这是一篇来自已证抗体库的有关人类 MUC5AC的综述,是根据66篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合MUC5AC 抗体。
MUC5AC 同义词: MUC5; TBM; leB; mucin

赛默飞世尔
小鼠 单克隆(45M1)
  • 免疫组化-石蜡切片; 人类; 图 6
赛默飞世尔 MUC5AC抗体(Invitrogen, MA5-12178)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6). BBA Adv (2022) ncbi
小鼠 单克隆(45M1)
  • 免疫组化; 小鼠; 1:50; 图 3r
赛默飞世尔 MUC5AC抗体(Thermo Fisher, 45 M1)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3r). Aging Cell (2021) ncbi
小鼠 单克隆(45M1)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔 MUC5AC抗体(Thermo Fisher Scientific, 45M1)被用于被用于免疫组化在小鼠样本上浓度为1:100. Toxicol Pathol (2021) ncbi
小鼠 单克隆(45M1)
  • 免疫组化; 人类; 1:100; 图 1s1c
赛默飞世尔 MUC5AC抗体(Invitrogen, MA5-12178)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1s1c). elife (2021) ncbi
小鼠 单克隆(45M1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4c
赛默飞世尔 MUC5AC抗体(ThermoFisher, MA5-12178)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4c). Nat Commun (2020) ncbi
小鼠 单克隆(45M1)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2c, 2k
赛默飞世尔 MUC5AC抗体(Thermo Fisher, MA5-12178)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2c, 2k). Tissue Eng Part A (2020) ncbi
小鼠 单克隆(45M1)
  • 免疫组化; 小鼠; 图 5a
赛默飞世尔 MUC5AC抗体(Thermo Fisher Scientific, MA 5-12175)被用于被用于免疫组化在小鼠样本上 (图 5a). J Immunol (2019) ncbi
小鼠 单克隆(45M1)
  • 免疫组化; 人类; 图 3b
赛默飞世尔 MUC5AC抗体(ThermoFisher, 45M1)被用于被用于免疫组化在人类样本上 (图 3b). Am J Respir Crit Care Med (2018) ncbi
小鼠 单克隆(45M1)
  • 酶联免疫吸附测定; 小鼠; 1:16,000; 图 4e
赛默飞世尔 MUC5AC抗体(Invitrogen, MA5-12178)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:16,000 (图 4e). Am J Physiol Lung Cell Mol Physiol (2017) ncbi
小鼠 单克隆(45M1)
  • 流式细胞仪; 人类; 图 1c
赛默飞世尔 MUC5AC抗体(Thermo Scientific, 45M1)被用于被用于流式细胞仪在人类样本上 (图 1c). PLoS Biol (2017) ncbi
小鼠 单克隆(45M1)
  • 免疫印迹; 人类; 1:500; 图 4a
赛默飞世尔 MUC5AC抗体(Thermo Scientific, MA5-12178)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Eur Arch Otorhinolaryngol (2017) ncbi
小鼠 单克隆(45M1)
  • 免疫组化-石蜡切片; 小鼠; 图 s7b
赛默飞世尔 MUC5AC抗体(Thermo Fisher Scientific, MA5-12178,)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s7b). J Clin Invest (2016) ncbi
小鼠 单克隆(45M1)
  • 免疫细胞化学; 人类
赛默飞世尔 MUC5AC抗体(ThermoFisher Scientific, MS-145-P)被用于被用于免疫细胞化学在人类样本上. Curr Protoc Stem Cell Biol (2016) ncbi
小鼠 单克隆(45M1)
  • 免疫细胞化学; 人类; 图 s4
赛默飞世尔 MUC5AC抗体(ThermoScientific, 45M1)被用于被用于免疫细胞化学在人类样本上 (图 s4). PLoS Biol (2016) ncbi
小鼠 单克隆(45M1)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
赛默飞世尔 MUC5AC抗体(NeoMarkers, 45M1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Pathol Res Pract (2016) ncbi
小鼠 单克隆(45M1)
  • 免疫细胞化学; 小鼠; 图 5c
赛默飞世尔 MUC5AC抗体(Lab Vision, MS-145-P1)被用于被用于免疫细胞化学在小鼠样本上 (图 5c). Cell Tissue Res (2016) ncbi
小鼠 单克隆(45M1)
  • 免疫组化; 小鼠; 1:200; 图 5
赛默飞世尔 MUC5AC抗体(Lab Vision, MS145-PO)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5). J Cell Biol (2015) ncbi
小鼠 单克隆(45M1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s1
赛默飞世尔 MUC5AC抗体(NeoMarkers, 45M1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s1). elife (2015) ncbi
小鼠 单克隆(45M1)
  • 免疫组化; 人类; 1:2000; 表 1
赛默飞世尔 MUC5AC抗体(Neomarker, 45M/1)被用于被用于免疫组化在人类样本上浓度为1:2000 (表 1). Gut Liver (2016) ncbi
小鼠 单克隆(45M1)
  • 免疫组化; 小鼠; 2 ug/ml; 图 6c
赛默飞世尔 MUC5AC抗体(Thermo Fisher Scientific, MS-145-P0)被用于被用于免疫组化在小鼠样本上浓度为2 ug/ml (图 6c). Am J Pathol (2015) ncbi
小鼠 单克隆(45M1)
  • 酶联免疫吸附测定; 人类
  • 免疫印迹; 人类; 图 3
赛默飞世尔 MUC5AC抗体(Thermo, 45M1)被用于被用于酶联免疫吸附测定在人类样本上 和 被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(45M1)
  • 免疫组化; 人类; 1:100
赛默飞世尔 MUC5AC抗体(Neomarkers, MS-145-P1)被用于被用于免疫组化在人类样本上浓度为1:100. Respir Res (2014) ncbi
小鼠 单克隆(45M1)
  • 免疫细胞化学; domestic rabbit; 2 ug/ml
赛默飞世尔 MUC5AC抗体(Thermo Fisher Scientific, MS-145)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为2 ug/ml. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(45M1)
赛默飞世尔 MUC5AC抗体(Thermo Scientific, MS145P)被用于. PLoS ONE (2014) ncbi
小鼠 单克隆(45M1)
  • 免疫细胞化学; 人类
赛默飞世尔 MUC5AC抗体(Thermo Fisher Scientific, 45M1)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(45M1)
  • 酶联免疫吸附测定; 人类; 10 ug/ml
赛默飞世尔 MUC5AC抗体(Neomarkers, 45M1)被用于被用于酶联免疫吸附测定在人类样本上浓度为10 ug/ml. Int J Mol Med (2013) ncbi
小鼠 单克隆(45M1)
  • 免疫组化; 小鼠
赛默飞世尔 MUC5AC抗体(NeoMarkers, MS-145)被用于被用于免疫组化在小鼠样本上. Am J Pathol (2012) ncbi
小鼠 单克隆(45M1)
  • 免疫组化; 人类; 1:100
赛默飞世尔 MUC5AC抗体(Thermo Scientific, MS-145-P0)被用于被用于免疫组化在人类样本上浓度为1:100. J Comp Neurol (2012) ncbi
小鼠 单克隆(45M1)
  • 免疫细胞化学; 人类; 0.2 ug/ml; 图 5
  • 免疫印迹; 人类; 2 ug/ml; 图 5
赛默飞世尔 MUC5AC抗体(Labvision, 45M1)被用于被用于免疫细胞化学在人类样本上浓度为0.2 ug/ml (图 5) 和 被用于免疫印迹在人类样本上浓度为2 ug/ml (图 5). Respir Res (2011) ncbi
小鼠 单克隆(45M1)
  • 免疫细胞化学; 人类; 1:100; 图 5
赛默飞世尔 MUC5AC抗体(NeoMarkers, 45M1)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). Exp Cell Res (2007) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(45M1)
  • 免疫细胞化学; 人类; 1:100; 图 s5a
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, ab3649)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s5a). Cell Stem Cell (2022) ncbi
小鼠 单克隆(45M1)
  • 免疫组化; 人类; 1:500; 图 1c, 1d
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, ab3649)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1c, 1d). elife (2022) ncbi
小鼠 单克隆(45M1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3c
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, ab3649)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3c). Bosn J Basic Med Sci (2021) ncbi
小鼠 单克隆(45M1)
  • 免疫印迹; 人类; 图 5c
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, 45M1)被用于被用于免疫印迹在人类样本上 (图 5c). PLoS ONE (2020) ncbi
小鼠 单克隆(45M1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3m
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, ab3649)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3m). PLoS Genet (2017) ncbi
小鼠 单克隆(45M1)
  • 免疫细胞化学; 人类; 图 2a
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, ab3649)被用于被用于免疫细胞化学在人类样本上 (图 2a). J Biol Chem (2017) ncbi
小鼠 单克隆(45M1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, ab3649)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3b). Nature (2017) ncbi
小鼠 单克隆(45M1)
  • 免疫组化; 人类; 1:200; 图 3c
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, 45M1)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3c). Int Forum Allergy Rhinol (2017) ncbi
小鼠 单克隆(45M1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s2
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, ab3649)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s2). Development (2016) ncbi
小鼠 单克隆(45M1)
  • 免疫组化-冰冻切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, ab3649)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200. J Ocul Pharmacol Ther (2016) ncbi
小鼠 单克隆(45M1)
  • 免疫组化-石蜡切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司 MUC5AC抗体(abcam, 45M1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Genes Dev (2015) ncbi
小鼠 单克隆(2-11M1)
  • 免疫组化; 人类; 图 3a
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, AB24071)被用于被用于免疫组化在人类样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 3c). Respir Res (2015) ncbi
小鼠 单克隆(45M1)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, ab3649)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(45M1)
  • 免疫印迹; 人类; 1:200
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, ab3649)被用于被用于免疫印迹在人类样本上浓度为1:200. Nat Protoc (2015) ncbi
小鼠 单克隆(1-13M1)
  • 免疫细胞化学; 人类; 1 ug/ml; 图 4a
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, Ab24070)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml (图 4a). J Allergy Clin Immunol (2015) ncbi
小鼠 单克隆(2-11M1)
  • 免疫组化-石蜡切片; 人类; 图 s2a
  • 免疫印迹; 人类; 图 3d
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, ab24071)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s2a) 和 被用于免疫印迹在人类样本上 (图 3d). PLoS ONE (2014) ncbi
小鼠 单克隆(1-13M1)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, ab24070)被用于被用于免疫组化-石蜡切片在人类样本上. Differentiation (2014) ncbi
小鼠 单克隆(45M1)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, ab3649)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Mol Pharm (2014) ncbi
小鼠 单克隆(1-13M1)
  • 酶联免疫吸附测定; 人类; 1:250
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, ab24070)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:250. Toxicol Sci (2014) ncbi
小鼠 单克隆(45M1)
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, Ab3649)被用于被用于免疫组化在小鼠样本上浓度为1:500. Development (2013) ncbi
小鼠 单克隆(45M1)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 MUC5AC抗体(Abcam, ab3649)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer (2011) ncbi
圣克鲁斯生物技术
小鼠 单克隆(CLH2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6j
圣克鲁斯生物技术 MUC5AC抗体(Santa, sc33667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6j). Cell Stem Cell (2021) ncbi
小鼠 单克隆(45M1)
  • 免疫组化; 人类; 图 1c
圣克鲁斯生物技术 MUC5AC抗体(Santa, sc-21701)被用于被用于免疫组化在人类样本上 (图 1c). EMBO J (2019) ncbi
小鼠 单克隆(2-11M1)
  • 酶联免疫吸附测定; 人类
圣克鲁斯生物技术 MUC5AC抗体(Santa Cruz, 2-11M1)被用于被用于酶联免疫吸附测定在人类样本上. Am J Respir Crit Care Med (2016) ncbi
小鼠 单克隆(45M1)
  • 酶联免疫吸附测定; 人类
圣克鲁斯生物技术 MUC5AC抗体(Santa Cruz, 45M1)被用于被用于酶联免疫吸附测定在人类样本上. Am J Respir Crit Care Med (2016) ncbi
小鼠 单克隆(CLH2)
  • 酶联免疫吸附测定; 人类
圣克鲁斯生物技术 MUC5AC抗体(Santa Cruz, CLH2)被用于被用于酶联免疫吸附测定在人类样本上. Am J Respir Crit Care Med (2016) ncbi
小鼠 单克隆(2Q445)
  • 酶联免疫吸附测定; 人类
圣克鲁斯生物技术 MUC5AC抗体(Santa Cruz, 2Q445)被用于被用于酶联免疫吸附测定在人类样本上. Am J Respir Crit Care Med (2016) ncbi
小鼠 单克隆(1-13M1)
  • 酶联免疫吸附测定; 人类
圣克鲁斯生物技术 MUC5AC抗体(Santa Cruz, 1-13M1)被用于被用于酶联免疫吸附测定在人类样本上. Am J Respir Crit Care Med (2016) ncbi
小鼠 单克隆(2X123)
  • 酶联免疫吸附测定; 人类
圣克鲁斯生物技术 MUC5AC抗体(Santa Cruz, 2X123)被用于被用于酶联免疫吸附测定在人类样本上. Am J Respir Crit Care Med (2016) ncbi
小鼠 单克隆(45M1)
  • 免疫细胞化学; 人类; 图 4a
圣克鲁斯生物技术 MUC5AC抗体(Santa Cruz, sc-21701)被用于被用于免疫细胞化学在人类样本上 (图 4a). J Inflamm (Lond) (2016) ncbi
小鼠 单克隆(45M1)
  • 免疫细胞化学; 人类; 图 4
圣克鲁斯生物技术 MUC5AC抗体(santa Cruz, sc-21701)被用于被用于免疫细胞化学在人类样本上 (图 4). Mucosal Immunol (2016) ncbi
小鼠 单克隆(45M1)
  • 免疫印迹; pigs ; 1:500
圣克鲁斯生物技术 MUC5AC抗体(Santa Cruz, sc21701)被用于被用于免疫印迹在pigs 样本上浓度为1:500. J Membr Biol (2014) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(SPM488)
  • 免疫组化; 小鼠; 1:100
亚诺法生技股份有限公司 MUC5AC抗体(Abnova, MAB13117)被用于被用于免疫组化在小鼠样本上浓度为1:100. elife (2021) ncbi
小鼠 单克隆(45M1)
  • 酶联免疫吸附测定; 人类
亚诺法生技股份有限公司 MUC5AC抗体(Abnova, MG-31)被用于被用于酶联免疫吸附测定在人类样本上. Am J Respir Crit Care Med (2016) ncbi
小鼠 单克隆(2H7)
  • 酶联免疫吸附测定; 人类
亚诺法生技股份有限公司 MUC5AC抗体(Abnova, 2H7)被用于被用于酶联免疫吸附测定在人类样本上. Am J Respir Crit Care Med (2016) ncbi
小鼠 单克隆(SPM297)
  • 酶联免疫吸附测定; 人类
亚诺法生技股份有限公司 MUC5AC抗体(Abnova, SPM297)被用于被用于酶联免疫吸附测定在人类样本上. Am J Respir Crit Care Med (2016) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s3b, s4
  • 免疫组化; 人类; 1:100; 图 3b, s6a
徕卡显微系统(上海)贸易有限公司 MUC5AC抗体(Leica Biosystems, NCL-MUC-5AC)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s3b, s4) 和 被用于免疫组化在人类样本上浓度为1:100 (图 3b, s6a). iScience (2022) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:100; 图 2
徕卡显微系统(上海)贸易有限公司 MUC5AC抗体(Leica Biosystems, NCL-MUC-5AC))被用于被用于免疫组化在人类样本上浓度为1:100 (图 2). Cancer Sci (2020) ncbi
  • 免疫组化-石蜡切片; 人类; 1:200; 图 e5j
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2d, e9g
徕卡显微系统(上海)贸易有限公司 MUC5AC抗体(Leica Biosystems, NCL-HGM-45-M1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 e5j) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2d, e9g). Nature (2020) ncbi
  • 免疫组化-石蜡切片; 人类; 图 s1b
徕卡显微系统(上海)贸易有限公司 MUC5AC抗体(Novocastra Leica, NCL-HGM-45M1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1b). EMBO J (2019) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:50
徕卡显微系统(上海)贸易有限公司 MUC5AC抗体(Novocastra/Leica, NCL-MUC-5AC)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Oncol Lett (2017) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5
徕卡显微系统(上海)贸易有限公司 MUC5AC抗体(Novocastra, NCL-MUC-5AC)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5). Am J Cancer Res (2016) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:200
徕卡显微系统(上海)贸易有限公司 MUC5AC抗体(Novocastra, NCL-MUC-5AC)被用于被用于免疫组化在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:100
徕卡显微系统(上海)贸易有限公司 MUC5AC抗体(Leica Microsystems, NCL-MUC-5AC)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Pancreas (2014) ncbi
西格玛奥德里奇
小鼠 单克隆(45M1)
  • 免疫细胞化学; 人类; 1:100; 图 s1e
西格玛奥德里奇 MUC5AC抗体(Sigma, M5293)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s1e). Arch Toxicol (2021) ncbi
文章列表
  1. Han Y, Tan L, Zhou T, Yang L, Carrau L, Lacko L, et al. A human iPSC-array-based GWAS identifies a virus susceptibility locus in the NDUFA4 gene and functional variants. Cell Stem Cell. 2022;29:1475-1490.e6 pubmed 出版商
  2. Yang L, Semmes E, Ovies C, Megli C, Permar S, Gilner J, et al. Innate immune signaling in trophoblast and decidua organoids defines differential antiviral defenses at the maternal-fetal interface. elife. 2022;11: pubmed 出版商
  3. Koide T, Koyanagi Aoi M, Uehara K, Kakeji Y, Aoi T. CDX2-induced intestinal metaplasia in human gastric organoids derived from induced pluripotent stem cells. iScience. 2022;25:104314 pubmed 出版商
  4. Manna V, Choi H, Rotoli S, CARADONNA S. The dynamic nature of the coronavirus receptor, angiotensin-converting enzyme 2 (ACE2) in differentiating airway epithelia. BBA Adv. 2022;2:100044 pubmed 出版商
  5. Piñeiro Hermida S, Martinez P, Blasco M. Short and dysfunctional telomeres protect from allergen-induced airway inflammation. Aging Cell. 2021;20:e13352 pubmed 出版商
  6. Cho H, Park S, Miller L, Lee H, Langenbach R, Kleeberger S. Role for Mucin-5AC in Upper and Lower Airway Pathogenesis in Mice. Toxicol Pathol. 2021;49:1077-1099 pubmed 出版商
  7. Huang L, Desai R, Conrad D, Leite N, Akshinthala D, Lim C, et al. Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids. Cell Stem Cell. 2021;28:1090-1104.e6 pubmed 出版商
  8. Zewdu R, Mehrabad E, Ingram K, Fang P, Gillis K, Camolotto S, et al. An NKX2-1/ERK/WNT feedback loop modulates gastric identity and response to targeted therapy in lung adenocarcinoma. elife. 2021;10: pubmed 出版商
  9. Mykytyn A, Breugem T, Riesebosch S, Schipper D, van den Doel P, Rottier R, et al. SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. elife. 2021;10: pubmed 出版商
  10. Hempt C, Hirsch C, Hannig Y, Rippl A, Wick P, Buerki Thurnherr T. Investigating the effects of differently produced synthetic amorphous silica (E 551) on the integrity and functionality of the human intestinal barrier using an advanced in vitro co-culture model. Arch Toxicol. 2021;95:837-852 pubmed 出版商
  11. Liu J, Feng W, Liu M, Rao H, Li X, Teng Y, et al. Stomach-specific c-Myc overexpression drives gastric adenoma in mice through AKT/mammalian target of rapamycin signaling. Bosn J Basic Med Sci. 2021;21:434-446 pubmed 出版商
  12. Doi N, Ino Y, Angata K, Shimada K, Narimatsu H, Hiraoka N. Clinicopathological significance of core 3 O-glycan synthetic enzyme, β1,3-N-acetylglucosaminyltransferase 6 in pancreatic ductal adenocarcinoma. PLoS ONE. 2020;15:e0242851 pubmed 出版商
  13. Perkail S, Andricovich J, Kai Y, Tzatsos A. BAP1 is a haploinsufficient tumor suppressor linking chronic pancreatitis to pancreatic cancer in mice. Nat Commun. 2020;11:3018 pubmed 出版商
  14. Matsubara D, Yoshimoto T, Soda M, Amano Y, Kihara A, Funaki T, et al. Reciprocal expression of trefoil factor-1 and thyroid transcription factor-1 in lung adenocarcinomas. Cancer Sci. 2020;111:2183-2195 pubmed 出版商
  15. Tan S, Swathi Y, Tan S, Goh J, Seishima R, Murakami K, et al. AQP5 enriches for stem cells and cancer origins in the distal stomach. Nature. 2020;578:437-443 pubmed 出版商
  16. Lodes N, Seidensticker K, Perniss A, Nietzer S, Oberwinkler H, May T, et al. Investigation on Ciliary Functionality of Different Airway Epithelial Cell Lines in Three-Dimensional Cell Culture. Tissue Eng Part A. 2020;26:432-440 pubmed 出版商
  17. Zhang Y, Mao D, Keeler S, Wang X, Wu K, Gerovac B, et al. Respiratory Enterovirus (Like Parainfluenza Virus) Can Cause Chronic Lung Disease If Protection by Airway Epithelial STAT1 Is Lost. J Immunol. 2019;: pubmed 出版商
  18. Sachs N, Papaspyropoulos A, Zomer van Ommen D, Heo I, Böttinger L, Klay D, et al. Long-term expanding human airway organoids for disease modeling. EMBO J. 2019;38: pubmed 出版商
  19. Ghosh A, Coakley R, Mascenik T, Rowell T, Davis E, Rogers K, et al. Chronic E-Cigarette Exposure Alters the Human Bronchial Epithelial Proteome. Am J Respir Crit Care Med. 2018;198:67-76 pubmed 出版商
  20. He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet. 2017;13:e1006992 pubmed 出版商
  21. Aguilera Aguirre L, Hao W, Pan L, Li X, Saavedra Molina A, Bacsi A, et al. Pollen-induced oxidative DNA damage response regulates miRNAs controlling allergic inflammation. Am J Physiol Lung Cell Mol Physiol. 2017;313:L1058-L1068 pubmed 出版商
  22. Hariri B, McMahon D, Chen B, Freund J, Mansfield C, Doghramji L, et al. Flavones modulate respiratory epithelial innate immunity: Anti-inflammatory effects and activation of the T2R14 receptor. J Biol Chem. 2017;292:8484-8497 pubmed 出版商
  23. Pham T, Oue N, Yamamoto M, Fujihara M, Ishida T, Mukai S, et al. Characteristic expression of fukutin in gastric cancer among atomic bomb survivors. Oncol Lett. 2017;13:937-941 pubmed 出版商
  24. Weeden C, Chen Y, Ma S, Hu Y, Ramm G, Sutherland K, et al. Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway. PLoS Biol. 2017;15:e2000731 pubmed 出版商
  25. McCracken K, Aihara E, Martin B, Crawford C, Broda T, Treguier J, et al. Wnt/β-catenin promotes gastric fundus specification in mice and humans. Nature. 2017;541:182-187 pubmed 出版商
  26. Calle A, Nair N, Oo A, Prieto Vila M, Koga M, Khayrani A, et al. A new PDAC mouse model originated from iPSCs-converted pancreatic cancer stem cells (CSCcm). Am J Cancer Res. 2016;6:2799-2815 pubmed
  27. Lachowicz Scroggins M, Yuan S, Kerr S, Dunican E, Yu M, Carrington S, et al. Abnormalities in MUC5AC and MUC5B Protein in Airway Mucus in Asthma. Am J Respir Crit Care Med. 2016;194:1296-1299 pubmed
  28. Cottrill E, Chen B, Adappa N, Palmer J, Kennedy D, Lee R, et al. Expression of dermcidin in human sinonasal secretions. Int Forum Allergy Rhinol. 2017;7:154-159 pubmed 出版商
  29. Liu S, Lin C, Chen S, Chu Y, Lee F, Lu H, et al. Effect of budesonide and azelastine on histamine signaling regulation in human nasal epithelial cells. Eur Arch Otorhinolaryngol. 2017;274:845-853 pubmed 出版商
  30. Poletti D, Iannini V, Casolari P, Contoli M, Papi A, Kirkham P, et al. Nasal inflammation and its response to local glucocorticoid regular treatment in patients with persistent non-allergic rhinitis: a pilot study. J Inflamm (Lond). 2016;13:26 pubmed 出版商
  31. Lesina M, Wörmann S, Morton J, Diakopoulos K, Korneeva O, Wimmer M, et al. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. J Clin Invest. 2016;126:2919-32 pubmed 出版商
  32. Hild M, Jaffe A. Production of 3-D Airway Organoids From Primary Human Airway Basal Cells and Their Use in High-Throughput Screening. Curr Protoc Stem Cell Biol. 2016;37:IE.9.1-IE.9.15 pubmed 出版商
  33. Veit G, Oliver K, Apaja P, Perdomo D, Bidaud Meynard A, Lin S, et al. Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect. PLoS Biol. 2016;14:e1002462 pubmed 出版商
  34. Xuan S, Sussel L. GATA4 and GATA6 regulate pancreatic endoderm identity through inhibition of hedgehog signaling. Development. 2016;143:780-6 pubmed 出版商
  35. Daull P, Feraille L, Elena P, Garrigue J. Comparison of the Anti-Inflammatory Effects of Artificial Tears in a Rat Model of Corneal Scraping. J Ocul Pharmacol Ther. 2016;32:109-18 pubmed 出版商
  36. Böger C, Haag J, Egberts J, Röcken C. Complex APC germline mutation associated metaplasia and intraepithelial neoplasia (CAM-IEN) of the gallbladder. Pathol Res Pract. 2016;212:54-8 pubmed 出版商
  37. Yoshie S, Imaizumi M, Nakamura R, Otsuki K, Ikeda M, Nomoto Y, et al. Generation of airway epithelial cells with native characteristics from mouse induced pluripotent stem cells. Cell Tissue Res. 2016;364:319-30 pubmed 出版商
  38. Jeffries J, Jia J, Choi W, Choe S, Miao J, Xu Y, et al. Pseudomonas aeruginosa pyocyanin modulates mucin glycosylation with sialyl-Lewis(x) to increase binding to airway epithelial cells. Mucosal Immunol. 2016;9:1039-1050 pubmed 出版商
  39. Gao X, Bali A, Randell S, Hogan B. GRHL2 coordinates regeneration of a polarized mucociliary epithelium from basal stem cells. J Cell Biol. 2015;211:669-82 pubmed 出版商
  40. Chiou S, Winters I, Wang J, Naranjo S, Dudgeon C, Tamburini F, et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev. 2015;29:1576-85 pubmed 出版商
  41. Krah N, De La O J, Swift G, Hoang C, Willet S, Chen Pan F, et al. The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma. elife. 2015;4: pubmed 出版商
  42. Kim Y, Lee S, Kim J, Sung I, Park H, Shim C, et al. Microsatellite Instability of Gastric and Colorectal Cancers as a Predictor of Synchronous Gastric or Colorectal Neoplasms. Gut Liver. 2016;10:220-7 pubmed 出版商
  43. Xu J, Singhera G, Dorscheid D. Expression of surfactant protein D in airways of asthmatics and interleukin-13 modulation of surfactant protein D in human models of airway epithelium. Respir Res. 2015;16:26 pubmed 出版商
  44. Salazar Peláez L, Abraham T, Herrera A, Correa M, Ortega J, Paré P, et al. Vitronectin expression in the airways of subjects with asthma and chronic obstructive pulmonary disease. PLoS ONE. 2015;10:e0119717 pubmed 出版商
  45. Kojima T, Dogru M, Higuchi A, Nagata T, Ibrahim O, Inaba T, et al. The effect of Nrf2 knockout on ocular surface protection from acute tobacco smoke exposure: evidence from Nrf2 knockout mice. Am J Pathol. 2015;185:776-85 pubmed 出版商
  46. Wong A, Chin S, Xia S, Garner J, Bear C, Rossant J. Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells. Nat Protoc. 2015;10:363-81 pubmed 出版商
  47. Liu D, Chang C, Gold D, Goldenberg D. Identification of PAM4 (clivatuzumab)-reactive epitope on MUC5AC: a promising biomarker and therapeutic target for pancreatic cancer. Oncotarget. 2015;6:4274-85 pubmed
  48. Van de Laar E, Clifford M, Hasenoeder S, Kim B, Wang D, Lee S, et al. Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas. Respir Res. 2014;15:160 pubmed 出版商
  49. Powell J, Hess B, Hutchison J, Straub T. Construction of an in vitro primary lung co-culture platform derived from New Zealand white rabbits. In Vitro Cell Dev Biol Anim. 2015;51:433-40 pubmed 出版商
  50. Stinson S, Amrani Y, Brightling C. D prostanoid receptor 2 (chemoattractant receptor-homologous molecule expressed on TH2 cells) protein expression in asthmatic patients and its effects on bronchial epithelial cells. J Allergy Clin Immunol. 2015;135:395-406 pubmed 出版商
  51. Kageyama Yahara N, Yamamichi N, Takahashi Y, Nakayama C, Shiogama K, Inada K, et al. Gli regulates MUC5AC transcription in human gastrointestinal cells. PLoS ONE. 2014;9:e106106 pubmed 出版商
  52. Persson B, Jaffe A, Fearns R, Danahay H. Respiratory syncytial virus can infect basal cells and alter human airway epithelial differentiation. PLoS ONE. 2014;9:e102368 pubmed 出版商
  53. Tam A, Wadsworth S, Dorscheid D, Man S, Sin D. Estradiol increases mucus synthesis in bronchial epithelial cells. PLoS ONE. 2014;9:e100633 pubmed 出版商
  54. de Borja Callejas F, Martinez Anton A, Alobid I, Fuentes M, Cortijo J, Picado C, et al. Reconstituted human upper airway epithelium as 3-d in vitro model for nasal polyposis. PLoS ONE. 2014;9:e100537 pubmed 出版商
  55. Kaisani A, Delgado O, Fasciani G, Kim S, Wright W, Minna J, et al. Branching morphogenesis of immortalized human bronchial epithelial cells in three-dimensional culture. Differentiation. 2014;87:119-26 pubmed 出版商
  56. Levendoski E, Sivasankar M. Vocal fold ion transport and mucin expression following acrolein exposure. J Membr Biol. 2014;247:441-50 pubmed 出版商
  57. Harrington H, Cato P, Salazar F, Wilkinson M, Knox A, Haycock J, et al. Immunocompetent 3D model of human upper airway for disease modeling and in vitro drug evaluation. Mol Pharm. 2014;11:2082-91 pubmed 出版商
  58. Wan L, Allen K, Turner P, El Nezami H. Modulation of mucin mRNA (MUC5AC and MUC5B) expression and protein production and secretion in Caco-2/HT29-MTX co-cultures following exposure to individual and combined Fusarium mycotoxins. Toxicol Sci. 2014;139:83-98 pubmed 出版商
  59. Meng F, Takaori K, Ito T, Masui T, Kawaguchi M, Kawaguchi Y, et al. Expression of SOX9 in intraductal papillary mucinous neoplasms of the pancreas. Pancreas. 2014;43:7-14 pubmed 出版商
  60. Li Q, Zhou X, Kolosov V, Perelman J. Salidroside reduces cold-induced mucin production by inhibiting TRPM8 activation. Int J Mol Med. 2013;32:637-46 pubmed 出版商
  61. Zhang Y, Lam O, Nguyen M, Ng G, Pear W, Ai W, et al. Mastermind-like transcriptional co-activator-mediated Notch signaling is indispensable for maintaining conjunctival epithelial identity. Development. 2013;140:594-605 pubmed 出版商
  62. Syu L, El Zaatari M, Eaton K, Liu Z, Tetarbe M, Keeley T, et al. Transgenic expression of interferon-? in mouse stomach leads to inflammation, metaplasia, and dysplasia. Am J Pathol. 2012;181:2114-25 pubmed 出版商
  63. Matsumoto S, Konishi H, Maeda R, Kiryu Seo S, Kiyama H. Expression analysis of the regenerating gene (Reg) family members Reg-III? and Reg-III? in the mouse during development. J Comp Neurol. 2012;520:479-94 pubmed 出版商
  64. Zuyderduyn S, Ninaber D, Schrumpf J, van Sterkenburg M, Verhoosel R, Prins F, et al. IL-4 and IL-13 exposure during mucociliary differentiation of bronchial epithelial cells increases antimicrobial activity and expression of antimicrobial peptides. Respir Res. 2011;12:59 pubmed 出版商
  65. Gadiot J, Hooijkaas A, Kaiser A, Van Tinteren H, van Boven H, Blank C. Overall survival and PD-L1 expression in metastasized malignant melanoma. Cancer. 2011;117:2192-201 pubmed 出版商
  66. Skowron zwarg M, Boland S, Caruso N, Coraux C, Marano F, Tournier F. Interleukin-13 interferes with CFTR and AQP5 expression and localization during human airway epithelial cell differentiation. Exp Cell Res. 2007;313:2695-702 pubmed