这是一篇来自已证抗体库的有关人类 MGMT的综述,是根据27篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合MGMT 抗体。
赛默飞世尔
小鼠 单克隆(MT 3.1)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 5e
赛默飞世尔 MGMT抗体(Thermo Fisher, MT 3.1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 5e). J Clin Endocrinol Metab (2016) ncbi
小鼠 单克隆(MT 3.1)
  • 免疫组化; 人类; 1:20; 表 2
赛默飞世尔 MGMT抗体(Thermo Scientific, MT 3.1)被用于被用于免疫组化在人类样本上浓度为1:20 (表 2). Virchows Arch (2016) ncbi
小鼠 单克隆(MT23.2)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔 MGMT抗体(Invitrogen, MT23.2)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(MT 23.2)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔 MGMT抗体(Invitrogen, MT23.2)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(MT 23.2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
赛默飞世尔 MGMT抗体(Zymed, mT23.2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). Neuro Oncol (2016) ncbi
小鼠 单克隆(MT23.2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
赛默飞世尔 MGMT抗体(Zymed, mT23.2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). Neuro Oncol (2016) ncbi
小鼠 单克隆(MT 3.1)
  • 免疫印迹; 人类; 图 6
赛默飞世尔 MGMT抗体(Neo Markers, MT3.1)被用于被用于免疫印迹在人类样本上 (图 6). Cancer Med (2016) ncbi
小鼠 单克隆(MT23.2)
  • 免疫印迹; 人类
赛默飞世尔 MGMT抗体(Invitrogen, 35-7000)被用于被用于免疫印迹在人类样本上. Cancer Res (2015) ncbi
小鼠 单克隆(MT 3.1)
  • 免疫组化; 人类; 1:200
赛默飞世尔 MGMT抗体(LabVision, MT3.1)被用于被用于免疫组化在人类样本上浓度为1:200. Int Urol Nephrol (2015) ncbi
小鼠 单克隆(MT 23.2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔 MGMT抗体(Invitrogen, clone MT23.2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). J Clin Endocrinol Metab (2015) ncbi
小鼠 单克隆(MT23.2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔 MGMT抗体(Invitrogen, clone MT23.2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). J Clin Endocrinol Metab (2015) ncbi
小鼠 单克隆(MT 3.1)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 MGMT抗体(Thermo Scientific, MS-470-P)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(MT23.2)
  • 免疫细胞化学; 人类; 1:50
  • 免疫印迹; 人类; 1:50
赛默飞世尔 MGMT抗体(Zymed, MT23.2)被用于被用于免疫细胞化学在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:50. Cell Stress Chaperones (2015) ncbi
小鼠 单克隆(MT 23.2)
  • 免疫细胞化学; 人类; 1:50
  • 免疫印迹; 人类; 1:50
赛默飞世尔 MGMT抗体(Zymed, MT23.2)被用于被用于免疫细胞化学在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:50. Cell Stress Chaperones (2015) ncbi
小鼠 单克隆(MT23.2)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4
赛默飞世尔 MGMT抗体(Zymed, clone MT23.2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4). Cell Stress Chaperones (2012) ncbi
小鼠 单克隆(MT 23.2)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4
赛默飞世尔 MGMT抗体(Zymed, clone MT23.2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4). Cell Stress Chaperones (2012) ncbi
小鼠 单克隆(MT 3.1)
  • 免疫组化-石蜡切片; 人类; 1:500
赛默飞世尔 MGMT抗体(Neomarkers, MT 3.1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Clinics (Sao Paulo) (2011) ncbi
小鼠 单克隆(MT 3.1)
  • 免疫组化-石蜡切片; 人类; 1:400
赛默飞世尔 MGMT抗体(Lab Vision, MS-470-P0)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. J Oncol (2011) ncbi
小鼠 单克隆(MT23.2)
  • 流式细胞仪; 人类; 表 1
  • 免疫组化; 人类
赛默飞世尔 MGMT抗体(Zymed, MT23.2)被用于被用于流式细胞仪在人类样本上 (表 1) 和 被用于免疫组化在人类样本上. BMC Cancer (2011) ncbi
小鼠 单克隆(MT 23.2)
  • 流式细胞仪; 人类; 表 1
  • 免疫组化; 人类
赛默飞世尔 MGMT抗体(Zymed, MT23.2)被用于被用于流式细胞仪在人类样本上 (表 1) 和 被用于免疫组化在人类样本上. BMC Cancer (2011) ncbi
小鼠 单克隆(MT 3.1)
  • 免疫组化; 人类
赛默飞世尔 MGMT抗体(Neomarkers, MT3.1)被用于被用于免疫组化在人类样本上. BMC Cancer (2011) ncbi
小鼠 单克隆(MT23.2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6
赛默飞世尔 MGMT抗体(Zymed, mT23.2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6). Brain Pathol (2010) ncbi
小鼠 单克隆(MT 23.2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6
赛默飞世尔 MGMT抗体(Zymed, mT23.2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6). Brain Pathol (2010) ncbi
小鼠 单克隆(MT23.2)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔 MGMT抗体(Zymed, MT23.2)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Histopathology (2008) ncbi
小鼠 单克隆(MT 23.2)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔 MGMT抗体(Zymed, MT23.2)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Histopathology (2008) ncbi
Novus Biologicals
小鼠 单克隆(MT 3.1)
  • 免疫印迹; 人类; 图 1e
Novus Biologicals MGMT抗体(Novus, NB 100-692)被用于被用于免疫印迹在人类样本上 (图 1e). Cell Death Dis (2020) ncbi
小鼠 单克隆(MT 23.2)
  • 免疫组化; 人类; 图 s1b
Novus Biologicals MGMT抗体(Novus Biologicals, NB100-168)被用于被用于免疫组化在人类样本上 (图 s1b). Sci Rep (2016) ncbi
小鼠 单克隆(MT 23.2)
  • 免疫印迹; 人类; 图 6
Novus Biologicals MGMT抗体(Novus Biologicals, NB100-168)被用于被用于免疫印迹在人类样本上 (图 6). Cancer Cell Int (2016) ncbi
小鼠 单克隆(MT 23.2)
  • 免疫印迹; 人类; 1:1000; 图 s1d
Novus Biologicals MGMT抗体(Novus, NB100-168)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1d). Nat Commun (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(SPM287)
  • 免疫印迹; 人类; 图 4e
圣克鲁斯生物技术 MGMT抗体(Santa Cruz Biotechnology, sc-56432)被用于被用于免疫印迹在人类样本上 (图 4e). Int J Oncol (2019) ncbi
小鼠 单克隆(SPM287)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 MGMT抗体(Santa Cruz Biotechnology, sc-56432)被用于被用于免疫印迹在人类样本上 (图 2a). Cancer Cell Int (2019) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(MT3.1)
  • 免疫组化; 人类; 图 s2
艾博抗(上海)贸易有限公司 MGMT抗体(Abcam, ab39253)被用于被用于免疫组化在人类样本上 (图 s2). Cancer Lett (2015) ncbi
小鼠 单克隆(MT3.1)
  • 免疫印迹; 人类; 图 3d, 3e, 3f
艾博抗(上海)贸易有限公司 MGMT抗体(Abcam, ab39253)被用于被用于免疫印迹在人类样本上 (图 3d, 3e, 3f). Int J Oncol (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 MGMT抗体(Cell Signaling, 2739)被用于被用于免疫印迹在人类样本上 (图 1). Neuroendocrinology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 MGMT抗体(Cell Signaling, 2739S)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
碧迪BD
小鼠 单克隆(MT5.1)
  • 免疫印迹; 人类; 图 1a
碧迪BD MGMT抗体(BD Pharmingen, 557045)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2015) ncbi
文章列表
  1. Rabé M, Dumont S, Álvarez Arenas A, Janati H, Belmonte Beitia J, Calvo G, et al. Identification of a transient state during the acquisition of temozolomide resistance in glioblastoma. Cell Death Dis. 2020;11:19 pubmed 出版商
  2. Forte I, Indovina P, Iannuzzi C, Cirillo D, Di Marzo D, Barone D, et al. Targeted therapy based on p53 reactivation reduces both glioblastoma cell growth and resistance to temozolomide. Int J Oncol. 2019;54:2189-2199 pubmed 出版商
  3. Wang Z, Zhu Z, Lin Z, Luo Y, Liang Z, Zhang C, et al. miR-429 suppresses cell proliferation, migration and invasion in nasopharyngeal carcinoma by downregulation of TLN1. Cancer Cell Int. 2019;19:115 pubmed 出版商
  4. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  5. Creemers S, van Koetsveld P, van den Dungen E, Korpershoek E, van Kemenade F, Franssen G, et al. Inhibition of Human Adrenocortical Cancer Cell Growth by Temozolomide in Vitro and the Role of the MGMT Gene. J Clin Endocrinol Metab. 2016;101:4574-4584 pubmed
  6. Lv D, Yu S, Ping Y, Wu H, Zhao X, Zhang H, et al. A three-dimensional collagen scaffold cell culture system for screening anti-glioma therapeutics. Oncotarget. 2016;7:56904-56914 pubmed 出版商
  7. Oktay Y, Ãœlgen E, Can Ã, Akyerli C, Yüksel Å, Erdemgil Y, et al. IDH-mutant glioma specific association of rs55705857 located at 8q24.21 involves MYC deregulation. Sci Rep. 2016;6:27569 pubmed 出版商
  8. Boissière Michot F, Frugier H, Ho Pun Cheung A, Lopez Crapez E, Duffour J, Bibeau F. Immunohistochemical staining for p16 and BRAFV600E is useful to distinguish between sporadic and hereditary (Lynch syndrome-related) microsatellite instable colorectal carcinomas. Virchows Arch. 2016;469:135-44 pubmed 出版商
  9. Munthe S, Petterson S, Dahlrot R, Poulsen F, Hansen S, Kristensen B. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype. PLoS ONE. 2016;11:e0155106 pubmed 出版商
  10. Stepanenko A, Andreieva S, Korets K, Mykytenko D, Baklaushev V, Huleyuk N, et al. Temozolomide promotes genomic and phenotypic changes in glioblastoma cells. Cancer Cell Int. 2016;16:36 pubmed 出版商
  11. Jakacki R, Cohen K, Buxton A, Krailo M, Burger P, Rosenblum M, et al. Phase 2 study of concurrent radiotherapy and temozolomide followed by temozolomide and lomustine in the treatment of children with high-grade glioma: a report of the Children's Oncology Group ACNS0423 study. Neuro Oncol. 2016;18:1442-50 pubmed 出版商
  12. Nitta Y, Shimizu S, Shishido Hara Y, Suzuki K, Shiokawa Y, Nagane M. Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo. Cancer Med. 2016;5:486-99 pubmed 出版商
  13. Ramcharan R, Aleksic T, Kamdoum W, Gao S, Pfister S, Tanner J, et al. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide. Oncotarget. 2015;6:39877-90 pubmed 出版商
  14. Leng S, Wu G, Collins L, Thomas C, Tellez C, Jauregui A, et al. Implication of a Chromosome 15q15.2 Locus in Regulating UBR1 and Predisposing Smokers to MGMT Methylation in Lung. Cancer Res. 2015;75:3108-17 pubmed 出版商
  15. Bánfi G, Teleki I, Nyirády P, Keszthelyi A, Romics I, Fintha A, et al. Changes of protein expression in prostate cancer having lost its androgen sensitivity. Int Urol Nephrol. 2015;47:1149-54 pubmed 出版商
  16. Bengtsson D, Schrøder H, Andersen M, Maiter D, Berinder K, Feldt Rasmussen U, et al. Long-term outcome and MGMT as a predictive marker in 24 patients with atypical pituitary adenomas and pituitary carcinomas given treatment with temozolomide. J Clin Endocrinol Metab. 2015;100:1689-98 pubmed 出版商
  17. Chen T, Cho H, Wang W, Nguyen J, Jhaveri N, Rosenstein Sisson R, et al. A novel temozolomide analog, NEO212, with enhanced activity against MGMT-positive melanoma in vitro and in vivo. Cancer Lett. 2015;358:144-51 pubmed 出版商
  18. Fang Q, Inanç B, Schamus S, Wang X, Wei L, Brown A, et al. HSP90 regulates DNA repair via the interaction between XRCC1 and DNA polymerase β. Nat Commun. 2014;5:5513 pubmed 出版商
  19. Ramirez Y, Mladek A, Phillips R, Gynther M, Rautio J, Ross A, et al. Evaluation of novel imidazotetrazine analogues designed to overcome temozolomide resistance and glioblastoma regrowth. Mol Cancer Ther. 2015;14:111-9 pubmed 出版商
  20. Castro G, Cayado Gutiérrez N, Zoppino F, Fanelli M, Cuello Carrión F, Sottile M, et al. Effects of temozolomide (TMZ) on the expression and interaction of heat shock proteins (HSPs) and DNA repair proteins in human malignant glioma cells. Cell Stress Chaperones. 2015;20:253-65 pubmed 出版商
  21. Okada M, Sato A, Shibuya K, Watanabe E, Seino S, Suzuki S, et al. JNK contributes to temozolomide resistance of stem-like glioblastoma cells via regulation of MGMT expression. Int J Oncol. 2014;44:591-9 pubmed 出版商
  22. Castro G, Cayado Gutiérrez N, Moncalero V, Lima P, De Angelis R, Chavez V, et al. Hsp27 (HSPB1): a possible surrogate molecular marker for loss of heterozygosity (LOH) of chromosome 1p in oligodendrogliomas but not in astrocytomas. Cell Stress Chaperones. 2012;17:779-90 pubmed 出版商
  23. Uno M, Oba Shinjo S, Camargo A, Moura R, Aguiar P, Cabrera H, et al. Correlation of MGMT promoter methylation status with gene and protein expression levels in glioblastoma. Clinics (Sao Paulo). 2011;66:1747-55 pubmed
  24. Caldera V, Mellai M, Annovazzi L, Piazzi A, Lanotte M, Cassoni P, et al. Antigenic and Genotypic Similarity between Primary Glioblastomas and Their Derived Neurospheres. J Oncol. 2011;2011:314962 pubmed 出版商
  25. Brell M, Ibanez J, Tortosa A. O6-Methylguanine-DNA methyltransferase protein expression by immunohistochemistry in brain and non-brain systemic tumours: systematic review and meta-analysis of correlation with methylation-specific polymerase chain reaction. BMC Cancer. 2011;11:35 pubmed 出版商
  26. Horbinski C, Hamilton R, Lovell C, Burnham J, Pollack I. Impact of morphology, MIB-1, p53 and MGMT on outcome in pilocytic astrocytomas. Brain Pathol. 2010;20:581-8 pubmed 出版商
  27. Cooper W, Kohonen Corish M, Chan C, Kwun S, McCaughan B, Kennedy C, et al. Prognostic significance of DNA repair proteins MLH1, MSH2 and MGMT expression in non-small-cell lung cancer and precursor lesions. Histopathology. 2008;52:613-22 pubmed 出版商