这是一篇来自已证抗体库的有关人类 鼠双微基因2 (MDM2) 的综述,是根据126篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合鼠双微基因2 抗体。
鼠双微基因2 同义词: ACTFS; HDMX; LSKB; hdm2

圣克鲁斯生物技术
小鼠 单克隆(SMP14)
  • 免疫印迹; 小鼠; 1:200; 图 2b
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2b). Adv Sci (Weinh) (2022) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 8b
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, sc965)被用于被用于免疫印迹在人类样本上 (图 8b). Sci Adv (2021) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 1:100; 图 3c
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, sc-965)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3c). Cancers (Basel) (2021) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 1:500; 图 4a
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, Sc-965)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Front Oncol (2021) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, sc-965)被用于被用于免疫印迹在人类样本上 (图 4a). BMC Cancer (2021) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 0.2 ug/ml; 图 7e
圣克鲁斯生物技术鼠双微基因2抗体(Santa, sc965)被用于被用于免疫印迹在人类样本上浓度为0.2 ug/ml (图 7e). Commun Biol (2020) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, SMP14)被用于被用于免疫印迹在人类样本上 (图 1c). PLoS Pathog (2020) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 1:1000; 图 5a, 5b
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a, 5b). Nat Commun (2019) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 小鼠; 图 4c
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, sc-965)被用于被用于免疫印迹在小鼠样本上 (图 4c). Cancer Cell (2019) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2019) ncbi
小鼠 单克隆(HDM2-323)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, HDM2-323)被用于被用于免疫印迹在人类样本上 (图 6a). Toxicol Appl Pharmacol (2018) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 s4e
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, sc-965)被用于被用于免疫印迹在人类样本上 (图 s4e). Cell Metab (2018) ncbi
小鼠 单克隆(SMP14)
  • 免疫沉淀; 人类; 图 2b
  • 免疫印迹; 人类; 1:500; 图 s4
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, SMP14)被用于被用于免疫沉淀在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 s4). Oncogene (2018) ncbi
小鼠 单克隆(SMP14)
  • 免疫组化-石蜡切片; 小鼠; 图 8a
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology Inc, sc-965)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8a). J Exp Med (2018) ncbi
小鼠 单克隆(SMP14)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 6d
  • 免疫沉淀; 人类; 图 4g
  • 免疫细胞化学; 人类; 1:100; 图 4d
  • 免疫印迹; 人类; 1:100; 图 3f
圣克鲁斯生物技术鼠双微基因2抗体(SantaCruz, sc-965)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 6d), 被用于免疫沉淀在人类样本上 (图 4g), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 4d) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 3f). Sci Adv (2017) ncbi
小鼠 单克隆(SMP14)
  • 免疫沉淀; 人类; 图 4a
圣克鲁斯生物技术鼠双微基因2抗体(santa, SMP14)被用于被用于免疫沉淀在人类样本上 (图 4a). Oncogene (2017) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术鼠双微基因2抗体(SC Biotech, SMP14)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2017) ncbi
小鼠 单克隆(SMP14)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1c
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, SMP14)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1c). Dev Biol (2017) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 8a
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫印迹在人类样本上 (图 8a). J Cell Physiol (2017) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 1:500; 图 1a
圣克鲁斯生物技术鼠双微基因2抗体(SantaCruz, sc-5304)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1a). Oncogene (2017) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 小鼠; 1:750; 图 2b
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫印迹在小鼠样本上浓度为1:750 (图 2b). Mol Cancer Res (2017) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 1:200; 图 2b
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2b). Oncogene (2017) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 1:500; 图 2
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology Inc., sc5304)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Clin Exp Ophthalmol (2017) ncbi
小鼠 单克隆(SMP14)
  • 免疫组化-石蜡切片; 人类; 表 1
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Am J Surg Pathol (2016) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 小鼠; 1:200; 图 s4
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 犬; 1:1000; 图 2
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, 965)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 2). Vet Comp Oncol (2017) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 s3b
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫印迹在人类样本上 (图 s3b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(SMP14)
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫沉淀在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, sc-965)被用于被用于免疫印迹在人类样本上 (图 3). Cell Death Dis (2016) ncbi
小鼠 单克隆(SMP14)
  • 免疫组化-石蜡切片; 人类; 图 s9d
  • 免疫沉淀; 人类; 图 6d
  • 免疫印迹; 人类; 图 5e
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s9d), 被用于免疫沉淀在人类样本上 (图 6d) 和 被用于免疫印迹在人类样本上 (图 5e). Oncogene (2016) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 s3e
圣克鲁斯生物技术鼠双微基因2抗体(SantaCruz, SMP14)被用于被用于免疫印迹在人类样本上 (图 s3e). Science (2016) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(SMP14)
  • 免疫细胞化学; 人类; 1:100; 图 s2
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s2). Oncotarget (2016) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 小鼠; 图 ev1g
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, SMP14)被用于被用于免疫印迹在小鼠样本上 (图 ev1g) 和 被用于免疫印迹在人类样本上 (图 1b). EMBO Rep (2016) ncbi
小鼠 单克隆(D-7)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-13161)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogene (2016) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 4e
圣克鲁斯生物技术鼠双微基因2抗体(santa cruz, sc-965)被用于被用于免疫印迹在人类样本上 (图 4e). J Biol Chem (2016) ncbi
小鼠 单克隆(SMP14)
  • 免疫细胞化学; 人类; 图 3a
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术鼠双微基因2抗体(SantaCruz, SC-965)被用于被用于免疫细胞化学在人类样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 7a). Oncogene (2016) ncbi
小鼠 单克隆(SMP14)
  • 酶联免疫吸附测定; 人类; 1:50; 图 7
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:50 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, sc-965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Clin Invest (2016) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 s3
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, SMP14)被用于被用于免疫印迹在人类样本上 (图 s3). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫印迹在人类样本上 (图 5). Aging (Albany NY) (2015) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, sc-965)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫印迹在人类样本上 (图 4). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(SMP14)
  • 免疫沉淀; 人类; 图 3
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫沉淀在人类样本上 (图 3), 被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 1:1000; 图 4b
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Oncotarget (2015) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 小鼠; 1:200; 图 3
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, SMP14)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Death Dis (2015) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 小鼠; 1:500; 图 1
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, sc-965)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(SMP14)
  • 免疫沉淀; 人类; 图 2D
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, SMP14)被用于被用于免疫沉淀在人类样本上 (图 2D). Oncotarget (2015) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, sc-965)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, SMP14)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, sc-965)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Neuroimmunol (2014) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, sc-965)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 1:500; 表 1
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫印迹在人类样本上浓度为1:500 (表 1). Methods Mol Biol (2015) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, sc-965)被用于被用于免疫印迹在人类样本上. Cell Div (2014) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, SMP14)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(SMP14)
  • 免疫沉淀; 人类
圣克鲁斯生物技术鼠双微基因2抗体(Santa, sc-965AC)被用于被用于免疫沉淀在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, sc-965)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(SMP14)
  • 免疫沉淀; 人类; 图 4b
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术鼠双微基因2抗体(Santa, Sc-965)被用于被用于免疫沉淀在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2014) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, SMP-14)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, sc-5304)被用于被用于免疫印迹在人类样本上. Pigment Cell Melanoma Res (2014) ncbi
小鼠 单克隆(SMP14)
  • 免疫沉淀; 人类; 5 ug
  • 免疫印迹; 人类
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, sc-965)被用于被用于免疫沉淀在人类样本上浓度为5 ug 和 被用于免疫印迹在人类样本上. Pigment Cell Melanoma Res (2014) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, SMP14)被用于被用于免疫印迹在人类样本上. Mol Cell Biochem (2014) ncbi
小鼠 单克隆(SMP14)
  • 免疫沉淀; 人类; 1:500
  • 免疫细胞化学; 人类; 1:500
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, SC-965)被用于被用于免疫沉淀在人类样本上浓度为1:500, 被用于免疫细胞化学在人类样本上浓度为1:500 和 被用于免疫印迹在人类样本上浓度为1:500. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(SMP14)
  • 免疫沉淀; 小鼠
圣克鲁斯生物技术鼠双微基因2抗体(Santa, sc-965)被用于被用于免疫沉淀在小鼠样本上. Cancer Res (2013) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, sc-965)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Am J Pathol (2013) ncbi
小鼠 单克隆(HDM2-323)
  • 免疫印迹; 人类
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, 56154)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz, SMP14)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2013) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类
圣克鲁斯生物技术鼠双微基因2抗体(Santa Cruz Biotechnology, smp14)被用于被用于免疫印迹在人类样本上. J Biol Chem (2002) ncbi
赛默飞世尔
小鼠 单克隆(IF2)
  • 免疫印迹; 人类; 图 5a
赛默飞世尔鼠双微基因2抗体(Invitrogen, 33-7100)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Death Dis (2016) ncbi
domestic rabbit 重组(4H26L4)
  • 免疫印迹; 人类; 图 1
赛默飞世尔鼠双微基因2抗体(Invitrogen, 700555)被用于被用于免疫印迹在人类样本上 (图 1). Neuroendocrinology (2018) ncbi
domestic rabbit 重组(4H26L4)
  • 免疫印迹; 人类; 图 3a, b
赛默飞世尔鼠双微基因2抗体(Pierce, 4H26L4)被用于被用于免疫印迹在人类样本上 (图 3a, b). Cell Physiol Biochem (2016) ncbi
domestic rabbit 重组(4H26L4)
  • 免疫印迹; 人类; 1:300; 图 2b
赛默飞世尔鼠双微基因2抗体(InVitrogen, 700555)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 2b). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6e
赛默飞世尔鼠双微基因2抗体(Thermo Scientific, PA5-13008)被用于被用于免疫印迹在人类样本上 (图 6e). Cell Discov (2016) ncbi
小鼠 单克隆(IF2)
  • 免疫印迹; 人类; 1:500; 图 2b
赛默飞世尔鼠双微基因2抗体(Invitrogen, 33-7100)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛默飞世尔鼠双微基因2抗体(Thermo Fisher Scientific, PA5-11353)被用于被用于免疫印迹在人类样本上 (图 6). Cancer Cell Int (2016) ncbi
小鼠 单克隆(IF2)
  • 免疫组化; 人类
赛默飞世尔鼠双微基因2抗体(Zymed Laboratories, IF2)被用于被用于免疫组化在人类样本上. Mod Pathol (2015) ncbi
小鼠 单克隆(IF2)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔鼠双微基因2抗体(Invitrogen, IF2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Appl Immunohistochem Mol Morphol (2015) ncbi
小鼠 单克隆(IF2)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔鼠双微基因2抗体(Invitrogen, clone IF2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Hum Pathol (2015) ncbi
小鼠 单克隆(IF2)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔鼠双微基因2抗体(Zymed, IF2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Mod Pathol (2015) ncbi
小鼠 单克隆(IF2)
  • 免疫印迹; 人类; 图 5
赛默飞世尔鼠双微基因2抗体(Zymed, 33-7100)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2013) ncbi
小鼠 单克隆(IF2)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔鼠双微基因2抗体(Invitrogen Zymed, IF2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. World Neurosurg (2014) ncbi
小鼠 单克隆(IF2)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1.
赛默飞世尔鼠双微基因2抗体(Zymed Laboratories, IF2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1.). Am J Surg Pathol (2012) ncbi
小鼠 单克隆(IF2)
  • 免疫组化; 人类; 1:25; 图 6
赛默飞世尔鼠双微基因2抗体(Zymed, IF2)被用于被用于免疫组化在人类样本上浓度为1:25 (图 6). Mod Pathol (2011) ncbi
小鼠 单克隆(IF2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛默飞世尔鼠双微基因2抗体(Zymed, IF2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Am J Surg Pathol (2010) ncbi
小鼠 单克隆(IF2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
赛默飞世尔鼠双微基因2抗体(Zymed, IF2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). Mod Pathol (2010) ncbi
小鼠 单克隆(IF2)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔鼠双微基因2抗体(Zymed, IF2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Mod Pathol (2009) ncbi
小鼠 单克隆(IF2)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
赛默飞世尔鼠双微基因2抗体(Zymed, 1F2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). APMIS (2009) ncbi
小鼠 单克隆(IF2)
  • 免疫组化; 人类; 图 2
赛默飞世尔鼠双微基因2抗体(Zymed, IF2)被用于被用于免疫组化在人类样本上 (图 2). Am J Clin Oncol (2009) ncbi
小鼠 单克隆(IF2)
  • 免疫组化; 人类; 图 2
赛默飞世尔鼠双微基因2抗体(Zymed, IF2)被用于被用于免疫组化在人类样本上 (图 2). JOP (2008) ncbi
小鼠 单克隆(IF2)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔鼠双微基因2抗体(Zymed, IF2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Mod Pathol (2008) ncbi
小鼠 单克隆(IF2)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
赛默飞世尔鼠双微基因2抗体(Zymed, IF2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Virchows Arch (2006) ncbi
小鼠 单克隆(IF2)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔鼠双微基因2抗体(Zymed, IF2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Virchows Arch (2005) ncbi
小鼠 单克隆(IF2)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 3
赛默飞世尔鼠双微基因2抗体(Zymed, clone IF2)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 3). J Pathol (2004) ncbi
小鼠 单克隆(IF2)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔鼠双微基因2抗体(Zymed, IF2)被用于被用于免疫组化-石蜡切片在人类样本上. Mod Pathol (2003) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(2A10)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司鼠双微基因2抗体(Abcam, ab16895)被用于被用于免疫印迹在人类样本上 (图 1a). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(2A10)
  • 免疫沉淀; 人类; 1:200; 图 s4
  • 免疫细胞化学; 人类; 1:200; 图 4d
  • 免疫印迹; 人类; 1:1000; 图 s3
艾博抗(上海)贸易有限公司鼠双微基因2抗体(Abcam, ab16895)被用于被用于免疫沉淀在人类样本上浓度为1:200 (图 s4), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 4d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). Oncogene (2019) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 1:1000; 图 4e
艾博抗(上海)贸易有限公司鼠双微基因2抗体(Abcam, ab170880)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Oncogene (2019) ncbi
小鼠 单克隆(SMP 14)
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司鼠双微基因2抗体(Abcam, ab3110)被用于被用于免疫印迹在人类样本上 (图 4c). iScience (2019) ncbi
小鼠 单克隆(2A10)
  • 免疫印迹; 小鼠; 图 1d
艾博抗(上海)贸易有限公司鼠双微基因2抗体(Abcam, ab16895)被用于被用于免疫印迹在小鼠样本上 (图 1d). Cancer Cell (2017) ncbi
小鼠 单克隆(2A10)
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司鼠双微基因2抗体(Abcam, ab16895)被用于被用于免疫印迹在人类样本上 (图 2b). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(2A10)
  • 免疫印迹; 小鼠; 1:400; 图 2a
艾博抗(上海)贸易有限公司鼠双微基因2抗体(Abcam, ab16895)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 2a). Int J Cancer (2017) ncbi
小鼠 单克隆(2A10)
  • 免疫沉淀; 人类; 图 8a
艾博抗(上海)贸易有限公司鼠双微基因2抗体(Abcam, ab16895)被用于被用于免疫沉淀在人类样本上 (图 8a). Oncotarget (2016) ncbi
小鼠 单克隆(2A10)
  • 免疫印迹; 人类; 图 7d
艾博抗(上海)贸易有限公司鼠双微基因2抗体(Abcam, 2A10)被用于被用于免疫印迹在人类样本上 (图 7d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(SMP 14)
  • 免疫印迹; 大鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司鼠双微基因2抗体(Abcam, ab3110)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(2A10)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司鼠双微基因2抗体(Abcam, ab16895)被用于被用于免疫印迹在人类样本上 (图 5). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(SMP 14)
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司鼠双微基因2抗体(Abcam, ab3110)被用于被用于免疫印迹在小鼠样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(SMP 14)
  • 免疫组化; 小鼠; 图 4a
艾博抗(上海)贸易有限公司鼠双微基因2抗体(Abcam, SMP14)被用于被用于免疫组化在小鼠样本上 (图 4a). Cell Death Differ (2015) ncbi
小鼠 单克隆(SMP 14)
  • 免疫组化; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司鼠双微基因2抗体(Abcam, ab3110)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1). Oncol Lett (2015) ncbi
小鼠 单克隆(SMP 14)
  • 免疫细胞化学; 大鼠; 1:200
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司鼠双微基因2抗体(Abcam, ab3110)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 和 被用于免疫印迹在大鼠样本上. Mol Biol Cell (2012) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(SMP14)
  • 免疫印迹; 大鼠; 图 1
伯乐(Bio-Rad)公司鼠双微基因2抗体(AbDserotec, MCA1709)被用于被用于免疫印迹在大鼠样本上 (图 1). PLoS ONE (2015) ncbi
赛信通(上海)生物试剂有限公司
单克隆(D1V2Z)
  • 免疫印迹; 人类; 图 2j
赛信通(上海)生物试剂有限公司鼠双微基因2抗体(CST, 86,934)被用于被用于免疫印迹在人类样本上 (图 2j). Mol Cancer (2021) ncbi
单克隆(D1V2Z)
  • 免疫印迹; 人类; 1:5000; 图 3a
赛信通(上海)生物试剂有限公司鼠双微基因2抗体(Cell Signaling Technology, 86934)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3a). Clin Transl Med (2021) ncbi
单克隆(D1V2Z)
  • 免疫印迹; 小鼠; 图 5h
赛信通(上海)生物试剂有限公司鼠双微基因2抗体(Cell Signaling Technology, 86934)被用于被用于免疫印迹在小鼠样本上 (图 5h). Cell Death Dis (2021) ncbi
单克隆(D1V2Z)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司鼠双微基因2抗体(Cell Signaling, 86934)被用于被用于免疫印迹在人类样本上 (图 3c). Breast Cancer Res (2021) ncbi
单克隆(D1V2Z)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司鼠双微基因2抗体(cell signaling technology, 86934)被用于被用于免疫印迹在人类样本上 (图 4c). Front Oncol (2020) ncbi
单克隆(D1V2Z)
  • 免疫细胞化学; 人类; 0.2 ug/ml; 图 s5
  • 免疫印迹; 人类; 0.2 ug/ml; 图 7e
赛信通(上海)生物试剂有限公司鼠双微基因2抗体(Cell Signaling, 86934)被用于被用于免疫细胞化学在人类样本上浓度为0.2 ug/ml (图 s5) 和 被用于免疫印迹在人类样本上浓度为0.2 ug/ml (图 7e). Commun Biol (2020) ncbi
单克隆(D1V2Z)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司鼠双微基因2抗体(Cell Signaling Technologies, 86934)被用于被用于免疫印迹在人类样本上 (图 3b). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 9a
赛信通(上海)生物试剂有限公司鼠双微基因2抗体(Cell Signaling Technology, 3521)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 9a). J Exp Med (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司鼠双微基因2抗体(Cell Signaling, 3521)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 5b
  • 免疫印迹; 小鼠; 1:500; 图 5a
赛信通(上海)生物试剂有限公司鼠双微基因2抗体(Cell Signaling, 3521)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5b) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). Mol Cell Endocrinol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1h
赛信通(上海)生物试剂有限公司鼠双微基因2抗体(Cell Signaling Technology, 3521)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1h). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司鼠双微基因2抗体(Cell Signaling, 3521)被用于被用于免疫印迹在人类样本上 (图 2). Neuroendocrinology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7e
赛信通(上海)生物试剂有限公司鼠双微基因2抗体(cell signalling, 3521)被用于被用于免疫印迹在人类样本上 (图 7e). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司鼠双微基因2抗体(Cell Signaling, 3521)被用于被用于免疫印迹在人类样本上 (图 3f). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司鼠双微基因2抗体(Cell Signaling, 3521)被用于被用于免疫印迹在人类样本上 (图 4e). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司鼠双微基因2抗体(Cell Signaling Technology, 3521)被用于被用于免疫印迹在小鼠样本上 (图 4). Oncogene (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(HDM2-323)
  • 免疫沉淀; 人类; 图 1c
  • 免疫印迹; 人类; 图 3c
西格玛奥德里奇鼠双微基因2抗体(Sigma, HDM2-323)被用于被用于免疫沉淀在人类样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 3c). Oncogene (2019) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 人类; 图 1c
西格玛奥德里奇鼠双微基因2抗体(Sigma, SMP1)被用于被用于免疫印迹在人类样本上 (图 1c). Oncogene (2017) ncbi
碧迪BD
小鼠 单克隆(SMP14)
  • 免疫印迹; 小鼠; 图 2
碧迪BD鼠双微基因2抗体(BD Pharmingen, 556353)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell Rep (2016) ncbi
小鼠 单克隆(SMP14)
  • 免疫印迹; 小鼠
碧迪BD鼠双微基因2抗体(BD Biosciences, 556353)被用于被用于免疫印迹在小鼠样本上. Int J Cancer (2013) ncbi
文章列表
  1. Kumar D, Das M, Oberg A, Sahoo D, Wu P, Sauceda C, et al. Hepatocyte Deletion of IGF2 Prevents DNA Damage and Tumor Formation in Hepatocellular Carcinoma. Adv Sci (Weinh). 2022;9:e2105120 pubmed 出版商
  2. Liu X, Liu Y, Liu Z, Lin C, Meng F, Xu L, et al. CircMYH9 drives colorectal cancer growth by regulating serine metabolism and redox homeostasis in a p53-dependent manner. Mol Cancer. 2021;20:114 pubmed 出版商
  3. Kanellis D, Espinoza J, Zisi A, Sakkas E, Bartkova J, Katsori A, et al. The exon-junction complex helicase eIF4A3 controls cell fate via coordinated regulation of ribosome biogenesis and translational output. Sci Adv. 2021;7: pubmed 出版商
  4. Sakai H, Kawakami H, Teramura T, Onodera Y, Somers E, Furuuchi K, et al. Folate receptor α increases chemotherapy resistance through stabilizing MDM2 in cooperation with PHB2 that is overcome by MORAb-202 in gastric cancer. Clin Transl Med. 2021;11:e454 pubmed 出版商
  5. Zheng H, Xu W, Zhou W, Yang R, Chen P, Liu T, et al. Beraprost ameliorates postmenopausal osteoporosis by regulating Nedd4-induced Runx2 ubiquitination. Cell Death Dis. 2021;12:497 pubmed 出版商
  6. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  7. Gao L, Zhu D, Wang Q, Bao Z, Yin S, Qiang H, et al. Proteome Analysis of USP7 Substrates Revealed Its Role in Melanoma Through PI3K/Akt/FOXO and AMPK Pathways. Front Oncol. 2021;11:650165 pubmed 出版商
  8. Li H, Liu Y, Jiang W, Xue J, Cheng Y, Wang J, et al. Icaritin promotes apoptosis and inhibits proliferation by down-regulating AFP gene expression in hepatocellular carcinoma. BMC Cancer. 2021;21:318 pubmed 出版商
  9. Pairawan S, Zhao M, Yuca E, Annis A, Evans K, Sutton D, et al. First in class dual MDM2/MDMX inhibitor ALRN-6924 enhances antitumor efficacy of chemotherapy in TP53 wild-type hormone receptor-positive breast cancer models. Breast Cancer Res. 2021;23:29 pubmed 出版商
  10. Su S, Li Q, Zhang M, Zhang P, Shen H, Zhang C. An E2F1/DDX11/EZH2 Positive Feedback Loop Promotes Cell Proliferation in Hepatocellular Carcinoma. Front Oncol. 2020;10:593293 pubmed 出版商
  11. Liu S, Tian Y, Zheng Y, Cheng Y, Zhang D, Jiang J, et al. TRIM27 acts as an oncogene and regulates cell proliferation and metastasis in non-small cell lung cancer through SIX3-β-catenin signaling. Aging (Albany NY). 2020;12:25564-25580 pubmed 出版商
  12. Sola M, Magrin C, Pedrioli G, Pinton S, Salvade A, Papin S, et al. Tau affects P53 function and cell fate during the DNA damage response. Commun Biol. 2020;3:245 pubmed 出版商
  13. Gain C, Malik S, Bhattacharjee S, Ghosh A, Robertson E, Das B, et al. Proteasomal inhibition triggers viral oncoprotein degradation via autophagy-lysosomal pathway. PLoS Pathog. 2020;16:e1008105 pubmed 出版商
  14. Sun B, Zhao X, Ming J, Liu X, Liu D, Jiang C. Stepwise detection and evaluation reveal miR-10b and miR-222 as a remarkable prognostic pair for glioblastoma. Oncogene. 2019;38:6142-6157 pubmed 出版商
  15. Du T, Li H, Fan Y, Yuan L, Guo X, Zhu Q, et al. The deubiquitylase OTUD3 stabilizes GRP78 and promotes lung tumorigenesis. Nat Commun. 2019;10:2914 pubmed 出版商
  16. Patel N, Wang J, Shiozawa K, Jones K, Zhang Y, Prokop J, et al. HDAC2 Regulates Site-Specific Acetylation of MDM2 and Its Ubiquitination Signaling in Tumor Suppression. iScience. 2019;13:43-54 pubmed 出版商
  17. Carugo A, Minelli R, Sapio L, Soeung M, Carbone F, Robinson F, et al. p53 Is a Master Regulator of Proteostasis in SMARCB1-Deficient Malignant Rhabdoid Tumors. Cancer Cell. 2019;35:204-220.e9 pubmed 出版商
  18. Liu B, Yi J, Yang X, Liu L, Lou X, Zhang Z, et al. MDM2-mediated degradation of WRN promotes cellular senescence in a p53-independent manner. Oncogene. 2019;38:2501-2515 pubmed 出版商
  19. Kim M, Song J, Koh D, Kim J, Hatano M, Jeon B, et al. Reciprocal negative regulation between the tumor suppressor protein p53 and B cell CLL/lymphoma 6 (BCL6) via control of caspase-1 expression. J Biol Chem. 2019;294:299-313 pubmed 出版商
  20. Hirano S, Udagawa O, Kobayashi Y, Kato A. Solubility changes of promyelocytic leukemia (PML) and SUMO monomers and dynamics of PML nuclear body proteins in arsenite-treated cells. Toxicol Appl Pharmacol. 2018;360:150-159 pubmed 出版商
  21. Tajan M, Hock A, Blagih J, Robertson N, Labuschagne C, Kruiswijk F, et al. A Role for p53 in the Adaptation to Glutamine Starvation through the Expression of SLC1A3. Cell Metab. 2018;28:721-736.e6 pubmed 出版商
  22. Klein M, Dickson M, Antonescu C, Qin L, Dooley S, Barlas A, et al. PDLIM7 and CDH18 regulate the turnover of MDM2 during CDK4/6 inhibitor therapy-induced senescence. Oncogene. 2018;37:5066-5078 pubmed 出版商
  23. Ng S, Yoshida N, Christie A, Ghandi M, Dharia N, Dempster J, et al. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nat Commun. 2018;9:2024 pubmed 出版商
  24. Parisotto M, Grelet E, El Bizri R, Dai Y, Terzic J, Eckert D, et al. PTEN deletion in luminal cells of mature prostate induces replication stress and senescence in vivo. J Exp Med. 2018;215:1749-1763 pubmed 出版商
  25. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  26. Huang C, Wu S, Ji H, Yan X, Xie Y, Murai S, et al. Identification of XBP1-u as a novel regulator of the MDM2/p53 axis using an shRNA library. Sci Adv. 2017;3:e1701383 pubmed 出版商
  27. Mello S, Valente L, Raj N, Seoane J, Flowers B, McClendon J, et al. A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer. Cancer Cell. 2017;32:460-473.e6 pubmed 出版商
  28. Periyasamy M, Singh A, Gemma C, Kranjec C, Farzan R, Leach D, et al. p53 controls expression of the DNA deaminase APOBEC3B to limit its potential mutagenic activity in cancer cells. Nucleic Acids Res. 2017;45:11056-11069 pubmed 出版商
  29. Giono L, Resnick Silverman L, Carvajal L, St Clair S, Manfredi J. Mdm2 promotes Cdc25C protein degradation and delays cell cycle progression through the G2/M phase. Oncogene. 2017;36:6762-6773 pubmed 出版商
  30. Nagarajan S, Vohra T, Loffing J, Faresse N. Protein Phosphatase 1α enhances renal aldosterone signaling via mineralocorticoid receptor stabilization. Mol Cell Endocrinol. 2017;450:74-82 pubmed 出版商
  31. Lee T, Pelletier J. Dependence of p53-deficient cells on the DHX9 DExH-box helicase. Oncotarget. 2017;8:30908-30921 pubmed 出版商
  32. Xu W, Li B, Guan X, Chung S, Wang Y, Yip Y, et al. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. Nat Commun. 2017;8:14399 pubmed 出版商
  33. Zhang Y, Zeng S, Hao Q, Lu H. Monitoring p53 by MDM2 and MDMX is required for endocrine pancreas development and function in a spatio-temporal manner. Dev Biol. 2017;423:34-45 pubmed 出版商
  34. Squillaro T, Antonucci I, Alessio N, Esposito A, Cipollaro M, Melone M, et al. Impact of lysosomal storage disorders on biology of mesenchymal stem cells: Evidences from in vitro silencing of glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes. J Cell Physiol. 2017;232:3454-3467 pubmed 出版商
  35. Worrall C, Suleymanova N, Crudden C, Trocoli Drakensjö I, Candrea E, Nedelcu D, et al. Unbalancing p53/Mdm2/IGF-1R axis by Mdm2 activation restrains the IGF-1-dependent invasive phenotype of skin melanoma. Oncogene. 2017;36:3274-3286 pubmed 出版商
  36. Guan X, Lapak K, Hennessey R, Yu C, Shakya R, Zhang J, et al. Stromal Senescence By Prolonged CDK4/6 Inhibition Potentiates Tumor Growth. Mol Cancer Res. 2017;15:237-249 pubmed 出版商
  37. Ren Z, Aerts J, Vandenplas H, Wang J, Gorbenko O, Chen J, et al. Phosphorylated STAT5 regulates p53 expression via BRCA1/BARD1-NPM1 and MDM2. Cell Death Dis. 2016;7:e2560 pubmed 出版商
  38. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  39. Tian X, Dai S, Sun J, Jiang S, Sui C, Meng F, et al. Inhibition of MDM2 Re-Sensitizes Rapamycin Resistant Renal Cancer Cells via the Activation of p53. Cell Physiol Biochem. 2016;39:2088-2098 pubmed
  40. Kucab J, Hollstein M, Arlt V, Phillips D. Nutlin-3a selects for cells harbouring TP53 mutations. Int J Cancer. 2017;140:877-887 pubmed 出版商
  41. Qi D, Cobrinik D. MDM2 but not MDM4 promotes retinoblastoma cell proliferation through p53-independent regulation of MYCN translation. Oncogene. 2017;36:1760-1769 pubmed 出版商
  42. Wang H, Chen T, Weng C, Yang C, Tang M. Acrolein preferentially damages nucleolus eliciting ribosomal stress and apoptosis in human cancer cells. Oncotarget. 2016;7:80450-80464 pubmed 出版商
  43. Schwermer M, Dreesmann S, Eggert A, Althoff K, Steenpass L, Schramm A, et al. Pharmaceutically inhibiting polo-like kinase 1 exerts a broad anti-tumour activity in retinoblastoma cell lines. Clin Exp Ophthalmol. 2017;45:288-296 pubmed 出版商
  44. Liu T, Xiong J, Yi S, Zhang H, Zhou S, Gu L, et al. FKBP12 enhances sensitivity to chemotherapy-induced cancer cell apoptosis by inhibiting MDM2. Oncogene. 2017;36:1678-1686 pubmed 出版商
  45. Bauer M, Joerger A, Fersht A. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells. Proc Natl Acad Sci U S A. 2016;113:E5271-80 pubmed 出版商
  46. Clay M, Martinez A, Weiss S, Edgar M. MDM2 and CDK4 Immunohistochemistry: Should It Be Used in Problematic Differentiated Lipomatous Tumors?: A New Perspective. Am J Surg Pathol. 2016;40:1647-1652 pubmed
  47. Riascos Bernal D, Chinnasamy P, Cao L, Dunaway C, Valenta T, Basler K, et al. β-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nat Commun. 2016;7:12389 pubmed 出版商
  48. Luo H, Cowen L, Yu G, Jiang W, Tang Y. SMG7 is a critical regulator of p53 stability and function in DNA damage stress response. Cell Discov. 2016;2:15042 pubmed 出版商
  49. Ma T, Fan B, Zhang C, Zhao H, Han C, Gao C, et al. Metabonomics applied in exploring the antitumour mechanism of physapubenolide on hepatocellular carcinoma cells by targeting glycolysis through the Akt-p53 pathway. Sci Rep. 2016;6:29926 pubmed 出版商
  50. Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, et al. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome. EMBO Mol Med. 2016;8:1019-38 pubmed 出版商
  51. Wei T, Biskup E, Gjerdrum L, Niazi O, Ødum N, Gniadecki R. Ubiquitin-specific protease 2 decreases p53-dependent apoptosis in cutaneous T-cell lymphoma. Oncotarget. 2016;7:48391-48400 pubmed 出版商
  52. York D, Withers S, Watson K, Seo K, Rebhun R. Enrofloxacin enhances the effects of chemotherapy in canine osteosarcoma cells with mutant and wild-type p53. Vet Comp Oncol. 2017;15:1087-1100 pubmed 出版商
  53. Chesnokova V, Zonis S, Zhou C, Recouvreux M, Ben Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250-9 pubmed 出版商
  54. Stepanenko A, Andreieva S, Korets K, Mykytenko D, Baklaushev V, Huleyuk N, et al. Temozolomide promotes genomic and phenotypic changes in glioblastoma cells. Cancer Cell Int. 2016;16:36 pubmed 出版商
  55. Ho T, Guilbaud G, Blow J, Sale J, Watson C. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability. Cell Rep. 2016;15:724-734 pubmed 出版商
  56. Chen Y, Pan K, Wang P, Cao Z, Wang W, Wang S, et al. HBP1-mediated Regulation of p21 Protein through the Mdm2/p53 and TCF4/EZH2 Pathways and Its Impact on Cell Senescence and Tumorigenesis. J Biol Chem. 2016;291:12688-705 pubmed 出版商
  57. Hall A, Lu W, Godfrey J, Antonov A, Paicu C, Moxon S, et al. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration. Cell Death Dis. 2016;7:e2184 pubmed 出版商
  58. Jin H, Lee K, Kim Y, Oh H, Maeng Y, Kim T, et al. Scaffold protein FHL2 facilitates MDM2-mediated degradation of IER3 to regulate proliferation of cervical cancer cells. Oncogene. 2016;35:5106-18 pubmed 出版商
  59. Chen S, FORRESTER W, Lahav G. Schedule-dependent interaction between anticancer treatments. Science. 2016;351:1204-8 pubmed 出版商
  60. Singh A, Joshi S, Zulcic M, Alcaraz M, GARLICH J, Morales G, et al. PI-3K Inhibitors Preferentially Target CD15+ Cancer Stem Cell Population in SHH Driven Medulloblastoma. PLoS ONE. 2016;11:e0150836 pubmed 出版商
  61. Nakayama R, Zhang Y, Czaplinski J, Anatone A, Sicinska E, Fletcher J, et al. Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma. Oncotarget. 2016;7:16581-92 pubmed 出版商
  62. Swetzig W, Wang J, Das G. Estrogen receptor alpha (ERα/ESR1) mediates the p53-independent overexpression of MDM4/MDMX and MDM2 in human breast cancer. Oncotarget. 2016;7:16049-69 pubmed 出版商
  63. Liu X, Tan Y, Zhang C, Zhang Y, Zhang L, Ren P, et al. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2. EMBO Rep. 2016;17:349-66 pubmed 出版商
  64. Xie X, Lozano G, Siddik Z. Heterozygous p53(V172F) mutation in cisplatin-resistant human tumor cells promotes MDM4 recruitment and decreases stability and transactivity of p53. Oncogene. 2016;35:4798-806 pubmed 出版商
  65. Kwon D, Eom G, Ko J, Shin S, Joung H, Choe N, et al. MDM2 E3 ligase-mediated ubiquitination and degradation of HDAC1 in vascular calcification. Nat Commun. 2016;7:10492 pubmed 出版商
  66. Chavoshi S, Egorova O, Lacdao I, Farhadi S, Sheng Y, Saridakis V. Identification of Kaposi Sarcoma Herpesvirus (KSHV) vIRF1 Protein as a Novel Interaction Partner of Human Deubiquitinase USP7. J Biol Chem. 2016;291:6281-91 pubmed 出版商
  67. Ying M, Zhang L, Zhou Q, Shao X, Cao J, Zhang N, et al. The E3 ubiquitin protein ligase MDM2 dictates all-trans retinoic acid-induced osteoblastic differentiation of osteosarcoma cells by modulating the degradation of RARα. Oncogene. 2016;35:4358-67 pubmed 出版商
  68. Daniele S, Barresi E, Zappelli E, Marinelli L, Novellino E, Da Settimo F, et al. Long lasting MDM2/Translocator protein modulator: a new strategy for irreversible apoptosis of human glioblastoma cells. Oncotarget. 2016;7:7866-84 pubmed 出版商
  69. Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo S, Low D, et al. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest. 2016;126:68-84 pubmed 出版商
  70. Ivanschitz L, Takahashi Y, Jollivet F, Ayrault O, Le Bras M, de Thé H. PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence. Proc Natl Acad Sci U S A. 2015;112:14278-83 pubmed 出版商
  71. Waye S, Naeem A, Choudhry M, Parasido E, Tricoli L, Sivakumar A, et al. The p53 tumor suppressor protein protects against chemotherapeutic stress and apoptosis in human medulloblastoma cells. Aging (Albany NY). 2015;7:854-68 pubmed
  72. Ahn H, Kim K, Shin K, Lim K, Kim J, Lee J, et al. Ell3 stabilizes p53 following CDDP treatment via its effects on ubiquitin-dependent and -independent proteasomal degradation pathways in breast cancer cells. Oncotarget. 2015;6:44523-37 pubmed 出版商
  73. Yu Z, Huang Y, Shieh S. Requirement for human Mps1/TTK in oxidative DNA damage repair and cell survival through MDM2 phosphorylation. Nucleic Acids Res. 2016;44:1133-50 pubmed 出版商
  74. Tonsing Carter E, Bailey B, Saadatzadeh M, Ding J, Wang H, Sinn A, et al. Potentiation of Carboplatin-Mediated DNA Damage by the Mdm2 Modulator Nutlin-3a in a Humanized Orthotopic Breast-to-Lung Metastatic Model. Mol Cancer Ther. 2015;14:2850-63 pubmed 出版商
  75. Ye M, Tang Y, Tang S, Liu J, Wu K, Yao S, et al. STIP is a critical nuclear scaffolding protein linking USP7 to p53-Mdm2 pathway regulation. Oncotarget. 2015;6:34718-31 pubmed 出版商
  76. Kramer H, Lai C, Patel H, Periyasamy M, Lin M, Feller S, et al. LRH-1 drives colon cancer cell growth by repressing the expression of the CDKN1A gene in a p53-dependent manner. Nucleic Acids Res. 2016;44:582-94 pubmed 出版商
  77. Saâda Bouzid E, Burel Vandenbos F, Ranchère Vince D, Birtwisle Peyrottes I, Chetaille B, Bouvier C, et al. Prognostic value of HMGA2, CDK4, and JUN amplification in well-differentiated and dedifferentiated liposarcomas. Mod Pathol. 2015;28:1404-14 pubmed 出版商
  78. Moussa R, Kovacevic Z, Richardson D. Differential targeting of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1, by chelators with anti-proliferative activity in a range of tumor cell-types. Oncotarget. 2015;6:29694-711 pubmed 出版商
  79. Wang H, Lööf S, Borg P, Nader G, Blau H, Simon A. Turning terminally differentiated skeletal muscle cells into regenerative progenitors. Nat Commun. 2015;6:7916 pubmed 出版商
  80. Haupt S, Buckley D, Pang J, Panimaya J, Paul P, Gamell C, et al. Targeting Mdmx to treat breast cancers with wild-type p53. Cell Death Dis. 2015;6:e1821 pubmed 出版商
  81. Jacquin S, Rincheval V, Mignotte B, Richard S, Humbert M, Mercier O, et al. Inactivation of p53 Is Sufficient to Induce Development of Pulmonary Hypertension in Rats. PLoS ONE. 2015;10:e0131940 pubmed 出版商
  82. Wang J, Chen S, Sun C, Chien T, Chern Y. A central role of TRAX in the ATM-mediated DNA repair. Oncogene. 2016;35:1657-70 pubmed 出版商
  83. Rueda Rincon N, Bloch K, Derua R, Vyas R, Harms A, Hankemeier T, et al. p53 attenuates AKT signaling by modulating membrane phospholipid composition. Oncotarget. 2015;6:21240-54 pubmed
  84. Wu H, Leng R. MDM2 mediates p73 ubiquitination: a new molecular mechanism for suppression of p73 function. Oncotarget. 2015;6:21479-92 pubmed
  85. Scala F, Brighenti E, Govoni M, Imbrogno E, Fornari F, Treré D, et al. Direct relationship between the level of p53 stabilization induced by rRNA synthesis-inhibiting drugs and the cell ribosome biogenesis rate. Oncogene. 2016;35:977-89 pubmed 出版商
  86. Zhang W, Hou J, Wang X, Jiang R, Yin Y, Ji J, et al. PTPRO-mediated autophagy prevents hepatosteatosis and tumorigenesis. Oncotarget. 2015;6:9420-33 pubmed
  87. Puzio Kuter A, Laddha S, Castillo Martin M, Sun Y, Cordon Cardo C, Chan C, et al. Involvement of tumor suppressors PTEN and p53 in the formation of multiple subtypes of liposarcoma. Cell Death Differ. 2015;22:1785-91 pubmed 出版商
  88. Kovatcheva M, Liu D, Dickson M, Klein M, O Connor R, Wilder F, et al. MDM2 turnover and expression of ATRX determine the choice between quiescence and senescence in response to CDK4 inhibition. Oncotarget. 2015;6:8226-43 pubmed
  89. Weingertner N, Neuville A, Chibon F, Ray Coquard I, Marcellin L, Ghnassia J. Myxoid liposarcoma with heterologous components: dedifferentiation or metaplasia? A FISH-documented and CGH-documented case report. Appl Immunohistochem Mol Morphol. 2015;23:230-5 pubmed 出版商
  90. Righi A, Gambarotti M, Benini S, Gamberi G, Cocchi S, Picci P, et al. MDM2 and CDK4 expression in periosteal osteosarcoma. Hum Pathol. 2015;46:549-53 pubmed 出版商
  91. Ortega P, Suster D, Falconieri G, Zambrano E, Moran C, Morrison C, et al. Liposarcomas of the posterior mediastinum: clinicopathologic study of 18 cases. Mod Pathol. 2015;28:721-31 pubmed 出版商
  92. Kong L, Wei J, Haider A, Liebelt B, Ling X, Conrad C, et al. Therapeutic targets in subependymoma. J Neuroimmunol. 2014;277:168-75 pubmed 出版商
  93. Zhang P, Wu S, Wang Y, Fan Z, Li C, Feng M, et al. p53, MDM2, eIF4E and EGFR expression in nasopharyngeal carcinoma and their correlation with clinicopathological characteristics and prognosis: A retrospective study. Oncol Lett. 2015;9:113-118 pubmed
  94. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  95. Vega Naredo I, Cunha Oliveira T, Serafim T, Sardao V, Oliveira P. Analysis of pro-apoptotic protein trafficking to and from mitochondria. Methods Mol Biol. 2015;1241:163-80 pubmed 出版商
  96. Lee M, Marina M, King J, Saavedra H. Differential expression of centrosome regulators in Her2+ breast cancer cells versus non-tumorigenic MCF10A cells. Cell Div. 2014;9:3 pubmed 出版商
  97. Idogawa M, Ohashi T, Sugisaka J, Sasaki Y, Suzuki H, Tokino T. Array-based genome-wide RNAi screening to identify shRNAs that enhance p53-related apoptosis in human cancer cells. Oncotarget. 2014;5:7540-8 pubmed
  98. Jacob A, Singh R, Comiskey D, Rouhier M, Mohammad F, Bebee T, et al. Stress-induced alternative splice forms of MDM2 and MDMX modulate the p53-pathway in distinct ways. PLoS ONE. 2014;9:e104444 pubmed 出版商
  99. Suico M, Fukuda R, Miyakita R, Koyama K, Taura M, Shuto T, et al. The transcription factor MEF/Elf4 is dually modulated by p53-MDM2 axis and MEF-MDM2 autoregulatory mechanism. J Biol Chem. 2014;289:26143-54 pubmed 出版商
  100. Hamilton G, Abraham A, Morton J, Sampson O, Pefani D, Khoronenkova S, et al. AKT regulates NPM dependent ARF localization and p53mut stability in tumors. Oncotarget. 2014;5:6142-67 pubmed
  101. Yamauchi T, Nishiyama M, Moroishi T, Yumimoto K, Nakayama K. MDM2 mediates nonproteolytic polyubiquitylation of the DEAD-Box RNA helicase DDX24. Mol Cell Biol. 2014;34:3321-40 pubmed 出版商
  102. Kardos G, Dai M, Robertson G. Growth inhibitory effects of large subunit ribosomal proteins in melanoma. Pigment Cell Melanoma Res. 2014;27:801-12 pubmed 出版商
  103. Thirunavukarasou A, Singh P, Govindarajalu G, Bandi V, Baluchamy S. E3 ubiquitin ligase Cullin4B mediated polyubiquitination of p53 for its degradation. Mol Cell Biochem. 2014;390:93-100 pubmed 出版商
  104. Qi M, Zhang J, Zeng W, Chen X. DNAJB1 stabilizes MDM2 and contributes to cancer cell proliferation in a p53-dependent manner. Biochim Biophys Acta. 2014;1839:62-9 pubmed 出版商
  105. Horiguchi M, Koyanagi S, Hamdan A, Kakimoto K, Matsunaga N, Yamashita C, et al. Rhythmic control of the ARF-MDM2 pathway by ATF4 underlies circadian accumulation of p53 in malignant cells. Cancer Res. 2013;73:2639-49 pubmed 出版商
  106. Qiu H, Zhang L, Ren C, Zeng Z, Wu W, Luo H, et al. Targeting CDH17 suppresses tumor progression in gastric cancer by downregulating Wnt/β-catenin signaling. PLoS ONE. 2013;8:e56959 pubmed 出版商
  107. Yakkioui Y, Temel Y, Creytens D, Jahanshahi A, Fleischeuer R, Santegoeds R, et al. A comparison of cell-cycle markers in skull base and sacral chordomas. World Neurosurg. 2014;82:e311-8 pubmed 出版商
  108. Kazmi S, Byer S, Eckert J, Turk A, Huijbregts R, Brossier N, et al. Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis. Am J Pathol. 2013;182:646-67 pubmed 出版商
  109. Sarkar S, Brautigan D, Parsons S, Larner J. Androgen receptor degradation by the E3 ligase CHIP modulates mitotic arrest in prostate cancer cells. Oncogene. 2014;33:26-33 pubmed 出版商
  110. Singh S, Ramamoorthy M, Vaughan C, Yeudall W, Deb S, Palit Deb S. Human oncoprotein MDM2 activates the Akt signaling pathway through an interaction with the repressor element-1 silencing transcription factor conferring a survival advantage to cancer cells. Cell Death Differ. 2013;20:558-66 pubmed 出版商
  111. Conradt L, Henrich A, Wirth M, Reichert M, Lesina M, Algül H, et al. Mdm2 inhibitors synergize with topoisomerase II inhibitors to induce p53-independent pancreatic cancer cell death. Int J Cancer. 2013;132:2248-57 pubmed 出版商
  112. Liu Y, Chen Y, Lu X, Wang Y, Duan Y, Cheng C, et al. SCYL1BP1 modulates neurite outgrowth and regeneration by regulating the Mdm2/p53 pathway. Mol Biol Cell. 2012;23:4506-14 pubmed 出版商
  113. Yoshida A, Ushiku T, Motoi T, Beppu Y, Fukayama M, Tsuda H, et al. MDM2 and CDK4 immunohistochemical coexpression in high-grade osteosarcoma: correlation with a dedifferentiated subtype. Am J Surg Pathol. 2012;36:423-31 pubmed 出版商
  114. Dujardin F, Binh M, Bouvier C, Gomez Brouchet A, Larousserie F, Muret A, et al. MDM2 and CDK4 immunohistochemistry is a valuable tool in the differential diagnosis of low-grade osteosarcomas and other primary fibro-osseous lesions of the bone. Mod Pathol. 2011;24:624-37 pubmed 出版商
  115. Yoshida A, Ushiku T, Motoi T, Shibata T, Fukayama M, Tsuda H. Well-differentiated liposarcoma with low-grade osteosarcomatous component: an underrecognized variant. Am J Surg Pathol. 2010;34:1361-6 pubmed 出版商
  116. Yoshida A, Ushiku T, Motoi T, Shibata T, Beppu Y, Fukayama M, et al. Immunohistochemical analysis of MDM2 and CDK4 distinguishes low-grade osteosarcoma from benign mimics. Mod Pathol. 2010;23:1279-88 pubmed 出版商
  117. Horvai A, Devries S, Roy R, O Donnell R, Waldman F. Similarity in genetic alterations between paired well-differentiated and dedifferentiated components of dedifferentiated liposarcoma. Mod Pathol. 2009;22:1477-88 pubmed 出版商
  118. Daugaard S, Christensen L, Høgdall E. Markers aiding the diagnosis of chondroid tumors: an immunohistochemical study including osteonectin, bcl-2, cox-2, actin, calponin, D2-40 (podoplanin), mdm-2, CD117 (c-kit), and YKL-40. APMIS. 2009;117:518-25 pubmed 出版商
  119. Nahal A, Meterissian S. Lipoleiomyosarcoma of the rectosigmoid colon: a unique site for a rare variant of liposarcoma. Am J Clin Oncol. 2009;32:353-5 pubmed 出版商
  120. Amiot A, Dokmak S, Sauvanet A, Vilgrain V, Bringuier P, Scoazec J, et al. Sporadic desmoid tumor. An exceptional cause of cystic pancreatic lesion. JOP. 2008;9:339-45 pubmed
  121. Horvai A, Schaefer J, Nakakura E, O Donnell R. Immunostaining for peroxisome proliferator gamma distinguishes dedifferentiated liposarcoma from other retroperitoneal sarcomas. Mod Pathol. 2008;21:517-24 pubmed 出版商
  122. Bosco M, Allia E, Coindre J, Odasso C, Pagani A, Pacchioni D. alpha-fetoprotein expression in a dedifferentiated liposarcoma. Virchows Arch. 2006;448:517-20 pubmed
  123. Mentzel T, Toennissen J, Rutten A, Schaller J. Palmar atypical lipomatous tumour with spindle cell features (well-differentiated spindle cell liposarcoma): a rare neoplasm arising in an unusual anatomical location. Virchows Arch. 2005;446:300-4 pubmed
  124. Coindre J, Hostein I, Maire G, Derré J, Guillou L, Leroux A, et al. Inflammatory malignant fibrous histiocytomas and dedifferentiated liposarcomas: histological review, genomic profile, and MDM2 and CDK4 status favour a single entity. J Pathol. 2004;203:822-30 pubmed
  125. Coindre J, Mariani O, Chibon F, Mairal A, De Saint Aubain Somerhausen N, Favre Guillevin E, et al. Most malignant fibrous histiocytomas developed in the retroperitoneum are dedifferentiated liposarcomas: a review of 25 cases initially diagnosed as malignant fibrous histiocytoma. Mod Pathol. 2003;16:256-62 pubmed
  126. Calabrò V, Mansueto G, Parisi T, Vivo M, Calogero R, La Mantia G. The human MDM2 oncoprotein increases the transcriptional activity and the protein level of the p53 homolog p63. J Biol Chem. 2002;277:2674-81 pubmed