这是一篇来自已证抗体库的有关人类 MRC1的综述,是根据76篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合MRC1 抗体。
MRC1 同义词: CD206; CLEC13D; CLEC13DL; MMR; MRC1L1; bA541I19.1; hMR

BioLegend
小鼠 单克隆(15-2)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s2c
BioLegend MRC1抗体(BioLegend, 321116)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s2c). Sci Adv (2019) ncbi
小鼠 单克隆(15-2)
  • 流式细胞仪; 人类; 图 s14b
BioLegend MRC1抗体(Biolegend, 15-2)被用于被用于流式细胞仪在人类样本上 (图 s14b). Science (2019) ncbi
小鼠 单克隆(15-2)
  • 免疫组化; 人类; 图 3c
BioLegend MRC1抗体(Biolegend, 321102)被用于被用于免疫组化在人类样本上 (图 3c). Cell (2019) ncbi
小鼠 单克隆(15-2)
  • 流式细胞仪; 人类; 图 s4j
BioLegend MRC1抗体(Biolegend, 321109)被用于被用于流式细胞仪在人类样本上 (图 s4j). Science (2019) ncbi
小鼠 单克隆(15-2)
  • 流式细胞仪; 人类; 1:50; 图 s6a
BioLegend MRC1抗体(BioLegend, 321108)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s6a). Nat Commun (2019) ncbi
小鼠 单克隆(15-2)
  • 流式细胞仪; 人类; 图 3c
BioLegend MRC1抗体(Biolegend, 321105)被用于被用于流式细胞仪在人类样本上 (图 3c). Cell (2019) ncbi
小鼠 单克隆(15-2)
  • 流式细胞仪; 人类; 图 4b
BioLegend MRC1抗体(BioLegend, 321126)被用于被用于流式细胞仪在人类样本上 (图 4b). J Exp Med (2018) ncbi
小鼠 单克隆(15-2)
  • 流式细胞仪; 人类; 图 4a
BioLegend MRC1抗体(Biolegend, 15-2)被用于被用于流式细胞仪在人类样本上 (图 4a). Front Immunol (2017) ncbi
小鼠 单克隆(15-2)
  • 流式细胞仪; 人类; 图 2a
BioLegend MRC1抗体(Biolegend, 321110)被用于被用于流式细胞仪在人类样本上 (图 2a). Cell Death Dis (2017) ncbi
小鼠 单克隆(15-2)
  • 流式细胞仪; 人类; 图 4a
BioLegend MRC1抗体(BioLegend, 15-2)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2016) ncbi
小鼠 单克隆(15-2)
  • 免疫组化; 人类; 1:100; 图 8
BioLegend MRC1抗体(Biolegend, 15-2)被用于被用于免疫组化在人类样本上浓度为1:100 (图 8). J Clin Cell Immunol (2015) ncbi
小鼠 单克隆(15-2)
  • 流式细胞仪; 人类; 图 7
BioLegend MRC1抗体(BioLegend, clone 15?C2)被用于被用于流式细胞仪在人类样本上 (图 7). J Immunother Cancer (2015) ncbi
小鼠 单克隆(15-2)
  • 流式细胞仪; 人类
BioLegend MRC1抗体(Biolegend, 321114)被用于被用于流式细胞仪在人类样本上. J Neuroimmunol (2015) ncbi
小鼠 单克隆(15-2)
  • 流式细胞仪; 人类; 1:50; 图 5
BioLegend MRC1抗体(Biolegend, 321114)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(15-2)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend MRC1抗体(Biolegend, 321116)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(15-2)
  • 流式细胞仪; 人类; 图 9a
BioLegend MRC1抗体(Biolegend, 321116)被用于被用于流式细胞仪在人类样本上 (图 9a). EMBO Mol Med (2015) ncbi
小鼠 单克隆(15-2)
  • 流式细胞仪; 人类
BioLegend MRC1抗体(BioLegend, 321105)被用于被用于流式细胞仪在人类样本上. J Inflamm (Lond) (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6g
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, ab64693)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6g). Cancer Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, ab64693)被用于被用于免疫组化在小鼠样本上 (图 5c). Theranostics (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1e
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, ab64693)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). Cell (2019) ncbi
小鼠 单克隆(15-2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2a
艾博抗(上海)贸易有限公司 MRC1抗体(abcam, ab117644)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2a). Brain Pathol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, ab64693)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2c). FASEB J (2018) ncbi
小鼠 单克隆(15-2)
  • 免疫组化; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, ab8918)被用于被用于免疫组化在小鼠样本上 (图 3b). Oncogene (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3a
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, ab64693)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3a). Sci Rep (2017) ncbi
小鼠 单克隆(15-2)
  • 免疫组化; 大鼠; 图 3l
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, Ab8918)被用于被用于免疫组化在大鼠样本上 (图 3l). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s7
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, ab64693)被用于被用于免疫组化在小鼠样本上 (图 s7). Cancer Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:50
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, ab64693)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50. Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, ab64693)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 s2
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, Ab64693)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 s2). Cancer Discov (2016) ncbi
小鼠 单克隆(15-2)
  • 免疫印迹; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, ab8918)被用于被用于免疫印迹在小鼠样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:50; 图 9
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, AB64693)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:50 (图 9). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s2
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, ab64693)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, ab64693)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(15-2)
  • 流式细胞仪; 大鼠; 1:500; 图 3
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, ab8918)被用于被用于流式细胞仪在大鼠样本上浓度为1:500 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EPR6828(B))
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 MRC1抗体(Epitomics, 5307)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(15-2)
  • 流式细胞仪; 人类
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, ab8918)被用于被用于流式细胞仪在人类样本上. Int J Mol Sci (2014) ncbi
小鼠 单克隆(15-2)
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, ab8918)被用于被用于免疫细胞化学在小鼠样本上. Biomaterials (2014) ncbi
小鼠 单克隆(15-2)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, ab8918)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(15-2)
  • 免疫组化; 小鼠; 表 3
  • 免疫印迹; 小鼠; 表 3
艾博抗(上海)贸易有限公司 MRC1抗体(Abcam, ab8918)被用于被用于免疫组化在小鼠样本上 (表 3) 和 被用于免疫印迹在小鼠样本上 (表 3). J Neuroimmune Pharmacol (2009) ncbi
赛默飞世尔
小鼠 单克隆(19.2)
  • 流式细胞仪; 人类; 图 s3l
赛默飞世尔 MRC1抗体(Thermo Fisher, 19.2)被用于被用于流式细胞仪在人类样本上 (图 s3l). Biol Blood Marrow Transplant (2018) ncbi
小鼠 单克隆(19.2)
  • 流式细胞仪; 人类; 1:100; 图 5a
赛默飞世尔 MRC1抗体(eBioscience, 19.2)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 5a). Nat Immunol (2016) ncbi
小鼠 单克隆(19.2)
  • 流式细胞仪; 人类; 1.25 ug/ml; 图 2
赛默飞世尔 MRC1抗体(eBioscience, 12?C2069)被用于被用于流式细胞仪在人类样本上浓度为1.25 ug/ml (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(19.2)
  • 流式细胞仪; 人类
赛默飞世尔 MRC1抗体(eBioscience, 19.2)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(15-2)
  • 免疫组化; 食蟹猴; 图 4e
伯乐(Bio-Rad)公司 MRC1抗体(AbD Serotec, 15-2)被用于被用于免疫组化在食蟹猴样本上 (图 4e). J Immunol (2017) ncbi
小鼠 单克隆(15-2)
  • 免疫组化; domestic rabbit; 1:50; 图 s3
伯乐(Bio-Rad)公司 MRC1抗体(AbD Serotec, MCA2155)被用于被用于免疫组化在domestic rabbit样本上浓度为1:50 (图 s3). PLoS ONE (2016) ncbi
小鼠 单克隆(15-2)
  • 免疫组化-冰冻切片; 人类; 1:200; 表 s4
伯乐(Bio-Rad)公司 MRC1抗体(AbD Serotec, MCA2155)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (表 s4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(15-2)
  • 免疫细胞化学; 人类; 1:50
伯乐(Bio-Rad)公司 MRC1抗体(Serotec, MCA2155)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Mediators Inflamm (2014) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化; 人类; 图 2g
安迪生物R&D MRC1抗体(R&D Systems, AF2534)被用于被用于免疫组化在人类样本上 (图 2g). Oncogene (2017) ncbi
小鼠 单克隆(685645)
  • 免疫组化; 人类; 1:25; 图 2e
安迪生物R&D MRC1抗体(R&D Systems, MAB25341)被用于被用于免疫组化在人类样本上浓度为1:25 (图 2e). PLoS ONE (2016) ncbi
大鼠 单克隆(309210)
  • 免疫细胞化学; 人类; 1:100; 图 1
安迪生物R&D MRC1抗体(R&D systems, MAB2534)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(685645)
  • 免疫组化-石蜡切片; 人类; 图 6
安迪生物R&D MRC1抗体(R&D Systems, 685645)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6). Breast Cancer Res (2015) ncbi
小鼠 单克隆(685641)
  • 免疫细胞化学; 人类
安迪生物R&D MRC1抗体(R&D systems, FAB25342G)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
武汉三鹰
小鼠 单克隆(2A6A10)
  • 免疫印迹; 人类; 1:2000; 图 s1
  • 免疫印迹; 小鼠; 1:2000; 图 6e
武汉三鹰 MRC1抗体(Proteintech, 60143-1-Ig)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s1) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6e). Exp Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s6f
武汉三鹰 MRC1抗体(Proteintech, 18704-1-AP)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s6f). J Clin Invest (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 2
圣克鲁斯生物技术 MRC1抗体(Santa Cruz, sc-376232)被用于被用于免疫细胞化学在人类样本上 (图 2). Front Pharmacol (2017) ncbi
小鼠 单克隆(D-1)
  • 流式细胞仪; 人类; 图 1b
圣克鲁斯生物技术 MRC1抗体(Santa Cruz Biotechnology, sc-376108)被用于被用于流式细胞仪在人类样本上 (图 1b). BMC Cancer (2014) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(5C11)
  • 免疫细胞化学; 人类
亚诺法生技股份有限公司 MRC1抗体(Abnova, H00004360-M02)被用于被用于免疫细胞化学在人类样本上. Front Phys (2014) ncbi
LifeSpan Biosciences
小鼠 单克隆(15.2)
  • 流式细胞仪; 人类; 图 1
  • 免疫印迹; 人类
LifeSpan Biosciences MRC1抗体(LifeSpan BioSciences, LS-C40886)被用于被用于流式细胞仪在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
碧迪BD
小鼠 单克隆(19.2)
  • 流式细胞仪; 人类; 图 3a
碧迪BD MRC1抗体(BD, 551136)被用于被用于流式细胞仪在人类样本上 (图 3a). Cell Rep (2018) ncbi
小鼠 单克隆(19.2)
  • 免疫组化; 人类; 图 2c
碧迪BD MRC1抗体(BD Biosciences, 19.2)被用于被用于免疫组化在人类样本上 (图 2c). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(19.2)
  • 流式细胞仪; 人类; 图 1b
碧迪BD MRC1抗体(BD Pharmingen, 551136)被用于被用于流式细胞仪在人类样本上 (图 1b). Mediators Inflamm (2017) ncbi
小鼠 单克隆(19.2)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD MRC1抗体(BD, 19.2)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Cell Biol (2017) ncbi
小鼠 单克隆(19.2)
  • 流式细胞仪; 食蟹猴; 图 3d
碧迪BD MRC1抗体(BD Biosciences, 19.2)被用于被用于流式细胞仪在食蟹猴样本上 (图 3d). J Immunol (2017) ncbi
小鼠 单克隆(19.2)
  • 免疫组化-冰冻切片; 人类; 图 3a
碧迪BD MRC1抗体(BD Biosciences, 19.2)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3a). Int J Cancer (2017) ncbi
小鼠 单克隆(19.2)
  • 流式细胞仪; 人类; 表 3
碧迪BD MRC1抗体(BD Pharmingen, 19.2)被用于被用于流式细胞仪在人类样本上 (表 3). Brain Behav (2016) ncbi
小鼠 单克隆(19.2)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 2b
碧迪BD MRC1抗体(Becton-Dickinson, 19.2)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 2b). J Proteome Res (2017) ncbi
小鼠 单克隆(19.2)
  • 流式细胞仪; 人类; 图 4b
碧迪BD MRC1抗体(BD Biosciences, 555953)被用于被用于流式细胞仪在人类样本上 (图 4b). Nanomedicine (Lond) (2016) ncbi
小鼠 单克隆(19.2)
  • 免疫印迹; 人类
碧迪BD MRC1抗体(Santacruz, 551135)被用于被用于免疫印迹在人类样本上. Oncoimmunology (2016) ncbi
小鼠 单克隆(19.2)
  • 流式细胞仪; 人类; 1:200; 图 1
碧迪BD MRC1抗体(BD Biosciences, 550889)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(19.2)
  • 流式细胞仪; 人类; 图 st1
碧迪BD MRC1抗体(BD, 555954)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(19.2)
  • 流式细胞仪; 人类; 图 5d
碧迪BD MRC1抗体(Becton Dickinson-Pharmingen, 19.2)被用于被用于流式细胞仪在人类样本上 (图 5d). Cell Immunol (2016) ncbi
小鼠 单克隆(19.2)
  • 免疫组化-冰冻切片; 人类; 图 4
碧迪BD MRC1抗体(BD Bioscience, 555953)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4). Br J Dermatol (2016) ncbi
小鼠 单克隆(19.2)
  • 流式细胞仪; 人类; 图 4d
碧迪BD MRC1抗体(BD Pharmingen, 550889)被用于被用于流式细胞仪在人类样本上 (图 4d). J Crohns Colitis (2016) ncbi
小鼠 单克隆(19.2)
  • 流式细胞仪; 人类; 图 5
碧迪BD MRC1抗体(BD Pharmingen, 555954)被用于被用于流式细胞仪在人类样本上 (图 5). BMC Cancer (2015) ncbi
小鼠 单克隆(19.2)
  • 流式细胞仪; 猕猴
碧迪BD MRC1抗体(BD Pharmingen, 19.2)被用于被用于流式细胞仪在猕猴样本上. J Neuroimmune Pharmacol (2014) ncbi
小鼠 单克隆(19.2)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 3l
碧迪BD MRC1抗体(BD Bioscience, 555953)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 3l). J Neuroimmunol (2014) ncbi
小鼠 单克隆(19.2)
  • 流式细胞仪; 人类
碧迪BD MRC1抗体(BD Biosciences, 19.2)被用于被用于流式细胞仪在人类样本上. Mol Immunol (2014) ncbi
小鼠 单克隆(19.2)
  • 免疫细胞化学; 人类; 表 1
碧迪BD MRC1抗体(BD, 19.2)被用于被用于免疫细胞化学在人类样本上 (表 1). Nat Immunol (2014) ncbi
小鼠 单克隆(19.2)
  • 免疫组化-冰冻切片; 人类; 1:400
  • 流式细胞仪; 人类; 1:100
碧迪BD MRC1抗体(BD, 19.2)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:400 和 被用于流式细胞仪在人类样本上浓度为1:100. J Neuroinflammation (2013) ncbi
文章列表
  1. Orgaz J, Crosas Molist E, Sadok A, Perdrix Rosell A, Maiques O, Rodriguez Hernandez I, et al. Myosin II Reactivation and Cytoskeletal Remodeling as a Hallmark and a Vulnerability in Melanoma Therapy Resistance. Cancer Cell. 2020;37:85-103.e9 pubmed 出版商
  2. Johnston J, Angyal A, Bauer R, Hamby S, Suvarna S, Baidžajevas K, et al. Myeloid Tribbles 1 induces early atherosclerosis via enhanced foam cell expansion. Sci Adv. 2019;5:eaax9183 pubmed 出版商
  3. Stewart B, Ferdinand J, Young M, Mitchell T, Loudon K, Riding A, et al. Spatiotemporal immune zonation of the human kidney. Science. 2019;365:1461-1466 pubmed 出版商
  4. Martin J, Chang C, Boschetti G, Ungaro R, Giri M, Grout J, et al. Single-Cell Analysis of Crohn's Disease Lesions Identifies a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy. Cell. 2019;178:1493-1508.e20 pubmed 出版商
  5. Chakarov S, Lim H, Tan L, Lim S, See P, Lum J, et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science. 2019;363: pubmed 出版商
  6. Goody D, Gupta S, Engelmann D, Spitschak A, Marquardt S, Mikkat S, et al. Drug Repositioning Inferred from E2F1-Coregulator Interactions Studies for the Prevention and Treatment of Metastatic Cancers. Theranostics. 2019;9:1490-1509 pubmed 出版商
  7. Frank A, Ebersberger S, Fink A, Lampe S, Weigert A, Schmid T, et al. Apoptotic tumor cell-derived microRNA-375 uses CD36 to alter the tumor-associated macrophage phenotype. Nat Commun. 2019;10:1135 pubmed 出版商
  8. Georgouli M, Herraiz C, Crosas Molist E, Fanshawe B, Maiques O, Perdrix A, et al. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell. 2019;176:757-774.e23 pubmed 出版商
  9. Zeiner P, Preusse C, Golebiewska A, Zinke J, Iriondo A, Muller A, et al. Distribution and prognostic impact of microglia/macrophage subpopulations in gliomas. Brain Pathol. 2019;29:513-529 pubmed 出版商
  10. Chinta K, Rahman M, Saini V, Glasgow J, Reddy V, Lever J, et al. Microanatomic Distribution of Myeloid Heme Oxygenase-1 Protects against Free Radical-Mediated Immunopathology in Human Tuberculosis. Cell Rep. 2018;25:1938-1952.e5 pubmed 出版商
  11. Kelly A, Günaltay S, McEntee C, Shuttleworth E, Smedley C, Houston S, et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med. 2018;215:2725-2736 pubmed 出版商
  12. Fan X, Guo D, Cheung A, Poon Z, Yap C, Goh S, et al. Mesenchymal Stromal Cell (MSC)-Derived Combination of CXCL5 and Anti-CCL24 Is Synergistic and Superior to MSC and Cyclosporine for the Treatment of Graft-versus-Host Disease. Biol Blood Marrow Transplant. 2018;24:1971-1980 pubmed 出版商
  13. Bezhaeva T, De Vries M, Geelhoed W, van der Veer E, Versteeg S, van Alem C, et al. Relaxin receptor deficiency promotes vascular inflammation and impairs outward remodeling in arteriovenous fistulas. FASEB J. 2018;:fj201800437R pubmed 出版商
  14. Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari Mimoun C, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci U S A. 2018;115:E4041-E4050 pubmed 出版商
  15. Ireland L, Santos A, Campbell F, Figueiredo C, Hammond D, Ellies L, et al. Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer. Oncogene. 2018;37:2022-2036 pubmed 出版商
  16. Jeong J, Hong S, Kwon O, Ghang B, Hwang I, Kim Y, et al. CD14+ Cells with the Phenotype of Infiltrated Monocytes Consist of Distinct Populations Characterized by Anti-inflammatory as well as Pro-inflammatory Activity in Gouty Arthritis. Front Immunol. 2017;8:1260 pubmed 出版商
  17. Meng Y, Zhou W, Jin L, Liu L, Chang K, Mei J, et al. RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization. Cell Death Dis. 2017;8:e3105 pubmed 出版商
  18. Hao J, Hu Y, Li Y, Zhou Q, Lv X. Involvement of JNK signaling in IL4-induced M2 macrophage polarization. Exp Cell Res. 2017;357:155-162 pubmed 出版商
  19. Lee R, Reese C, Carmen Lopez G, Perry B, Bonner M, Zemskova M, et al. Deficient Adipogenesis of Scleroderma Patient and Healthy African American Monocytes. Front Pharmacol. 2017;8:174 pubmed 出版商
  20. Choi B, Suh C, Kim H, Sayeed H, Sohn S. The Correlation of CD206, CD209, and Disease Severity in Behçet's Disease with Arthritis. Mediators Inflamm. 2017;2017:7539529 pubmed 出版商
  21. Lerner T, Borel S, Greenwood D, Repnik U, Russell M, Herbst S, et al. Mycobacterium tuberculosis replicates within necrotic human macrophages. J Cell Biol. 2017;216:583-594 pubmed 出版商
  22. Nicolas N, Michel V, Bhushan S, Wahle E, Hayward S, Ludlow H, et al. Testicular activin and follistatin levels are elevated during the course of experimental autoimmune epididymo-orchitis in mice. Sci Rep. 2017;7:42391 pubmed 出版商
  23. Wonderlich E, Swan Z, Bissel S, Hartman A, Carney J, O Malley K, et al. Widespread Virus Replication in Alveoli Drives Acute Respiratory Distress Syndrome in Aerosolized H5N1 Influenza Infection of Macaques. J Immunol. 2017;198:1616-1626 pubmed 出版商
  24. Karna S, D ARPA P, Chen T, Qian L, Fourcaudot A, Yamane K, et al. RNA-Seq Transcriptomic Responses of Full-Thickness Dermal Excision Wounds to Pseudomonas aeruginosa Acute and Biofilm Infection. PLoS ONE. 2016;11:e0165312 pubmed 出版商
  25. Perea F, Bernal M, Sánchez Palencia A, Carretero J, Torres C, Bayarri C, et al. The absence of HLA class I expression in non-small cell lung cancer correlates with the tumor tissue structure and the pattern of T cell infiltration. Int J Cancer. 2017;140:888-899 pubmed 出版商
  26. Dyer W, Tan J, Day T, Kiers L, Kiernan M, Yiannikas C, et al. Immunomodulation of inflammatory leukocyte markers during intravenous immunoglobulin treatment associated with clinical efficacy in chronic inflammatory demyelinating polyradiculoneuropathy. Brain Behav. 2016;6:e00516 pubmed
  27. Holzlechner M, Strasser K, Zareva E, Steinhäuser L, Birnleitner H, Beer A, et al. In Situ Characterization of Tissue-Resident Immune Cells by MALDI Mass Spectrometry Imaging. J Proteome Res. 2017;16:65-76 pubmed 出版商
  28. Burgess M, Mapp S, Mazzieri R, Cheung C, Chambers L, Mattarollo S, et al. Increased FcγRIIB dominance contributes to the emergence of resistance to therapeutic antibodies in chronic lymphocytic leukaemia patients. Oncogene. 2017;36:2366-2376 pubmed 出版商
  29. Pang Y, Dai X, Roller A, Carter K, Paul I, Bhatt A, et al. Early Postnatal Lipopolysaccharide Exposure Leads to Enhanced Neurogenesis and Impaired Communicative Functions in Rats. PLoS ONE. 2016;11:e0164403 pubmed 出版商
  30. Arakaki R, Yamasaki T, Kanno T, Shibasaki N, Sakamoto H, Utsunomiya N, et al. CCL2 as a potential therapeutic target for clear cell renal cell carcinoma. Cancer Med. 2016;5:2920-2933 pubmed 出版商
  31. Foerster F, Bamberger D, Schupp J, Weilbächer M, Kaps L, Strobl S, et al. Dextran-based therapeutic nanoparticles for hepatic drug delivery. Nanomedicine (Lond). 2016;11:2663-2677 pubmed
  32. Baghel K, Tewari B, Shrivastava R, Malik S, Lone M, Jain N, et al. Macrophages promote matrix protrusive and invasive function of breast cancer cells via MIP-1? dependent upregulation of MYO3A gene in breast cancer cells. Oncoimmunology. 2016;5:e1196299 pubmed 出版商
  33. Beatson R, Tajadura Ortega V, Achkova D, Picco G, Tsourouktsoglou T, Klausing S, et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol. 2016;17:1273-1281 pubmed 出版商
  34. Machacek C, Supper V, Leksa V, Mitulovic G, Spittler A, Drbal K, et al. Folate Receptor ? Regulates Integrin CD11b/CD18 Adhesion of a Macrophage Subset to Collagen. J Immunol. 2016;197:2229-38 pubmed 出版商
  35. Lesina M, Wörmann S, Morton J, Diakopoulos K, Korneeva O, Wimmer M, et al. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. J Clin Invest. 2016;126:2919-32 pubmed 出版商
  36. Kojima Y, Volkmer J, McKenna K, Civelek M, Lusis A, Miller C, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536:86-90 pubmed
  37. Dai Y, Miao Y, Wu W, Li Y, D Errico F, Su W, et al. Ablation of Liver X receptors ? and ? leads to spontaneous peripheral squamous cell lung cancer in mice. Proc Natl Acad Sci U S A. 2016;113:7614-9 pubmed 出版商
  38. Carpino G, Nobili V, Renzi A, De Stefanis C, Stronati L, Franchitto A, et al. Macrophage Activation in Pediatric Nonalcoholic Fatty Liver Disease (NAFLD) Correlates with Hepatic Progenitor Cell Response via Wnt3a Pathway. PLoS ONE. 2016;11:e0157246 pubmed 出版商
  39. Chen P, Roh W, Reuben A, Cooper Z, Spencer C, Prieto P, et al. Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discov. 2016;6:827-37 pubmed 出版商
  40. Wang Y, Hu C, Li J, You X, Gao F. Increased translocation of antigens to endosomes and TLR4 mediated endosomal recruitment of TAP contribute to nicotine augmented cross-presentation. Oncotarget. 2016;7:38451-38466 pubmed 出版商
  41. Hollmen M, Karaman S, Schwager S, Lisibach A, Christiansen A, Maksimow M, et al. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer. Oncoimmunology. 2016;5:e1115177 pubmed
  42. Basrai H, Christie K, Turbic A, Bye N, Turnley A. Suppressor of Cytokine Signaling-2 (SOCS2) Regulates the Microglial Response and Improves Functional Outcome after Traumatic Brain Injury in Mice. PLoS ONE. 2016;11:e0153418 pubmed 出版商
  43. Wezel A, De Vries M, Maassen J, Kip P, Peters E, Karper J, et al. Deficiency of the TLR4 analogue RP105 aggravates vein graft disease by inducing a pro-inflammatory response. Sci Rep. 2016;6:24248 pubmed 出版商
  44. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  45. Mosquera Restrepo S, Caro A, Peláez Jaramillo C, Rojas M. Mononuclear phagocyte accumulates a stearic acid derivative during differentiation into macrophages. Effects of stearic acid on macrophage differentiation and Mycobacterium tuberculosis control. Cell Immunol. 2016;303:24-33 pubmed 出版商
  46. Yan K, Huang Q, Fang X, Zhang Z, Han L, Gadaldi K, et al. IgE and FcεRI are highly expressed on innate cells in psoriasis. Br J Dermatol. 2016;175:122-33 pubmed 出版商
  47. Singla D, Singla R, Wang J. BMP-7 Treatment Increases M2 Macrophage Differentiation and Reduces Inflammation and Plaque Formation in Apo E-/- Mice. PLoS ONE. 2016;11:e0147897 pubmed 出版商
  48. Jiao H, Natoli R, Valter K, Provis J, Rutar M. Spatiotemporal Cadence of Macrophage Polarisation in a Model of Light-Induced Retinal Degeneration. PLoS ONE. 2015;10:e0143952 pubmed 出版商
  49. Su S, Zhao Q, He C, Huang D, Liu J, Chen F, et al. miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat Commun. 2015;6:8523 pubmed 出版商
  50. Levin A, Koelink P, Bloemendaal F, Vos A, D Haens G, van den Brink G, et al. Autophagy Contributes to the Induction of Anti-TNF Induced Macrophages. J Crohns Colitis. 2016;10:323-9 pubmed 出版商
  51. Lindholm P, Sivapurapu N, Jovanovic B, Kajdacsy Balla A. Monocyte-Induced Prostate Cancer Cell Invasion is Mediated by Chemokine ligand 2 and Nuclear Factor-κB Activity. J Clin Cell Immunol. 2015;6: pubmed
  52. Eichin D, Laurila J, Jalkanen S, Salmi M. CD73 Activity is Dispensable for the Polarization of M2 Macrophages. PLoS ONE. 2015;10:e0134721 pubmed 出版商
  53. Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 2015;15:577 pubmed 出版商
  54. Pardee A, Yano H, Weinstein A, Ponce A, Ethridge A, Normolle D, et al. Route of antigen delivery impacts the immunostimulatory activity of dendritic cell-based vaccines for hepatocellular carcinoma. J Immunother Cancer. 2015;3:32 pubmed 出版商
  55. WILLIAMS K, KILLEBREW D, Clary G, Seawell J, Meeker R. Differential regulation of macrophage phenotype by mature and pro-nerve growth factor. J Neuroimmunol. 2015;285:76-93 pubmed 出版商
  56. Wang J, Ma L, Tang X, Zhang X, Qiao Y, Shi Y, et al. Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells. Oncotarget. 2015;6:24075-91 pubmed
  57. Larsson K, Kock A, Idborg H, Arsenian Henriksson M, Martinsson T, Johnsen J, et al. COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proc Natl Acad Sci U S A. 2015;112:8070-5 pubmed 出版商
  58. Huo C, Chew G, Hill P, Huang D, Ingman W, Hodson L, et al. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res. 2015;17:79 pubmed 出版商
  59. Xue J, Sharma V, Hsieh M, Chawla A, Murali R, Pandol S, et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun. 2015;6:7158 pubmed 出版商
  60. Cheah M, Chen J, Sahoo D, Contreras Trujillo H, Volkmer A, Scheeren F, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A. 2015;112:4725-30 pubmed 出版商
  61. Herbst S, Shah A, Mazon Moya M, Marzola V, Jensen B, Reed A, et al. Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med. 2015;7:240-58 pubmed 出版商
  62. Reiner A, Heldt S, Presley C, Guley N, Elberger A, Deng Y, et al. Motor, visual and emotional deficits in mice after closed-head mild traumatic brain injury are alleviated by the novel CB2 inverse agonist SMM-189. Int J Mol Sci. 2014;16:758-87 pubmed 出版商
  63. Itano M, Graus M, Pehlke C, Wester M, Liu P, Lidke K, et al. Super-resolution imaging of C-type lectin spatial rearrangement within the dendritic cell plasma membrane at fungal microbe contact sites. Front Phys. 2014;2: pubmed
  64. Dong B, Li D, Li R, Chen S, Liu W, Liu W, et al. A chitin-like component on sclerotic cells of Fonsecaea pedrosoi inhibits Dectin-1-mediated murine Th17 development by masking β-glucans. PLoS ONE. 2014;9:e114113 pubmed 出版商
  65. Zhan X, Jia L, Niu Y, Qi H, Chen X, Zhang Q, et al. Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy. Biomaterials. 2014;35:10046-57 pubmed 出版商
  66. Holder G, McGary C, Johnson E, Zheng R, John V, Sugimoto C, et al. Expression of the mannose receptor CD206 in HIV and SIV encephalitis: a phenotypic switch of brain perivascular macrophages with virus infection. J Neuroimmune Pharmacol. 2014;9:716-26 pubmed 出版商
  67. Balan S, Ollion V, Colletti N, Chelbi R, Montanana Sanchis F, Liu H, et al. Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J Immunol. 2014;193:1622-35 pubmed 出版商
  68. Xu H, Lai W, Zhang Y, Liu L, Luo X, Zeng Y, et al. Tumor-associated macrophage-derived IL-6 and IL-8 enhance invasive activity of LoVo cells induced by PRL-3 in a KCNN4 channel-dependent manner. BMC Cancer. 2014;14:330 pubmed 出版商
  69. Rami D, La Bianca M, Agostinis C, Zauli G, Radillo O, Bulla R. The first trimester gravid serum regulates procalcitonin expression in human macrophages skewing their phenotype in vitro. Mediators Inflamm. 2014;2014:248963 pubmed 出版商
  70. Brittan M, Barr L, Anderson N, Morris A, Duffin R, Marwick J, et al. Functional characterisation of human pulmonary monocyte-like cells in lipopolysaccharide-mediated acute lung inflammation. J Inflamm (Lond). 2014;11:9 pubmed 出版商
  71. Gomez Choco M, Doucerain C, Urra X, Planas A, Chamorro A. Presence of heat shock protein 70 in secondary lymphoid tissue correlates with stroke prognosis. J Neuroimmunol. 2014;270:67-74 pubmed 出版商
  72. Søndergaard J, Vinner L, Brix S. Natural mannosylation of HIV-1 gp120 imposes no immunoregulatory effects in primary human plasmacytoid dendritic cells. Mol Immunol. 2014;59:180-7 pubmed 出版商
  73. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  74. Anders C, Ashton N, Ranjzad P, Dilworth M, Woolf A. Ex vivo modeling of chemical synergy in prenatal kidney cystogenesis. PLoS ONE. 2013;8:e57797 pubmed 出版商
  75. Vogel D, Vereyken E, Glim J, Heijnen P, Moeton M, van der Valk P, et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation. 2013;10:35 pubmed 出版商
  76. Colton C. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol. 2009;4:399-418 pubmed 出版商