这是一篇来自已证抗体库的有关人类 基质金属蛋白酶-2 (MMP-2) 的综述,是根据112篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合基质金属蛋白酶-2 抗体。
基质金属蛋白酶-2 同义词: CLG4; CLG4A; MMP-2; MMP-II; MONA; TBE-1

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR1184)
  • 免疫印迹; 小鼠; 1:1000; 图 2b, 5b, 5e
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab92536)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b, 5b, 5e). BMC Med (2022) ncbi
domestic rabbit 单克隆(EPR1184)
  • 免疫印迹; 大鼠; 1:1000; 图 6c
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab92536)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6c). Front Cardiovasc Med (2022) ncbi
domestic rabbit 单克隆(EPR1184)
  • 免疫组化-冰冻切片; 小鼠; 图 1f
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab92536)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1f). Redox Biol (2022) ncbi
小鼠 单克隆(6E3F8)
  • 免疫印迹; 人类; 图 2k
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab86607)被用于被用于免疫印迹在人类样本上 (图 2k). BMC Anesthesiol (2021) ncbi
小鼠 单克隆(4D3)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab2462)被用于被用于免疫印迹在大鼠样本上. Stem Cell Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab97779)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5d
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab97779)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Oncogene (2021) ncbi
小鼠 单克隆(6E3F8)
  • 免疫组化; 小鼠; 图 8b
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab86607)被用于被用于免疫组化在小鼠样本上 (图 8b). J Hepatocell Carcinoma (2021) ncbi
小鼠 单克隆(6E3F8)
  • 免疫组化; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 1:1000; 图 6d
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab86607)被用于被用于免疫组化在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). J Oncol (2021) ncbi
domestic rabbit 单克隆(EPR1184)
  • 免疫印迹; 人类; 图 5h
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab215986)被用于被用于免疫印迹在人类样本上 (图 5h). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab227755)被用于被用于免疫组化在小鼠样本上浓度为1:200. Oncol Rep (2021) ncbi
小鼠 单克隆(6E3F8)
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab86607)被用于被用于免疫组化在小鼠样本上 (图 3a). J Am Heart Assoc (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3c
  • 免疫印迹; 小鼠; 1:2000; 图 3h
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab97779)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3h). J Am Heart Assoc (2021) ncbi
domestic rabbit 单克隆(EPR1184)
  • 免疫印迹; 人类; 1:2000; 图 4a
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab92536)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR1184)
  • 免疫印迹; 人类; 1:1000; 图 1f, 5a
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, Cambridge, England, ab92536)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f, 5a). Integr Cancer Ther (2020) ncbi
domestic rabbit 单克隆(EPR1184)
  • 免疫印迹; 大鼠; 1:1000; 图 2c
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab92536)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2c). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(EPR1184)
  • 免疫组化-石蜡切片; 小鼠; 图 7a
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab92536)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). Front Immunol (2019) ncbi
domestic rabbit 单克隆(EPR1184)
  • 免疫印迹; 大鼠; 图 7
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab92536)被用于被用于免疫印迹在大鼠样本上 (图 7). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(EPR1184)
  • 免疫印迹; 人类; 1:1000; 图 6B; 6D; 6F
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab92536)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6B; 6D; 6F). Onco Targets Ther (2017) ncbi
domestic rabbit 单克隆(EPR1184)
  • 免疫印迹; 人类; 1:800; 图 5b
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab92536)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 5b). Oncotarget (2017) ncbi
小鼠 单克隆(4D3)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a, 1e
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab2462)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a, 1e). Onco Targets Ther (2016) ncbi
domestic rabbit 单克隆(EPR1184)
  • 免疫组化-冰冻切片; 小鼠; 图 7a
  • 免疫印迹; 小鼠; 图 4f
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab92536)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7a) 和 被用于免疫印迹在小鼠样本上 (图 4f). Oncogene (2016) ncbi
小鼠 单克隆(6E3F8)
  • 免疫印迹; 人类; 1:1000; 图 7
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab86607)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). J Cell Mol Med (2016) ncbi
小鼠 单克隆(4D3)
  • 免疫印迹; 人类; 1:2000; 图 6
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab2462)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Mol Med Rep (2016) ncbi
小鼠 单克隆(6E3F8)
  • 免疫组化; 人类; 图 2
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab86607)被用于被用于免疫组化在人类样本上 (图 2). Int Braz J Urol (2015) ncbi
小鼠 单克隆(4D3)
  • 免疫组化-石蜡切片; domestic rabbit; 图 2c
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab2462)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上 (图 2c). Gene (2016) ncbi
小鼠 单克隆(6E3F8)
  • 免疫印迹; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab86607)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Cancer Sci (2015) ncbi
小鼠 单克隆(4D3)
  • 免疫组化-石蜡切片; domestic rabbit; 1:500; 图 4
  • 免疫印迹; domestic rabbit; 1:1000; 图 1
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab2462)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:500 (图 4) 和 被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 1). Oncol Lett (2015) ncbi
小鼠 单克隆(6E3F8)
  • 免疫组化; 小鼠; 1:200; 图 6
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab86607)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6). J Cell Mol Med (2015) ncbi
小鼠 单克隆(6E3F8)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab86607)被用于被用于免疫印迹在人类样本上. World J Gastroenterol (2014) ncbi
小鼠 单克隆(6E3F8)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab86607)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2014) ncbi
小鼠 单克隆(6E3F8)
  • 免疫组化-石蜡切片; 人类; 1:150
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab86607)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150. J Perinatol (2015) ncbi
domestic rabbit 单克隆(EPR1184)
  • 免疫印迹基因敲除验证; 小鼠; 图 3
  • 免疫细胞化学; 小鼠; 图 2
艾博抗(上海)贸易有限公司基质金属蛋白酶-2抗体(Abcam, ab92536)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3) 和 被用于免疫细胞化学在小鼠样本上 (图 2). Am J Physiol Heart Circ Physiol (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(4D3)
  • 免疫组化; 小鼠; 1:200; 图 4
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, sc-53630)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4). Cells (2021) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 人类; 1:100; 图 5a
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, sc-13594)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 5a). Cancers (Basel) (2021) ncbi
小鼠 单克隆(2C1)
  • 免疫组化-石蜡切片; 大鼠; 图 7c
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, sc-13594)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 7c). PLoS ONE (2021) ncbi
小鼠 单克隆(8B4)
  • 免疫印迹; 人类; 1:500; 图 3a
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, 13595)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Oncol Lett (2021) ncbi
小鼠 单克隆(8B4)
  • 免疫组化; 小鼠; 图 s3
  • 免疫印迹; 小鼠; 图 s3
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruza, 8B4)被用于被用于免疫组化在小鼠样本上 (图 s3) 和 被用于免疫印迹在小鼠样本上 (图 s3). Cell Commun Signal (2020) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 人类; 1:500; 图 3l
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, sc-13594)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3l). elife (2020) ncbi
小鼠 单克隆(8B4)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1f, 2f
  • 免疫印迹; 大鼠; 1:200; 图 5c
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, sc-13595)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1f, 2f) 和 被用于免疫印迹在大鼠样本上浓度为1:200 (图 5c). Int J Nanomedicine (2020) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 人类; 1:1000; 图 1e
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa, sc-13594)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 人类; 1:500; 图 6d
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa, sc-13594)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6d). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(8B4)
  • 免疫印迹; 小鼠; 图 3d
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, sc-13595)被用于被用于免疫印迹在小鼠样本上 (图 3d). Front Immunol (2019) ncbi
小鼠 单克隆(8B4)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, sc-13595)被用于被用于免疫印迹在人类样本上 (图 5a). Exp Cell Res (2019) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 大鼠; 1:500; 图 5a
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, sc-13594)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5a). Mol Med Rep (2017) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 小鼠; 图 1f
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, sc-13594)被用于被用于免疫印迹在小鼠样本上 (图 1f). Respir Res (2016) ncbi
小鼠 单克隆(8B4)
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, Inc., sc13595)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Exp Med (2016) ncbi
小鼠 单克隆(4D3)
  • 免疫组化-石蜡切片; pigs ; 1:50; 图 s15
圣克鲁斯生物技术基质金属蛋白酶-2抗体(santa Cruz, sc-53630)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:50 (图 s15). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(8B4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, sc-13595)被用于被用于免疫印迹在人类样本上 (图 5). J Cancer (2016) ncbi
小鼠 单克隆(8B4)
  • 免疫印迹; 大鼠; 1:1000; 图 2
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, sc-13595)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Int J Med Sci (2016) ncbi
小鼠 单克隆(8B4)
  • 免疫印迹; 人类; 1:500; 图 3
  • 免疫印迹; 小鼠; 1:500; 图 3
圣克鲁斯生物技术基质金属蛋白酶-2抗体(santa Cruz, sc-13595)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). BMC Cancer (2015) ncbi
小鼠 单克隆(8B4)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 4A
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, sc-13595)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 4A). Diabetol Metab Syndr (2015) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, sc-13594)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Mol Med Rep (2015) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 大鼠; 1:500; 图 8
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, SC13594)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 8). Int J Mol Med (2015) ncbi
小鼠 单克隆(8B4)
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, SC-13595)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 3c). Mol Med Rep (2015) ncbi
小鼠 单克隆(8B4)
  • 免疫印迹; 人类; 1:800; 图 4
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, sc-13595)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 4). Exp Ther Med (2015) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, sc-13594)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2015) ncbi
小鼠 单克隆(8B4)
  • 免疫印迹; 人类; 1:1500
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotech, sc-13595)被用于被用于免疫印迹在人类样本上浓度为1:1500. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(4D3)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类; 1:200
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, SC53630)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:200. Cell Death Dis (2014) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, sc-13594)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2014) ncbi
小鼠 单克隆(4D3)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, sc-53630)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Rep (2014) ncbi
小鼠 单克隆(8B4)
  • 免疫组化-石蜡切片; 人类; 图 1
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, 8B4)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, 2C1)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2014) ncbi
小鼠 单克隆(8B4)
  • 免疫组化-石蜡切片; 小鼠; 1:200
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz, sc-13595)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. J Mol Cell Cardiol (2014) ncbi
小鼠 单克隆(2C1)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术基质金属蛋白酶-2抗体(Santa Cruz Biotechnology, sc-13594)被用于被用于免疫印迹在人类样本上 (图 4). Mol Carcinog (2014) ncbi
赛默飞世尔
小鼠 单克隆(CA-4001 (CA719E3C))
  • 免疫印迹; 小鼠; 图 4b
赛默飞世尔基质金属蛋白酶-2抗体(Thermo Fisher Scientific, MA5-13590)被用于被用于免疫印迹在小鼠样本上 (图 4b). Molecules (2019) ncbi
小鼠 单克隆(2C1-1D12)
  • 免疫细胞化学; 人类; 图 6b
  • 免疫印迹; 人类; 1:1000; 图 6a
赛默飞世尔基质金属蛋白酶-2抗体(Invitrogen, 35-1300Z)被用于被用于免疫细胞化学在人类样本上 (图 6b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Exp Cell Res (2017) ncbi
小鼠 单克隆(F14 P4 D3)
  • 免疫印迹; 人类; 1:500; 图 3a
赛默飞世尔基质金属蛋白酶-2抗体(Thermo Fisher Scientific, MA1-772)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Mol Cells (2016) ncbi
小鼠 单克隆(2C1-1D12)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔基质金属蛋白酶-2抗体(Invitrogen, 35-1300Z)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Int J Mol Sci (2015) ncbi
小鼠 单克隆(VB3)
  • 免疫组化-石蜡切片; 人类; 图 1c
  • 免疫印迹; 人类; 图 5c
赛默飞世尔基质金属蛋白酶-2抗体(Thermo Scientific, VB3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 5c). Mol Hum Reprod (2016) ncbi
小鼠 单克隆(101)
  • 免疫组化-冰冻切片; 非洲爪蛙; 图 1
赛默飞世尔基质金属蛋白酶-2抗体(Invitrogen, 436000)被用于被用于免疫组化-冰冻切片在非洲爪蛙样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(CA-4001 (CA719E3C))
  • 免疫组化; 人类; 1:50
赛默飞世尔基质金属蛋白酶-2抗体(Lab Vision Corporation, CA-4001)被用于被用于免疫组化在人类样本上浓度为1:50. Histopathology (2015) ncbi
小鼠 单克隆(VB3)
赛默飞世尔基质金属蛋白酶-2抗体(ThermoFisher Scientific, MS804)被用于. BMC Res Notes (2014) ncbi
小鼠 单克隆(2C1-1D12)
  • 免疫印迹; 人类; 图 s4
赛默飞世尔基质金属蛋白酶-2抗体(Invitrogen, 2C1-1D12)被用于被用于免疫印迹在人类样本上 (图 s4). PLoS ONE (2011) ncbi
小鼠 单克隆(2C1-1D12)
  • 免疫组化; 人类; 图 3
赛默飞世尔基质金属蛋白酶-2抗体(Invitrogen, 35-1300Z)被用于被用于免疫组化在人类样本上 (图 3). Hepatology (2011) ncbi
小鼠 单克隆(2C1-1D12)
  • 免疫印迹; 人类; 1:300; 图 2
赛默飞世尔基质金属蛋白酶-2抗体(ZYMED, 35-1300Z)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 2). Cancer Lett (2010) ncbi
小鼠 单克隆(2C1-1D12)
  • 免疫印迹; 人类; 图 7
赛默飞世尔基质金属蛋白酶-2抗体(ZYMED, 35-1300Z)被用于被用于免疫印迹在人类样本上 (图 7). J Huazhong Univ Sci Technolog Med Sci (2010) ncbi
小鼠 单克隆(CA-4001 (CA719E3C))
  • 免疫印迹; 小鼠; 图 3a
赛默飞世尔基质金属蛋白酶-2抗体(Lab Vision, MS-567-P0)被用于被用于免疫印迹在小鼠样本上 (图 3a). Brain Res (2009) ncbi
小鼠 单克隆(101)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔基质金属蛋白酶-2抗体(Zymed, noca)被用于被用于免疫印迹在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (2006) ncbi
Novus Biologicals
小鼠 单克隆(8B4)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
Novus Biologicals基质金属蛋白酶-2抗体(Novus Biologicals, NB200-114)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Cell Metab (2019) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D4M2N)
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(CST, 40994)被用于被用于免疫印迹在小鼠样本上 (图 6e). Signal Transduct Target Ther (2022) ncbi
domestic rabbit 单克隆(D4M2N)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 40994)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Biomedicines (2021) ncbi
domestic rabbit 单克隆(D4M2N)
  • 免疫印迹; 人类; 1:3,500; 图 4d
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 40994)被用于被用于免疫印迹在人类样本上浓度为1:3,500 (图 4d). Clin Transl Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a, 5c
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a, 5c). Mol Med Rep (2021) ncbi
domestic rabbit 单克隆(D4M2N)
  • 免疫印迹; 人类; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(CST, D4M2N)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling Technology, 4022S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(D4M2N)
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 40994)被用于被用于免疫印迹在人类样本上 (图 4g). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2g: 2h, 2i
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(CST, 4022)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g: 2h, 2i). Am J Cancer Res (2020) ncbi
domestic rabbit 单克隆(D4M2N)
  • 免疫印迹; 人类; 图 3i
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 40994)被用于被用于免疫印迹在人类样本上 (图 3i). Mol Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3b
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling Technology, 4022)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3b). Int J Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于免疫印迹在人类样本上 (图 2e). Cell Signal (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Mol Med Rep (2019) ncbi
domestic rabbit 单克隆(D4M2N)
  • 免疫印迹; 人类; 图 6a, 6b
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(CST, 40994)被用于被用于免疫印迹在人类样本上 (图 6a, 6b). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Redox Biol (2019) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3D
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3D). Oncol Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(cell signalling, 4022)被用于被用于免疫印迹在人类样本上 (图 7b). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于免疫印迹在人类样本上 (图 5e). Br J Cancer (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于免疫印迹在人类样本上 (图 3c). Biomed Pharmacother (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:800; 图 3c
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 3c). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s4a
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling Technology, 4022)被用于被用于免疫印迹在人类样本上 (图 s4a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(santa Cruz, 4022)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(cell signalling, 4022S)被用于被用于免疫印迹在人类样本上 (图 5a). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling Technology, 4022)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling Technology, 4022S)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 8). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling Technologies, 4022)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司基质金属蛋白酶-2抗体(Cell Signaling, 4022)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
Bioworld
domestic rabbit 多克隆(L638)
  • 免疫印迹; 人类; 1:1000; 图 4
Bioworld基质金属蛋白酶-2抗体(Bioworld Technology, BS1236)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆(L638)
  • 免疫印迹; 人类; 图 4
Bioworld基质金属蛋白酶-2抗体(Bioworld Tech, BS1236)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆(L638)
  • 免疫印迹; 人类; 图 2a
  • 免疫组化; 大鼠; 图 9a
Bioworld基质金属蛋白酶-2抗体(Bioworld Technology, BS1236)被用于被用于免疫印迹在人类样本上 (图 2a) 和 被用于免疫组化在大鼠样本上 (图 9a). Acta Biomater (2016) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇基质金属蛋白酶-2抗体(Sigma, M4065)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2016) ncbi
文章列表
  1. Chen T, Shi Z, Zhao Y, Meng X, Zhao S, Zheng L, et al. LncRNA Airn maintains LSEC differentiation to alleviate liver fibrosis via the KLF2-eNOS-sGC pathway. BMC Med. 2022;20:335 pubmed 出版商
  2. Yang M, Xiong J, Zou Q, Wang X, Hu K, Zhao Q. Sinapic Acid Attenuated Cardiac Remodeling After Myocardial Infarction by Promoting Macrophage M2 Polarization Through the PPARγ Pathway. Front Cardiovasc Med. 2022;9:915903 pubmed 出版商
  3. Yu L, Zhang J, Gao A, Wang Z, Yu F, Guo X, et al. An intersegmental single-cell profile reveals aortic heterogeneity and identifies a novel Malat1+ vascular smooth muscle subtype involved in abdominal aortic aneurysm formation. Signal Transduct Target Ther. 2022;7:125 pubmed 出版商
  4. Dang G, Li T, Yang D, Yang G, Du X, Yang J, et al. T lymphocyte-derived extracellular vesicles aggravate abdominal aortic aneurysm by promoting macrophage lipid peroxidation and migration via pyruvate kinase muscle isozyme 2. Redox Biol. 2022;50:102257 pubmed 出版商
  5. Ancona S, Orpianesi E, Bernardelli C, Chiaramonte E, Chiaramonte R, Terraneo S, et al. Differential Modulation of Matrix Metalloproteinases-2 and -7 in LAM/TSC Cells. Biomedicines. 2021;9: pubmed 出版商
  6. Xia R, Liu T, Li W, Xu X. RNA-binding protein RBM24 represses colorectal tumourigenesis by stabilising PTEN mRNA. Clin Transl Med. 2021;11:e383 pubmed 出版商
  7. Chen R, Sheng C, Ma R, Zhang L, Yang L, Chen Y. PLAC1 is an independent predictor of poor survival, and promotes cell proliferation and invasion in cervical cancer. Mol Med Rep. 2021;24: pubmed 出版商
  8. Kang X, Li H, Zhang Z. Sevoflurane blocks glioma malignant development by upregulating circRELN through circRELN-mediated miR-1290/RORA axis. BMC Anesthesiol. 2021;21:213 pubmed 出版商
  9. Ji Z, Chen S, Cui J, Huang W, Zhang R, Wei J, et al. Oct4-dependent FoxC1 activation improves the survival and neovascularization of mesenchymal stem cells under myocardial ischemia. Stem Cell Res Ther. 2021;12:483 pubmed 出版商
  10. Andries L, Masin L, Navarro M, Zaunz S, Claes M, Bergmans S, et al. MMP2 Modulates Inflammatory Response during Axonal Regeneration in the Murine Visual System. Cells. 2021;10: pubmed 出版商
  11. Zhang Z, Lin M, Wang J, Yang F, Yang P, Liu Y, et al. Calycosin inhibits breast cancer cell migration and invasion by suppressing EMT via BATF/TGF-β1. Aging (Albany NY). 2021;13:16009-16023 pubmed 出版商
  12. Qiao Y, Jin T, Guan S, Cheng S, Wen S, Zeng H, et al. Long non-coding RNA Lnc-408 promotes invasion and metastasis of breast cancer cell by regulating LIMK1. Oncogene. 2021;40:4198-4213 pubmed 出版商
  13. Budden T, Gaudy Marqueste C, Porter A, Kay E, Gurung S, Earnshaw C, et al. Ultraviolet light-induced collagen degradation inhibits melanoma invasion. Nat Commun. 2021;12:2742 pubmed 出版商
  14. Zhang Y, Zhang H, Wu S. LncRNA-CCDC144NL-AS1 Promotes the Development of Hepatocellular Carcinoma by Inducing WDR5 Expression via Sponging miR-940. J Hepatocell Carcinoma. 2021;8:333-348 pubmed 出版商
  15. Chen S, Han C, Bian S, Chen J, Feng X, Li G, et al. Chemerin-9 Attenuates Experimental Abdominal Aortic Aneurysm Formation in ApoE-/- Mice. J Oncol. 2021;2021:6629204 pubmed 出版商
  16. Zhang X, Huang Z, Wang J, Ma Z, Yang J, Corey E, et al. Targeting Feedforward Loops Formed by Nuclear Receptor RORγ and Kinase PBK in mCRPC with Hyperactive AR Signaling. Cancers (Basel). 2021;13: pubmed 出版商
  17. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  18. Guo J, Zhu H, Li Q, Dong J, Xiong W, Yu K. SPRY4 suppresses proliferation and induces apoptosis of colorectal cancer cells by repressing oncogene EZH2. Aging (Albany NY). 2021;13:11665-11677 pubmed 出版商
  19. Liu X, Zhang H, Zhou P, Yu Y, Zhang H, Chen L, et al. CREB1 acts via the miR‑922/ARID2 axis to enhance malignant behavior of liver cancer cells. Oncol Rep. 2021;45: pubmed 出版商
  20. Zhou M, Wang X, Shi Y, Ding Y, Li X, Xie T, et al. Deficiency of ITGAM Attenuates Experimental Abdominal Aortic Aneurysm in Mice. J Am Heart Assoc. 2021;10:e019900 pubmed 出版商
  21. Brito V, Patrocinio M, Sousa M, Barreto A, Frasnelli S, Lara V, et al. Mast cells contribute to alveolar bone loss in Spontaneously Hypertensive Rats with periodontal disease regulating cytokines production. PLoS ONE. 2021;16:e0247372 pubmed 出版商
  22. Yang Z, Wang Y, Zhang L, Zhao C, Wang D. Phosphorylated form of pyruvate dehydrogenase α1 mediates tumor necrosis factor α-induced glioma cell migration. Oncol Lett. 2021;21:176 pubmed 出版商
  23. Sharma N, Hans C. Interleukin 12p40 Deficiency Promotes Abdominal Aortic Aneurysm by Activating CCN2/MMP2 Pathways. J Am Heart Assoc. 2021;10:e017633 pubmed 出版商
  24. Hexiao T, Yuquan B, Lecai X, Yanhong W, Li S, Weidong H, et al. Knockdown of CENPF inhibits the progression of lung adenocarcinoma mediated by ERβ2/5 pathway. Aging (Albany NY). 2021;13:2604-2625 pubmed 出版商
  25. You X, Wu J, Wang Y, Liu Q, Cheng Z, Zhao X, et al. Galectin-1 promotes vasculogenic mimicry in gastric adenocarcinoma via the Hedgehog/GLI signaling pathway. Aging (Albany NY). 2020;12:21837-21853 pubmed 出版商
  26. Wang B, Li Q, Wang J, Zhao S, Nashun B, Qin L, et al. Plasmodium infection inhibits tumor angiogenesis through effects on tumor-associated macrophages in a murine implanted hepatoma model. Cell Commun Signal. 2020;18:157 pubmed 出版商
  27. Pathak T, Gueguinou M, Walter V, Delierneux C, Johnson M, Zhang X, et al. Dichotomous role of the human mitochondrial Na+/Ca2+/Li+ exchanger NCLX in colorectal cancer growth and metastasis. elife. 2020;9: pubmed 出版商
  28. Chen Z, Zhang J, Xue H, Qian M, Guo X, Gao X, et al. Nitidine Chloride Is a Potential Alternative Therapy for Glioma Through Inducing Endoplasmic Reticulum Stress and Alleviating Epithelial-Mesenchymal Transition. Integr Cancer Ther. 2020;19:1534735419900927 pubmed 出版商
  29. Lin Y, Huang X, Chang K, Liao K, Tsai N. Encapsulated n-Butylidenephthalide Efficiently Crosses the Blood-Brain Barrier and Suppresses Growth of Glioblastoma. Int J Nanomedicine. 2020;15:749-760 pubmed 出版商
  30. Li M, Wu P, Yang Z, Deng S, Ni L, Zhang Y, et al. miR-193a-5p promotes pancreatic cancer cell metastasis through SRSF6-mediated alternative splicing of OGDHL and ECM1. Am J Cancer Res. 2020;10:38-59 pubmed
  31. Wang H, Chen Z, Wang S, Gao X, Qian M, Qiu W, et al. TGFβ1-induced beta-site APP-cleaving enzyme 2 upregulation promotes tumorigenesis through the NF-κB signalling pathway in human gliomas. Mol Oncol. 2020;14:407-425 pubmed 出版商
  32. Wu X, Chen S, Lu C. Amyloid precursor protein promotes the migration and invasion of breast cancer cells by regulating the MAPK signaling pathway. Int J Mol Med. 2019;: pubmed 出版商
  33. Kramer M, Markart P, Drakopanagiotakis F, Mamazhakypov A, Schaefer L, Didiasova M, et al. Pirfenidone inhibits motility of NSCLC cells by interfering with the urokinase system. Cell Signal. 2020;65:109432 pubmed 出版商
  34. Shan L, Liu W, Zhan Y. Sulfated polysaccharide of Sepiella maindroni ink targets Akt and overcomes resistance to the FGFR inhibitor AZD4547 in bladder cancer. Aging (Albany NY). 2019;11:7780-7795 pubmed 出版商
  35. Yang L, Hong Q, Xu S, Kuang X, Di G, Liu G, et al. Downregulation of transgelin 2 promotes breast cancer metastasis by activating the reactive oxygen species/nuclear factor‑κB signaling pathway. Mol Med Rep. 2019;20:4045-4258 pubmed 出版商
  36. He M, Shen P, Qiu C, Wang J. miR-627-3p inhibits osteosarcoma cell proliferation and metastasis by targeting PTN. Aging (Albany NY). 2019;11:5744-5756 pubmed 出版商
  37. Yin Y, Zhang Q, Zhao Q, Ding G, Wei C, Chang L, et al. Tongxinluo Attenuates Myocardiac Fibrosis after Acute Myocardial Infarction in Rats via Inhibition of Endothelial-to-Mesenchymal Transition. Biomed Res Int. 2019;2019:6595437 pubmed 出版商
  38. Lee Y, Yeo I, Kim K, Han S, Hong J. Inhibition of Lung Tumor Development in ApoE Knockout Mice via Enhancement of TREM-1 Dependent NK Cell Cytotoxicity. Front Immunol. 2019;10:1379 pubmed 出版商
  39. Kong L, Wu Z, Zhao Y, Lu X, Shi H, Liu S, et al. Qigesan reduces the motility of esophageal cancer cells via inhibiting Gas6/Axl and NF-κB expression. Biosci Rep. 2019;: pubmed 出版商
  40. Li Q, Youn J, Siu K, Murugesan P, Zhang Y, Cai H. Knockout of dihydrofolate reductase in mice induces hypertension and abdominal aortic aneurysm via mitochondrial dysfunction. Redox Biol. 2019;24:101185 pubmed 出版商
  41. Yi R, Zhang J, Sun P, Qian Y, Zhao X. Protective Effects of Kuding Tea (Ilex kudingcha C. J. Tseng) Polyphenols on UVB-Induced Skin Aging in SKH1 Hairless Mice. Molecules. 2019;24: pubmed 出版商
  42. Thompson P, Shah A, Ntranos V, Van Gool F, Atkinson M, Bhushan A. Targeted Elimination of Senescent Beta Cells Prevents Type 1 Diabetes. Cell Metab. 2019;29:1045-1060.e10 pubmed 出版商
  43. Guan H, Li N, Wang X, Shan X, Li Z, Lin Z. Role of Paip1 on angiogenesis and invasion in pancreatic cancer. Exp Cell Res. 2019;376:198-209 pubmed 出版商
  44. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  45. Zhai L, Liu M, Wang T, Zhang H, Li S, Guo Y. Picroside II protects the blood-brain barrier by inhibiting the oxidative signaling pathway in cerebral ischemia-reperfusion injury. PLoS ONE. 2017;12:e0174414 pubmed 出版商
  46. Hu X, Zhang Z, Liang Z, Xie D, Zhang T, Yu D, et al. Downregulation of feline sarcoma-related protein inhibits cell migration, invasion and epithelial-mesenchymal transition via the ERK/AP-1 pathway in bladder urothelial cell carcinoma. Oncol Lett. 2017;13:686-694 pubmed 出版商
  47. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  48. Li J, Liu Y, Yin Y. ARHGAP1 overexpression inhibits proliferation, migration and invasion of C-33A and SiHa cell lines. Onco Targets Ther. 2017;10:691-701 pubmed 出版商
  49. Mandl M, Zhang S, Ulrich M, Schmoeckel E, Mayr D, Vollmar A, et al. Inhibition of Cdk5 induces cell death of tumor-initiating cells. Br J Cancer. 2017;116:912-922 pubmed 出版商
  50. Dong Q, Fu L, Zhao Y, Tan S, Wang E. Derlin-1 overexpression confers poor prognosis in muscle invasive bladder cancer and contributes to chemoresistance and invasion through PI3K/AKT and ERK/MMP signaling. Oncotarget. 2017;8:17059-17069 pubmed 出版商
  51. Xu J, Zhang X, Wang H, Ge S, Gao T, Song L, et al. HCRP1 downregulation promotes hepatocellular carcinoma cell migration and invasion through the induction of EGFR activation and epithelial-mesenchymal transition. Biomed Pharmacother. 2017;88:421-429 pubmed 出版商
  52. Gan J, Wang F, Mu D, Qu Y, Luo R, Wang Q. RNA interference targeting Aurora-A sensitizes glioblastoma cells to temozolomide chemotherapy. Oncol Lett. 2016;12:4515-4523 pubmed 出版商
  53. Torres Martínez A, Gallardo Vera J, Lara Holguin A, Montano L, Rendón Huerta E. Claudin-6 enhances cell invasiveness through claudin-1 in AGS human adenocarcinoma gastric cancer cells. Exp Cell Res. 2017;350:226-235 pubmed 出版商
  54. Zhang H, Zhang P, Gao Y, Li C, Wang H, Chen L, et al. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep. 2017;15:57-64 pubmed 出版商
  55. Burgy O, Bellaye P, Causse S, Beltramo G, Wettstein G, Boutanquoi P, et al. Pleural inhibition of the caspase-1/IL-1? pathway diminishes profibrotic lung toxicity of bleomycin. Respir Res. 2016;17:162 pubmed
  56. Liu Y, Wang T, Zhang R, Fu W, Wang X, Wang F, et al. Calorie restriction protects against experimental abdominal aortic aneurysms in mice. J Exp Med. 2016;213:2473-2488 pubmed
  57. Rai V, Dietz N, Dilisio M, Radwan M, Agrawal D. Vitamin D attenuates inflammation, fatty infiltration, and cartilage loss in the knee of hyperlipidemic microswine. Arthritis Res Ther. 2016;18:203 pubmed 出版商
  58. Shi D, Shi G, Xie J, Du X, Yang H. MicroRNA-27a Inhibits Cell Migration and Invasion of Fibroblast-Like Synoviocytes by Targeting Follistatin-Like Protein 1 in Rheumatoid Arthritis. Mol Cells. 2016;39:611-8 pubmed 出版商
  59. Lu X, Duan L, Xie H, Lu X, Lu D, Lu D, et al. Evaluation of MMP-9 and MMP-2 and their suppressor TIMP-1 and TIMP-2 in adenocarcinoma of esophagogastric junction. Onco Targets Ther. 2016;9:4343-9 pubmed 出版商
  60. Xiao B, Chen D, Luo S, Hao W, Jing F, Liu T, et al. Extracellular translationally controlled tumor protein promotes colorectal cancer invasion and metastasis through Cdc42/JNK/ MMP9 signaling. Oncotarget. 2016;7:50057-50073 pubmed 出版商
  61. Tsai S, Huang P, Hsu Y, Peng Y, Lee C, Wang J, et al. Inhibition of hypoxia inducible factor-1α attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases. Sci Rep. 2016;6:28612 pubmed 出版商
  62. Wang X, Wang N, Li H, Liu M, Cao F, Yu X, et al. Up-Regulation of PAI-1 and Down-Regulation of uPA Are Involved in Suppression of Invasiveness and Motility of Hepatocellular Carcinoma Cells by a Natural Compound Berberine. Int J Mol Sci. 2016;17:577 pubmed 出版商
  63. Liang H, Zhang Q, Lu J, Yang G, Tian N, Wang X, et al. MSX2 Induces Trophoblast Invasion in Human Placenta. PLoS ONE. 2016;11:e0153656 pubmed 出版商
  64. Lim S, Yuzhalin A, Gordon Weeks A, Muschel R. Tumor-infiltrating monocytes/macrophages promote tumor invasion and migration by upregulating S100A8 and S100A9 expression in cancer cells. Oncogene. 2016;35:5735-5745 pubmed 出版商
  65. Zeng W, Liu Q, Chen Z, Wu X, Zhong Y, Wu J. Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-?B Pathway. J Cancer. 2016;7:746-57 pubmed 出版商
  66. Lai C, Tsai C, Kuo W, Ho T, Day C, Pai P, et al. Multi-Strain Probiotics Inhibit Cardiac Myopathies and Autophagy to Prevent Heart Injury in High-Fat Diet-Fed Rats. Int J Med Sci. 2016;13:277-85 pubmed 出版商
  67. Huang M, Liu T, Ma P, Mitteer R, Zhang Z, Kim H, et al. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J Clin Invest. 2016;126:1801-14 pubmed 出版商
  68. Serban A, Stanca L, Geicu O, Munteanu M, Dinischiotu A. RAGE and TGF-β1 Cross-Talk Regulate Extracellular Matrix Turnover and Cytokine Synthesis in AGEs Exposed Fibroblast Cells. PLoS ONE. 2016;11:e0152376 pubmed 出版商
  69. Hu W, Xiao L, Cao C, Hua S, Wu D. UBE2T promotes nasopharyngeal carcinoma cell proliferation, invasion, and metastasis by activating the AKT/GSK3β/β-catenin pathway. Oncotarget. 2016;7:15161-72 pubmed 出版商
  70. Zhang M, Linghu E, Zhan Q, He T, Cao B, Brock M, et al. Methylation of DACT2 accelerates esophageal cancer development by activating Wnt signaling. Oncotarget. 2016;7:17957-69 pubmed 出版商
  71. Shukla S, Sinha S, Khan S, Kumar S, Singh K, Mitra K, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep. 2016;6:21860 pubmed 出版商
  72. Liu T, Fang Z, Wang G, Shi M, Wang X, Jiang K, et al. Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells. Oncol Lett. 2016;11:182-188 pubmed
  73. Zhao L, Li S, Gan L, Li C, Qiu Z, Feng Y, et al. Paired box 5 is a frequently methylated lung cancer tumour suppressor gene interfering β-catenin signalling and GADD45G expression. J Cell Mol Med. 2016;20:842-54 pubmed 出版商
  74. Cui L, Gao B, Cao Z, Chen X, Zhang S, Zhang W. Downregulation of B7-H4 in the MHCC97-H hepatocellular carcinoma cell line by arsenic trioxide. Mol Med Rep. 2016;13:2032-8 pubmed 出版商
  75. Shih M, Pan K, Cherng J. Possible Mechanisms of Di(2-ethylhexyl) Phthalate-Induced MMP-2 and MMP-9 Expression in A7r5 Rat Vascular Smooth Muscle Cells. Int J Mol Sci. 2015;16:28800-11 pubmed 出版商
  76. Silva M, Matheus W, Garcia P, Stopiglia R, Billis A, Ferreira U, et al. Characterization of reactive stroma in prostate cancer: involvement of growth factors, metalloproteinase matrix, sexual hormones receptors and prostatic stem cells. Int Braz J Urol. 2015;41:849-58 pubmed 出版商
  77. Pei S, Yang X, Wang H, Zhang H, Zhou B, Zhang D, et al. Plantamajoside, a potential anti-tumor herbal medicine inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of matrix metalloproteinase-9 and -2. BMC Cancer. 2015;15:965 pubmed 出版商
  78. Peng B, Zhu H, Klausen C, Ma L, Wang Y, Leung P. GnRH regulates trophoblast invasion via RUNX2-mediated MMP2/9 expression. Mol Hum Reprod. 2016;22:119-29 pubmed 出版商
  79. Al Trad B, Ashankyty I, Alaraj M. Progesterone ameliorates diabetic nephropathy in streptozotocin-induced diabetic Rats. Diabetol Metab Syndr. 2015;7:97 pubmed 出版商
  80. Eiseler T, Wille C, Koehler C, Illing A, Seufferlein T. Protein Kinase D2 Assembles a Multiprotein Complex at the Trans-Golgi Network to Regulate Matrix Metalloproteinase Secretion. J Biol Chem. 2016;291:462-77 pubmed 出版商
  81. Zhang L, Zou W. Inhibition of integrin β1 decreases the malignancy of ovarian cancer cells and potentiates anticancer therapy via the FAK/STAT1 signaling pathway. Mol Med Rep. 2015;12:7869-76 pubmed 出版商
  82. Bhattarai G, Poudel S, Kook S, Lee J. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis. Acta Biomater. 2016;29:398-408 pubmed 出版商
  83. Zhang Z, Yang P, Yao P, Dai D, Yu Y, Zhou Y, et al. Identification of transcription factors and gene clusters in rabbit smooth muscle cells during high flow-induced vascular remodeling via microarray. Gene. 2016;575:407-414 pubmed 出版商
  84. Yan G, Wang Q, Hu S, Wang D, Qiao Y, Ma G, et al. Digoxin inhibits PDGF-BB-induced VSMC proliferation and migration through an increase in ILK signaling and attenuates neointima formation following carotid injury. Int J Mol Med. 2015;36:1001-11 pubmed 出版商
  85. Chang L, Zhao D, Liu H, Wang Q, Zhang P, Li C, et al. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma. Mol Med Rep. 2015;12:6702-10 pubmed 出版商
  86. Picot N, Guerrette R, Beauregard A, Jean S, Michaud P, Harquail J, et al. Mammaglobin 1 promotes breast cancer malignancy and confers sensitivity to anticancer drugs. Mol Carcinog. 2016;55:1150-62 pubmed 出版商
  87. Gan L, Zuo G, Wang T, Min J, Wang Y, Wang Y, et al. Expression of WTH3 in breast cancer tissue and the effects on the biological behavior of breast cancer cells. Exp Ther Med. 2015;10:154-158 pubmed
  88. Han Y, Lee J, Lee S. Fucoidan inhibits the migration and proliferation of HT-29 human colon cancer cells via the phosphoinositide-3 kinase/Akt/mechanistic target of rapamycin pathways. Mol Med Rep. 2015;12:3446-3452 pubmed 出版商
  89. Liu X, Wang J, Li S, Li L, Huang M, Zhang Y, et al. Histone deacetylase 3 expression correlates with vasculogenic mimicry through the phosphoinositide3-kinase / ERK-MMP-laminin5γ2 signaling pathway. Cancer Sci. 2015;106:857-66 pubmed 出版商
  90. Wang G, Liu G, Ye Y, Fu Y, Zhang X. The role of microRNA-1274a in the tumorigenesis of gastric cancer: accelerating cancer cell proliferation and migration via directly targeting FOXO4. Biochem Biophys Res Commun. 2015;459:629-35 pubmed 出版商
  91. Qi J, Wang W, Li F. Combination of interventional adenovirus-p53 introduction and ultrasonic irradiation in the treatment of liver cancer. Oncol Lett. 2015;9:1297-1302 pubmed
  92. Sun H, Zhang X, Zhao L, Zhen X, Huang S, Wang S, et al. Attenuation of atherosclerotic lesions in diabetic apolipoprotein E-deficient mice using gene silencing of macrophage migration inhibitory factor. J Cell Mol Med. 2015;19:836-49 pubmed 出版商
  93. Wiechmann A, Ceresa B, Howard E. Diurnal variation of tight junction integrity associates inversely with matrix metalloproteinase expression in Xenopus laevis corneal epithelium: implications for circadian regulation of homeostatic surface cell desquamation. PLoS ONE. 2014;9:e113810 pubmed 出版商
  94. Chavali P, Saini R, Zhai Q, Vizlin Hodzic D, Venkatabalasubramanian S, Hayashi A, et al. TLX activates MMP-2, promotes self-renewal of tumor spheres in neuroblastoma and correlates with poor patient survival. Cell Death Dis. 2014;5:e1502 pubmed 出版商
  95. Chen R, Xu B, Chen S, Chen S, Zhang T, Ren J, et al. Effect of oridonin-mediated hallmark changes on inflammatory pathways in human pancreatic cancer (BxPC-3) cells. World J Gastroenterol. 2014;20:14895-903 pubmed 出版商
  96. Lin C, Chen P, Hsu L, Kuo D, Chu S, Hsieh Y. Inhibition of the invasion and migration of renal carcinoma 786‑o‑si3 cells in vitro and in vivo by Koelreuteria formosana extract. Mol Med Rep. 2014;10:3334-42 pubmed 出版商
  97. Lee J, Chung L, Chen Y, Feng T, Juang H. N-myc downstream-regulated gene 1 downregulates cell proliferation, invasiveness, and tumorigenesis in human oral squamous cell carcinoma. Cancer Lett. 2014;355:242-52 pubmed 出版商
  98. Long F, Cai X, Luo W, Chen L, Li K. Role of aldolase A in osteosarcoma progression and metastasis: in vitro and in vivo evidence. Oncol Rep. 2014;32:2031-7 pubmed 出版商
  99. Guan H, Tan J, Zhang F, Gao L, Bai L, Qi D, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12. Histopathology. 2015;66:781-90 pubmed 出版商
  100. Yang Y, Zhang J, Gong Y, Liu X, Bai Y, Xu W, et al. Increased expression of prostasin contributes to early-onset severe preeclampsia through inhibiting trophoblast invasion. J Perinatol. 2015;35:16-22 pubmed 出版商
  101. Calabro S, Maczurek A, Morgan A, Tu T, Wen V, Yee C, et al. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis. PLoS ONE. 2014;9:e90571 pubmed 出版商
  102. Raimondi L, Amodio N, Di Martino M, Altomare E, Leotta M, Caracciolo D, et al. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget. 2014;5:3039-54 pubmed
  103. Chen R, Zhang F, Song L, Shu Y, Lin Y, Dong L, et al. Transcriptome profiling reveals that the SM22?-regulated molecular pathways contribute to vascular pathology. J Mol Cell Cardiol. 2014;72:263-72 pubmed 出版商
  104. Fukai J, Fujita K, Yamoto T, Sasaki T, Uematsu Y, Nakao N. Intracranial extension of adenoid cystic carcinoma: potential involvement of EphA2 expression and epithelial-mesenchymal transition in tumor metastasis: a case report. BMC Res Notes. 2014;7:131 pubmed 出版商
  105. Hughes B, Fan X, Cho W, Schulz R. MMP-2 is localized to the mitochondria-associated membrane of the heart. Am J Physiol Heart Circ Physiol. 2014;306:H764-70 pubmed 出版商
  106. Nie S, Zhou J, Bai F, Jiang B, Chen J, Zhou J. Role of endothelin A receptor in colon cancer metastasis: in vitro and in vivo evidence. Mol Carcinog. 2014;53 Suppl 1:E85-91 pubmed 出版商
  107. Al Alwan M, Olabi S, Ghebeh H, Barhoush E, Tulbah A, Al Tweigeri T, et al. Fascin is a key regulator of breast cancer invasion that acts via the modification of metastasis-associated molecules. PLoS ONE. 2011;6:e27339 pubmed 出版商
  108. Fang J, Zhou H, Zeng C, Yang J, Liu Y, Huang X, et al. MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology. 2011;54:1729-40 pubmed 出版商
  109. Liu H, Chen A, Guo F, Yuan L. A short-hairpin RNA targeting osteopontin downregulates MMP-2 and MMP-9 expressions in prostate cancer PC-3 cells. Cancer Lett. 2010;295:27-37 pubmed 出版商
  110. Liu H, Chen A, Guo F, Yuan L. Influence of osteopontin short hairpin RNA on the proliferation and invasion of human renal cancer cells. J Huazhong Univ Sci Technolog Med Sci. 2010;30:61-8 pubmed 出版商
  111. Seo J, Kim T, Leem Y, Lee K, Park S, Baek I, et al. SK-PC-B70M confers anti-oxidant activity and reduces Abeta levels in the brain of Tg2576 mice. Brain Res. 2009;1261:100-8 pubmed 出版商
  112. Morani A, Barros R, Imamov O, Hultenby K, Arner A, Warner M, et al. Lung dysfunction causes systemic hypoxia in estrogen receptor beta knockout (ERbeta-/-) mice. Proc Natl Acad Sci U S A. 2006;103:7165-9 pubmed