这是一篇来自已证抗体库的有关人类 基质金属蛋白酶-2 (MMP-2) 的综述,是根据133篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合基质金属蛋白酶-2 抗体。
基质金属蛋白酶-2 同义词: CLG4; CLG4A; MMP-2; MMP-II; MONA; TBE-1; 72 kDa type IV collagenase; collagenase type IV-A; matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase); matrix metalloproteinase-2; matrix metalloproteinase-II; neutrophil gelatinase

艾博抗(上海)贸易有限公司
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 1a
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 1a). Biomed Pharmacother (2019) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6c
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 6c). Biosci Rep (2018) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 图 1a
  • 免疫印迹; 大鼠; 图 1b
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫组化在大鼠样品上 (图 1a) 和 被用于免疫印迹在大鼠样品上 (图 1b). J Neurosci (2018) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s3b
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, Ab 37150)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 s3b). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 9d
  • 免疫印迹; 人类; 1:1000; 图 2e
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图 9d) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 2e). Oncotarget (2017) ncbi
兔 单克隆(EPR1184)
  • 免疫印迹; 大鼠; 图 7
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab92536)被用于被用于免疫印迹在大鼠样品上 (图 7). PLoS ONE (2017) ncbi
兔 单克隆(EPR1184)
  • 免疫印迹; 人类; 1:1000; 图 6B; 6D; 6F
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab92536)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6B; 6D; 6F). Onco Targets Ther (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2e
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫印迹在小鼠样品上 (图 2e). Arterioscler Thromb Vasc Biol (2017) ncbi
兔 单克隆(EPR1184)
  • 免疫印迹; 人类; 1:800; 图 5b
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab92536)被用于被用于免疫印迹在人类样品上浓度为1:800 (图 5b). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6a
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 6a). Mol Cell Biol (2017) ncbi
小鼠 单克隆(4D3)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a, 1e
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab2462)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图 1a, 1e). Onco Targets Ther (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3a). Oncol Lett (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 10
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(abcam, ab37150)被用于被用于免疫印迹在人类样品上 (图 10). Eur Cell Mater (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 5). Exp Ther Med (2016) ncbi
兔 单克隆(EPR1184)
  • 免疫组化-冰冻切片; 小鼠; 图 7a
  • 免疫印迹; 小鼠; 图 4f
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab92536)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 7a) 和 被用于免疫印迹在小鼠样品上 (图 4f). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5b
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5b). Oncotarget (2016) ncbi
小鼠 单克隆(6E3F8)
  • 免疫印迹; 人类; 1:1000; 图 7
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab86607)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 7). J Cell Mol Med (2016) ncbi
小鼠 单克隆(4D3)
  • 免疫印迹; 人类; 1:2000; 图 6
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab2462)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 6). Mol Med Rep (2016) ncbi
小鼠 单克隆(6E3F8)
  • 免疫组化; 人类; 图 2
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab86607)被用于被用于免疫组化在人类样品上 (图 2). Int Braz J Urol (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1.25 ug/ml
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫组化在人类样品上浓度为1.25 ug/ml. Support Care Cancer (2016) ncbi
小鼠 单克隆(4D3)
  • 免疫组化-石蜡切片; 兔; 图 2c
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab2462)被用于被用于免疫组化-石蜡切片在兔样品上 (图 2c). Gene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 4 ug/ml
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫印迹在人类样品上浓度为4 ug/ml. J Cell Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 5
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫印迹在大鼠样品上 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(6E3F8)
  • 免疫印迹; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab86607)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 5). Cancer Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫组化-冰冻切片在小鼠样品上 (图 4). Am J Physiol Heart Circ Physiol (2015) ncbi
小鼠 单克隆(4D3)
  • 免疫组化-石蜡切片; 兔; 1:500; 图 4
  • 免疫印迹; 兔; 1:1000; 图 1
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab2462)被用于被用于免疫组化-石蜡切片在兔样品上浓度为1:500 (图 4) 和 被用于免疫印迹在兔样品上浓度为1:1000 (图 1). Oncol Lett (2015) ncbi
小鼠 单克隆(6E3F8)
  • 免疫组化; 小鼠; 1:200; 图 6
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab86607)被用于被用于免疫组化在小鼠样品上浓度为1:200 (图 6). J Cell Mol Med (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s4
  • 免疫印迹; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 s4) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 6). Matrix Biol (2015) ncbi
小鼠 单克隆(6E3F8)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab86607)被用于被用于免疫印迹在人类样品上. World J Gastroenterol (2014) ncbi
小鼠 单克隆(6E3F8)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab86607)被用于被用于免疫印迹在人类样品上浓度为1:1000. Cancer Lett (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫组化-石蜡切片在大鼠样品上. Nitric Oxide (2014) ncbi
兔 多克隆
  • 免疫组化; Pimelodus maculatus; 1:25
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫组化在Pimelodus maculatus样品上浓度为1:25. Fish Physiol Biochem (2014) ncbi
小鼠 单克隆(6E3F8)
  • 免疫组化-石蜡切片; 人类; 1:150
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab86607)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:150. J Perinatol (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:300; 图 3
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫细胞化学在小鼠样品上浓度为1:300 (图 3). J Cell Physiol (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500 和 被用于免疫印迹在大鼠样品上浓度为1:500. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:50
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:50. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 1:100
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫组化-冰冻切片在人类样品上浓度为1:100. Mol Cancer Ther (2014) ncbi
兔 单克隆(EPR1184)
  • 免疫印迹基因敲除验证; 小鼠; 图 3
  • 免疫细胞化学; 小鼠; 图 2
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab92536)被用于被用于免疫印迹基因敲除验证在小鼠样品上 (图 3) 和 被用于免疫细胞化学在小鼠样品上 (图 2). Am J Physiol Heart Circ Physiol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫印迹在人类样品上. Osteoarthritis Cartilage (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:250
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab37150)被用于被用于免疫细胞化学在人类样品上浓度为1:250 和 被用于免疫印迹在人类样品上浓度为1:1000. Lab Invest (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(2C1)
  • 免疫印迹; 大鼠; 1:500; 图 5a
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, sc-13594)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 5a). Mol Med Rep (2017) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 小鼠; 图 1f
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, sc-13594)被用于被用于免疫印迹在小鼠样品上 (图 1f). Respir Res (2016) ncbi
小鼠 单克隆(8B4)
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, Inc., sc13595)被用于被用于免疫印迹在小鼠样品上 (图 7a). J Exp Med (2016) ncbi
小鼠 单克隆(4D3)
  • 免疫组化-石蜡切片; 猪; 1:50; 图 s15
圣克鲁斯生物技术基质金属蛋白酶-2抗体(santa Cruz, sc-53630)被用于被用于免疫组化-石蜡切片在猪样品上浓度为1:50 (图 s15). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(8B4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, sc-13595)被用于被用于免疫印迹在人类样品上 (图 5). J Cancer (2016) ncbi
小鼠 单克隆(8B4)
  • 免疫印迹; 大鼠; 1:1000; 图 2
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, sc-13595)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 2). Int J Med Sci (2016) ncbi
小鼠 单克隆(8B4)
  • 免疫印迹; 小鼠; 1:500; 图 3
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术基质金属蛋白酶-2抗体(santa Cruz, sc-13595)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 3) 和 被用于免疫印迹在人类样品上浓度为1:500 (图 3). BMC Cancer (2015) ncbi
小鼠 单克隆(8B4)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 4A
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, sc-13595)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 (图 4A). Diabetol Metab Syndr (2015) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, sc-13594)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 2b). Mol Med Rep (2015) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 大鼠; 1:500; 图 8
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, SC13594)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 8). Int J Mol Med (2015) ncbi
小鼠 单克隆(8B4)
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, SC-13595)被用于被用于免疫组化-石蜡切片在人类样品上 (图 5) 和 被用于免疫印迹在人类样品上 (图 3c). Mol Med Rep (2015) ncbi
小鼠 单克隆(8B4)
  • 免疫印迹; 人类; 1:800; 图 4
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, sc-13595)被用于被用于免疫印迹在人类样品上浓度为1:800 (图 4). Exp Ther Med (2015) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, sc-13594)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2). Mol Med Rep (2015) ncbi
小鼠 单克隆(8B4)
  • 免疫印迹; 人类; 1:1500
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotech, sc-13595)被用于被用于免疫印迹在人类样品上浓度为1:1500. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(4D3)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类; 1:200
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, SC53630)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:100 和 被用于免疫细胞化学在人类样品上浓度为1:200. Cell Death Dis (2014) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, sc-13594)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4). Mol Med Rep (2014) ncbi
小鼠 单克隆(4D3)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, sc-53630)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4). Oncol Rep (2014) ncbi
小鼠 单克隆(8B4)
  • 免疫组化-石蜡切片; 人类; 图 1
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, 8B4)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, 2C1)被用于被用于免疫印迹在人类样品上 (图 4a). Oncotarget (2014) ncbi
小鼠 单克隆(8B4)
  • 免疫组化-石蜡切片; 小鼠; 1:200
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, sc-13595)被用于被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200. J Mol Cell Cardiol (2014) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, sc-13594)被用于被用于免疫印迹在人类样品上 (图 4). Mol Carcinog (2014) ncbi
赛默飞世尔
兔 多克隆
  • 免疫印迹; 小鼠; 1:1500; 图 5d
赛默飞世尔基质金属蛋白酶-2抗体(Thermo fisher, PA1-1667)被用于被用于免疫印迹在小鼠样品上浓度为1:1500 (图 5d). Arterioscler Thromb Vasc Biol (2017) ncbi
小鼠 单克隆(2C1-1D12)
  • 免疫细胞化学; 人类; 图 6b
  • 免疫印迹; 人类; 1:1000; 图 6a
赛默飞世尔基质金属蛋白酶-2抗体(Invitrogen, 35-1300Z)被用于被用于免疫细胞化学在人类样品上 (图 6b) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 6a). Exp Cell Res (2017) ncbi
小鼠 单克隆(F14 P4 D3)
  • 免疫印迹; 人类; 1:500; 图 3a
赛默飞世尔基质金属蛋白酶-2抗体(Thermo Fisher Scientific, MA1-772)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 3a). Mol Cells (2016) ncbi
小鼠 单克隆(2C1-1D12)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔基质金属蛋白酶-2抗体(Invitrogen, 35-1300Z)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2). Int J Mol Sci (2015) ncbi
小鼠 单克隆(VB3)
  • 免疫组化-石蜡切片; 人类; 图 1c
  • 免疫印迹; 人类; 图 5c
赛默飞世尔基质金属蛋白酶-2抗体(Thermo Scientific, VB3)被用于被用于免疫组化-石蜡切片在人类样品上 (图 1c) 和 被用于免疫印迹在人类样品上 (图 5c). Mol Hum Reprod (2016) ncbi
小鼠 单克隆(101)
  • 免疫组化-冰冻切片; common platanna; 图 1
赛默飞世尔基质金属蛋白酶-2抗体(Invitrogen, 436000)被用于被用于免疫组化-冰冻切片在common platanna样品上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(CA-4001 or CA719E3C)
  • 免疫组化; 人类; 1:50
赛默飞世尔基质金属蛋白酶-2抗体(Lab Vision Corporation, CA-4001)被用于被用于免疫组化在人类样品上浓度为1:50. Histopathology (2015) ncbi
小鼠 单克隆(VB3)
赛默飞世尔基质金属蛋白酶-2抗体(ThermoFisher Scientific, MS804)被用于. BMC Res Notes (2014) ncbi
小鼠 单克隆(2C1-1D12)
  • 免疫印迹; 人类; 图 s4
赛默飞世尔基质金属蛋白酶-2抗体(Invitrogen, 2C1-1D12)被用于被用于免疫印迹在人类样品上 (图 s4). PLoS ONE (2011) ncbi
小鼠 单克隆(2C1-1D12)
  • 免疫组化; 人类; 图 3
赛默飞世尔基质金属蛋白酶-2抗体(Invitrogen, 35-1300Z)被用于被用于免疫组化在人类样品上 (图 3). Hepatology (2011) ncbi
小鼠 单克隆(2C1-1D12)
  • 免疫印迹; 人类; 1:300; 图 2
赛默飞世尔基质金属蛋白酶-2抗体(ZYMED, 35-1300Z)被用于被用于免疫印迹在人类样品上浓度为1:300 (图 2). Cancer Lett (2010) ncbi
小鼠 单克隆(2C1-1D12)
  • 免疫印迹; 人类; 图 7
赛默飞世尔基质金属蛋白酶-2抗体(ZYMED, 35-1300Z)被用于被用于免疫印迹在人类样品上 (图 7). J Huazhong Univ Sci Technolog Med Sci (2010) ncbi
小鼠 单克隆(CA-4001 or CA719E3C)
  • 免疫印迹; 小鼠; 图 3a
赛默飞世尔基质金属蛋白酶-2抗体(Lab Vision, MS-567-P0)被用于被用于免疫印迹在小鼠样品上 (图 3a). Brain Res (2009) ncbi
小鼠 单克隆(101)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔基质金属蛋白酶-2抗体(Zymed, noca)被用于被用于免疫印迹在小鼠样品上 (图 1). Proc Natl Acad Sci U S A (2006) ncbi
武汉三鹰
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 2f
武汉三鹰基质金属蛋白酶-2抗体(Cell Signaling, 10373-2-AP)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 2f). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3e
武汉三鹰基质金属蛋白酶-2抗体(Proteintech, 10373-2- ap)被用于被用于免疫印迹在人类样品上 (图 3e). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
武汉三鹰基质金属蛋白酶-2抗体(Proteintech, 10373-2-AP)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6). Oncol Lett (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 6
武汉三鹰基质金属蛋白酶-2抗体(Proteintech, 10373-2-AP)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图 6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 8
武汉三鹰基质金属蛋白酶-2抗体(Proteintech, 10373-2-AP)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (图 8). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2b
武汉三鹰基质金属蛋白酶-2抗体(Proteintech, 10373-2-AP)被用于被用于免疫印迹在人类样品上 (图 2b). Oncotarget (2014) ncbi
Novus Biologicals
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 4a
  • 免疫印迹; 小鼠; 1:2000; 图 4c
Novus Biologicals基质金属蛋白酶-2抗体(Novus Biologicals, NB200-193)被用于被用于免疫细胞化学在小鼠样品上 (图 4a) 和 被用于免疫印迹在小鼠样品上浓度为1:2000 (图 4c). J Mol Cell Cardiol (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5f
Novus Biologicals基质金属蛋白酶-2抗体(Novus, NB200-193)被用于被用于免疫印迹在小鼠样品上 (图 5f). JCI Insight (2016) ncbi
兔 多克隆
  • 免疫印迹; 狗; 1:1000; 图 s1f
Novus Biologicals基质金属蛋白酶-2抗体(Novus Biologicals, NB200-193)被用于被用于免疫印迹在狗样品上浓度为1:1000 (图 s1f). J Am Heart Assoc (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5a
Novus Biologicals基质金属蛋白酶-2抗体(Novus Biologicals, NB200-193)被用于被用于免疫印迹在小鼠样品上 (图 5a). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类
  • 免疫组化-石蜡切片; 小鼠
  • 免疫细胞化学; 小鼠; 1:300; 图 1
Novus Biologicals基质金属蛋白酶-2抗体(Novus Biologicals, NB200-193)被用于被用于免疫组化-石蜡切片在人类样品上, 被用于免疫组化-石蜡切片在小鼠样品上 和 被用于免疫细胞化学在小鼠样品上浓度为1:300 (图 1). J Cell Physiol (2015) ncbi
安迪生物R&D
小鼠 单克隆(101724)
  • 免疫印迹; 人类; 1:500; 图 2
安迪生物R&D基质金属蛋白酶-2抗体(R&D, MAB9022)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(36006)
  • 免疫印迹; 人类; 图 4
安迪生物R&D基质金属蛋白酶-2抗体(R&D systems, MAB902)被用于被用于免疫印迹在人类样品上 (图 4). Int J Mol Med (2016) ncbi
山羊 多克隆
  • 免疫组化-石蜡切片; 人类; 图 8
安迪生物R&D基质金属蛋白酶-2抗体(R&D systems, AF 902)被用于被用于免疫组化-石蜡切片在人类样品上 (图 8). PLoS ONE (2015) ncbi
GeneTex
兔 多克隆
  • 免疫组化; 人类; 图 5
  • 免疫印迹; 人类; 图 s2
GeneTex基质金属蛋白酶-2抗体(GeneTex, GTX104577)被用于被用于免疫组化在人类样品上 (图 5) 和 被用于免疫印迹在人类样品上 (图 s2). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
GeneTex基质金属蛋白酶-2抗体(GeneTex, GTX104577)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
EnCor Biotechnology
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 7
EnCor Biotechnology基质金属蛋白酶-2抗体(EnCor Biotechnology, RPCA-MMP2)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 7). Dis Model Mech (2015) ncbi
赛信通(上海)生物试剂有限公司
兔 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于其他在人类样品上 (图 4c). Cancer Cell (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 3D
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 3D). Oncol Lett (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(cell signalling, 4022)被用于被用于免疫印迹在人类样品上 (图 7b). Cell Death Dis (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于免疫印迹在人类样品上 (图 5e). Br J Cancer (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于免疫印迹在人类样品上 (图 3c). Biomed Pharmacother (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:800; 图 3c
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于免疫印迹在人类样品上浓度为1:800 (图 3c). Oncol Lett (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s4a
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling Technology, 4022)被用于被用于免疫印迹在人类样品上 (图 s4a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(santa Cruz, 4022)被用于被用于免疫印迹在小鼠样品上 (图 5) 和 被用于免疫印迹在人类样品上 (图 1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(cell signalling, 4022S)被用于被用于免疫印迹在人类样品上 (图 5a). Int J Mol Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 3c). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling Technology, 4022)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 6a). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 8
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling Technology, 4022S)被用于被用于免疫印迹在小鼠样品上 (图 8) 和 被用于免疫印迹在人类样品上 (图 4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling Technologies, 4022)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于免疫印迹在人类样品上 (图 5) 和 被用于免疫印迹在小鼠样品上 (图 1). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于免疫印迹在人类样品上. Mol Carcinog (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling Technology, 4022)被用于被用于免疫印迹在人类样品上浓度为1:1000. Mol Med Rep (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling Technology, 4022)被用于被用于免疫组化-石蜡切片在小鼠样品上 和 被用于免疫印迹在小鼠样品上. J Mol Cell Cardiol (2015) ncbi
Bioworld
兔 多克隆(L638)
  • 免疫印迹; 人类; 1:1000; 图 4
Bioworld基质金属蛋白酶-2抗体(Bioworld Technology, BS1236)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 4). Oncotarget (2016) ncbi
兔 多克隆(L638)
  • 免疫印迹; 人类; 图 4
Bioworld基质金属蛋白酶-2抗体(Bioworld Tech, BS1236)被用于被用于免疫印迹在人类样品上 (图 4). Oncotarget (2016) ncbi
兔 多克隆(L638)
  • 免疫印迹; 人类; 图 2a
  • 免疫组化; 大鼠; 图 9a
Bioworld基质金属蛋白酶-2抗体(Bioworld Technology, BS1236)被用于被用于免疫印迹在人类样品上 (图 2a) 和 被用于免疫组化在大鼠样品上 (图 9a). Acta Biomater (2016) ncbi
默克密理博中国
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 s2
默克密理博中国基质金属蛋白酶-2抗体(Millipore, AB19015)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 s2). J Cell Sci (2016) ncbi
小鼠 单克隆(42-5D11)
  • 免疫印迹; 人类; 图 3
默克密理博中国基质金属蛋白酶-2抗体(MD Millipore, MAB3308)被用于被用于免疫印迹在人类样品上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 4
默克密理博中国基质金属蛋白酶-2抗体(EMD Millipore, IM33)被用于被用于免疫印迹在人类样品上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(42-5D11)
  • 免疫组化-冰冻切片; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国基质金属蛋白酶-2抗体(Millipore, MAB3308)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 和 被用于免疫印迹在大鼠样品上浓度为1:1000. Redox Biol (2015) ncbi
小鼠 单克隆(42-5D11)
  • 免疫印迹; 人类
默克密理博中国基质金属蛋白酶-2抗体(Millipore, MAB3308)被用于被用于免疫印迹在人类样品上. BMC Cancer (2015) ncbi
小鼠 单克隆(42-5D11)
  • 免疫印迹; 小鼠; 1:1000
默克密理博中国基质金属蛋白酶-2抗体(Millipore, MAB3308)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Endocrinology (2015) ncbi
小鼠 单克隆(42-5D11)
  • 免疫印迹; 大鼠; 图 3c
默克密理博中国基质金属蛋白酶-2抗体(EMD Millipore, MAB3308)被用于被用于免疫印迹在大鼠样品上 (图 3c). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s2
默克密理博中国基质金属蛋白酶-2抗体(Millipore, AB19167)被用于被用于免疫印迹在人类样品上 (图 s2). Cell Cycle (2014) ncbi
小鼠 单克隆(5C6.2)
  • 免疫印迹; 小鼠; 图 5d
默克密理博中国基质金属蛋白酶-2抗体(EMD, MAB13434)被用于被用于免疫印迹在小鼠样品上 (图 5d). Diabetes (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:100
默克密理博中国基质金属蛋白酶-2抗体(Chemicon, AB19167)被用于被用于免疫组化在人类样品上浓度为1:100. Acta Derm Venereol (2015) ncbi
小鼠 单克隆(CA-4001)
  • 免疫组化; 人类; 图 3
默克密理博中国基质金属蛋白酶-2抗体(Millipore, MAB13405)被用于被用于免疫组化在人类样品上 (图 3). Br J Cancer (2014) ncbi
小鼠 单克隆(42-5D11)
  • 免疫组化; 人类; 图 3
  • 免疫印迹; 人类; 图 3
默克密理博中国基质金属蛋白酶-2抗体(EMD Millipore, MAb3308)被用于被用于免疫组化在人类样品上 (图 3) 和 被用于免疫印迹在人类样品上 (图 3). Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(42-5D11)
  • 免疫组化-冰冻切片; 大鼠
默克密理博中国基质金属蛋白酶-2抗体(Chemicon, MAB3308)被用于被用于免疫组化-冰冻切片在大鼠样品上. Biomed Res Int (2014) ncbi
小鼠 单克隆(42-5D11)
  • 免疫印迹; 大鼠
默克密理博中国基质金属蛋白酶-2抗体(Millipore, MAB3308)被用于被用于免疫印迹在大鼠样品上. Basic Res Cardiol (2014) ncbi
小鼠 单克隆(42-5D11)
  • 免疫印迹; 大鼠
默克密理博中国基质金属蛋白酶-2抗体(Merck Millipore, MAB3308)被用于被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(CA-4001)
  • 抑制或激活实验; 人类; 5 ug/ml; 图 4a
  • 免疫印迹; 人类; 1:1000; 图 st3
默克密理博中国基质金属蛋白酶-2抗体(Millipore, MAB13405)被用于被用于抑制或激活实验在人类样品上浓度为5 ug/ml (图 4a) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 st3). Oncogene (2015) ncbi
小鼠 单克隆(42-5D11)
  • 免疫细胞化学; 小鼠; 图 2
默克密理博中国基质金属蛋白酶-2抗体(Millipore, MAB3308)被用于被用于免疫细胞化学在小鼠样品上 (图 2). Am J Physiol Heart Circ Physiol (2014) ncbi
小鼠 单克隆(CA-4001)
  • 免疫印迹; 仓鼠; 1:1000; 图 2
默克密理博中国基质金属蛋白酶-2抗体(Millipore, MAB13405)被用于被用于免疫印迹在仓鼠样品上浓度为1:1000 (图 2). Mol Biol Cell (2014) ncbi
小鼠 单克隆(A-Gel VC2)
  • 免疫组化-石蜡切片; 人类; 1:50
默克密理博中国基质金属蛋白酶-2抗体(Millipore, MAB13431)被用于被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Biomed Res Int (2013) ncbi
兔 多克隆
  • 免疫印迹; 牛
默克密理博中国基质金属蛋白酶-2抗体(Chemicon International Inc, AB19167)被用于被用于免疫印迹在牛样品上. Mol Cell Biochem (2014) ncbi
小鼠 单克隆(CA-4001)
  • 免疫印迹; 人类
默克密理博中国基质金属蛋白酶-2抗体(Millipore, MAB13405)被用于被用于免疫印迹在人类样品上. Carcinogenesis (2014) ncbi
西格玛奥德里奇
兔 多克隆
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇基质金属蛋白酶-2抗体(Sigma, M4065)被用于被用于免疫印迹在人类样品上 (图 5). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:100; 图 1
西格玛奥德里奇基质金属蛋白酶-2抗体(Sigma-Aldrich, HPA001939)被用于被用于免疫组化在人类样品上浓度为1:100 (图 1). J Oral Pathol Med (2015) ncbi
文章列表
  1. He S, Nian F, Chen W, Yin L, Auchoybur M, Tao Z, et al. I-κB kinase-ε knockout protects against angiotensin II induced aortic valve thickening in apolipoprotein E deficient mice. Biomed Pharmacother. 2019;109:1287-1295 pubmed 出版商
  2. Nagalingam R, Safi H, Al Hattab D, Bagchi R, Landry N, Dixon I, et al. Regulation of cardiac fibroblast MMP2 gene expression by scleraxis. J Mol Cell Cardiol. 2018;120:64-73 pubmed 出版商
  3. Jin L, Lu J, Gao J. Silencing SUMO2 promotes protection against degradation and apoptosis of nucleus pulposus cells through p53 signaling pathway in intervertebral disc degeneration. Biosci Rep. 2018;38: pubmed 出版商
  4. Rempe R, Hartz A, Soldner E, Sokola B, Alluri S, Abner E, et al. Matrix Metalloproteinase-Mediated Blood-Brain Barrier Dysfunction in Epilepsy. J Neurosci. 2018;38:4301-4315 pubmed 出版商
  5. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  6. Yang L, Shen L, Gao P, Li G, He Y, Wang M, et al. Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms. Oncotarget. 2017;8:92827-92840 pubmed 出版商
  7. Zheng X, Dong Q, Zhang X, Han Q, Han X, Han Y, et al. The coiled-coil domain of oncogene RASSF 7 inhibits hippo signaling and promotes non-small cell lung cancer. Oncotarget. 2017;8:78734-78748 pubmed 出版商
  8. Zou Y, Qiu G, Jiang L, Cai Z, Sun W, Hu H, et al. Overexpression of ubiquitin specific proteases 44 promotes the malignancy of glioma by stabilizing tumor-promoter securin. Oncotarget. 2017;8:58231-58246 pubmed 出版商
  9. Liu Y, Wang C, Shan X, Wu J, Liu H, Liu H, et al. S100P is associated with proliferation and migration in nasopharyngeal carcinoma. Oncol Lett. 2017;14:525-532 pubmed 出版商
  10. Lu J, Yang Y, Guo G, Liu Y, Zhang Z, Dong S, et al. IKBKE regulates cell proliferation and epithelial-mesenchymal transition of human malignant glioma via the Hippo pathway. Oncotarget. 2017;8:49502-49514 pubmed 出版商
  11. Zhai L, Liu M, Wang T, Zhang H, Li S, Guo Y. Picroside II protects the blood-brain barrier by inhibiting the oxidative signaling pathway in cerebral ischemia-reperfusion injury. PLoS ONE. 2017;12:e0174414 pubmed 出版商
  12. Hu X, Zhang Z, Liang Z, Xie D, Zhang T, Yu D, et al. Downregulation of feline sarcoma-related protein inhibits cell migration, invasion and epithelial-mesenchymal transition via the ERK/AP-1 pathway in bladder urothelial cell carcinoma. Oncol Lett. 2017;13:686-694 pubmed 出版商
  13. Riascos Bernal D, Chinnasamy P, Gross J, Almonte V, Egaña Gorroño L, Parikh D, et al. Inhibition of Smooth Muscle ?-Catenin Hinders Neointima Formation After Vascular Injury. Arterioscler Thromb Vasc Biol. 2017;37:879-888 pubmed 出版商
  14. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  15. Li J, Liu Y, Yin Y. ARHGAP1 overexpression inhibits proliferation, migration and invasion of C-33A and SiHa cell lines. Onco Targets Ther. 2017;10:691-701 pubmed 出版商
  16. Mandl M, Zhang S, Ulrich M, Schmoeckel E, Mayr D, Vollmar A, et al. Inhibition of Cdk5 induces cell death of tumor-initiating cells. Br J Cancer. 2017;116:912-922 pubmed 出版商
  17. He Y, Wang X, Zhang J, Liu Z, Pan W, Shen Y, et al. Association of Serum HMGB2 Levels With In-Stent Restenosis: HMGB2 Promotes Neointimal Hyperplasia in Mice With Femoral Artery Injury and Proliferation and Migration of VSMCs. Arterioscler Thromb Vasc Biol. 2017;37:717-729 pubmed 出版商
  18. Dong Q, Fu L, Zhao Y, Tan S, Wang E. Derlin-1 overexpression confers poor prognosis in muscle invasive bladder cancer and contributes to chemoresistance and invasion through PI3K/AKT and ERK/MMP signaling. Oncotarget. 2017;8:17059-17069 pubmed 出版商
  19. Xu J, Zhang X, Wang H, Ge S, Gao T, Song L, et al. HCRP1 downregulation promotes hepatocellular carcinoma cell migration and invasion through the induction of EGFR activation and epithelial-mesenchymal transition. Biomed Pharmacother. 2017;88:421-429 pubmed 出版商
  20. Gan J, Wang F, Mu D, Qu Y, Luo R, Wang Q. RNA interference targeting Aurora-A sensitizes glioblastoma cells to temozolomide chemotherapy. Oncol Lett. 2016;12:4515-4523 pubmed 出版商
  21. Hammers D, Sleeper M, Forbes S, Coker C, Jirousek M, Zimmer M, et al. Disease-modifying effects of orally bioavailable NF-κB inhibitors in dystrophin-deficient muscle. JCI Insight. 2016;1:e90341 pubmed 出版商
  22. Liu L, Guan H, Li Y, Ying Z, Wu J, Zhu X, et al. Astrocyte Elevated Gene 1 Interacts with Acetyltransferase p300 and c-Jun To Promote Tumor Aggressiveness. Mol Cell Biol. 2017;37: pubmed 出版商
  23. Torres Martínez A, Gallardo Vera J, Lara Holguin A, Montano L, Rendón Huerta E. Claudin-6 enhances cell invasiveness through claudin-1 in AGS human adenocarcinoma gastric cancer cells. Exp Cell Res. 2017;350:226-235 pubmed 出版商
  24. Zhang H, Zhang P, Gao Y, Li C, Wang H, Chen L, et al. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep. 2017;15:57-64 pubmed 出版商
  25. Burgy O, Bellaye P, Causse S, Beltramo G, Wettstein G, Boutanquoi P, et al. Pleural inhibition of the caspase-1/IL-1? pathway diminishes profibrotic lung toxicity of bleomycin. Respir Res. 2016;17:162 pubmed
  26. Liu Y, Wang T, Zhang R, Fu W, Wang X, Wang F, et al. Calorie restriction protects against experimental abdominal aortic aneurysms in mice. J Exp Med. 2016;213:2473-2488 pubmed
  27. Rai V, Dietz N, Dilisio M, Radwan M, Agrawal D. Vitamin D attenuates inflammation, fatty infiltration, and cartilage loss in the knee of hyperlipidemic microswine. Arthritis Res Ther. 2016;18:203 pubmed 出版商
  28. Jaako K, Waniek A, Parik K, Klimaviciusa L, Aonurm Helm A, Noortoots A, et al. Prolyl endopeptidase is involved in the degradation of neural cell adhesion molecules in vitro. J Cell Sci. 2016;129:3792-3802 pubmed
  29. Hammers D, Sleeper M, Forbes S, Shima A, Walter G, Sweeney H. Tadalafil Treatment Delays the Onset of Cardiomyopathy in Dystrophin-Deficient Hearts. J Am Heart Assoc. 2016;5: pubmed 出版商
  30. Shi D, Shi G, Xie J, Du X, Yang H. MicroRNA-27a Inhibits Cell Migration and Invasion of Fibroblast-Like Synoviocytes by Targeting Follistatin-Like Protein 1 in Rheumatoid Arthritis. Mol Cells. 2016;39:611-8 pubmed 出版商
  31. Lu X, Duan L, Xie H, Lu X, Lu D, Lu D, et al. Evaluation of MMP-9 and MMP-2 and their suppressor TIMP-1 and TIMP-2 in adenocarcinoma of esophagogastric junction. Onco Targets Ther. 2016;9:4343-9 pubmed 出版商
  32. Yang Y, Sun Y, Acott T, Keller K. Effects of induction and inhibition of matrix cross-linking on remodeling of the aqueous outflow resistance by ocular trabecular meshwork cells. Sci Rep. 2016;6:30505 pubmed 出版商
  33. Xiao B, Chen D, Luo S, Hao W, Jing F, Liu T, et al. Extracellular translationally controlled tumor protein promotes colorectal cancer invasion and metastasis through Cdc42/JNK/ MMP9 signaling. Oncotarget. 2016;7:50057-50073 pubmed 出版商
  34. Tsai S, Huang P, Hsu Y, Peng Y, Lee C, Wang J, et al. Inhibition of hypoxia inducible factor-1α attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases. Sci Rep. 2016;6:28612 pubmed 出版商
  35. Hou H, Chen L, Zha Z, Cai S, Tan M, Guo G, et al. Long form collapsin response mediator protein-1 promotes the migration and invasion of osteosarcoma cells. Oncol Lett. 2016;12:23-28 pubmed
  36. Lehner C, Gehwolf R, Ek J, Korntner S, Bauer H, Bauer H, et al. The blood-tendon barrier: identification and characterisation of a novel tissue barrier in tendon blood vessels. Eur Cell Mater. 2016;31:296-311 pubmed
  37. Zhou N, Zhu Y, Zhang P, Zhang Y, Zhou M, Wang T, et al. Imperatorin derivative OW1 inhibits the upregulation of TGF-? and MMP-2 in renovascular hypertension-induced cardiac remodeling. Exp Ther Med. 2016;11:1748-1754 pubmed
  38. Wang X, Wang N, Li H, Liu M, Cao F, Yu X, et al. Up-Regulation of PAI-1 and Down-Regulation of uPA Are Involved in Suppression of Invasiveness and Motility of Hepatocellular Carcinoma Cells by a Natural Compound Berberine. Int J Mol Sci. 2016;17:577 pubmed 出版商
  39. Liang H, Zhang Q, Lu J, Yang G, Tian N, Wang X, et al. MSX2 Induces Trophoblast Invasion in Human Placenta. PLoS ONE. 2016;11:e0153656 pubmed 出版商
  40. Lim S, Yuzhalin A, Gordon Weeks A, Muschel R. Tumor-infiltrating monocytes/macrophages promote tumor invasion and migration by upregulating S100A8 and S100A9 expression in cancer cells. Oncogene. 2016;35:5735-5745 pubmed 出版商
  41. Zeng W, Liu Q, Chen Z, Wu X, Zhong Y, Wu J. Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-?B Pathway. J Cancer. 2016;7:746-57 pubmed 出版商
  42. Lai C, Tsai C, Kuo W, Ho T, Day C, Pai P, et al. Multi-Strain Probiotics Inhibit Cardiac Myopathies and Autophagy to Prevent Heart Injury in High-Fat Diet-Fed Rats. Int J Med Sci. 2016;13:277-85 pubmed 出版商
  43. Wei T, Zhang H, Cetin N, Miller E, Moak T, Suen J, et al. Elevated Expression of Matrix Metalloproteinase-9 not Matrix Metalloproteinase-2 Contributes to Progression of Extracranial Arteriovenous Malformation. Sci Rep. 2016;6:24378 pubmed 出版商
  44. Huang M, Liu T, Ma P, Mitteer R, Zhang Z, Kim H, et al. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J Clin Invest. 2016;126:1801-14 pubmed 出版商
  45. Serban A, Stanca L, Geicu O, Munteanu M, Dinischiotu A. RAGE and TGF-β1 Cross-Talk Regulate Extracellular Matrix Turnover and Cytokine Synthesis in AGEs Exposed Fibroblast Cells. PLoS ONE. 2016;11:e0152376 pubmed 出版商
  46. Zhao N, Sun H, Sun B, Zhu D, Zhao X, Wang Y, et al. miR-27a-3p suppresses tumor metastasis and VM by down-regulating VE-cadherin expression and inhibiting EMT: an essential role for Twist-1 in HCC. Sci Rep. 2016;6:23091 pubmed 出版商
  47. Hu W, Xiao L, Cao C, Hua S, Wu D. UBE2T promotes nasopharyngeal carcinoma cell proliferation, invasion, and metastasis by activating the AKT/GSK3β/β-catenin pathway. Oncotarget. 2016;7:15161-72 pubmed 出版商
  48. Zhang M, Linghu E, Zhan Q, He T, Cao B, Brock M, et al. Methylation of DACT2 accelerates esophageal cancer development by activating Wnt signaling. Oncotarget. 2016;7:17957-69 pubmed 出版商
  49. Shukla S, Sinha S, Khan S, Kumar S, Singh K, Mitra K, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep. 2016;6:21860 pubmed 出版商
  50. Alonso F, Domingos Pereira S, Le Gal L, Derré L, Meda P, Jichlinski P, et al. Targeting endothelial connexin40 inhibits tumor growth by reducing angiogenesis and improving vessel perfusion. Oncotarget. 2016;7:14015-28 pubmed 出版商
  51. Fu Z, Wang L, Cui H, Peng J, Wang S, Geng J, et al. A novel small-molecule compound targeting CD147 inhibits the motility and invasion of hepatocellular carcinoma cells. Oncotarget. 2016;7:9429-47 pubmed 出版商
  52. Liu T, Fang Z, Wang G, Shi M, Wang X, Jiang K, et al. Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells. Oncol Lett. 2016;11:182-188 pubmed
  53. Mori H, Yao Y, Learman B, Kurozumi K, Ishida J, Ramakrishnan S, et al. Induction of WNT11 by hypoxia and hypoxia-inducible factor-1α regulates cell proliferation, migration and invasion. Sci Rep. 2016;6:21520 pubmed 出版商
  54. Zhao L, Li S, Gan L, Li C, Qiu Z, Feng Y, et al. Paired box 5 is a frequently methylated lung cancer tumour suppressor gene interfering β-catenin signalling and GADD45G expression. J Cell Mol Med. 2016;20:842-54 pubmed 出版商
  55. Gao Y, Zhao Y, Zhang J, Lu Y, Liu X, Geng P, et al. The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci Rep. 2016;6:19874 pubmed 出版商
  56. Cui L, Gao B, Cao Z, Chen X, Zhang S, Zhang W. Downregulation of B7-H4 in the MHCC97-H hepatocellular carcinoma cell line by arsenic trioxide. Mol Med Rep. 2016;13:2032-8 pubmed 出版商
  57. Wei L, Wang H, Yang F, Ding Q, Zhao J. Interleukin-17 potently increases non-small cell lung cancer growth. Mol Med Rep. 2016;13:1673-80 pubmed 出版商
  58. Park S, Shin M, Kim D, Park J, Choi S, Kang Y. Blockade of monocyte-endothelial trafficking by transduced Tat-superoxide dismutase protein. Int J Mol Med. 2016;37:387-97 pubmed 出版商
  59. Shih M, Pan K, Cherng J. Possible Mechanisms of Di(2-ethylhexyl) Phthalate-Induced MMP-2 and MMP-9 Expression in A7r5 Rat Vascular Smooth Muscle Cells. Int J Mol Sci. 2015;16:28800-11 pubmed 出版商
  60. Silva M, Matheus W, Garcia P, Stopiglia R, Billis A, Ferreira U, et al. Characterization of reactive stroma in prostate cancer: involvement of growth factors, metalloproteinase matrix, sexual hormones receptors and prostatic stem cells. Int Braz J Urol. 2015;41:849-58 pubmed 出版商
  61. Pei S, Yang X, Wang H, Zhang H, Zhou B, Zhang D, et al. Plantamajoside, a potential anti-tumor herbal medicine inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of matrix metalloproteinase-9 and -2. BMC Cancer. 2015;15:965 pubmed 出版商
  62. Peng B, Zhu H, Klausen C, Ma L, Wang Y, Leung P. GnRH regulates trophoblast invasion via RUNX2-mediated MMP2/9 expression. Mol Hum Reprod. 2016;22:119-29 pubmed 出版商
  63. Al Trad B, Ashankyty I, Alaraj M. Progesterone ameliorates diabetic nephropathy in streptozotocin-induced diabetic Rats. Diabetol Metab Syndr. 2015;7:97 pubmed 出版商
  64. Eiseler T, Wille C, Koehler C, Illing A, Seufferlein T. Protein Kinase D2 Assembles a Multiprotein Complex at the Trans-Golgi Network to Regulate Matrix Metalloproteinase Secretion. J Biol Chem. 2016;291:462-77 pubmed 出版商
  65. Zhang L, Zou W. Inhibition of integrin β1 decreases the malignancy of ovarian cancer cells and potentiates anticancer therapy via the FAK/STAT1 signaling pathway. Mol Med Rep. 2015;12:7869-76 pubmed 出版商
  66. Bhattarai G, Poudel S, Kook S, Lee J. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis. Acta Biomater. 2016;29:398-408 pubmed 出版商
  67. Tateossian H, Morse S, Simon M, Dean C, Brown S. Interactions between the otitis media gene, Fbxo11, and p53 in the mouse embryonic lung. Dis Model Mech. 2015;8:1531-42 pubmed 出版商
  68. Wardill H, Logan R, Bowen J, Van Sebille Y, Gibson R. Tight junction defects are seen in the buccal mucosa of patients receiving standard dose chemotherapy for cancer. Support Care Cancer. 2016;24:1779-88 pubmed 出版商
  69. Zhang Z, Yang P, Yao P, Dai D, Yu Y, Zhou Y, et al. Identification of transcription factors and gene clusters in rabbit smooth muscle cells during high flow-induced vascular remodeling via microarray. Gene. 2016;575:407-414 pubmed 出版商
  70. Guimarães D, Rizzi E, Ceron C, Martins Oliveira A, Gerlach R, Shiva S, et al. Atorvastatin and sildenafil decrease vascular TGF-β levels and MMP-2 activity and ameliorate arterial remodeling in a model of renovascular hypertension. Redox Biol. 2015;6:386-95 pubmed 出版商
  71. Yan G, Wang Q, Hu S, Wang D, Qiao Y, Ma G, et al. Digoxin inhibits PDGF-BB-induced VSMC proliferation and migration through an increase in ILK signaling and attenuates neointima formation following carotid injury. Int J Mol Med. 2015;36:1001-11 pubmed 出版商
  72. Chang L, Zhao D, Liu H, Wang Q, Zhang P, Li C, et al. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma. Mol Med Rep. 2015;12:6702-10 pubmed 出版商
  73. Picot N, Guerrette R, Beauregard A, Jean S, Michaud P, Harquail J, et al. Mammaglobin 1 promotes breast cancer malignancy and confers sensitivity to anticancer drugs. Mol Carcinog. 2016;55:1150-62 pubmed 出版商
  74. Gan L, Zuo G, Wang T, Min J, Wang Y, Wang Y, et al. Expression of WTH3 in breast cancer tissue and the effects on the biological behavior of breast cancer cells. Exp Ther Med. 2015;10:154-158 pubmed
  75. Noell S, Fallier Becker P, Mack A, Hoffmeister M, Beschorner R, Ritz R. Water Channels Aquaporin 4 and -1 Expression in Subependymoma Depends on the Localization of the Tumors. PLoS ONE. 2015;10:e0131367 pubmed 出版商
  76. Alias C, Rocchi L, Ribatti D, Caraffi S, D angelo A, Perris R, et al. MMPs and angiogenesis affect the metastatic potential of a human vulvar leiomyosarcoma cell line. J Cell Mol Med. 2015;19:2098-107 pubmed 出版商
  77. Wang C, Xiang R, Zhang X, Chen Y. Doxycycline inhibits leukemic cell migration via inhibition of matrix metalloproteinases and phosphorylation of focal adhesion kinase. Mol Med Rep. 2015;12:3374-3380 pubmed 出版商
  78. Han Y, Lee J, Lee S. Fucoidan inhibits the migration and proliferation of HT-29 human colon cancer cells via the phosphoinositide-3 kinase/Akt/mechanistic target of rapamycin pathways. Mol Med Rep. 2015;12:3446-3452 pubmed 出版商
  79. Li P, Sheu M, Ma W, Pan C, Sheu J, Wu C. Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells. Mar Drugs. 2015;13:3046-60 pubmed 出版商
  80. Seo K, Lee S, Ye B, Kim Y, Bae S, Kim C. Mechanical stretch enhances the expression and activity of osteopontin and MMP-2 via the Akt1/AP-1 pathways in VSMC. J Mol Cell Cardiol. 2015;85:13-24 pubmed 出版商
  81. Liu X, Wang J, Li S, Li L, Huang M, Zhang Y, et al. Histone deacetylase 3 expression correlates with vasculogenic mimicry through the phosphoinositide3-kinase / ERK-MMP-laminin5γ2 signaling pathway. Cancer Sci. 2015;106:857-66 pubmed 出版商
  82. Zhao H, Agazie Y. Inhibition of SHP2 in basal-like and triple-negative breast cells induces basal-to-luminal transition, hormone dependency, and sensitivity to anti-hormone treatment. BMC Cancer. 2015;15:109 pubmed 出版商
  83. Hohsfield L, Humpel C. Intravenous infusion of monocytes isolated from 2-week-old mice enhances clearance of Beta-amyloid plaques in an Alzheimer mouse model. PLoS ONE. 2015;10:e0121930 pubmed 出版商
  84. Mani S, Kern C, Kimbrough D, Addy B, Kasiganesan H, Rivers W, et al. Inhibition of class I histone deacetylase activity represses matrix metalloproteinase-2 and -9 expression and preserves LV function postmyocardial infarction. Am J Physiol Heart Circ Physiol. 2015;308:H1391-401 pubmed 出版商
  85. Itman C, Bielanowicz A, Goh H, Lee Q, Fulcher A, Moody S, et al. Murine Inhibin α-Subunit Haploinsufficiency Causes Transient Abnormalities in Prepubertal Testis Development Followed by Adult Testicular Decline. Endocrinology. 2015;156:2254-68 pubmed 出版商
  86. Wang G, Liu G, Ye Y, Fu Y, Zhang X. The role of microRNA-1274a in the tumorigenesis of gastric cancer: accelerating cancer cell proliferation and migration via directly targeting FOXO4. Biochem Biophys Res Commun. 2015;459:629-35 pubmed 出版商
  87. Qi J, Wang W, Li F. Combination of interventional adenovirus-p53 introduction and ultrasonic irradiation in the treatment of liver cancer. Oncol Lett. 2015;9:1297-1302 pubmed
  88. Sun H, Zhang X, Zhao L, Zhen X, Huang S, Wang S, et al. Attenuation of atherosclerotic lesions in diabetic apolipoprotein E-deficient mice using gene silencing of macrophage migration inhibitory factor. J Cell Mol Med. 2015;19:836-49 pubmed 出版商
  89. Besschetnova T, Ichimura T, Katebi N, St Croix B, Bonventre J, Olsen B. Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis. Matrix Biol. 2015;42:56-73 pubmed 出版商
  90. Nishihara T, Remacle A, Angert M, Shubayev I, Shiryaev S, Liu H, et al. Matrix metalloproteinase-14 both sheds cell surface neuronal glial antigen 2 (NG2) proteoglycan on macrophages and governs the response to peripheral nerve injury. J Biol Chem. 2015;290:3693-707 pubmed 出版商
  91. Kuo H, Huang Y, Tseng C, Chen Y, Chang Y, Shih H, et al. PML represses lung cancer metastasis by suppressing the nuclear EGFR-mediated transcriptional activation of MMP2. Cell Cycle. 2014;13:3132-42 pubmed 出版商
  92. Aggarwal P, Veron D, Thomas D, Siegel D, Moeckel G, Kashgarian M, et al. Semaphorin3a promotes advanced diabetic nephropathy. Diabetes. 2015;64:1743-59 pubmed 出版商
  93. Wiechmann A, Ceresa B, Howard E. Diurnal variation of tight junction integrity associates inversely with matrix metalloproteinase expression in Xenopus laevis corneal epithelium: implications for circadian regulation of homeostatic surface cell desquamation. PLoS ONE. 2014;9:e113810 pubmed 出版商
  94. Chavali P, Saini R, Zhai Q, Vizlin Hodzic D, Venkatabalasubramanian S, Hayashi A, et al. TLX activates MMP-2, promotes self-renewal of tumor spheres in neuroblastoma and correlates with poor patient survival. Cell Death Dis. 2014;5:e1502 pubmed 出版商
  95. Chen R, Xu B, Chen S, Chen S, Zhang T, Ren J, et al. Effect of oridonin-mediated hallmark changes on inflammatory pathways in human pancreatic cancer (BxPC-3) cells. World J Gastroenterol. 2014;20:14895-903 pubmed 出版商
  96. Uchiyama A, Motegi S, Okada E, Hirai N, Nagai Y, Tamura A, et al. Cutaneous marginal zone B-cell lymphoma evolving into anetoderma: a role of matrix metalloproteinases?. Acta Derm Venereol. 2015;95:499-500 pubmed 出版商
  97. Bodnar M, Szylberg Å, Kazmierczak W, Marszalek A. Tumor progression driven by pathways activating matrix metalloproteinases and their inhibitors. J Oral Pathol Med. 2015;44:437-43 pubmed 出版商
  98. Lin C, Chen P, Hsu L, Kuo D, Chu S, Hsieh Y. Inhibition of the invasion and migration of renal carcinoma 786‑o‑si3 cells in vitro and in vivo by Koelreuteria formosana extract. Mol Med Rep. 2014;10:3334-42 pubmed 出版商
  99. Lee J, Chung L, Chen Y, Feng T, Juang H. N-myc downstream-regulated gene 1 downregulates cell proliferation, invasiveness, and tumorigenesis in human oral squamous cell carcinoma. Cancer Lett. 2014;355:242-52 pubmed 出版商
  100. Long F, Cai X, Luo W, Chen L, Li K. Role of aldolase A in osteosarcoma progression and metastasis: in vitro and in vivo evidence. Oncol Rep. 2014;32:2031-7 pubmed 出版商
  101. Boonla O, Kukongviriyapan U, Pakdeechote P, Kukongviriyapan V, Pannangpetch P, Prachaney P, et al. Curcumin improves endothelial dysfunction and vascular remodeling in 2K-1C hypertensive rats by raising nitric oxide availability and reducing oxidative stress. Nitric Oxide. 2014;42:44-53 pubmed 出版商
  102. Santana J, Quagio Grassiotto I. Extracellular matrix remodeling of the testes through the male reproductive cycle in Teleostei fish. Fish Physiol Biochem. 2014;40:1863-75 pubmed 出版商
  103. Roy R, Zurakowski D, Wischhusen J, Frauenhoffer C, Hooshmand S, Kulke M, et al. Urinary TIMP-1 and MMP-2 levels detect the presence of pancreatic malignancies. Br J Cancer. 2014;111:1772-9 pubmed 出版商
  104. Aga M, Bradley J, Wanchu R, Yang Y, Acott T, Keller K. Differential effects of caveolin-1 and -2 knockdown on aqueous outflow and altered extracellular matrix turnover in caveolin-silenced trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2014;55:5497-509 pubmed 出版商
  105. Guan H, Tan J, Zhang F, Gao L, Bai L, Qi D, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12. Histopathology. 2015;66:781-90 pubmed 出版商
  106. Yang Y, Zhang J, Gong Y, Liu X, Bai Y, Xu W, et al. Increased expression of prostasin contributes to early-onset severe preeclampsia through inhibiting trophoblast invasion. J Perinatol. 2015;35:16-22 pubmed 出版商
  107. Calabro S, Maczurek A, Morgan A, Tu T, Wen V, Yee C, et al. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis. PLoS ONE. 2014;9:e90571 pubmed 出版商
  108. Wang F, Cai M, Mai S, Chen J, Bai H, Li Y, et al. Ablation of EIF5A2 induces tumor vasculature remodeling and improves tumor response to chemotherapy via regulation of matrix metalloproteinase 2 expression. Oncotarget. 2014;5:6716-33 pubmed
  109. Guerra C, Carla Lara Pereira Y, Issa J, Luiz K, Guimarães E, Gerlach R, et al. Histological, histochemical, and protein changes after induced malocclusion by occlusion alteration of Wistar rats. Biomed Res Int. 2014;2014:563463 pubmed 出版商
  110. Kopaliani I, Martin M, Zatschler B, Bortlik K, Müller B, Deussen A. Cell-specific and endothelium-dependent regulations of matrix metalloproteinase-2 in rat aorta. Basic Res Cardiol. 2014;109:419 pubmed 出版商
  111. Hadler Olsen E, Solli A, Hafstad A, Winberg J, Uhlin Hansen L. Intracellular MMP-2 activity in skeletal muscle is associated with type II fibers. J Cell Physiol. 2015;230:160-9 pubmed 出版商
  112. Lamarca A, Gella A, Martiáñez T, Segura M, Figueiro Silva J, Grijota Martinez C, et al. Uridine 5'-triphosphate promotes in vitro Schwannoma cell migration through matrix metalloproteinase-2 activation. PLoS ONE. 2014;9:e98998 pubmed 出版商
  113. Raimondi L, Amodio N, Di Martino M, Altomare E, Leotta M, Caracciolo D, et al. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget. 2014;5:3039-54 pubmed
  114. Huyard F, Yzydorczyk C, Castro M, Cloutier A, Bertagnolli M, Sartelet H, et al. Remodeling of aorta extracellular matrix as a result of transient high oxygen exposure in newborn rats: implication for arterial rigidity and hypertension risk. PLoS ONE. 2014;9:e92287 pubmed 出版商
  115. Crisp J, Savariar E, Glasgow H, Ellies L, Whitney M, Tsien R. Dual targeting of integrin ?v?3 and matrix metalloproteinase-2 for optical imaging of tumors and chemotherapeutic delivery. Mol Cancer Ther. 2014;13:1514-25 pubmed 出版商
  116. Chen R, Zhang F, Song L, Shu Y, Lin Y, Dong L, et al. Transcriptome profiling reveals that the SM22?-regulated molecular pathways contribute to vascular pathology. J Mol Cell Cardiol. 2014;72:263-72 pubmed 出版商
  117. Akkad H, Corpeno R, Larsson L. Masseter muscle myofibrillar protein synthesis and degradation in an experimental critical illness myopathy model. PLoS ONE. 2014;9:e92622 pubmed 出版商
  118. Fukai J, Fujita K, Yamoto T, Sasaki T, Uematsu Y, Nakao N. Intracranial extension of adenoid cystic carcinoma: potential involvement of EphA2 expression and epithelial-mesenchymal transition in tumor metastasis: a case report. BMC Res Notes. 2014;7:131 pubmed 出版商
  119. Rahme G, Israel M. Id4 suppresses MMP2-mediated invasion of glioblastoma-derived cells by direct inactivation of Twist1 function. Oncogene. 2015;34:53-62 pubmed 出版商
  120. Hughes B, Fan X, Cho W, Schulz R. MMP-2 is localized to the mitochondria-associated membrane of the heart. Am J Physiol Heart Circ Physiol. 2014;306:H764-70 pubmed 出版商
  121. Moon H, Yurube T, Lozito T, Pohl P, Hartman R, Sowa G, et al. Effects of secreted factors in culture medium of annulus fibrosus cells on microvascular endothelial cells: elucidating the possible pathomechanisms of matrix degradation and nerve in-growth in disc degeneration. Osteoarthritis Cartilage. 2014;22:344-54 pubmed 出版商
  122. Schiffmacher A, Padmanabhan R, Jhingory S, Taneyhill L. Cadherin-6B is proteolytically processed during epithelial-to-mesenchymal transitions of the cranial neural crest. Mol Biol Cell. 2014;25:41-54 pubmed 出版商
  123. Perek B, Malinska A, Misterski M, Ostalska Nowicka D, Zabel M, Perek A, et al. Preexisting high expression of matrix metalloproteinase-2 in tunica media of saphenous vein conduits is associated with unfavorable long-term outcomes after coronary artery bypass grafting. Biomed Res Int. 2013;2013:730721 pubmed 出版商
  124. Chowdhury A, Roy S, Chakraborti T, Dey K, Chakraborti S. Activation of proMMP-2 by U46619 occurs via involvement of p(38)MAPK-NF?B-MT1MMP signaling pathway in pulmonary artery smooth muscle cells. Mol Cell Biochem. 2014;385:53-68 pubmed 出版商
  125. Chik F, Machnes Z, Szyf M. Synergistic anti-breast cancer effect of a combined treatment with the methyl donor S-adenosyl methionine and the DNA methylation inhibitor 5-aza-2'-deoxycytidine. Carcinogenesis. 2014;35:138-44 pubmed 出版商
  126. Nie S, Zhou J, Bai F, Jiang B, Chen J, Zhou J. Role of endothelin A receptor in colon cancer metastasis: in vitro and in vivo evidence. Mol Carcinog. 2014;53 Suppl 1:E85-91 pubmed 出版商
  127. Niu D, Kondo T, Nakazawa T, Oishi N, Kawasaki T, Mochizuki K, et al. Transcription factor Runx2 is a regulator of epithelial-mesenchymal transition and invasion in thyroid carcinomas. Lab Invest. 2012;92:1181-90 pubmed 出版商
  128. Al Alwan M, Olabi S, Ghebeh H, Barhoush E, Tulbah A, Al Tweigeri T, et al. Fascin is a key regulator of breast cancer invasion that acts via the modification of metastasis-associated molecules. PLoS ONE. 2011;6:e27339 pubmed 出版商
  129. Fang J, Zhou H, Zeng C, Yang J, Liu Y, Huang X, et al. MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology. 2011;54:1729-40 pubmed 出版商
  130. Liu H, Chen A, Guo F, Yuan L. A short-hairpin RNA targeting osteopontin downregulates MMP-2 and MMP-9 expressions in prostate cancer PC-3 cells. Cancer Lett. 2010;295:27-37 pubmed 出版商
  131. Liu H, Chen A, Guo F, Yuan L. Influence of osteopontin short hairpin RNA on the proliferation and invasion of human renal cancer cells. J Huazhong Univ Sci Technolog Med Sci. 2010;30:61-8 pubmed 出版商
  132. Seo J, Kim T, Leem Y, Lee K, Park S, Baek I, et al. SK-PC-B70M confers anti-oxidant activity and reduces Abeta levels in the brain of Tg2576 mice. Brain Res. 2009;1261:100-8 pubmed 出版商
  133. Morani A, Barros R, Imamov O, Hultenby K, Arner A, Warner M, et al. Lung dysfunction causes systemic hypoxia in estrogen receptor beta knockout (ERbeta-/-) mice. Proc Natl Acad Sci U S A. 2006;103:7165-9 pubmed