这是一篇来自已证抗体库的有关人类 MAP1LC3B的综述,是根据596篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合MAP1LC3B 抗体。
MAP1LC3B 同义词: ATG8F; LC3B; MAP1A/1BLC3; MAP1LC3B-a; microtubule-associated proteins 1A/1B light chain 3B; MAP1 light chain 3-like protein 2; MAP1A/MAP1B LC3 B; MAP1A/MAP1B light chain 3 B; autophagy-related ubiquitin-like modifier LC3 B

Novus Biologicals
兔 多克隆
  • 免疫印迹; 小鼠; 图2c
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在小鼠样品上 (图2c). Cell Immunol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图e4d
  • 免疫印迹; 小鼠; 图1a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB 100-2220)被用于免疫印迹在人类样品上 (图e4d) 和 在小鼠样品上 (图1a). Nature (2017) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:200; 图3
  • 免疫印迹; 大鼠; 1:1000; 图1a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于免疫组化在大鼠样品上浓度为1:200 (图3) 和 免疫印迹在大鼠样品上浓度为1:1000 (图1a). Am J Transl Res (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图4d
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4d). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图8c
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上浓度为1:1000 (图8c). J Nutr Biochem (2017) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:200; 图5a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-222055)被用于免疫细胞化学在人类样品上浓度为1:200 (图5a). Cell Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图1b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上浓度为1:2000 (图1b). Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3d
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB00-2220)被用于免疫印迹在小鼠样品上 (图3d). JCI Insight (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图1f
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1f). EMBO Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1h
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上 (图1h). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图5a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在小鼠样品上浓度为1:2000 (图5a). J Cell Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3f
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在小鼠样品上 (图3f). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图3a
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3a). J Huntingtons Dis (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图5a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NN100-2220)被用于免疫组化在人类样品上 (图5a). J Transl Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5b
Novus Biologicals MAP1LC3B抗体(Novus biological, NB100-2220)被用于免疫印迹在人类样品上 (图5b). Front Cell Infect Microbiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在大鼠样品上浓度为1:1000. Mol Genet Metab (2016) ncbi
兔 多克隆
  • 免疫印迹 (基因敲减); 人类; 图4e
Novus Biologicals MAP1LC3B抗体(NovusBio, NB100-2220)被用于免疫印迹 (基因敲减)在人类样品上 (图4e). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1e
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在人类样品上 (图1e). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图6
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在小鼠样品上浓度为1:5000 (图6). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在人类样品上 (图3). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
  • 细胞化学; 人类; 图3
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上浓度为1:1000 (图3) 和 免疫细胞化学在人类样品上 (图3). Drug Des Devel Ther (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上. Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图5b
  • 细胞化学; 人类; 1:400; 图2d
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上浓度为1:1000 (图5b) 和 免疫细胞化学在人类样品上浓度为1:400 (图2d). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, 600-1384)被用于免疫印迹在人类样品上 (图5). J Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
Novus Biologicals MAP1LC3B抗体(Novusbio, NB600-1384)被用于免疫印迹在人类样品上 (图6). Neurobiol Dis (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:4000; 图3
  • 免疫印迹; 人类; 图1a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于免疫组化-石蜡切片在人类样品上浓度为1:4000 (图3) 和 免疫印迹在人类样品上 (图1a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图1a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1a). J Pharmacol Exp Ther (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上 (图4b). Oncotarget (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 图7
  • 免疫印迹; 小鼠; 图1
  • 免疫印迹; 大鼠; 图10
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫细胞化学在小鼠样品上 (图7) 和 免疫印迹在小鼠样品上 (图1) 和 在大鼠样品上 (图10). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图6
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB100-2220)被用于免疫印迹在小鼠样品上 (图6). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图2
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于免疫印迹在人类样品上浓度为1:1000 (图2). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上 (图6). J Nanobiotechnology (2016) ncbi
兔 多克隆
  • 免疫印迹; 斑马鱼; 1:2000; 图s2
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在斑马鱼样品上浓度为1:2000 (图s2). Hum Mol Genet (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在小鼠样品上. Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图s1
  • 免疫印迹; 小鼠; 1:1000; 图6
Novus Biologicals MAP1LC3B抗体(Novus, NB 100-2220)被用于免疫印迹在人类样品上浓度为1:1000 (图s1) 和 在小鼠样品上浓度为1:1000 (图6). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在人类样品上 (图3). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:10,000; 图1
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上浓度为1:10,000 (图1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图3
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上浓度为1:2000 (图3). J Cell Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图7
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在人类样品上浓度为1:5000 (图7). Traffic (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:100; 图2e
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图2e). J Mol Cell Cardiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上 (图1). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB100?C2220)被用于免疫印迹在小鼠样品上 (图1). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于免疫印迹在人类样品上 (图4). Mol Pharmacol (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:500; 图s4b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图s4b). Kidney Int (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图1
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220SS)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图1a
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在人类样品上浓度为1:5000 (图1a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图1a
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于免疫印迹在人类样品上浓度为1:5000 (图1a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7b
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB-100-2220)被用于免疫印迹在人类样品上 (图7b). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图4a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220SS)被用于免疫印迹在人类样品上浓度为1:1000 (图4a). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:4000; 图1
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上浓度为1:4000 (图1). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在大鼠样品上. Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, 100-2220)被用于免疫印迹在人类样品上 (图2). Leukemia (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图5
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在大鼠样品上 (图5). Nutr Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:600; 图8
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在人类样品上浓度为1:600 (图8). Sci Rep (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
Novus Biologicals MAP1LC3B抗体(Novus Biologicals;, NB600- 1384)被用于免疫细胞化学在人类样品上. Nature (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:200
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫细胞化学在人类样品上浓度为1:100 和 免疫印迹在人类样品上浓度为1:200. Life Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上 (图1a). PLoS Pathog (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图4
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, 100-2220)被用于免疫印迹在人类样品上浓度为1:1000 (图4). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于免疫印迹在人类样品上 (图5). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上. Cell Signal (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图s5
Novus Biologicals MAP1LC3B抗体(novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上浓度为1:5000 (图s5). Nat Commun (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 图s7
  • 免疫印迹; 人类; 1:2000; 图s7
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于免疫细胞化学在人类样品上 (图s7) 和 免疫印迹在人类样品上浓度为1:2000 (图s7). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于免疫组化在小鼠样品上. Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图8
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在小鼠样品上 (图8). Autophagy (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
  • 免疫印迹; 大鼠
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于免疫细胞化学在人类样品上 和 免疫印迹在大鼠样品上. Toxicol Lett (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图S6
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在小鼠样品上浓度为1:2000 (图S6). Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在小鼠样品上浓度为1:5000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图2
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于免疫印迹在人类样品上浓度为1:5000 (图2). Nat Genet (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于免疫印迹在人类样品上 (图4). Oncogene (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于免疫印迹在人类样品上 (图2). Sci Signal (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:400; 图6
  • 免疫印迹; 人类; 1:1000; 图6
  • 免疫印迹; 小鼠; 1:1000; 图6
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫细胞化学在小鼠样品上浓度为1:400 (图6) 和 免疫印迹在人类样品上浓度为1:1000 (图6) 和 在小鼠样品上浓度为1:1000 (图6). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图2
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). Autophagy (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:100; 图3
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫组化在人类样品上浓度为1:100 (图3). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4a
  • 细胞化学; 人类; 图4b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上 (图4a) 和 免疫细胞化学在人类样品上 (图4b). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹 (基因敲减); 小鼠; 图1f
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB100-2220)被用于免疫印迹 (基因敲减)在小鼠样品上 (图1f). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
  • 免疫印迹; 小鼠; 图5
Novus Biologicals MAP1LC3B抗体(novus Biologicals, NB600-1384)被用于免疫印迹在人类样品上 (图5) 和 在小鼠样品上 (图5). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3c
Novus Biologicals MAP1LC3B抗体(NOVUS Biologicals, NB100-2220)被用于免疫印迹在人类样品上 (图3c). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图9
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在人类样品上 (图9). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:200
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在大鼠样品上浓度为1:200. Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫组化在小鼠样品上. J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在小鼠样品上 (图2). Nucleic Acids Res (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:200; 图s7
  • 免疫印迹; 小鼠; 1:1000; 图1
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图s7) 和 免疫印迹在小鼠样品上浓度为1:1000 (图1). Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图4
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Nat Cell Biol (2014) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:250
Novus Biologicals MAP1LC3B抗体(Novus biological, NB100-2220)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:250. Brain (2014) ncbi
兔 多克隆
  • FC; 狗; 1:40
  • 免疫印迹; 狗; 1:1000
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于流式细胞仪在狗样品上浓度为1:40 和 免疫印迹在狗样品上浓度为1:1000. Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 牛
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在牛样品上. Biomed Res Int (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于免疫印迹在小鼠样品上浓度为1:2000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于免疫印迹在人类样品上. DNA Repair (Amst) (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于免疫印迹在小鼠样品上. J Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在小鼠样品上. Cell Physiol Biochem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5e
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上 (图5e). Int J Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
Novus Biologicals MAP1LC3B抗体(Novus Biologics, NB100-2220)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:3000
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于免疫印迹在大鼠样品上浓度为1:3000. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 细胞化学; 人类
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在人类样品上 和 免疫细胞化学在人类样品上. Med Microbiol Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫印迹在人类样品上. Biochem Biophys Res Commun (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于免疫印迹在人类样品上. Biomaterials (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于免疫印迹在人类样品上浓度为1:1000. Neuromolecular Med (2014) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:1000
  • 免疫印迹; 大鼠; 1:1000
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000 和 免疫印迹在大鼠样品上浓度为1:1000. BMC Nephrol (2013) ncbi
艾博抗(上海)贸易有限公司
兔 多克隆
  • 免疫印迹; 人类; 图5a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在人类样品上 (图5a). Curr Biol (2017) ncbi
兔 多克隆
  • 细胞化学; 大鼠
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫细胞化学在大鼠样品上. Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于免疫印迹在人类样品上 (图2a). J Cell Physiol (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图s3c
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫组化在小鼠样品上 (图s3c). PLoS Genet (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2c
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在人类样品上 (图2c). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab483941)被用于免疫印迹在小鼠样品上浓度为1:500. Mol Neurobiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4c
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于免疫印迹在人类样品上 (图4c). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图8
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在小鼠样品上 (图8). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
  • 免疫印迹; 大鼠; 图4
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在人类样品上 (图4) 和 在大鼠样品上 (图4). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图2a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在人类样品上浓度为1:1000 (图2a). Mol Med Rep (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:100; 图1
  • 免疫印迹; 小鼠; 1:1000; 图1
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图1) 和 免疫印迹在小鼠样品上浓度为1:1000 (图1). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:400; 图1
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫组化-石蜡切片在人类样品上浓度为1:400 (图1). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:3000; 图5
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于免疫印迹在人类样品上浓度为1:3000 (图5). Autophagy (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图5a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫组化在人类样品上 (图5a). Cancer Genomics Proteomics (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于免疫印迹在小鼠样品上 (图2). EMBO J (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500; 图2
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在大鼠样品上浓度为1:500 (图2). Hum Mol Genet (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图7
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于免疫印迹在小鼠样品上浓度为1:1000 (图7). J Physiol Biochem (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图4b
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于免疫印迹在大鼠样品上浓度为1:1000 (图4b). Int J Mol Med (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1500; 图3
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1500 (图3). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图9
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫组化在人类样品上 (图9). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图1
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab62721)被用于免疫印迹在大鼠样品上 (图1). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图2a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab128025)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2a). Circ Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在小鼠样品上. Biochem Biophys Res Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 狗; 图4a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, 48394)被用于免疫组化在狗样品上 (图4a). PLoS Genet (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(AbCam, ab48394)被用于免疫印迹在小鼠样品上. Vasc Cell (2014) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:300; 图2a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫组化-石蜡切片在人类样品上浓度为1:300 (图2a). Oncotarget (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:200
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于免疫细胞化学在小鼠样品上浓度为1:200. Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图3
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab128025)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Cell Metab (2015) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:500; 图8
  • 免疫印迹; 大鼠; 1:500; 图9
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫细胞化学在大鼠样品上浓度为1:500 (图8) 和 免疫印迹在大鼠样品上浓度为1:500 (图9). J Mol Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在人类样品上. Ann Neurol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在小鼠样品上浓度为1:500. Toxicology (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在大鼠样品上浓度为1:500. Lab Invest (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:200
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在人类样品上浓度为1:200. Autophagy (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab62721)被用于免疫印迹在大鼠样品上. Exp Gerontol (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 细胞化学; 人类
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在人类样品上 和 免疫细胞化学在人类样品上. Cell Cycle (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于免疫印迹在人类样品上. Cell Cycle (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:3000
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab51520)被用于免疫印迹在人类样品上浓度为1:3000. PLoS ONE (2012) ncbi
赛默飞世尔
兔 多克隆
  • 免疫印迹; 人类; 图4a
赛默飞世尔 MAP1LC3B抗体(Pierce, PA1-16931)被用于免疫印迹在人类样品上 (图4a). Oxid Med Cell Longev (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图6
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA5-32254)被用于免疫印迹在小鼠样品上浓度为1:10,000 (图6). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图8
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-C16,931)被用于免疫印迹在大鼠样品上 (图8). J Nutr Biochem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图s2a
赛默飞世尔 MAP1LC3B抗体(Thermo Fisher Scientific, PA1-16931)被用于免疫印迹在人类样品上 (图s2a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 牛; 1:500; 图1
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-16930)被用于免疫印迹在牛样品上浓度为1:500 (图1). J Dairy Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图3
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-16930)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). J Cell Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-C16930)被用于免疫印迹在小鼠样品上 (图1). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图5
赛默飞世尔 MAP1LC3B抗体(Thermo, PA116931)被用于免疫印迹在小鼠样品上浓度为1:500 (图5). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-46286)被用于免疫印迹在大鼠样品上浓度为1:1000. Biol Reprod (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5e
赛默飞世尔 MAP1LC3B抗体(Thermo, PA5-22731)被用于免疫印迹在小鼠样品上 (图5e). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 斑马鱼; 表2
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-46286)被用于免疫印迹在斑马鱼样品上 (表2). Methods (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛默飞世尔 MAP1LC3B抗体(Thermo Fisher Scientific, PA1-16931)被用于免疫印迹在小鼠样品上. Mol Neurobiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛默飞世尔 MAP1LC3B抗体(Thermo Fisher Scientific, PA1-16931)被用于免疫印迹在小鼠样品上. Antioxid Redox Signal (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:500; 图3
圣克鲁斯生物技术 MAP1LC3B抗体(Santa Cruz, sc-376404)被用于免疫印迹在人类样品上浓度为1:500 (图3). Sci Rep (2016) ncbi
小鼠 单克隆(G-2)
  • 免疫印迹; 人类; 1:1000; 图2
  • 细胞化学; 人类; 图3
圣克鲁斯生物技术 MAP1LC3B抗体(Santa Cruz, sc271625)被用于免疫印迹在人类样品上浓度为1:1000 (图2) 和 免疫细胞化学在人类样品上 (图3). Nat Cell Biol (2015) ncbi
小鼠 单克隆
  • 免疫印迹 (基因敲减); 小鼠; 图5a
  • 免疫印迹; 大鼠; 图2h
圣克鲁斯生物技术 MAP1LC3B抗体(Santa Cruz Biotechnology, sc-398822)被用于免疫印迹 (基因敲减)在小鼠样品上 (图5a). PLoS ONE (2015) ncbi
小鼠 单克隆(G-9)
  • 细胞化学; 大鼠; 图2b
圣克鲁斯生物技术 MAP1LC3B抗体(Santa Cruz, sc-376404)被用于免疫细胞化学在大鼠样品上 (图2b). Sci Rep (2015) ncbi
Enzo Life Sciences
小鼠 单克隆(2G6)
  • 免疫印迹; 人类; 1:1000; 图2
  • 免疫印迹; 小鼠; 1:1000; 图6a
  • 细胞化学; 人类; 1:1000; 图1c
Enzo Life Sciences MAP1LC3B抗体(Enzo Lifesciences, 2G6)被用于免疫印迹在人类样品上浓度为1:1000 (图2) 和 在小鼠样品上浓度为1:1000 (图6a) 和 免疫细胞化学在人类样品上浓度为1:1000 (图1c). Toxicol Sci (2016) ncbi
小鼠 单克隆(2G6)
  • 细胞化学; 人类; 1:250; 图1c
Enzo Life Sciences MAP1LC3B抗体(Enzo/Nanotools, LC3-2G6)被用于免疫细胞化学在人类样品上浓度为1:250 (图1c). elife (2016) ncbi
小鼠 单克隆(5F10)
  • 免疫印迹; 小鼠
  • 细胞化学; 小鼠
Enzo Life Sciences MAP1LC3B抗体(Enzo Life Sciences, 5F10)被用于免疫印迹在小鼠样品上 和 免疫细胞化学在小鼠样品上. J Immunol (2013) ncbi
小鼠 单克隆(2G6)
  • 免疫印迹; 大鼠
  • 细胞化学; 大鼠
Enzo Life Sciences MAP1LC3B抗体(Enzo Life sciences, ALX80308)被用于免疫印迹在大鼠样品上 和 免疫细胞化学在大鼠样品上. Autophagy (2013) ncbi
小鼠 单克隆(5F10)
  • 细胞化学; 大鼠
  • 免疫印迹; 大鼠
Enzo Life Sciences MAP1LC3B抗体(Enzo Life sciences, ALX80308)被用于免疫细胞化学在大鼠样品上 和 免疫印迹在大鼠样品上. Autophagy (2013) ncbi
北京傲锐东源
兔 多克隆
  • 免疫印迹; 人类; 图3
北京傲锐东源 MAP1LC3B抗体(OriGene, TA301543)被用于免疫印迹在人类样品上 (图3). Onco Targets Ther (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
北京傲锐东源 MAP1LC3B抗体(Origene, TA301543)被用于免疫印迹在人类样品上 (图1). Front Pharmacol (2016) ncbi
伯乐(Bio-Rad)公司
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图4
伯乐(Bio-Rad)公司 MAP1LC3B抗体(AbD Serotec, AHP2167T)被用于免疫印迹在人类样品上浓度为1:1000 (图4). BMC Complement Altern Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
伯乐(Bio-Rad)公司 MAP1LC3B抗体(Serotec, AHP2167)被用于免疫印迹在人类样品上 (图6). PLoS ONE (2015) ncbi
亚诺法生技股份有限公司
兔 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图1
  • 细胞化学; 小鼠; 1:500; 图s2
亚诺法生技股份有限公司 MAP1LC3B抗体(Abnova, PAB12534)被用于免疫印迹在小鼠样品上浓度为1:3000 (图1) 和 免疫细胞化学在小鼠样品上浓度为1:500 (图s2). Am J Pathol (2016) ncbi
  • 免疫组化-P; 人类; 图1
  • 免疫印迹; 人类; 图7
亚诺法生技股份有限公司 MAP1LC3B抗体(Abnova, H00081631-P01)被用于免疫组化-石蜡切片在人类样品上 (图1) 和 免疫印迹在人类样品上 (图7). Cancer Biol Ther (2014) ncbi
武汉三鹰
兔 多克隆
  • 免疫印迹; 人类; 图3d
武汉三鹰 MAP1LC3B抗体(Proteintech, 14600-1-AP)被用于免疫印迹在人类样品上 (图3d). Int J Mol Med (2017) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图5c
  • 免疫印迹; 小鼠; 1:1000; 图5d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling, 3868)被用于免疫印迹在人类样品上浓度为1:1000 (图5c) 和 在小鼠样品上浓度为1:1000 (图5d). Sci Rep (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图3a
  • 免疫印迹; 小鼠; 图1a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell signalling, 3868)被用于免疫印迹在人类样品上 (图3a) 和 在小鼠样品上 (图1a). Genes Dev (2017) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:300; 图s4e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775s)被用于免疫细胞化学在人类样品上浓度为1:300 (图s4e). Cell Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 4108s)被用于免疫印迹在人类样品上 (图2). Tumour Biol (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868s)被用于免疫印迹在人类样品上浓度为1:1000 (图2a). Autophagy (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图3e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上浓度为1:1000 (图3e). Cell (2017) ncbi
兔 单克隆(D11)
  • 免疫组化-P; 人类; 1:800; 图6c
  • 免疫印迹; 人类; 1:1000; 图3b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫组化-石蜡切片在人类样品上浓度为1:800 (图6c) 和 免疫印迹在人类样品上浓度为1:1000 (图3b). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775S)被用于免疫印迹在人类样品上 (图2a). J Clin Invest (2017) ncbi
兔 多克隆
  • FC; 人类; 图10c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于流式细胞仪在人类样品上 (图10c). Gene (2017) ncbi
兔 多克隆
  • 免疫印迹; African green monkey; 图9a
  • 免疫印迹; 小鼠; 图5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775S)被用于免疫印迹在African green monkey样品上 (图9a) 和 在小鼠样品上 (图5a). Mol Biol Cell (2017) ncbi
兔 单克隆(D11)
  • 细胞化学; 人类; 图6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell signalling, 3868)被用于免疫细胞化学在人类样品上 (图6). Neoplasia (2017) ncbi
兔 单克隆(D3U4C)
  • 免疫组化-P; 小鼠; 图3d
  • 免疫印迹; 小鼠; 图3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 12741)被用于免疫组化-石蜡切片在小鼠样品上 (图3d) 和 免疫印迹在小鼠样品上 (图3a). J Cell Biochem (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图2b
  • 细胞化学; 人类; 图s3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上 (图2b) 和 免疫细胞化学在人类样品上 (图s3a). Cancer Immunol Res (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上 (图5a). Sci Rep (2017) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:1000; 图s8a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫细胞化学在人类样品上浓度为1:1000 (图s8a). Nat Chem Biol (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图8a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上 (图8a). J Cell Biol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图6e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图6e). PLoS ONE (2017) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 1:1000; 图2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2a). Sci Rep (2017) ncbi
兔 单克隆(D11)
  • 细胞化学; 小鼠; 图2c
  • 免疫印迹; 小鼠; 图8a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫细胞化学在小鼠样品上 (图2c) 和 免疫印迹在小鼠样品上 (图8a). Biochem Pharmacol (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上 (图2a). Sci Rep (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图4b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling, D11)被用于免疫印迹在人类样品上 (图4b). Tumour Biol (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 图3D
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在小鼠样品上 (图3D). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图1d
  • 免疫印迹; 小鼠; 1:1000; 图7a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:1000 (图1d) 和 在小鼠样品上浓度为1:1000 (图7a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上 (图2b). Nature (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1s1g
  • 细胞化学; 人类; 图1a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775)被用于免疫印迹在人类样品上 (图1s1g) 和 免疫细胞化学在人类样品上 (图1a). elife (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图5c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5c). FASEB J (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图1a
  • 免疫印迹; 小鼠; 1:2000; 图6a
  • 细胞化学; 小鼠; 图6b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:2000 (图1a) 和 在小鼠样品上浓度为1:2000 (图6a) 和 免疫细胞化学在小鼠样品上 (图6b). Nucleic Acids Res (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠; 图4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 3868)被用于免疫印迹在人类样品上 和 在小鼠样品上 (图4c). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图7g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在小鼠样品上浓度为1:1000 (图7g). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹 (基因敲减); 小鼠; 图3e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹 (基因敲减)在小鼠样品上 (图3e). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 牛; 1:1000; 图5a
  • 免疫沉淀; 牛; 图6a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 27755)被用于免疫印迹在牛样品上浓度为1:1000 (图5a) 和 免疫沉淀在牛样品上 (图6a). Vet Comp Oncol (2017) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于免疫印迹在人类样品上浓度为1:1000 (图4c). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图5a). Autophagy (2017) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图s4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上浓度为1:1000 (图s4c). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫组化-F; 人类; 1:200; 图5c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫组化-冰冻切片在人类样品上浓度为1:200 (图5c). Hum Mol Genet (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在人类样品上 (图7a). Autophagy (2017) ncbi
兔 多克隆
  • 免疫组化; 人类; 图7b
  • 免疫印迹; 人类; 图5j
  • 免疫印迹; 小鼠; 图5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell signalling, 2775)被用于免疫组化在人类样品上 (图7b) 和 免疫印迹在人类样品上 (图5j) 和 在小鼠样品上 (图5a). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2a
  • 细胞化学; 人类; 图2b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 27755)被用于免疫印迹在人类样品上 (图2a) 和 免疫细胞化学在人类样品上 (图2b). Autophagy (2017) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 人类; 图2a
  • 细胞化学; 人类; 图2b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于免疫印迹在人类样品上 (图2a) 和 免疫细胞化学在人类样品上 (图2b). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:1000 (图5a). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图8a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫印迹在小鼠样品上浓度为1:1000 (图8a). Neurobiol Aging (2017) ncbi
兔 单克隆(D3U4C)
  • 细胞化学; 小鼠; 图5d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Singaling, 12741)被用于免疫细胞化学在小鼠样品上 (图5d). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图6c
  • 免疫印迹; 人类; 图6e
  • 免疫印迹; 小鼠; 图6e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫组化在小鼠样品上 (图6c) 和 免疫印迹在人类样品上 (图6e) 和 在小鼠样品上 (图6e). Autophagy (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上 (图1c). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图2b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在大鼠样品上浓度为1:1000 (图2b). Mol Med Rep (2017) ncbi
兔 单克隆(D11)
  • 免疫组化-P; 小鼠; 1:100; 图2e
  • 免疫印迹; 小鼠; 图2a
  • 免疫印迹; 大鼠; 图3d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图2e) 和 免疫印迹在小鼠样品上 (图2a) 和 在大鼠样品上 (图3d). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2a
  • 免疫印迹; 大鼠; 图3d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图2a) 和 在大鼠样品上 (图3d). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫印迹在人类样品上 (图2f). Nat Med (2016) ncbi
兔 多克隆
  • 细胞化学; African green monkey; 图6b
  • 细胞化学; 人类; 图6a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775S)被用于免疫细胞化学在African green monkey样品上 (图6b) 和 在人类样品上 (图6a). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图3d). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图s4j
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775S)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s4j). Nature (2016) ncbi
兔 单克隆(D11)
  • 细胞化学; 人类; 图2b
  • 免疫印迹; 人类; 图1b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫细胞化学在人类样品上 (图2b) 和 免疫印迹在人类样品上 (图1b). Biochem Biophys Res Commun (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图5f
  • 免疫印迹; 小鼠; 图1b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫组化-石蜡切片在小鼠样品上 (图5f) 和 免疫印迹在小鼠样品上 (图1b). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775 s)被用于免疫印迹在小鼠样品上. Cell Death Discov (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 4108)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1c). Autophagy (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 大鼠; 1:1000; 图2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在大鼠样品上浓度为1:1000 (图2a). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:400; 图5
  • 细胞化学; 人类; 1:400; 图5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:400 (图5) 和 免疫细胞化学在人类样品上浓度为1:400 (图5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 4108)被用于免疫印迹在人类样品上 (图3d). Eur J Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图6). J Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3f
  • 细胞化学; 人类; 图3c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell signalling, 2775)被用于免疫印迹在人类样品上浓度为1:1000 (图3f) 和 免疫细胞化学在人类样品上 (图3c). Toxicol Appl Pharmacol (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 图6a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 4108)被用于免疫细胞化学在人类样品上 (图6a). J Clin Invest (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图6g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上浓度为1:1000 (图6g). Austin J Med Oncol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图1g). Biol Open (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 图2d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D11)被用于免疫印迹在小鼠样品上 (图2d). J Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图7a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3b
  • 免疫组化; 小鼠; 图3c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图3b) 和 免疫组化在小鼠样品上 (图3c). J Clin Invest (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D11)被用于免疫印迹在人类样品上 (图2a). Oncotarget (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上 (图3). Mar Drugs (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Abcam, 3868S)被用于免疫印迹在人类样品上 (图3). Biosci Rep (2016) ncbi
兔 单克隆(D3U4C)
  • 细胞化学; 人类; 图8g
  • 免疫印迹; 人类; 图8a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D3U4C)被用于免疫细胞化学在人类样品上 (图8g) 和 免疫印迹在人类样品上 (图8a). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在大鼠样品上 (图2). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
  • 细胞化学; 人类; 1:200; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图4) 和 免疫细胞化学在人类样品上浓度为1:200 (图2). Int J Oncol (2016) ncbi
兔 多克隆
  • FC; 人类; 图5c
  • 免疫印迹; 人类; 图5b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775 S)被用于流式细胞仪在人类样品上 (图5c) 和 免疫印迹在人类样品上 (图5b). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在大鼠样品上 (图4c). Biochem J (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在人类样品上. Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1a
  • 免疫印迹; 小鼠; 图1b
  • 细胞化学; 小鼠; 图2d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图1a) 和 在小鼠样品上 (图1b) 和 免疫细胞化学在小鼠样品上 (图2d). Autophagy (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 3868P)被用于免疫印迹在人类样品上浓度为1:1000. Oncotarget (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Mol Med Rep (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:250; 图3j
  • 免疫组化-P; 小鼠; 1:250; 图3j
  • 免疫印迹; 小鼠; 1:2000; 图2g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:250 (图3j), 免疫组化-石蜡切片在小鼠样品上浓度为1:250 (图3j), 和 免疫印迹在小鼠样品上浓度为1:2000 (图2g). Autophagy (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 1:1000; 图3c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3c). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图1c). BMC Biochem (2016) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 图8d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫细胞化学在大鼠样品上 (图8d). ACS Nano (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
  • 细胞化学; 小鼠; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫印迹在小鼠样品上 (图3) 和 免疫细胞化学在小鼠样品上 (图3). J Biol Chem (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 人类; 图1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于免疫印迹在人类样品上 (图1d). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图1c). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图s1
  • 细胞化学; 小鼠; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图s1) 和 免疫细胞化学在小鼠样品上 (图4). Mol Cell Oncol (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:5000; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, 3868)被用于免疫印迹在人类样品上浓度为1:5000 (图3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 4108)被用于免疫印迹在大鼠样品上浓度为1:1000 (图1d). Cell Cycle (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图8
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图8). Skelet Muscle (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图4a). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 鸡; 图7
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫印迹在鸡样品上 (图7). Biochem J (2016) ncbi
兔 单克隆(D11)
  • 免疫组化-P; 人类; 1:1000; 图6d
  • 免疫印迹 (基因敲减); 人类; 图3f
  • 细胞化学; 人类; 1:200; 图3b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图6d), 免疫印迹 (基因敲减)在人类样品上 (图3f), 和 免疫细胞化学在人类样品上浓度为1:200 (图3b). Sci Rep (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图1b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上浓度为1:1000 (图1b). Nutrients (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 大鼠; 1:1000; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在大鼠样品上浓度为1:1000 (图2). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 斑马鱼; 1:1000; 图s1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在斑马鱼样品上浓度为1:1000 (图s1c). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图s1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图s1). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图5a). Oncotarget (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:400; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫细胞化学在人类样品上浓度为1:400 (图2). Mol Brain (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell Signaling Tech, 2775)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Acta Neuropathol Commun (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于免疫印迹在人类样品上浓度为1:1000 (图4). J Steroid Biochem Mol Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在人类样品上浓度为1:1000 (图5). Nat Commun (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图1a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上 (图1a). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图s5b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图s5b). Oncotarget (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图5d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于免疫印迹在小鼠样品上 (图5d). Am J Physiol Endocrinol Metab (2016) ncbi
兔 单克隆(D11)
  • 免疫组化-P; 人类; 图4b
  • 细胞化学; 人类; 图2a
  • 免疫印迹; 人类; 图1a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫组化-石蜡切片在人类样品上 (图4b), 免疫细胞化学在人类样品上 (图2a), 和 免疫印迹在人类样品上 (图1a). Autophagy (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图s1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上 (图s1c). J Cell Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图3
  • 免疫组化; 大鼠; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在大鼠样品上浓度为1:1000 (图3) 和 免疫组化在大鼠样品上 (图4). Int J Med Sci (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于免疫印迹在人类样品上 (图2). Cell Cycle (2016) ncbi
兔 单克隆(D11)
  • 细胞化学; 人类; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于免疫细胞化学在人类样品上 (图4). Onco Targets Ther (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图S8
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在小鼠样品上浓度为1:1000 (图S8). Aging Cell (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 图4
  • 免疫印迹; 大鼠; 图6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在小鼠样品上 (图4) 和 在大鼠样品上 (图6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上 (图1). Autophagy (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫组化-F; 小鼠; 1:500; 图6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D3U4C)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图6). J Transl Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图7c). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, 2775)被用于免疫印迹在人类样品上 (图3). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图6c). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000; 表1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (表1). J Neuropathol Exp Neurol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图s1e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signalling technology, 2775)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s1e). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 牛; 图3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在牛样品上 (图3a). Mol Cells (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图2c). Genes Dev (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 图5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫细胞化学在人类样品上 (图5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, 2775)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Oncotarget (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 人类; 图2
  • 细胞化学; 人类; 1:50; 图6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, CST-12741)被用于免疫印迹在人类样品上 (图2) 和 免疫细胞化学在人类样品上浓度为1:50 (图6). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图4
  • 免疫印迹; 小鼠; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775)被用于免疫组化-冰冻切片在小鼠样品上 (图4) 和 免疫印迹在小鼠样品上 (图4). Stem Cell Reports (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图10a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图10a). J Mol Cell Cardiol (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 人类; 图s5
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling technology, 12741)被用于免疫印迹在人类样品上 (图s5) 和 在小鼠样品上 (图3). Aging Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在人类样品上 (图5). Oncotarget (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图1d
  • 细胞化学; 人类; 1:200; 图3d
  • 细胞化学; 仓鼠; 1:200; 图3d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上浓度为1:1000 (图1d) 和 免疫细胞化学在人类样品上浓度为1:200 (图3d) 和 在仓鼠样品上浓度为1:200 (图3d). Int J Biochem Cell Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图5). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图2
  • 细胞化学; 人类; 1:100; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫印迹在人类样品上浓度为1:500 (图2) 和 免疫细胞化学在人类样品上浓度为1:100 (图2). Nat Commun (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于免疫印迹在人类样品上 (图3). elife (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图5d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于免疫印迹在小鼠样品上 (图5d). Neuropharmacology (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling, 3868)被用于免疫印迹在人类样品上 (图1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). Cell Death Dis (2016) ncbi
兔 单克隆(D3U4C)
  • 细胞化学; 人类; 1:100; 图4a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D3U4C)被用于免疫细胞化学在人类样品上浓度为1:100 (图4a). Sci Rep (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 图s16
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于immunohistochemistry - free floating section在小鼠样品上 (图s16). Nat Commun (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 人类; 1:1000; 图3
  • 免疫组化; 小鼠; 1:400; 图s5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 12741)被用于免疫印迹在人类样品上浓度为1:1000 (图3) 和 免疫组化在小鼠样品上浓度为1:400 (图s5). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Abcam, 4108)被用于免疫印迹在小鼠样品上 (图5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图9
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上 (图9). Mol Med Rep (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在小鼠样品上 (图1). Oncotarget (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 大鼠; 1:1000; 图2f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D3U4C)被用于免疫印迹在大鼠样品上浓度为1:1000 (图2f). Endocrinology (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signal, 3868)被用于免疫印迹在人类样品上. Stem Cell Reports (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于免疫印迹在人类样品上 (图5). PLoS ONE (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 图6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling, 3868)被用于免疫印迹在小鼠样品上 (图6). Biochem Pharmacol (2016) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图5c
  • 免疫组化; 人类; 图5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technologies, 3868)被用于免疫印迹在人类样品上 (图5c) 和 免疫组化在人类样品上 (图5a). Free Radic Biol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图4). Int J Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图1B
  • 细胞化学; 小鼠; 1:100; 图S1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1B) 和 免疫细胞化学在小鼠样品上浓度为1:100 (图S1). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在大鼠样品上浓度为1:500 (图2). Endocrinology (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图2a). Am J Physiol Renal Physiol (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 12741S)被用于免疫印迹在小鼠样品上 (图3). J Cell Mol Med (2016) ncbi
兔 单克隆(D11)
  • ChIP; 人类; 图2
  • 细胞化学; 人类; 图3
  • 免疫沉淀; 人类; 图1
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于染色质免疫沉淀 在人类样品上 (图2), 免疫细胞化学在人类样品上 (图3), 免疫沉淀在人类样品上 (图1), 和 免疫印迹在人类样品上 (图1). Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图3). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫印迹在人类样品上 (图2a). J Neurochem (2016) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 人类; 图1
  • 细胞化学; 人类; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于免疫印迹在人类样品上 (图1) 和 免疫细胞化学在人类样品上 (图1). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹 (基因敲减); 人类; 图4
  • 免疫沉淀; 人类; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108S)被用于免疫印迹 (基因敲减)在人类样品上 (图4) 和 免疫沉淀在人类样品上 (图2). Oncotarget (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 图2
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫细胞化学在小鼠样品上 (图2) 和 免疫印迹在小鼠样品上 (图1). J Cell Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在人类样品上浓度为1:1000 (图2). Mol Med Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图2f). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108S)被用于免疫印迹在人类样品上 (图2a). J Crohns Colitis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上 (图1d). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 猪; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于免疫印迹在猪样品上浓度为1:1000. Am J Physiol Endocrinol Metab (2015) ncbi
兔 单克隆(D3U4C)
  • 细胞化学; 人类; 图5
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, CST-12741)被用于免疫细胞化学在人类样品上 (图5) 和 免疫印迹在人类样品上 (图6). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图3g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在大鼠样品上浓度为1:1000 (图3g). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, #2775)被用于免疫印迹在小鼠样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图1
  • 细胞化学; 大鼠; 1:400; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在大鼠样品上浓度为1:1000 (图1) 和 免疫细胞化学在大鼠样品上浓度为1:400 (图4). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Nat Chem (2015) ncbi
兔 多克隆
  • 其他; 小鼠; 1:500; 图s1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于其他在小鼠样品上浓度为1:500 (图s1). Front Microbiol (2015) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 人类; 图s6a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 12741)被用于免疫印迹在人类样品上 (图s6a). Nat Genet (2015) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 人类; 图s6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 12741)被用于免疫印迹在人类样品上 (图s6). Breast Cancer Res Treat (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上. Mol Med Rep (2015) ncbi
兔 单克隆(D11)
  • 细胞化学; 人类; 图2
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D11)被用于免疫细胞化学在人类样品上 (图2) 和 免疫印迹在人类样品上 (图1). Autophagy (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 图3b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫细胞化学在人类样品上 (图3b). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Tech, 4108S)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Sci Rep (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫细胞化学在人类样品上. Autophagy (2015) ncbi
兔 单克隆(D11)
  • 细胞化学; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于免疫细胞化学在人类样品上. Nature (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上. Oncotarget (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上 (图3). Nat Immunol (2015) ncbi
兔 单克隆(D11)
  • 免疫组化-P; 人类; 1:4000; 图1d
  • 免疫印迹; 人类; 1:1000; 图1e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于免疫组化-石蜡切片在人类样品上浓度为1:4000 (图1d) 和 免疫印迹在人类样品上浓度为1:1000 (图1e). Sci Rep (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图s14
  • 细胞化学; 人类; 图s16
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于免疫印迹在人类样品上浓度为1:1000 (图s14) 和 免疫细胞化学在人类样品上 (图s16). Nat Commun (2015) ncbi
兔 单克隆(D11)
  • 细胞化学; 人类; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 3868)被用于免疫细胞化学在人类样品上 (图4). Oncotarget (2015) ncbi
兔 单克隆(D11)
  • FC; 人类; 图3b
  • 免疫组化; 人类; 图2c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D11)被用于流式细胞仪在人类样品上 (图3b) 和 免疫组化在人类样品上 (图2c). PLoS Pathog (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). PLoS ONE (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于免疫印迹在小鼠样品上 (图2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775s)被用于免疫印迹在人类样品上浓度为1:1000. Am J Physiol Endocrinol Metab (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图2b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775S)被用于免疫印迹在大鼠样品上 (图2b). Mol Med Rep (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 猪; 图7
  • 免疫印迹; 小鼠; 图8
  • 免疫组化; 小鼠; 图8
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868s)被用于免疫印迹在猪样品上 (图7) 和 在小鼠样品上 (图8) 和 免疫组化在小鼠样品上 (图8). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上 (图3e). J Cell Biol (2015) ncbi
兔 单克隆(D11)
  • 细胞化学; 人类; 图2d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于免疫细胞化学在人类样品上 (图2d). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; African green monkey; 1:1000; 图1i
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在African green monkey样品上浓度为1:1000 (图1i). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 和 免疫印迹在小鼠样品上浓度为1:1000. Eur J Pharmacol (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 图3e
  • 免疫印迹; 人类; 图3b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫细胞化学在人类样品上 (图3e) 和 免疫印迹在人类样品上 (图3b). Cell Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于免疫印迹在人类样品上. Oncol Rep (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 大鼠; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于免疫印迹在大鼠样品上 (图1). Kidney Int (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:100; 图s7
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫细胞化学在小鼠样品上浓度为1:100 (图s7). Nat Cell Biol (2015) ncbi
兔 单克隆(D11)
  • 免疫组化-P; 人类; 1:100; 图5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868P)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图5). Cell Death Dis (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D11)被用于免疫印迹在人类样品上 (图2a). Biochem J (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling technology, 4108S)被用于免疫细胞化学在人类样品上. Appl Microbiol Biotechnol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). Nat Commun (2015) ncbi
兔 单克隆(D11)
  • 细胞化学; 人类; 1:100; 图4
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(New England Biolabs, 3868)被用于免疫细胞化学在人类样品上浓度为1:100 (图4) 和 免疫印迹在人类样品上浓度为1:1000. EMBO Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图f6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technologies, 2775S)被用于免疫印迹在小鼠样品上 (图f6). Sci Signal (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:200; 图s7
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫细胞化学在人类样品上浓度为1:200 (图s7). Nat Genet (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上浓度为1:1000 (图5). Mol Med Rep (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 图2f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫细胞化学在小鼠样品上 (图2f). Free Radic Biol Med (2015) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 12741)被用于免疫印迹在小鼠样品上 (图3). Oncotarget (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫细胞化学在人类样品上. Methods Mol Biol (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775S)被用于免疫细胞化学在人类样品上 (图2). Autophagy (2015) ncbi
兔 多克隆
  • 其他; 小鼠; 图3d
  • 免疫印迹; 小鼠; 图s1k
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 4108)被用于其他在小鼠样品上 (图3d) 和 免疫印迹在小鼠样品上 (图s1k). Nat Immunol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图4a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在大鼠样品上 (图4a). PLoS ONE (2015) ncbi
兔 单克隆(D11)
  • 细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于免疫细胞化学在小鼠样品上. Vasc Cell (2014) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(cell signaling, 3868S)被用于免疫印迹在人类样品上浓度为1:1000. EMBO J (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在大鼠样品上. Cell Biol Toxicol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上浓度为1:500. J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上. Cancer Lett (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图4). Autophagy (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫细胞化学在人类样品上. J Virol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1,2
  • 免疫印迹; 小鼠; 图1,2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology Inc., 4108S)被用于免疫印迹在人类样品上 (图1,2) 和 在小鼠样品上 (图1,2). Oncogene (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于免疫印迹在人类样品上 (图3). Exp Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图1
  • 免疫印迹; 小鼠; 1:1000; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:1000 (图1) 和 在小鼠样品上浓度为1:1000 (图2). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图4b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:1000 (图4b). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 细胞化学; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, #2775)被用于免疫印迹在人类样品上 和 免疫细胞化学在人类样品上. J Cell Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775S)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Biochem J (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在大鼠样品上. World J Gastroenterol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775)被用于免疫印迹在大鼠样品上. Exp Cell Res (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D11)被用于免疫印迹在人类样品上 (图4c). Oncogene (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上 (图6). Aging Cell (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上 (图1a). Autophagy (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Signaling Technology, 3868)被用于免疫印迹在人类样品上 (图2). Oncogene (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
  • 细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108S)被用于免疫印迹在人类样品上浓度为1:1000 和 免疫细胞化学在人类样品上浓度为1:200. Biochem Biophys Res Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上. Mol Cancer Ther (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology., 4108S)被用于免疫印迹在小鼠样品上浓度为1:1000. Nat Commun (2015) ncbi
兔 单克隆(D11)
  • 细胞化学; 大鼠; 1:250
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫细胞化学在大鼠样品上浓度为1:250. Oxid Med Cell Longev (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上. Cell Death Dis (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 大鼠; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 3868)被用于免疫印迹在大鼠样品上 (图4). Cell Cycle (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上 (图6). Cell Cycle (2014) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:400
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫细胞化学在人类样品上浓度为1:400. Biochem Pharmacol (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 大鼠; 图4f
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, D11)被用于免疫印迹在大鼠样品上 (图4f). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图3b). J Biol Chem (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500
  • 免疫组化; 人类; 1:200
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于免疫细胞化学在人类样品上浓度为1:500, 免疫组化在人类样品上浓度为1:200, 和 免疫印迹在人类样品上浓度为1:1000. Cancer Lett (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108S)被用于免疫组化-石蜡切片在小鼠样品上. Am J Pathol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:50
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫细胞化学在人类样品上浓度为1:50. Hum Mol Genet (2015) ncbi
兔 单克隆(D11)
  • 免疫组化-P; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50. PLoS Genet (2014) ncbi
兔 单克隆(D11)
  • 细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫细胞化学在小鼠样品上. Biomaterials (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology Inc., 3868)被用于免疫印迹在人类样品上 (图3a). Mol Carcinog (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于免疫印迹在人类样品上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于免疫印迹在人类样品上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 图s2
  • 免疫印迹; 人类; 1:1000; 图s2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫细胞化学在人类样品上 (图s2) 和 免疫印迹在人类样品上浓度为1:1000 (图s2). Stem Cells Dev (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 图4
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫细胞化学在人类样品上 (图4) 和 免疫印迹在人类样品上 (图1). Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图7d
  • 免疫印迹; 小鼠; 1:2000; 图4a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:2000 (图7d) 和 在小鼠样品上浓度为1:2000 (图4a). Nat Cell Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1d). PLoS Med (2014) ncbi
兔 单克隆(D3U4C)
  • 免疫印迹; 小鼠; 1:1000; 图3h
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 12741)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3h). Mol Neurodegener (2014) ncbi
兔 多克隆
  • 细胞化学; 人类; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫细胞化学在人类样品上 (图1). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108S)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上. Mol Reprod Dev (2014) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于免疫印迹在小鼠样品上 (图1). Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:200
  • 细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 和 免疫细胞化学在人类样品上浓度为1:200. Am J Pathol (2014) ncbi
兔 单克隆(D11)
  • 细胞化学; 人类; 1:200
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, D11)被用于免疫细胞化学在人类样品上浓度为1:200 和 免疫印迹在人类样品上浓度为1:500. Int J Clin Exp Pathol (2014) ncbi
兔 单克隆(D11)
  • 免疫组化-P; 人类; 1:75
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 3868)被用于免疫组化-石蜡切片在人类样品上浓度为1:75. Int J Ophthalmol (2014) ncbi
兔 多克隆
  • 免疫印迹; 秀丽隐杆线虫; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775s)被用于免疫印迹在秀丽隐杆线虫样品上 (图4). Autophagy (2014) ncbi
兔 单克隆(D11)
  • 免疫组化-P; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于免疫组化-石蜡切片在人类样品上 和 免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technologies, 2775)被用于免疫印迹在人类样品上 (图3). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上 (图3). Cancer Biol Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775S)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4). Autophagy (2014) ncbi
兔 多克隆
  • 细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫细胞化学在小鼠样品上. J Cardiovasc Pharmacol (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图7
  • 免疫印迹; 小鼠; 图6
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775S)被用于免疫组化-石蜡切片在小鼠样品上 (图7) 和 免疫印迹在小鼠样品上 (图6). Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上. Toxicology (2014) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于免疫印迹在人类样品上. Cell Death Differ (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于免疫印迹在小鼠样品上. Cell Death Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上浓度为1:1000. Nat Cell Biol (2014) ncbi
兔 单克隆(D11)
  • 细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫细胞化学在人类样品上浓度为1:200. Nature (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:2000. Nature (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫组化在大鼠样品上浓度为1:100 和 免疫印迹在大鼠样品上浓度为1:1000. Exp Neurol (2014) ncbi
兔 多克隆
  • 细胞化学; 大鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫细胞化学在大鼠样品上 和 免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868S)被用于免疫印迹在人类样品上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上 (图1). Biochem Biophys Res Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在大鼠样品上. Am J Physiol Heart Circ Physiol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 2775)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(D11)
  • 免疫组化-F; 小鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于免疫组化-冰冻切片在小鼠样品上 和 免疫印迹在大鼠样品上. Kidney Int (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5, 7
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上 (图5, 7). J Cell Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
  • 细胞化学; African green monkey
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上 和 免疫细胞化学在African green monkey样品上. J Biol Chem (2014) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:200
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于免疫细胞化学在人类样品上浓度为1:200 和 免疫印迹在人类样品上. Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上. Int J Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1,000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在大鼠样品上浓度为1:1,000. J Neurosci Res (2014) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上 (图1). Free Radic Biol Med (2014) ncbi
兔 多克隆
  • FC; 猪; 1:300
  • 细胞化学; 猪; 1:200
  • 免疫印迹; 猪
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 2775S)被用于流式细胞仪在猪样品上浓度为1:300, 免疫细胞化学在猪样品上浓度为1:200, 和 免疫印迹在猪样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在人类样品上. Neurobiol Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫印迹在小鼠样品上浓度为1:1000. ASN Neuro (2013) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technologies, 2775)被用于免疫细胞化学在人类样品上浓度为1:100 和 免疫印迹在人类样品上浓度为1:500. Endocrinology (2013) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:400
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 2775)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400. Food Chem Toxicol (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于免疫印迹在小鼠样品上. Biochem J (2013) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000; 图1
  • 细胞化学; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在人类样品上浓度为1:1000 (图1) 和 免疫细胞化学在人类样品上浓度为1:1000 (图3). Nat Commun (2013) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 3868)被用于免疫印迹在人类样品上浓度为1:1000. Cell Death Dis (2013) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫细胞化学在人类样品上浓度为1:200. Am J Physiol Cell Physiol (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
  • 细胞化学; 小鼠; 图3
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于免疫印迹在小鼠样品上 (图3) 和 免疫细胞化学在小鼠样品上 (图3). Autophagy (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:1000. Cell Death Dis (2013) ncbi
兔 单克隆(D11)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 3868)被用于免疫印迹在小鼠样品上浓度为1:2000. Cell Biochem Funct (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在大鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
兔 多克隆
  • 细胞化学; 大鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling Technology, 4108)被用于免疫细胞化学在大鼠样品上 和 免疫印迹在大鼠样品上. Autophagy (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2012) ncbi
兔 单克隆(D11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling Technology, D11)被用于免疫印迹在人类样品上. PLoS ONE (2012) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫细胞化学在人类样品上浓度为1:100 和 免疫印迹在人类样品上浓度为1:1000. J Cell Mol Med (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
  • 细胞化学; 小鼠; 1:400
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 2775)被用于免疫印迹在小鼠样品上浓度为1:1000 和 免疫细胞化学在小鼠样品上浓度为1:400. Traffic (2012) ncbi
兔 多克隆
  • 细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technologies, 2775)被用于免疫细胞化学在小鼠样品上. J Biol Chem (2010) ncbi
西格玛奥德里奇
兔 多克隆
  • 免疫印迹; 小鼠; 图5b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在小鼠样品上 (图5b). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:1000; 图4b
  • 免疫沉淀; 人类; 图5b
  • 免疫印迹; 人类; 1:1000; 图3d
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫细胞化学在人类样品上浓度为1:1000 (图4b), 免疫沉淀在人类样品上 (图5b), 和 免疫印迹在人类样品上浓度为1:1000 (图3d). Neurochem Int (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图s1
西格玛奥德里奇 MAP1LC3B抗体(Abcam, L7543)被用于免疫印迹在小鼠样品上 (图s1). Cell Death Dis (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图4a
  • 免疫印迹; 人类; 图3a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫组化在小鼠样品上 (图4a) 和 免疫印迹在人类样品上 (图3a). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图8
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上浓度为1:1000 (图8). J Neuroinflammation (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图1b). Redox Biol (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:250; 图3a
  • 免疫印迹; 小鼠; 1:1000; 图1b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫组化在小鼠样品上浓度为1:250 (图3a) 和 免疫印迹在小鼠样品上浓度为1:1000 (图1b). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在人类样品上. Int J Mol Sci (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图5d
  • 免疫印迹; 小鼠; 图5b
西格玛奥德里奇 MAP1LC3B抗体(Sigma Aldrich, L7543)被用于免疫组化在小鼠样品上 (图5d) 和 免疫印迹在小鼠样品上 (图5b). PLoS Pathog (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4a
  • 免疫印迹; 大鼠; 图6a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上 (图4a) 和 在大鼠样品上 (图6a). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1a
  • 免疫印迹; 小鼠; 图1k
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图1a) 和 在小鼠样品上 (图1k). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上 (图1b). Eur J Cell Biol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图4b). Int J Mol Sci (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图5b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5b). Exp Mol Med (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图2a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上浓度为1:500 (图2a). Radiother Oncol (2017) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:400; 图5a
  • 免疫印迹; 小鼠; 1:1000; 图1b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400 (图5a) 和 免疫印迹在小鼠样品上浓度为1:1000 (图1b). Autophagy (2017) ncbi
兔 多克隆
  • 免疫组化; 人类; 图1b
  • 免疫印迹; 人类; 图1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫组化在人类样品上 (图1b) 和 免疫印迹在人类样品上 (图1a). Cell Death Dis (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图5b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上浓度为1:1000 (图5b). Hum Mol Genet (2017) ncbi
兔 多克隆
  • 细胞化学; 人类; 图2d
  • 免疫印迹; 人类; 图2a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫细胞化学在人类样品上 (图2d) 和 免疫印迹在人类样品上 (图2a). Biochim Biophys Acta (2017) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500; 图2E
  • 免疫印迹; 小鼠; 1:2000; 图2A
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫细胞化学在小鼠样品上浓度为1:500 (图2E) 和 免疫印迹在小鼠样品上浓度为1:2000 (图2A). Redox Biol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2500; 图s1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在人类样品上浓度为1:2500 (图s1). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2f
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图2f). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上 (图4a). Cell Death Dis (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图1E
  • 细胞化学; 小鼠; 1:100; 图S1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1E) 和 免疫细胞化学在小鼠样品上浓度为1:100 (图S1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3b
  • 细胞化学; 人类; 图3a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图3b) 和 免疫细胞化学在人类样品上 (图3a). Int J Nanomedicine (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:5000; 图s1c
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫细胞化学在人类样品上浓度为1:5000 (图s1c). EMBO Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2d
  • 免疫印迹; 大鼠; 图2a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图2d) 和 在大鼠样品上 (图2a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图1a
  • 免疫组化; 大鼠; 1:500; 图3c
西格玛奥德里奇 MAP1LC3B抗体(sigma, L7543)被用于免疫印迹在大鼠样品上浓度为1:2000 (图1a) 和 免疫组化在大鼠样品上浓度为1:500 (图3c). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1a
  • 细胞化学; 人类; 图1b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图1a) 和 免疫细胞化学在人类样品上 (图1b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:3000; 图1d
  • 免疫印迹; 人类; 1:3000; 图1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫组化在人类样品上浓度为1:3000 (图1d) 和 免疫印迹在人类样品上浓度为1:3000 (图1a). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图4a). Autophagy (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 图7a
  • 免疫印迹; 小鼠; 图5d
西格玛奥德里奇 MAP1LC3B抗体(sigma, L7543)被用于免疫细胞化学在小鼠样品上 (图7a) 和 免疫印迹在小鼠样品上 (图5d). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上浓度为1:2000 (图2). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2d
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上 (图2d). Autophagy (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 图1
  • 免疫印迹; 人类; 图4
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫细胞化学在人类样品上 (图1) 和 免疫印迹在人类样品上 (图4). J Virol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5c
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L-7543)被用于免疫印迹在小鼠样品上 (图5c). Biochim Biophys Acta (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:200; 图2c
  • 免疫印迹; 小鼠; 图1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫细胞化学在小鼠样品上浓度为1:200 (图2c) 和 免疫印迹在小鼠样品上 (图1a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7c
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上 (图7c). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图3d
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在人类样品上浓度为1:2000 (图3d). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:600; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在大鼠样品上浓度为1:600 (图2). Exp Ther Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2b
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图2b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图5
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L-7543)被用于免疫印迹在小鼠样品上浓度为1:2000 (图5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图2a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在大鼠样品上浓度为1:1000 (图2a). Neurochem Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图2a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在小鼠样品上浓度为1:5000 (图2a). Autophagy (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上 (图3). Autophagy (2016) ncbi
小鼠 单克隆(LC3B-6)
  • 免疫组化; 小鼠; 图2
  • 免疫印迹; 人类; 图3
  • 免疫印迹; 小鼠; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, SAB4200361)被用于免疫组化在小鼠样品上 (图2) 和 免疫印迹在人类样品上 (图3) 和 在小鼠样品上 (图2). Sci Rep (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500; 图5
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫细胞化学在人类样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上 (图4). Biochim Biophys Acta (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图3). Mol Biol Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
  • 免疫印迹; 小鼠; 图4
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图1) 和 在小鼠样品上 (图4). Int J Mol Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在人类样品上 (图3). Autophagy (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500; 图1b
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于免疫细胞化学在小鼠样品上浓度为1:500 (图1b). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图6). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图3d
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上浓度为1:2000 (图3d). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在人类样品上 (图1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2c
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在小鼠样品上 (图2c). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4d
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图4d). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上 (图1). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上浓度为1:3000 (图3). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图s2
西格玛奥德里奇 MAP1LC3B抗体(Sigma Aldrich, L7543)被用于免疫印迹在小鼠样品上浓度为1:2000 (图s2). Nat Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图1). J Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上 (图4). Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
西格玛奥德里奇 MAP1LC3B抗体(MBL, L7543)被用于免疫印迹在人类样品上 (图6). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图1A
  • 免疫印迹; 小鼠; 图1D
  • 细胞化学; 小鼠; 图1B
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫组化-石蜡切片在小鼠样品上 (图1A), 免疫印迹在小鼠样品上 (图1D), 和 免疫细胞化学在小鼠样品上 (图1B). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图1
  • 细胞化学; 人类; 1:100-1:200; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上浓度为1:1000 (图1) 和 免疫细胞化学在人类样品上浓度为1:100-1:200 (图1). Nat Commun (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(SigmaAldrich, L7543)被用于免疫细胞化学在人类样品上 和 免疫印迹在人类样品上. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上 (图3). PLoS Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上. Biochem Pharmacol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). EMBO Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
  • 免疫印迹; 小鼠; 图5
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图1) 和 在小鼠样品上 (图5). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上浓度为1:5000 (图1a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图1a
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于免疫印迹在人类样品上浓度为1:5000 (图1a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:8000; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上浓度为1:8000 (图2). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图1). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:3000; 图5
  • 免疫印迹; 小鼠; 1:3000; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上浓度为1:3000 (图5) 和 在小鼠样品上浓度为1:3000 (图1). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 免疫印迹; 大鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于免疫印迹在人类样品上 和 在大鼠样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上浓度为1:1000. J Agric Food Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在小鼠样品上 (图2). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图4). Acta Pharmacol Sin (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图2). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上 (图2). Cell Death Dis (2015) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:500
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫细胞化学在大鼠样品上浓度为1:500. Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于免疫印迹在人类样品上 (图7). Int J Mol Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上 (图7). Int J Mol Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
  • 细胞化学; 人类; 图4
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图4) 和 免疫细胞化学在人类样品上 (图4). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图1). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图s8
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上浓度为1:2000 (图s8). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 猪; 1:2000; 图3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在猪样品上浓度为1:2000 (图3). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在人类样品上 (图3). Oncotarget (2015) ncbi
兔 多克隆
  • 其他; 人类; 1:100; 图2
  • PLA; 人类; 1:100; 图1
  • 免疫印迹; 人类; 1:3000; 图s3
  • 细胞化学; 人类; 1:100; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于其他在人类样品上浓度为1:100 (图2), proximity ligation assay在人类样品上浓度为1:100 (图1), 免疫印迹在人类样品上浓度为1:3000 (图s3), 和 免疫细胞化学在人类样品上浓度为1:100 (图1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上 (图1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1, 6
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上 (图1, 6). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上 (图1). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上浓度为1:500. J Leukoc Biol (2015) ncbi
小鼠 单克隆(LC3B-6)
  • 细胞化学; 人类; 1:100
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, SAB4200361)被用于免疫细胞化学在人类样品上浓度为1:100. J Leukoc Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上. J Virol (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:300; 图2
  • 免疫印迹; 大鼠; 1:600; 图1
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L-7543)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:300 (图2) 和 免疫印迹在大鼠样品上浓度为1:600 (图1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1b
  • 免疫印迹; 小鼠; 图1d
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图1b) 和 在小鼠样品上 (图1d). elife (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:250
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫细胞化学在人类样品上浓度为1:250. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000
  • 免疫印迹; 小鼠; 1:5000
  • 免疫印迹; 大鼠; 1:5000
  • 细胞化学; 人类; 1:500
  • 细胞化学; 小鼠; 1:500
  • 细胞化学; 大鼠; 1:500
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上浓度为1:5000, 在小鼠样品上浓度为1:5000, 和 在大鼠样品上浓度为1:5000 和 免疫细胞化学在人类样品上浓度为1:500, 在小鼠样品上浓度为1:500, 和 在大鼠样品上浓度为1:500. Anal Biochem (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图1h
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在大鼠样品上 (图1h). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
  • 细胞化学; 小鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich Corp, L8918)被用于免疫印迹在小鼠样品上 和 免疫细胞化学在小鼠样品上. J Cell Mol Med (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫细胞化学在人类样品上. Methods Mol Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图4c
  • 免疫印迹; 小鼠; 1:1000; 图3a
  • 细胞化学; 小鼠; 图2a
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上浓度为1:1000 (图4c) 和 在小鼠样品上浓度为1:1000 (图3a) 和 免疫细胞化学在小鼠样品上 (图2a). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图5
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上浓度为1:1000 (图5). Arch Toxicol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上. Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上浓度为1:2000. Cell Death Differ (2015) ncbi
小鼠 单克隆(LC3B-6)
  • 免疫组化-P; 人类; 图5a
  • 免疫印迹; 人类; 图5b
西格玛奥德里奇 MAP1LC3B抗体(SigmaAldrich, SAB4200361)被用于免疫组化-石蜡切片在人类样品上 (图5a) 和 免疫印迹在人类样品上 (图5b). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在小鼠样品上 和 在大鼠样品上. J Lipid Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 细胞化学; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上 和 免疫细胞化学在人类样品上. Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在大鼠样品上. Life Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在大鼠样品上. Redox Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma Aldrich, L-7543)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于免疫印迹在人类样品上. J Nutr Biochem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图2). Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543,)被用于免疫印迹在大鼠样品上. J Physiol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
  • 免疫印迹; 大鼠; 图6
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在小鼠样品上 (图2) 和 在大鼠样品上 (图6). Oxid Med Cell Longev (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上浓度为1:500 (图3). Biochim Biophys Acta (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在小鼠样品上 (图4). Cell Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图1b
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于免疫印迹在人类样品上浓度为1:1000 (图1b). Cell Death Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500
  • 免疫组化; 大鼠; 1:500
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在大鼠样品上浓度为1:500 和 免疫组化在大鼠样品上浓度为1:500. Cell Death Dis (2014) ncbi
兔 多克隆
  • 细胞化学; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫细胞化学在人类样品上. Curr Mol Med (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L754)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
  • 免疫沉淀; 人类; 图3
  • 细胞化学; 人类; 图3
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 (图3), 免疫沉淀在人类样品上 (图3), 和 免疫细胞化学在人类样品上 (图3). J Cell Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 免疫沉淀; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 和 免疫沉淀在人类样品上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:3000
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在人类样品上浓度为1:3000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L-7543)被用于免疫印迹在人类样品上 (图2). Nat Chem Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在小鼠样品上 (图5). Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上浓度为1:1000. Autophagy (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L8918)被用于免疫印迹在人类样品上. Methods Mol Biol (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L7543)被用于免疫印迹在人类样品上. Oncogene (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 MAP1LC3B抗体(Sigma-Aldrich, L8918)被用于免疫印迹在人类样品上. Mol Pharm (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
西格玛奥德里奇 MAP1LC3B抗体(Sigma, L7543)被用于免疫印迹在人类样品上 和 在小鼠样品上. Autophagy (2012) ncbi
百奇生物
兔 多克隆
  • 免疫组化; 大鼠; 1:100; 表1
百奇生物 MAP1LC3B抗体(Abgent, AP1802a)被用于免疫组化在大鼠样品上浓度为1:100 (表1). Front Cell Neurosci (2017) ncbi
兔 多克隆
  • 免疫组化; 人类; 图6c
  • 免疫印迹; 人类; 图1b
百奇生物 MAP1LC3B抗体(Abgent, AP1802a)被用于免疫组化在人类样品上 (图6c) 和 免疫印迹在人类样品上 (图1b). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
  • 细胞化学; 人类; 图1
百奇生物 MAP1LC3B抗体(Abgent, 11668-019AP-1802a)被用于免疫印迹在人类样品上 (图4) 和 免疫细胞化学在人类样品上 (图1). J Virol (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:25; 图7
百奇生物 MAP1LC3B抗体(Abgent, AP1802a)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:25 (图7). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
百奇生物 MAP1LC3B抗体(Abgent, AP1802a)被用于免疫印迹在人类样品上 (图3). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
百奇生物 MAP1LC3B抗体(Abgent, AP1802a)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Cell Death Dis (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 图2
百奇生物 MAP1LC3B抗体(Abgent, AP1802a)被用于免疫细胞化学在小鼠样品上 (图2). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
百奇生物 MAP1LC3B抗体(Abgent, AP1802a)被用于免疫印迹在人类样品上 (图2). J Virol (2011) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
百奇生物 MAP1LC3B抗体(Abgent, AP-1802)被用于免疫印迹在小鼠样品上. J Biol Chem (2010) ncbi
GeneTex
兔 多克隆
  • 免疫印迹; 人类; 图2a
GeneTex MAP1LC3B抗体(Genetex, GTX127375)被用于免疫印迹在人类样品上 (图2a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图2
GeneTex MAP1LC3B抗体(GeneTex, GTX82986)被用于免疫印迹在小鼠样品上浓度为1:2000 (图2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
GeneTex MAP1LC3B抗体(GeneTex, GTX127375)被用于免疫印迹在人类样品上 (图3). Cancer Genomics Proteomics (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
GeneTex MAP1LC3B抗体(Genetex, GTX 82986)被用于免疫印迹在人类样品上 (图4). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图2
GeneTex MAP1LC3B抗体(Gene Tex, GTX127375)被用于免疫印迹在大鼠样品上浓度为1:1000 (图2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
GeneTex MAP1LC3B抗体(GeneTex, GTX127375)被用于免疫印迹在小鼠样品上浓度为1:1000. Neuropharmacology (2015) ncbi
文章列表
  1. Yujun Xu et al. (2017). "Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway.".PMID 28924214
  2. Hai Bin Ruan et al. (2017). "Calcium-dependent O-GlcNAc signaling drives liver autophagy in adaptation to starvation".PMID 28903979
  3. Jui Heng Tseng et al. (2017). "The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology".PMID 28854366
  4. Justin Joachim et al. (2017). "Centriolar Satellites Control GABARAP Ubiquitination and GABARAP-Mediated Autophagy.".PMID 28712572
  5. Yiyang Zhou et al. (2017). "Silencing of NRAGE induces autophagy via AMPK/Ulk1/Atg13 signaling pathway in NSCLC cells.".PMID 28639909
  6. Sheng Dai et al. (2017). "Methyl-β-cyclodextrin restores impaired autophagy flux in Niemann-Pick C1-deficient cells through activation of AMPK".PMID 28613987
  7. Shawn Lu Wen Tan et al. (2017). "A Class of Environmental and Endogenous Toxins Induces BRCA2 Haploinsufficiency and Genome Instability.".PMID 28575672
  8. Guoqing Wang et al. (2017). "Role of OSGIN1 in mediating smoking-induced autophagy in the human airway epithelium.".PMID 28548877
  9. Victor Bustos et al. (2017). "Bidirectional regulation of Aβ levels by Presenilin 1.".PMID 28533411
  10. Chiara Vidoni et al. (2017). "Resveratrol protects neuronal-like cells expressing mutant Huntingtin from dopamine toxicity by rescuing ATG4-mediated autophagosome formation.".PMID 28532681
  11. Utthara Nayar et al. (2017). "Identification of a nucleoside analog active against adenosine kinase-expressing plasma cell malignancies.".PMID 28504647
  12. Dennis J Wu et al. (2017). "Loss of WDFY3 ameliorates severity of serum transfer-induced arthritis independently of autophagy".PMID 28449847
  13. Avraham Ashkenazi et al. (2017). "Polyglutamine tracts regulate beclin 1-dependent autophagy.".PMID 28445460
  14. Bodhisattwa Banerjee et al. (2017). "Unique mitochondrial localization of arginase 1 and 2 in hepatocytes of air-breathing walking catfish, Clarias batrachus and their differential expression patterns under hyper-ammonia stress.".PMID 28431974
  15. Daniel Robert Kaufman et al. (2017). "Deletion of inositol-requiring enzyme-1α in podocytes disrupts glomerular capillary integrity and autophagy.".PMID 28428258
  16. Zhiguang Xiao et al. (2017). "Metformin Triggers Autophagy to Attenuate Drug-Induced Apoptosis in NSCLC Cells, with Minor Effects on Tumors of Diabetic Patients.".PMID 28391030
  17. Yang Xiao et al. (2017). "Cucurbitacin B Protects Against Pressure Overload Induced Cardiac Hypertrophy.".PMID 28390176
  18. Yongyue Gao et al. (2017). "Tetrahydrocurcumin reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury.".PMID 28386319
  19. Rina Wassermann-Dozorets et al. (2017). "C/EBPβ LIP augments cell death by inducing osteoglycin".PMID 28383550
  20. Xuyao Zhang et al. (2017). "Targeting CD47 and Autophagy Elicited Enhanced Antitumor Effects in Non-Small Cell Lung Cancer.".PMID 28351890
  21. S N Suresh et al. (2017). "A novel autophagy modulator 6-Bio ameliorates SNCA/α-synuclein toxicity.".PMID 28350199
  22. Qingqiang Xu et al. (2017). "E3 Ubiquitin Ligase Nedd4 Promotes Japanese Encephalitis Virus Replication by Suppressing Autophagy in Human Neuroblastoma Cells.".PMID 28349961
  23. Hyun Tae Kang et al. (2017). "Chemical screening identifies ATM as a target for alleviating senescence.".PMID 28346404
  24. Simone Vodret et al. (2017). "Inflammatory signature of cerebellar neurodegeneration during neonatal hyperbilirubinemia in Ugt1 (-/-) mouse model.".PMID 28340583
  25. Rituraj Marwaha et al. (2017). "The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes.".PMID 28325809
  26. Val A Fajardo et al. (2017). "Sarcolipin deletion exacerbates soleus muscle atrophy and weakness in phospholamban overexpressing mice.".PMID 28278204
  27. Yang Mu et al. (2017). "Diet-induced obesity impairs spermatogenesis: a potential role for autophagy.".PMID 28276438
  28. Ji Eun Kim et al. (2017). "Sustained HSP25 Expression Induces Clasmatodendrosis via ER Stress in the Rat Hippocampus".PMID 28275338
  29. Samson Mathews Samuel et al. (2017). "Metformin represses glucose starvation induced autophagic response in microvascular endothelial cells and promotes cell death.".PMID 28274614
  30. Saeyoung Park et al. (2017). "Autophagy induction in the skeletal myogenic differentiation of human tonsil-derived mesenchymal stem cells.".PMID 28259927
  31. Jian Xu et al. (2017). "Importance of ROS-mediated autophagy in determining apoptotic cell death induced by physapubescin B".PMID 28258023
  32. Andreas Buch M ller et al. (2017). "Altered gene expression and repressed markers of autophagy in skeletal muscle of insulin resistant patients with type 2 diabetes.".PMID 28252104
  33. Huifeng Pi et al. (2017). "Enhancing lysosomal biogenesis and autophagic flux by activating the transcription factor EB protects against cadmium-induced neurotoxicity".PMID 28240313
  34. Satabdi Datta et al. (2017). "Paclitaxel resistance development is associated with biphasic changes in reactive oxygen species, mitochondrial membrane potential and autophagy with elevated energy production capacity in lung cancer cells: A chronological study.".PMID 28240052
  35. Elisabeth Kemter et al. (2017). "Mitochondrial Dysregulation Secondary to Endoplasmic Reticulum Stress in Autosomal Dominant Tubulointerstitial Kidney Disease - UMOD (ADTKD-UMOD)".PMID 28220896
  36. Edwin J Vazquez-Cintron et al. (2017). "Engineering Botulinum Neurotoxin C1 as a Molecular Vehicle for Intra-Neuronal Drug Delivery".PMID 28220863
  37. Yuan Li et al. (2017). "Advanced Glycation End Products Inhibit the Proliferation of Human Umbilical Vein Endothelial Cells by Inhibiting Cathepsin D".PMID 28218663
  38. Tibor Kovacs et al. (2017). "The small molecule AUTEN-99 (autophagy enhancer-99) prevents the progression of neurodegenerative symptoms".PMID 28205624
  39. Rachel L Wolfson et al. (2017). "KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1.".PMID 28199306
  40. Joe Ryan Delaney et al. (2017). "Haploinsufficiency networks identify targetable patterns of allelic deficiency in low mutation ovarian cancer".PMID 28198375
  41. Jennifer Jung et al. (2017). "Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator".PMID 28195531
  42. Chi Hao Tsai et al. (2017). "The inhibition of lung cancer cell migration by AhR-regulated autophagy".PMID 28195146
  43. Qi Qian et al. (2017). "Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.".PMID 28193719
  44. Raja Ganesan et al. (2017). "Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy".PMID 28192515
  45. Hailing Zhao et al. (2017). "Tangshen formula attenuates diabetic renal injuries by upregulating autophagy via inhibition of PLZF expression".PMID 28182710
  46. Su Chen et al. (2017). "Histone H2B monoubiquitination is a critical epigenetic switch for the regulation of autophagy.".PMID 28180298
  47. Debarshi Roy et al. (2017). "Loss of HSulf-1: The Missing Link between Autophagy and Lipid Droplets in Ovarian Cancer.".PMID 28169314
  48. Babette C Hammerling et al. (2017). "A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance".PMID 28134239
  49. Juan Liu et al. (2017). "BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein".PMID 28129024
  50. Lijie Feng et al. (2017). "Ubiquitin ligase SYVN1/HRD1 facilitates degradation of the SERPINA1 Z variant/alpha-1-antitrypsin Z variant via SQSTM1/p62-dependent selective autophagy".PMID 28121484
  51. V Russo et al. (2017). "Sigma 2 receptor expression levels in blood and bladder from healthy and bladder cancer cattle".PMID 28120522
  52. Victor H Villar et al. (2017). "mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation".PMID 28112156
  53. Anne Bonhoure et al. (2017). "Acetylation of translationally controlled tumor protein promotes its degradation through chaperone-mediated autophagy".PMID 28110910
  54. Cong Zhang et al. (2017). "Inhibition of Autophagic Degradation Process Contributes to Claudin-2 Expression Increase and Epithelial Tight Junction Dysfunction in TNF-α Treated Cell Monolayers".PMID 28106723
  55. Seung Kyun Shin et al. (2017). "Docosahexaenoic acid-mediated protein aggregates may reduce proteasome activity and delay myotube degradation during muscle atrophy in vitro".PMID 28104914
  56. Vincent Hung Shu Chang et al. (2017). "Krüpple-like factor 10 regulates radio-sensitivity of pancreatic cancer via UV radiation resistance-associated gene".PMID 28104298
  57. Zhe Shen et al. (2017). "PARK2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window".PMID 28103118
  58. Anna Chiara Nascimbeni et al. (2017). "Autophagy dysregulation in Danon disease".PMID 28102838
  59. Stefanie Ruf et al. (2017). "PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy".PMID 28102733
  60. T Squillaro et al. (2017). "Impact of Lysosomal Storage Disorders on Biology of Mesenchymal Stem Cells: Evidences from In Vitro Silencing of Glucocerebrosidase (GBA) and Alpha-Galactosidase A (GLA) Enzymes".PMID 28098348
  61. Marta Coccia et al. (2017). "Human NF-κB repressing factor acts as a stress-regulated switch for ribosomal RNA processing and nucleolar homeostasis surveillance".PMID 28096332
  62. Marisa Granato et al. (2017). "Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways".PMID 28092744
  63. Doriana Borgia et al. (2017). "Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients".PMID 28087734
  64. Lu Zhang et al. (2017). "Up-regulation of the active form of small GTPase Rab13 promotes macroautophagy in vascular endothelial cells".PMID 28087344
  65. Aiqin Sun et al. (2017). "The E3 ubiquitin ligase NEDD4 is an LC3-interactive protein and regulates autophagy".PMID 28085563
  66. Qilong Wang et al. (2017). "Deletion of PRKAA triggers mitochondrial fission by inhibiting the autophagy-dependent degradation of DNM1L".PMID 28085543
  67. Chen Jiang et al. (2017). "GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary".PMID 28072828
  68. Matthew Redmann et al. (2017). "Trehalose does not improve neuronal survival on exposure to alpha-synuclein pre-formed fibrils".PMID 28068606
  69. Margherita Piccolella et al. (2017). "The small heat shock protein B8 (HSPB8) modulates proliferation and migration of breast cancer cells".PMID 28060751
  70. Guo Bing Li et al. (2017). "Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels".PMID 28060722
  71. Federico Pietrocola et al. (2017). "Metabolic effects of fasting on human and mouse blood in vivo".PMID 28059587
  72. Mariacristina Capizzi et al. (2017). "MIR7-3HG, a MYC-dependent modulator of cell proliferation, inhibits autophagy by a regulatory loop involving AMBRA1".PMID 28059583
  73. Aimee N Laporte et al. (2017). "HDAC and Proteasome Inhibitors Synergize to Activate Pro-Apoptotic Factors in Synovial Sarcoma".PMID 28056055
  74. Aslihan Ugun-Klusek et al. (2017). "Continued 26S proteasome dysfunction in mouse brain cortical neurons impairs autophagy and the Keap1-Nrf2 oxidative defence pathway".PMID 28055010
  75. Makoto Hosoya et al. (2017). "Cochlear Cell Modeling Using Disease-Specific iPSCs Unveils a Degenerative Phenotype and Suggests Treatments for Congenital Progressive Hearing Loss".PMID 28052261
  76. Hyun Jung Kim et al. (2016). "Subcellular localization of FOXO3a as a potential biomarker of response to combined treatment with inhibitors of PI3K and autophagy in PIK3CA-mutant cancer cells".PMID 28036259
  77. Yongjie Wei et al. (2016). "Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor".PMID 28017329
  78. Patrick K K Yeung et al. (2017). "Aldose reductase deficiency leads to oxidative stress-induced dopaminergic neuronal loss and autophagic abnormality in an animal model of Parkinson's disease".PMID 27960106
  79. Chandrani Mukhopadhyay et al. (2016). "Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation".PMID 27930322
  80. Matteo Da Ros et al. (2016). "FYCO1 and autophagy control the integrity of the haploid male germ cell-specific RNP granules".PMID 27929729
  81. Bo Shi et al. (2016). "SNAPIN is critical for lysosomal acidification and autophagosome maturation in macrophages".PMID 27929705
  82. Hua Yan et al. (2017). "Inhibition of JNK suppresses autophagy and attenuates insulin resistance in a rat model of nonalcoholic fatty liver disease".PMID 27909723
  83. Ming Shen et al. (2016). "FSH protects mouse granulosa cells from oxidative damage by repressing mitophagy".PMID 27901103
  84. Feifei Su et al. (2016). "Bcl-2-associated athanogene 3 protects the heart from ischemia/reperfusion injury".PMID 27882354
  85. Jingyuan Li et al. (2016). "Mouse Sirt3 promotes autophagy in AngII-induced myocardial hypertrophy through the deacetylation of FoxO1".PMID 27880725
  86. Shira L Cramer et al. (2016). "Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth".PMID 27869804
  87. Luis Carlos Tábara et al. (2016). "VMP1 Establishes ER-Microdomains that Regulate Membrane Contact Sites and Autophagy".PMID 27861594
  88. Dan Shi et al. (2016). "Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells".PMID 27853367
  89. Kazuya Sakata et al. (2016). "Novel method to rescue a lethal phenotype through integration of target gene onto the X-chromosome".PMID 27845447
  90. Longyue L Cao et al. (2016). "Control of mitochondrial function and cell growth by the atypical cadherin Fat1".PMID 27828948
  91. Ming Y Lee et al. (2016). "Peroxisomal protein PEX13 functions in selective autophagy".PMID 27827795
  92. Dan Dan Li et al. (2016). "Late-stage inhibition of autophagy enhances calreticulin surface exposure".PMID 27825129
  93. Zih Ning Huang et al. (2016). "The Ubiquitin Receptor ADRM1 Modulates HAP40-Induced Proteasome Activity".PMID 27815841
  94. Yu Cai et al. (2016). "Regulation of morphine-induced synaptic alterations: Role of oxidative stress, ER stress, and autophagy".PMID 27810915
  95. Jae Sung Lim et al. (2016). "The role of TLR9 in stress-dependent autophagy formation".PMID 27793667
  96. Yuying Fan et al. (2017). "Identification of natural products with neuronal and metabolic benefits through autophagy induction".PMID 27791467
  97. Haojie Sun et al. (2016). "Resistance of glioma cells to nutrient-deprived microenvironment can be enhanced by CD133-mediated autophagy".PMID 27780926
  98. Jihye Han et al. (2016). "Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice".PMID 27780404
  99. Longhua Liu et al. (2016). "FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes".PMID 27777789
  100. Jingyu Yao et al. (2016). "Autophagy-mediated catabolism of visual transduction proteins prevents retinal degeneration".PMID 27753525
  101. Min Yang et al. (2016). "Autophagy is involved in aldosterone‑induced mesangial cell proliferation".PMID 27748808
  102. Huang Joe Wang et al. (2016). "Identification of Cofilin-1 Induces G0/G1 Arrest and Autophagy in Angiotensin-(1-7)-treated Human Aortic Endothelial Cells from iTRAQ Quantitative Proteomics".PMID 27748441
  103. Peng Zou et al. (2016). "Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment".PMID 27746856
  104. Yueliang Zhao et al. (2016). "6-C-(E-phenylethenyl)naringenin induces cell growth inhibition and cytoprotective autophagy in colon cancer cells".PMID 27710830
  105. Shivika S Gupta et al. (2016). "Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts".PMID 27705938
  106. Gabriela Figueroa-González et al. (2016). "Anti-inflammatory and Antitumor Activity of a Triple Therapy for a Colitis-Related Colorectal Cancer".PMID 27698900
  107. Mohammad Amin Moosavi et al. (2016). "Photodynamic N-TiO2 Nanoparticle Treatment Induces Controlled ROS-mediated Autophagy and Terminal Differentiation of Leukemia Cells".PMID 27698385
  108. Petr Vodicka et al. (2016). "Autophagy Activation by Transcription Factor EB (TFEB) in Striatum of HDQ175/Q7 Mice".PMID 27689619
  109. Wiem Chaabane et al. (2016). "Interconnections between apoptotic and autophagic pathways during thiopurine-induced toxicity in cancer cells: the role of reactive oxygen species".PMID 27689330
  110. Sarah H White et al. (2016). "Walking performance is positively correlated to calf muscle fiber size in peripheral artery disease subjects, but fibers show aberrant mitophagy: an observational study".PMID 27687713
  111. Ren Jie Wei et al. (2016). "A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells".PMID 27678524
  112. Seong M Kim et al. (2016). "Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways.".PMID 27669461
  113. Joanna M Dragich et al. (2016). "Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain".PMID 27648578
  114. M E Mercado-Pimentel et al. (2016). "The Novel Small Molecule Inhibitor, OSU-T315, Suppresses Vestibular Schwannoma and Meningioma Growth by Inhibiting PDK2 Function in the AKT Pathway Activation".PMID 27642646
  115. Sonia Hernández-Tiedra et al. (2016). "Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization".PMID 27635674
  116. Sangwook Park et al. (2016). "Interplay between Leucine-Rich Repeat Kinase 2 (LRRK2) and p62/SQSTM-1 in Selective Autophagy".PMID 27631370
  117. Virginie Hubert et al. (2016). "LAMP-2 is required for incorporating syntaxin-17 into autophagosomes and for their fusion with lysosomes".PMID 27628032
  118. Wei X Teo et al. (2016). "MTMR4 Is Required for the Stability of the Salmonella-Containing Vacuole".PMID 27625994
  119. Yiren Qin et al. (2016). "Stimulation of TLR4 Attenuates Alzheimer's Disease-Related Symptoms and Pathology in Tau-Transgenic Mice".PMID 27605009
  120. Mathieu Heulot et al. (2016). "The TAT-RasGAP317-326 anti-cancer peptide can kill in a caspase-, apoptosis-, and necroptosis-independent manner".PMID 27602963
  121. Hong Phuc Cudré-Cung et al. (2016). "Ammonium accumulation is a primary effect of 2-methylcitrate exposure in an in vitro model for brain damage in methylmalonic aciduria".PMID 27599447
  122. Donna M Conlon et al. (2016). "Inhibition of apolipoprotein B synthesis stimulates endoplasmic reticulum autophagy that prevents steatosis.".PMID 27599291
  123. Yuan Peng et al. (2016). "ABHD5 interacts with BECN1 to regulate autophagy and tumorigenesis of colon cancer independent of PNPLA2".PMID 27559856
  124. Nooshin Mirkheshti et al. (2016). "Dual targeting of androgen receptor and mTORC1 by salinomycin in prostate cancer".PMID 27557496
  125. Mingqun Lin et al. (2016). "Ehrlichia secretes Etf-1 to induce autophagy and capture nutrients for its growth through RAB5 and class III phosphatidylinositol 3-kinase".PMID 27541856
  126. Edward A Ratovitski et al. (2016). "Tumor Protein (TP)-p53 Members as Regulators of Autophagy in Tumor Cells upon Marine Drug Exposure".PMID 27537898
  127. Supawadee Sukseree et al. (2016). "Tyrosinase-Cre-Mediated Deletion of the Autophagy Gene Atg7 Leads to Accumulation of the RPE65 Variant M450 in the Retinal Pigment Epithelium of C57BL/6 Mice".PMID 27537685
  128. Karen A Weikel et al. (2016). "Knockdown of GSK3β increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells".PMID 27534430
  129. Yoon Kyung Jo et al. (2016). "O-GlcNAcylation of ATG4B positively regulates autophagy by increasing its hydroxylase activity".PMID 27527864
  130. Lili Cao et al. (2016). "A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells".PMID 27525972
  131. Ying Gao et al. (2016). "Golgi-associated LC3 lipidation requires V-ATPase in noncanonical autophagy".PMID 27512951
  132. Eleftherios Karanasios et al. (2016). "Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles".PMID 27510922
  133. Riki Ogasawara et al. (2016). "The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise".PMID 27502839
  134. Aiqing Zhang et al. (2016). "Natural compound oblongifolin C inhibits autophagic flux, and induces apoptosis and mitochondrial dysfunction in human cholangiocarcinoma QBC939 cells".PMID 27499017
  135. Su Wei Xu et al. (2016). "Autophagic degradation of epidermal growth factor receptor in gefitinib-resistant lung cancer by celastrol".PMID 27498688
  136. Y Xing et al. (2016). "TLR and NLRP3 inflammasome-dependent innate immune responses to tumor-derived autophagosomes (DRibbles)".PMID 27490927
  137. Jordan J Bartlett et al. (2016). "Doxorubicin impairs cardiomyocyte viability by suppressing transcription factor EB expression and disrupting autophagy".PMID 27487838
  138. Y Wang et al. (2016). "DNA-PK-mediated phosphorylation of EZH2 regulates the DNA damage-induced apoptosis to maintain T-cell genomic integrity".PMID 27468692
  139. Jigang Wang et al. (2016). "Quantitative chemical proteomics profiling of de novo protein synthesis during starvation-mediated autophagy".PMID 27463841
  140. Juan Wang et al. (2016). "Role for DUSP1 (dual-specificity protein phosphatase 1) in the regulation of autophagy".PMID 27459239
  141. Natalie Grinshtein et al. (2016). "Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells".PMID 27449082
  142. Erin M Buckingham et al. (2016). "Exocytosis of Varicella-Zoster Virus Virions Involves a Convergence of Endosomal and Autophagy Pathways".PMID 27440906
  143. Ji Geng et al. (2016). "A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria".PMID 27432745
  144. Marta Pajares et al. (2016). "Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes".PMID 27427974
  145. Hector Diez et al. (2016). "Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation".PMID 27421985
  146. Man Song et al. (2016). "Bystander autophagy mediated by radiation-induced exosomal miR-7-5p in non-targeted human bronchial epithelial cells".PMID 27417393
  147. Aram B Cholanians et al. (2016). "From the Cover: Arsenic Induces Accumulation of α-Synuclein: Implications for Synucleinopathies and Neurodegeneration".PMID 27413109
  148. Chunfa Liu et al. (2016). "AIM2 inhibits autophagy and IFN-β production during M. bovis infection".PMID 27409673
  149. Graeme Hewitt et al. (2016). "SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair".PMID 27391408
  150. Arnold H Zea et al. (2016). "Activation of the IL-2 Receptor in Podocytes: A Potential Mechanism for Podocyte Injury in Idiopathic Nephrotic Syndrome?".PMID 27389192
  151. Hongjie Pan et al. (2016). "Sustained activation of mTORC1 in macrophages increases AMPKα-dependent autophagy to maintain cellular homeostasis".PMID 27387347
  152. Peng Shen et al. (2016). "Inhibition of ERα/ERK/P62 cascades induces "autophagic switch" in the estrogen receptor-positive breast cancer cells exposed to gemcitabine".PMID 27384485
  153. Mattia Bramini et al. (2016). "Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons".PMID 27359048
  154. Xiaoli Zhang et al. (2016). "MCOLN1 is a ROS sensor in lysosomes that regulates autophagy".PMID 27357649
  155. Rowena Dejesus et al. (2016). "Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62".PMID 27351204
  156. Mitzie Ann Davis et al. (2016). "Nelfinavir is effective against human cervical cancer cells in vivo: a potential treatment modality in resource-limited settings".PMID 27330277
  157. Allyson N Hamlin et al. (2016). "LRP1 Protein Deficiency Exacerbates Palmitate-induced Steatosis and Toxicity in Hepatocytes".PMID 27317662
  158. Hyowon Choi et al. (2016). "Hypoxia promotes noncanonical autophagy in nucleus pulposus cells independent of MTOR and HIF1A signaling".PMID 27314664
  159. Hi Jai R Shin et al. (2016). "AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy".PMID 27309807
  160. Rubén Gómez-Sánchez et al. (2016). "PINK1 deficiency enhances autophagy and mitophagy induction".PMID 27308585
  161. Kenta Kuramoto et al. (2016). "Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids".PMID 27305347
  162. Anna Maria Andersson et al. (2016). "Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages".PMID 27302320
  163. Lan Gui et al. (2016). "Hypoxia induces autophagy in cardiomyocytes via a hypoxia-inducible factor 1-dependent mechanism".PMID 27284306
  164. Ruud H Wijdeven et al. (2016). "Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway".PMID 27283760
  165. Gina Bouchard et al. (2016). "Stimulation of triple negative breast cancer cell migration and metastases formation is prevented by chloroquine in a pre-irradiated mouse model".PMID 27282478
  166. Min Cheng et al. (2016). "MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis".PMID 27281615
  167. Kenji Kobayashi et al. (2016). "Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis".PMID 27279371
  168. Kunie Ando et al. (2016). "Level of PICALM, a key component of clathrin-mediated endocytosis, is correlated with levels of phosphotau and autophagy-related proteins and is associated with tau inclusions in AD, PSP and Pick disease".PMID 27260836
  169. Karnam Shruthi et al. (2016). "Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system".PMID 27260470
  170. Jianxing Zeng et al. (2016). "Autophagy regulates biliary differentiation of hepatic progenitor cells through Notch1 signaling pathway".PMID 27259983
  171. Steven J Foltz et al. (2016). "Four-week rapamycin treatment improves muscular dystrophy in a fukutin-deficient mouse model of dystroglycanopathy".PMID 27257474
  172. Olivia Adams et al. (2016). "Prognostic relevance of autophagy markers LC3B and p62 in esophageal adenocarcinomas".PMID 27250034
  173. Christoph Otto et al. (2016). "Antiproliferative and antimetabolic effects behind the anticancer property of fermented wheat germ extract".PMID 27245162
  174. Rebecca A Barnard et al. (2016). "Autophagy Inhibition Delays Early but Not Late-Stage Metastatic Disease".PMID 27231155
  175. B Gao et al. (2016). "Eicosapentaenoic acid attenuates dexamethasome-induced apoptosis by inducing adaptive autophagy via GPR120 in murine bone marrow-derived mesenchymal stem cells".PMID 27228350
  176. Hanan Elimam et al. (2016). "Genetic Ablation of Calcium-independent Phospholipase A2γ Induces Glomerular Injury in Mice".PMID 27226532
  177. Kun Yuan Lin et al. (2016). "Delivery of a survivin promoter-driven antisense survivin-expressing plasmid DNA as a cancer therapeutic: a proof-of-concept study".PMID 27217778
  178. Alaa Droubi et al. (2016). "Nuclear localizations of phosphatidylinositol 5-phosphate 4-kinases α and β are dynamic and independently regulated during starvation-induced stress".PMID 27208178
  179. Li Fang Wang et al. (2016). "Knockout of ho-1 protects the striatum from ferrous iron-induced injury in a male-specific manner in mice".PMID 27198537
  180. Alok Ranjan et al. (2016). "Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis".PMID 27189859
  181. Ali Koskela et al. (2016). "Nutraceutical with Resveratrol and Omega-3 Fatty Acids Induces Autophagy in ARPE-19 Cells".PMID 27187449
  182. Haoyue Deng et al. (2016). "Resveratrol Attenuates Aβ25-35 Caused Neurotoxicity by Inducing Autophagy Through the TyrRS-PARP1-SIRT1 Signaling Pathway".PMID 27180189
  183. Lei Liu et al. (2016). "Suppression of calcium‑sensing receptor ameliorates cardiac hypertrophy through inhibition of autophagy".PMID 27176663
  184. Sang Eun Park et al. (2016). "Inhibition of EHMT2/G9a epigenetically increases the transcription of Beclin-1 via an increase in ROS and activation of NF-κB".PMID 27174920
  185. Ju Xian Song et al. (2016). "A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition".PMID 27172265
  186. Zong Bo Wei et al. (2016). "SLC35D3 increases autophagic activity in midbrain dopaminergic neurons by enhancing BECN1-ATG14-PIK3C3 complex formation".PMID 27171858
  187. Guodong Huang et al. (2016). "The circadian clock regulates autophagy directly through the nuclear hormone receptor Nr1d1/Rev-erbα and indirectly via Cebpb/(C/ebpβ) in zebrafish".PMID 27171500
  188. Nunzia Pastore et al. (2016). "TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages".PMID 27171064
  189. Maria Karvela et al. (2016). "ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells".PMID 27168493
  190. Wei Jen Ting et al. (2016). "Environmental tobacco smoke increases autophagic effects but decreases longevity associated with Sirt-1 protein expression in young C57BL mice hearts".PMID 27167200
  191. Hao Xue et al. (2016). "A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway".PMID 27163161
  192. Lidia De Filippis et al. (2016). "Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells".PMID 27160314
  193. Elisa Onesto et al. (2016). "Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts".PMID 27151080
  194. Diane M Pereira et al. (2016). "MEK5/ERK5 signaling inhibition increases colon cancer cell sensitivity to 5-fluorouracil through a p53-dependent mechanism".PMID 27144434
  195. Suelen Feitoza Silva et al. (2016). "Oxysterols in adipose tissue-derived mesenchymal stem cell proliferation and death".PMID 27133385
  196. Abigail S Krall et al. (2016). "Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor".PMID 27126896
  197. Qichao Huang et al. (2016). "Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways".PMID 27124102
  198. Jia Xu et al. (2016). "Heme oxygenase‑1 protects H2O2‑insulted glomerular mesangial cells from excessive autophagy".PMID 27122182
  199. Audrey Swiader et al. (2016). "Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids".PMID 27119505
  200. Erin J Stephenson et al. (2016). "Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice".PMID 27117006
  201. Kuo Chiang Chen et al. (2016). "Dual Roles of 17-β Estradiol in Estrogen Receptor-dependent Growth Inhibition in Renal Cell Carcinoma".PMID 27107064
  202. Carlos J Rodriguez-Ortiz et al. (2016). "The Myoblast C2C12 Transfected with Mutant Valosin-Containing Protein Exhibits Delayed Stress Granule Resolution on Oxidative Stress".PMID 27106764
  203. Chantal Sellier et al. (2016). "Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death".PMID 27103069
  204. Qinghua Zhang et al. (2016). "The germline-enriched Ppp1r36 promotes autophagy".PMID 27098880
  205. Carlo Follo et al. (2016). "Autophagy initiation correlates with the autophagic flux in 3D models of mesothelioma and with patient outcome".PMID 27097020
  206. Kenneth R Pryde et al. (2016). "PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy".PMID 27091447
  207. Yongmei Qi et al. (2016). "ATM mediates spermidine-induced mitophagy via PINK1 and Parkin regulation in human fibroblasts".PMID 27089984
  208. Corrado Angelini et al. (2016). "Lipolysis and lipophagy in lipid storage myopathies".PMID 27085974
  209. Chao Hung Lai et al. (2016). "Multi-Strain Probiotics Inhibit Cardiac Myopathies and Autophagy to Prevent Heart Injury in High-Fat Diet-Fed Rats".PMID 27076784
  210. Mathieu Nivon et al. (2016). "NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation".PMID 27075172
  211. Qian Wang et al. (2016). "Autophagy protects ovarian cancer-associated fibroblasts against oxidative stress".PMID 27074587
  212. Lan Xiao et al. (2016). "YAP induces cisplatin resistance through activation of autophagy in human ovarian carcinoma cells".PMID 27073322
  213. Jane Ying Chieh Lee et al. (2016). "Inhibition of HDAC3- and HDAC6-Promoted Survivin Expression Plays an Important Role in SAHA-Induced Autophagy and Viability Reduction in Breast Cancer Cells".PMID 27065869
  214. Nathan Basisty et al. (2016). "Mitochondrial-targeted catalase is good for the old mouse proteome, but not for the young: 'reverse' antagonistic pleiotropy?".PMID 27061426
  215. S E Wohlgemuth et al. (2016). "Short communication: Effect of heat stress on markers of autophagy in the mammary gland during the dry period".PMID 27060813
  216. Haixia Zhuang et al. (2016). "Autophagic Cell Death and Apoptosis Jointly Mediate Cisatracurium Besylate-Induced Cell Injury".PMID 27058536
  217. Jiafa Ren et al. (2016). "Quercetin Inhibits Fibroblast Activation and Kidney Fibrosis Involving the Suppression of Mammalian Target of Rapamycin and β-catenin Signaling".PMID 27052477
  218. Anindya Dey et al. (2016). "Inhibition of BMI1 induces autophagy-mediated necroptosis".PMID 27050456
  219. Radhakrishnan Rajesh Kumar et al. (2016). "Abrogation of Nrf2 impairs antioxidant signaling and promotes atrial hypertrophy in response to high-intensity exercise stress".PMID 27048381
  220. Ji Man Park et al. (2016). "The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14".PMID 27046250
  221. Kendall Phelps-Polirer et al. (2016). "Co-Targeting of JNK and HUNK in Resistant HER2-Positive Breast Cancer".PMID 27045589
  222. Tzu Ping Lin et al. (2016). "REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling".PMID 27034167
  223. Vidya S Krishnan et al. (2016). "A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice".PMID 27030741
  224. Javier Prieto et al. (2016). "Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming".PMID 27030341
  225. Xiaojing Xia et al. (2016). "Arginine Supplementation Recovered the IFN-γ-Mediated Decrease in Milk Protein and Fat Synthesis by Inhibiting the GCN2/eIF2α Pathway, Which Induces Autophagy in Primary Bovine Mammary Epithelial Cells".PMID 27025389
  226. Song Chen et al. (2016). "Distinct roles of autophagy-dependent and -independent functions of FIP200 revealed by generation and analysis of a mutant knock-in mouse model".PMID 27013233
  227. Ishaq A Viringipurampeer et al. (2016). "NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration".PMID 27008885
  228. Michaela Gschweitl et al. (2016). "A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes".PMID 27008177
  229. Viviana R Lopes et al. (2016). "Dose-dependent autophagic effect of titanium dioxide nanoparticles in human HaCaT cells at non-cytotoxic levels".PMID 27001369
  230. Biserka Relic et al. (2016). "BAY 11-7085 induces glucocorticoid receptor activation and autophagy that collaborate with apoptosis to induce human synovial fibroblast cell death".PMID 26993765
  231. Alexis Bretin et al. (2016). "Activation of the EIF2AK4-EIF2A/eIF2α-ATF4 pathway triggers autophagy response to Crohn disease-associated adherent-invasive Escherichia coli infection".PMID 26986695
  232. Jumpei Soeda et al. (2016). "Maternal obesity alters endoplasmic reticulum homeostasis in offspring pancreas".PMID 26979740
  233. Avnika A Ruparelia et al. (2016). "FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency".PMID 26969713
  234. Valeria Crippa et al. (2016). "Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases".PMID 26961006
  235. Florian Beaumatin et al. (2016). "N52 monodeamidated Bcl‑xL shows impaired oncogenic properties in vivo and in vitro".PMID 26958941
  236. Won Hoon Choi et al. (2016). "Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation".PMID 26957043
  237. Lukas Jennewein et al. (2016). "Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas".PMID 26956048
  238. Chiara Scotton et al. (2016). "Deep RNA profiling identified CLOCK and molecular clock genes as pathophysiological signatures in collagen VI myopathy".PMID 26945058
  239. E Datan et al. (2016). "Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation".PMID 26938301
  240. Svetlana Saveljeva et al. (2016). "Endoplasmic reticulum stress-mediated induction of SESTRIN 2 potentiates cell survival".PMID 26930721
  241. T Colangelo et al. (2016). "The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells".PMID 26913599
  242. Le Yu et al. (2016). "Obatoclax impairs lysosomal function to block autophagy in cisplatin-sensitive and -resistant esophageal cancer cells".PMID 26910910
  243. Agnieszka M Kabat et al. (2016). "The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation".PMID 26910010
  244. Meijuan Zou et al. (2016). "AEG-1/MTDH-activated autophagy enhances human malignant glioma susceptibility to TGF-β1-triggered epithelial-mesenchymal transition".PMID 26909607
  245. Mengtao Li et al. (2016). "EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy".PMID 26905199
  246. Li Cao et al. (2016). "CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity".PMID 26900039
  247. Xiaojuan Han et al. (2016). "AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation".PMID 26890602
  248. Nina Stojcheva et al. (2016). "MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM".PMID 26887050
  249. Wenliang Zhang et al. (2016). "Poly C binding protein 1 represses autophagy through downregulation of LC3B to promote tumor cell apoptosis in starvation".PMID 26880484
  250. Y Lei et al. (2016). "EGFR-targeted mAb therapy modulates autophagy in head and neck squamous cell carcinoma through NLRX1-TUFM protein complex".PMID 26876213
  251. Nari Kim et al. (2016). "Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A".PMID 26868272
  252. Ying Liu et al. (2016). "Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance".PMID 26857140
  253. Fan Ouyang et al. (2016). "HMGB1 induces apoptosis and EMT in association with increased autophagy following H/R injury in cardiomyocytes".PMID 26847839
  254. Xiaoting Wu et al. (2016). "Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis".PMID 26837467
  255. Erik G Gentry et al. (2016). "Rho Kinase Inhibition as a Therapeutic for Progressive Supranuclear Palsy and Corticobasal Degeneration".PMID 26818518
  256. Robert W Button et al. (2016). "Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis".PMID 26814436
  257. Myungjin Kim et al. (2016). "Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay".PMID 26812546
  258. Jeremy W Duncan et al. (2016). "Binge ethanol exposure increases the Krüppel-like factor 11-monoamine oxidase (MAO) pathway in rats: Examining the use of MAO inhibitors to prevent ethanol-induced brain injury".PMID 26805422
  259. Maria Goulielmaki et al. (2016). "BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells".PMID 26802026
  260. Cindy Puente et al. (2016). "Nutrient-regulated Phosphorylation of ATG13 Inhibits Starvation-induced Autophagy".PMID 26801615
  261. A Ruiz et al. (2016). "Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis".PMID 26775710
  262. Kamlesh Pawar et al. (2016). "Down regulated lncRNA MEG3 eliminates mycobacteria in macrophages via autophagy".PMID 26757825
  263. Qingde Zhou et al. (2016). "Impairment of PARK14-dependent Ca(2+) signalling is a novel determinant of Parkinson's disease".PMID 26755131
  264. Suzanne M Cloonan et al. (2016). "Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice".PMID 26752519
  265. Rukmini Mukherjee et al. (2016). "Ubiquitin-mediated regulation of the E3 ligase GP78 by MGRN1 in trans affects mitochondrial homeostasis".PMID 26743086
  266. Bernadette Carroll et al. (2016). "Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity".PMID 26742086
  267. Kerstin Wilhelm et al. (2016). "FOXO1 couples metabolic activity and growth state in the vascular endothelium".PMID 26735015
  268. Fei Zhao et al. (2016). "Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells".PMID 26734992
  269. Lewis J Kraft et al. (2016). "Nuclear LC3 Associates with Slowly Diffusing Complexes that Survey the Nucleolus".PMID 26728248
  270. Cuicui Xie et al. (2016). "Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury".PMID 26727396
  271. Xue Yang et al. (2016). "Kupffer cells-dependent inflammation in the injured liver increases recruitment of mesenchymal stem cells in aging mice".PMID 26716516
  272. Ying Wang et al. (2016). "Sodium formate induces autophagy and apoptosis via the JNK signaling pathway of photoreceptor cells".PMID 26676762
  273. Yun Ru Chen et al. (2016). "Autophagy induction causes a synthetic lethal sensitization to ribonucleotide reductase inhibition in breast cancer cells".PMID 26675256
  274. María E Mercau et al. (2016). "Moderate Exercise Prevents Functional Remodeling of the Anterior Pituitary Gland in Diet-Induced Insulin Resistance in Rats: Role of Oxidative Stress and Autophagy".PMID 26672805
  275. Ali Vural et al. (2016). "Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection".PMID 26667172
  276. Aleksandr Stotland et al. (2016). "α-MHC MitoTimer mouse: In vivo mitochondrial turnover model reveals remarkable mitochondrial heterogeneity in the heart".PMID 26654779
  277. Andrew J Schwab et al. (2015). "Neurite Aggregation and Calcium Dysfunction in iPSC-Derived Sensory Neurons with Parkinson's Disease-Related LRRK2 G2019S Mutation".PMID 26651604
  278. Jian Da Wang et al. (2015). "A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation".PMID 26649942
  279. Jacqueline M Kimmey et al. (2015). "Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection".PMID 26649827
  280. Ana Martínez-Zamora et al. (2015). "Defective Expression of the Mitochondrial-tRNA Modifying Enzyme GTPBP3 Triggers AMPK-Mediated Adaptive Responses Involving Complex I Assembly Factors, Uncoupling Protein 2, and the Mitochondrial Pyruvate Carrier".PMID 26642043
  281. Kunihiko Yasuda et al. (2015). "Mdm20 Modulates Actin Remodeling through the mTORC2 Pathway via Its Effect on Rictor Expression".PMID 26600389
  282. George D McIlroy et al. (2016). "Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue".PMID 26592777
  283. Kristine Pettersen et al. (2016). "DHA-induced stress response in human colon cancer cells - Focus on oxidative stress and autophagy".PMID 26585906
  284. Yen Ta Huang et al. (2016). "Resveratrol alleviates the cytotoxicity induced by the radiocontrast agent, ioxitalamate, by reducing the production of reactive oxygen species in HK-2 human renal proximal tubule epithelial cells in vitro".PMID 26573558
  285. Jon Sin et al. (2016). "Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts".PMID 26566717
  286. Zhenheng Wang et al. (2015). "Autophagy mediated CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis".PMID 26566231
  287. Martina Chrisam et al. (2015). "Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice".PMID 26565691
  288. Ronny Lesmana et al. (2016). "Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle".PMID 26562261
  289. Hatem A Alnasser et al. (2016). "Requirement of clusterin expression for prosurvival autophagy in hypoxic kidney tubular epithelial cells".PMID 26561650
  290. P Majumder et al. (2015). "Mahogunin regulates fusion between amphisomes/MVBs and lysosomes via ubiquitination of TSG101".PMID 26539917
  291. Jianqiang Hu et al. (2016). "Luteolin alleviates post-infarction cardiac dysfunction by up-regulating autophagy through Mst1 inhibition".PMID 26538370
  292. Zhixun Dou et al. (2015). "Autophagy mediates degradation of nuclear lamina".PMID 26524528
  293. Chih Wen Lin et al. (2015). "Amiodarone as an autophagy promoter reduces liver injury and enhances liver regeneration and survival in mice after partial hepatectomy".PMID 26515640
  294. Laura Antonucci et al. (2015). "Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress".PMID 26512112
  295. Davor Ivankovic et al. (2016). "Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy".PMID 26509433
  296. Santosh Chauhan et al. (2015). "Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential".PMID 26503418
  297. Wenjie Qin et al. (2015). "Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells".PMID 26497999
  298. Yufeng Wang et al. (2015). "CGK733-induced LC3 II formation is positively associated with the expression of cyclin-dependent kinase inhibitor p21Waf1/Cip1 through modulation of the AMPK and PERK/CHOP signaling pathways".PMID 26486079
  299. Atsushi Eino et al. (2015). "Sqstm1-GFP knock-in mice reveal dynamic actions of Sqstm1 during autophagy and under stress conditions in living cells".PMID 26483381
  300. Hallvard L Olsvik et al. (2015). "FYCO1 Contains a C-terminally Extended, LC3A/B-preferring LC3-interacting Region (LIR) Motif Required for Efficient Maturation of Autophagosomes during Basal Autophagy".PMID 26468287
  301. Anthony Sinadinos et al. (2015). "P2RX7 purinoceptor: a therapeutic target for ameliorating the symptoms of duchenne muscular dystrophy".PMID 26461208
  302. Guijun Song et al. (2015). "Anti-autophagic and anti-apoptotic effects of memantine in a SH-SY5Y cell model of Alzheimer's disease via mammalian target of rapamycin-dependent and -independent pathways".PMID 26459718
  303. M van Geldermalsen et al. (2016). "ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer".PMID 26455325
  304. Paolo Mattiolo et al. (2015). "Autophagy exacerbates caspase-dependent apoptotic cell death after short times of starvation".PMID 26441250
  305. Saverio Marchi et al. (2015). "Defective autophagy is a key feature of cerebral cavernous malformations".PMID 26417067
  306. Alon D Levin et al. (2016). "Autophagy Contributes to the Induction of Anti-TNF Induced Macrophages".PMID 26417049
  307. Pedram Kharaziha et al. (2015). "Sorafenib-induced defective autophagy promotes cell death by necroptosis".PMID 26416459
  308. Rui Xiong et al. (2015). "A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity".PMID 26405178
  309. Sara L Sorrell et al. (2016). "Renal peroxiredoxin 6 interacts with anion exchanger 1 and plays a novel role in pH homeostasis".PMID 26398495
  310. Yulia Haim et al. (2015). "Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1".PMID 26391754
  311. Marisa Granato et al. (2015). "The activation of KSHV lytic cycle blocks autophagy in PEL cells".PMID 26391343
  312. Michael I Koukourakis et al. (2015). "Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines".PMID 26378792
  313. Daniel A Columbus et al. (2015). "Impact of prolonged leucine supplementation on protein synthesis and lean growth in neonatal pigs".PMID 26374843
  314. Camilla Pellegrini et al. (2015). "All-trans retinoic acid and rapamycin normalize Hutchinson Gilford progeria fibroblast phenotype".PMID 26359359
  315. Anasuya Ray et al. (2015). "6-Shogaol Inhibits Breast Cancer Cells and Stem Cell-Like Spheroids by Modulation of Notch Signaling Pathway and Induction of Autophagic Cell Death".PMID 26355461
  316. Jiangwei Zhang et al. (2015). "ATM functions at the peroxisome to induce pexophagy in response to ROS".PMID 26344566
  317. Marisa Granato et al. (2015). "Capsaicin triggers immunogenic PEL cell death, stimulates DCs and reverts PEL-induced immune suppression".PMID 26338963
  318. A De Leo et al. (2015). "Inhibition of autophagy in EBV-positive Burkitt's lymphoma cells enhances EBV lytic genes expression and replication".PMID 26335716
  319. Hong Guang Xia et al. (2015). "Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death".PMID 26323688
  320. Kanako Noritake et al. (2015). "Direct Exposure to Ethanol Disrupts Junctional Cell-Cell Contact and Hippo-YAP Signaling in HL-1 Murine Atrial Cardiomyocytes".PMID 26317911
  321. L Wang et al. (2015). "Decreased autophagy: a major factor for cardiomyocyte death induced by β1-adrenoceptor autoantibodies".PMID 26313913
  322. Pui Mun Wong et al. (2015). "Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A".PMID 26310906
  323. Viviana A Cavieres et al. (2015). "Tetrahydrohyperforin Inhibits the Proteolytic Processing of Amyloid Precursor Protein and Enhances Its Degradation by Atg5-Dependent Autophagy".PMID 26308941
  324. Zhuanhua Wang et al. (2015). "Recombinant Buckwheat Trypsin Inhibitor Induces Mitophagy by Directly Targeting Mitochondria and Causes Mitochondrial Dysfunction in Hep G2 Cells".PMID 26301894
  325. Tatiana Cañeque et al. (2015). "Synthesis of marmycin A and investigation into its cellular activity".PMID 26291947
  326. Kevin Moreau et al. (2015). "Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy".PMID 26289944
  327. Chih Yuan Chiang et al. (2015). "A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection".PMID 26284031
  328. Joseph Saliba et al. (2015). "Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies".PMID 26280900
  329. Isamu Sakabe et al. (2015). "TMEM33: a new stress-inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling".PMID 26268696
  330. Yuanli Zhen et al. (2015). "Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A(D251E) mutation".PMID 26259518
  331. Judy C Triplett et al. (2015). "Age-related changes in the proteostasis network in the brain of the naked mole-rat: Implications promoting healthy longevity".PMID 26248058
  332. I Hermanova et al. (2016). "Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells".PMID 26239197
  333. Yushu Ruan et al. (2015). "Autophagy inhibition enhances isorhamnetin‑induced mitochondria‑dependent apoptosis in non‑small cell lung cancer cells".PMID 26238746
  334. Ida Johansson et al. (2015). "The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells".PMID 26237736
  335. Amanda S Coutts et al. (2015). "Actin nucleation by WH2 domains at the autophagosome".PMID 26223951
  336. A Sargsyan et al. (2015). "Rapid parallel measurements of macroautophagy and mitophagy in mammalian cells using a single fluorescent biosensor".PMID 26215030
  337. Adrianne S Chesser et al. (2016). "Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons".PMID 26207957
  338. Stefan Drießen et al. (2015). "Deubiquitinase inhibition by WP1130 leads to ULK1 aggregation and blockade of autophagy".PMID 26207339
  339. Hui Mei Wu et al. (2015). "Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells".PMID 26201611
  340. Lu Zhang et al. (2015). "Resveratrol analogue 3,4,4'-trihydroxy-trans-stilbene induces apoptosis and autophagy in human non-small-cell lung cancer cells in vitro".PMID 26190500
  341. Ana Artero-Castro et al. (2015). "Disruption of the ribosomal P complex leads to stress-induced autophagy".PMID 26176264
  342. Rushika M Perera et al. (2015). "Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism".PMID 26168401
  343. I Kuan Wang et al. (2015). "MiR-20a-5p mediates hypoxia-induced autophagy by targeting ATG16L1 in ischemic kidney injury".PMID 26165754
  344. Sheng Huei Yang et al. (2015). "Lovastatin overcomes gefitinib resistance through TNF-α signaling in human cholangiocarcinomas with different LKB1 statuses in vitro and in vivo".PMID 26160843
  345. V Felzen et al. (2015). "Estrogen receptor α regulates non-canonical autophagy that provides stress resistance to neuroblastoma and breast cancer cells and involves BAG3 function".PMID 26158518
  346. Tomasz Zajkowski et al. (2015). "Stabilization of microtubular cytoskeleton protects neurons from toxicity of N-terminal fragment of cytosolic prion protein".PMID 26149502
  347. Xiaodi Su et al. (2015). "Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation".PMID 26147685
  348. Brandon J Metge et al. (2015). "N-Myc and STAT Interactor regulates autophagy and chemosensitivity in breast cancer cells".PMID 26146406
  349. Akihiro Ohashi et al. (2015). "Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells".PMID 26144554
  350. Jiayi Wang et al. (2015). "Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells".PMID 26124182
  351. Grant R Campbell et al. (2015). "Human Immunodeficiency Virus Type 1 Nef Inhibits Autophagy through Transcription Factor EB Sequestration".PMID 26115100
  352. Dieter A Kubli et al. (2015). "PINK1 Is Dispensable for Mitochondrial Recruitment of Parkin and Activation of Mitophagy in Cardiac Myocytes".PMID 26110811
  353. Thomas D B Macvicar et al. (2015). "Targeted siRNA Screens Identify ER-to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells".PMID 26110381
  354. Irene Riz et al. (2015). "KLF4-SQSTM1/p62-associated prosurvival autophagy contributes to carfilzomib resistance in multiple myeloma models".PMID 26109433
  355. Olivier Cases et al. (2015). "Foxg1-Cre Mediated Lrp2 Inactivation in the Developing Mouse Neural Retina, Ciliary and Retinal Pigment Epithelia Models Congenital High Myopia".PMID 26107939
  356. Christian Giordano et al. (2015). "Autophagy-associated atrophy and metabolic remodeling of the mouse diaphragm after short-term intermittent hypoxia".PMID 26107816
  357. Katherine E Liu et al. (2015). "Phosphorylation of the BNIP3 C-Terminus Inhibits Mitochondrial Damage and Cell Death without Blocking Autophagy".PMID 26102349
  358. Guowu Hu et al. (2015). "A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy".PMID 26098573
  359. Pei Shan Wu et al. (2015). "Luteolin and Apigenin Attenuate 4-Hydroxy-2-Nonenal-Mediated Cell Death through Modulation of UPR, Nrf2-ARE and MAPK Pathways in PC12 Cells".PMID 26087007
  360. Huiwen Song et al. (2015). "ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation".PMID 26083323
  361. Caixia Li et al. (2015). "(Pro)renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose".PMID 26081285
  362. Jia Wang et al. (2015). "Liraglutide protects pancreatic β-cells against free fatty acids in vitro and affects glucolipid metabolism in apolipoprotein E-/- mice by activating autophagy".PMID 26080706
  363. Hyunjoo Cha-Molstad et al. (2015). "Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding".PMID 26075355
  364. Sungwoo Park et al. (2015). "Pyruvate stimulates mitophagy via PINK1 stabilization".PMID 26071202
  365. Giulia Ruozi et al. (2015). "AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia".PMID 26066847
  366. Jia Yuan et al. (2015). "MYBL2 guides autophagy suppressor VDAC2 in the developing ovary to inhibit autophagy through a complex of VDAC2-BECN1-BCL2L1 in mammals".PMID 26060891
  367. Chuan Ming Xie et al. (2015). "Erbin is a novel substrate of the Sag-βTrCP E3 ligase that regulates KrasG12D-induced skin tumorigenesis".PMID 26056141
  368. Jing Cui et al. (2015). "Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models".PMID 26052900
  369. Moshi Song et al. (2015). "Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts".PMID 26038571
  370. Jesus Garcia-Cano et al. (2015). "Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance".PMID 26036632
  371. Thierry Gauthier et al. (2015). "Proximity Ligation In situ Assay is a Powerful Tool to Monitor Specific ATG Protein Interactions following Autophagy Induction".PMID 26034986
  372. Chien Chang Huang et al. (2015). "Autophagy-Regulated ROS from Xanthine Oxidase Acts as an Early Effector for Triggering Late Mitochondria-Dependent Apoptosis in Cathepsin S-Targeted Tumor Cells".PMID 26029922
  373. Qi Luan et al. (2015). "RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy".PMID 26018731
  374. Ching Yu Yen et al. (2015). "Impacts of autophagy-inducing ingredient of areca nut on tumor cells".PMID 26017803
  375. Albert Herms et al. (2015). "AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation".PMID 26013497
  376. Ting Sun et al. (2015). "Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth".PMID 26008601
  377. Zhouqing Huang et al. (2015). "Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes".PMID 26004523
  378. Pierre Sujobert et al. (2015). "Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia".PMID 26004183
  379. Ruth Milkereit et al. (2015). "LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation".PMID 25998567
  380. Ji Hong Moon et al. (2015). "Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell death".PMID 25997470
  381. Jianzhong Li et al. (2015). "Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis".PMID 25970154
  382. Susmita Kaushik et al. (2015). "Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis".PMID 25961502
  383. João Vasco Ferreira et al. (2015). "K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy".PMID 25958982
  384. Nobel Del Mar et al. (2015). "A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments".PMID 25957630
  385. H W Cheng et al. (2015). "Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data".PMID 25950483
  386. Yunha Kim et al. (2015). "Uvrag targeting by Mir125a and Mir351 modulates autophagy associated with Ewsr1 deficiency".PMID 25946189
  387. Marta Mauro-Lizcano et al. (2015). "New method to assess mitophagy flux by flow cytometry".PMID 25945953
  388. Yin Shi et al. (2015). "Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy".PMID 25945613
  389. Li Zhang et al. (2015). "FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells".PMID 25939952
  390. Jing Zhao et al. (2015). "LRRK2 dephosphorylation increases its ubiquitination".PMID 25939886
  391. Takao Kitagawa et al. (2015). "Mutant screening for oncogenes of Ewing's sarcoma using yeast".PMID 25936378
  392. Shuxi Qiao et al. (2015). "A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity".PMID 25916556
  393. Ariadna Laguna et al. (2015). "Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson's disease".PMID 25915474
  394. Hiroshi Itoh et al. (2015). "Enhancement of neutrophil autophagy by an IVIG preparation against multidrug-resistant bacteria as well as drug-sensitive strains".PMID 25908735
  395. Noelle M Marsh et al. (2015). "HSPB8 and the Cochaperone BAG3 Are Highly Expressed During the Synthetic Phase of Rat Myometrium Programming During Pregnancy".PMID 25904010
  396. Nobuaki Ozeki et al. (2015). "Interleukin-1β-induced autophagy-related gene 5 regulates proliferation of embryonic stem cell-derived odontoblastic cells".PMID 25894570
  397. Sangho Lee et al. (2015). "Strenuous exercise induces mitochondrial damage in skeletal muscle of old mice".PMID 25887799
  398. Kaisa Kyöstilä et al. (2015). "A missense change in the ATG4D gene links aberrant autophagy to a neurodegenerative vacuolar storage disease".PMID 25875846
  399. Simone Meidhof et al. (2015). "ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat".PMID 25872941
  400. Jacky Chung et al. (2015). "The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability".PMID 25872869
  401. Giulia Milan et al. (2015). "Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy".PMID 25858807
  402. Surender Vashist et al. (2015). "Molecular chaperone Hsp90 is a therapeutic target for noroviruses".PMID 25855731
  403. Lauren R Kett et al. (2015). "α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2".PMID 25855184
  404. Naiara Akizu et al. (2015). "Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction".PMID 25848753
  405. Wan Ling Chuang et al. (2015). "Sann-Joong-Kuey-Jian-Tang induces autophagy in HepG2 cells via regulation of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and p38 mitogen-activated protein kinase pathways".PMID 25847489
  406. M Pilar Valdecantos et al. (2015). "Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes".PMID 25841776
  407. Jiang Zhao et al. (2015). "Detrusor myocyte autophagy protects the bladder function via inhibiting the inflammation in cyclophosphamide-induced cystitis in rats".PMID 25830308
  408. Wenjie Zhang et al. (2015). "PTPRO-mediated autophagy prevents hepatosteatosis and tumorigenesis".PMID 25826083
  409. Tao Zhang et al. (2015). "G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L".PMID 25821988
  410. Marina N Sharifi et al. (2015). "Measuring autophagy in stressed cells".PMID 25804753
  411. Peter Crauwels et al. (2015). "Apoptotic-like Leishmania exploit the host's autophagy machinery to reduce T-cell-mediated parasite elimination".PMID 25801301
  412. Qiao Zhang et al. (2015). "The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation".PMID 25799126
  413. Elliott M McMillan et al. (2015). "Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise".PMID 25799101
  414. Lionel Leclere et al. (2015). "Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells".PMID 25794149
  415. Brian J Girard et al. (2015). "Cytoplasmic PELP1 and ERRgamma protect human mammary epithelial cells from Tam-induced cell death".PMID 25789479
  416. Matthias S Roost et al. (2014). "Lymphangiogenesis and angiogenesis during human fetal pancreas development".PMID 25785186
  417. A M Strohecker et al. (2015). "Identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel autophagy regulator by high content shRNA screening".PMID 25772235
  418. Agata Desantis et al. (2015). "Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy".PMID 25770584
  419. Maopeng Yang et al. (2015). "Autophagy-based survival prognosis in human colorectal carcinoma".PMID 25762626
  420. Caleigh M Opperman et al. (2015). "Tumor necrosis factor alpha stimulates p62 accumulation and enhances proteasome activity independently of ROS".PMID 25761618
  421. Enyu Rao et al. (2015). "Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death".PMID 25760243
  422. Jordan Wengrod et al. (2015). "Phosphorylation of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma".PMID 25759478
  423. Suzanna L Prosser et al. (2015). "Centrin2 regulates CP110 removal in primary cilium formation".PMID 25753040
  424. Hao Zheng Yang et al. (2015). "Autophagy contributes to the enrichment and survival of colorectal cancer stem cells under oxaliplatin treatment".PMID 25749420
  425. Agnete Bratsberg Eriksen et al. (2015). "Retinoic acid-induced IgG production in TLR-activated human primary B cells involves ULK1-mediated autophagy".PMID 25749095
  426. Rubén Gómez-Sánchez et al. (2015). "Routine Western blot to check autophagic flux: cautions and recommendations".PMID 25747848
  427. Yi Ma et al. (2015). "Testosterone regulates the autophagic clearance of androgen binding protein in rat Sertoli cells".PMID 25745956
  428. Véronique Pène et al. (2015). "Dynamic Interaction of Stress Granules, DDX3X, and IKK-α Mediates Multiple Functions in Hepatitis C Virus Infection".PMID 25740981
  429. R K Bikkavilli et al. (2015). "Wnt7a is a novel inducer of β-catenin-independent tumor-suppressive cellular senescence in lung cancer".PMID 25728679
  430. Yong Weon Yi et al. (2015). "β-TrCP1 degradation is a novel action mechanism of PI3K/mTOR inhibitors in triple-negative breast cancer cells".PMID 25721419
  431. Nikolai V Gorbunov et al. (2015). "Autophagy and mitochondrial remodelling in mouse mesenchymal stromal cells challenged with Staphylococcus epidermidis".PMID 25721260
  432. Diego L Medina et al. (2015). "Lysosomal calcium signalling regulates autophagy through calcineurin and ​TFEB".PMID 25720963
  433. Jose Manuel Bravo San Pedro et al. (2015). "BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy".PMID 25715028
  434. Sujuan Guo et al. (2015). "A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applications".PMID 25714620
  435. Anna Ulbricht et al. (2015). "Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle".PMID 25714469
  436. Lucía Sanjurjo et al. (2015). "The human CD5L/AIM-CD36 axis: A novel autophagy inducer in macrophages that modulates inflammatory responses".PMID 25713983
  437. Millore X M Luo et al. (2015). "Autophagy Mediates HBx-Induced Nuclear Factor-κB Activation and Release of IL-6, IL-8, and CXCL2 in Hepatocytes".PMID 25708728
  438. Heon Yung Gee et al. (2015). "Analysis of conventional and unconventional trafficking of CFTR and other membrane proteins".PMID 25702115
  439. Majid Sakhi Jabir et al. (2015). "Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy".PMID 25700738
  440. Christopher N J Young et al. (2015). "A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90".PMID 25700737
  441. Lucia Polletta et al. (2015). "SIRT5 regulation of ammonia-induced autophagy and mitophagy".PMID 25700560
  442. Kyle Bauckman et al. (2015). "Iron alters cell survival in a mitochondria-dependent pathway in ovarian cancer cells".PMID 25697096
  443. R Nisar et al. (2015). "Diquat causes caspase-independent cell death in SH-SY5Y cells by production of ROS independently of mitochondria".PMID 25693864
  444. Shih Ya Hung et al. (2015). "LC3 overexpression reduces Aβ neurotoxicity through increasing α7nAchR expression and autophagic activity in neurons and mice".PMID 25686800
  445. Eirini Pantazi et al. (2015). "Sirtuin 1 in rat orthotopic liver transplantation: an IGL-1 preservation solution approach".PMID 25684941
  446. Paula Szalai et al. (2015). "Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs".PMID 25684710
  447. Shaoqing Shi et al. (2015). "Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis".PMID 25682199
  448. Eun Sung Kim et al. (2015). "Inhibition of autophagy suppresses sertraline-mediated primary ciliogenesis in retinal pigment epithelium cells".PMID 25671433
  449. Reddy Peera Kommaddi et al. (2015). "Phosphorylation of the deubiquitinase USP20 by protein kinase A regulates post-endocytic trafficking of β2 adrenergic receptors to autophagosomes during physiological stress".PMID 25666616
  450. S A Greenall et al. (2015). "EGFRvIII-mediated transactivation of receptor tyrosine kinases in glioma: mechanism and therapeutic implications".PMID 25659577
  451. Ana Guerrero et al. (2015). "The cerebral cavernous malformation 3 gene is necessary for senescence induction".PMID 25655101
  452. Kun Liu et al. (2015). "Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization".PMID 25650776
  453. R A Rohatgi et al. (2015). "Beclin 1 regulates growth factor receptor signaling in breast cancer".PMID 25639875
  454. Aishu Ren et al. (2015). "Inhibition of H3K9 methyltransferase G9a induces autophagy and apoptosis in oral squamous cell carcinoma".PMID 25634693
  455. Shu Wang et al. (2015). "ATF4 Gene Network Mediates Cellular Response to the Anticancer PAD Inhibitor YW3-56 in Triple-Negative Breast Cancer Cells".PMID 25612620
  456. Masashi Kanayama et al. (2015). "Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity".PMID 25609235
  457. Moshi Song et al. (2015). "Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts".PMID 25600785
  458. Anne Marie Arel-Dubeau et al. (2014). "Cucurbitacin E has neuroprotective properties and autophagic modulating activities on dopaminergic neurons".PMID 25574337
  459. Z Zhou et al. (2015). "Autophagy supports survival and phototransduction protein levels in rod photoreceptors".PMID 25571975
  460. L Liu et al. (2015). "Tamoxifen reduces fat mass by boosting reactive oxygen species".PMID 25569103
  461. S Liu et al. (2015). "Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death".PMID 25569099
  462. Matthildi Valianou et al. (2015). "Pharmacological inhibition of Polo-like kinase 1 (PLK1) by BI-2536 decreases the viability and survival of hamartin and tuberin deficient cells via induction of apoptosis and attenuation of autophagy".PMID 25565629
  463. Marta Bueno et al. (2015). "PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis".PMID 25562319
  464. Sharon Mudie et al. (2014). "PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia".PMID 25558831
  465. Helen L Wiggins et al. (2015). "Disulfiram-induced cytotoxicity and endo-lysosomal sequestration of zinc in breast cancer cells".PMID 25557293
  466. Peter Sykora et al. (2015). "DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes".PMID 25552414
  467. Shakeel U R Mir et al. (2015). "Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death".PMID 25548282
  468. Alfeu Zanotto-Filho et al. (2015). "Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas".PMID 25542083
  469. Claudia Fiorini et al. (2015). "Onconase induces autophagy sensitizing pancreatic cancer cells to gemcitabine and activates Akt/mTOR pathway in a ROS-dependent manner".PMID 25533084
  470. Bharat Jaishy et al. (2015). "Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity".PMID 25529920
  471. Gabriele Di Sante et al. (2015). "Loss of Sirt1 promotes prostatic intraepithelial neoplasia, reduces mitophagy, and delays PARK2 translocation to mitochondria".PMID 25529796
  472. Krishna K Singh et al. (2015). "The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition".PMID 25527499
  473. Iván Durán et al. (2015). "HSP47 and FKBP65 cooperate in the synthesis of type I procollagen".PMID 25510505
  474. Panojot Bifsha et al. (2014). "Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra".PMID 25501001
  475. Guan Yu Chen et al. (2015). "Graphene oxide as a chemosensitizer: diverted autophagic flux, enhanced nuclear import, elevated necrosis and improved antitumor effects".PMID 25498801
  476. Máté Varga et al. (2015). "Autophagy in zebrafish".PMID 25498006
  477. Gaurav Kaushik et al. (2015). "Honokiol inhibits melanoma stem cells by targeting notch signaling".PMID 25491779
  478. Chinmoy Sarkar et al. (2014). "Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury".PMID 25484084
  479. Kristine Porter et al. (2015). "Autophagic dysregulation in glaucomatous trabecular meshwork cells".PMID 25483712
  480. Alexandra Giatromanolaki et al. (2014). "Autophagy and lysosomal related protein expression patterns in human glioblastoma".PMID 25482944
  481. Lu Zhang et al. (2015). "Novel role for TRPC4 in regulation of macroautophagy by a small molecule in vascular endothelial cells".PMID 25476892
  482. Hong Liu et al. (2015). "Inhibition of autophagy recovers cardiac dysfunction and atrophy in response to tail-suspension".PMID 25476825
  483. Sijun Yang et al. (2014). "Defective mitophagy driven by dysregulation of rheb and KIF5B contributes to mitochondrial reactive oxygen species (ROS)-induced nod-like receptor 3 (NLRP3) dependent proinflammatory response and aggravates lipotoxicity".PMID 25462067
  484. Tae Hyung Kim et al. (2015). "Psammaplin A induces Sirtuin 1-dependent autophagic cell death in doxorubicin-resistant MCF-7/adr human breast cancer cells and xenografts".PMID 25445714
  485. Wei Lu et al. (2015). "A 3'UTR-associated RNA, FLJ11812 maintains stemness of human embryonic stem cells by targeting miR-4459".PMID 25437332
  486. Janina Leyk et al. (2015). "Inhibition of HDAC6 modifies tau inclusion body formation and impairs autophagic clearance".PMID 25434725
  487. Hiroshi Nakashima et al. (2015). "Interferon-stimulated gene 15 (ISG15) and ISG15-linked proteins can associate with members of the selective autophagic process, histone deacetylase 6 (HDAC6) and SQSTM1/p62".PMID 25429107
  488. Ana I Rovetta et al. (2014). "IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis".PMID 25426782
  489. Wei He et al. (2014). "Microtubule-associated protein 1 light chain 3 interacts with and contributes to growth inhibiting effect of PML".PMID 25419843
  490. CHRISTOPHER JOHN BOWMAN et al. (2014). "Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs".PMID 25402684
  491. Nils C Gassen et al. (2014). "Association of FKBP51 with priming of autophagy pathways and mediation of antidepressant treatment response: evidence in cells, mice, and humans".PMID 25386878
  492. Irina Lonskaya et al. (2014). "Tau deletion impairs intracellular β-amyloid-42 clearance and leads to more extracellular plaque deposition in gene transfer models".PMID 25384392
  493. Huishan Guo et al. (2014). "Autophagy supports genomic stability by degrading retrotransposon RNA".PMID 25366815
  494. William E Dowdle et al. (2014). "Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo".PMID 25327288
  495. Nai Di Yang et al. (2014). "Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin".PMID 25305013
  496. Yufeng Wang et al. (2014). "Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer".PMID 25271986
  497. Dun Sheng Yang et al. (2014). "Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting lysosomal proteolytic deficits".PMID 25270989
  498. Lynda K McGinnis et al. (2014). "Post-ovulatory aging of oocytes disrupts kinase signaling pathways and lysosome biogenesis".PMID 25242074
  499. Nathan D Roe et al. (2015). "Targeted deletion of PTEN in cardiomyocytes renders cardiac contractile dysfunction through interruption of Pink1-AMPK signaling and autophagy".PMID 25229693
  500. Ernesto Perez-Chanona et al. (2014). "The microbiota protects against ischemia/reperfusion-induced intestinal injury through nucleotide-binding oligomerization domain-containing protein 2 (NOD2) signaling".PMID 25204845
  501. Takeo Nitta et al. (2014). "Autophagy may promote carcinoma cell invasion and correlate with poor prognosis in cholangiocarcinoma".PMID 25197362
  502. Jia Liu et al. (2014). "Oleanolic acid inhibits proliferation and invasiveness of Kras-transformed cells via autophagy".PMID 25172632
  503. Yue Liu et al. (2014). "Expression levels of autophagy related proteins and their prognostic significance in retinocytoma and retinoblastoma".PMID 25161927
  504. Vanessa Ginet et al. (2014). "Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic".PMID 25146903
  505. Bin Guo et al. (2014). "The nascent polypeptide-associated complex is essential for autophagic flux".PMID 25126725
  506. Lan Hui Li et al. (2014). "Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells".PMID 25105411
  507. Mohamed Amine Hamouda et al. (2014). "The small heat shock protein B8 (HSPB8) confers resistance to bortezomib by promoting autophagic removal of misfolded proteins in multiple myeloma cells".PMID 25051369
  508. Enrico Desideri et al. (2014). "MAPK14/p38α-dependent modulation of glucose metabolism affects ROS levels and autophagy during starvation".PMID 25046111
  509. Robert Domitrovic et al. (2014). "Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury".PMID 25043994
  510. R Corpeno et al. (2014). "Time course analysis of mechanical ventilation-induced diaphragm contractile muscle dysfunction in the rat".PMID 25015920
  511. Rana Baraz et al. (2014). "mTOR inhibition by everolimus in childhood acute lymphoblastic leukemia induces caspase-independent cell death".PMID 25014496
  512. Rebecca A Barnard et al. (2014). "Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma".PMID 24991836
  513. Ana L Morgado et al. (2015). "MicroRNA-34a Modulates Neural Stem Cell Differentiation by Regulating Expression of Synaptic and Autophagic Proteins".PMID 24973144
  514. Hiu Yeung Lau et al. (2014). "An improved isoprenylcysteine carboxylmethyltransferase inhibitor induces cancer cell death and attenuates tumor growth in vivo".PMID 24971579
  515. Melissa Nassif et al. (2014). "Pathogenic role of BECN1/Beclin 1 in the development of amyotrophic lateral sclerosis".PMID 24905722
  516. Katarzyna Zielniok et al. (2014). "Functional interactions between 17 β -estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures".PMID 24895572
  517. Siying Li et al. (2014). "Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction".PMID 24895528
  518. Li Lin et al. (2015). "Isosorbide dinitrate inhibits mechanical stress-induced cardiac hypertrophy and autophagy through downregulation of angiotensin II type 1 receptor".PMID 24887682
  519. Safia Costes et al. (2014). "UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells: evidence of interplay between the ubiquitin/proteasome system and autophagy".PMID 24879150
  520. Giulia Ambrosi et al. (2014). "Bioenergetic and proteolytic defects in fibroblasts from patients with sporadic Parkinson's disease".PMID 24854107
  521. Hongna Wang et al. (2014). "Atg7 is required for acrosome biogenesis during spermatogenesis in mice".PMID 24853953
  522. K D Chen et al. (2014). "Interconnections between autophagy and the coagulation cascade in hepatocellular carcinoma".PMID 24853422
  523. S Yang et al. (2014). "Mitochondrial dysfunction driven by the LRRK2-mediated pathway is associated with loss of Purkinje cells and motor coordination deficits in diabetic rat model".PMID 24810053
  524. Mayumi Watanabe et al. (2014). "Activation of the ubiquitin-proteasome system against arsenic trioxide cardiotoxicity involves ubiquitin ligase Parkin for mitochondrial homeostasis".PMID 24801902
  525. David I Brown et al. (2014). "Poldip2 knockout results in perinatal lethality, reduced cellular growth and increased autophagy of mouse embryonic fibroblasts".PMID 24797518
  526. S C Cazanave et al. (2014). "Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis".PMID 24769730
  527. Liana Roberts Stein et al. (2014). "Expression of Nampt in hippocampal and cortical excitatory neurons is critical for cognitive function".PMID 24760840
  528. A Gonzalez-Rodriguez et al. (2014). "Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD".PMID 24743734
  529. X Zhao et al. (2014). "Inhibition of autophagy strengthens celastrol-induced apoptosis in human pancreatic cancer in vitro and in vivo models".PMID 24730520
  530. Eloy Bejarano et al. (2014). "Connexins modulate autophagosome biogenesis".PMID 24705551
  531. Hazem Akkad et al. (2014). "Masseter muscle myofibrillar protein synthesis and degradation in an experimental critical illness myopathy model".PMID 24705179
  532. Joseph D Mancias et al. (2014). "Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy".PMID 24695223
  533. Mansour Akbari et al. (2014). "Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair".PMID 24674627
  534. Abdelhalim Loukil et al. (2014). "High-resolution live-cell imaging reveals novel cyclin A2 degradation foci involving autophagy".PMID 24634511
  535. Silvia Carloni et al. (2014). "Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways".PMID 24631374
  536. Rafah Mackeh et al. (2014). "Reactive oxygen species, AMP-activated protein kinase, and the transcription cofactor p300 regulate α-tubulin acetyltransferase-1 (αTAT-1/MEC-17)-dependent microtubule hyperacetylation during cell stress".PMID 24619423
  537. Mari Ekman et al. (2014). "HIF-mediated metabolic switching in bladder outlet obstruction mitigates the relaxing effect of mitochondrial inhibition".PMID 24589856
  538. Li Lin et al. (2014). "Mechanical stress triggers cardiomyocyte autophagy through angiotensin II type 1 receptor-mediated p38MAP kinase independently of angiotensin II".PMID 24586922
  539. Kristine M Porter et al. (2014). "MTOR-independent induction of autophagy in trabecular meshwork cells subjected to biaxial stretch".PMID 24583119
  540. Yoko Maruyama et al. (2014). "LC3B is indispensable for selective autophagy of p62 but not basal autophagy".PMID 24582747
  541. Wen Li et al. (2014). "MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX".PMID 24573672
  542. Jun Ohshima et al. (2014). "Role of mouse and human autophagy proteins in IFN-γ-induced cell-autonomous responses against Toxoplasma gondii".PMID 24563254
  543. Kimberley M Mellor et al. (2014). "Cardiomyocyte glycophagy is regulated by insulin and exposure to high extracellular glucose".PMID 24561860
  544. Pei Ching Chang et al. (2014). "Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells".PMID 24551118
  545. Laura Poillet et al. (2014). "QSOX1 inhibits autophagic flux in breast cancer cells".PMID 24475161
  546. Jianzhong Li et al. (2014). "Rictor/mTORC2 protects against cisplatin-induced tubular cell death and acute kidney injury".PMID 24451322
  547. Alice E Zemljic-Harpf et al. (2014). "Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes".PMID 24413171
  548. Jung Woo Kang et al. (2014). "Melatonin inhibits mTOR-dependent autophagy during liver ischemia/reperfusion".PMID 24401531
  549. Qing Xia et al. (2014). "The CDK1 inhibitor RO3306 improves the response of BRCA-proficient breast cancer cells to PARP inhibition".PMID 24378347
  550. Barbara Baldo et al. (2013). "Maintenance of basal levels of autophagy in Huntington's disease mouse models displaying metabolic dysfunction".PMID 24376631
  551. Aaron Y Lai et al. (2014). "scyllo-Inositol promotes robust mutant Huntingtin protein degradation".PMID 24352657
  552. Joana M Xavier et al. (2014). "Mitochondrial translocation of p53 modulates neuronal fate by preventing differentiation-induced mitochondrial stress".PMID 24329038
  553. Sébastien Brot et al. (2014). "Collapsin response mediator protein 5 (CRMP5) induces mitophagy, thereby regulating mitochondrion numbers in dendrites".PMID 24324268
  554. Zhenzhen Zhan et al. (2014). "Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination".PMID 24321786
  555. Wei Jia Wang et al. (2014). "Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway".PMID 24316735
  556. Lorenza Sisinni et al. (2014). "TRAP1 role in endoplasmic reticulum stress protection favors resistance to anthracyclins in breast carcinoma cells".PMID 24297638
  557. Shi Hao Tan et al. (2014). "Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway".PMID 24296537
  558. Yael H Edrey et al. (2014). "Oxidative damage and amyloid-β metabolism in brain regions of the longest-lived rodents".PMID 24273049
  559. Noemi Rubio et al. (2014). "p38(MAPK)-regulated induction of p62 and NBR1 after photodynamic therapy promotes autophagic clearance of ubiquitin aggregates and reduces reactive oxygen species levels by supporting Nrf2-antioxidant signaling".PMID 24269898
  560. Yin Xu et al. (2014). "Overexpression of p62/SQSTM1 promotes the degradations of abnormally accumulated PrP mutants in cytoplasm and relieves the associated cytotoxicities via autophagy-lysosome-dependent way".PMID 24240628
  561. Zuozhang Yang et al. (2013). "Regulation of autophagy via PERK-eIF2α effectively relieve the radiation myelitis induced by iodine-125".PMID 24223705
  562. Claudia Manzoni et al. (2013). "Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation".PMID 24211199
  563. Rubén Gómez-Sánchez et al. (2014). "Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression".PMID 24184327
  564. Vinita G Chittoor et al. (2013). "Biochemical characterization of protein quality control mechanisms during disease progression in the C22 mouse model of CMT1A".PMID 24175617
  565. Peng fei Wei et al. (2014). "Accelerating the clearance of mutant huntingtin protein aggregates through autophagy induction by europium hydroxide nanorods".PMID 24169003
  566. Yuan Fei Peng et al. (2013). "Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells".PMID 24157892
  567. Ming liang Chen et al. (2013). "Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway".PMID 24145604
  568. Chandrashekara Kyathanahalli et al. (2013). "Cross-species withdrawal of MCL1 facilitates postpartum uterine involution in both the mouse and baboon".PMID 24140717
  569. Andrea Armstrong et al. (2014). "Lysosomal network proteins as potential novel CSF biomarkers for Alzheimer's disease".PMID 24101586
  570. Larisa V Fedorova et al. (2013). "Mitochondrial impairment in the five-sixth nephrectomy model of chronic renal failure: proteomic approach".PMID 24090408
  571. Robert Domitrovic et al. (2013). "Berberine exerts nephroprotective effect against cisplatin-induced kidney damage through inhibition of oxidative/nitrosative stress, inflammation, autophagy and apoptosis".PMID 24025684
  572. In Hye Lee et al. (2013). "The emerging links between sirtuins and autophagy".PMID 24014412
  573. Silvia Ramírez-Peinado et al. (2013). "Glucose-starved cells do not engage in prosurvival autophagy".PMID 24014036
  574. Alberto Bartolomé et al. (2013). "Autophagy impairment aggravates the inhibitory effects of high glucose on osteoblast viability and function".PMID 23981124
  575. Aditi U Gurkar et al. (2013). "Identification of ROCK1 kinase as a critical regulator of Beclin1-mediated autophagy during metabolic stress".PMID 23877263
  576. W He et al. (2014). "A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy".PMID 23831571
  577. Y Yuan et al. (2013). "Gossypol and an HMT G9a inhibitor act in synergy to induce cell death in pancreatic cancer cells".PMID 23807219
  578. Asako Itakura et al. (2013). "Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy".PMID 23720022
  579. Saurabh Ghosh Roy et al. (2013). "Reciprocal effects of rab7 deletion in activated and neglected T cells".PMID 23615463
  580. K A Bauckman et al. (2013). "Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells".PMID 23598404
  581. Vrajesh V Parekh et al. (2013). "Impaired autophagy, defective T cell homeostasis, and a wasting syndrome in mice with a T cell-specific deletion of Vps34".PMID 23596309
  582. Monte S Willis et al. (2013). "Carboxyl terminus of Hsp70-interacting protein (CHIP) is required to modulate cardiac hypertrophy and attenuate autophagy during exercise".PMID 23553918
  583. Jessica M Posimo et al. (2013). "Neocortex and allocortex respond differentially to cellular stress in vitro and aging in vivo".PMID 23536801
  584. Li Luo et al. (2013). "Chronic resistance training activates autophagy and reduces apoptosis of muscle cells by modulating IGF-1 and its receptors, Akt/mTOR and Akt/FOXO3a signaling in aged rats".PMID 23419688
  585. Kapil Sirohi et al. (2013). "M98K-OPTN induces transferrin receptor degradation and RAB12-mediated autophagic death in retinal ganglion cells".PMID 23357852
  586. Charlotte Suetta et al. (2012). "Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy".PMID 23284670
  587. Rosa Sánchez-Alvarez et al. (2013). "Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention".PMID 23257780
  588. Rosa Sánchez-Alvarez et al. (2013). "Mitochondrial dysfunction in breast cancer cells prevents tumor growth: understanding chemoprevention with metformin".PMID 23257779
  589. David W Woessner et al. (2013). "Disrupting BCR-ABL in combination with secondary leukemia-specific pathways in CML cells leads to enhanced apoptosis and decreased proliferation".PMID 23211037
  590. Alice C Newman et al. (2012). "TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-κB signalling".PMID 23209807
  591. Vincenzo Giansanti et al. (2013). "Characterization of stress response in human retinal epithelial cells".PMID 23205553
  592. Rianna Vandergaast et al. (2012). "West Nile virus (WNV) replication is independent of autophagy in mammalian cells".PMID 23029249
  593. Anne Cecile Durieux et al. (2012). "A centronuclear myopathy--dynamin 2 mutation impairs autophagy in mice".PMID 22369075
  594. Isei Tanida et al. (2012). "The FAP motif within human ATG7, an autophagy-related E1-like enzyme, is essential for the E2-substrate reaction of LC3 lipidation".PMID 22170151
  595. Wen Chi Su et al. (2011). "Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy".PMID 21835792
  596. Ken C Walls et al. (2010). "Lysosome dysfunction triggers Atg7-dependent neural apoptosis".PMID 20123985