这是一篇来自已证抗体库的有关人类 基质金属蛋白酶-9 (MMP-9) 的综述,是根据150篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合基质金属蛋白酶-9 抗体。
基质金属蛋白酶-9 同义词: CLG4B; GELB; MANDP2; MMP-9

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP1255Y)
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, EP1255Y)被用于被用于免疫印迹在人类样本上 (图 4b). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3i
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3i). BMC Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5c
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, Ab38898)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Oncogene (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6c
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6c). BMC Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 e5e
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫印迹在小鼠样本上 (图 e5e). Nature (2020) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫印迹; 人类; 图 7e
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫印迹在人类样本上 (图 7e). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫印迹; 大鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EP1255Y)
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab137867)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). J Cancer (2020) ncbi
小鼠 单克隆(56-2A4)
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 3d
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, 56-2A4)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 3d). Cancers (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 7df
  • 免疫印迹; 人类; 1:1000; 图 7a
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 7df) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫印迹; 大鼠; 1:1000; 图 2c
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2c). Biomed Res Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:25; 图 7a
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:25 (图 7a). Oncotarget (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab73734)被用于被用于免疫印迹在人类样本上 (图 3d). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3c
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫印迹在小鼠样本上 (图 3c). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 5a
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). J Cell Physiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(EP1255Y)
  • 免疫印迹; 人类; 1:1000; 图 s3
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, EP1255Y)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). Mol Hum Reprod (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s3c
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, Ab 38898)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s3c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab73734)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Mol Med Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 5c
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 5c). Exp Ther Med (2017) ncbi
domestic rabbit 单克隆(EP1255Y)
  • 免疫印迹; 人类; 图 7a
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab137867)被用于被用于免疫印迹在人类样本上 (图 7a). FASEB J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2e
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫印迹在小鼠样本上 (图 2e). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫印迹; 人类; 1:800; 图 5b
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 5b). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab73734)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2) 和 被用于免疫印迹在人类样本上 (图 3). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3h
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3h). Nat Med (2017) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Mol Med Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 2a
  • 免疫印迹; 小鼠; 1:2000; 图 2b
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2b). Nat Med (2016) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, EP1254)被用于被用于免疫印迹在人类样本上 (图 5a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 1:500; 图 s1f
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫印迹在犬样本上浓度为1:500 (图 s1f). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(56-2A4)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1b, 1f
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab58803)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1b, 1f). Onco Targets Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫印迹在小鼠样本上 (图 8). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1h
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫印迹在人类样本上 (图 1h). J Cell Biol (2016) ncbi
单克隆
  • 免疫组化; 小鼠; 图 6d
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab119906)被用于被用于免疫组化在小鼠样本上 (图 6d). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3c
  • 免疫印迹; 人类; 1:1000; 图 2a
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(abcam, ab76003)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Am J Transl Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 st3
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫印迹在人类样本上 (图 st3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EP1255Y)
  • 免疫印迹; 人类; 1:1000; 图 5d
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab137867)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EP1255Y)
  • 免疫组化-冰冻切片; 小鼠; 图 7c
  • 免疫印迹; 小鼠; 图 4f
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab137867)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7c) 和 被用于免疫印迹在小鼠样本上 (图 4f). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 抑制或激活实验; 小鼠; 图 4h
  • 免疫组化-冰冻切片; 小鼠; 图 4i
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于抑制或激活实验在小鼠样本上 (图 4h) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 4i). Cancer Discov (2016) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫印迹; 人类; 图 3e
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫印迹在人类样本上 (图 3e). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫印迹在小鼠样本上 (图 5). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫印迹; 人类; 1:5000; 图 4
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(CST, ab76003)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Biotechnol Bioeng (2016) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫印迹; 人类; 1:5000; 图 7
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 7). J Cell Mol Med (2016) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫印迹; 人类; 图 7a
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫印迹在人类样本上 (图 7a). Onco Targets Ther (2016) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2a,b,c
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2a,b,c). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫印迹; 大鼠; 1:5000; 图 5
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 5). Sci Rep (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Eur J Neurosci (2016) ncbi
小鼠 单克隆(56-2A4)
  • 免疫组化; 人类; 1.25 ug/ml
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab58803)被用于被用于免疫组化在人类样本上浓度为1.25 ug/ml. Support Care Cancer (2016) ncbi
单克隆
  • 免疫印迹; 大鼠; 1:400; 图 1
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(abcam, ab119906)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 1). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫印迹; 人类; 1:5000; 图 6
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Cancer Lett (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab38898)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
单克隆
  • 免疫印迹; 人类; 1:250; 图 2
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab119906)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 2). J Cell Mol Med (2015) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫组化-石蜡切片; 大鼠; 5 ug/ml
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为5 ug/ml. J Pharm Pharmacol (2015) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫组化-石蜡切片; 人类; 1:200
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Diagn Pathol (2014) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫印迹在人类样本上浓度为1:5000. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cell Biochem (2015) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫细胞化学; 人类; 1:250
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab-76003)被用于被用于免疫细胞化学在人类样本上浓度为1:250 和 被用于免疫印迹在人类样本上. Proteome Sci (2014) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Surgery (2014) ncbi
domestic rabbit 单克隆(EP1254)
  • 免疫组化-石蜡切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司基质金属蛋白酶-9抗体(Abcam, ab76003)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. PLoS ONE (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1f, 2f
  • 免疫印迹; 大鼠; 1:200; 图 5c
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz Biotechnology, sc-393859)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1f, 2f) 和 被用于免疫印迹在大鼠样本上浓度为1:200 (图 5c). Int J Nanomedicine (2020) ncbi
小鼠 单克隆(7-11C)
  • 免疫印迹; 人类; 图 s2c, s2d, s2e, s2f
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, sc-13,520)被用于被用于免疫印迹在人类样本上 (图 s2c, s2d, s2e, s2f). Mol Cancer (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz Biotechnology, sc-393859)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Oncol Lett (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 3d
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, sc-393859)被用于被用于免疫印迹在小鼠样本上 (图 3d). Front Immunol (2019) ncbi
小鼠 单克隆(2C3)
  • 免疫印迹; 人类; 1:500; 图 5g
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, sc-21733)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5g). Int J Biol Sci (2017) ncbi
小鼠 单克隆(2C3)
  • 免疫印迹; 人类; 1:500; 图 4a
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, sc-21733)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Biochim Biophys Acta Gen Subj (2017) ncbi
小鼠 单克隆(7-11C)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, sc13520)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2017) ncbi
小鼠 单克隆(2C3)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz Biotechnology, sc-21733)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz Biotechnology, sc-393859)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2016) ncbi
小鼠 单克隆(7-11C)
  • 免疫组化; 小鼠; 图 8
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, sc-13520)被用于被用于免疫组化在小鼠样本上 (图 8). Oncotarget (2016) ncbi
小鼠 单克隆(2C3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:200; 图 3
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, Sc-21733)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(2C3)
  • 免疫组化-石蜡切片; 人类; 1:1500; 图 1
  • 免疫印迹; 人类; 1:1500; 图 3d
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, sc-21733)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1500 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1500 (图 3d). Oncotarget (2016) ncbi
小鼠 单克隆(6-6B)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, sc-12759)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Oncol Lett (2016) ncbi
小鼠 单克隆(2C3)
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, sc-21733)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 4). J Exp Clin Cancer Res (2016) ncbi
小鼠 单克隆(2C3)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, sc-21733)被用于被用于免疫印迹在人类样本上 (图 5). J Cancer (2016) ncbi
小鼠 单克隆(2C3)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 1
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, 2C3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 1). Int Endod J (2017) ncbi
小鼠 单克隆(2C3)
  • 免疫印迹; 人类; 1:200; 图 2
圣克鲁斯生物技术基质金属蛋白酶-9抗体(santa Cruz, SC-21733)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(2C3)
  • 免疫印迹; 大鼠; 1:2000; 图 3
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, sc-21733)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3). Exp Ther Med (2016) ncbi
小鼠 单克隆(2C3)
  • 免疫印迹; 小鼠; 图 8a
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, sc-21733)被用于被用于免疫印迹在小鼠样本上 (图 8a). Int J Mol Med (2016) ncbi
小鼠 单克隆(7-11C)
  • 免疫印迹; 人类; 1:2000; 图 2
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, sc-13520)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). Front Pharmacol (2015) ncbi
小鼠 单克隆(2C3)
  • 免疫印迹; 人类; 1:200; 图 2b
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, sc-21733)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2b). Mol Med Rep (2015) ncbi
小鼠 单克隆(2C3)
  • 免疫印迹; 大鼠; 1:500; 图 8
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, SC21733)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 8). Int J Mol Med (2015) ncbi
小鼠 单克隆(2C3)
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, SC-21733)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 3c). Mol Med Rep (2015) ncbi
小鼠 单克隆(2C3)
  • 免疫组化; 小鼠; 图 3
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, sc-21733)被用于被用于免疫组化在小鼠样本上 (图 3). Eur J Neurosci (2015) ncbi
小鼠 单克隆(2C3)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术基质金属蛋白酶-9抗体(santa Cruz, sc-21733)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(6-6B)
  • 免疫印迹; 人类; 1:1500
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz Biotech, sc-12759)被用于被用于免疫印迹在人类样本上浓度为1:1500. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(2C3)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, sc-21733)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(2C3)
  • 免疫组化-石蜡切片; 人类; 1:50
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, sc-21733)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Med Oncol (2014) ncbi
小鼠 单克隆(7-11C)
  • 免疫印迹; 人类
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz Biotechnology, sc-13520)被用于被用于免疫印迹在人类样本上. Mol Med Rep (2014) ncbi
小鼠 单克隆(2C3)
  • 免疫印迹; 人类
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz, sc-21733)被用于被用于免疫印迹在人类样本上. Cancer Lett (2014) ncbi
小鼠 单克隆(2C3)
  • 免疫印迹; domestic rabbit; 1:2000
圣克鲁斯生物技术基质金属蛋白酶-9抗体(Santa Cruz Biotechnology, sc-21733)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:2000. Exp Ther Med (2014) ncbi
赛默飞世尔
小鼠 单克隆(5G3)
  • 免疫印迹; 小鼠; 图 4b
赛默飞世尔基质金属蛋白酶-9抗体(Thermo Fisher Scientific, MA5-15886)被用于被用于免疫印迹在小鼠样本上 (图 4b). Molecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:300; 图 7c
赛默飞世尔基质金属蛋白酶-9抗体(Thermo, PA5-13199)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 7c). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛默飞世尔基质金属蛋白酶-9抗体(Thermo Scientific, PA5-3199)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Inflammation (2017) ncbi
小鼠 单克隆(IA5)
  • 免疫印迹; 人类; 1:500; 图 3a
赛默飞世尔基质金属蛋白酶-9抗体(Thermo Fisher Scientific, MA5-14220)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Mol Cells (2016) ncbi
小鼠 单克隆(5G3)
  • 免疫印迹; 人类; 图 s5
赛默飞世尔基质金属蛋白酶-9抗体(Thermo Scientific, MA5-15886)被用于被用于免疫印迹在人类样本上 (图 s5). Oncotarget (2016) ncbi
小鼠 单克隆(2C3)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔基质金属蛋白酶-9抗体(Thermo, MA1-12894)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Clin Breast Cancer (2016) ncbi
小鼠 单克隆(IIA5)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛默飞世尔基质金属蛋白酶-9抗体(Thermo-Lab Vision, IIA5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Ann Diagn Pathol (2015) ncbi
小鼠 单克隆(IIA5)
  • 免疫细胞化学; 人类; 1:300
  • 免疫印迹; 人类; 1:200
赛默飞世尔基质金属蛋白酶-9抗体(Thermo Scientific, MS-817-P0)被用于被用于免疫细胞化学在人类样本上浓度为1:300 和 被用于免疫印迹在人类样本上浓度为1:200. J Biol Chem (2015) ncbi
小鼠 单克隆(5G3)
  • 免疫细胞化学; 人类; 1:600; 图 7, 8
赛默飞世尔基质金属蛋白酶-9抗体(Thermo Scientific, 5G3)被用于被用于免疫细胞化学在人类样本上浓度为1:600 (图 7, 8). J Leukoc Biol (2015) ncbi
小鼠 单克隆(2C3)
  • 免疫组化; 人类
赛默飞世尔基质金属蛋白酶-9抗体(Lab Vision, 2C3)被用于被用于免疫组化在人类样本上. Am J Pathol (2009) ncbi
小鼠 单克隆(IIA5)
赛默飞世尔基质金属蛋白酶-9抗体(NeoMarkers Inc, MS-817-P0)被用于. Reprod Biol Endocrinol (2008) ncbi
武汉三鹰
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
武汉三鹰基质金属蛋白酶-9抗体(Proteintech, 10375-2-AP)被用于被用于免疫印迹在人类样本上 (图 2c). BMC Cardiovasc Disord (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5d
武汉三鹰基质金属蛋白酶-9抗体(Proteintech, 10375-2-AP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Cancer Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:800; 图 6a, 6c
武汉三鹰基质金属蛋白酶-9抗体(ProteinTech, 10375-2-AP)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 6a, 6c). Int J Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4k
武汉三鹰基质金属蛋白酶-9抗体(Proteintech, 10375-2-AP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4k). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 5e
武汉三鹰基质金属蛋白酶-9抗体(ProteinTech, 10375-2)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5e). Front Endocrinol (Lausanne) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2d
武汉三鹰基质金属蛋白酶-9抗体(Proteintech, 10375-2-AP)被用于被用于免疫印迹在小鼠样本上 (图 2d). J Cell Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5e
武汉三鹰基质金属蛋白酶-9抗体(ProteinTech, 10375-2-AP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Lab Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6a
武汉三鹰基质金属蛋白酶-9抗体(Proteintech, 10375-2-AP)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Cardiovasc Diabetol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3e
武汉三鹰基质金属蛋白酶-9抗体(Proteintech, 10375-2-ap)被用于被用于免疫印迹在人类样本上 (图 3e). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
武汉三鹰基质金属蛋白酶-9抗体(Proteintech, 10375-2-AP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncol Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5e
武汉三鹰基质金属蛋白酶-9抗体(Proteintech, 10375-2-AP)被用于被用于免疫印迹在人类样本上 (图 5e). Oncotarget (2017) ncbi
安迪生物R&D
domestic goat 多克隆
  • 酶联免疫吸附测定; 人类; 表 s7
安迪生物R&D基质金属蛋白酶-9抗体(R&D Systems, BAF911)被用于被用于酶联免疫吸附测定在人类样本上 (表 s7). Cell (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 6d
安迪生物R&D基质金属蛋白酶-9抗体(R&D, AF909)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6d). Nat Commun (2019) ncbi
domestic goat 多克隆
  • 免疫印迹; 人类; 图 2a
安迪生物R&D基质金属蛋白酶-9抗体(R&D Systems, AF911)被用于被用于免疫印迹在人类样本上 (图 2a). J Cell Mol Med (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 7a
安迪生物R&D基质金属蛋白酶-9抗体(R&D, AF909)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7a). Physiol Rep (2016) ncbi
domestic goat 多克隆
  • 其他; 人类; 表 1
安迪生物R&D基质金属蛋白酶-9抗体(R&D, BAF911)被用于被用于其他在人类样本上 (表 1). Dis Markers (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 人类; 1:500; 图 2
安迪生物R&D基质金属蛋白酶-9抗体(R&D, AF911)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(56129)
  • 流式细胞仪; 人类; 图 7a
安迪生物R&D基质金属蛋白酶-9抗体(R&D Systems, 56129)被用于被用于流式细胞仪在人类样本上 (图 7a). J Leukoc Biol (2016) ncbi
domestic goat 多克隆
  • 酶联免疫吸附测定; 人类; 表 2
安迪生物R&D基质金属蛋白酶-9抗体(R&D, BAF911)被用于被用于酶联免疫吸附测定在人类样本上 (表 2). PLoS ONE (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 人类; 1:1,200
安迪生物R&D基质金属蛋白酶-9抗体(R&D Systems, AF911)被用于被用于免疫印迹在人类样本上浓度为1:1,200. Oncol Lett (2016) ncbi
domestic goat 多克隆
安迪生物R&D基质金属蛋白酶-9抗体(R&D Systems, AF909)被用于. PLoS ONE (2015) ncbi
安迪生物R&D基质金属蛋白酶-9抗体(R&D, DMP900)被用于. PLoS ONE (2012) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 5a
西格玛奥德里奇基质金属蛋白酶-9抗体(Sigma, HPA001238)被用于被用于免疫组化在人类样本上 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2i
西格玛奥德里奇基质金属蛋白酶-9抗体(Sigma-Aldrich, HPA001238)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2i). Sci Rep (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇基质金属蛋白酶-9抗体(Sigma-Aldrich, HPA001238)被用于. BMC Gastroenterol (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 6e
  • 免疫印迹; 人类; 图 6a
西格玛奥德里奇基质金属蛋白酶-9抗体(Sigma, AV33090)被用于被用于免疫组化在人类样本上 (图 6e) 和 被用于免疫印迹在人类样本上 (图 6a). Oncogene (2016) ncbi
Enzo Life Sciences
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1f
Enzo Life Sciences基质金属蛋白酶-9抗体(Enzo, BML-SA620)被用于被用于免疫印迹在小鼠样本上 (图 1f). Respir Res (2016) ncbi
Novus Biologicals
小鼠 单克隆(4A3)
  • 免疫印迹; 人类; 1:500; 图 5a
Novus Biologicals基质金属蛋白酶-9抗体(Novus Biologicals, NBP2-13173)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Sci Rep (2016) ncbi
Rockland Immunochemicals
domestic rabbit 多克隆
Rockland Immunochemicals基质金属蛋白酶-9抗体(Rockland Immunochemicals, 600-401-CU9)被用于. Mol Med Rep (2015) ncbi
GeneTex
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
GeneTex基质金属蛋白酶-9抗体(GeneTex, GTX100458)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
亚诺法生技股份有限公司
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:200; 图 2
亚诺法生技股份有限公司基质金属蛋白酶-9抗体(Abnova, PAB19095)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 2). Sci Rep (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2g: 2h, 2i
赛信通(上海)生物试剂有限公司基质金属蛋白酶-9抗体(CST, 3852)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g: 2h, 2i). Am J Cancer Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3b
赛信通(上海)生物试剂有限公司基质金属蛋白酶-9抗体(Cell Signaling Technology, 3852)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3b). Int J Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3D
赛信通(上海)生物试剂有限公司基质金属蛋白酶-9抗体(Cell Signaling, 3852S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3D). Oncol Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司基质金属蛋白酶-9抗体(Cell Signaling, 3852)被用于被用于免疫印迹在人类样本上 (图 5e). Br J Cancer (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司基质金属蛋白酶-9抗体(Cell Signaling, 2270)被用于被用于免疫印迹在人类样本上 (图 3c). Biomed Pharmacother (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司基质金属蛋白酶-9抗体(Cell Signaling, 2270)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司基质金属蛋白酶-9抗体(Cell Signaling Technology, 2270)被用于被用于免疫印迹在人类样本上 (图 6). Drug Des Devel Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司基质金属蛋白酶-9抗体(Cell Signaling Technology, 3852)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司基质金属蛋白酶-9抗体(cell signalling, 3852S)被用于被用于免疫印迹在人类样本上 (图 5a). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6
赛信通(上海)生物试剂有限公司基质金属蛋白酶-9抗体(Cell Signaling, 3852)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司基质金属蛋白酶-9抗体(Cell Signaling, 3852)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司基质金属蛋白酶-9抗体(Cell Signalling, 3852S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
徕卡显微系统(上海)贸易有限公司
  • 免疫细胞化学; 人类; 1:40; 图 5
徕卡显微系统(上海)贸易有限公司基质金属蛋白酶-9抗体(Novocastra, NCL-MMP9-439)被用于被用于免疫细胞化学在人类样本上浓度为1:40 (图 5). PLoS ONE (2015) ncbi
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2c
徕卡显微系统(上海)贸易有限公司基质金属蛋白酶-9抗体(Leica Microsystems, NCL-MMP9-439)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2c). Hum Pathol (2015) ncbi
文章列表
  1. He Z, Duan Z, Chen L, Li B, Zhou Y. Long non-coding RNA Loc490 inhibits gastric cancer cell proliferation and metastasis by upregulating RNA-binding protein Quaking. Aging (Albany NY). 2020;12:17681-17693 pubmed 出版商
  2. Chen J, Liu X, Ke K, Zou J, Gao Z, Habuchi T, et al. LINC00992 contributes to the oncogenic phenotypes in prostate cancer via targeting miR-3935 and augmenting GOLM1 expression. BMC Cancer. 2020;20:749 pubmed 出版商
  3. Green D, Eyre H, Singh A, Taylor J, Chu J, Jeys L, et al. Targeting the MAPK7/MMP9 axis for metastasis in primary bone cancer. Oncogene. 2020;: pubmed 出版商
  4. Bouhaddou M, Memon D, Meyer B, White K, Rezelj V, Correa Marrero M, et al. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell. 2020;182:685-712.e19 pubmed 出版商
  5. Kang K, Lee S, Kim J, Lee B, Kim S, Park Y, et al. Etoposide-mediated interleukin-8 secretion from bone marrow stromal cells induces hematopoietic stem cell mobilization. BMC Cancer. 2020;20:619 pubmed 出版商
  6. Lu Z, Zou J, Li S, Topper M, Tao Y, Zhang H, et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature. 2020;579:284-290 pubmed 出版商
  7. Lin Y, Huang X, Chang K, Liao K, Tsai N. Encapsulated n-Butylidenephthalide Efficiently Crosses the Blood-Brain Barrier and Suppresses Growth of Glioblastoma. Int J Nanomedicine. 2020;15:749-760 pubmed 出版商
  8. Tian S, Peng P, Li J, Deng H, Zhan N, Zeng Z, et al. SERPINH1 regulates EMT and gastric cancer metastasis via the Wnt/β-catenin signaling pathway. Aging (Albany NY). 2020;12:3574-3593 pubmed 出版商
  9. Li M, Wu P, Yang Z, Deng S, Ni L, Zhang Y, et al. miR-193a-5p promotes pancreatic cancer cell metastasis through SRSF6-mediated alternative splicing of OGDHL and ECM1. Am J Cancer Res. 2020;10:38-59 pubmed
  10. Jiang L, Xu K, Li J, Zhou X, Xu L, Wu Z, et al. Nesfatin-1 suppresses interleukin-1β-induced inflammation, apoptosis, and cartilage matrix destruction in chondrocytes and ameliorates osteoarthritis in rats. Aging (Albany NY). 2020;12:1760-1777 pubmed 出版商
  11. Ye D, Zhu J, Zhao Q, Ma W, Xiao Y, Xu G, et al. LMP1 Up-regulates Calreticulin to Induce Epithelial-mesenchymal Transition via TGF-β/Smad3/NRP1 Pathway in Nasopharyngeal Carcinoma Cells. J Cancer. 2020;11:1257-1269 pubmed 出版商
  12. Medeiros B, Goodale D, Postenka C, Lowes L, Kiser P, Hearn S, et al. Triple-Negative Primary Breast Tumors Induce Supportive Premetastatic Changes in the Extracellular Matrix and Soluble Components of the Lung Microenvironment. Cancers (Basel). 2020;12: pubmed 出版商
  13. Jia Z, Huang Y, Ji X, Sun J, Fu G. Ticagrelor and clopidogrel suppress NF-κB signaling pathway to alleviate LPS-induced dysfunction in vein endothelial cells. BMC Cardiovasc Disord. 2019;19:318 pubmed 出版商
  14. Ding X, Hu H, Huang K, Wei R, Min J, Qi C, et al. Ubiquitination of NOTCH2 by DTX3 suppresses the proliferation and migration of human esophageal carcinoma. Cancer Sci. 2020;111:489-501 pubmed 出版商
  15. Fan B, Jin Y, Zhang H, Zhao R, Sun M, Sun M, et al. MicroRNA‑21 contributes to renal cell carcinoma cell invasiveness and angiogenesis via the PDCD4/c‑Jun (AP‑1) signalling pathway. Int J Oncol. 2020;56:178-192 pubmed 出版商
  16. Wu X, Chen S, Lu C. Amyloid precursor protein promotes the migration and invasion of breast cancer cells by regulating the MAPK signaling pathway. Int J Mol Med. 2019;: pubmed 出版商
  17. Lin Q, Chen X, Meng F, Ogawa K, Li M, Song R, et al. ASPH-notch Axis guided Exosomal delivery of Prometastatic Secretome renders breast Cancer multi-organ metastasis. Mol Cancer. 2019;18:156 pubmed 出版商
  18. Xue M, Li G, Li D, Wang Z, Mi L, Da J, et al. Up-regulated MCPIP1 in abdominal aortic aneurysm is associated with vascular smooth muscle cell apoptosis and MMPs production. Biosci Rep. 2019;39: pubmed 出版商
  19. Zhang L, Zheng C, Sun Z, Wang H, Wang F. Long non-coding RNA urothelial cancer associated 1 can regulate the migration and invasion of colorectal cancer cells (SW480) via myocardin-related transcription factor-A. Oncol Lett. 2019;18:4185-4193 pubmed 出版商
  20. Zhong B, Shi D, Wu F, Wang S, Hu H, Cheng C, et al. Dynasore suppresses cell proliferation, migration, and invasion and enhances the antitumor capacity of cisplatin via STAT3 pathway in osteosarcoma. Cell Death Dis. 2019;10:687 pubmed 出版商
  21. Chen P, Chen Y, Wu W, Chen L, Yang X, Zhang S. Identification and validation of four hub genes involved in the plaque deterioration of atherosclerosis. Aging (Albany NY). 2019;11:6469-6489 pubmed 出版商
  22. Yin Y, Zhang Q, Zhao Q, Ding G, Wei C, Chang L, et al. Tongxinluo Attenuates Myocardiac Fibrosis after Acute Myocardial Infarction in Rats via Inhibition of Endothelial-to-Mesenchymal Transition. Biomed Res Int. 2019;2019:6595437 pubmed 出版商
  23. Lee Y, Yeo I, Kim K, Han S, Hong J. Inhibition of Lung Tumor Development in ApoE Knockout Mice via Enhancement of TREM-1 Dependent NK Cell Cytotoxicity. Front Immunol. 2019;10:1379 pubmed 出版商
  24. Suo L, Chang X, Xu N, Ji H. The Anti-proliferative Activity of GnRH Through Downregulation of the Akt/ERK Pathways in Pancreatic Cancer. Front Endocrinol (Lausanne). 2019;10:370 pubmed 出版商
  25. Dosh R, Jordan Mahy N, Sammon C, Le Maitre C. Interleukin 1 is a key driver of inflammatory bowel disease-demonstration in a murine IL-1Ra knockout model. Oncotarget. 2019;10:3559-3575 pubmed 出版商
  26. Fang D, Wang H, Li M, Wei W. α-bisabolol enhances radiotherapy-induced apoptosis in endometrial cancer cells by reducing the effect of XIAP on inhibiting caspase-3. Biosci Rep. 2019;39: pubmed 出版商
  27. Cohen T, Takahashi V, Bonnell J, Tovchigrechko A, Chaerkady R, Yu W, et al. Staphylococcus aureus drives expansion of low-density neutrophils in diabetic mice. J Clin Invest. 2019;129:2133-2144 pubmed 出版商
  28. Yi R, Zhang J, Sun P, Qian Y, Zhao X. Protective Effects of Kuding Tea (Ilex kudingcha C. J. Tseng) Polyphenols on UVB-Induced Skin Aging in SKH1 Hairless Mice. Molecules. 2019;24: pubmed 出版商
  29. Chen L, Kong L, Wei X, Wang Y, Wang B, Zhang X, et al. β-arrestin 2 negatively regulates NOD2 signalling pathway through association with TRAF6 in microglia after cerebral ischaemia/reperfusion injury. J Cell Mol Med. 2019;23:3325-3335 pubmed 出版商
  30. Fan J, Liu L, Liu Q, Cui Y, Yao B, Zhang M, et al. CKIP-1 limits foam cell formation and inhibits atherosclerosis by promoting degradation of Oct-1 by REGγ. Nat Commun. 2019;10:425 pubmed 出版商
  31. Su W, Wang Y, Wang F, Zhang B, Zhang H, Shen Y, et al. Circular RNA hsa_circ_0007059 indicates prognosis and influences malignant behavior via AKT/mTOR in oral squamous cell carcinoma. J Cell Physiol. 2019;: pubmed 出版商
  32. Dai L, Hu W, Yang Z, Chen D, He B, Chen Y, et al. Upregulated expression of HOXB7 in intrahepatic cholangiocarcinoma is associated with tumor cell metastasis and poor prognosis. Lab Invest. 2019;99:736-748 pubmed 出版商
  33. Hu Y, Guo F, Xu Y, Li P, Lu Z, McVey D, et al. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest. 2019;129:1115-1128 pubmed 出版商
  34. DaSilva Arnold S, Kuo C, Davra V, Remache Y, Kim P, Fisher J, et al. ZEB2, a master regulator of the epithelial-mesenchymal transition, mediates trophoblast differentiation. Mol Hum Reprod. 2019;25:61-75 pubmed 出版商
  35. Ugarte Berzal E, Martens E, Boon L, Vandooren J, Blockmans D, Proost P, et al. EDTA/gelatin zymography method to identify C1s versus activated MMP-9 in plasma and immune complexes of patients with systemic lupus erythematosus. J Cell Mol Med. 2019;23:576-585 pubmed 出版商
  36. Nasiri Ansari Ν, Dimitriadis G, Agrogiannis G, Perrea D, Kostakis I, Kaltsas G, et al. Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice. Cardiovasc Diabetol. 2018;17:106 pubmed 出版商
  37. Wong J, Wei R, Lyu P, Tong O, Zhang S, Wen Q, et al. Clinical and in vitro analysis of Osteopontin as a prognostic indicator and unveil its potential downstream targets in bladder cancer. Int J Biol Sci. 2017;13:1373-1386 pubmed 出版商
  38. Yang L, Shen L, Gao P, Li G, He Y, Wang M, et al. Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms. Oncotarget. 2017;8:92827-92840 pubmed 出版商
  39. You S, Guan Y, Li W. Epithelial?mesenchymal transition in colorectal carcinoma cells is mediated by DEK/IMP3. Mol Med Rep. 2017;: pubmed 出版商
  40. Wang G, Liu J, Cai Y, Chen J, Xie W, Kong X, et al. Loss of Barx1 promotes hepatocellular carcinoma metastasis through up-regulating MGAT5 and MMP9 expression and indicates poor prognosis. Oncotarget. 2017;8:71867-71880 pubmed 出版商
  41. Zou Y, Qiu G, Jiang L, Cai Z, Sun W, Hu H, et al. Overexpression of ubiquitin specific proteases 44 promotes the malignancy of glioma by stabilizing tumor-promoter securin. Oncotarget. 2017;8:58231-58246 pubmed 出版商
  42. Tseng J, Xie L, Song S, Xie Y, Allen L, Ajit D, et al. The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology. Cell Rep. 2017;20:2169-2183 pubmed 出版商
  43. Liu Y, Wang C, Shan X, Wu J, Liu H, Liu H, et al. S100P is associated with proliferation and migration in nasopharyngeal carcinoma. Oncol Lett. 2017;14:525-532 pubmed 出版商
  44. Mrowczynski O, Madhankumar A, Slagle Webb B, Lee S, Zacharia B, Connor J. HFE genotype affects exosome phenotype in cancer. Biochim Biophys Acta Gen Subj. 2017;1861:1921-1928 pubmed 出版商
  45. Zhao H, Zhang L, Zhang Y, Zhao L, Wan Q, Wang B, et al. Calmodulin promotes matrix metalloproteinase 9 production and cell migration by inhibiting the ubiquitination and degradation of TBC1D3 oncoprotein in human breast cancer cells. Oncotarget. 2017;8:36383-36398 pubmed 出版商
  46. He L, Zhang L, Wang M, Wang W. miR-9 functions as a tumor inhibitor of cell proliferation in epithelial ovarian cancer through targeting the SDF-1/CXCR4 pathway. Exp Ther Med. 2017;13:1203-1208 pubmed 出版商
  47. Hu X, Zhang Z, Liang Z, Xie D, Zhang T, Yu D, et al. Downregulation of feline sarcoma-related protein inhibits cell migration, invasion and epithelial-mesenchymal transition via the ERK/AP-1 pathway in bladder urothelial cell carcinoma. Oncol Lett. 2017;13:686-694 pubmed 出版商
  48. Bertier L, Boucherie C, Zwaenepoel O, Vanloo B, Van Troys M, Van Audenhove I, et al. Inhibitory cortactin nanobodies delineate the role of NTA- and SH3-domain-specific functions during invadopodium formation and cancer cell invasion. FASEB J. 2017;31:2460-2476 pubmed 出版商
  49. Mandl M, Zhang S, Ulrich M, Schmoeckel E, Mayr D, Vollmar A, et al. Inhibition of Cdk5 induces cell death of tumor-initiating cells. Br J Cancer. 2017;116:912-922 pubmed 出版商
  50. He Y, Wang X, Zhang J, Liu Z, Pan W, Shen Y, et al. Association of Serum HMGB2 Levels With In-Stent Restenosis: HMGB2 Promotes Neointimal Hyperplasia in Mice With Femoral Artery Injury and Proliferation and Migration of VSMCs. Arterioscler Thromb Vasc Biol. 2017;37:717-729 pubmed 出版商
  51. Dong Q, Fu L, Zhao Y, Tan S, Wang E. Derlin-1 overexpression confers poor prognosis in muscle invasive bladder cancer and contributes to chemoresistance and invasion through PI3K/AKT and ERK/MMP signaling. Oncotarget. 2017;8:17059-17069 pubmed 出版商
  52. Xu J, Zhang X, Wang H, Ge S, Gao T, Song L, et al. HCRP1 downregulation promotes hepatocellular carcinoma cell migration and invasion through the induction of EGFR activation and epithelial-mesenchymal transition. Biomed Pharmacother. 2017;88:421-429 pubmed 出版商
  53. Gan J, Wang F, Mu D, Qu Y, Luo R, Wang Q. RNA interference targeting Aurora-A sensitizes glioblastoma cells to temozolomide chemotherapy. Oncol Lett. 2016;12:4515-4523 pubmed 出版商
  54. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed 出版商
  55. Druhan L, Lance A, Li S, Price A, Emerson J, Baxter S, et al. Leucine Rich ?-2 Glycoprotein: A Novel Neutrophil Granule Protein and Modulator of Myelopoiesis. PLoS ONE. 2017;12:e0170261 pubmed 出版商
  56. Oller J, Méndez Barbero N, Ruiz E, Villahoz S, Renard M, Canelas L, et al. Nitric oxide mediates aortic disease in mice deficient in the metalloprotease Adamts1 and in a mouse model of Marfan syndrome. Nat Med. 2017;23:200-212 pubmed 出版商
  57. Ren H, Liu F, Huang G, Liu Y, Shen J, Zhou P, et al. Positive feedback loop of IL-1β/Akt/RARα/Akt signaling mediates oncogenic property of RARα in gastric carcinoma. Oncotarget. 2017;8:6718-6729 pubmed 出版商
  58. Liao M, Yang P, Wang F, Berceli S, Ali Y, Chan K, et al. Smooth muscle cell-specific Tgfbr1 deficiency attenuates neointimal hyperplasia but promotes an undesired vascular phenotype for injured arteries. Physiol Rep. 2016;4: pubmed
  59. Zhang H, Zhang P, Gao Y, Li C, Wang H, Chen L, et al. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep. 2017;15:57-64 pubmed 出版商
  60. Lv M, Li Y, Tian X, Dai S, Sun J, Jin G, et al. Lentivirus-mediated knockdown of NLK inhibits small-cell lung cancer growth and metastasis. Drug Des Devel Ther. 2016;10:3737-3746 pubmed
  61. Burgy O, Bellaye P, Causse S, Beltramo G, Wettstein G, Boutanquoi P, et al. Pleural inhibition of the caspase-1/IL-1? pathway diminishes profibrotic lung toxicity of bleomycin. Respir Res. 2016;17:162 pubmed
  62. Chauhan P, Dash D, Singh R. Intranasal Curcumin Inhibits Pulmonary Fibrosis by Modulating Matrix Metalloproteinase-9 (MMP-9) in Ovalbumin-Induced Chronic Asthma. Inflammation. 2017;40:248-258 pubmed 出版商
  63. Dong P, Xiong Y, Watari H, Hanley S, Konno Y, Ihira K, et al. Suppression of iASPP-dependent aggressiveness in cervical cancer through reversal of methylation silencing of microRNA-124. Sci Rep. 2016;6:35480 pubmed 出版商
  64. Liu Y, Wang T, Zhang R, Fu W, Wang X, Wang F, et al. Calorie restriction protects against experimental abdominal aortic aneurysms in mice. J Exp Med. 2016;213:2473-2488 pubmed
  65. Choi Y, Maki T, Mandeville E, Koh S, Hayakawa K, Arai K, et al. Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat Med. 2016;22:1335-1341 pubmed 出版商
  66. De Paoli M, Gogalic S, Sauer U, Preininger C, Pandha H, Simpson G, et al. Multiplatform Biomarker Discovery for Bladder Cancer Recurrence Diagnosis. Dis Markers. 2016;2016:4591910 pubmed
  67. Qian Y, Li C, Jiang A, Ge S, Gu P, Fan X, et al. HIV-1 gp120 Glycoprotein Interacting with Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN) Down-Regulates Tight Junction Proteins to Disrupt the Blood Retinal Barrier and Increase Its Permeability. J Biol Chem. 2016;291:22977-22987 pubmed
  68. Hsu Y, Shi G, Wang K, Ma C, Cheng T, Wu H. Thrombomodulin promotes focal adhesion kinase activation and contributes to angiogenesis by binding to fibronectin. Oncotarget. 2016;7:68122-68139 pubmed 出版商
  69. Hammers D, Sleeper M, Forbes S, Shima A, Walter G, Sweeney H. Tadalafil Treatment Delays the Onset of Cardiomyopathy in Dystrophin-Deficient Hearts. J Am Heart Assoc. 2016;5: pubmed 出版商
  70. Shi D, Shi G, Xie J, Du X, Yang H. MicroRNA-27a Inhibits Cell Migration and Invasion of Fibroblast-Like Synoviocytes by Targeting Follistatin-Like Protein 1 in Rheumatoid Arthritis. Mol Cells. 2016;39:611-8 pubmed 出版商
  71. Lu X, Duan L, Xie H, Lu X, Lu D, Lu D, et al. Evaluation of MMP-9 and MMP-2 and their suppressor TIMP-1 and TIMP-2 in adenocarcinoma of esophagogastric junction. Onco Targets Ther. 2016;9:4343-9 pubmed 出版商
  72. Pang J, Wu Y, Peng J, Yang P, Kuai L, Qin X, et al. Potential implications of Apolipoprotein E in early brain injury after experimental subarachnoid hemorrhage: Involvement in the modulation of blood-brain barrier integrity. Oncotarget. 2016;7:56030-56044 pubmed 出版商
  73. Fransén Pettersson N, Duarte N, Nilsson J, Lundholm M, Mayans S, Larefalk A, et al. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis. PLoS ONE. 2016;11:e0159850 pubmed 出版商
  74. Sinha S, Hoshino D, Hong N, Kirkbride K, Grega Larson N, Seiki M, et al. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol. 2016;214:197-213 pubmed 出版商
  75. Miloudi K, Binet F, Wilson A, Cerani A, Oubaha M, Ménard C, et al. Truncated netrin-1 contributes to pathological vascular permeability in diabetic retinopathy. J Clin Invest. 2016;126:3006-22 pubmed 出版商
  76. Kang L, Hao X, Tang Y, Wei X, Gong Y. RABEX-5 overexpression in gastric cancer is correlated with elevated MMP-9 level. Am J Transl Res. 2016;8:2365-74 pubmed
  77. Hou H, Chen L, Zha Z, Cai S, Tan M, Guo G, et al. Long form collapsin response mediator protein-1 promotes the migration and invasion of osteosarcoma cells. Oncol Lett. 2016;12:23-28 pubmed
  78. Eterno V, Zambelli A, Villani L, Tuscano A, Manera S, Spitaleri A, et al. AurkA controls self-renewal of breast cancer-initiating cells promoting wnt3a stabilization through suppression of miR-128. Sci Rep. 2016;6:28436 pubmed 出版商
  79. Gwak J, Shin J, Lee K, Hong S, Oh S, Goh S, et al. SFMBT2 (Scm-like with four mbt domains 2) negatively regulates cell migration and invasion in prostate cancer cells. Oncotarget. 2016;7:48250-48264 pubmed 出版商
  80. Wang X, Li A, Guo Y, Wang Y, Zhao X, Xiang L, et al. iTRAQ-Based Proteomics Screen identifies LIPOCALIN-2 (LCN-2) as a potential biomarker for colonic lateral-spreading tumors. Sci Rep. 2016;6:28600 pubmed 出版商
  81. Anunobi C, Koli K, Saxena G, Banjo A, Ogbureke K. Expression of the SIBLINGs and their MMP partners in human benign and malignant prostate neoplasms. Oncotarget. 2016;7:48038-48049 pubmed 出版商
  82. Li Y, Liu C, Su T, Cheng H, Jeng Y, Lin H, et al. Characterization of metastatic tumor antigen 1 and its interaction with hepatitis B virus X protein in NF-κB signaling and tumor progression in a woodchuck hepatocellular carcinoma model. Oncotarget. 2016;7:47173-47185 pubmed 出版商
  83. Cid S, Eiró N, Gonzalez L, Béridze N, Vazquez J, Vizoso F. Expression and Clinical Significance of Metalloproteases and Their Inhibitors by Endothelial Cells From Invasive Breast Carcinomas. Clin Breast Cancer. 2016;16:e83-91 pubmed 出版商
  84. Svalina M, Kikuchi K, Abraham J, Lal S, Davare M, Settelmeyer T, et al. IGF1R as a Key Target in High Risk, Metastatic Medulloblastoma. Sci Rep. 2016;6:27012 pubmed 出版商
  85. He F, Wei L, Luo W, Liao Z, Li B, Zhou X, et al. Glutaredoxin 3 promotes nasopharyngeal carcinoma growth and metastasis via EGFR/Akt pathway and independent of ROS. Oncotarget. 2016;7:37000-37012 pubmed 出版商
  86. Lin R, Yu K, Li X, Tao J, Lin Y, Zhao C, et al. Electroacupuncture ameliorates post-stroke learning and memory through minimizing ultrastructural brain damage and inhibiting the expression of MMP-2 and MMP-9 in cerebral ischemia-reperfusion injured rats. Mol Med Rep. 2016;14:225-33 pubmed 出版商
  87. Qiao Z, Dang C, Zhou B, Li S, Zhang W, Jiang J, et al. Downregulation of O-linked N-acetylglucosamine transferase by RNA interference decreases MMP9 expression in human esophageal cancer cells. Oncol Lett. 2016;11:3317-3323 pubmed
  88. Wang X, Wang N, Li H, Liu M, Cao F, Yu X, et al. Up-Regulation of PAI-1 and Down-Regulation of uPA Are Involved in Suppression of Invasiveness and Motility of Hepatocellular Carcinoma Cells by a Natural Compound Berberine. Int J Mol Sci. 2016;17:577 pubmed 出版商
  89. Lim S, Yuzhalin A, Gordon Weeks A, Muschel R. Tumor-infiltrating monocytes/macrophages promote tumor invasion and migration by upregulating S100A8 and S100A9 expression in cancer cells. Oncogene. 2016;35:5735-5745 pubmed 出版商
  90. Cao Y, Liang H, Zhang F, Luan Z, Zhao S, Wang X, et al. Prohibitin overexpression predicts poor prognosis and promotes cell proliferation and invasion through ERK pathway activation in gallbladder cancer. J Exp Clin Cancer Res. 2016;35:68 pubmed 出版商
  91. Zeng W, Liu Q, Chen Z, Wu X, Zhong Y, Wu J. Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-?B Pathway. J Cancer. 2016;7:746-57 pubmed 出版商
  92. Wei T, Zhang H, Cetin N, Miller E, Moak T, Suen J, et al. Elevated Expression of Matrix Metalloproteinase-9 not Matrix Metalloproteinase-2 Contributes to Progression of Extracranial Arteriovenous Malformation. Sci Rep. 2016;6:24378 pubmed 出版商
  93. Spiegel A, Brooks M, Houshyar S, Reinhardt F, Ardolino M, Fessler E, et al. Neutrophils Suppress Intraluminal NK Cell-Mediated Tumor Cell Clearance and Enhance Extravasation of Disseminated Carcinoma Cells. Cancer Discov. 2016;6:630-49 pubmed 出版商
  94. Butoi E, Gan A, Tucureanu M, Stan D, Macarie R, Constantinescu C, et al. Cross-talk between macrophages and smooth muscle cells impairs collagen and metalloprotease synthesis and promotes angiogenesis. Biochim Biophys Acta. 2016;1863:1568-78 pubmed 出版商
  95. Kim D, Bynoe M. A2A adenosine receptor modulates drug efflux transporter P-glycoprotein at the blood-brain barrier. J Clin Invest. 2016;126:1717-33 pubmed 出版商
  96. Taylor P, Roy S, Meszaros E, Sun Y, Howell S, Malemud C, et al. JAK/STAT regulation of Aspergillus fumigatus corneal infections and IL-6/23-stimulated neutrophil, IL-17, elastase, and MMP9 activity. J Leukoc Biol. 2016;100:213-22 pubmed 出版商
  97. Tanaka T, Takei Y, Yamanouchi D. Hyperglycemia Suppresses Calcium Phosphate-Induced Aneurysm Formation Through Inhibition of Macrophage Activation. J Am Heart Assoc. 2016;5:e003062 pubmed 出版商
  98. Andrade A, Santos E, Carmo A, Freitas R, Galvão H. Analysis of tryptase-positive mast cells and immunoexpression of MMP-9 and MMP-13 in periapical lesions. Int Endod J. 2017;50:446-454 pubmed 出版商
  99. Hu W, Xiao L, Cao C, Hua S, Wu D. UBE2T promotes nasopharyngeal carcinoma cell proliferation, invasion, and metastasis by activating the AKT/GSK3β/β-catenin pathway. Oncotarget. 2016;7:15161-72 pubmed 出版商
  100. Maetzler W, Deleersnijder W, Hanssens V, Bernard A, Brockmann K, Marquetand J, et al. GDF15/MIC1 and MMP9 Cerebrospinal Fluid Levels in Parkinson's Disease and Lewy Body Dementia. PLoS ONE. 2016;11:e0149349 pubmed 出版商
  101. Checa M, Hagood J, Velázquez Cruz R, Ruiz V, García de Alba C, Rangel Escareño C, et al. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells. PLoS ONE. 2016;11:e0150383 pubmed 出版商
  102. Zhao Z, Li J, Ye R, Wu X, Gao L, Niu B. Interleukin-6 as a potential molecular target in esophageal squamous cell carcinoma. Oncol Lett. 2016;11:925-932 pubmed
  103. Lin Y, Ma Q, Lin S, Zhou H, Wen Q, Gao S, et al. Inhibitory effects of 90Sr/90Y β-irradiation on alkali burn-induced corneal neovascularization in rats. Exp Ther Med. 2016;11:409-414 pubmed
  104. Skardal A, Devarasetty M, Forsythe S, Atala A, Soker S. A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening. Biotechnol Bioeng. 2016;113:2020-32 pubmed 出版商
  105. Fazio C, Piazzi G, Vitaglione P, Fogliano V, Munarini A, Prossomariti A, et al. Inflammation increases NOTCH1 activity via MMP9 and is counteracted by Eicosapentaenoic Acid-free fatty acid in colon cancer cells. Sci Rep. 2016;6:20670 pubmed 出版商
  106. Zhao L, Li S, Gan L, Li C, Qiu Z, Feng Y, et al. Paired box 5 is a frequently methylated lung cancer tumour suppressor gene interfering β-catenin signalling and GADD45G expression. J Cell Mol Med. 2016;20:842-54 pubmed 出版商
  107. Egawa H, Jingushi K, Hirono T, Ueda Y, Kitae K, Nakata W, et al. The miR-130 family promotes cell migration and invasion in bladder cancer through FAK and Akt phosphorylation by regulating PTEN. Sci Rep. 2016;6:20574 pubmed 出版商
  108. Gao Y, Zhao Y, Zhang J, Lu Y, Liu X, Geng P, et al. The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci Rep. 2016;6:19874 pubmed 出版商
  109. Lu Y, Hu J, Sun W, Li S, Deng S, Li M. MiR-29c inhibits cell growth, invasion, and migration of pancreatic cancer by targeting ITGB1. Onco Targets Ther. 2016;9:99-109 pubmed 出版商
  110. He Y, Shao F, Pi W, Shi C, Chen Y, Gong D, et al. Largescale Transcriptomics Analysis Suggests Over-Expression of BGH3, MMP9 and PDIA3 in Oral Squamous Cell Carcinoma. PLoS ONE. 2016;11:e0146530 pubmed 出版商
  111. Joseph J, van Roosmalen I, Busschers E, Tomar T, Conroy S, Eggens Meijer E, et al. Serum-Induced Differentiation of Glioblastoma Neurospheres Leads to Enhanced Migration/Invasion Capacity That Is Associated with Increased MMP9. PLoS ONE. 2015;10:e0145393 pubmed 出版商
  112. Frankowski J, Demars K, Ahmad A, Hawkins K, Yang C, Leclerc J, et al. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Sci Rep. 2015;5:17956 pubmed 出版商
  113. Sang H, Liu L, Wang L, Qiu Z, Li M, Yu L, et al. Opposite roles of bradykinin B1 and B2 receptors during cerebral ischaemia-reperfusion injury in experimental diabetic rats. Eur J Neurosci. 2016;43:53-65 pubmed 出版商
  114. Boiko E, Maltsev D, Savicheva A, Shalepo K, Khusnutdinova T, Pozniak A, et al. Infection of Human Retinal Pigment Epithelium with Chlamydia trachomatis. PLoS ONE. 2015;10:e0141754 pubmed 出版商
  115. Qi T, Xu F, Yan X, Li S, Li H. Sulforaphane exerts anti-inflammatory effects against lipopolysaccharide-induced acute lung injury in mice through the Nrf2/ARE pathway. Int J Mol Med. 2016;37:182-8 pubmed 出版商
  116. Tibullo D, Di Rosa M, Giallongo C, La Cava P, Parrinello N, Romano A, et al. Bortezomib modulates CHIT1 and YKL40 in monocyte-derived osteoclast and in myeloma cells. Front Pharmacol. 2015;6:226 pubmed 出版商
  117. Xu D, Wang J, Zhou Z, He Z, Zhao Q. Cannabinoid WIN55, 212-2 induces cell cycle arrest and inhibits the proliferation and migration of human BEL7402 hepatocellular carcinoma cells. Mol Med Rep. 2015;12:7963-70 pubmed 出版商
  118. Zhang L, Zou W. Inhibition of integrin β1 decreases the malignancy of ovarian cancer cells and potentiates anticancer therapy via the FAK/STAT1 signaling pathway. Mol Med Rep. 2015;12:7869-76 pubmed 出版商
  119. Bass J, Friesen C, Deacy A, Neilan N, Bracken J, Shakhnovich V, et al. Investigation of potential early Histologic markers of pediatric inflammatory bowel disease. BMC Gastroenterol. 2015;15:129 pubmed 出版商
  120. Wardill H, Logan R, Bowen J, Van Sebille Y, Gibson R. Tight junction defects are seen in the buccal mucosa of patients receiving standard dose chemotherapy for cancer. Support Care Cancer. 2016;24:1779-88 pubmed 出版商
  121. AbdElazeem M, El Sayed M. The pattern of CD44 and matrix metalloproteinase 9 expression is a useful predictor of ulcerative colitis-associated dysplasia and neoplasia. Ann Diagn Pathol. 2015;19:369-74 pubmed 出版商
  122. Nagaoka K, Fujii K, Zhang H, Usuda K, Watanabe G, Ivshina M, et al. CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis. Oncogene. 2016;35:2893-901 pubmed 出版商
  123. Yan G, Wang Q, Hu S, Wang D, Qiao Y, Ma G, et al. Digoxin inhibits PDGF-BB-induced VSMC proliferation and migration through an increase in ILK signaling and attenuates neointima formation following carotid injury. Int J Mol Med. 2015;36:1001-11 pubmed 出版商
  124. Chang L, Zhao D, Liu H, Wang Q, Zhang P, Li C, et al. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma. Mol Med Rep. 2015;12:6702-10 pubmed 出版商
  125. Wang T, Cheng C, Yang W, Chen W, Chang P. Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma. Mol Med Rep. 2015;12:6435-44 pubmed 出版商
  126. Chiang K, Kuo S, Chen C, Ng S, Lin S, Yeh C, et al. MART-10, the vitamin D analog, is a potent drug to inhibit anaplastic thyroid cancer cell metastatic potential. Cancer Lett. 2015;369:76-85 pubmed 出版商
  127. Picot N, Guerrette R, Beauregard A, Jean S, Michaud P, Harquail J, et al. Mammaglobin 1 promotes breast cancer malignancy and confers sensitivity to anticancer drugs. Mol Carcinog. 2016;55:1150-62 pubmed 出版商
  128. Michinaga S, Seno N, Fuka M, Yamamoto Y, Minami S, Kimura A, et al. Improvement of cold injury-induced mouse brain edema by endothelin ETB antagonists is accompanied by decreases in matrixmetalloproteinase 9 and vascular endothelial growth factor-A. Eur J Neurosci. 2015;42:2356-70 pubmed 出版商
  129. Alias C, Rocchi L, Ribatti D, Caraffi S, D angelo A, Perris R, et al. MMPs and angiogenesis affect the metastatic potential of a human vulvar leiomyosarcoma cell line. J Cell Mol Med. 2015;19:2098-107 pubmed 出版商
  130. Dayer C, Stamenkovic I. Recruitment of Matrix Metalloproteinase-9 (MMP-9) to the Fibroblast Cell Surface by Lysyl Hydroxylase 3 (LH3) Triggers Transforming Growth Factor-β (TGF-β) Activation and Fibroblast Differentiation. J Biol Chem. 2015;290:13763-78 pubmed 出版商
  131. Li S, Wu X, Dong C, Xie X, Wu J, Zhang X. The differential expression of OCT4 isoforms in cervical carcinoma. PLoS ONE. 2015;10:e0118033 pubmed 出版商
  132. Ueda K, Yoshimura K, Yamashita O, Harada T, Morikage N, Hamano K. Possible dual role of decorin in abdominal aortic aneurysm. PLoS ONE. 2015;10:e0120689 pubmed 出版商
  133. Desmeules P, Trudel D, Turcotte S, Sirois J, Plante M, Grégoire J, et al. Prognostic significance of TIMP-2, MMP-2, and MMP-9 on high-grade serous ovarian carcinoma using digital image analysis. Hum Pathol. 2015;46:739-45 pubmed 出版商
  134. Wang G, Liu G, Ye Y, Fu Y, Zhang X. The role of microRNA-1274a in the tumorigenesis of gastric cancer: accelerating cancer cell proliferation and migration via directly targeting FOXO4. Biochem Biophys Res Commun. 2015;459:629-35 pubmed 出版商
  135. Lee H, Lin Y, Duh C, Huang S, Wang H, Wu S, et al. Lemnalol attenuates mast cell activation and osteoclast activity in a gouty arthritis model. J Pharm Pharmacol. 2015;67:274-85 pubmed 出版商
  136. Naegelen I, Plançon S, Nicot N, Kaoma T, Muller A, Vallar L, et al. An essential role of syntaxin 3 protein for granule exocytosis and secretion of IL-1α, IL-1β, IL-12b, and CCL4 from differentiated HL-60 cells. J Leukoc Biol. 2015;97:557-71 pubmed 出版商
  137. Dong X, Lin Q, Aihara A, Li Y, Huang C, Chung W, et al. Aspartate β-Hydroxylase expression promotes a malignant pancreatic cellular phenotype. Oncotarget. 2015;6:1231-48 pubmed
  138. Zhang G, Gomes Giacoia E, Dai Y, Lawton A, Miyake M, Furuya H, et al. Validation and clinicopathologic associations of a urine-based bladder cancer biomarker signature. Diagn Pathol. 2014;9:200 pubmed 出版商
  139. Joseph J, Conroy S, Tomar T, Eggens Meijer E, Bhat K, Copray S, et al. TGF-β is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis. 2014;5:e1443 pubmed 出版商
  140. Zhang J, Zhao J, Bai Y, Huang L, Yu W, Li X. Effects of p75 neurotrophin receptor on regulating hypoxia-induced angiogenic factors in retinal pigment epithelial cells. Mol Cell Biochem. 2015;398:123-34 pubmed 出版商
  141. Zeng X, Ou Z, Yu K, Feng L, Yin W, Li J, et al. Absence of multiple atypical chemokine binders (ACBs) and the presence of VEGF and MMP-9 predict axillary lymph node metastasis in early breast carcinomas. Med Oncol. 2014;31:145 pubmed 出版商
  142. Montoya Rodríguez A, Milán Carrillo J, Dia V, Reyes Moreno C, Gonzalez de Mejia E. Pepsin-pancreatin protein hydrolysates from extruded amaranth inhibit markers of atherosclerosis in LPS-induced THP-1 macrophages-like human cells by reducing expression of proteins in LOX-1 signaling pathway. Proteome Sci. 2014;12:30 pubmed 出版商
  143. Matsumoto N, Morine Y, Utsunomiya T, Imura S, Ikemoto T, Arakawa Y, et al. Role of CD151 expression in gallbladder carcinoma. Surgery. 2014;156:1212-7 pubmed 出版商
  144. Jiang J, Liu Y, Fang W, Liu F. Sperm?associated antigen 9 promotes astrocytoma cell invasion through the upregulation of podocalyxin. Mol Med Rep. 2014;10:417-22 pubmed 出版商
  145. Lin Q, Aihara A, Chung W, Li Y, Chen X, Huang Z, et al. LRH1 promotes pancreatic cancer metastasis. Cancer Lett. 2014;350:15-24 pubmed 出版商
  146. Wang L, Wang J, Wang Y, Fu Q, Lei Y, Nie Z, et al. Protective effect of exogenous matrix metalloproteinase-9 on chronic renal failure. Exp Ther Med. 2014;7:329-334 pubmed
  147. Lin Y, Jean Y, Lee H, Chen W, Sun Y, Su J, et al. A soft coral-derived compound, 11-epi-sinulariolide acetate suppresses inflammatory response and bone destruction in adjuvant-induced arthritis. PLoS ONE. 2013;8:e62926 pubmed 出版商
  148. Goodison S, Chang M, Dai Y, Urquidi V, Rosser C. A multi-analyte assay for the non-invasive detection of bladder cancer. PLoS ONE. 2012;7:e47469 pubmed 出版商
  149. Andersen T, Sondergaard T, Skorzynska K, Dagnaes Hansen F, Plesner T, Hauge E, et al. A physical mechanism for coupling bone resorption and formation in adult human bone. Am J Pathol. 2009;174:239-47 pubmed 出版商
  150. Sahlin L, Stjernholm Vladic Y, Roos N, Masironi B, Ekman Ordeberg G. Impaired leukocyte influx in cervix of postterm women not responding to prostaglandin priming. Reprod Biol Endocrinol. 2008;6:36 pubmed 出版商