这是一篇来自已证抗体库的有关人类 微管相关蛋白2 (MAP2) 的综述,是根据159篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合微管相关蛋白2 抗体。
微管相关蛋白2 同义词: MAP-2; MAP2A; MAP2B; MAP2C

艾博抗(上海)贸易有限公司
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1i
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1i). Aging Cell (2020) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 图 4e
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在大鼠样本上 (图 4e). Commun Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 2g
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(abcam, ab32454)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 2g). Nat Commun (2020) ncbi
domestic rabbit 单克隆
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, Cambridge, UK, #ab183830)被用于. Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 s1d
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s1d). J Neuroinflammation (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 4c
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, Cambridge, UK, ab5392)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4c). Front Cell Neurosci (2019) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; pigs ; 1:1000; 图 3a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:1000 (图 3a). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4d
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4d). Nat Commun (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:2000; 图 5a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 5a). PLoS ONE (2020) ncbi
小鼠 单克隆(HM-2)
  • 免疫印迹; 大鼠; 1:1000; 图 5a, 5b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a, 5b). Sci Rep (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 图 1b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在人类样本上 (图 1b). Cell Rep (2020) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2c
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2c). Nature (2020) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 2d
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2d). elife (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 图 1b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, AB5392)被用于被用于免疫细胞化学在人类样本上 (图 1b). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:400; 图 2j
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫细胞化学在大鼠样本上浓度为1:400 (图 2j). Aging Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s5f
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s5f). Nat Commun (2019) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 人类; 1:5000; 图 1c
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, AB5392)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:5000 (图 1c). Nature (2019) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 人类; 1:500; 图 1b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 1b). Nat Neurosci (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:5,000; 图 4h
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5,000 (图 4h). Sci Rep (2019) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:500; 图 2c
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2c). Sci Adv (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 5s1a
  • 免疫细胞化学; African green monkey; 1:500; 图 5s1a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5s1a) 和 被用于免疫细胞化学在African green monkey样本上浓度为1:500 (图 5s1a). elife (2019) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 s6b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 s6b). Cell (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:300; 图 s1b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 s1b). Mol Ther Nucleic Acids (2018) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 图 s5b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在人类样本上 (图 s5b). Cell (2018) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 1:500; 图 1b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b). Sci Rep (2018) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 图 s4c
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上 (图 s4c). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:250; 图 2a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 2a). J Immunol Methods (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:400; 图 s2g
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, AB32454)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 s2g). J Cell Biol (2017) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:6000; 图 s2e
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上浓度为1:6000 (图 s2e). Nat Commun (2017) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 人类; 1:5000
  • 免疫细胞化学; 人类; 1:5000; 图 3f
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, AB5392)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:5000 和 被用于免疫细胞化学在人类样本上浓度为1:5000 (图 3f). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫细胞化学在人类样本上. Front Mol Neurosci (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 图 1g
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在大鼠样本上 (图 1g). Mol Cell Neurosci (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 1:500; 表 2
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (表 2). J Neuroinflammation (2017) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 图 7
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在大鼠样本上 (图 7). Sci Rep (2017) ncbi
鸡 多克隆
  • 免疫组化; 人类; 图 9a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化在人类样本上 (图 9a). Mol Neurodegener (2017) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 s9a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 s9a). Nat Commun (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 6a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 6a). J Neurosci Res (2017) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 1:5000; 图 1e
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在大鼠样本上浓度为1:5000 (图 1e). Transl Psychiatry (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1e
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1e). J Biol Chem (2016) ncbi
鸡 多克隆
  • 免疫组化; 人类; 图 s5
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化在人类样本上 (图 s5). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 猫; 1:100; 图 3a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫组化-石蜡切片在猫样本上浓度为1:100 (图 3a). Cell Cycle (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 1:10,000; 图 5a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在大鼠样本上浓度为1:10,000 (图 5a). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 s1a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1a). Cell Rep (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 1:2000; 图 2
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 图 6
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在小鼠样本上 (图 6). elife (2016) ncbi
鸡 多克隆
  • proximity ligation assay; 小鼠; 图 s2
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab92434)被用于被用于proximity ligation assay在小鼠样本上 (图 s2). Nat Struct Mol Biol (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 1h
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1h). Nature (2016) ncbi
鸡 多克隆
  • 免疫印迹; roundworm ; 1:1000; 图 7
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫印迹在roundworm 样本上浓度为1:1000 (图 7). BMC Biol (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 图 s7e
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上 (图 s7e). Cell Rep (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 图 1a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上 (图 1a). Biochim Biophys Acta (2016) ncbi
鸡 多克隆
  • 免疫组化; black ferret; 1:200; 图 7b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化在black ferret样本上浓度为1:200 (图 7b). Shock (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 1:500; 图 2
  • 免疫印迹; 大鼠; 图 s5
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, HM-2)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 s5). Stem Cells Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(abcam, ab32454)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 大鼠; 图 7
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(abcam, ab11267)被用于被用于免疫组化在大鼠样本上 (图 7). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5). Brain Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:2000; 图 2
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000 (图 2). J Histochem Cytochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Front Neurosci (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 图 s3
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上 (图 s3). elife (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 图 s2
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在小鼠样本上 (图 s2). PLoS ONE (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:5000; 图 3
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 3). Mol Psychiatry (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 3
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:2000; 图 2a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abeam, ab5392)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 2a). Methods (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫印迹; 小鼠; 图 2c
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab 11267)被用于被用于免疫印迹在小鼠样本上 (图 2c). Transl Psychiatry (2015) ncbi
小鼠 单克隆(MT-07)
  • 免疫细胞化学; 小鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab36447)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 1:500
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. Am J Obstet Gynecol (2015) ncbi
鸡 多克隆
  • 其他; 小鼠; 1:10,000; 图 2b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, 5392)被用于被用于其他在小鼠样本上浓度为1:10,000 (图 2b). Mol Neurobiol (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫印迹在人类样本上. J Vis Exp (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 1:500; 表 1
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (表 1). Stem Cells Dev (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 1:500
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在人类样本上浓度为1:500. PLoS ONE (2014) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1500
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1500. J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 大鼠; 1:1000
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫组化在大鼠样本上浓度为1:1000. Microsc Res Tech (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2013) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 人类; 1:200
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200. Stem Cells Dev (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, Ab11267)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 2a). J Tissue Eng Regen Med (2015) ncbi
赛默飞世尔
小鼠 单克隆(HM-2)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 1c
  • 免疫细胞化学; 大鼠; 1:750; 图 2b
赛默飞世尔微管相关蛋白2抗体(Thermo Fisher, MA1-25043)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 1c) 和 被用于免疫细胞化学在大鼠样本上浓度为1:750 (图 2b). elife (2019) ncbi
小鼠 单克隆(AP20)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s7a
赛默飞世尔微管相关蛋白2抗体(Invitrogen, AP20)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s7a). Sci Rep (2018) ncbi
小鼠 单克隆(AP18)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 st11
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 st11
  • 免疫组化-石蜡切片; 犬; 1:200; 图 st11
赛默飞世尔微管相关蛋白2抗体(Neomarkers, MS-250)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 st11), 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 st11) 和 被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 st11). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(AP20)
  • 免疫细胞化学; Epinephelus; 图 1a
赛默飞世尔微管相关蛋白2抗体(Thermo Fisher Scientific, MA5-12823)被用于被用于免疫细胞化学在Epinephelus样本上 (图 1a). Dev Comp Immunol (2017) ncbi
小鼠 单克隆(AP18)
  • 免疫细胞化学; 人类; 1:300; 图 3a
赛默飞世尔微管相关蛋白2抗体(ThermoFisher Scientific, MA5-12826)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 3a). Neurotoxicology (2016) ncbi
小鼠 单克隆(AP20)
  • 免疫细胞化学; 小鼠; 1:200; 表 1
赛默飞世尔微管相关蛋白2抗体(Thermo Scientific, MA5-12823)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (表 1). J Neurophysiol (2016) ncbi
鸡 多克隆
赛默飞世尔微管相关蛋白2抗体(Thermo Fisher Scientific Pierce, PA1-10005)被用于. Mol Neuropsychiatry (2015) ncbi
小鼠 单克隆(M13)
  • 免疫细胞化学; 人类
赛默飞世尔微管相关蛋白2抗体(生活技术, 13-1500)被用于被用于免疫细胞化学在人类样本上. J Neural Eng (2015) ncbi
小鼠 单克隆(M13)
  • 免疫细胞化学; 人类; 1:200
赛默飞世尔微管相关蛋白2抗体(Life Technolgoies, 13-1500)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(AP18)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔微管相关蛋白2抗体(Thermo Scientific, MA5-12826)被用于被用于免疫细胞化学在人类样本上 (图 1). Development (2014) ncbi
小鼠 单克隆(AP20)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 s2a
赛默飞世尔微管相关蛋白2抗体(NeoMarkers, AP20)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 s2a). Acta Neuropathol (2014) ncbi
小鼠 单克隆(AP20)
  • 免疫组化; 大鼠; 表 1
赛默飞世尔微管相关蛋白2抗体(Thermo Scientific, AP20)被用于被用于免疫组化在大鼠样本上 (表 1). Biomed Res Int (2013) ncbi
小鼠 单克隆(AP20)
  • 免疫组化; 人类
赛默飞世尔微管相关蛋白2抗体(Thermo Fisher Scientific, MS-249S0)被用于被用于免疫组化在人类样本上. Clin Neuropathol (2013) ncbi
小鼠 单克隆(AP20)
  • 免疫组化-石蜡切片; 小鼠; 1:6000; 图 7
赛默飞世尔微管相关蛋白2抗体(Thermo Scientific, MS-249)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:6000 (图 7). Neurobiol Dis (2013) ncbi
小鼠 单克隆(M13)
  • 免疫组化; 小鼠; 1:1000; 图 4
赛默飞世尔微管相关蛋白2抗体(Invitrogen, 13-1500)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4). Pain (2012) ncbi
小鼠 单克隆(M13)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔微管相关蛋白2抗体(Invitrogen, 13-1500)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2011) ncbi
小鼠 单克隆(M13)
  • 免疫组化-石蜡切片; 人类; 1:400; 表 3
赛默飞世尔微管相关蛋白2抗体(Zymed, M13)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (表 3). J Clin Neurosci (2011) ncbi
小鼠 单克隆(M13)
  • 免疫组化-冰冻切片; 人类; 图 2
赛默飞世尔微管相关蛋白2抗体(Zymed, M13)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2). Neuropathology (2008) ncbi
小鼠 单克隆(M13)
  • 免疫细胞化学; 人类; 1:500; 图 3
赛默飞世尔微管相关蛋白2抗体(Zymed Laboratories, 13-1500)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3). J Neurochem (2004) ncbi
小鼠 单克隆(M13)
  • 免疫沉淀; 大鼠
  • 免疫印迹; 大鼠
赛默飞世尔微管相关蛋白2抗体(Zymed, 13-1500)被用于被用于免疫沉淀在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Brain Res (2003) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-8)
  • 免疫细胞化学; 小鼠; 图 3e
  • 免疫组化; 小鼠; 图 11a
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz, sc-74422)被用于被用于免疫细胞化学在小鼠样本上 (图 3e) 和 被用于免疫组化在小鼠样本上 (图 11a). Theranostics (2020) ncbi
小鼠 单克隆(A-4)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4e
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz, sc-74421)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4e). elife (2020) ncbi
小鼠 单克隆(AA5)
  • 免疫印迹; 小鼠; 1:250; 图 3b
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz, SC80012)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 3b). Brain (2019) ncbi
小鼠 单克隆(A-4)
  • 免疫细胞化学; 人类; 图 3
圣克鲁斯生物技术微管相关蛋白2抗体(SantaCruz, sc-74421)被用于被用于免疫细胞化学在人类样本上 (图 3). Cell Biol Int (2018) ncbi
小鼠 单克隆(AP20)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3a
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz, sc-32791)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3a). Acta Neuropathol Commun (2017) ncbi
小鼠 单克隆(A-4)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 2a
  • 免疫印迹; 大鼠; 图 2c
圣克鲁斯生物技术微管相关蛋白2抗体(SantaCruz, sc-74421)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 2a) 和 被用于免疫印迹在大鼠样本上 (图 2c). Sci Rep (2017) ncbi
小鼠 单克隆(AP20)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s4b
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s3c
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz Biotechnology, sc-32791)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s4b) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s3c). Sci Rep (2016) ncbi
小鼠 单克隆(B-8)
  • 免疫细胞化学; African green monkey; 1:200; 图 2s1
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz, sc-74420)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:200 (图 2s1). elife (2015) ncbi
小鼠 单克隆(AP20)
  • 免疫组化-冰冻切片; 大鼠
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz, SC32791)被用于被用于免疫组化-冰冻切片在大鼠样本上. Brain Inj (2015) ncbi
小鼠 单克隆(A-8)
  • 免疫组化-冰冻切片; 大鼠; 1:100
  • 免疫组化-冰冻切片; 人类; 1:100
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz Biotechnology, sc-74422)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 和 被用于免疫组化-冰冻切片在人类样本上浓度为1:100. J Neurochem (2015) ncbi
小鼠 单克隆(A-4)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术微管相关蛋白2抗体(santa Cruz, sc-74421)被用于被用于免疫印迹在大鼠样本上 (图 7). Int J Mol Med (2015) ncbi
小鼠 单克隆(A-4)
  • 免疫细胞化学; 大鼠; 1:100; 图 4
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz, sc-74421)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4). Int J Mol Med (2015) ncbi
小鼠 单克隆(AP20)
  • 免疫组化; 大鼠
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz Biotechnology, SC32791)被用于被用于免疫组化在大鼠样本上. J Cereb Blood Flow Metab (2014) ncbi
Synaptic Systems
小鼠 单克隆(198A5)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1a1
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188 011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1a1). elife (2020) ncbi
豚鼠 多克隆(/)
  • 免疫组化-冰冻切片; 人类; 1:10,000; 图 s1d
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188004)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:10,000 (图 s1d). Science (2020) ncbi
豚鼠 多克隆(/)
  • 免疫细胞化学; 大鼠; 1:500; 图 3c
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188004)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 3c). elife (2019) ncbi
豚鼠 多克隆(/)
  • 免疫细胞化学; 大鼠; 图 1c
Synaptic Systems微管相关蛋白2抗体(Synaptic systems, 188004)被用于被用于免疫细胞化学在大鼠样本上 (图 1c). Cell (2019) ncbi
小鼠 单克隆(198A5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3s1a
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188011)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3s1a). elife (2018) ncbi
豚鼠 多克隆(/)
  • 免疫组化; 大鼠; 1:500; 图 2a
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188-004)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2a). J Cell Biol (2018) ncbi
豚鼠 多克隆(/)
  • 免疫组化; 人类; 1:1000; 图 1c
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188004)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1c). Nature (2017) ncbi
豚鼠 多克隆(/)
  • 免疫细胞化学; 大鼠; 图 1b
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188004)被用于被用于免疫细胞化学在大鼠样本上 (图 1b). Sci Rep (2016) ncbi
豚鼠 多克隆(/)
  • 免疫细胞化学; 人类; 1:250; 图 3a,3b
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188 004)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 3a,3b). elife (2016) ncbi
domestic rabbit 多克隆(/)
  • 免疫细胞化学; 小鼠; 图 4c
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188002)被用于被用于免疫细胞化学在小鼠样本上 (图 4c). Proc Natl Acad Sci U S A (2016) ncbi
豚鼠 多克隆(/)
  • 免疫细胞化学; 小鼠; 图 s5
Synaptic Systems微管相关蛋白2抗体(Synaptic systems, 188 004)被用于被用于免疫细胞化学在小鼠样本上 (图 s5). Acta Neuropathol (2016) ncbi
小鼠 单克隆(198A5)
  • 免疫组化; 人类; 图 5
  • 免疫组化; 小鼠; 图 5
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188011)被用于被用于免疫组化在人类样本上 (图 5) 和 被用于免疫组化在小鼠样本上 (图 5). Stem Cell Res Ther (2015) ncbi
Novus Biologicals
鸡 多克隆
  • 免疫组化; 人类; 图 s7c
Novus Biologicals微管相关蛋白2抗体(Novus, 300-312)被用于被用于免疫组化在人类样本上 (图 s7c). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(4H5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5
Novus Biologicals微管相关蛋白2抗体(Novus Biologicals, NBP2-25156)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5). Front Cell Neurosci (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:2000; 图 s8
Novus Biologicals微管相关蛋白2抗体(Novus Biologicals, NB300-213)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 s8). Brain (2016) ncbi
鸡 多克隆
Novus Biologicals微管相关蛋白2抗体(Novus Biologicals, NB300-213)被用于. J Clin Invest (2015) ncbi
鸡 多克隆
Novus Biologicals微管相关蛋白2抗体(Novus Biologicals, NB300-213)被用于. Nucleic Acids Res (2012) ncbi
武汉三鹰
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2f
武汉三鹰微管相关蛋白2抗体(Proteintech, 17490-1-AP)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2f). Front Cell Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s1c
  • 免疫组化; 小鼠; 1:500; 图 4a
武汉三鹰微管相关蛋白2抗体(Proteintech, 17490-1)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s1c) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 4a). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 3a
武汉三鹰微管相关蛋白2抗体(Proteintech, 17490-1-AP)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3a). FASEB J (2017) ncbi
domestic rabbit 多克隆
武汉三鹰微管相关蛋白2抗体(Proteintech, 17490-1-AP)被用于. Mol Brain (2015) ncbi
EnCor Biotechnology
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 2a
EnCor Biotechnology微管相关蛋白2抗体(Encor Biotech, CPCA-MAP2)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2a). elife (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 图 5d
EnCor Biotechnology微管相关蛋白2抗体(Encor Biotech, CPCA-MAP2)被用于被用于免疫细胞化学在人类样本上 (图 5d). Cell (2018) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:2000; 图 3
EnCor Biotechnology微管相关蛋白2抗体(EnCor Biotech, CPCA-MAP2)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 3). FASEB J (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:2000; 图 1
EnCor Biotechnology微管相关蛋白2抗体(EnCor, CPCA-MAP2)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1). J Exp Med (2016) ncbi
BioLegend
鸡 多克隆(Poly28225)
  • 免疫细胞化学; 人类; 图 s3a
BioLegend微管相关蛋白2抗体(Biolegend, 822,501)被用于被用于免疫细胞化学在人类样本上 (图 s3a). Acta Neuropathol Commun (2019) ncbi
GeneTex
小鼠 单克隆(HM-2)
  • 免疫组化; 小鼠; 1:1000; 图 s3
GeneTex微管相关蛋白2抗体(GeneTex, GTX11267)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s3). Mol Neurobiol (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signalling, 4542S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4c). Front Cell Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling, 4542)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Mol Med Rep (2020) ncbi
domestic rabbit 单克隆(D5G1)
  • 免疫细胞化学; 人类; 图 1b
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling Technology, D5G1)被用于被用于免疫细胞化学在人类样本上 (图 1b). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1c
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell signaling, 4542)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1c). Stem Cell Res (2019) ncbi
domestic rabbit 单克隆(D5G1)
  • 免疫组化; 大鼠; 1:200; 图 4a
  • 免疫印迹; 大鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling, 8707)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Sci Rep (2018) ncbi
domestic rabbit 单克隆(D5G1)
  • 免疫印迹; 小鼠; 图 s1b
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling, 8707)被用于被用于免疫印迹在小鼠样本上 (图 s1b). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling, 4542)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2a). Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(D5G1)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling, 8707S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Dis Model Mech (2016) ncbi
domestic rabbit 单克隆(D5G1)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signalling, 8707)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:800; 图 6b
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell signaling, 4542)被用于被用于免疫印迹在大鼠样本上浓度为1:800 (图 6b). BMC Complement Altern Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling Technology, 45425)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3). Transl Psychiatry (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell signaling, 4542S)被用于被用于免疫细胞化学在人类样本上 (图 2). Life Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Sigma Chemical, 4542S)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Mol Neurobiol (2016) ncbi
Neuromics
  • 免疫细胞化学; 人类; 1:1000; 图 s4a
Neuromics微管相关蛋白2抗体(NEUROMICS, CH22103)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s4a). Dis Model Mech (2020) ncbi
  • 免疫组化; 小鼠; 1:5000; 图 6b
Neuromics微管相关蛋白2抗体(Neuromics, CH22103)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 6b). Nat Commun (2016) ncbi
  • 免疫组化; 人类; 1:2000; 图 2e
Neuromics微管相关蛋白2抗体(Neuromics, CH22103)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 2e). Hum Mol Genet (2015) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:1000
Neuromics微管相关蛋白2抗体(Neuromics, CH22103)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Front Neural Circuits (2014) ncbi
  • 免疫组化-自由浮动切片; Mongolian jird; 1:1000
Neuromics微管相关蛋白2抗体(Neuromics, CH22103)被用于被用于免疫组化-自由浮动切片在Mongolian jird样本上浓度为1:1000. J Comp Neurol (2011) ncbi
碧迪BD
小鼠 单克隆(18/MAP2B)
  • 免疫细胞化学; 大鼠; 图 3d
碧迪BD微管相关蛋白2抗体(BD Biosciences, 560399)被用于被用于免疫细胞化学在大鼠样本上 (图 3d). Nat Commun (2018) ncbi
小鼠 单克隆(18/MAP2B)
  • 免疫印迹; 小鼠; 表 1
碧迪BD微管相关蛋白2抗体(BD biosciences, 610460)被用于被用于免疫印迹在小鼠样本上 (表 1). Neuron (2017) ncbi
小鼠 单克隆(18/MAP2B)
  • 免疫印迹; 小鼠; 图 7
碧迪BD微管相关蛋白2抗体(BD Biosciences, 610460)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(18/MAP2B)
  • 流式细胞仪; 大鼠; 图 6
碧迪BD微管相关蛋白2抗体(Becton, Dickinson and Company, 560399)被用于被用于流式细胞仪在大鼠样本上 (图 6). Sci Rep (2016) ncbi
Biosensis
鸡 多克隆
  • 免疫组化; 小鼠; 图 1b
Biosensis微管相关蛋白2抗体(Biosensis, C-1382-50)被用于被用于免疫组化在小鼠样本上 (图 1b). Science (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 1:5000; 图 1a
Biosensis微管相关蛋白2抗体(Biosensis, C-1382-50)被用于被用于免疫细胞化学在大鼠样本上浓度为1:5000 (图 1a). J Gen Physiol (2017) ncbi
文章列表
  1. Zhang W, Zhou M, Lu W, Gong J, Gao F, Li Y, et al. CNTNAP4 deficiency in dopaminergic neurons initiates parkinsonian phenotypes. Theranostics. 2020;10:3000-3021 pubmed 出版商
  2. McCabe M, Cullen E, Barrows C, Shore A, Tooke K, Laprade K, et al. Genetic inactivation of mTORC1 or mTORC2 in neurons reveals distinct functions in glutamatergic synaptic transmission. elife. 2020;9: pubmed 出版商
  3. Rodriguez Ortiz C, Prieto G, Martini A, Forner S, Trujillo Estrada L, LaFerla F, et al. miR-181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer's disease. Aging Cell. 2020;19:e13118 pubmed 出版商
  4. Zeng S, Bai J, Jiang H, Zhu J, Fu C, He M, et al. Treatment With Liraglutide Exerts Neuroprotection After Hypoxic-Ischemic Brain Injury in Neonatal Rats via the PI3K/AKT/GSK3β Pathway. Front Cell Neurosci. 2019;13:585 pubmed 出版商
  5. Chen C, Chencheng Z, Cuiying L, Xiaokun G. Plasmacytoid Dendritic Cells Protect Against Middle Cerebral Artery Occlusion Induced Brain Injury by Priming Regulatory T Cells. Front Cell Neurosci. 2020;14:8 pubmed 出版商
  6. Hughes C, Choi M, Yi J, Kim S, Drews A, George Hyslop P, et al. Beta amyloid aggregates induce sensitised TLR4 signalling causing long-term potentiation deficit and rat neuronal cell death. Commun Biol. 2020;3:79 pubmed 出版商
  7. Wang X, Ma M, Zhou L, Jiang X, Hao M, Teng R, et al. Autonomic ganglionic injection of α-synuclein fibrils as a model of pure autonomic failure α-synucleinopathy. Nat Commun. 2020;11:934 pubmed 出版商
  8. Polis B, Srikanth K, Gurevich V, Bloch N, Gil Henn H, Samson A. Arginase Inhibition Supports Survival and Differentiation of Neuronal Precursors in Adult Alzheimer's Disease Mice. Int J Mol Sci. 2020;21: pubmed 出版商
  9. Moruno Manchon J, Lejault P, Wang Y, McCauley B, Honarpisheh P, Morales Scheihing D, et al. Small-molecule G-quadruplex stabilizers reveal a novel pathway of autophagy regulation in neurons. elife. 2020;9: pubmed 出版商
  10. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  11. Cicvaric A, Sachernegg H, Stojanovic T, Symmank D, Smani T, Moeslinger T, et al. Podoplanin Gene Disruption in Mice Promotes in vivo Neural Progenitor Cells Proliferation, Selectively Impairs Dentate Gyrus Synaptic Depression and Induces Anxiety-Like Behaviors. Front Cell Neurosci. 2019;13:561 pubmed 出版商
  12. Grovola M, Paleologos N, Wofford K, Harris J, Browne K, Johnson V, et al. Mossy cell hypertrophy and synaptic changes in the hilus following mild diffuse traumatic brain injury in pigs. J Neuroinflammation. 2020;17:44 pubmed 出版商
  13. Lund C, Yellapragada V, Vuoristo S, Balboa D, Trova S, Allet C, et al. Characterization of the human GnRH neuron developmental transcriptome using a GNRH1-TdTomato reporter line in human pluripotent stem cells. Dis Model Mech. 2020;13: pubmed 出版商
  14. Sclip A, Sudhof T. LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses. elife. 2020;9: pubmed 出版商
  15. Tanaka H, Homma H, Fujita K, Kondo K, Yamada S, Jin X, et al. YAP-dependent necrosis occurs in early stages of Alzheimer's disease and regulates mouse model pathology. Nat Commun. 2020;11:507 pubmed 出版商
  16. Yang F, Yang L, Wataya Kaneda M, Teng L, Katayama I. Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model. PLoS ONE. 2020;15:e0228204 pubmed 出版商
  17. Trevino A, Sinnott Armstrong N, Andersen J, Yoon S, Huber N, Pritchard J, et al. Chromatin accessibility dynamics in a model of human forebrain development. Science. 2020;367: pubmed 出版商
  18. Cha M, Lee K, Lee B. Astroglial changes in the zona incerta in response to motor cortex stimulation in a rat model of chronic neuropathy. Sci Rep. 2020;10:943 pubmed 出版商
  19. Nickolls A, Lee M, Espinoza D, Szczot M, Lam R, Wang Q, et al. Transcriptional Programming of Human Mechanosensory Neuron Subtypes from Pluripotent Stem Cells. Cell Rep. 2020;30:932-946.e7 pubmed 出版商
  20. Zhu Q, Zhang N, Hu N, Jiang R, Lu H, Xuan A, et al. Neural stem cell transplantation improves learning and memory by protecting cholinergic neurons and restoring synaptic impairment in an amyloid precursor protein/presenilin 1 transgenic mouse model of Alzheimer's disease. Mol Med Rep. 2020;21:1172-1180 pubmed 出版商
  21. Gate D, Saligrama N, Leventhal O, Yang A, Unger M, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature. 2020;577:399-404 pubmed 出版商
  22. Evans H, Bodea L, Götz J. Cell-specific non-canonical amino acid labelling identifies changes in the de novo proteome during memory formation. elife. 2020;9: pubmed 出版商
  23. Sun A, Yuan Q, Fukuda M, Yu W, Yan H, Lim G, et al. Potassium channel dysfunction in human neuronal models of Angelman syndrome. Science. 2019;366:1486-1492 pubmed 出版商
  24. Ercan Herbst E, Ehrig J, Schöndorf D, Behrendt A, Klaus B, Gomez Ramos B, et al. A post-translational modification signature defines changes in soluble tau correlating with oligomerization in early stage Alzheimer's disease brain. Acta Neuropathol Commun. 2019;7:192 pubmed 出版商
  25. Herring S, Moon H, Rawal P, Chhibber A, Zhao L. Brain clusterin protein isoforms and mitochondrial localization. elife. 2019;8: pubmed 出版商
  26. Ye J, Yin Y, Liu H, Fang L, Tao X, Wei L, et al. Tau inhibits PKA by nuclear proteasome-dependent PKAR2α elevation with suppressed CREB/GluA1 phosphorylation. Aging Cell. 2020;19:e13055 pubmed 出版商
  27. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  28. Donadoni M, Cicalese S, Sarkar D, Chang S, Sariyer I. Alcohol exposure alters pre-mRNA splicing of antiapoptotic Mcl-1L isoform and induces apoptosis in neural progenitors and immature neurons. Cell Death Dis. 2019;10:447 pubmed 出版商
  29. Velasco S, Kedaigle A, Simmons S, Nash A, Rocha M, Quadrato G, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 2019;: pubmed 出版商
  30. Duan W, Guo M, Yi L, Zhang J, Bi Y, Liu Y, et al. Deletion of Tbk1 disrupts autophagy and reproduces behavioral and locomotor symptoms of FTD-ALS in mice. Aging (Albany NY). 2019;11:2457-2476 pubmed 出版商
  31. Vogel S, Schäfer C, Hess S, Folz Donahue K, Nelles M, Minassian A, et al. The in vivo timeline of differentiation of engrafted human neural progenitor cells. Stem Cell Res. 2019;37:101429 pubmed 出版商
  32. Giandomenico S, Mierau S, Gibbons G, Wenger L, Masullo L, Sit T, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22:669-679 pubmed 出版商
  33. Walton C, Zhang W, Patiño Parrado I, Barrio Alonso E, Garrido J, Frade J. Primary neurons can enter M-phase. Sci Rep. 2019;9:4594 pubmed 出版商
  34. Rademacher N, Kuropka B, Kunde S, Wahl M, Freund C, Shoichet S. Intramolecular domain dynamics regulate synaptic MAGUK protein interactions. elife. 2019;8: pubmed 出版商
  35. Dominy S, LYNCH C, Ermini F, Benedyk M, Marczyk A, Konradi A, et al. Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019;5:eaau3333 pubmed 出版商
  36. Marchetto M, Hrvoj Mihic B, Kerman B, Yu D, Vadodaria K, Linker S, et al. Species-specific maturation profiles of human, chimpanzee and bonobo neural cells. elife. 2019;8: pubmed 出版商
  37. Zheng Y, Liu A, Wang Z, Cao Q, Wang W, Lin L, et al. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain. 2019;142:787-807 pubmed 出版商
  38. Wheeler M, Jaronen M, Covacu R, Zandee S, Scalisi G, Rothhammer V, et al. Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation. Cell. 2019;176:581-596.e18 pubmed 出版商
  39. Rangaraju V, Lauterbach M, Schuman E. Spatially Stable Mitochondrial Compartments Fuel Local Translation during Plasticity. Cell. 2019;176:73-84.e15 pubmed 出版商
  40. Rajarajan P, Borrman T, Liao W, Schrode N, Flaherty E, Casiño C, et al. Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science. 2018;362: pubmed 出版商
  41. Awasthi A, Ramachandran B, Ahmed S, Benito E, Shinoda Y, Nitzan N, et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science. 2019;363: pubmed 出版商
  42. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  43. Ludtmann M, Angelova P, Horrocks M, Choi M, Rodrigues M, Baev A, et al. α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson's disease. Nat Commun. 2018;9:2293 pubmed 出版商
  44. Fukuoka M, Takahashi M, Fujita H, Chiyo T, Popiel H, Watanabe S, et al. Supplemental Treatment for Huntington's Disease with miR-132 that Is Deficient in Huntington's Disease Brain. Mol Ther Nucleic Acids. 2018;11:79-90 pubmed 出版商
  45. Tamaki Y, Shodai A, Morimura T, Hikiami R, Minamiyama S, Ayaki T, et al. Elimination of TDP-43 inclusions linked to amyotrophic lateral sclerosis by a misfolding-specific intrabody with dual proteolytic signals. Sci Rep. 2018;8:6030 pubmed 出版商
  46. Zhao X, Peng Z, Long L, Chen N, Zheng H, Deng D, et al. Lentiviral vector delivery of short hairpin RNA to NgR1 promotes nerve regeneration and locomotor recovery in injured rat spinal cord. Sci Rep. 2018;8:5447 pubmed 出版商
  47. Aneichyk T, Hendriks W, Yadav R, Shin D, Gao D, Vaine C, et al. Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly. Cell. 2018;172:897-909.e21 pubmed 出版商
  48. Liu X, Wu H, Krzisch M, Wu X, Graef J, Muffat J, et al. Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene. Cell. 2018;172:979-992.e6 pubmed 出版商
  49. Fukuda T, Ishizawa Y, Donai K, Sugano E, Tomita H. The poly-cistronic expression of four transcriptional factors (CRX, RAX, NEURO-D, OTX2) in fibroblasts via retro- or lentivirus causes partial reprogramming into photoreceptor cells. Cell Biol Int. 2018;42:608-614 pubmed 出版商
  50. Paik E, O Neil A, Ng S, Sun C, Rubin L. Using intracellular markers to identify a novel set of surface markers for live cell purification from a heterogeneous hIPSC culture. Sci Rep. 2018;8:804 pubmed 出版商
  51. Pastuzyn E, Day C, Kearns R, Kyrke Smith M, Taibi A, McCormick J, et al. The Neuronal Gene Arc Encodes a Repurposed Retrotransposon Gag Protein that Mediates Intercellular RNA Transfer. Cell. 2018;172:275-288.e18 pubmed 出版商
  52. Wigerius M, Quinn D, Diab A, Clattenburg L, Kolar A, Qi J, et al. The polarity protein Angiomotin p130 controls dendritic spine maturation. J Cell Biol. 2018;217:715-730 pubmed 出版商
  53. Yadirgi G, Stickings P, Rajagopal S, Liu Y, Sesardic D. Immuno-detection of cleaved SNAP-25 from differentiated mouse embryonic stem cells provides a sensitive assay for determination of botulinum A toxin and antitoxin potency. J Immunol Methods. 2017;451:90-99 pubmed 出版商
  54. Qu X, Yuan F, Corona C, Pasini S, Pero M, Gundersen G, et al. Stabilization of dynamic microtubules by mDia1 drives Tau-dependent Aβ1-42 synaptotoxicity. J Cell Biol. 2017;216:3161-3178 pubmed 出版商
  55. Tanabe Y, Naito Y, Vasuta C, Lee A, Soumounou Y, Linhoff M, et al. IgSF21 promotes differentiation of inhibitory synapses via binding to neurexin2?. Nat Commun. 2017;8:408 pubmed 出版商
  56. Mews P, Donahue G, Drake A, Luczak V, Abel T, Berger S. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature. 2017;546:381-386 pubmed 出版商
  57. Birey F, Andersen J, Makinson C, Islam S, Wei W, Huber N, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545:54-59 pubmed 出版商
  58. Quadrato G, Nguyen T, Macosko E, Sherwood J, Min Yang S, Berger D, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48-53 pubmed 出版商
  59. Poulsen E, Iannuzzi F, Rasmussen H, Maier T, Enghild J, Jørgensen A, et al. An Aberrant Phosphorylation of Amyloid Precursor Protein Tyrosine Regulates Its Trafficking and the Binding to the Clathrin Endocytic Complex in Neural Stem Cells of Alzheimer's Disease Patients. Front Mol Neurosci. 2017;10:59 pubmed 出版商
  60. Loss O, Stephenson F. Developmental changes in trak-mediated mitochondrial transport in neurons. Mol Cell Neurosci. 2017;80:134-147 pubmed 出版商
  61. Han Q, Lin Q, Huang P, Chen M, Hu X, Fu H, et al. Microglia-derived IL-1? contributes to axon development disorders and synaptic deficit through p38-MAPK signal pathway in septic neonatal rats. J Neuroinflammation. 2017;14:52 pubmed 出版商
  62. Yamanishi E, Hasegawa K, Fujita K, Ichinose S, Yagishita S, Murata M, et al. A novel form of necrosis, TRIAD, occurs in human Huntington's disease. Acta Neuropathol Commun. 2017;5:19 pubmed 出版商
  63. Cao M, Wu Y, Ashrafi G, McCartney A, Wheeler H, Bushong E, et al. Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons. Neuron. 2017;93:882-896.e5 pubmed 出版商
  64. Vazquez Cintron E, Beske P, Tenezaca L, Tran B, Oyler J, Glotfelty E, et al. Engineering Botulinum Neurotoxin C1 as a Molecular Vehicle for Intra-Neuronal Drug Delivery. Sci Rep. 2017;7:42923 pubmed 出版商
  65. Zhu Y, Zhang Q, Zhang W, Li N, Dai Y, Tu J, et al. Protective Effect of 17β-Estradiol Upon Hippocampal Spine Density and Cognitive Function in an Animal Model of Vascular Dementia. Sci Rep. 2017;7:42660 pubmed 出版商
  66. Zoltowska K, Maesako M, Lushnikova I, Takeda S, Keller L, Skibo G, et al. Dynamic presenilin 1 and synaptotagmin 1 interaction modulates exocytosis and amyloid β production. Mol Neurodegener. 2017;12:15 pubmed 出版商
  67. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  68. Kim S, Im S, Oh S, Jeong S, Yoon E, Lee C, et al. Anisotropically organized three-dimensional culture platform for reconstruction of a hippocampal neural network. Nat Commun. 2017;8:14346 pubmed 出版商
  69. Chiang Y, Wu Y, Chi S. Interleukin-1β secreted from betanodavirus-infected microglia caused the death of neurons in giant grouper brains. Dev Comp Immunol. 2017;70:19-26 pubmed 出版商
  70. Nagahara Y, Shimazawa M, Ohuchi K, Ito J, Takahashi H, Tsuruma K, et al. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death. J Neurosci Res. 2017;95:1647-1665 pubmed 出版商
  71. Wolfes A, Ahmed S, Awasthi A, Stahlberg M, Rajput A, Magruder D, et al. A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes. J Gen Physiol. 2017;149:149-170 pubmed 出版商
  72. Gisabella B, Farah S, Peng X, Burgos Robles A, Lim S, Goosens K. Growth hormone biases amygdala network activation after fear learning. Transl Psychiatry. 2016;6:e960 pubmed 出版商
  73. Kilpatrick C, Murakami S, Feng M, Wu X, Lal R, Chen G, et al. Dissociation of Golgi-associated DHHC-type Zinc Finger Protein (GODZ)- and Sertoli Cell Gene with a Zinc Finger Domain-? (SERZ-?)-mediated Palmitoylation by Loss of Function Analyses in Knock-out Mice. J Biol Chem. 2016;291:27371-27386 pubmed 出版商
  74. Hill S, Mordes D, Cameron L, Neuberg D, Landini S, Eggan K, et al. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage. Proc Natl Acad Sci U S A. 2016;113:E7701-E7709 pubmed
  75. Park J, Kim S, Yoo J, Jang J, Lee A, Oh J, et al. Novel Neuroprotective Effects of Melanin-Concentrating Hormone in Parkinson's Disease. Mol Neurobiol. 2017;54:7706-7721 pubmed 出版商
  76. Brykczynska U, Pecho Vrieseling E, Thiemeyer A, Klein J, Fruh I, Doll T, et al. CGG Repeat-Induced FMR1 Silencing Depends on the Expansion Size in Human iPSCs and Neurons Carrying Unmethylated Full Mutations. Stem Cell Reports. 2016;7:1059-1071 pubmed 出版商
  77. Poncelet L, Garigliany M, Ando K, Franssen M, Desmecht D, Brion J. Cell cycle S phase markers are expressed in cerebral neuron nuclei of cats infected by the Feline Panleukopenia Virus. Cell Cycle. 2016;15:3482-3489 pubmed 出版商
  78. Gao Y, Mruk D, Chen H, Lui W, Lee W, Cheng C. Regulation of the blood-testis barrier by a local axis in the testis: role of laminin ?2 in the basement membrane. FASEB J. 2017;31:584-597 pubmed 出版商
  79. Kaneko Y, Pappas C, Tajiri N, Borlongan C. Oxytocin modulates GABAAR subunits to confer neuroprotection in stroke in vitro. Sci Rep. 2016;6:35659 pubmed 出版商
  80. Rademacher N, Schmerl B, Lardong J, Wahl M, Shoichet S. MPP2 is a postsynaptic MAGUK scaffold protein that links SynCAM1 cell adhesion molecules to core components of the postsynaptic density. Sci Rep. 2016;6:35283 pubmed 出版商
  81. Woodruff G, Reyna S, Dunlap M, van der Kant R, Callender J, Young J, et al. Defective Transcytosis of APP and Lipoproteins in Human iPSC-Derived Neurons with Familial Alzheimer's Disease Mutations. Cell Rep. 2016;17:759-773 pubmed 出版商
  82. Wolfe S, Workman E, Heaney C, Niere F, Namjoshi S, Cacheaux L, et al. FMRP regulates an ethanol-dependent shift in GABABR function and expression with rapid antidepressant properties. Nat Commun. 2016;7:12867 pubmed 出版商
  83. Dragich J, Kuwajima T, Hirose Ikeda M, Yoon M, Eenjes E, Bosco J, et al. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. elife. 2016;5: pubmed 出版商
  84. Clairfeuille T, Mas C, Chan A, Yang Z, Tello Lafoz M, Chandra M, et al. A molecular code for endosomal recycling of phosphorylated cargos by the SNX27-retromer complex. Nat Struct Mol Biol. 2016;23:921-932 pubmed 出版商
  85. Begum A, Aguilar J, Elias L, Hong Y. Silver nanoparticles exhibit coating and dose-dependent neurotoxicity in glutamatergic neurons derived from human embryonic stem cells. Neurotoxicology. 2016;57:45-53 pubmed 出版商
  86. Fujita K, Motoki K, Tagawa K, Chen X, Hama H, Nakajima K, et al. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer's disease. Sci Rep. 2016;6:31895 pubmed 出版商
  87. Chailangkarn T, Trujillo C, Freitas B, Hrvoj Mihic B, Herai R, Yu D, et al. A human neurodevelopmental model for Williams syndrome. Nature. 2016;536:338-43 pubmed
  88. Waaijers S, Muñoz J, Berends C, Ramalho J, Goerdayal S, Low T, et al. A tissue-specific protein purification approach in Caenorhabditis elegans identifies novel interaction partners of DLG-1/Discs large. BMC Biol. 2016;14:66 pubmed 出版商
  89. Westbroek W, Nguyen M, Siebert M, Lindstrom T, Burnett R, Aflaki E, et al. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease. Dis Model Mech. 2016;9:769-78 pubmed 出版商
  90. Lee S, Le Pichon C, Adolfsson O, Gafner V, Pihlgren M, Lin H, et al. Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement. Cell Rep. 2016;16:1690-1700 pubmed 出版商
  91. Sun Y, Paşca S, Portmann T, Goold C, Worringer K, Guan W, et al. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients. elife. 2016;5: pubmed 出版商
  92. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  93. Diez H, Benitez M, Fernandez S, Torres Aleman I, Garrido J, Wandosell F. Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation. Biochim Biophys Acta. 2016;1863:2574-2583 pubmed 出版商
  94. Sun Z, Zhan L, Liang L, Sui H, Zheng L, Sun X, et al. ZiBu PiYin recipe prevents diabetes-associated cognitive decline in rats: possible involvement of ameliorating mitochondrial dysfunction, insulin resistance pathway and histopathological changes. BMC Complement Altern Med. 2016;16:200 pubmed 出版商
  95. Hutchinson E, Schwerin S, Radomski K, Irfanoglu M, Juliano S, Pierpaoli C. Quantitative MRI and DTI Abnormalities During the Acute Period Following CCI in the Ferret. Shock. 2016;46:167-76 pubmed 出版商
  96. Lin S, Gou G, Hsia C, Ho C, Huang K, Wu Y, et al. Simulated Microgravity Disrupts Cytoskeleton Organization and Increases Apoptosis of Rat Neural Crest Stem Cells Via Upregulating CXCR4 Expression and RhoA-ROCK1-p38 MAPK-p53 Signaling. Stem Cells Dev. 2016;25:1172-93 pubmed 出版商
  97. Gibon J, Unsain N, Gamache K, Thomas R, de León A, Johnstone A, et al. The X-linked inhibitor of apoptosis regulates long-term depression and learning rate. FASEB J. 2016;30:3083-90 pubmed 出版商
  98. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  99. Hochmeister S, Engel O, Adzemovic M, Pekar T, Kendlbacher P, Zeitelhofer M, et al. Lipocalin-2 as an Infection-Related Biomarker to Predict Clinical Outcome in Ischemic Stroke. PLoS ONE. 2016;11:e0154797 pubmed 出版商
  100. Mansouri M, Bellón Echeverría I, Rizk A, Ehsaei Z, Cianciolo Cosentino C, Silva C, et al. Highly efficient baculovirus-mediated multigene delivery in primary cells. Nat Commun. 2016;7:11529 pubmed 出版商
  101. Buren C, Tu G, Parsons M, Sepers M, Raymond L. Influence of cortical synaptic input on striatal neuronal dendritic arborization and sensitivity to excitotoxicity in corticostriatal coculture. J Neurophysiol. 2016;116:380-90 pubmed 出版商
  102. Frank R, Komiyama N, Ryan T, Zhu F, O Dell T, Grant S. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016;7:11264 pubmed 出版商
  103. Ren M, Du C, Herrero Acero E, Tang Schomer M, Ozkucur N. A biofidelic 3D culture model to study the development of brain cellular systems. Sci Rep. 2016;6:24953 pubmed 出版商
  104. Cabrera J, Lucas J. MAP2 Splicing is Altered in Huntington's Disease. Brain Pathol. 2017;27:181-189 pubmed 出版商
  105. Kos A, Wanke K, Gioio A, Martens G, Kaplan B, Aschrafi A. Monitoring mRNA Translation in Neuronal Processes Using Fluorescent Non-Canonical Amino Acid Tagging. J Histochem Cytochem. 2016;64:323-33 pubmed 出版商
  106. Fujiwara K, Fujita Y, Kasai A, Onaka Y, Hashimoto H, Okada H, et al. Deletion of JMJD2B in neurons leads to defective spine maturation, hyperactive behavior and memory deficits in mouse. Transl Psychiatry. 2016;6:e766 pubmed 出版商
  107. Wang X, Zhang X, Zhou T, Li N, Jang C, Xiao Z, et al. Elevated Neuronal Excitability Due to Modulation of the Voltage-Gated Sodium Channel Nav1.6 by Aβ1-42. Front Neurosci. 2016;10:94 pubmed 出版商
  108. Patzke C, Acuna C, Giam L, Wernig M, Südhof T. Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J Exp Med. 2016;213:499-515 pubmed 出版商
  109. Cui Y, Han J, Xiao Z, Chen T, Wang B, Chen B, et al. The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation. Sci Rep. 2016;6:23300 pubmed 出版商
  110. Alshammari M, Alshammari T, Laezza F. Improved Methods for Fluorescence Microscopy Detection of Macromolecules at the Axon Initial Segment. Front Cell Neurosci. 2016;10:5 pubmed 出版商
  111. Urnukhsaikhan E, Cho H, Mishig Ochir T, Seo Y, Park J. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci. 2016;151:130-138 pubmed 出版商
  112. Zhang W, Kim P, Chen Z, Lokman H, Qiu L, Zhang K, et al. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. elife. 2016;5: pubmed 出版商
  113. Nawaz M, Giarda E, Bedogni F, La Montanara P, Ricciardi S, Ciceri D, et al. CDKL5 and Shootin1 Interact and Concur in Regulating Neuronal Polarization. PLoS ONE. 2016;11:e0148634 pubmed 出版商
  114. Canetta S, Bolkan S, Padilla Coreano N, Song L, Sahn R, Harrison N, et al. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol Psychiatry. 2016;21:956-68 pubmed 出版商
  115. Brahic M, Bousset L, Bieri G, Melki R, Gitler A. Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1. Acta Neuropathol. 2016;131:539-48 pubmed 出版商
  116. Wang Y, Wu Q, Yang P, Wang C, Liu J, Ding W, et al. LSD1 co-repressor Rcor2 orchestrates neurogenesis in the developing mouse brain. Nat Commun. 2016;7:10481 pubmed 出版商
  117. He G, Xu W, Li J, Li S, Liu B, Tan X, et al. Huwe1 interacts with Gadd45b under oxygen-glucose deprivation and reperfusion injury in primary Rat cortical neuronal cells. Mol Brain. 2015;8:88 pubmed 出版商
  118. Haas L, Salazar S, Kostylev M, Um J, Kaufman A, Strittmatter S. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain. 2016;139:526-46 pubmed 出版商
  119. Ho S, Hartley B, TCW J, Beaumont M, Stafford K, Slesinger P, et al. Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods. 2016;101:113-24 pubmed 出版商
  120. Das D, Tapias V, D Aiuto L, Chowdari K, Francis L, Zhi Y, et al. Genetic and morphological features of human iPSC-derived neurons with chromosome 15q11.2 (BP1-BP2) deletions. Mol Neuropsychiatry. 2015;1:116-123 pubmed
  121. Taylor A, Vagaska B, Edgington R, Hébert C, Ferretti P, Bergonzo P, et al. Biocompatibility of nanostructured boron doped diamond for the attachment and proliferation of human neural stem cells. J Neural Eng. 2015;12:066016 pubmed 出版商
  122. Corcoran K, Leaderbrand K, Jovasevic V, Guedea A, Kassam F, Radulovic J. Regulation of fear extinction versus other affective behaviors by discrete cortical scaffolding complexes associated with NR2B and PKA signaling. Transl Psychiatry. 2015;5:e657 pubmed 出版商
  123. Covarrubias Pinto A, Moll P, Solís Maldonado M, Acuña A, Riveros A, Miró M, et al. Beyond the redox imbalance: Oxidative stress contributes to an impaired GLUT3 modulation in Huntington's disease. Free Radic Biol Med. 2015;89:1085-96 pubmed 出版商
  124. Chu Y, Ko C, Wang W, Wang S, Gean P, Kuo Y, et al. Astrocytic CCAAT/Enhancer Binding Protein δ Regulates Neuronal Viability and Spatial Learning Ability via miR-135a. Mol Neurobiol. 2016;53:4173-4188 pubmed 出版商
  125. Gallego Romero I, Pavlovic B, Hernando Herraez I, Zhou X, WARD M, Banovich N, et al. A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics. elife. 2015;4:e07103 pubmed 出版商
  126. Tang H, Hua F, Wang J, Yousuf S, Atif F, Sayeed I, et al. Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury. Brain Inj. 2015;29:1165-1174 pubmed 出版商
  127. Dell Ovo V, Rosenzweig J, Burd I, Merabova N, Darbinian N, Goetzl L. An animal model for chorioamnionitis at term. Am J Obstet Gynecol. 2015;213:387.e1-10 pubmed 出版商
  128. Zhou F, Gao S, Wang L, Sun C, Chen L, Yuan P, et al. Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Res Ther. 2015;6:92 pubmed 出版商
  129. Farzana F, Zalm R, Chen N, Li K, Grant S, Smit A, et al. Neurobeachin Regulates Glutamate- and GABA-Receptor Targeting to Synapses via Distinct Pathways. Mol Neurobiol. 2016;53:2112-23 pubmed 出版商
  130. Usui Y, Westenskow P, Kurihara T, Aguilar E, Sakimoto S, Paris L, et al. Neurovascular crosstalk between interneurons and capillaries is required for vision. J Clin Invest. 2015;125:2335-46 pubmed 出版商
  131. Xu X, Yang X, Xiong Y, Gu J, He C, Hu Y, et al. Increased expression of receptor for activated C kinase 1 in temporal lobe epilepsy. J Neurochem. 2015;133:134-43 pubmed 出版商
  132. Xue T, Wei L, Zha D, Qiao L, Lu L, Chen F, et al. Exposure to acoustic stimuli promotes the development and differentiation of neural stem cells from the cochlear nuclei through the clusterin pathway. Int J Mol Med. 2015;35:637-44 pubmed 出版商
  133. Cerbini T, Funahashi R, Luo Y, Liu C, Park K, Rao M, et al. Transcription activator-like effector nuclease (TALEN)-mediated CLYBL targeting enables enhanced transgene expression and one-step generation of dual reporter human induced pluripotent stem cell (iPSC) and neural stem cell (NSC) lines. PLoS ONE. 2015;10:e0116032 pubmed 出版商
  134. Maurya S, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol. 2016;53:968-82 pubmed 出版商
  135. Wen M, Yan Y, Yan N, Chen X, Liu S, Feng Z. Upregulation of RBFOX1 in the malformed cortex of patients with intractable epilepsy and in cultured rat neurons. Int J Mol Med. 2015;35:597-606 pubmed 出版商
  136. Chip S, Zhu X, Kapfhammer J. The analysis of neurovascular remodeling in entorhino-hippocampal organotypic slice cultures. J Vis Exp. 2014;:e52023 pubmed 出版商
  137. Johnson Kerner B, Ahmad F, Diaz A, Greene J, Gray S, Samulski R, et al. Intermediate filament protein accumulation in motor neurons derived from giant axonal neuropathy iPSCs rescued by restoration of gigaxonin. Hum Mol Genet. 2015;24:1420-31 pubmed 出版商
  138. Gervois P, Struys T, Hilkens P, Bronckaers A, Ratajczak J, Politis C, et al. Neurogenic maturation of human dental pulp stem cells following neurosphere generation induces morphological and electrophysiological characteristics of functional neurons. Stem Cells Dev. 2015;24:296-311 pubmed 出版商
  139. Chou C, Sinden J, Couraud P, Modo M. In vitro modeling of the neurovascular environment by coculturing adult human brain endothelial cells with human neural stem cells. PLoS ONE. 2014;9:e106346 pubmed 出版商
  140. Watanabe Y, Sakuma C, Yaginuma H. NRP1-mediated Sema3A signals coordinate laminar formation in the developing chick optic tectum. Development. 2014;141:3572-82 pubmed 出版商
  141. Yarchoan M, Toledo J, Lee E, Arvanitakis Z, Kazi H, Han L, et al. Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies. Acta Neuropathol. 2014;128:679-89 pubmed 出版商
  142. Yassin L, Radtke Schuller S, Asraf H, Grothe B, Hershfinkel M, Forsythe I, et al. Nitric oxide signaling modulates synaptic inhibition in the superior paraolivary nucleus (SPN) via cGMP-dependent suppression of KCC2. Front Neural Circuits. 2014;8:65 pubmed 出版商
  143. König N, Trolle C, Kapuralin K, Adameyko I, Mitrecic D, Aldskogius H, et al. Murine neural crest stem cells and embryonic stem cell-derived neuron precursors survive and differentiate after transplantation in a model of dorsal root avulsion. J Tissue Eng Regen Med. 2017;11:129-137 pubmed 出版商
  144. Zhang W, R hse H, Rizzoli S, Opazo F. Fluorescent in situ hybridization of synaptic proteins imaged with super-resolution STED microscopy. Microsc Res Tech. 2014;77:517-27 pubmed 出版商
  145. Yousuf S, Sayeed I, Atif F, Tang H, Wang J, Stein D. Delayed progesterone treatment reduces brain infarction and improves functional outcomes after ischemic stroke: a time-window study in middle-aged rats. J Cereb Blood Flow Metab. 2014;34:297-306 pubmed 出版商
  146. Hu Y, Ru N, Xiao H, Chaturbedi A, Hoa N, Tian X, et al. Tumor-specific chromosome mis-segregation controls cancer plasticity by maintaining tumor heterogeneity. PLoS ONE. 2013;8:e80898 pubmed 出版商
  147. Feng N, Han Q, Li J, Wang S, Li H, Yao X, et al. Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation. Stem Cells Dev. 2014;23:515-29 pubmed 出版商
  148. Valdés Sánchez T, Rodríguez Jiménez F, García Cruz D, Escobar Ivirico J, Alastrue Agudo A, Erceg S, et al. Methacrylate-endcapped caprolactone and FM19G11 provide a proper niche for spinal cord-derived neural cells. J Tissue Eng Regen Med. 2015;9:734-9 pubmed 出版商
  149. Cakici C, Buyrukcu B, Duruksu G, Haliloglu A, Aksoy A, Isik A, et al. Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: the sperm generation. Biomed Res Int. 2013;2013:529589 pubmed 出版商
  150. Sarnat H, Flores Sarnat L. Precocious and delayed neocortical synaptogenesis in fetal holoprosencephaly. Clin Neuropathol. 2013;32:255-68 pubmed 出版商
  151. Karasinska J, de Haan W, Franciosi S, Ruddle P, Fan J, Kruit J, et al. ABCA1 influences neuroinflammation and neuronal death. Neurobiol Dis. 2013;54:445-55 pubmed 出版商
  152. Lee D, CHUNG J, Chung K, Kang M. Reactive oxygen species (ROS) modulate AMPA receptor phosphorylation and cell-surface localization in concert with pain-related behavior. Pain. 2012;153:1905-15 pubmed 出版商
  153. Chao H, Lai Y, Lu Y, Lin C, Mai W, Huang Y. NMDAR signaling facilitates the IPO5-mediated nuclear import of CPEB3. Nucleic Acids Res. 2012;40:8484-98 pubmed
  154. Kaiser A, Alexandrova O, Grothe B. Urocortin-expressing olivocochlear neurons exhibit tonotopic and developmental changes in the auditory brainstem and in the innervation of the cochlea. J Comp Neurol. 2011;519:2758-78 pubmed 出版商
  155. Coyle D, Li J, Baccei M. Regional differentiation of retinoic acid-induced human pluripotent embryonic carcinoma stem cell neurons. PLoS ONE. 2011;6:e16174 pubmed 出版商
  156. Han C, Min B, Kim Y, Jeong E, Park C, Woo Y, et al. Immunohistochemical analysis of developmental neural antigen expression in the balloon cells of focal cortical dysplasia. J Clin Neurosci. 2011;18:114-8 pubmed 出版商
  157. Fevre Montange M, Grand S, Champier J, Hoffmann D, Pasquier B, Jouvet A. Bcl-2 expression in a papillary tumor of the pineal region. Neuropathology. 2008;28:660-3 pubmed 出版商
  158. Trimmer P, Borland M, Keeney P, Bennett J, Parker W. Parkinson's disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. J Neurochem. 2004;88:800-12 pubmed
  159. Buddle M, Eberhardt E, Ciminello L, Levin T, Wing R, DiPasquale K, et al. Microtubule-associated protein 2 (MAP2) associates with the NMDA receptor and is spatially redistributed within rat hippocampal neurons after oxygen-glucose deprivation. Brain Res. 2003;978:38-50 pubmed