这是一篇来自已证抗体库的有关人类 MKK3的综述,是根据146篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合MKK3 抗体。
MKK3 同义词: MAPKK3; MEK3; MKK3; PRKMK3; SAPKK-2; SAPKK2

赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 MKK3抗体(CST, 9211S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Cell Death Discov (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在大鼠样本上 (图 5b). J Neuroinflammation (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Immunol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 5b). Clin Transl Med (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7a). Int J Mol Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). J Cachexia Sarcopenia Muscle (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Antioxidants (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signalling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). NPJ Breast Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 MKK3抗体(CST, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). J Inflamm Res (2021) ncbi
domestic rabbit 单克隆(D8E9)
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 12280)被用于被用于流式细胞仪在小鼠样本上. Cancer Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 MKK3抗体(CST, 9211)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上 (图 3a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在pigs 样本上. Nucleic Acids Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signalling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Environ Health Perspect (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 3e). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 MKK3抗体(CST, 9211)被用于被用于免疫印迹在小鼠样本上 (图 4b). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b, 5b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b, 5b). Mol Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Cancer Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 ev1i
赛信通(上海)生物试剂有限公司 MKK3抗体(cell signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 ev1i). EMBO Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3m
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上 (图 3m). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s8d
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s8d). J Pathol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a, 1b
赛信通(上海)生物试剂有限公司 MKK3抗体(CST, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a, 1b). Adipocyte (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Metab (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在人类样本上 (图 6c). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4h
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上 (图 4h). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211s)被用于被用于免疫印迹在人类样本上 (图 5f). PLoS Pathog (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; roundworm ; 图 6h
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在roundworm 样本上 (图 6h). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 4c). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signalling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Artif Cells Nanomed Biotechnol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a, 7b
赛信通(上海)生物试剂有限公司 MKK3抗体(CST, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a, 7b). Mol Cells (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1f
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 s1f). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 5b). BMC Cardiovasc Disord (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4i
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 s4i). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 3e). Mol Med Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 MKK3抗体(CST, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2h
赛信通(上海)生物试剂有限公司 MKK3抗体(CST, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2h). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 4f). J Exp Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5f
  • 免疫印迹; pigs ; 图 1h
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 5f) 和 被用于免疫印迹在pigs 样本上 (图 1h). MBio (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7f
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7f). Redox Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猕猴; 图 1d
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在猕猴样本上 (图 1d). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Stem Cells (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 2b). J Biol Chem (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7f
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211s)被用于被用于免疫印迹在人类样本上 (图 7f). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 MKK3抗体(cst, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 8a). J Exp Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211s)被用于被用于免疫印迹在小鼠样本上 (图 8a). J Cell Mol Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211s)被用于被用于免疫印迹在小鼠样本上 (图 6a). PLoS Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211s)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 6d). Neurotherapeutics (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 MKK3抗体(CST, 9211)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS Pathog (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, MAB9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Cell Signal (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D4C3)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 8535)被用于被用于免疫印迹在小鼠样本上 (图 6a). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 6a). Sci Rep (2018) ncbi
domestic rabbit 单克隆(D8E9)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 12280)被用于被用于免疫印迹在小鼠样本上 (图 6a). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8b). Br J Pharmacol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Mol Med Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signalling, 9211)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogenesis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5c
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 s5c). Immunity (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, S9211)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). Neuropharmacology (2018) ncbi
domestic rabbit 单克隆(D8E9)
  • 免疫印迹; 小鼠; 图 7c
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, D8E9)被用于被用于免疫印迹在小鼠样本上 (图 7c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D4C3)
  • 免疫印迹; 小鼠; 图 7c
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, D4C3)被用于被用于免疫印迹在小鼠样本上 (图 7c). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4g
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 4g). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 1c). Biochem J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 MKK3抗体(CST, 9211)被用于被用于免疫印迹在人类样本上 (图 1e). J Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Exp Ther Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 MKK3抗体(cell signalling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 2e). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 3). Front Aging Neurosci (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 MKK3抗体(CST, 9211)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 EV4a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 EV4a). EMBO Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 MKK3抗体(cell signalling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 MKK3抗体(CST, 9231)被用于被用于免疫印迹在小鼠样本上 (图 5a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2A
  • 免疫印迹; 人类; 图 5A
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 2A) 和 被用于免疫印迹在人类样本上 (图 5A). Biochem J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 MKK3抗体(CST, 9211)被用于被用于免疫印迹在人类样本上 (图 1b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D8E9)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 12280)被用于被用于免疫印迹在人类样本上 (图 4b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s7d
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 s7d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 5a). Peerj (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 8a). J Cell Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 2g). Biochim Biophys Acta Mol Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在大鼠样本上 (图 5b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 1e). FASEB J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3h, s4a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 s3h, s4a). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 6a). Redox Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 图 1b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在pigs 样本上 (图 1b). Arthritis Rheumatol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在大鼠样本上 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signalling, 9211)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 MKK3抗体(cell signalling, 9211)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3c
  • 免疫印迹; 人类; 1:2000; 图 6c
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 3c) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 6c). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6d
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6d). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(22A8)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9236)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 2). Lipids Health Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211s)被用于被用于免疫印迹在人类样本上 (图 2c). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:750; 图 5
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Tech, 9211)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 s2
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在大鼠样本上 (图 s2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 5). EMBO J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 空肠弯曲杆菌; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signalling Technology, 92115)被用于被用于免疫印迹在空肠弯曲杆菌样本上浓度为1:1000 (图 4). mSphere (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 MKK3抗体(cell signaling, 9211s)被用于被用于免疫印迹在人类样本上 (图 6a). Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 s1) 和 被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 s2b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Tech, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Evid Based Complement Alternat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 4b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 2
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signalling, 9211)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:750; 图 s4
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211S)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 s4). Mol Cell Proteomics (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Tech, 9211)被用于被用于免疫印迹在小鼠样本上 (图 1). Skelet Muscle (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 5). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signalling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brewer's yeast; 图 5
赛信通(上海)生物试剂有限公司 MKK3抗体(New England Biolabs, 9211S)被用于被用于免疫印迹在brewer's yeast样本上 (图 5). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 7
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫细胞化学在人类样本上 (图 7). MBio (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(22A8)
  • 免疫组化; 小鼠; 图 5k-v
  • 免疫印迹; 小鼠; 图 5e-f
  • 免疫印迹; 人类; 图 5g-h
赛信通(上海)生物试剂有限公司 MKK3抗体(CST, 9236)被用于被用于免疫组化在小鼠样本上 (图 5k-v), 被用于免疫印迹在小鼠样本上 (图 5e-f) 和 被用于免疫印迹在人类样本上 (图 5g-h). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 st3
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 6). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 2c). Exp Hematol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling Technology, 9211)被用于被用于免疫印迹在小鼠样本上 (图 6). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signalling, 9211)被用于被用于免疫印迹在小鼠样本上 (图 6). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:400; 图 3e
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 3e). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 s5). Cell Mol Life Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signaling, 9211)被用于被用于免疫印迹在人类样本上 (图 4). Cell Mol Life Sci (2016) ncbi
domestic rabbit 单克隆(22A8)
  • 免疫印迹; 人类; 1:1000; 图  6
赛信通(上海)生物试剂有限公司 MKK3抗体(Cell Signalling Technology, 9236)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图  6). Cell Signal (2015) ncbi
文章列表
  1. Mukherjee B, Tiwari A, Palo A, Pattnaik N, Samantara S, Dixit M. Reduced expression of FRG1 facilitates breast cancer progression via GM-CSF/MEK-ERK axis by abating FRG1 mediated transcriptional repression of GM-CSF. Cell Death Discov. 2022;8:442 pubmed 出版商
  2. Lan T, Wu Y, Zhang Y, Li S, Zhu Z, Wang L, et al. Agomelatine rescues lipopolysaccharide-induced neural injury and depression-like behaviors via suppression of the Gαi-2-PKA-ASK1 signaling pathway. J Neuroinflammation. 2022;19:117 pubmed 出版商
  3. Peng Y, Zhu X, Gao L, Wang J, Liu H, Zhu T, et al. Mycobacterium tuberculosis Rv0309 Dampens the Inflammatory Response and Enhances Mycobacterial Survival. Front Immunol. 2022;13:829410 pubmed 出版商
  4. Hsiao Y, Chi J, Li C, Chen L, Chen Y, Liang H, et al. Disruption of the pentraxin 3/CD44 interaction as an efficient therapy for triple-negative breast cancers. Clin Transl Med. 2022;12:e724 pubmed 出版商
  5. Andr xe9 s Benito P, Carmona M, Jord xe1 n M, Fern xe1 ndez Irigoyen J, Santamar xed a E, Del Rio J, et al. Host Tau Genotype Specifically Designs and Regulates Tau Seeding and Spreading and Host Tau Transformation Following Intrahippocampal Injection of Identical Tau AD Inoculum. Int J Mol Sci. 2022;23: pubmed 出版商
  6. Luan Y, Zhang Y, Yu S, You M, Xu P, Chung S, et al. Development of ovarian tumour causes significant loss of muscle and adipose tissue: a novel mouse model for cancer cachexia study. J Cachexia Sarcopenia Muscle. 2022;13:1289-1301 pubmed 出版商
  7. Bermúdez Muñoz J, Celaya A, García Mato Á, Muñoz Espín D, Rodriguez de la Rosa L, Serrano M, et al. Dual-Specificity Phosphatase 1 (DUSP1) Has a Central Role in Redox Homeostasis and Inflammation in the Mouse Cochlea. Antioxidants (Basel). 2021;10: pubmed 出版商
  8. Zhu W, Hibbert J, Lin K, Steinert N, Lemens J, Jorgenson K, et al. Weight Pulling: A Novel Mouse Model of Human Progressive Resistance Exercise. Cells. 2021;10: pubmed 出版商
  9. Gyamfi J, Yeo J, Kwon D, Min B, Cha Y, Koo J, et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer. 2021;7:129 pubmed 出版商
  10. Liu M, Shan M, Zhang Y, Guo Z. Progranulin Protects Against Airway Remodeling Through the Modulation of Autophagy via HMGB1 Suppression in House Dust Mite-Induced Chronic Asthma. J Inflamm Res. 2021;14:3891-3904 pubmed 出版商
  11. Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed 出版商
  12. Garcia Garcia S, Rodrigo Faus M, Fonseca N, Manzano S, Gyorffy B, Ocana A, et al. HGK promotes metastatic dissemination in prostate cancer. Sci Rep. 2021;11:12287 pubmed 出版商
  13. Lagosz Cwik K, Wielento A, Lipska W, Kantorowicz M, Darczuk D, Kaczmarzyk T, et al. hTERT-immortalized gingival fibroblasts respond to cytokines but fail to mimic primary cell responses to Porphyromonas gingivalis. Sci Rep. 2021;11:10770 pubmed 出版商
  14. Zong X, Xiao X, Shen B, Jiang Q, Wang H, Lu Z, et al. The N6-methyladenosine RNA-binding protein YTHDF1 modulates the translation of TRAF6 to mediate the intestinal immune response. Nucleic Acids Res. 2021;49:5537-5552 pubmed 出版商
  15. Teufel S, Köckemann P, Fabritius C, Wolff L, Bertrand J, Pap T, et al. Loss of the WNT9a ligand aggravates the rheumatoid arthritis-like symptoms in hTNF transgenic mice. Cell Death Dis. 2021;12:494 pubmed 出版商
  16. Wang Y, Lee Y, Hsu Y, Chiu I, Huang C, Huang C, et al. The Kidney-Related Effects of Polystyrene Microplastics on Human Kidney Proximal Tubular Epithelial Cells HK-2 and Male C57BL/6 Mice. Environ Health Perspect. 2021;129:57003 pubmed 出版商
  17. Brea R, Valdecantos P, Rada P, Alen R, García Monzón C, Bosca L, et al. Chronic treatment with acetaminophen protects against liver aging by targeting inflammation and oxidative stress. Aging (Albany NY). 2021;13:7800-7827 pubmed 出版商
  18. Wallace M, Aguirre N, Marcotte G, Marshall A, Baehr L, Hughes D, et al. The ketogenic diet preserves skeletal muscle with aging in mice. Aging Cell. 2021;20:e13322 pubmed 出版商
  19. Bakker W, Dingenouts C, Lodder K, Wiesmeijer K, de Jong A, Kurakula K, et al. BMP Receptor Inhibition Enhances Tissue Repair in Endoglin Heterozygous Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  20. Bugler Lamb A, Hasib A, Weng X, Hennayake C, Lin C, McCrimmon R, et al. Adipocyte integrin-linked kinase plays a key role in the development of diet-induced adipose insulin resistance in male mice. Mol Metab. 2021;49:101197 pubmed 出版商
  21. Isomura H, Taguchi A, Kajino T, Asai N, Nakatochi M, Kato S, et al. Conditional Ror1 knockout reveals crucial involvement in lung adenocarcinoma development and identifies novel HIF-1α regulator. Cancer Sci. 2021;: pubmed 出版商
  22. Bae M, Roh J, Kim Y, Kim S, Han H, Yang E, et al. SLC6A20 transporter: a novel regulator of brain glycine homeostasis and NMDAR function. EMBO Mol Med. 2021;13:e12632 pubmed 出版商
  23. Pan S, Zhao X, Shao C, Fu B, Huang Y, Zhang N, et al. STIM1 promotes angiogenesis by reducing exosomal miR-145 in breast cancer MDA-MB-231 cells. Cell Death Dis. 2021;12:38 pubmed 出版商
  24. Gu Z, Xie D, Ding R, Huang C, Qiu Y. GPR173 agonist phoenixin 20 promotes osteoblastic differentiation of MC3T3-E1 cells. Aging (Albany NY). 2020;13:4976-4985 pubmed 出版商
  25. Chen K, Yoshimura T, Yao X, Gong W, Huang J, Dzutsev A, et al. Distinct contributions of cathelin-related antimicrobial peptide (CRAMP) derived from epithelial cells and macrophages to colon mucosal homeostasis. J Pathol. 2021;253:339-350 pubmed 出版商
  26. Wueest S, Lucchini F, Haim Y, Rudich A, Konrad D. Depletion of ASK1 blunts stress-induced senescence in adipocytes. Adipocyte. 2020;9:535-541 pubmed 出版商
  27. Reilly S, Hung C, Ahmadian M, Zhao P, Keinan O, Gomez A, et al. Catecholamines suppress fatty acid re-esterification and increase oxidation in white adipocytes via STAT3. Nat Metab. 2020;2:620-634 pubmed 出版商
  28. Bouhaddou M, Memon D, Meyer B, White K, Rezelj V, Correa Marrero M, et al. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell. 2020;182:685-712.e19 pubmed 出版商
  29. Koundouros N, Karali E, Tripp A, Valle A, Inglese P, Perry N, et al. Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids. Cell. 2020;181:1596-1611.e27 pubmed 出版商
  30. Luo H, Li G, Wang B, Tian B, Gao J, Zou J, et al. Peli1 signaling blockade attenuates congenital zika syndrome. PLoS Pathog. 2020;16:e1008538 pubmed 出版商
  31. Kew C, Huang W, Fischer J, Ganesan R, Robinson N, Antebi A. Evolutionarily conserved regulation of immunity by the splicing factor RNP-6/PUF60. elife. 2020;9: pubmed 出版商
  32. Du T, Yan Z, Zhu S, Chen G, Wang L, Ye Z, et al. QKI deficiency leads to osteoporosis by promoting RANKL-induced osteoclastogenesis and disrupting bone metabolism. Cell Death Dis. 2020;11:330 pubmed 出版商
  33. Wu Y, Chou T, Young L, Hsieh F, Pan H, Mo S, et al. Tumor suppressor death-associated protein kinase 1 inhibits necroptosis by p38 MAPK activation. Cell Death Dis. 2020;11:305 pubmed 出版商
  34. Li Y, Xu S, Xu Q, Chen Y. Clostridium difficile toxin B induces colonic inflammation through the TRIM46/DUSP1/MAPKs and NF-κB signalling pathway. Artif Cells Nanomed Biotechnol. 2020;48:452-462 pubmed 出版商
  35. Kim K, Kim J, Kim I, Seong S, Kim N. Rev-erbα Negatively Regulates Osteoclast and Osteoblast Differentiation through p38 MAPK Signaling Pathway. Mol Cells. 2020;43:34-47 pubmed 出版商
  36. Lee J, Hall J, Kroehling L, Wu L, Najar T, Nguyen H, et al. Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell. 2020;180:79-91.e16 pubmed 出版商
  37. Weisell J, Ohukainen P, Näpänkangas J, Ohlmeier S, Bergmann U, Peltonen T, et al. Heat shock protein 90 is downregulated in calcific aortic valve disease. BMC Cardiovasc Disord. 2019;19:306 pubmed 出版商
  38. Yu H, Rimbert A, Palmer A, Toyohara T, Xia Y, Xia F, et al. GPR146 Deficiency Protects against Hypercholesterolemia and Atherosclerosis. Cell. 2019;179:1276-1288.e14 pubmed 出版商
  39. Kim D, Choi J, Jo I, Kim M, Lee H, Hong S, et al. Berberine ameliorates lipopolysaccharide‑induced inflammatory responses in mouse inner medullary collecting duct‑3 cells by downregulation of NF‑κB pathway. Mol Med Rep. 2020;21:258-266 pubmed 出版商
  40. Park M, Kim A, Manandhar S, Oh S, Jang G, Kang L, et al. CCN1 interlinks integrin and hippo pathway to autoregulate tip cell activity. elife. 2019;8: pubmed 出版商
  41. Hari P, Millar F, Tarrats N, Birch J, Quintanilla A, Rink C, et al. The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Sci Adv. 2019;5:eaaw0254 pubmed 出版商
  42. Nakai A, Fujimoto J, Miyata H, Stumm R, Narazaki M, Schulz S, et al. The COMMD3/8 complex determines GRK6 specificity for chemoattractant receptors. J Exp Med. 2019;: pubmed 出版商
  43. Liu Y, Li R, Chen X, Zhi Y, Deng R, Zhou E, et al. Nonmuscle Myosin Heavy Chain IIA Recognizes Sialic Acids on Sialylated RNA Viruses To Suppress Proinflammatory Responses via the DAP12-Syk Pathway. MBio. 2019;10: pubmed 出版商
  44. Wu W, Zhang W, Choi M, Zhao J, Gao P, Xue M, et al. Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation. Redox Biol. 2019;22:101137 pubmed 出版商
  45. Hayashi H, Mamun A, Takeyama M, Yamamura A, Zako M, Yagasaki R, et al. Activator of G-protein signaling 8 is involved in VEGF-induced choroidal neovascularization. Sci Rep. 2019;9:1560 pubmed 出版商
  46. Su V, Yang K, Chiou S, Chen N, Mo M, Lin C, et al. Induced Pluripotent Stem Cells Regulate Triggering Receptor Expressed on Myeloid Cell-1 Expression and the p38 Mitogen-Activated Protein Kinase Pathway in Endotoxin-Induced Acute Lung Injury. Stem Cells. 2019;37:631-639 pubmed 出版商
  47. Liu Z, Li C, Kang N, Malhi H, Shah V, Maiers J. Transforming growth factor β (TGFβ) cross-talk with the unfolded protein response is critical for hepatic stellate cell activation. J Biol Chem. 2019;294:3137-3151 pubmed 出版商
  48. Luo H, Winkelmann E, Zhu S, Ru W, Mays E, Silvas J, et al. Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. J Clin Invest. 2018;128:4980-4991 pubmed 出版商
  49. Chen S, Yun F, Yao Y, Cao M, Zhang Y, Wang J, et al. USP38 critically promotes asthmatic pathogenesis by stabilizing JunB protein. J Exp Med. 2018;215:2850-2867 pubmed 出版商
  50. Xie H, Wang Y, Zhang H, Fan Q, Dai D, Zhuang L, et al. Tubular epithelial C1orf54 mediates protection and recovery from acute kidney injury. J Cell Mol Med. 2018;22:4985-4996 pubmed 出版商
  51. Matesanz N, Nikolic I, Leiva M, Pulgarín Alfaro M, Santamans A, Bernardo E, et al. p38α blocks brown adipose tissue thermogenesis through p38δ inhibition. PLoS Biol. 2018;16:e2004455 pubmed 出版商
  52. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed 出版商
  53. Huang M, Qi W, Fang S, Jiang P, Yang C, Mo Y, et al. Pigment Epithelium-Derived Factor Plays a Role in Alzheimer's Disease by Negatively Regulating Aβ42. Neurotherapeutics. 2018;15:728-741 pubmed 出版商
  54. Ubil E, Caskey L, Holtzhausen A, Hunter D, Story C, Earp H. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J Clin Invest. 2018;128:2356-2369 pubmed 出版商
  55. Morgan E, Wasson C, Hanson L, Kealy D, Pentland I, McGuire V, et al. STAT3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle. PLoS Pathog. 2018;14:e1006975 pubmed 出版商
  56. Schönrogge M, Kerndl H, Zhang X, Kumstel S, Vollmar B, Zechner D. α-cyano-4-hydroxycinnamate impairs pancreatic cancer cells by stimulating the p38 signaling pathway. Cell Signal. 2018;47:101-108 pubmed 出版商
  57. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  58. Markussen L, Winther S, Wicksteed B, Hansen J. GSK3 is a negative regulator of the thermogenic program in brown adipocytes. Sci Rep. 2018;8:3469 pubmed 出版商
  59. Lu Y, Kim N, Jiang Y, Zhang H, Zheng D, Zhu F, et al. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br J Pharmacol. 2018;175:1085-1099 pubmed 出版商
  60. Park G, Kim D. Cigarette smoke-induced EGFR activation promotes epithelial mesenchymal migration of human retinal pigment epithelial cells through regulation of the FAK-mediated Syk/Src pathway. Mol Med Rep. 2018;17:3563-3574 pubmed 出版商
  61. Arrizabalaga O, Moreno Cugnon L, Auzmendi Iriarte J, Aldaz P, Ibanez de Caceres I, Garros Regulez L, et al. High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response. Oncogenesis. 2017;6:401 pubmed 出版商
  62. Coelho M, de Carné Trécesson S, Rana S, Zecchin D, Moore C, Molina Arcas M, et al. Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity. 2017;47:1083-1099.e6 pubmed 出版商
  63. Sanna M, Mello T, Masini E, Galeotti N. Activation of ERK/CREB pathway in noradrenergic neurons contributes to hypernociceptive phenotype in H4 receptor knockout mice after nerve injury. Neuropharmacology. 2018;128:340-350 pubmed 出版商
  64. Ogura H, Nagatake Kobayashi Y, Adachi J, Tomonaga T, Fujita N, Katayama R. TKI-addicted ROS1-rearranged cells are destined to survival or death by the intensity of ROS1 kinase activity. Sci Rep. 2017;7:5519 pubmed 出版商
  65. Tang T, Scambler T, Smallie T, Cunliffe H, Ross E, Rosner D, et al. Macrophage responses to lipopolysaccharide are modulated by a feedback loop involving prostaglandin E2, dual specificity phosphatase 1 and tristetraprolin. Sci Rep. 2017;7:4350 pubmed 出版商
  66. Zhang J, MacArtney T, Peggie M, Cohen P. Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3. Biochem J. 2017;474:2235-2248 pubmed 出版商
  67. Ventura E, Weller M, Burghardt I. Cutting Edge: ERK1 Mediates the Autocrine Positive Feedback Loop of TGF-? and Furin in Glioma-Initiating Cells. J Immunol. 2017;198:4569-4574 pubmed 出版商
  68. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214:1471-1491 pubmed 出版商
  69. Kim D, Ko H, Park G, Hur D, Kim Y, Yang J. Vandetanib and ADAM inhibitors synergistically attenuate the pathological migration of EBV-infected retinal pigment epithelial cells by regulating the VEGF-mediated MAPK pathway. Exp Ther Med. 2017;13:1415-1425 pubmed 出版商
  70. Cong Q, Jia H, Li P, Qiu S, Yeh J, Wang Y, et al. p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Sci Rep. 2017;7:45964 pubmed 出版商
  71. Balmer D, Bapst Wicht L, Pyakurel A, Emery M, Nanchen N, Bochet C, et al. Bis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis. Front Aging Neurosci. 2017;9:43 pubmed 出版商
  72. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  73. Hammers D, Merscham Banda M, Hsiao J, ENGST S, Hartman J, Sweeney H. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med. 2017;9:531-544 pubmed 出版商
  74. Fu S, Xu H, Gu M, Liu C, Wang Q, Wan X, et al. Adiponectin deficiency contributes to the development and progression of benign prostatic hyperplasia in obesity. Sci Rep. 2017;7:43771 pubmed 出版商
  75. Ni Y, Teng T, Li R, Simonyi A, Sun G, Lee J. TNFα alters occludin and cerebral endothelial permeability: Role of p38MAPK. PLoS ONE. 2017;12:e0170346 pubmed 出版商
  76. Tormos A, Rius Pérez S, Jorques M, Rada P, Ramírez L, Valverde A, et al. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging. PLoS ONE. 2017;12:e0171738 pubmed 出版商
  77. Bakshi S, Taylor J, Strickson S, McCartney T, Cohen P. Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon ?. Biochem J. 2017;474:1163-1174 pubmed 出版商
  78. Neganova I, Chichagova V, Armstrong L, Lako M. A critical role for p38MAPK signalling pathway during reprogramming of human fibroblasts to iPSCs. Sci Rep. 2017;7:41693 pubmed 出版商
  79. Yang H, Ju F, Guo X, Ma S, Wang L, Cheng B, et al. RNA-binding protein RBM3 prevents NO-induced apoptosis in human neuroblastoma cells by modulating p38 signaling and miR-143. Sci Rep. 2017;7:41738 pubmed 出版商
  80. Pergola C, Schubert K, Pace S, Ziereisen J, Nikels F, Scherer O, et al. Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy. Sci Rep. 2017;7:41434 pubmed 出版商
  81. Ha S, Jin F, Kwak C, Abekura F, Park J, Park N, et al. Jellyfish extract induces apoptotic cell death through the p38 pathway and cell cycle arrest in chronic myelogenous leukemia K562 cells. Peerj. 2017;5:e2895 pubmed 出版商
  82. Lin Y, Lin Y, Huang M, Kuo P, Wu C, Lee M, et al. Tumor necrosis factor-alpha inhibitors suppress CCL2 chemokine in monocytes via epigenetic modification. Mol Immunol. 2017;83:82-91 pubmed 出版商
  83. Kechele D, Blue R, Zwarycz B, Espenschied S, Mah A, Siegel M, et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest. 2017;127:593-607 pubmed 出版商
  84. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  85. Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani R, Jiménez Andrade G, et al. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem. 2017;292:1762-1772 pubmed 出版商
  86. Su J, Zhou H, Liu X, Nilsson J, Fredrikson G, Zhao M. oxLDL antibody inhibits MCP-1 release in monocytes/macrophages by regulating Ca2+ /K+ channel flow. J Cell Mol Med. 2017;21:929-940 pubmed 出版商
  87. Fettweis G, Di Valentin E, L homme L, Lassence C, Dequiedt F, Fillet M, et al. RIP3 antagonizes a TSC2-mediated pro-survival pathway in glioblastoma cell death. Biochim Biophys Acta Mol Cell Res. 2017;1864:113-124 pubmed 出版商
  88. Ramratnam M, Salama G, Sharma R, Wang D, Smith S, Banerjee S, et al. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization. PLoS ONE. 2016;11:e0167681 pubmed 出版商
  89. Torgersen M, Klokk T, Kavaliauskiene S, Klose C, Simons K, Skotland T, et al. The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget. 2016;7:86871-86888 pubmed 出版商
  90. Mandel E, Dunford E, Trifonova A, Abdifarkosh G, Teich T, Riddell M, et al. Prazosin Can Prevent Glucocorticoid Mediated Capillary Rarefaction. PLoS ONE. 2016;11:e0166899 pubmed 出版商
  91. Fernández Verdejo R, Vanwynsberghe A, Essaghir A, Demoulin J, Hai T, Deldicque L, et al. Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training. FASEB J. 2017;31:840-851 pubmed 出版商
  92. Piasecka D, Kitowska K, Czaplinska D, Mieczkowski K, Mieszkowska M, Turczyk L, et al. Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells. Oncotarget. 2016;7:86011-86025 pubmed 出版商
  93. Newton K, Wickliffe K, Maltzman A, Dugger D, Strasser A, Pham V, et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature. 2016;540:129-133 pubmed 出版商
  94. Kitsati N, Mantzaris M, Galaris D. Hydroxytyrosol inhibits hydrogen peroxide-induced apoptotic signaling via labile iron chelation. Redox Biol. 2016;10:233-242 pubmed 出版商
  95. Ismail H, Didangelos A, Vincent T, Saklatvala J. Rapid Activation of Transforming Growth Factor ?-Activated Kinase 1 in Chondrocytes by Phosphorylation and K63 -Linked Polyubiquitination Upon Injury to Animal Articular Cartilage. Arthritis Rheumatol. 2017;69:565-575 pubmed 出版商
  96. Ulbrich F, Kaufmann K, Meske A, Lagrèze W, Augustynik M, Buerkle H, et al. The CORM ALF-186 Mediates Anti-Apoptotic Signaling via an Activation of the p38 MAPK after Ischemia and Reperfusion Injury in Retinal Ganglion Cells. PLoS ONE. 2016;11:e0165182 pubmed 出版商
  97. Guan S, Zhao Y, Lu J, Yu Y, Sun W, Mao X, et al. Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis. Oncotarget. 2016;7:75914-75925 pubmed 出版商
  98. Gupta S, Zeglinski M, Rattan S, Landry N, Ghavami S, Wigle J, et al. Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts. Oncotarget. 2016;7:78516-78531 pubmed 出版商
  99. Napier B, Brubaker S, Sweeney T, Monette P, Rothmeier G, Gertsvolf N, et al. Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity. J Exp Med. 2016;213:2365-2382 pubmed
  100. Wu X, Gu W, Lu H, Liu C, Yu B, Xu H, et al. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways. Oxid Med Cell Longev. 2016;2016:1015390 pubmed
  101. Doan K, Kinyua A, Yang D, Ko C, Moh S, Shong K, et al. FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase. Nat Commun. 2016;7:12733 pubmed 出版商
  102. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  103. Shi Y, Yu Y, Wang Z, Wang H, Bieerkehazhi S, Zhao Y, et al. Second-generation proteasome inhibitor carfilzomib enhances doxorubicin-induced cytotoxicity and apoptosis in breast cancer cells. Oncotarget. 2016;7:73697-73710 pubmed 出版商
  104. Christensen B, Nellemann B, Jørgensen J, Pedersen S, Jessen N. Erythropoietin does not activate erythropoietin receptor signaling or lipolytic pathways in human subcutaneous white adipose tissue in vivo. Lipids Health Dis. 2016;15:160 pubmed 出版商
  105. Qin Y, Liu Y, Hao W, Decker Y, Tomic I, Menger M, et al. Stimulation of TLR4 Attenuates Alzheimer's Disease-Related Symptoms and Pathology in Tau-Transgenic Mice. J Immunol. 2016;197:3281-3292 pubmed
  106. Jiao Z, Wu J, Liu C, Wen B, Zhao W, Du X. Nicotinic ?7 receptor inhibits the acylation stimulating protein?induced production of monocyte chemoattractant protein?1 and keratinocyte?derived chemokine in adipocytes by modulating the p38 kinase and nuclear factor??B signaling pathways. Mol Med Rep. 2016;14:2959-66 pubmed 出版商
  107. Efazat G, Novak M, Kaminskyy V, De Petris L, Kanter L, Juntti T, et al. Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget. 2016;7:60332-60347 pubmed 出版商
  108. Gómez Puerto M, Verhagen L, Braat A, Lam E, Coffer P, Lorenowicz M. Activation of autophagy by FOXO3 regulates redox homeostasis during osteogenic differentiation. Autophagy. 2016;12:1804-1816 pubmed
  109. Rasmussen M, Lyskjær I, Jersie Christensen R, Tarpgaard L, Primdal Bengtson B, Nielsen M, et al. miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells. Nat Commun. 2016;7:12436 pubmed 出版商
  110. Ogasawara R, Fujita S, Hornberger T, Kitaoka Y, Makanae Y, Nakazato K, et al. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep. 2016;6:31142 pubmed 出版商
  111. Wang J, Zhou J, Kho D, Reiners J, Wu G. Role for DUSP1 (dual-specificity protein phosphatase 1) in the regulation of autophagy. Autophagy. 2016;12:1791-1803 pubmed
  112. Lee J, Yu K, Kim H, Kang I, Kim J, Lee B, et al. BMI1 inhibits senescence and enhances the immunomodulatory properties of human mesenchymal stem cells via the direct suppression of MKP-1/DUSP1. Aging (Albany NY). 2016;8:1670-89 pubmed 出版商
  113. Raguz J, Jerić I, Niault T, Nowacka J, Kuzet S, Rupp C, et al. Epidermal RAF prevents allergic skin disease. elife. 2016;5: pubmed 出版商
  114. Shen P, Chen M, He M, Chen L, Song Y, Xiao P, et al. Inhibition of ER?/ERK/P62 cascades induces "autophagic switch" in the estrogen receptor-positive breast cancer cells exposed to gemcitabine. Oncotarget. 2016;7:48501-48516 pubmed 出版商
  115. Lukjanenko L, Jung M, Hegde N, Perruisseau Carrier C, Migliavacca E, Rozo M, et al. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat Med. 2016;22:897-905 pubmed 出版商
  116. Wagner S, Satpathy S, Beli P, Choudhary C. SPATA2 links CYLD to the TNF-? receptor signaling complex and modulates the receptor signaling outcomes. EMBO J. 2016;35:1868-84 pubmed 出版商
  117. Liu C, Lin S, Hsu H, Yang S, Lin C, Yang M, et al. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells. Nat Commun. 2016;7:11798 pubmed 出版商
  118. Faber E, Gripp E, Maurischat S, Kaspers B, Tedin K, Menz S, et al. Novel Immunomodulatory Flagellin-Like Protein FlaC in Campylobacter jejuni and Other Campylobacterales. mSphere. 2016;1: pubmed 出版商
  119. Bachegowda L, Morrone K, Winski S, Mantzaris I, Bartenstein M, Ramachandra N, et al. Pexmetinib: A Novel Dual Inhibitor of Tie2 and p38 MAPK with Efficacy in Preclinical Models of Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancer Res. 2016;76:4841-4849 pubmed 出版商
  120. Priego N, Arechederra M, Sequera C, Bragado P, Vázquez Carballo A, Gutierrez Uzquiza A, et al. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38? activation, while it impairs tumor growth through p38?-independent mechanisms. Oncotarget. 2016;7:45060-45078 pubmed 出版商
  121. Park S, Yi H, Suh N, Park Y, Koh J, Jeong S, et al. Inhibition of EHMT2/G9a epigenetically increases the transcription of Beclin-1 via an increase in ROS and activation of NF-?B. Oncotarget. 2016;7:39796-39808 pubmed 出版商
  122. Hu L, Tan J, Yang X, Tan H, Xu X, You M, et al. Polysaccharide Extracted from Laminaria japonica Delays Intrinsic Skin Aging in Mice. Evid Based Complement Alternat Med. 2016;2016:5137386 pubmed 出版商
  123. Bianchi E, Boekelheide K, Sigman M, Lamb D, Hall S, Hwang K. Ghrelin Inhibits Post-Operative Adhesions via Blockage of the TGF-β Signaling Pathway. PLoS ONE. 2016;11:e0153968 pubmed 出版商
  124. Uto T, Fukaya T, Takagi H, Arimura K, Nakamura T, Kojima N, et al. Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity. Nat Commun. 2016;7:11273 pubmed 出版商
  125. Hamanoue M, Morioka K, Ohsawa I, Ohsawa K, Kobayashi M, Tsuburaya K, et al. Cell-permeable p38?MAP kinase promotes migration of adult neural stem/progenitor cells. Sci Rep. 2016;6:24279 pubmed 出版商
  126. Macritchie N, Volpert G, Al Washih M, Watson D, Futerman A, Kennedy S, et al. Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension. Cell Signal. 2016;28:946-55 pubmed 出版商
  127. Hattori K, Naguro I, Okabe K, Funatsu T, Furutani S, Takeda K, et al. ASK1 signalling regulates brown and beige adipocyte function. Nat Commun. 2016;7:11158 pubmed 出版商
  128. Federspiel J, Codreanu S, Palubinsky A, Winland A, Betanzos C, McLaughlin B, et al. Assembly Dynamics and Stoichiometry of the Apoptosis Signal-regulating Kinase (ASK) Signalosome in Response to Electrophile Stress. Mol Cell Proteomics. 2016;15:1947-61 pubmed 出版商
  129. Segalés J, Islam A, Kumar R, Liu Q, Sousa Victor P, Dilworth F, et al. Chromatin-wide and transcriptome profiling integration uncovers p38α MAPK as a global regulator of skeletal muscle differentiation. Skelet Muscle. 2016;6:9 pubmed 出版商
  130. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  131. Lee M, Goralczyk A, Kriszt R, Ang X, Badowski C, Li Y, et al. ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs. Sci Rep. 2016;6:21173 pubmed 出版商
  132. Ivanova I, Maringele L. Polymerases ε and ∂ repair dysfunctional telomeres facilitated by salt. Nucleic Acids Res. 2016;44:3728-38 pubmed 出版商
  133. Franco M, Panas M, Marino N, Lee M, Buchholz K, Kelly F, et al. A Novel Secreted Protein, MYR1, Is Central to Toxoplasma's Manipulation of Host Cells. MBio. 2016;7:e02231-15 pubmed 出版商
  134. Hayashi H, Al Mamun A, Sakima M, Sato M. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis. J Cell Sci. 2016;129:1210-22 pubmed 出版商
  135. Wang Y, Cui R, Zhang X, Qiao Y, Liu X, Chang Y, et al. SIRT1 increases YAP- and MKK3-dependent p38 phosphorylation in mouse liver and human hepatocellular carcinoma. Oncotarget. 2016;7:11284-98 pubmed 出版商
  136. Nassour J, Martien S, Martin N, Deruy E, Tomellini E, Malaquin N, et al. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nat Commun. 2016;7:10399 pubmed 出版商
  137. Koyani C, Kitz K, Rossmann C, Bernhart E, Huber E, Trummer C, et al. Activation of the MAPK/Akt/Nrf2-Egr1/HO-1-GCLc axis protects MG-63 osteosarcoma cells against 15d-PGJ2-mediated cell death. Biochem Pharmacol. 2016;104:29-41 pubmed 出版商
  138. Chhibber Goel J, Coleman Vaughan C, Agrawal V, Sawhney N, Hickey E, Powell J, et al. γ-Secretase Activity Is Required for Regulated Intramembrane Proteolysis of Tumor Necrosis Factor (TNF) Receptor 1 and TNF-mediated Pro-apoptotic Signaling. J Biol Chem. 2016;291:5971-85 pubmed 出版商
  139. Ishibashi T, Yaguchi A, Terada K, Ueno Yokohata H, Tomita O, Iijima K, et al. Ph-like ALL-related novel fusion kinase ATF7IP-PDGFRB exhibits high sensitivity to tyrosine kinase inhibitors in murine cells. Exp Hematol. 2016;44:177-88.e5 pubmed 出版商
  140. He J, Johnson J, Monfregola J, Ramadass M, Pestonjamasp K, Napolitano G, et al. Munc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses. Mol Biol Cell. 2016;27:572-87 pubmed 出版商
  141. McIlroy G, Tammireddy S, Maskrey B, Grant L, Doherty M, Watson D, et al. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue. Biochem Pharmacol. 2016;100:86-97 pubmed 出版商
  142. Awad K, Elinoff J, Wang S, Gairhe S, Ferreyra G, Cai R, et al. Raf/ERK drives the proliferative and invasive phenotype of BMPR2-silenced pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2016;310:L187-201 pubmed 出版商
  143. Wu R, Chen H, Ma J, He Q, Huang Q, Liu Q, et al. c-Abl-p38α signaling plays an important role in MPTP-induced neuronal death. Cell Death Differ. 2016;23:542-52 pubmed 出版商
  144. Suzuki M, Watanabe M, Nakamaru Y, Takagi D, Takahashi H, Fukuda S, et al. TRIM39 negatively regulates the NFκB-mediated signaling pathway through stabilization of Cactin. Cell Mol Life Sci. 2016;73:1085-101 pubmed 出版商
  145. Ashford A, Dunkley T, Cockerill M, Rowlinson R, Baak L, Gallo R, et al. Identification of DYRK1B as a substrate of ERK1/2 and characterisation of the kinase activity of DYRK1B mutants from cancer and metabolic syndrome. Cell Mol Life Sci. 2016;73:883-900 pubmed 出版商
  146. Tanaka T, Iino M. Sec8 regulates cytokeratin8 phosphorylation and cell migration by controlling the ERK and p38 MAPK signalling pathways. Cell Signal. 2015;27:1110-9 pubmed 出版商