuclear Palsy and Corticobasal Degeneration".PMID 26818518
  63. Robert W Button et al. (2016). "Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis".PMID 26814436
  64. Maria Goulielmaki et al. (2016). "BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells".PMID 26802026
  65. Cindy Puente et al. (2016). "Nutrient-regulated Phosphorylation of ATG13 Inhibits Starvation-induced Autophagy".PMID 26801615
  66. A Ruiz et al. (2016). "Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis".PMID 26775710
  67. Suzanne M Cloonan et al. (2016). "Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice".PMID 26752519
  68. Rukmini Mukherjee et al. (2016). "Ubiquitin-mediated regulation of the E3 ligase GP78 by MGRN1 in trans affects mitochondrial homeostasis".PMID 26743086
  69. Fei Zhao et al. (2016). "Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells".PMID 26734992
  70. Lewis J Kraft et al. (2016). "Nuclear LC3 Associates with Slowly Diffusing Complexes that Survey the Nucleolus".PMID 26728248
  71. Cuicui Xie et al. (2016). "Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury".PMID 26727396
  72. Yun Ru Chen et al. (2016). "Autophagy induction causes a synthetic lethal sensitization to ribonucleotide reductase inhibition in breast cancer cells".PMID 26675256
  73. Ali Vural et al. (2016). "Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection".PMID 26667172
  74. Andrew J Schwab et al. (2015). "Neurite Aggregation and Calcium Dysfunction in iPSC-Derived Sensory Neurons with Parkinson's Disease-Related LRRK2 G2019S Mutation".PMID 26651604
  75. Jian Da Wang et al. (2015). "A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation".PMID 26649942
  76. Jacqueline M Kimmey et al. (2015). "Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection".PMID 26649827
  77. Yen Ta Huang et al. (2016). "Resveratrol alleviates the cytotoxicity induced by the radiocontrast agent, ioxitalamate, by reducing the production of reactive oxygen species in HK-2 human renal proximal tubule epithelial cells in vitro".PMID 26573558
  78. Jon Sin et al. (2016). "Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts".PMID 26566717
  79. Zhenheng Wang et al. (2015). "Autophagy mediated CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis".PMID 26566231
  80. Martina Chrisam et al. (2015). "Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice".PMID 26565691
  81. Ronny Lesmana et al. (2016). "Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle".PMID 26562261
  82. P Majumder et al. (2015). "Mahogunin regulates fusion between amphisomes/MVBs and lysosomes via ubiquitination of TSG101".PMID 26539917
  83. Zhixun Dou et al. (2015). "Autophagy mediates degradation of nuclear lamina".PMID 26524528
  84. Chih Wen Lin et al. (2015). "Amiodarone as an autophagy promoter reduces liver injury and enhances liver regeneration and survival in mice after partial hepatectomy".PMID 26515640
  85. Laura Antonucci et al. (2015). "Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress".PMID 26512112
  86. Yufeng Wang et al. (2015). "CGK733-induced LC3 II formation is positively associated with the expression of cyclin-dependent kinase inhibitor p21Waf1/Cip1 through modulation of the AMPK and PERK/CHOP signaling pathways".PMID 26486079
  87. Hallvard L Olsvik et al. (2015). "FYCO1 Contains a C-terminally Extended, LC3A/B-preferring LC3-interacting Region (LIR) Motif Required for Efficient Maturation of Autophagosomes during Basal Autophagy".PMID 26468287
  88. Anthony Sinadinos et al. (2015). "P2RX7 purinoceptor: a therapeutic target for ameliorating the symptoms of duchenne muscular dystrophy".PMID 26461208
  89. Guijun Song et al. (2015). "Anti-autophagic and anti-apoptotic effects of memantine in a SH-SY5Y cell model of Alzheimer's disease via mammalian target of rapamycin-dependent and -independent pathways".PMID 26459718
  90. Paolo Mattiolo et al. (2015). "Autophagy exacerbates caspase-dependent apoptotic cell death after short times of starvation".PMID 26441250
  91. Saverio Marchi et al. (2015). "Defective autophagy is a key feature of cerebral cavernous malformations".PMID 26417067
  92. Alon D Levin et al. (2016). "Autophagy Contributes to the Induction of Anti-TNF Induced Macrophages".PMID 26417049
  93. Pedram Kharaziha et al. (2015). "Sorafenib-induced defective autophagy promotes cell death by necroptosis".PMID 26416459
  94. Yulia Haim et al. (2015). "Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1".PMID 26391754
  95. Marisa Granato et al. (2015). "The activation of KSHV lytic cycle blocks autophagy in PEL cells".PMID 26391343
  96. Michael I Koukourakis et al. (2015). "Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines".PMID 26378792
  97. Daniel A Columbus et al. (2015). "Impact of prolonged leucine supplementation on protein synthesis and lean growth in neonatal pigs".PMID 26374843
  98. Jiangwei Zhang et al. (2015). "ATM functions at the peroxisome to induce pexophagy in response to ROS".PMID 26344566
  99. Marisa Granato et al. (2015). "Capsaicin triggers immunogenic PEL cell death, stimulates DCs and reverts PEL-induced immune suppression".PMID 26338963
  100. A De Leo et al. (2015). "Inhibition of autophagy in EBV-positive Burkitt's lymphoma cells enhances EBV lytic genes expression and replication".PMID 26335716
  101. Hong Guang Xia et al. (2015). "Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death".PMID 26323688
  102. Kanako Noritake et al. (2015). "Direct Exposure to Ethanol Disrupts Junctional Cell-Cell Contact and Hippo-YAP Signaling in HL-1 Murine Atrial Cardiomyocytes".PMID 26317911
  103. L Wang et al. (2015). "Decreased autophagy: a major factor for cardiomyocyte death induced by β1-adrenoceptor autoantibodies".PMID 26313913
  104. Viviana A Cavieres et al. (2015). "Tetrahydrohyperforin Inhibits the Proteolytic Processing of Amyloid Precursor Protein and Enhances Its Degradation by Atg5-Dependent Autophagy".PMID 26308941
  105. Zhuanhua Wang et al. (2015). "Recombinant Buckwheat Trypsin Inhibitor Induces Mitophagy by Directly Targeting Mitochondria and Causes Mitochondrial Dysfunction in Hep G2 Cells".PMID 26301894
  106. Tatiana Cañeque et al. (2015). "Synthesis of marmycin A and investigation into its cellular activity".PMID 26291947
  107. Kevin Moreau et al. (2015). "Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy".PMID 26289944
  108. Chih Yuan Chiang et al. (2015). "A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection".PMID 26284031
  109. Yuanli Zhen et al. (2015). "Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A(D251E) mutation".PMID 26259518
  110. Judy C Triplett et al. (2015). "Age-related changes in the proteostasis network in the brain of the naked mole-rat: Implications promoting healthy longevity".PMID 26248058
  111. Yushu Ruan et al. (2015). "Autophagy inhibition enhances isorhamnetin‑induced mitochondria‑dependent apoptosis in non‑small cell lung cancer cells".PMID 26238746
  112. Ida Johansson et al. (2015). "The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells".PMID 26237736
  113. A Sargsyan et al. (2015). "Rapid parallel measurements of macroautophagy and mitophagy in mammalian cells using a single fluorescent biosensor".PMID 26215030
  114. Adrianne S Chesser et al. (2016). "Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons".PMID 26207957
  115. Stefan Drießen et al. (2015). "Deubiquitinase inhibition by WP1130 leads to ULK1 aggregation and blockade of autophagy".PMID 26207339
  116. Hui Mei Wu et al. (2015). "Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells".PMID 26201611
  117. Ana Artero-Castro et al. (2015). "Disruption of the ribosomal P complex leads to stress-induced autophagy".PMID 26176264
  118. Rushika M Perera et al. (2015). "Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism".PMID 26168401
  119. I Kuan Wang et al. (2015). "MiR-20a-5p mediates hypoxia-induced autophagy by targeting ATG16L1 in ischemic kidney injury".PMID 26165754
  120. V Felzen et al. (2015). "Estrogen receptor α regulates non-canonical autophagy that provides stress resistance to neuroblastoma and breast cancer cells and involves BAG3 function".PMID 26158518
  121. Tomasz Zajkowski et al. (2015). "Stabilization of microtubular cytoskeleton protects neurons from toxicity of N-terminal fragment of cytosolic prion protein".PMID 26149502
  122. Akihiro Ohashi et al. (2015). "Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells".PMID 26144554
  123. Jiayi Wang et al. (2015). "Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells".PMID 26124182
  124. Dieter A Kubli et al. (2015). "PINK1 Is Dispensable for Mitochondrial Recruitment of Parkin and Activation of Mitophagy in Cardiac Myocytes".PMID 26110811
  125. Thomas D B Macvicar et al. (2015). "Targeted siRNA Screens Identify ER-to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells".PMID 26110381
  126. Irene Riz et al. (2015). "KLF4-SQSTM1/p62-associated prosurvival autophagy contributes to carfilzomib resistance in multiple myeloma models".PMID 26109433
  127. Guowu Hu et al. (2015). "A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy".PMID 26098573
  128. Huiwen Song et al. (2015). "ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation".PMID 26083323
  129. Caixia Li et al. (2015). "(Pro)renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose".PMID 26081285
  130. Hyunjoo Cha-Molstad et al. (2015). "Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding".PMID 26075355
  131. Sungwoo Park et al. (2015). "Pyruvate stimulates mitophagy via PINK1 stabilization".PMID 26071202
  132. Giulia Ruozi et al. (2015). "AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia".PMID 26066847
  133. Jia Yuan et al. (2015). "MYBL2 guides autophagy suppressor VDAC2 in the developing ovary to inhibit autophagy through a complex of VDAC2-BECN1-BCL2L1 in mammals".PMID 26060891
  134. Chuan Ming Xie et al. (2015). "Erbin is a novel substrate of the Sag-βTrCP E3 ligase that regulates KrasG12D-induced skin tumorigenesis".PMID 26056141
  135. Jing Cui et al. (2015). "Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models".PMID 26052900
  136. Jesus Garcia-Cano et al. (2015). "Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance".PMID 26036632
  137. Thierry Gauthier et al. (2015). "Proximity Ligation In situ Assay is a Powerful Tool to Monitor Specific ATG Protein Interactions following Autophagy Induction".PMID 26034986
  138. Qi Luan et al. (2015). "RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy".PMID 26018731
  139. Ching Yu Yen et al. (2015). "Impacts of autophagy-inducing ingredient of areca nut on tumor cells".PMID 26017803
  140. Ting Sun et al. (2015). "Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth".PMID 26008601
  141. Zhouqing Huang et al. (2015). "Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes".PMID 26004523
  142. Ruth Milkereit et al. (2015). "LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation".PMID 25998567
  143. Ji Hong Moon et al. (2015). "Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell death".PMID 25997470
  144. Susmita Kaushik et al. (2015). "Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis".PMID 25961502
  145. João Vasco Ferreira et al. (2015). "K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy".PMID 25958982
  146. Nobel Del Mar et al. (2015). "A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments".PMID 25957630
  147. Yunha Kim et al. (2015). "Uvrag targeting by Mir125a and Mir351 modulates autophagy associated with Ewsr1 deficiency".PMID 25946189
  148. Marta Mauro-Lizcano et al. (2015). "New method to assess mitophagy flux by flow cytometry".PMID 25945953
  149. Yin Shi et al. (2015). "Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy".PMID 25945613
  150. Li Zhang et al. (2015). "FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells".PMID 25939952
  151. Takao Kitagawa et al. (2015). "Mutant screening for oncogenes of Ewing's sarcoma using yeast".PMID 25936378
  152. Shuxi Qiao et al. (2015). "A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity".PMID 25916556
  153. Ariadna Laguna et al. (2015). "Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson's disease".PMID 25915474
  154. Hiroshi Itoh et al. (2015). "Enhancement of neutrophil autophagy by an IVIG preparation against multidrug-resistant bacteria as well as drug-sensitive strains".PMID 25908735
  155. Noelle M Marsh et al. (2015). "HSPB8 and the Cochaperone BAG3 Are Highly Expressed During the Synthetic Phase of Rat Myometrium Programming During Pregnancy".PMID 25904010
  156. Sangho Lee et al. (2015). "Strenuous exercise induces mitochondrial damage in skeletal muscle of old mice".PMID 25887799
  157. Jacky Chung et al. (2015). "The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability".PMID 25872869
  158. Giulia Milan et al. (2015). "Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy".PMID 25858807
  159. Surender Vashist et al. (2015). "Molecular chaperone Hsp90 is a therapeutic target for noroviruses".PMID 25855731
  160. Lauren R Kett et al. (2015). "α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2".PMID 25855184
  161. Jiang Zhao et al. (2015). "Detrusor myocyte autophagy protects the bladder function via inhibiting the inflammation in cyclophosphamide-induced cystitis in rats".PMID 25830308
  162. Wenjie Zhang et al. (2015). "PTPRO-mediated autophagy prevents hepatosteatosis and tumorigenesis".PMID 25826083
  163. Tao Zhang et al. (2015). "G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L".PMID 25821988
  164. Marina N Sharifi et al. (2015). "Measuring autophagy in stressed cells".PMID 25804753
  165. Peter Crauwels et al. (2015). "Apoptotic-like Leishmania exploit the host's autophagy machinery to reduce T-cell-mediated parasite elimination".PMID 25801301
  166. Lionel Leclere et al. (2015). "Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells".PMID 25794149
  167. Matthias S Roost et al. (2014). "Lymphangiogenesis and angiogenesis during human fetal pancreas development".PMID 25785186
  168. A M Strohecker et al. (2015). "Identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel autophagy regulator by high content shRNA screening".PMID 25772235
  169. Agata Desantis et al. (2015). "Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy".PMID 25770584
  170. Caleigh M Opperman et al. (2015). "Tumor necrosis factor alpha stimulates p62 accumulation and enhances proteasome activity independently of ROS".PMID 25761618
  171. Enyu Rao et al. (2015). "Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death".PMID 25760243
  172. Jordan Wengrod et al. (2015). "Phosphorylation of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma".PMID 25759478
  173. Suzanna L Prosser et al. (2015). "Centrin2 regulates CP110 removal in primary cilium formation".PMID 25753040
  174. Hao Zheng Yang et al. (2015). "Autophagy contributes to the enrichment and survival of colorectal cancer stem cells under oxaliplatin treatment".PMID 25749420
  175. Agnete Bratsberg Eriksen et al. (2015). "Retinoic acid-induced IgG production in TLR-activated human primary B cells involves ULK1-mediated autophagy".PMID 25749095
  176. Rubén Gómez-Sánchez et al. (2015). "Routine Western blot to check autophagic flux: cautions and recommendations".PMID 25747848
  177. Yi Ma et al. (2015). "Testosterone regulates the autophagic clearance of androgen binding protein in rat Sertoli cells".PMID 25745956
  178. Véronique Pène et al. (2015). "Dynamic Interaction of Stress Granules, DDX3X, and IKK-α Mediates Multiple Functions in Hepatitis C Virus Infection".PMID 25740981
  179. Yong Weon Yi et al. (2015). "β-TrCP1 degradation is a novel action mechanism of PI3K/mTOR inhibitors in triple-negative breast cancer cells".PMID 25721419
  180. Nikolai V Gorbunov et al. (2015). "Autophagy and mitochondrial remodelling in mouse mesenchymal stromal cells challenged with Staphylococcus epidermidis".PMID 25721260
  181. Diego L Medina et al. (2015). "Lysosomal calcium signalling regulates autophagy through calcineurin and ​TFEB".PMID 25720963
  182. Jose Manuel Bravo San Pedro et al. (2015). "BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy".PMID 25715028
  183. Millore X M Luo et al. (2015). "Autophagy Mediates HBx-Induced Nuclear Factor-κB Activation and Release of IL-6, IL-8, and CXCL2 in Hepatocytes".PMID 25708728
  184. Heon Yung Gee et al. (2015). "Analysis of conventional and unconventional trafficking of CFTR and other membrane proteins".PMID 25702115
  185. Majid Sakhi Jabir et al. (2015). "Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy".PMID 25700738
  186. Lucia Polletta et al. (2015). "SIRT5 regulation of ammonia-induced autophagy and mitophagy".PMID 25700560
  187. Kyle Bauckman et al. (2015). "Iron alters cell survival in a mitochondria-dependent pathway in ovarian cancer cells".PMID 25697096
  188. R Nisar et al. (2015). "Diquat causes caspase-independent cell death in SH-SY5Y cells by production of ROS independently of mitochondria".PMID 25693864
  189. Shih Ya Hung et al. (2015). "LC3 overexpression reduces Aβ neurotoxicity through increasing α7nAchR expression and autophagic activity in neurons and mice".PMID 25686800
  190. Eirini Pantazi et al. (2015). "Sirtuin 1 in rat orthotopic liver transplantation: an IGL-1 preservation solution approach".PMID 25684941
  191. Paula Szalai et al. (2015). "Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs".PMID 25684710
  192. Shaoqing Shi et al. (2015). "Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis".PMID 25682199
  193. Reddy Peera Kommaddi et al. (2015). "Phosphorylation of the deubiquitinase USP20 by protein kinase A regulates post-endocytic trafficking of β2 adrenergic receptors to autophagosomes during physiological stress".PMID 25666616
  194. Ana Guerrero et al. (2015). "The cerebral cavernous malformation 3 gene is necessary for senescence induction".PMID 25655101
  195. Aishu Ren et al. (2015). "Inhibition of H3K9 methyltransferase G9a induces autophagy and apoptosis in oral squamous cell carcinoma".PMID 25634693
  196. Shu Wang et al. (2015). "ATF4 Gene Network Mediates Cellular Response to the Anticancer PAD Inhibitor YW3-56 in Triple-Negative Breast Cancer Cells".PMID 25612620
  197. Masashi Kanayama et al. (2015). "Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity".PMID 25609235
  198. Anne Marie Arel-Dubeau et al. (2014). "Cucurbitacin E has neuroprotective properties and autophagic modulating activities on dopaminergic neurons".PMID 25574337
  199. Z Zhou et al. (2015). "Autophagy supports survival and phototransduction protein levels in rod photoreceptors".PMID 25571975
  200. L Liu et al. (2015). "Tamoxifen reduces fat mass by boosting reactive oxygen species".PMID 25569103
  201. S Liu et al. (2015). "Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death".PMID 25569099
  202. Matthildi Valianou et al. (2015). "Pharmacological inhibition of Polo-like kinase 1 (PLK1) by BI-2536 decreases the viability and survival of hamartin and tuberin deficient cells via induction of apoptosis and attenuation of autophagy".PMID 25565629
  203. Marta Bueno et al. (2015). "PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis".PMID 25562319
  204. Sharon Mudie et al. (2014). "PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia".PMID 25558831
  205. Helen L Wiggins et al. (2015). "Disulfiram-induced cytotoxicity and endo-lysosomal sequestration of zinc in breast cancer cells".PMID 25557293
  206. Peter Sykora et al. (2015). "DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes".PMID 25552414
  207. Shakeel U R Mir et al. (2015). "Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death".PMID 25548282
  208. Alfeu Zanotto-Filho et al. (2015). "Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas".PMID 25542083
  209. Claudia Fiorini et al. (2015). "Onconase induces autophagy sensitizing pancreatic cancer cells to gemcitabine and activates Akt/mTOR pathway in a ROS-dependent manner".PMID 25533084
  210. Bharat Jaishy et al. (2015). "Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity".PMID 25529920
  211. Gabriele Di Sante et al. (2015). "Loss of Sirt1 promotes prostatic intraepithelial neoplasia, reduces mitophagy, and delays PARK2 translocation to mitochondria".PMID 25529796
  212. Krishna K Singh et al. (2015). "The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition".PMID 25527499
  213. Iván Durán et al. (2015). "HSP47 and FKBP65 cooperate in the synthesis of type I procollagen".PMID 25510505
  214. Panojot Bifsha et al. (2014). "Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra".PMID 25501001
  215. Guan Yu Chen et al. (2015). "Graphene oxide as a chemosensitizer: diverted autophagic flux, enhanced nuclear import, elevated necrosis and improved antitumor effects".PMID 25498801
  216. Máté Varga et al. (2015). "Autophagy in zebrafish".PMID 25498006
  217. Chinmoy Sarkar et al. (2014). "Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury".PMID 25484084
  218. Kristine Porter et al. (2015). "Autophagic dysregulation in glaucomatous trabecular meshwork cells".PMID 25483712
  219. Alexandra Giatromanolaki et al. (2014). "Autophagy and lysosomal related protein expression patterns in human glioblastoma".PMID 25482944
  220. Lu Zhang et al. (2015). "Novel role for TRPC4 in regulation of macroautophagy by a small molecule in vascular endothelial cells".PMID 25476892
  221. Hong Liu et al. (2015). "Inhibition of autophagy recovers cardiac dysfunction and atrophy in response to tail-suspension".PMID 25476825
  222. Sijun Yang et al. (2014). "Defective mitophagy driven by dysregulation of rheb and KIF5B contributes to mitochondrial reactive oxygen species (ROS)-induced nod-like receptor 3 (NLRP3) dependent proinflammatory response and aggravates lipotoxicity".PMID 25462067
  223. Tae Hyung Kim et al. (2015). "Psammaplin A induces Sirtuin 1-dependent autophagic cell death in doxorubicin-resistant MCF-7/adr human breast cancer cells and xenografts".PMID 25445714
  224. Wei Lu et al. (2015). "A 3'UTR-associated RNA, FLJ11812 maintains stemness of human embryonic stem cells by targeting miR-4459".PMID 25437332
  225. Ana I Rovetta et al. (2014). "IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis".PMID 25426782
  226. Wei He et al. (2014). "Microtubule-associated protein 1 light chain 3 interacts with and contributes to growth inhibiting effect of PML".PMID 25419843
  227. CHRISTOPHER JOHN BOWMAN et al. (2014). "Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs".PMID 25402684
  228. Nils C Gassen et al. (2014). "Association of FKBP51 with priming of autophagy pathways and mediation of antidepressant treatment response: evidence in cells, mice, and humans".PMID 25386878
  229. Huishan Guo et al. (2014). "Autophagy supports genomic stability by degrading retrotransposon RNA".PMID 25366815
  230. William E Dowdle et al. (2014). "Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo".PMID 25327288
  231. Nai Di Yang et al. (2014). "Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin".PMID 25305013
  232. Yufeng Wang et al. (2014). "Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer".PMID 25271986
  233. Dun Sheng Yang et al. (2014). "Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting lysosomal proteolytic deficits".PMID 25270989
  234. Lynda K McGinnis et al. (2014). "Post-ovulatory aging of oocytes disrupts kinase signaling pathways and lysosome biogenesis".PMID 25242074
  235. Nathan D Roe et al. (2015). "Targeted deletion of PTEN in cardiomyocytes renders cardiac contractile dysfunction through interruption of Pink1-AMPK signaling and autophagy".PMID 25229693
  236. Ernesto Perez-Chanona et al. (2014). "The microbiota protects against ischemia/reperfusion-induced intestinal injury through nucleotide-binding oligomerization domain-containing protein 2 (NOD2) signaling".PMID 25204845
  237. Takeo Nitta et al. (2014). "Autophagy may promote carcinoma cell invasion and correlate with poor prognosis in cholangiocarcinoma".PMID 25197362
  238. Jia Liu et al. (2014). "Oleanolic acid inhibits proliferation and invasiveness of Kras-transformed cells via autophagy".PMID 25172632
  239. Yue Liu et al. (2014). "Expression levels of autophagy related proteins and their prognostic significance in retinocytoma and retinoblastoma".PMID 25161927
  240. Vanessa Ginet et al. (2014). "Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic".PMID 25146903
  241. Bin Guo et al. (2014). "The nascent polypeptide-associated complex is essential for autophagic flux".PMID 25126725
  242. Lan Hui Li et al. (2014). "Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells".PMID 25105411
  243. Mohamed Amine Hamouda et al. (2014). "The small heat shock protein B8 (HSPB8) confers resistance to bortezomib by promoting autophagic removal of misfolded proteins in multiple myeloma cells".PMID 25051369
  244. Enrico Desideri et al. (2014). "MAPK14/p38α-dependent modulation of glucose metabolism affects ROS levels and autophagy during starvation".PMID 25046111
  245. Robert Domitrovic et al. (2014). "Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury".PMID 25043994
  246. R Corpeno et al. (2014). "Time course analysis of mechanical ventilation-induced diaphragm contractile muscle dysfunction in the rat".PMID 25015920
  247. Rebecca A Barnard et al. (2014). "Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma".PMID 24991836
  248. Ana L Morgado et al. (2015). "MicroRNA-34a Modulates Neural Stem Cell Differentiation by Regulating Expression of Synaptic and Autophagic Proteins".PMID 24973144
  249. Hiu Yeung Lau et al. (2014). "An improved isoprenylcysteine carboxylmethyltransferase inhibitor induces cancer cell death and attenuates tumor growth in vivo".PMID 24971579
  250. Melissa Nassif et al. (2014). "Pathogenic role of BECN1/Beclin 1 in the development of amyotrophic lateral sclerosis".PMID 24905722
  251. Katarzyna Zielniok et al. (2014). "Functional interactions between 17 β -estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures".PMID 24895572
  252. Siying Li et al. (2014). "Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction".PMID 24895528
  253. Li Lin et al. (2015). "Isosorbide dinitrate inhibits mechanical stress-induced cardiac hypertrophy and autophagy through downregulation of angiotensin II type 1 receptor".PMID 24887682
  254. Safia Costes et al. (2014). "UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells: evidence of interplay between the ubiquitin/proteasome system and autophagy".PMID 24879150
  255. Giulia Ambrosi et al. (2014). "Bioenergetic and proteolytic defects in fibroblasts from patients with sporadic Parkinson's disease".PMID 24854107
  256. Hongna Wang et al. (2014). "Atg7 is required for acrosome biogenesis during spermatogenesis in mice".PMID 24853953
  257. S Yang et al. (2014). "Mitochondrial dysfunction driven by the LRRK2-mediated pathway is associated with loss of Purkinje cells and motor coordination deficits in diabetic rat model".PMID 24810053
  258. Mayumi Watanabe et al. (2014). "Activation of the ubiquitin-proteasome system against arsenic trioxide cardiotoxicity involves ubiquitin ligase Parkin for mitochondrial homeostasis".PMID 24801902
  259. David I Brown et al. (2014). "Poldip2 knockout results in perinatal lethality, reduced cellular growth and increased autophagy of mouse embryonic fibroblasts".PMID 24797518
  260. S C Cazanave et al. (2014). "Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis".PMID 24769730
  261. Liana Roberts Stein et al. (2014). "Expression of Nampt in hippocampal and cortical excitatory neurons is critical for cognitive function".PMID 24760840
  262. A Gonzalez-Rodriguez et al. (2014). "Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD".PMID 24743734
  263. X Zhao et al. (2014). "Inhibition of autophagy strengthens celastrol-induced apoptosis in human pancreatic cancer in vitro and in vivo models".PMID 24730520
  264. Eloy Bejarano et al. (2014). "Connexins modulate autophagosome biogenesis".PMID 24705551
  265. Hazem Akkad et al. (2014). "Masseter muscle myofibrillar protein synthesis and degradation in an experimental critical illness myopathy model".PMID 24705179
  266. Joseph D Mancias et al. (2014). "Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy".PMID 24695223
  267. Mansour Akbari et al. (2014). "Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair".PMID 24674627
  268. Abdelhalim Loukil et al. (2014). "High-resolution live-cell imaging reveals novel cyclin A2 degradation foci involving autophagy".PMID 24634511
  269. Silvia Carloni et al. (2014). "Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways".PMID 24631374
  270. Rafah Mackeh et al. (2014). "Reactive oxygen species, AMP-activated protein kinase, and the transcription cofactor p300 regulate α-tubulin acetyltransferase-1 (αTAT-1/MEC-17)-dependent microtubule hyperacetylation during cell stress".PMID 24619423
  271. Mari Ekman et al. (2014). "HIF-mediated metabolic switching in bladder outlet obstruction mitigates the relaxing effect of mitochondrial inhibition".PMID 24589856
  272. Li Lin et al. (2014). "Mechanical stress triggers cardiomyocyte autophagy through angiotensin II type 1 receptor-mediated p38MAP kinase independently of angiotensin II".PMID 24586922
  273. Kristine M Porter et al. (2014). "MTOR-independent induction of autophagy in trabecular meshwork cells subjected to biaxial stretch".PMID 24583119
  274. Yoko Maruyama et al. (2014). "LC3B is indispensable for selective autophagy of p62 but not basal autophagy".PMID 24582747
  275. Wen Li et al. (2014). "MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX".PMID 24573672
  276. Jun Ohshima et al. (2014). "Role of mouse and human autophagy proteins in IFN-γ-induced cell-autonomous responses against Toxoplasma gondii".PMID 24563254
  277. Kimberley M Mellor et al. (2014). "Cardiomyocyte glycophagy is regulated by insulin and exposure to high extracellular glucose".PMID 24561860
  278. Pei Ching Chang et al. (2014). "Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells".PMID 24551118
  279. Laura Poillet et al. (2014). "QSOX1 inhibits autophagic flux in breast cancer cells".PMID 24475161
  280. Jianzhong Li et al. (2014). "Rictor/mTORC2 protects against cisplatin-induced tubular cell death and acute kidney injury".PMID 24451322
  281. Alice E Zemljic-Harpf et al. (2014). "Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes".PMID 24413171
  282. Jung Woo Kang et al. (2014). "Melatonin inhibits mTOR-dependent autophagy during liver ischemia/reperfusion".PMID 24401531
  283. Barbara Baldo et al. (2013). "Maintenance of basal levels of autophagy in Huntington's disease mouse models displaying metabolic dysfunction".PMID 24376631
  284. Aaron Y Lai et al. (2014). "scyllo-Inositol promotes robust mutant Huntingtin protein degradation".PMID 24352657
  285. Joana M Xavier et al. (2014). "Mitochondrial translocation of p53 modulates neuronal fate by preventing differentiation-induced mitochondrial stress".PMID 24329038
  286. Sébastien Brot et al. (2014). "Collapsin response mediator protein 5 (CRMP5) induces mitophagy, thereby regulating mitochondrion numbers in dendrites".PMID 24324268
  287. Zhenzhen Zhan et al. (2014). "Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination".PMID 24321786
  288. Wei Jia Wang et al. (2014). "Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway".PMID 24316735
  289. Lorenza Sisinni et al. (2014). "TRAP1 role in endoplasmic reticulum stress protection favors resistance to anthracyclins in breast carcinoma cells".PMID 24297638
  290. Shi Hao Tan et al. (2014). "Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway".PMID 24296537
  291. Yael H Edrey et al. (2014). "Oxidative damage and amyloid-β metabolism in brain regions of the longest-lived rodents".PMID 24273049
  292. Noemi Rubio et al. (2014). "p38(MAPK)-regulated induction of p62 and NBR1 after photodynamic therapy promotes autophagic clearance of ubiquitin aggregates and reduces reactive oxygen species levels by supporting Nrf2-antioxidant signaling".PMID 24269898
  293. Yin Xu et al. (2014). "Overexpression of p62/SQSTM1 promotes the degradations of abnormally accumulated PrP mutants in cytoplasm and relieves the associated cytotoxicities via autophagy-lysosome-dependent way".PMID 24240628
  294. Zuozhang Yang et al. (2013). "Regulation of autophagy via PERK-eIF2α effectively relieve the radiation myelitis induced by iodine-125".PMID 24223705
  295. Claudia Manzoni et al. (2013). "Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation".PMID 24211199
  296. Rubén Gómez-Sánchez et al. (2014). "Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression".PMID 24184327
  297. Vinita G Chittoor et al. (2013). "Biochemical characterization of protein quality control mechanisms during disease progression in the C22 mouse model of CMT1A".PMID 24175617
  298. Peng fei Wei et al. (2014). "Accelerating the clearance of mutant huntingtin protein aggregates through autophagy induction by europium hydroxide nanorods".PMID 24169003
  299. Yuan Fei Peng et al. (2013). "Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells".PMID 24157892
  300. Ming liang Chen et al. (2013). "Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway".PMID 24145604
  301. Chandrashekara Kyathanahalli et al. (2013). "Cross-species withdrawal of MCL1 facilitates postpartum uterine involution in both the mouse and baboon".PMID 24140717
  302. Andrea Armstrong et al. (2014). "Lysosomal network proteins as potential novel CSF biomarkers for Alzheimer's disease".PMID 24101586
  303. Larisa V Fedorova et al. (2013). "Mitochondrial impairment in the five-sixth nephrectomy model of chronic renal failure: proteomic approach".PMID 24090408
  304. Robert Domitrovic et al. (2013). "Berberine exerts nephroprotective effect against cisplatin-induced kidney damage through inhibition of oxidative/nitrosative stress, inflammation, autophagy and apoptosis".PMID 24025684
  305. In Hye Lee et al. (2013). "The emerging links between sirtuins and autophagy".PMID 24014412
  306. Silvia Ramírez-Peinado et al. (2013). "Glucose-starved cells do not engage in prosurvival autophagy".PMID 24014036
  307. Alberto Bartolomé et al. (2013). "Autophagy impairment aggravates the inhibitory effects of high glucose on osteoblast viability and function".PMID 23981124
  308. W He et al. (2014). "A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy".PMID 23831571
  309. Y Yuan et al. (2013). "Gossypol and an HMT G9a inhibitor act in synergy to induce cell death in pancreatic cancer cells".PMID 23807219
  310. Asako Itakura et al. (2013). "Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy".PMID 23720022
  311. Saurabh Ghosh Roy et al. (2013). "Reciprocal effects of rab7 deletion in activated and neglected T cells".PMID 23615463
  312. K A Bauckman et al. (2013). "Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells".PMID 23598404
  313. Vrajesh V Parekh et al. (2013). "Impaired autophagy, defective T cell homeostasis, and a wasting syndrome in mice with a T cell-specific deletion of Vps34".PMID 23596309
  314. Monte S Willis et al. (2013). "Carboxyl terminus of Hsp70-interacting protein (CHIP) is required to modulate cardiac hypertrophy and attenuate autophagy during exercise".PMID 23553918
  315. Jessica M Posimo et al. (2013). "Neocortex and allocortex respond differentially to cellular stress in vitro and aging in vivo".PMID 23536801
  316. Li Luo et al. (2013). "Chronic resistance training activates autophagy and reduces apoptosis of muscle cells by modulating IGF-1 and its receptors, Akt/mTOR and Akt/FOXO3a signaling in aged rats".PMID 23419688
  317. Kapil Sirohi et al. (2013). "M98K-OPTN induces transferrin receptor degradation and RAB12-mediated autophagic death in retinal ganglion cells".PMID 23357852
  318. Charlotte Suetta et al. (2012). "Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy".PMID 23284670
  319. Rosa Sánchez-Alvarez et al. (2013). "Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention".PMID 23257780
  320. Rosa Sánchez-Alvarez et al. (2013). "Mitochondrial dysfunction in breast cancer cells prevents tumor growth: understanding chemoprevention with metformin".PMID 23257779
  321. David W Woessner et al. (2013). "Disrupting BCR-ABL in combination with secondary leukemia-specific pathways in CML cells leads to enhanced apoptosis and decreased proliferation".PMID 23211037
  322. Alice C Newman et al. (2012). "TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-κB signalling".PMID 23209807
  323. Vincenzo Giansanti et al. (2013). "Characterization of stress response in human retinal epithelial cells".PMID 23205553
  324. Rianna Vandergaast et al. (2012). "West Nile virus (WNV) replication is independent of autophagy in mammalian cells".PMID 23029249
  325. Shu Yong Lin et al. (2012). "GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy".PMID 22539723
  326. Anne Cecile Durieux et al. (2012). "A centronuclear myopathy--dynamin 2 mutation impairs autophagy in mice".PMID 22369075
  327. Isei Tanida et al. (2012). "The FAP motif within human ATG7, an autophagy-related E1-like enzyme, is essential for the E2-substrate reaction of LC3 lipidation".PMID 22170151
  328. Wen Chi Su et al. (2011). "Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy".PMID 21835792
  329. Ken C Walls et al. (2010). "Lysosome dysfunction triggers Atg7-dependent neural apoptosis".PMID 20123985
  330. Kasper M A Rouschop et al. (2010). "The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5".PMID 20038797
  331. Shin Ichiro Hayashi et al. (2009). "The stent-eluting drugs sirolimus and paclitaxel suppress healing of the endothelium by induction of autophagy".PMID 19815708
  332. Jun Inoue et al. (2009). "Lysosomal-associated protein multispanning transmembrane 5 gene (LAPTM5) is associated with spontaneous regression of neuroblastomas".PMID 19787053
  333. Zhi Hua Chen et al. (2008). "Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease".PMID 18830406
  334. Jennifer M Rosenbluth et al. (2008). "A gene signature-based approach identifies mTOR as a regulator of p73".PMID 18678646
  335. Jie Han et al. (2008). "Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells".PMID 18375389
  336. Cindy L Liu et al. (2008). "Changes in autophagy after traumatic brain injury".PMID 18059433
  337. Yoshinori Takahashi et al. (2007). "Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis".PMID 17891140