这是一篇来自已证抗体库的有关人类 MAPK11的综述,是根据60篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合MAPK11 抗体。
MAPK11 同义词: P38B; P38BETA2; PRKM11; SAPK2; SAPK2B; p38-2; p38Beta

圣克鲁斯生物技术
小鼠 单克隆(E-1)
  • 免疫组化; 小鼠; 图 7e
  • 免疫印迹; 小鼠; 图 7c
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotechnology, SC-166182)被用于被用于免疫组化在小鼠样本上 (图 7e) 和 被用于免疫印迹在小鼠样本上 (图 7c). Int J Nanomedicine (2021) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 人类; 1:1000; 图 5m
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotech, sc-166182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5m). Oncogene (2021) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:1000; 图 5m
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotech, sc-7972)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5m). Oncogene (2021) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 小鼠; 1:2000; 图 s3d
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotechnology, Sc-166182)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s3d). J Exp Med (2021) ncbi
小鼠 单克隆(A-12)
  • 流式细胞仪; 人类; 图 6b
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotechnology, A-12)被用于被用于流式细胞仪在人类样本上 (图 6b). Cell Mol Gastroenterol Hepatol (2021) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 人类; 1:1000; 图 3a
圣克鲁斯生物技术 MAPK11抗体(Santa, sc-166182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Nat Commun (2020) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:1000; 图 3f
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc7972)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). elife (2019) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 图 4c
圣克鲁斯生物技术 MAPK11抗体(Santa, D-8)被用于被用于免疫印迹在小鼠样本上 (图 4c). J Clin Invest (2019) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术 MAPK11抗体(Santa, sc-7972)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Mol Immunol (2018) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogenesis (2017) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Med Rep (2018) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, A-12)被用于被用于免疫印迹在人类样本上 (图 3e). Biochem Biophys Res Commun (2017) ncbi
小鼠 单克隆(A-12)
  • 其他; 大鼠; 图 1
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7972)被用于被用于其他在大鼠样本上 (图 1). Sci Rep (2017) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:1500; 图 4a
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 大鼠; 1:500; 图 8a
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotechnology, sc-166182)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 8a). Exp Ther Med (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, Sc-7973)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cell Div (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 1:200; 图 3
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3). Exp Ther Med (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 大鼠; 1:500; 图 5a
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, 7973)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5a). Int J Endocrinol (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹在人类样本上 (图 5). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在人类样本上. Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc7973)被用于被用于免疫印迹在人类样本上 (图 4). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 s1c
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹在人类样本上 (图 s1c). Nat Cell Biol (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 大鼠; 图 9a
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在大鼠样本上 (图 9a). Int J Mol Med (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 大鼠; 1:1000; 图 3
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 大鼠; 1:200; 图 4
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, SC-7973)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 4). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹基因敲除验证; 小鼠; 图 2
圣克鲁斯生物技术 MAPK11抗体(anta Cruz Biotechnology, SC-7972)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹在小鼠样本上 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 10
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7973)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 10). Cell Mol Gastroenterol Hepatol (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在人类样本上 (图 5c). Mol Cells (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotechnology, SC-7973)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cell Mol Med (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotechnology, sc-7973)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). J Cell Biochem (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotechnology, sc-7972)被用于被用于免疫印迹在人类样本上. Int J Cancer (2016) ncbi
小鼠 单克隆(D-8)
  • 免疫细胞化学; 大鼠; 图 3
  • 免疫印迹; 大鼠; 图 3
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7973)被用于被用于免疫细胞化学在大鼠样本上 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹在小鼠样本上 (图 5). Cancer Res (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotechnology, SC-7972)被用于被用于免疫印迹在人类样本上. Toxicol Appl Pharmacol (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotechnology, sc-7972)被用于被用于免疫印迹在人类样本上浓度为1:500. Cell Signal (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在人类样本上 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 图 9
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在小鼠样本上 (图 9). Int J Nanomedicine (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 图 4a
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在小鼠样本上 (图 4a). PLoS ONE (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, SC-7973)被用于被用于免疫印迹在大鼠样本上. Apoptosis (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:1.000
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotechnology, Sc-7973)被用于被用于免疫印迹在人类样本上浓度为1:1.000. Cancer Lett (2015) ncbi
小鼠 单克隆(A-12)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7972)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上. Mol Biol Cell (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 图 s3
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotechnology, sc-7972)被用于被用于免疫印迹在小鼠样本上 (图 s3). Cell Death Dis (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, SC-7973)被用于被用于免疫细胞化学在小鼠样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotechnology, sc-7972)被用于被用于免疫印迹在人类样本上. BMC Complement Altern Med (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹基因敲除验证; 小鼠; 1:2000; 图 1
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:2000 (图 1). Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:500; 图 8a
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotechnology, sc-7973)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8a). PLoS ONE (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:500; 图 8a
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotechnology, sc-7972)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8a). PLoS ONE (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotechnology, sc-7972)被用于被用于免疫印迹在小鼠样本上浓度为1:200. J Neurochem (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotechnology, sc-7973)被用于被用于免疫印迹在小鼠样本上. Exp Mol Med (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 番茄
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz Biotechnology, 7973)被用于被用于免疫印迹在番茄样本上. J Agric Food Chem (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Eur J Pharmacol (2014) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7973)被用于被用于免疫印迹在小鼠样本上 (图 5). J Bone Miner Res (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 MAPK11抗体(Santa Cruz, sc-7972)被用于被用于免疫印迹在小鼠样本上. J Lipid Res (2013) ncbi
赛默飞世尔
小鼠 单克隆(P38-11A5)
  • 免疫印迹基因敲除验证; 小鼠; 图 2a
赛默飞世尔 MAPK11抗体(生活技术, 33-8700)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2a). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛默飞世尔 MAPK11抗体(Thermo, PA5-14050)被用于被用于免疫印迹在人类样本上 (图 7). Biochem J (2017) ncbi
小鼠 单克隆(P38-11A5)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 MAPK11抗体(生活技术, 33-8700)被用于被用于免疫印迹在小鼠样本上 (图 4). J Immunol (2016) ncbi
小鼠 单克隆(P38-11A5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 MAPK11抗体(Biosource, 11A5)被用于被用于免疫印迹在人类样本上 (图 2). Cornea (2011) ncbi
小鼠 单克隆(P38-11A5)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 MAPK11抗体(Zymed, 33-8700)被用于被用于免疫印迹在人类样本上 (图 3). Arthritis Res Ther (2010) ncbi
小鼠 单克隆(P38-11A5)
  • 免疫印迹; 人类
赛默飞世尔 MAPK11抗体(Zymed, 33-8700)被用于被用于免疫印迹在人类样本上. J Biol Chem (2005) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C28C2)
  • 免疫印迹; 人类; 1:1000; 图 s4c
赛信通(上海)生物试剂有限公司 MAPK11抗体(Cell Signaling, 2339)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(C28C2)
  • 免疫印迹; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 MAPK11抗体(cell signalling, 2339)被用于被用于免疫印迹在小鼠样本上 (图 s3). Sci Rep (2017) ncbi
碧迪BD
小鼠 单克隆(36/p38)
  • 流式细胞仪; 人类; 图 s5a
碧迪BD MAPK11抗体(BD Biosciences, 36/p38 pT180/pY182)被用于被用于流式细胞仪在人类样本上 (图 s5a). J Clin Invest (2019) ncbi
文章列表
  1. Huang H, Liu Q, Zhang T, Zhang J, Zhou J, Jing X, et al. Farnesylthiosalicylic Acid-Loaded Albumin Nanoparticle Alleviates Renal Fibrosis by Inhibiting Ras/Raf1/p38 Signaling Pathway. Int J Nanomedicine. 2021;16:6441-6453 pubmed 出版商
  2. Wu Y, Guo Q, Ju X, Hu Z, Xia L, Deng Y, et al. HNRNPH1-stabilized LINC00662 promotes ovarian cancer progression by activating the GRP78/p38 pathway. Oncogene. 2021;40:4770-4782 pubmed 出版商
  3. Wu T, Liu Q, Li Y, Li H, Chen L, Yang X, et al. Feeding-induced hepatokine, Manf, ameliorates diet-induced obesity by promoting adipose browning via p38 MAPK pathway. J Exp Med. 2021;218: pubmed 出版商
  4. Sun R, Hedl M, Abraham C. TNFSF15 Promotes Antimicrobial Pathways in Human Macrophages and These Are Modulated by TNFSF15 Disease-Risk Variants. Cell Mol Gastroenterol Hepatol. 2021;11:249-272 pubmed 出版商
  5. Bozic M, Caus M, Rodrigues Díez R, Pedraza N, Ruiz Ortega M, Garí E, et al. Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Nat Commun. 2020;11:1943 pubmed 出版商
  6. Park M, Kim A, Manandhar S, Oh S, Jang G, Kang L, et al. CCN1 interlinks integrin and hippo pathway to autoregulate tip cell activity. elife. 2019;8: pubmed 出版商
  7. Loh J, Xu S, Huo J, Kim S, Wang Y, Lam K. Dok3-protein phosphatase 1 interaction attenuates Card9 signaling and neutrophil-dependent antifungal immunity. J Clin Invest. 2019;129:2717-2729 pubmed 出版商
  8. Capitano M, Mor Vaknin N, Saha A, Cooper S, Legendre M, Guo H, et al. Secreted nuclear protein DEK regulates hematopoiesis through CXCR2 signaling. J Clin Invest. 2019;129:2555-2570 pubmed 出版商
  9. Smith B, Wang S, Jaime Figueroa S, Harbin A, Wang J, Hamman B, et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat Commun. 2019;10:131 pubmed 出版商
  10. Qiang L, Wang J, Zhang Y, Ge P, Chai Q, Li B, et al. Mycobacterium tuberculosis Mce2E suppresses the macrophage innate immune response and promotes epithelial cell proliferation. Cell Mol Immunol. 2018;: pubmed 出版商
  11. Arrizabalaga O, Moreno Cugnon L, Auzmendi Iriarte J, Aldaz P, Ibanez de Caceres I, Garros Regulez L, et al. High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response. Oncogenesis. 2017;6:401 pubmed 出版商
  12. Qian Z, Ryu B, Kang K, Heo S, Kang D, Bae S, et al. Cellular properties of the fermented microalgae Pavlova lutheri and its isolated active peptide in osteoblastic differentiation of MG?63 cells. Mol Med Rep. 2018;17:2044-2050 pubmed 出版商
  13. Moua P, Checketts M, Xu L, Shu H, Reyland M, Cusick J. RELT family members activate p38 and induce apoptosis by a mechanism distinct from TNFR1. Biochem Biophys Res Commun. 2017;491:25-32 pubmed 出版商
  14. Cong Q, Jia H, Li P, Qiu S, Yeh J, Wang Y, et al. p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Sci Rep. 2017;7:45964 pubmed 出版商
  15. Kocic G, Veljkovic A, Kocic H, Colic M, Mihajlović D, Tomovic K, et al. Depurinized milk downregulates rat thymus MyD88/Akt/p38 function, NF-κB-mediated inflammation, caspase-1 activity but not the endonuclease pathway: in vitro/in vivo study. Sci Rep. 2017;7:41971 pubmed 出版商
  16. Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani R, Jiménez Andrade G, et al. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem. 2017;292:1762-1772 pubmed 出版商
  17. Said A, Hu S, Abutaleb A, Watkins T, Cheng K, Chahdi A, et al. Interacting post-muscarinic receptor signaling pathways potentiate matrix metalloproteinase-1 expression and invasion of human colon cancer cells. Biochem J. 2017;474:647-665 pubmed 出版商
  18. Zhong W, Wang X, Pan B, Li F, Kuang L, Su Z. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways. Oncol Lett. 2016;12:2894-2899 pubmed
  19. Xu Y, Ding G, Huang J, Xiong Y. Tanshinone IIA pretreatment attenuates ischemia/reperfusion-induced renal injury. Exp Ther Med. 2016;12:2741-2746 pubmed
  20. El Jamal S, Taylor E, Abd Elmageed Z, Alamodi A, Selimovic D, Alkhateeb A, et al. Interferon gamma-induced apoptosis of head and neck squamous cell carcinoma is connected to indoleamine-2,3-dioxygenase via mitochondrial and ER stress-associated pathways. Cell Div. 2016;11:11 pubmed 出版商
  21. Wang J, Li H, Li B, Gong Q, Chen X, Wang Q. Co-culture of bone marrow stem cells and macrophages indicates intermediate mechanism between local inflammation and innate immune system in diabetic periodontitis. Exp Ther Med. 2016;12:567-572 pubmed
  22. Zhang C, Li L, Zhao B, Jiao A, Li X, Sun N, et al. Ghrelin Protects against Dexamethasone-Induced INS-1 Cell Apoptosis via ERK and p38MAPK Signaling. Int J Endocrinol. 2016;2016:4513051 pubmed 出版商
  23. Matias A, Manieri T, Cerchiaro G. Zinc Chelation Mediates the Lysosomal Disruption without Intracellular ROS Generation. Oxid Med Cell Longev. 2016;2016:6724585 pubmed 出版商
  24. Choi H, Kim M, Choi Y, Shin Y, Cho S, Ko S. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern Med. 2016;16:122 pubmed 出版商
  25. Su K, Cao J, Tang Z, Dai S, He Y, Sampson S, et al. HSF1 critically attunes proteotoxic stress sensing by mTORC1 to combat stress and promote growth. Nat Cell Biol. 2016;18:527-39 pubmed 出版商
  26. Yang W, Yang Y, Yang J, Liang M, Song J. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med. 2016;37:1075-82 pubmed 出版商
  27. Choi J, Kim I, Kim Y, Lee M, Nam T. Pyropia yezoensis glycoprotein regulates antioxidant status and prevents hepatotoxicity in a rat model of D-galactosamine/lipopolysaccharide-induced acute liver failure. Mol Med Rep. 2016;13:3110-4 pubmed 出版商
  28. Rubattu S, Di Castro S, Schulz H, Geurts A, Cotugno M, Bianchi F, et al. Ndufc2 Gene Inhibition Is Associated With Mitochondrial Dysfunction and Increased Stroke Susceptibility in an Animal Model of Complex Human Disease. J Am Heart Assoc. 2016;5: pubmed 出版商
  29. Thornton T, Delgado P, Chen L, Salas B, Krementsov D, Fernández M, et al. Inactivation of nuclear GSK3β by Ser(389) phosphorylation promotes lymphocyte fitness during DNA double-strand break response. Nat Commun. 2016;7:10553 pubmed 出版商
  30. Caballero Franco C, Guma M, Choo M, Sano Y, Enzler T, Karin M, et al. Epithelial Control of Gut-Associated Lymphoid Tissue Formation through p38?-Dependent Restraint of NF-?B Signaling. J Immunol. 2016;196:2368-76 pubmed 出版商
  31. Chhibber Goel J, Coleman Vaughan C, Agrawal V, Sawhney N, Hickey E, Powell J, et al. γ-Secretase Activity Is Required for Regulated Intramembrane Proteolysis of Tumor Necrosis Factor (TNF) Receptor 1 and TNF-mediated Pro-apoptotic Signaling. J Biol Chem. 2016;291:5971-85 pubmed 出版商
  32. Ferreira M, McKenna L, Zhang J, Reichert M, Bakir B, Buza E, et al. Spontaneous Pancreatitis Caused by Tissue-Specific Gene Ablation of Hhex in Mice. Cell Mol Gastroenterol Hepatol. 2015;1:550-569 pubmed 出版商
  33. Lim J, Nguyen K, Han J, Jang I, Fabian C, Cho K. Direct Regulation of TLR5 Expression by Caveolin-1. Mol Cells. 2015;38:1111-7 pubmed 出版商
  34. El Khattouti A, Selimovic D, Hannig M, Taylor E, Abd Elmageed Z, Hassan S, et al. Imiquimod-induced apoptosis of melanoma cells is mediated by ER stress-dependent Noxa induction and enhanced by NF-κB inhibition. J Cell Mol Med. 2016;20:266-86 pubmed 出版商
  35. Hassan M, El Khattouti A, Ejaeidi A, Ma T, Day W, Espinoza I, et al. Elevated Expression of Hepatoma Up-Regulated Protein Inhibits γ-Irradiation-Induced Apoptosis of Prostate Cancer Cells. J Cell Biochem. 2016;117:1308-18 pubmed 出版商
  36. Kim H, Lim J, Kim J, Kim Y, Park S, Sohn J. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models. Int J Cancer. 2016;138:1432-41 pubmed 出版商
  37. Namachivayam K, Mohankumar K, Arbach D, Jagadeeswaran R, Jain S, Natarajan V, et al. All-Trans Retinoic Acid Induces TGF-β2 in Intestinal Epithelial Cells via RhoA- and p38α MAPK-Mediated Activation of the Transcription Factor ATF2. PLoS ONE. 2015;10:e0134003 pubmed 出版商
  38. Kratochvill F, Gratz N, Qualls J, Van De Velde L, Chi H, Kovarik P, et al. Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an mRNA Decay-Independent Manner. Cancer Res. 2015;75:3054-64 pubmed 出版商
  39. Arana M, Tocchetti G, Domizi P, Arias A, Rigalli J, Ruiz M, et al. Coordinated induction of GST and MRP2 by cAMP in Caco-2 cells: Role of protein kinase A signaling pathway and toxicological relevance. Toxicol Appl Pharmacol. 2015;287:178-90 pubmed 出版商
  40. Daniele S, Da Pozzo E, Zappelli E, Martini C. Trazodone treatment protects neuronal-like cells from inflammatory insult by inhibiting NF-?B, p38 and JNK. Cell Signal. 2015;27:1609-29 pubmed 出版商
  41. Zhang Z, Fang Y, Wang Q, Sun Y, Xiong C, Cao L, et al. Tumor necrosis factor-like weak inducer of apoptosis regulates particle-induced inflammatory osteolysis via the p38 mitogen-activated protein kinase signaling pathway. Mol Med Rep. 2015;12:1499-505 pubmed 出版商
  42. Zhang X, Choi Y, Han J, Kim E, Park J, Gurunathan S, et al. Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells. Int J Nanomedicine. 2015;10:1335-57 pubmed 出版商
  43. Huang P, Chen C, Hsu I, Salim S, Kao S, Cheng C, et al. Huntingtin-associated protein 1 interacts with breakpoint cluster region protein to regulate neuronal differentiation. PLoS ONE. 2015;10:e0116372 pubmed 出版商
  44. Bharti S, Rani N, Bhatia J, Arya D. 5-HT2B receptor blockade attenuates β-adrenergic receptor-stimulated myocardial remodeling in rats via inhibiting apoptosis: role of MAPKs and HSPs. Apoptosis. 2015;20:455-65 pubmed 出版商
  45. El Khattouti A, Sheehan N, Monico J, Drummond H, Haikel Y, Brodell R, et al. CD133⁺ melanoma subpopulation acquired resistance to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: significance for melanoma treatment. Cancer Lett. 2015;357:83-104 pubmed 出版商
  46. Yi P, Chew L, Zhang Z, Ren H, Wang F, Cong X, et al. KIF5B transports BNIP-2 to regulate p38 mitogen-activated protein kinase activation and myoblast differentiation. Mol Biol Cell. 2015;26:29-42 pubmed 出版商
  47. Xu R, Hu Q, Ma Q, Liu C, Wang G. The protease Omi regulates mitochondrial biogenesis through the GSK3β/PGC-1α pathway. Cell Death Dis. 2014;5:e1373 pubmed 出版商
  48. Rais Y, Reich A, Simsa Maziel S, Moshe M, Idelevich A, Kfir T, et al. The growth plate's response to load is partially mediated by mechano-sensing via the chondrocytic primary cilium. Cell Mol Life Sci. 2015;72:597-615 pubmed 出版商
  49. Kim T, Kim J, Kim Z, Huang R, Chae Y, Wang R. Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive ox. BMC Complement Altern Med. 2014;14:236 pubmed 出版商
  50. Jamaladdin S, Kelly R, O Regan L, Dovey O, Hodson G, Millard C, et al. Histone deacetylase (HDAC) 1 and 2 are essential for accurate cell division and the pluripotency of embryonic stem cells. Proc Natl Acad Sci U S A. 2014;111:9840-5 pubmed 出版商
  51. Clauzure M, Valdivieso A, Massip Copiz M, Schulman G, Teiber M, Santa Coloma T. Disruption of interleukin-1? autocrine signaling rescues complex I activity and improves ROS levels in immortalized epithelial cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function. PLoS ONE. 2014;9:e99257 pubmed 出版商
  52. Gladding C, Fan J, Zhang L, Wang L, Xu J, Li E, et al. Alterations in STriatal-Enriched protein tyrosine Phosphatase expression, activation, and downstream signaling in early and late stages of the YAC128 Huntington's disease mouse model. J Neurochem. 2014;130:145-59 pubmed 出版商
  53. Jin Y, Wi H, Choi M, Hong S, Bae Y. Regulation of anti-inflammatory cytokines IL-10 and TGF-? in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen. Exp Mol Med. 2014;46:e74 pubmed 出版商
  54. Gámez M, Calvo M, Selgas M, García M, Erler K, Böhm V, et al. Effect of E-beam treatment on the chemistry and on the antioxidant activity of lycopene from dry tomato peel and tomato powder. J Agric Food Chem. 2014;62:1557-63 pubmed 出版商
  55. Chen H, Sohn J, Zhang L, Tian J, Chen S, Bjeldanes L. Anti-inflammatory effects of chicanine on murine macrophage by down-regulating LPS-induced inflammatory cytokines in I?B?/MAPK/ERK signaling pathways. Eur J Pharmacol. 2014;724:168-74 pubmed 出版商
  56. Chen J, Lazarenko O, Zhang J, Blackburn M, Ronis M, Badger T. Diet-derived phenolic acids regulate osteoblast and adipocyte lineage commitment and differentiation in young mice. J Bone Miner Res. 2014;29:1043-53 pubmed 出版商
  57. De Sousa Coelho A, Relat J, Hondares E, Pérez Martí A, Ribas F, Villarroya F, et al. FGF21 mediates the lipid metabolism response to amino acid starvation. J Lipid Res. 2013;54:1786-97 pubmed 出版商
  58. Lee J, Kim J, Im Y, Seong G, Lee H. Cyclosporine A induces nerve growth factor expression via activation of MAPK p38 and NFAT5. Cornea. 2011;30 Suppl 1:S19-24 pubmed 出版商
  59. Rasheed Z, Akhtar N, Haqqi T. Pomegranate extract inhibits the interleukin-1?-induced activation of MKK-3, p38?-MAPK and transcription factor RUNX-2 in human osteoarthritis chondrocytes. Arthritis Res Ther. 2010;12:R195 pubmed 出版商
  60. Martindale J, Wall J, Martinez Longoria D, Aryal P, Rockman H, Guo Y, et al. Overexpression of mitogen-activated protein kinase kinase 6 in the heart improves functional recovery from ischemia in vitro and protects against myocardial infarction in vivo. J Biol Chem. 2005;280:669-76 pubmed