这是一篇来自已证抗体库的有关人类 MYH1的综述,是根据70篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合MYH1 抗体。
MYH1 同义词: HEL71; MYHSA1; MYHa; MyHC-2X/D; MyHC-2x

圣克鲁斯生物技术
小鼠 单克隆(B-5)
  • 免疫印迹; 小鼠; 图 9
圣克鲁斯生物技术 MYH1抗体(Santa Cruz, sc-376157)被用于被用于免疫印迹在小鼠样本上 (图 9). Physiol Rep (2021) ncbi
小鼠 单克隆(F59)
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 1:300; 图 2c
圣克鲁斯生物技术 MYH1抗体(Santa Cruz Biotechnology, Sc-32732)被用于被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:300 (图 2c). elife (2020) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 小鼠; 1:2000; 图 1c
圣克鲁斯生物技术 MYH1抗体(Santa Cruz, sc-376157)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(F59)
  • 免疫组化; giant danio ; 2 ug/ml; 图 4i
圣克鲁斯生物技术 MYH1抗体(Santa, sc?\32732)被用于被用于免疫组化在giant danio 样本上浓度为2 ug/ml (图 4i). Dev Dyn (2019) ncbi
小鼠 单克隆(B-5)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术 MYH1抗体(Santa Cruz Biotechnology, sc-376157)被用于被用于免疫细胞化学在人类样本上浓度为1:100. elife (2019) ncbi
小鼠 单克隆(B-5)
  • 免疫细胞化学; 小鼠; 1:2000; 图 2c
  • 免疫印迹; 小鼠; 1:2000; 图 2b
圣克鲁斯生物技术 MYH1抗体(Santa Cruz, sc-376157)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 2c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2b). Gene (2017) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
圣克鲁斯生物技术 MYH1抗体(SantaCruz, sc-376157)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Sci Rep (2017) ncbi
小鼠 单克隆(B-5)
  • 免疫细胞化学; 小鼠; 1:100; 图 5b ii
圣克鲁斯生物技术 MYH1抗体(Santa Cruz, sc-376157)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5b ii). Biomater Res (2017) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 小鼠; 图 1c
圣克鲁斯生物技术 MYH1抗体(Santa Cruz, sc-376157)被用于被用于免疫印迹在小鼠样本上 (图 1c). Oncotarget (2016) ncbi
小鼠 单克隆(A4.1025)
  • 免疫细胞化学; 人类; 1:250; 图 1c
圣克鲁斯生物技术 MYH1抗体(Santa Cruz, sc-53088)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1c). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(F59)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 MYH1抗体(Santa Cruz, sc-32732)被用于被用于免疫印迹在小鼠样本上 (图 5). elife (2016) ncbi
小鼠 单克隆(A4.1025)
  • 免疫印迹; pigs
圣克鲁斯生物技术 MYH1抗体(Santa Cruz, SC-53088)被用于被用于免疫印迹在pigs 样本上. Eur J Nutr (2016) ncbi
小鼠 单克隆(F59)
  • 免疫印迹; 人类
圣克鲁斯生物技术 MYH1抗体(Santa Cruz, SC-32732)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 小鼠; 1:400; 图 1a
艾博抗(上海)贸易有限公司 MYH1抗体(Abcam, ab51263)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 1a). Dev Cell (2021) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化; 小鼠; 1:250; 图 6
艾博抗(上海)贸易有限公司 MYH1抗体(Abcam, ab51263)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 6). Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 MYH1抗体(Abcam, ab127539)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). J Proteomics (2020) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 小鼠; 图 2g
艾博抗(上海)贸易有限公司 MYH1抗体(Abcam, ab51263)被用于被用于免疫细胞化学在小鼠样本上 (图 2g). BMC Genet (2019) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 MYH1抗体(Abcam, ab127539)被用于. J Appl Physiol (1985) (2019) ncbi
大鼠 单克隆(MAC 147)
  • 免疫组化; fruit fly ; 1:500; 图 1A
艾博抗(上海)贸易有限公司 MYH1抗体(Abcam, ab51098)被用于被用于免疫组化在fruit fly 样本上浓度为1:500 (图 1A). Development (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 MYH1抗体(Abcam, ab127539)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). Cell Signal (2016) ncbi
赛默飞世尔
小鼠 单克隆(MYSN02 (MY-32))
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6c
  • 免疫细胞化学; 小鼠; 1:100; 图 4b
赛默飞世尔 MYH1抗体(ThermoFisher, MA5-11748)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6c) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4b). Nat Commun (2017) ncbi
小鼠 单克隆(MY32)
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔 MYH1抗体(Thermo Fisher, My32)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Neuroscience (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(MY-32)
  • 免疫组化; 小鼠; 10 ug/ml; 图 1h
西格玛奥德里奇 MYH1抗体(Sigma, M4276)被用于被用于免疫组化在小鼠样本上浓度为10 ug/ml (图 1h). elife (2022) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2a
西格玛奥德里奇 MYH1抗体(Sigma, M4276)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2a). Cell Rep (2022) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 小鼠; 1:200; 图 s8h
西格玛奥德里奇 MYH1抗体(Sigma, M4276)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s8h). Nat Commun (2021) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化; 人类; 1:200; 图 2c
西格玛奥德里奇 MYH1抗体(Sigma Aldrich, M4276)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2c). elife (2020) ncbi
小鼠 单克隆(MY-32)
  • 免疫印迹; 大鼠; 1:4500; 图 2o
西格玛奥德里奇 MYH1抗体(Sigma, M4276)被用于被用于免疫印迹在大鼠样本上浓度为1:4500 (图 2o). Ann Clin Transl Neurol (2020) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 4c
西格玛奥德里奇 MYH1抗体(Sigma-Aldrich, M4276)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 4c). Front Physiol (2020) ncbi
小鼠 单克隆(MY-32)
  • 免疫印迹; 小鼠; 1:5000; 图 s18f
西格玛奥德里奇 MYH1抗体(Sigma Aldrich, MY32)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s18f). Science (2019) ncbi
小鼠 单克隆(MY-32)
  • 免疫印迹; 小鼠; 1:1000; 图 s2b
西格玛奥德里奇 MYH1抗体(Sigma, MY-32)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2b). Redox Biol (2019) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 小鼠; 1:200; 图 s3d
西格玛奥德里奇 MYH1抗体(Sigma, M4276)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s3d). Sci Adv (2018) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-石蜡切片; 小鼠; 图 1m
西格玛奥德里奇 MYH1抗体(Sigma, M4276)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1m). J Biol Chem (2017) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-冰冻切片; 小鼠; 图 3a
西格玛奥德里奇 MYH1抗体(Sigma, MY32)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). PLoS ONE (2017) ncbi
小鼠 单克隆(MY-32)
  • 免疫印迹; 小鼠; 1:1000; 图 1g
西格玛奥德里奇 MYH1抗体(Sigma-Aldrich, M4276)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). Cell Discov (2016) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 人类; 1:1000; 图 3
西格玛奥德里奇 MYH1抗体(Sigma, M4276)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3). Skelet Muscle (2016) ncbi
小鼠 单克隆(MY-32)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 MYH1抗体(Sigma, my32)被用于被用于免疫印迹在小鼠样本上 (图 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 小鼠; 图 7
西格玛奥德里奇 MYH1抗体(Sigma, M4276)被用于被用于免疫细胞化学在小鼠样本上 (图 7). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-冰冻切片; 人类; 1:2000; 图 3a, b
西格玛奥德里奇 MYH1抗体(Sigma, M4276)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:2000 (图 3a, b). Biomed Res Int (2016) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 4
西格玛奥德里奇 MYH1抗体(Sigma-Aldrich, M4276)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 人类; 1:400; 图 1
  • 免疫印迹; 人类; 1:3000; 图 2
  • 免疫细胞化学; 小鼠; 1:400; 图 1
  • 免疫印迹; 小鼠; 1:3000; 图 2
西格玛奥德里奇 MYH1抗体(Sigma, M4276)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1), 被用于免疫印迹在人类样本上浓度为1:3000 (图 2), 被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 5
西格玛奥德里奇 MYH1抗体(Sigma, M1570)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 5). Physiol Rep (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 小鼠; 图 5
西格玛奥德里奇 MYH1抗体(Sigma-Aldrich, MY-32)被用于被用于免疫细胞化学在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫印迹; 鸡; 1:500
西格玛奥德里奇 MYH1抗体(Sigma-Aldrich, M4276)被用于被用于免疫印迹在鸡样本上浓度为1:500. Biosci Biotechnol Biochem (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化; 小鼠; 1:250; 图 3
西格玛奥德里奇 MYH1抗体(Sigma-Aldrich, My32)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 3). PLoS Genet (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-石蜡切片; 人类; 图 5a
西格玛奥德里奇 MYH1抗体(SIGMA, M4276)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a). BMC Genomics (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 3
西格玛奥德里奇 MYH1抗体(Sigma, M4276)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 3). Am J Physiol Endocrinol Metab (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化; 大鼠; 1:100
西格玛奥德里奇 MYH1抗体(Sigma, M4276)被用于被用于免疫组化在大鼠样本上浓度为1:100. Muscle Nerve (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 小鼠; 1:250; 图 6e
西格玛奥德里奇 MYH1抗体(Sigma-Aldrich, M4276)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 6e). Hum Mol Genet (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-冰冻切片; 人类; 1:2000; 图 1
西格玛奥德里奇 MYH1抗体(sigma, M4276)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:2000 (图 1). Biomed Res Int (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-石蜡切片; 人类
西格玛奥德里奇 MYH1抗体(Sigma-Aldrich, M4276)被用于被用于免疫组化-石蜡切片在人类样本上. J Surg Res (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇 MYH1抗体(Sigma, M4276)被用于被用于免疫组化-冰冻切片在小鼠样本上. Skelet Muscle (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 小鼠; 1:2000; 图 3
西格玛奥德里奇 MYH1抗体(Sigma, M4276)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 3). J Cell Biol (2014) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 1:4000
西格玛奥德里奇 MYH1抗体(Sigma-Aldrich, M4276)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:4000. Cell Physiol Biochem (2014) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-石蜡切片; 小鼠
西格玛奥德里奇 MYH1抗体(Sigma, M4276)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Physiol Cell Physiol (2012) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1k
徕卡显微系统(上海)贸易有限公司 MYH1抗体(Leica, NCL-MHC-d)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1k). Nat Commun (2021) ncbi
单克隆
  • 免疫组化; 小鼠; 1:20
徕卡显微系统(上海)贸易有限公司 MYH1抗体(Leica Biosystems, NCL-MHCs)被用于被用于免疫组化在小鼠样本上浓度为1:20. Acta Neuropathol Commun (2020) ncbi
单克隆
  • 免疫组化-冰冻切片; 人类; 1:20; 图 7s1c
  • 免疫印迹; 人类; 1:200; 图 7d
徕卡显微系统(上海)贸易有限公司 MYH1抗体(Leica, MHCN)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:20 (图 7s1c) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 7d). elife (2019) ncbi
单克隆
  • 免疫组化-冰冻切片; 人类; 图 8
徕卡显微系统(上海)贸易有限公司 MYH1抗体(Novocastra, NCL-MHCn)被用于被用于免疫组化-冰冻切片在人类样本上 (图 8). J Physiol (2017) ncbi
单克隆
  • 免疫组化-冰冻切片; 人类; 图 1
徕卡显微系统(上海)贸易有限公司 MYH1抗体(Novocastra, NCL-MHCd)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1). PLoS ONE (2016) ncbi
单克隆
  • 免疫组化-冰冻切片; 人类; 图 1
徕卡显微系统(上海)贸易有限公司 MYH1抗体(Novocastra, NCL-MHCn)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1). PLoS ONE (2016) ncbi
单克隆
  • 免疫组化-冰冻切片; 人类; 1:50; 图 2
徕卡显微系统(上海)贸易有限公司 MYH1抗体(Leica Biosystems, NCL-MHCf)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 2). Biochim Biophys Acta (2015) ncbi
单克隆
  • 免疫组化-冰冻切片; 人类; 1:80; 图 2
徕卡显微系统(上海)贸易有限公司 MYH1抗体(Leica Biosystems, NCL-MHCs)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:80 (图 2). Biochim Biophys Acta (2015) ncbi
单克隆
  • 免疫组化; 犬
  • 免疫组化; 人类
徕卡显微系统(上海)贸易有限公司 MYH1抗体(NovaCastra, NCL-MHCd)被用于被用于免疫组化在犬样本上 和 被用于免疫组化在人类样本上. PLoS ONE (2014) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(A4.1025)
  • 免疫组化-冰冻切片; 斑马鱼; 1:1000; 图 8d
Developmental Studies Hybridoma Bank MYH1抗体(DSHB, A4.1025)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1000 (图 8d). Dev Biol (2017) ncbi
小鼠 单克隆(A4.1025)
  • 免疫组化-石蜡切片; 小鼠; 1:10; 图 6
Developmental Studies Hybridoma Bank MYH1抗体(DSHB, A4.1025)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(A4.1025)
  • 免疫印迹; 人类; 图 3
Developmental Studies Hybridoma Bank MYH1抗体(DSHB, A4.1025)被用于被用于免疫印迹在人类样本上 (图 3). Expert Rev Mol Med (2016) ncbi
小鼠 单克隆(A4.1025)
  • 免疫组化; 斑马鱼; 1:10; 图 4
Developmental Studies Hybridoma Bank MYH1抗体(DSHB, A4.1025)被用于被用于免疫组化在斑马鱼样本上浓度为1:10 (图 4). Hum Mol Genet (2016) ncbi
小鼠 单克隆(A4.1025)
  • 免疫细胞化学; 人类; 1:100; 图 7
Developmental Studies Hybridoma Bank MYH1抗体(DSHB, A4.1025)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(A4.1025)
  • 免疫组化; 小鼠; 1:2; 图 1
Developmental Studies Hybridoma Bank MYH1抗体(DSHB, A4.1025)被用于被用于免疫组化在小鼠样本上浓度为1:2 (图 1). Dev Cell (2016) ncbi
小鼠 单克隆(A4.1025)
  • 免疫组化-冰冻切片; 大鼠; 1:50; 图 6
Developmental Studies Hybridoma Bank MYH1抗体(Developmental Studies Hybridoma Bank, A4.1025)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50 (图 6). Mol Hum Reprod (2016) ncbi
小鼠 单克隆(A4.1025)
  • 免疫组化; 斑马鱼; 1:10
Developmental Studies Hybridoma Bank MYH1抗体(DSHB, A4.1025)被用于被用于免疫组化在斑马鱼样本上浓度为1:10. Acta Neuropathol (2014) ncbi
小鼠 单克隆(A4.1025)
  • 免疫组化; 斑马鱼; 1:250; 图 2
Developmental Studies Hybridoma Bank MYH1抗体(Developmental Studies Hybridoma Bank, A1025)被用于被用于免疫组化在斑马鱼样本上浓度为1:250 (图 2). elife (2014) ncbi
小鼠 单克隆(A4.1025)
  • 免疫组化-冰冻切片; 小鼠; 1:4
Developmental Studies Hybridoma Bank MYH1抗体(developmental studies hybridoma bank, A4.1025)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:4. PLoS ONE (2012) ncbi
文章列表
  1. Sefton E, Gallardo M, Tobin C, Collins B, Colasanto M, Merrell A, et al. Fibroblast-derived Hgf controls recruitment and expansion of muscle during morphogenesis of the mammalian diaphragm. elife. 2022;11: pubmed 出版商
  2. Schr xf6 tter S, Yuskaitis C, MacArthur M, Mitchell S, Hosios A, Osipovich M, et al. The non-essential TSC complex component TBC1D7 restricts tissue mTORC1 signaling and brain and neuron growth. Cell Rep. 2022;39:110824 pubmed 出版商
  3. Eigler T, Zarfati G, Amzallag E, Sinha S, Segev N, Zabary Y, et al. ERK1/2 inhibition promotes robust myotube growth via CaMKII activation resulting in myoblast-to-myotube fusion. Dev Cell. 2021;56:3349-3363.e6 pubmed 出版商
  4. Chen X, Yuan J, Xue G, Campanario S, Wang D, Wang W, et al. Translational control by DHX36 binding to 5'UTR G-quadruplex is essential for muscle stem-cell regenerative functions. Nat Commun. 2021;12:5043 pubmed 出版商
  5. Ramirez Martinez A, Zhang Y, Chen K, Kim J, Cenik B, McAnally J, et al. The nuclear envelope protein Net39 is essential for muscle nuclear integrity and chromatin organization. Nat Commun. 2021;12:690 pubmed 出版商
  6. Azar C, Valentine M, Trausch Azar J, Rois L, Mahjoub M, Nelson D, et al. RNA-Seq identifies genes whose proteins are upregulated during syncytia development in murine C2C12 myoblasts and human BeWo trophoblasts. Physiol Rep. 2021;9:e14671 pubmed 出版商
  7. Pal A, Leung J, Ang G, Rao V, Pignata L, Lim H, et al. EHMT2 epigenetically suppresses Wnt signaling and is a potential target in embryonal rhabdomyosarcoma. elife. 2020;9: pubmed 出版商
  8. Chung L, Liu S, Huang S, Salter D, Lee H, Hsu Y. High phosphate induces skeletal muscle atrophy and suppresses myogenic differentiation by increasing oxidative stress and activating Nrf2 signaling. Aging (Albany NY). 2020;12:21446-21468 pubmed 出版商
  9. Sachdev U, Ferrari R, Cui X, Pius A, Sahu A, Reynolds M, et al. Caspase1/11 signaling affects muscle regeneration and recovery following ischemia, and can be modulated by chloroquine. Mol Med. 2020;26:69 pubmed 出版商
  10. Perrin A, Metay C, Villanova M, Carlier R, Pegoraro E, Juntas Morales R, et al. A new congenital multicore titinopathy associated with fast myosin heavy chain deficiency. Ann Clin Transl Neurol. 2020;7:846-854 pubmed 出版商
  11. Arc Chagnaud C, Py G, Fovet T, Roumanille R, Demangel R, Pagano A, et al. Evaluation of an Antioxidant and Anti-inflammatory Cocktail Against Human Hypoactivity-Induced Skeletal Muscle Deconditioning. Front Physiol. 2020;11:71 pubmed 出版商
  12. Laitila J, McNamara E, Wingate C, Goullee H, Ross J, Taylor R, et al. Nebulin nemaline myopathy recapitulated in a compound heterozygous mouse model with both a missense and a nonsense mutation in Neb. Acta Neuropathol Commun. 2020;8:18 pubmed 出版商
  13. Selvaraj S, Mondragón González R, Xu B, Magli A, Kim H, Laine J, et al. Screening identifies small molecules that enhance the maturation of human pluripotent stem cell-derived myotubes. elife. 2019;8: pubmed 出版商
  14. Yang N, Yu L, Deng Y, Han Q, Wang J, Yu L, et al. Identification and characterization of proteins that are differentially expressed in adipose tissue of olanzapine-induced insulin resistance rat by iTRAQ quantitative proteomics. J Proteomics. 2020;212:103570 pubmed 出版商
  15. Ding S, Nie Y, Zhang X, Liu X, Wang C, Yuan R, et al. The SNPs in myoD gene from normal muscle developing individuals have no effect on muscle mass. BMC Genet. 2019;20:72 pubmed 出版商
  16. Nelson H, Coffing G, Chilson S, Hester K, Carrillo C, Ostreicher S, et al. Structure, development, and functional morphology of the cement gland of the giant danio, Devario malabaricus. Dev Dyn. 2019;248:1155-1174 pubmed 出版商
  17. Ma X, Chang H, Wang Z, Xu S, Peng X, Zhang J, et al. Differential activation of the calpain system involved in individualized adaptation of different fast-twitch muscles in hibernating Daurian ground squirrels. J Appl Physiol (1985). 2019;127:328-341 pubmed 出版商
  18. Herdy J, Schäfer S, Kim Y, Ansari Z, Zangwill D, Ku M, et al. Chemical modulation of transcriptionally enriched signaling pathways to optimize the conversion of fibroblasts into neurons. elife. 2019;8: pubmed 出版商
  19. Chakraborty A, Laukka T, Myllykoski M, Ringel A, Booker M, Tolstorukov M, et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science. 2019;363:1217-1222 pubmed 出版商
  20. Chang H, Kao C, Chung S, Chen W, Aninda L, Chen Y, et al. Bhlhe40 differentially regulates the function and number of peroxisomes and mitochondria in myogenic cells. Redox Biol. 2019;20:321-333 pubmed 出版商
  21. Han W, Anderson S, Mohiuddin M, Barros D, Nakhai S, Shin E, et al. Synthetic matrix enhances transplanted satellite cell engraftment in dystrophic and aged skeletal muscle with comorbid trauma. Sci Adv. 2018;4:eaar4008 pubmed 出版商
  22. Wang X, Zeng R, Xu H, Xu Z, Zuo B. The nuclear protein-coding gene ANKRD23 negatively regulates myoblast differentiation. Gene. 2017;629:68-75 pubmed 出版商
  23. Guo Y, Wang J, Zhu M, Zeng R, Xu Z, Li G, et al. Identification of MyoD-Responsive Transcripts Reveals a Novel Long Non-coding RNA (lncRNA-AK143003) that Negatively Regulates Myoblast Differentiation. Sci Rep. 2017;7:2828 pubmed 出版商
  24. Quinn M, Goh Q, Kurosaka M, Gamage D, Petrany M, Prasad V, et al. Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nat Commun. 2017;8:15665 pubmed 出版商
  25. Zhu X, Yuan X, Wang M, Fang Y, Liu Y, Zhang X, et al. A Wnt/Notch/Pax7 signaling network supports tissue integrity in tongue development. J Biol Chem. 2017;292:9409-9419 pubmed 出版商
  26. Mackey A, Magnan M, Chazaud B, Kjaer M. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration. J Physiol. 2017;595:5115-5127 pubmed 出版商
  27. Berberoglu M, Gallagher T, Morrow Z, Talbot J, Hromowyk K, Tenente I, et al. Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish. Dev Biol. 2017;424:162-180 pubmed 出版商
  28. Cortez Toledo O, Schnair C, Sangngern P, Metzger D, Chao L. Nur77 deletion impairs muscle growth during developmental myogenesis and muscle regeneration in mice. PLoS ONE. 2017;12:e0171268 pubmed 出版商
  29. Cha S, Lee H, Koh W. Study of myoblast differentiation using multi-dimensional scaffolds consisting of nano and micropatterns. Biomater Res. 2017;21:1 pubmed 出版商
  30. Hessinger C, Technau G, Rogulja Ortmann A. The Drosophila Hox gene Ultrabithorax acts in both muscles and motoneurons to orchestrate formation of specific neuromuscular connections. Development. 2017;144:139-150 pubmed 出版商
  31. Beyer S, Pontis J, Schirwis E, Battisti V, Rudolf A, Le Grand F, et al. Canonical Wnt signalling regulates nuclear export of Setdb1 during skeletal muscle terminal differentiation. Cell Discov. 2016;2:16037 pubmed
  32. Kim E, Page P, Dellefave Castillo L, McNally E, Wyatt E. Direct reprogramming of urine-derived cells with inducible MyoD for modeling human muscle disease. Skelet Muscle. 2016;6:32 pubmed 出版商
  33. Ramazzotti G, Billi A, Manzoli L, Mazzetti C, Ruggeri A, Erneux C, et al. IPMK and β-catenin mediate PLC-β1-dependent signaling in myogenic differentiation. Oncotarget. 2016;7:84118-84127 pubmed 出版商
  34. Lambert M, Richard E, Duban Deweer S, Krzewinski F, Deracinois B, Dupont E, et al. O-GlcNAcylation is a key modulator of skeletal muscle sarcomeric morphometry associated to modulation of protein-protein interactions. Biochim Biophys Acta. 2016;1860:2017-30 pubmed 出版商
  35. Rao V, Ow J, Shankar S, Bharathy N, Manikandan J, Wang Y, et al. G9a promotes proliferation and inhibits cell cycle exit during myogenic differentiation. Nucleic Acids Res. 2016;44:8129-43 pubmed 出版商
  36. Jensen L, Jørgensen L, Bech R, Frandsen U, Schrøder H. Skeletal Muscle Remodelling as a Function of Disease Progression in Amyotrophic Lateral Sclerosis. Biomed Res Int. 2016;2016:5930621 pubmed 出版商
  37. Antony N, McDougall A, Mantamadiotis T, Cole T, Bird A. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms. Sci Rep. 2016;6:25569 pubmed 出版商
  38. Cheng A, Yin H, Chen A, Liu Y, Chuang M, He H, et al. Celecoxib and Pioglitazone as Potential Therapeutics for Regulating TGF-?-Induced Hyaluronan in Dysthyroid Myopathy. Invest Ophthalmol Vis Sci. 2016;57:1951-9 pubmed 出版商
  39. Toral Ojeda I, Aldanondo G, Lasa Elgarresta J, Lasa Fernández H, Fernandez Torron R, Lopez de Munain A, et al. Calpain 3 deficiency affects SERCA expression and function in the skeletal muscle. Expert Rev Mol Med. 2016;18:e7 pubmed 出版商
  40. Morena D, Maestro N, Bersani F, Forni P, Lingua M, Foglizzo V, et al. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. elife. 2016;5: pubmed 出版商
  41. Janghra N, Morgan J, Sewry C, Wilson F, Davies K, Muntoni F, et al. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies. PLoS ONE. 2016;11:e0150818 pubmed 出版商
  42. Ruparelia A, Oorschot V, Ramm G, Bryson Richardson R. FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency. Hum Mol Genet. 2016;25:2131-2142 pubmed
  43. Neems D, Garza Gongora A, Smith E, Kosak S. Topologically associated domains enriched for lineage-specific genes reveal expression-dependent nuclear topologies during myogenesis. Proc Natl Acad Sci U S A. 2016;113:E1691-700 pubmed 出版商
  44. Kraft Sheleg O, Zaffryar Eilot S, Genin O, Yaseen W, Soueid Baumgarten S, Kessler O, et al. Localized LoxL3-Dependent Fibronectin Oxidation Regulates Myofiber Stretch and Integrin-Mediated Adhesion. Dev Cell. 2016;36:550-61 pubmed 出版商
  45. Watanabe H, Nakano T, Saito R, Akasaka D, Saito K, Ogasawara H, et al. Serotonin Improves High Fat Diet Induced Obesity in Mice. PLoS ONE. 2016;11:e0147143 pubmed 出版商
  46. Tallon C, Russell K, Sakhalkar S, Andrapallayal N, Farah M. Length-dependent axo-terminal degeneration at the neuromuscular synapses of type II muscle in SOD1 mice. Neuroscience. 2016;312:179-89 pubmed 出版商
  47. Lee S, Won J, Yang J, Lee J, Kim S, Lee E, et al. AKAP6 inhibition impairs myoblast differentiation and muscle regeneration: Positive loop between AKAP6 and myogenin. Sci Rep. 2015;5:16523 pubmed 出版商
  48. Barthold J, Pugarelli J, Macdonald M, Ren J, Adetunji M, Polson S, et al. Polygenic inheritance of cryptorchidism susceptibility in the LE/orl rat. Mol Hum Reprod. 2016;22:18-34 pubmed 出版商
  49. Zhang Y, Li W, Zhu M, Li Y, Xu Z, Zuo B. FHL3 differentially regulates the expression of MyHC isoforms through interactions with MyoD and pCREB. Cell Signal. 2016;28:60-73 pubmed 出版商
  50. Pourteymour S, Lee S, Langleite T, Eckardt K, Hjorth M, Bindesbøll C, et al. Perilipin 4 in human skeletal muscle: localization and effect of physical activity. Physiol Rep. 2015;3: pubmed 出版商
  51. Ohsawa Y, Takayama K, Nishimatsu S, Okada T, Fujino M, Fukai Y, et al. The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy. PLoS ONE. 2015;10:e0133713 pubmed 出版商
  52. Zou T, He D, Yu B, Yu J, Mao X, Zheng P, et al. Moderately increased maternal dietary energy intake delays foetal skeletal muscle differentiation and maturity in pigs. Eur J Nutr. 2016;55:1777-87 pubmed 出版商
  53. Zhao Y, Ogawa H, Yonekura S, Mitsuhashi H, Mitsuhashi S, Nishino I, et al. Functional analysis of SERCA1b, a highly expressed SERCA1 variant in myotonic dystrophy type 1 muscle. Biochim Biophys Acta. 2015;1852:2042-7 pubmed 出版商
  54. Ueda S, Kokaji Y, Simizu S, Honda K, Yoshino K, Kamisoyama H, et al. Chicken heat shock protein HSPB1 increases and interacts with αB-crystallin in aged skeletal muscle. Biosci Biotechnol Biochem. 2015;79:1867-75 pubmed 出版商
  55. Preuße K, Tveriakhina L, Schuster Gossler K, Gaspar C, Rosa A, Henrique D, et al. Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo. PLoS Genet. 2015;11:e1005328 pubmed 出版商
  56. Lindskog C, Linné J, Fagerberg L, Hallström B, Sundberg C, Lindholm M, et al. The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling. BMC Genomics. 2015;16:475 pubmed 出版商
  57. Faggi F, Codenotti S, Poliani P, Cominelli M, Chiarelli N, Colombi M, et al. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS ONE. 2015;10:e0130287 pubmed 出版商
  58. Yamaleyeva L, Pulgar V, Lindsey S, Yamane L, Varagic J, McGee C, et al. Uterine artery dysfunction in pregnant ACE2 knockout mice is associated with placental hypoxia and reduced umbilical blood flow velocity. Am J Physiol Endocrinol Metab. 2015;309:E84-94 pubmed 出版商
  59. Oishi Y, Roy R, Ogata T, Ohira Y. Heat-Stress effects on the myosin heavy chain phenotype of rat soleus fibers during the early stages of regeneration. Muscle Nerve. 2015;52:1047-56 pubmed 出版商
  60. Sohn J, Lu A, Tang Y, Wang B, Huard J. Activation of non-myogenic mesenchymal stem cells during the disease progression in dystrophic dystrophin/utrophin knockout mice. Hum Mol Genet. 2015;24:3814-29 pubmed 出版商
  61. Jensen L, Andersen L, Schrøder H, Frandsen U, Sjøgaard G. Neuronal nitric oxide synthase is dislocated in type I fibers of myalgic muscle but can recover with physical exercise training. Biomed Res Int. 2015;2015:265278 pubmed 出版商
  62. Koutakis P, Myers S, Cluff K, Ha D, Haynatzki G, McComb R, et al. Abnormal myofiber morphology and limb dysfunction in claudication. J Surg Res. 2015;196:172-9 pubmed 出版商
  63. Anderson C, Hu J, Barnes R, Heidt A, Cornelissen I, Black B. Myocyte enhancer factor 2C function in skeletal muscle is required for normal growth and glucose metabolism in mice. Skelet Muscle. 2015;5:7 pubmed 出版商
  64. Zhang D, Wang X, Li Y, Zhao L, Lu M, Yao X, et al. Thyroid hormone regulates muscle fiber type conversion via miR-133a1. J Cell Biol. 2014;207:753-66 pubmed 出版商
  65. Brun C, Périé L, Baraige F, Vernus B, Bonnieu A, Blanquet V. Absence of hyperplasia in Gasp-1 overexpressing mice is dependent on myostatin up-regulation. Cell Physiol Biochem. 2014;34:1241-59 pubmed 出版商
  66. Ruparelia A, Oorschot V, Vaz R, Ramm G, Bryson Richardson R. Zebrafish models of BAG3 myofibrillar myopathy suggest a toxic gain of function leading to BAG3 insufficiency. Acta Neuropathol. 2014;128:821-33 pubmed 出版商
  67. Subramanian A, Schilling T. Thrombospondin-4 controls matrix assembly during development and repair of myotendinous junctions. elife. 2014;3: pubmed 出版商
  68. Martin P, Golden B, Okerblom J, Camboni M, Chandrasekharan K, Xu R, et al. A comparative study of N-glycolylneuraminic acid (Neu5Gc) and cytotoxic T cell (CT) carbohydrate expression in normal and dystrophin-deficient dog and human skeletal muscle. PLoS ONE. 2014;9:e88226 pubmed 出版商
  69. Issa M, Muruganandan S, Ernst M, Parlee S, Zabel B, Butcher E, et al. Chemokine-like receptor 1 regulates skeletal muscle cell myogenesis. Am J Physiol Cell Physiol. 2012;302:C1621-31 pubmed 出版商
  70. Nicklas S, Otto A, Wu X, Miller P, Stelzer S, Wen Y, et al. TRIM32 regulates skeletal muscle stem cell differentiation and is necessary for normal adult muscle regeneration. PLoS ONE. 2012;7:e30445 pubmed 出版商