这是一篇来自已证抗体库的有关人类 MYH7的综述,是根据136篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合MYH7 抗体。
MYH7 同义词: CMD1S; CMH1; MPD1; MYHCB; SPMD; SPMM

艾博抗(上海)贸易有限公司
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2a
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, Ab11083)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2a). Cell Rep (2022) ncbi
小鼠 单克隆(BA-G5)
  • 免疫印迹; 大鼠; 1:100; 图 s7
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, ab50967)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 s7). Cell Rep (2020) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化-石蜡切片; 大鼠; 1:5000; 图 st14
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, ab11083)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:5000 (图 st14). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(BA-G5)
  • 免疫细胞化学; 人类; 图 1c
  • 免疫印迹; 人类; 图 1e
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, BA-G5)被用于被用于免疫细胞化学在人类样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 1e). Stem Cells Int (2017) ncbi
小鼠 单克隆(BA-G5)
  • 免疫印迹; 大鼠; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, ab50967)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). Nat Commun (2016) ncbi
小鼠 单克隆(BA-G5)
  • 免疫印迹; 小鼠; 图 2
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, BA-G5)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Cell Biol (2016) ncbi
小鼠 单克隆(BA-G5)
  • 流式细胞仪; 小鼠; 1:200; 图 2e
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, ab50967)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2e). Stem Cells (2016) ncbi
小鼠 单克隆(BA-G5)
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, ab50967)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Stem Cells Int (2016) ncbi
小鼠 单克隆(BA-G5)
  • 免疫印迹; 大鼠; 1:1000; 图 1d
艾博抗(上海)贸易有限公司 MYH7抗体(abcam, ab50967)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1d). Mol Cell Biochem (2016) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1d
  • 免疫印迹; 小鼠; 1:6000; 图 1b
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, ab11083)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1d) 和 被用于免疫印迹在小鼠样本上浓度为1:6000 (图 1b). Cell Signal (2016) ncbi
小鼠 单克隆(BA-G5)
  • 免疫组化-冰冻切片; 大鼠; 图 1
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, ab50967)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 1). Am J Physiol Heart Circ Physiol (2015) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫印迹; pigs
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, Ab11083)被用于被用于免疫印迹在pigs 样本上. Eur J Nutr (2016) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫细胞化学; pigs ; 1:100; 图 4
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, ab11083)被用于被用于免疫细胞化学在pigs 样本上浓度为1:100 (图 4). Biomed Res Int (2015) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫印迹; 大鼠; 1:1000; 图 s6i
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, ab11083)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s6i). Nat Commun (2015) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化; 人类; 图 1
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, ab11083)被用于被用于免疫组化在人类样本上 (图 1). Appl Physiol Nutr Metab (2015) ncbi
小鼠 单克隆(BA-G5)
  • 免疫印迹; 大鼠; 图 1
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, ab50967)被用于被用于免疫印迹在大鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000. J Cell Mol Med (2015) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化; 人类; 1:100
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, NOQ7.5.4D)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化; 猕猴; 1:2000
  • 免疫组化; 人类; 1:2000
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, ab11083)被用于被用于免疫组化在猕猴样本上浓度为1:2000 和 被用于免疫组化在人类样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, ab11083)被用于被用于免疫组化在小鼠样本上浓度为1:100. Neurobiol Dis (2015) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, ab11083)被用于被用于免疫组化-石蜡切片在人类样本上. Acta Orthop (2013) ncbi
小鼠 单克隆(BA-G5)
  • 免疫印迹; 小鼠; 1:200
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, AB50967)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Am J Physiol Heart Circ Physiol (2013) ncbi
小鼠 单克隆(BA-G5)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, ab50967)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Dev Biol (2013) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫印迹; 小鼠; 1:75,000
艾博抗(上海)贸易有限公司 MYH7抗体(Abcam, ab11083)被用于被用于免疫印迹在小鼠样本上浓度为1:75,000. Dev Biol (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A4.840)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s8a
圣克鲁斯生物技术 MYH7抗体(Santa Cruz, sc-53089)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s8a). Nat Commun (2021) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 小鼠; 图 9
圣克鲁斯生物技术 MYH7抗体(Santa Cruz, sc-376157)被用于被用于免疫印迹在小鼠样本上 (图 9). Physiol Rep (2021) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 小鼠; 1:2000; 图 1c
圣克鲁斯生物技术 MYH7抗体(Santa Cruz, sc-376157)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(B-5)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术 MYH7抗体(Santa Cruz Biotechnology, sc-376157)被用于被用于免疫细胞化学在人类样本上浓度为1:100. elife (2019) ncbi
小鼠 单克隆(A4.951)
  • 免疫印迹; 小鼠; 1:200; 图 3l
圣克鲁斯生物技术 MYH7抗体(Santa Cruz, sc-53090)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3l). Cardiovasc Res (2018) ncbi
小鼠 单克隆(B-5)
  • 免疫细胞化学; 小鼠; 1:2000; 图 2c
  • 免疫印迹; 小鼠; 1:2000; 图 2b
圣克鲁斯生物技术 MYH7抗体(Santa Cruz, sc-376157)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 2c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2b). Gene (2017) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
圣克鲁斯生物技术 MYH7抗体(SantaCruz, sc-376157)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Sci Rep (2017) ncbi
小鼠 单克隆(A4.840)
  • 免疫印迹; 大鼠; 1:1000; 图 5b
圣克鲁斯生物技术 MYH7抗体(SantaCruz, sc-53089)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b). Mol Cell Biochem (2017) ncbi
小鼠 单克隆(A4.840)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 MYH7抗体(Santa Cruz, SC-53089)被用于被用于免疫印迹在人类样本上 (图 1a). Sci Rep (2017) ncbi
小鼠 单克隆(B-5)
  • 免疫细胞化学; 小鼠; 1:100; 图 5b ii
圣克鲁斯生物技术 MYH7抗体(Santa Cruz, sc-376157)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5b ii). Biomater Res (2017) ncbi
小鼠 单克隆(A4.951)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 5f
圣克鲁斯生物技术 MYH7抗体(Santa Cruz, sc-53090)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 5f). Nat Biotechnol (2017) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 小鼠; 图 1c
圣克鲁斯生物技术 MYH7抗体(Santa Cruz, sc-376157)被用于被用于免疫印迹在小鼠样本上 (图 1c). Oncotarget (2016) ncbi
小鼠 单克隆(A4.951)
  • 免疫印迹; 人类; 1:200; 图 1a
  • 免疫印迹; 小鼠; 1:200; 图 1c
圣克鲁斯生物技术 MYH7抗体(Santa Cruz, sc53090)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 1c). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(A4.951)
  • 免疫印迹; 小鼠; 1:200; 图 1
圣克鲁斯生物技术 MYH7抗体(Santa Cruz Biotechnology, sc53090)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(A4.951)
  • 免疫组化-石蜡切片; 人类; 图 6a
圣克鲁斯生物技术 MYH7抗体(Santa Cruz Biotechnology, sc-53090)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a). BMC Genomics (2015) ncbi
小鼠 单克隆(A4.951)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 MYH7抗体(Santa Cruz Biotechnology, sc53090)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Biochim Biophys Acta (2014) ncbi
赛默飞世尔
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化; 小鼠; 1:500
赛默飞世尔 MYH7抗体(Invitrogen, MA5-32986)被用于被用于免疫组化在小鼠样本上浓度为1:500. BMC Cancer (2020) ncbi
小鼠 单克隆(3-48)
  • 免疫细胞化学; 小鼠; 1:200; 图 3a
赛默飞世尔 MYH7抗体(Thermo Fisher, ma1-26180)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3a). Nat Protoc (2017) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(BA-F8)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3g
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-F8)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3g). J Cachexia Sarcopenia Muscle (2022) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化-冰冻切片; 小鼠; 0.5 ug/ml; 图 2b
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-F8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为0.5 ug/ml (图 2b). J Clin Invest (2022) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化; 小鼠
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-D5)被用于被用于免疫组化在小鼠样本上. Cells (2021) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化-冰冻切片; 小鼠; 图 2b
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-F8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2b). Cell Metab (2021) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1d
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-F8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1d). J Cachexia Sarcopenia Muscle (2021) ncbi
小鼠 单克隆(A4.951)
  • 免疫组化; 人类; 图 6d
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, A4.951)被用于被用于免疫组化在人类样本上 (图 6d). Cell Rep (2021) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 2b
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-F8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 2b). Aging Cell (2021) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化; 小鼠
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BA-D5)被用于被用于免疫组化在小鼠样本上. Cell Rep (2021) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2e
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-D5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2e). Nat Commun (2021) ncbi
小鼠 单克隆(A4.840)
  • 免疫印迹; 人类; 1:200
Developmental Studies Hybridoma Bank MYH7抗体(DHSB, A4.840)被用于被用于免疫印迹在人类样本上浓度为1:200. Am J Hum Genet (2021) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化-冰冻切片; 小鼠; 图 5d
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-F8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5d). J Biol Chem (2021) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化-冰冻切片; 小鼠; 图 s2a
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-F8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2a). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化-冰冻切片; 小鼠; 2 ug/ml; 图 s6a
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-D5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为2 ug/ml (图 s6a). Hum Mol Genet (2020) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化-冰冻切片; 人类; 1:10; 图 4a
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-D5)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:10 (图 4a). Front Physiol (2020) ncbi
小鼠 单克隆(A4.951)
  • 免疫组化-冰冻切片; 大鼠; 1:250; 图 2a, 2b
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, A4951)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:250 (图 2a, 2b). Physiol Rep (2020) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化; 小鼠; 图 4b
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BA-F8)被用于被用于免疫组化在小鼠样本上 (图 4b). Physiol Rep (2020) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3f
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BA-D5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3f). elife (2019) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化-冰冻切片; 大鼠; 1:50; 图 4b
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-F8)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50 (图 4b). Sci Adv (2019) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BAD5-c)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). FASEB J (2019) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化; 小鼠; 图 3c
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-F8)被用于被用于免疫组化在小鼠样本上 (图 3c). Sci Rep (2017) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化-冰冻切片; 小鼠; 图 3b
  • 免疫印迹; 小鼠; 图 3c
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-F8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上 (图 3c). Cell Metab (2017) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化-冰冻切片; 人类; 1:40; 图 4i
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-D5)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:40 (图 4i). J Clin Endocrinol Metab (2017) ncbi
小鼠 单克隆(A4.840)
  • 免疫印迹; 人类; 1:200; 图 3c
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, A4.840)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3c). Physiol Rep (2017) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1g
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-F8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1g). Nat Commun (2017) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化-冰冻切片; 小鼠; 图 3b
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BA-F8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b). PLoS ONE (2017) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化-冰冻切片; 小鼠; 1:25; 图 3c
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-F8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:25 (图 3c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BA-D5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3). EBioMedicine (2017) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化-冰冻切片; 人类; 图 7a
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA.D5)被用于被用于免疫组化-冰冻切片在人类样本上 (图 7a). J Orthop Res (2017) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化; 人类; 1:75; 表 3
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BA.D5-C)被用于被用于免疫组化在人类样本上浓度为1:75 (表 3). Front Physiol (2016) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化; 人类; 1:25
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-F8)被用于被用于免疫组化在人类样本上浓度为1:25. J Cachexia Sarcopenia Muscle (2017) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化; 小鼠; 1:2
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-D5)被用于被用于免疫组化在小鼠样本上浓度为1:2. elife (2016) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化; 人类; 图 1a
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA.D5)被用于被用于免疫组化在人类样本上 (图 1a). J Transl Med (2016) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化; 人类; 1:75; 图 2d
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA.D5)被用于被用于免疫组化在人类样本上浓度为1:75 (图 2d). Physiol Rep (2016) ncbi
小鼠 单克隆(A4.840)
  • 免疫印迹; 人类; 1:200; 图 7
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, A4.840)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 7). J Appl Physiol (1985) (2016) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化-冰冻切片; 人类; 1:25; 图 4a
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-F8)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:25 (图 4a). J Physiol (2016) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化-冰冻切片; 大鼠; 1:25; 图 1
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-F8)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:25 (图 1). Skelet Muscle (2016) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化; 小鼠; 图 2g
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BA-F8)被用于被用于免疫组化在小鼠样本上 (图 2g). Sci Rep (2016) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BA-F8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). J Biol Chem (2016) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化-冰冻切片; 小鼠; 图 3d
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-D5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3d). EMBO Mol Med (2016) ncbi
小鼠 单克隆(A4.840)
  • 免疫组化; 人类; 1:25; 图 3a II
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, A4.840)被用于被用于免疫组化在人类样本上浓度为1:25 (图 3a II). Diabetes (2016) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化; 大鼠; 1:100; 图 1d
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BA-D5)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 1d). Anat Rec (Hoboken) (2016) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化-冰冻切片; 小鼠; 图 5
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-D5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). PLoS Genet (2016) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化; 小鼠; 图 2
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-F8)被用于被用于免疫组化在小鼠样本上 (图 2). Brain Behav (2016) ncbi
小鼠 单克隆(N2.261)
  • 免疫组化-冰冻切片; 斑马鱼; 图 3
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, N2.261)被用于被用于免疫组化-冰冻切片在斑马鱼样本上 (图 3). Open Biol (2016) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化-冰冻切片; 大鼠
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BAD5)被用于被用于免疫组化-冰冻切片在大鼠样本上. Aging (Albany NY) (2016) ncbi
小鼠 单克隆(A4.840)
  • 免疫组化-冰冻切片; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 5
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, A4.840)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). Dis Model Mech (2016) ncbi
小鼠 单克隆(A4.840)
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, A4.840)被用于. Dis Model Mech (2016) ncbi
小鼠 单克隆(A4.951)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, A4951)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化-冰冻切片; 牛; 1:10
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BA-D5)被用于被用于免疫组化-冰冻切片在牛样本上浓度为1:10. J Anim Sci (2016) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化-冰冻切片; 人类; 图 4a
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA.D5)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4a). J Appl Physiol (1985) (2016) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化; 小鼠; 图 4
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BA-D5 (type 1))被用于被用于免疫组化在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(A4.840)
  • 免疫印迹; 人类; 1:200; 图 1
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, A4.840)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1). Exp Gerontol (2016) ncbi
小鼠 单克隆(BA-F8)
  • 免疫印迹; pigs ; 1:80; 图 1b
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-F8)被用于被用于免疫印迹在pigs 样本上浓度为1:80 (图 1b). Meat Sci (2016) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化-冰冻切片; 人类; 1:25; 图 1b
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-F8)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:25 (图 1b). Am J Physiol Cell Physiol (2016) ncbi
小鼠 单克隆(N2.261)
  • 免疫组化; 人类; 1:400; 表 1
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, N2.261)被用于被用于免疫组化在人类样本上浓度为1:400 (表 1). J Anat (2016) ncbi
小鼠 单克隆(A4.840)
  • 免疫组化; 人类; 1:20; 表 1
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, A4.840)被用于被用于免疫组化在人类样本上浓度为1:20 (表 1). J Anat (2016) ncbi
小鼠 单克隆(A4.840)
  • 免疫组化-冰冻切片; 小鼠; 图 1
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, A4.840)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Neuroscience (2016) ncbi
小鼠 单克隆(A4.840)
  • 免疫印迹; 人类; 图 1
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, A4.840)被用于被用于免疫印迹在人类样本上 (图 1). Eur J Appl Physiol (2016) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化; 小鼠; 图 1
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BA-F8)被用于被用于免疫组化在小鼠样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化; 小鼠; 图 s5
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-D5)被用于被用于免疫组化在小鼠样本上 (图 s5). PLoS ONE (2015) ncbi
小鼠 单克隆(A4.840)
  • 免疫印迹; 人类; 图 2
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, A4.840)被用于被用于免疫印迹在人类样本上 (图 2). J Appl Physiol (1985) (2015) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化; 小鼠; 图 6
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BA-F8)被用于被用于免疫组化在小鼠样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化-冰冻切片; 小鼠; 图 5
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-D5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Dis Model Mech (2015) ncbi
小鼠 单克隆(BA-F8)
  • 免疫细胞化学; 小鼠
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BA-F8)被用于被用于免疫细胞化学在小鼠样本上. Dis Model Mech (2015) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化-冰冻切片; pigs ; 1:50
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Hybridoma Bank, BA-F8)被用于被用于免疫组化-冰冻切片在pigs 样本上浓度为1:50. J Anim Sci (2015) ncbi
小鼠 单克隆(BA-F8)
  • 免疫印迹; 人类; 图 1
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BA-F8)被用于被用于免疫印迹在人类样本上 (图 1). Obesity (Silver Spring) (2015) ncbi
小鼠 单克隆(A4.951)
  • 免疫组化; 人类
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Ban, A4.951)被用于被用于免疫组化在人类样本上. Muscle Nerve (2015) ncbi
小鼠 单克隆(A4.840)
  • 免疫组化-冰冻切片; 小鼠; 1:600; 图 9
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, A4.840)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:600 (图 9). Mol Cell Biol (2015) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化-冰冻切片; 小鼠; 1:100
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BA.D5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Nat Med (2015) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化; 人类; 1:25
  • 免疫组化; 小鼠; 1:25
  • 免疫组化; 大鼠; 1:25
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BA-F8)被用于被用于免疫组化在人类样本上浓度为1:25, 被用于免疫组化在小鼠样本上浓度为1:25 和 被用于免疫组化在大鼠样本上浓度为1:25. PLoS ONE (2014) ncbi
小鼠 单克隆(A4.951)
  • 免疫组化-冰冻切片; 人类
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, A4.951)被用于被用于免疫组化-冰冻切片在人类样本上. Age (Dordr) (2014) ncbi
小鼠 单克隆(A4.951)
  • 免疫组化; 人类
Developmental Studies Hybridoma Bank MYH7抗体(Development Studies Hybridoma Bank, A4.951)被用于被用于免疫组化在人类样本上. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(A4.840)
  • 免疫组化; 人类
Developmental Studies Hybridoma Bank MYH7抗体(Development Studies Hybridoma Bank, A4.840)被用于被用于免疫组化在人类样本上. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化; 人类
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA.D5)被用于被用于免疫组化在人类样本上. J Physiol (2014) ncbi
小鼠 单克隆(A4.840)
  • 免疫印迹; 人类; 1:200; 图 1a
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, A4.840)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1a). J Physiol (2014) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化-冰冻切片; 人类; 1:25
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BA-F8)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:25. FASEB J (2014) ncbi
小鼠 单克隆(BA-D5)
  • 免疫组化; 人类; 1:100
Developmental Studies Hybridoma Bank MYH7抗体(DSHB, BA-D5)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS ONE (2013) ncbi
小鼠 单克隆(BA-F8)
  • 免疫组化-冰冻切片; 小鼠
Developmental Studies Hybridoma Bank MYH7抗体(Developmental Studies Hybridoma Bank, BAF-8)被用于被用于免疫组化-冰冻切片在小鼠样本上. FASEB J (2012) ncbi
西格玛奥德里奇
小鼠 单克隆(NOQ7.5.4D)
  • 免疫印迹; 大鼠; 1:3,500; 图 2o
西格玛奥德里奇 MYH7抗体(Sigma, M8421)被用于被用于免疫印迹在大鼠样本上浓度为1:3,500 (图 2o). Ann Clin Transl Neurol (2020) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫印迹; 小鼠; 1:500; 图 2h
西格玛奥德里奇 MYH7抗体(Sigma, M8421)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2h). EMBO Mol Med (2020) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 1b
西格玛奥德里奇 MYH7抗体(Sigma, M8421)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 1b). J Histochem Cytochem (2017) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫印迹; 小鼠; 图 7a
西格玛奥德里奇 MYH7抗体(Sigma, M8421)被用于被用于免疫印迹在小鼠样本上 (图 7a). Skelet Muscle (2017) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 2a
西格玛奥德里奇 MYH7抗体(Sigma, M8421)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 2a). Appl Physiol Nutr Metab (2017) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化; 大鼠; 2 ug/ml; 图 2a
  • 免疫组化; 小鼠; 2 ug/ml; 图 2a
西格玛奥德里奇 MYH7抗体(Sigma-Aldrich, M8421)被用于被用于免疫组化在大鼠样本上浓度为2 ug/ml (图 2a) 和 被用于免疫组化在小鼠样本上浓度为2 ug/ml (图 2a). PLoS ONE (2016) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化; 大鼠; 1:10,000; 图 5a
西格玛奥德里奇 MYH7抗体(Sigma-Aldrich, M8421)被用于被用于免疫组化在大鼠样本上浓度为1:10,000 (图 5a). Biomaterials (2016) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化-冰冻切片; 人类; 1:2000; 图 3a, b
西格玛奥德里奇 MYH7抗体(Sigma, M8421)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:2000 (图 3a, b). Biomed Res Int (2016) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化; 人类; 1:1000; 表 2
西格玛奥德里奇 MYH7抗体(Sigma, M8421)被用于被用于免疫组化在人类样本上浓度为1:1000 (表 2). Med Sci Sports Exerc (2016) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化-冰冻切片; 小鼠; 1:600; 图 4
西格玛奥德里奇 MYH7抗体(Sigma-Aldrich, M8421)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:600 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化-冰冻切片; 小鼠; 1:2000
西格玛奥德里奇 MYH7抗体(Sigma, M 8421)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. Nat Commun (2015) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化; 小鼠; 1:1000; 图 5
西格玛奥德里奇 MYH7抗体(Sigma?CAldrich, M8421)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5). FEBS Open Bio (2015) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化-冰冻切片; 小鼠; 图 3
西格玛奥德里奇 MYH7抗体(Sigma, M8421)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). Hum Mol Genet (2015) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化; 大鼠; 1:100
西格玛奥德里奇 MYH7抗体(Sigma, M8421)被用于被用于免疫组化在大鼠样本上浓度为1:100. Muscle Nerve (2015) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化-冰冻切片; 人类; 1:2000; 图 4
西格玛奥德里奇 MYH7抗体(sigma, M8421)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:2000 (图 4). Biomed Res Int (2015) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化-石蜡切片; 人类
西格玛奥德里奇 MYH7抗体(Sigma-Aldrich, M8421)被用于被用于免疫组化-石蜡切片在人类样本上. J Surg Res (2015) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫细胞化学; 小鼠; 1:2000; 图 3
西格玛奥德里奇 MYH7抗体(Sigma, M8421)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 3). J Cell Biol (2014) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化-冰冻切片; 猕猴; 1:1500; 图 3
西格玛奥德里奇 MYH7抗体(Sigma, M8421)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:1500 (图 3). FASEB J (2015) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化-冰冻切片; 小鼠; 图 2
西格玛奥德里奇 MYH7抗体(Sigma, M8421)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). Autophagy (2014) ncbi
小鼠 单克隆(NOQ7.5.4D)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
西格玛奥德里奇 MYH7抗体(Sigma, NOQ7.5.4D)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1). BMC Dev Biol (2011) ncbi
文章列表
  1. Schr xf6 tter S, Yuskaitis C, MacArthur M, Mitchell S, Hosios A, Osipovich M, et al. The non-essential TSC complex component TBC1D7 restricts tissue mTORC1 signaling and brain and neuron growth. Cell Rep. 2022;39:110824 pubmed 出版商
  2. Luan Y, Zhang Y, Yu S, You M, Xu P, Chung S, et al. Development of ovarian tumour causes significant loss of muscle and adipose tissue: a novel mouse model for cancer cachexia study. J Cachexia Sarcopenia Muscle. 2022;13:1289-1301 pubmed 出版商
  3. Bartoli F, Debant M, Chuntharpursat Bon E, Evans E, Musialowski K, Parsonage G, et al. Endothelial Piezo1 sustains muscle capillary density and contributes to physical activity. J Clin Invest. 2022;132: pubmed 出版商
  4. Silva Rojas R, Charles A, Djeddi S, Geny B, Laporte J, Böhm J. Pathophysiological Effects of Overactive STIM1 on Murine Muscle Function and Structure. Cells. 2021;10: pubmed 出版商
  5. Fan Z, Turiel G, Ardicoglu R, Ghobrial M, Masschelein E, Kocijan T, et al. Exercise-induced angiogenesis is dependent on metabolically primed ATF3/4+ endothelial cells. Cell Metab. 2021;: pubmed 出版商
  6. Liu H, Zang P, Lee I, Anderson B, Christiani A, Strait Bodey L, et al. Growth hormone secretagogue receptor-1a mediates ghrelin's effects on attenuating tumour-induced loss of muscle strength but not muscle mass. J Cachexia Sarcopenia Muscle. 2021;12:1280-1295 pubmed 出版商
  7. Pettinato A, Yoo D, VanOudenhove J, Chen Y, Cohn R, Ladha F, et al. Sarcomere function activates a p53-dependent DNA damage response that promotes polyploidization and limits in vivo cell engraftment. Cell Rep. 2021;35:109088 pubmed 出版商
  8. Wallace M, Aguirre N, Marcotte G, Marshall A, Baehr L, Hughes D, et al. The ketogenic diet preserves skeletal muscle with aging in mice. Aging Cell. 2021;20:e13322 pubmed 出版商
  9. Steinert N, Potts G, Wilson G, Klamen A, Lin K, Hermanson J, et al. Mapping of the contraction-induced phosphoproteome identifies TRIM28 as a significant regulator of skeletal muscle size and function. Cell Rep. 2021;34:108796 pubmed 出版商
  10. Seo J, Kang J, Kim Y, Jo Y, Kim J, Hann S, et al. Maintenance of type 2 glycolytic myofibers with age by Mib1-Actn3 axis. Nat Commun. 2021;12:1294 pubmed 出版商
  11. Wyckelsma V, Venckunas T, Houweling P, Schlittler M, Lauschke V, Tiong C, et al. Loss of α-actinin-3 during human evolution provides superior cold resilience and muscle heat generation. Am J Hum Genet. 2021;108:446-457 pubmed 出版商
  12. Chen T, Kuo T, Dandan M, Lee R, Chang M, Villivalam S, et al. The role of striated muscle Pik3r1 in glucose and protein metabolism following chronic glucocorticoid exposure. J Biol Chem. 2021;296:100395 pubmed 出版商
  13. Ramirez Martinez A, Zhang Y, Chen K, Kim J, Cenik B, McAnally J, et al. The nuclear envelope protein Net39 is essential for muscle nuclear integrity and chromatin organization. Nat Commun. 2021;12:690 pubmed 出版商
  14. Azar C, Valentine M, Trausch Azar J, Rois L, Mahjoub M, Nelson D, et al. RNA-Seq identifies genes whose proteins are upregulated during syncytia development in murine C2C12 myoblasts and human BeWo trophoblasts. Physiol Rep. 2021;9:e14671 pubmed 出版商
  15. Chung L, Liu S, Huang S, Salter D, Lee H, Hsu Y. High phosphate induces skeletal muscle atrophy and suppresses myogenic differentiation by increasing oxidative stress and activating Nrf2 signaling. Aging (Albany NY). 2020;12:21446-21468 pubmed 出版商
  16. Song L, Tang Z, Peng C, Yang Y, Guo C, Wang D, et al. Cell type-specific genotoxicity in estrogen-exposed ovarian and fallopian epithelium. BMC Cancer. 2020;20:1020 pubmed 出版商
  17. Schuld J, Orfanos Z, Chevessier F, Eggers B, Heil L, Uszkoreit J, et al. Homozygous expression of the myofibrillar myopathy-associated p.W2710X filamin C variant reveals major pathomechanisms of sarcomeric lesion formation. Acta Neuropathol Commun. 2020;8:154 pubmed 出版商
  18. Dai C, Li Q, May H, Li C, Zhang G, Sharma G, et al. Lactate Dehydrogenase A Governs Cardiac Hypertrophic Growth in Response to Hemodynamic Stress. Cell Rep. 2020;32:108087 pubmed 出版商
  19. Perrin A, Metay C, Villanova M, Carlier R, Pegoraro E, Juntas Morales R, et al. A new congenital multicore titinopathy associated with fast myosin heavy chain deficiency. Ann Clin Transl Neurol. 2020;7:846-854 pubmed 出版商
  20. Pereira J, Gerber J, Ghidinelli M, Gerber D, Tortola L, Ommer A, et al. Mice carrying an analogous heterozygous dynamin 2 K562E mutation that causes neuropathy in humans develop predominant characteristics of a primary myopathy. Hum Mol Genet. 2020;29:1253-1273 pubmed 出版商
  21. Arc Chagnaud C, Py G, Fovet T, Roumanille R, Demangel R, Pagano A, et al. Evaluation of an Antioxidant and Anti-inflammatory Cocktail Against Human Hypoactivity-Induced Skeletal Muscle Deconditioning. Front Physiol. 2020;11:71 pubmed 出版商
  22. Giacco A, delli Paoli G, Simiele R, Caterino M, Ruoppolo M, Bloch W, et al. Exercise with food withdrawal at thermoneutrality impacts fuel use, the microbiome, AMPK phosphorylation, muscle fibers, and thyroid hormone levels in rats. Physiol Rep. 2020;8:e14354 pubmed 出版商
  23. Vang P, Vasdev A, Zhan W, Gransee H, Sieck G, Mantilla C. Diaphragm muscle sarcopenia into very old age in mice. Physiol Rep. 2020;8:e14305 pubmed 出版商
  24. Owen A, Patel S, Smith J, Balasuriya B, Mori S, Hawk G, et al. Chronic muscle weakness and mitochondrial dysfunction in the absence of sustained atrophy in a preclinical sepsis model. elife. 2019;8: pubmed 出版商
  25. Bella P, Farini A, Banfi S, Parolini D, Tonna N, Meregalli M, et al. Blockade of IGF2R improves muscle regeneration and ameliorates Duchenne muscular dystrophy. EMBO Mol Med. 2020;12:e11019 pubmed 出版商
  26. Herdy J, Schäfer S, Kim Y, Ansari Z, Zangwill D, Ku M, et al. Chemical modulation of transcriptionally enriched signaling pathways to optimize the conversion of fibroblasts into neurons. elife. 2019;8: pubmed 出版商
  27. Bergmeister K, Aman M, Muceli S, Vujaklija I, Manzano Szalai K, Unger E, et al. Peripheral nerve transfers change target muscle structure and function. Sci Adv. 2019;5:eaau2956 pubmed 出版商
  28. Zhang J, Sheng J, Dong L, Xu Y, Yu L, Liu Y, et al. Cardiomyocyte-specific loss of RMP causes myocardial dysfunction and heart failure. Cardiovasc Res. 2018;: pubmed 出版商
  29. Gallot Y, Bohnert K, Straughn A, Xiong G, Hindi S, Kumar A. PERK regulates skeletal muscle mass and contractile function in adult mice. FASEB J. 2019;33:1946-1962 pubmed 出版商
  30. Nofi C, Bogatyryov Y, Dedkov E. Preservation of Functional Microvascular Bed Is Vital for Long-Term Survival of Cardiac Myocytes Within Large Transmural Post-Myocardial Infarction Scar. J Histochem Cytochem. 2017;:22155417741640 pubmed 出版商
  31. Honda M, Hidaka K, Fukada S, Sugawa R, Shirai M, Ikawa M, et al. Vestigial-like 2 contributes to normal muscle fiber type distribution in mice. Sci Rep. 2017;7:7168 pubmed 出版商
  32. Wang X, Zeng R, Xu H, Xu Z, Zuo B. The nuclear protein-coding gene ANKRD23 negatively regulates myoblast differentiation. Gene. 2017;629:68-75 pubmed 出版商
  33. Guo Y, Wang J, Zhu M, Zeng R, Xu Z, Li G, et al. Identification of MyoD-Responsive Transcripts Reveals a Novel Long Non-coding RNA (lncRNA-AK143003) that Negatively Regulates Myoblast Differentiation. Sci Rep. 2017;7:2828 pubmed 出版商
  34. Koh J, Hancock C, Terada S, Higashida K, Holloszy J, Han D. PPARβ Is Essential for Maintaining Normal Levels of PGC-1α and Mitochondria and for the Increase in Muscle Mitochondria Induced by Exercise. Cell Metab. 2017;25:1176-1185.e5 pubmed 出版商
  35. Krag T, Ruiz Ruiz C, Vissing J. Glycogen Synthesis in Glycogenin 1-Deficient Patients: A Role for Glycogenin 2 in Muscle. J Clin Endocrinol Metab. 2017;102:2690-2700 pubmed 出版商
  36. Lalit P, Rodriguez A, Downs K, Kamp T. Generation of multipotent induced cardiac progenitor cells from mouse fibroblasts and potency testing in ex vivo mouse embryos. Nat Protoc. 2017;12:1029-1054 pubmed 出版商
  37. Wyckelsma V, Levinger I, Murphy R, Petersen A, Perry B, Hedges C, et al. Intense interval training in healthy older adults increases skeletal muscle [3H]ouabain-binding site content and elevates Na+,K+-ATPase ?2 isoform abundance in Type II fibers. Physiol Rep. 2017;5: pubmed 出版商
  38. Lee C, Hanna A, Wang H, Dagnino Acosta A, Joshi A, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659 pubmed 出版商
  39. Fajardo V, Gamu D, Mitchell A, Bloemberg D, Bombardier E, Chambers P, et al. Sarcolipin deletion exacerbates soleus muscle atrophy and weakness in phospholamban overexpressing mice. PLoS ONE. 2017;12:e0173708 pubmed 出版商
  40. Morrow R, Picard M, Derbeneva O, Leipzig J, McManus M, Gouspillou G, et al. Mitochondrial energy deficiency leads to hyperproliferation of skeletal muscle mitochondria and enhanced insulin sensitivity. Proc Natl Acad Sci U S A. 2017;114:2705-2710 pubmed 出版商
  41. Kovacs A, Kalász J, Pasztor E, Toth A, Papp Z, Dhalla N, et al. Myosin heavy chain and cardiac troponin T damage is associated with impaired myofibrillar ATPase activity contributing to sarcomeric dysfunction in Ca2+-paradox rat hearts. Mol Cell Biochem. 2017;430:57-68 pubmed 出版商
  42. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  43. Xiong X, Liu Y, Mei Y, Peng J, Wang Z, Kong B, et al. Novel Protective Role of Myeloid Differentiation 1 in Pathological Cardiac Remodelling. Sci Rep. 2017;7:41857 pubmed 出版商
  44. Duelen R, Gilbert G, Patel A, de Schaetzen N, de Waele L, Roderick L, et al. Activin A Modulates CRIPTO-1/HNF4?+ Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells. Stem Cells Int. 2017;2017:4651238 pubmed 出版商
  45. Shen C, Zhou J, Wang X, Yu X, Liang C, Liu B, et al. Angiotensin-II-induced Muscle Wasting is Mediated by 25-Hydroxycholesterol via GSK3? Signaling Pathway. EBioMedicine. 2017;16:238-250 pubmed 出版商
  46. Gopinath S. Inhibition of Stat3 signaling ameliorates atrophy of the soleus muscles in mice lacking the vitamin D receptor. Skelet Muscle. 2017;7:2 pubmed 出版商
  47. Cha S, Lee H, Koh W. Study of myoblast differentiation using multi-dimensional scaffolds consisting of nano and micropatterns. Biomater Res. 2017;21:1 pubmed 出版商
  48. Hu N, Chang H, Du B, Zhang Q, Arfat Y, Dang K, et al. Tetramethylpyrazine ameliorated disuse-induced gastrocnemius muscle atrophy in hindlimb unloading rats through suppression of Ca2+/ROS-mediated apoptosis. Appl Physiol Nutr Metab. 2017;42:117-127 pubmed 出版商
  49. Protze S, Liu J, Nussinovitch U, Ohana L, Backx P, Gepstein L, et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat Biotechnol. 2017;35:56-68 pubmed 出版商
  50. Fry C, Johnson D, Ireland M, Noehren B. ACL injury reduces satellite cell abundance and promotes fibrogenic cell expansion within skeletal muscle. J Orthop Res. 2017;35:1876-1885 pubmed 出版商
  51. McKenzie A, D Lugos A, Saunders M, Gworek K, Luden N. Fiber Type-Specific Satellite Cell Content in Cyclists Following Heavy Training with Carbohydrate and Carbohydrate-Protein Supplementation. Front Physiol. 2016;7:550 pubmed
  52. St Jean Pelletier F, Pion C, Leduc Gaudet J, Sgarioto N, Zovilé I, Barbat Artigas S, et al. The impact of ageing, physical activity, and pre-frailty on skeletal muscle phenotype, mitochondrial content, and intramyocellular lipids in men. J Cachexia Sarcopenia Muscle. 2017;8:213-228 pubmed 出版商
  53. Sawano S, Komiya Y, Ichitsubo R, Ohkawa Y, Nakamura M, Tatsumi R, et al. A One-Step Immunostaining Method to Visualize Rodent Muscle Fiber Type within a Single Specimen. PLoS ONE. 2016;11:e0166080 pubmed 出版商
  54. Scotcher J, Prysyazhna O, Boguslavskyi A, Kistamás K, Hadgraft N, Martin E, et al. Disulfide-activated protein kinase G I? regulates cardiac diastolic relaxation and fine-tunes the Frank-Starling response. Nat Commun. 2016;7:13187 pubmed 出版商
  55. Southard S, Kim J, Low S, Tsika R, Lepper C. Myofiber-specific TEAD1 overexpression drives satellite cell hyperplasia and counters pathological effects of dystrophin deficiency. elife. 2016;5: pubmed 出版商
  56. White S, McDermott M, Sufit R, Kosmac K, Bugg A, Gonzalez Freire M, et al. Walking performance is positively correlated to calf muscle fiber size in peripheral artery disease subjects, but fibers show aberrant mitophagy: an observational study. J Transl Med. 2016;14:284 pubmed 出版商
  57. Murach K, Walton R, Fry C, Michaelis S, Groshong J, Finlin B, et al. Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise. Physiol Rep. 2016;4: pubmed 出版商
  58. Perry B, Wyckelsma V, Murphy R, Steward C, Anderson M, Levinger I, et al. Dissociation between short-term unloading and resistance training effects on skeletal muscle Na+,K+-ATPase, muscle function, and fatigue in humans. J Appl Physiol (1985). 2016;121:1074-1086 pubmed 出版商
  59. Spendiff S, Vuda M, Gouspillou G, Aare S, Pérez A, Morais J, et al. Denervation drives mitochondrial dysfunction in skeletal muscle of octogenarians. J Physiol. 2016;594:7361-7379 pubmed 出版商
  60. Aare S, Spendiff S, Vuda M, Elkrief D, Pérez A, Wu Q, et al. Failed reinnervation in aging skeletal muscle. Skelet Muscle. 2016;6:29 pubmed 出版商
  61. Coleman S, Rebalka I, D Souza D, Deodhare N, Desjardins E, Hawke T. Myostatin inhibition therapy for insulin-deficient type 1 diabetes. Sci Rep. 2016;6:32495 pubmed 出版商
  62. Woodall B, Woodall M, Luongo T, Grisanti L, Tilley D, Elrod J, et al. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy. J Biol Chem. 2016;291:21913-21924 pubmed
  63. Ramazzotti G, Billi A, Manzoli L, Mazzetti C, Ruggeri A, Erneux C, et al. IPMK and β-catenin mediate PLC-β1-dependent signaling in myogenic differentiation. Oncotarget. 2016;7:84118-84127 pubmed 出版商
  64. Liu J, Liang X, Zhou D, Lai L, Xiao L, Liu L, et al. Coupling of mitochondrial function and skeletal muscle fiber type by a miR-499/Fnip1/AMPK circuit. EMBO Mol Med. 2016;8:1212-1228 pubmed 出版商
  65. Dirks M, Wall B, van de Valk B, Holloway T, Holloway G, Chabowski A, et al. One Week of Bed Rest Leads to Substantial Muscle Atrophy and Induces Whole-Body Insulin Resistance in the Absence of Skeletal Muscle Lipid Accumulation. Diabetes. 2016;65:2862-75 pubmed 出版商
  66. Rui Y, Pan F, Mi J. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles. Anat Rec (Hoboken). 2016;299:1397-401 pubmed 出版商
  67. Pumberger M, Qazi T, Ehrentraut M, Textor M, Kueper J, Stoltenburg Didinger G, et al. Synthetic niche to modulate regenerative potential of MSCs and enhance skeletal muscle regeneration. Biomaterials. 2016;99:95-108 pubmed 出版商
  68. Jensen L, Jørgensen L, Bech R, Frandsen U, Schrøder H. Skeletal Muscle Remodelling as a Function of Disease Progression in Amyotrophic Lateral Sclerosis. Biomed Res Int. 2016;2016:5930621 pubmed 出版商
  69. Riaz M, Raz Y, van Putten M, Paniagua Soriano G, Krom Y, Florea B, et al. PABPN1-Dependent mRNA Processing Induces Muscle Wasting. PLoS Genet. 2016;12:e1006031 pubmed 出版商
  70. Xu Z, Mei F, Liu H, Sun C, Zheng Z. C-C Motif Chemokine Receptor 9 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction. J Am Heart Assoc. 2016;5: pubmed 出版商
  71. Fajardo V, Smith I, Bombardier E, Chambers P, Quadrilatero J, Tupling A. Diaphragm assessment in mice overexpressing phospholamban in slow-twitch type I muscle fibers. Brain Behav. 2016;6:e00470 pubmed 出版商
  72. Sallin P, Jazwinska A. Acute stress is detrimental to heart regeneration in zebrafish. Open Biol. 2016;6: pubmed 出版商
  73. Pannérec A, Springer M, Migliavacca E, Ireland A, Piasecki M, Karaz S, et al. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia. Aging (Albany NY). 2016;8:712-29 pubmed 出版商
  74. Stewart M, Lopez S, Nagandla H, Soibam B, Benham A, Nguyen J, et al. Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray. Dis Model Mech. 2016;9:347-59 pubmed 出版商
  75. Valenzuela N, Fan Q, Fa ak F, Soibam B, Nagandla H, Liu Y, et al. Cardiomyocyte-specific conditional knockout of the histone chaperone HIRA in mice results in hypertrophy, sarcolemmal damage and focal replacement fibrosis. Dis Model Mech. 2016;9:335-45 pubmed 出版商
  76. Yu C, Tang L, Liang C, Chen X, Song S, Ding X, et al. Angiotensin-Converting Enzyme 3 (ACE3) Protects Against Pressure Overload-Induced Cardiac Hypertrophy. J Am Heart Assoc. 2016;5: pubmed 出版商
  77. Nyberg M, Fiorenza M, Lund A, Christensen M, Rømer T, Piil P, et al. Adaptations to Speed Endurance Training in Highly Trained Soccer Players. Med Sci Sports Exerc. 2016;48:1355-64 pubmed 出版商
  78. Echeverría P, Briand P, Picard D. A Remodeled Hsp90 Molecular Chaperone Ensemble with the Novel Cochaperone Aarsd1 Is Required for Muscle Differentiation. Mol Cell Biol. 2016;36:1310-21 pubmed 出版商
  79. Tang Y, Hong Y, Bai H, Wu Q, Chen C, Lang J, et al. Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1. Stem Cells. 2016;34:1527-40 pubmed 出版商
  80. Barone R, Macaluso F, Sangiorgi C, Campanella C, Marino Gammazza A, Moresi V, et al. Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression. Sci Rep. 2016;6:19781 pubmed 出版商
  81. Phelps K, Drouillard J, Silva M, Miranda L, Ebarb S, Van Bibber Krueger C, et al. Effect of extended postmortem aging and steak location on myofibrillar protein degradation and Warner-Bratzler shear force of beef M. semitendinosus steaks. J Anim Sci. 2016;94:412-23 pubmed 出版商
  82. Liu H, Zhang S, Zhao L, Zhang Y, Li Q, Chai X, et al. Resveratrol Enhances Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells through Inhibiting Canonical WNT Signal Pathway and Enhancing Serum Response Factor-miR-1 Axis. Stem Cells Int. 2016;2016:2524092 pubmed 出版商
  83. Arentson Lantz E, English K, Paddon Jones D, Fry C. Fourteen days of bed rest induces a decline in satellite cell content and robust atrophy of skeletal muscle fibers in middle-aged adults. J Appl Physiol (1985). 2016;120:965-75 pubmed 出版商
  84. Watanabe H, Nakano T, Saito R, Akasaka D, Saito K, Ogasawara H, et al. Serotonin Improves High Fat Diet Induced Obesity in Mice. PLoS ONE. 2016;11:e0147143 pubmed 出版商
  85. Foltz S, Modi J, Melick G, Abousaud M, Luan J, Fortunato M, et al. Abnormal Skeletal Muscle Regeneration plus Mild Alterations in Mature Fiber Type Specification in Fktn-Deficient Dystroglycanopathy Muscular Dystrophy Mice. PLoS ONE. 2016;11:e0147049 pubmed 出版商
  86. Wyckelsma V, McKenna M, Levinger I, Petersen A, Lamboley C, Murphy R. Cell specific differences in the protein abundances of GAPDH and Na(+),K(+)-ATPase in skeletal muscle from aged individuals. Exp Gerontol. 2016;75:8-15 pubmed 出版商
  87. Yuan W, Tang C, Zhu W, Zhu J, Lin Q, Fu Y, et al. CDK6 mediates the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy. Mol Cell Biochem. 2016;412:289-96 pubmed 出版商
  88. Gali Ramamoorthy T, Laverny G, Schlagowski A, Zoll J, Messaddeq N, Bornert J, et al. The transcriptional coregulator PGC-1β controls mitochondrial function and anti-oxidant defence in skeletal muscles. Nat Commun. 2015;6:10210 pubmed 出版商
  89. Spanos D, Tørngren M, Christensen M, Baron C. Effect of oxygen level on the oxidative stability of two different retail pork products stored using modified atmosphere packaging (MAP). Meat Sci. 2016;113:162-9 pubmed 出版商
  90. Power G, Minozzo F, Spendiff S, Filion M, Konokhova Y, Purves Smith M, et al. Reduction in single muscle fiber rate of force development with aging is not attenuated in world class older masters athletes. Am J Physiol Cell Physiol. 2016;310:C318-27 pubmed 出版商
  91. Shah F, Berggren D, Holmlund T, Levring Jäghagen E, StÃ¥l P. Unique expression of cytoskeletal proteins in human soft palate muscles. J Anat. 2016;228:487-94 pubmed 出版商
  92. Tallon C, Russell K, Sakhalkar S, Andrapallayal N, Farah M. Length-dependent axo-terminal degeneration at the neuromuscular synapses of type II muscle in SOD1 mice. Neuroscience. 2016;312:179-89 pubmed 出版商
  93. Zhang Y, Li W, Zhu M, Li Y, Xu Z, Zuo B. FHL3 differentially regulates the expression of MyHC isoforms through interactions with MyoD and pCREB. Cell Signal. 2016;28:60-73 pubmed 出版商
  94. Nichols C, Shepherd D, Knuckles T, Thapa D, Stricker J, Stapleton P, et al. Cardiac and mitochondrial dysfunction following acute pulmonary exposure to mountaintop removal mining particulate matter. Am J Physiol Heart Circ Physiol. 2015;309:H2017-30 pubmed 出版商
  95. Mohr M, Thomassen M, Girard O, Racinais S, Nybo L. Muscle variables of importance for physiological performance in competitive football. Eur J Appl Physiol. 2016;116:251-62 pubmed 出版商
  96. Anderson K, Russell A, Foletta V. NDRG2 promotes myoblast proliferation and caspase 3/7 activities during differentiation, and attenuates hydrogen peroxide - But not palmitate-induced toxicity. FEBS Open Bio. 2015;5:668-81 pubmed 出版商
  97. Ebert S, Dyle M, Bullard S, Dierdorff J, Murry D, Fox D, et al. Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy. J Biol Chem. 2015;290:25497-511 pubmed 出版商
  98. Ohsawa Y, Takayama K, Nishimatsu S, Okada T, Fujino M, Fukai Y, et al. The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy. PLoS ONE. 2015;10:e0133713 pubmed 出版商
  99. Zou T, He D, Yu B, Yu J, Mao X, Zheng P, et al. Moderately increased maternal dietary energy intake delays foetal skeletal muscle differentiation and maturity in pigs. Eur J Nutr. 2016;55:1777-87 pubmed 出版商
  100. Hostrup M, Kalsen A, Onslev J, Jessen S, Haase C, Habib S, et al. Mechanisms underlying enhancements in muscle force and power output during maximal cycle ergometer exercise induced by chronic β2-adrenergic stimulation in men. J Appl Physiol (1985). 2015;119:475-86 pubmed 出版商
  101. Li F, Buck D, De Winter J, Kolb J, Meng H, Birch C, et al. Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy. Hum Mol Genet. 2015;24:5219-33 pubmed 出版商
  102. Lindskog C, Linné J, Fagerberg L, Hallström B, Sundberg C, Lindholm M, et al. The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling. BMC Genomics. 2015;16:475 pubmed 出版商
  103. Giordano C, Lemaire C, Li T, Kimoff R, Petrof B. Autophagy-associated atrophy and metabolic remodeling of the mouse diaphragm after short-term intermittent hypoxia. PLoS ONE. 2015;10:e0131068 pubmed 出版商
  104. Peng X, Song T, Hu X, Zhou Y, Wei H, Peng J, et al. Phenotypic and Functional Properties of Porcine Dedifferentiated Fat Cells during the Long-Term Culture In Vitro. Biomed Res Int. 2015;2015:673651 pubmed 出版商
  105. Tian L, Ding S, You Y, Li T, Liu Y, Wu X, et al. Leiomodin-3-deficient mice display nemaline myopathy with fast-myofiber atrophy. Dis Model Mech. 2015;8:635-41 pubmed 出版商
  106. Fajardo V, Bombardier E, McMillan E, TRAN K, Wadsworth B, Gamu D, et al. Phospholamban overexpression in mice causes a centronuclear myopathy-like phenotype. Dis Model Mech. 2015;8:999-1009 pubmed 出版商
  107. Clark D, Clark D, Beever J, Dilger A. Increased prenatal IGF2 expression due to the porcine intron3-G3072A mutation may be responsible for increased muscle mass. J Anim Sci. 2015;93:2546-58 pubmed 出版商
  108. Bollinger L, Powell J, Houmard J, Witczak C, Brault J. Skeletal muscle myotubes in severe obesity exhibit altered ubiquitin-proteasome and autophagic/lysosomal proteolytic flux. Obesity (Silver Spring). 2015;23:1185-93 pubmed 出版商
  109. Schafer S, Adami E, Heinig M, Rodrigues K, Kreuchwig F, Silhavy J, et al. Translational regulation shapes the molecular landscape of complex disease phenotypes. Nat Commun. 2015;6:7200 pubmed 出版商
  110. Oishi Y, Roy R, Ogata T, Ohira Y. Heat-Stress effects on the myosin heavy chain phenotype of rat soleus fibers during the early stages of regeneration. Muscle Nerve. 2015;52:1047-56 pubmed 出版商
  111. Jensen L, Andersen L, Schrøder H, Frandsen U, Sjøgaard G. Neuronal nitric oxide synthase is dislocated in type I fibers of myalgic muscle but can recover with physical exercise training. Biomed Res Int. 2015;2015:265278 pubmed 出版商
  112. Karlsen A, Couppé C, Andersen J, Mikkelsen U, Nielsen R, Magnusson S, et al. Matters of fiber size and myonuclear domain: Does size matter more than age?. Muscle Nerve. 2015;52:1040-6 pubmed 出版商
  113. Koutakis P, Myers S, Cluff K, Ha D, Haynatzki G, McComb R, et al. Abnormal myofiber morphology and limb dysfunction in claudication. J Surg Res. 2015;196:172-9 pubmed 出版商
  114. Mitchell C, Oikawa S, Ogborn D, Nates N, MacNeil L, Tarnopolsky M, et al. Daily chocolate milk consumption does not enhance the effect of resistance training in young and old men: a randomized controlled trial. Appl Physiol Nutr Metab. 2015;40:199-202 pubmed 出版商
  115. Seaberg B, Henslee G, Wang S, Paez Colasante X, Landreth G, Rimer M. Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions. Mol Cell Biol. 2015;35:1238-53 pubmed 出版商
  116. Huang S, Zou X, Zhu J, Fu Y, Lin Q, Liang Y, et al. Attenuation of microRNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy. J Cell Mol Med. 2015;19:608-19 pubmed 出版商
  117. Fichna J, Karolczak J, Potulska Chromik A, Miszta P, Berdynski M, Sikorska A, et al. Two desmin gene mutations associated with myofibrillar myopathies in Polish families. PLoS ONE. 2014;9:e115470 pubmed 出版商
  118. Zhang D, Wang X, Li Y, Zhao L, Lu M, Yao X, et al. Thyroid hormone regulates muscle fiber type conversion via miR-133a1. J Cell Biol. 2014;207:753-66 pubmed 出版商
  119. Fry C, Lee J, Mula J, Kirby T, Jackson J, Liu F, et al. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med. 2015;21:76-80 pubmed 出版商
  120. O Connell K, Guo W, Serra C, Beck M, Wachtman L, Hoggatt A, et al. The effects of an ActRIIb receptor Fc fusion protein ligand trap in juvenile simian immunodeficiency virus-infected rhesus macaques. FASEB J. 2015;29:1165-75 pubmed 出版商
  121. Burrows A, Parr L, Durham E, Matthews L, Smith T. Human faces are slower than chimpanzee faces. PLoS ONE. 2014;9:e110523 pubmed 出版商
  122. Bernard Marissal N, Sunyach C, Marissal T, Raoul C, Pettmann B. Calreticulin levels determine onset of early muscle denervation by fast motoneurons of ALS model mice. Neurobiol Dis. 2015;73:130-6 pubmed 出版商
  123. Gouspillou G, Sgarioto N, Norris B, Barbat Artigas S, Aubertin Leheudre M, Morais J, et al. The relationship between muscle fiber type-specific PGC-1α content and mitochondrial content varies between rodent models and humans. PLoS ONE. 2014;9:e103044 pubmed 出版商
  124. Snijders T, Verdijk L, Smeets J, McKay B, Senden J, Hartgens F, et al. The skeletal muscle satellite cell response to a single bout of resistance-type exercise is delayed with aging in men. Age (Dordr). 2014;36:9699 pubmed 出版商
  125. Janbaz A, Lindström M, Liu J, Pedrosa Domellöf F. Intermediate filaments in the human extraocular muscles. Invest Ophthalmol Vis Sci. 2014;55:5151-9 pubmed 出版商
  126. Fry C, Noehren B, Mula J, Ubele M, Westgate P, Kern P, et al. Fibre type-specific satellite cell response to aerobic training in sedentary adults. J Physiol. 2014;592:2625-35 pubmed 出版商
  127. Lamboley C, Murphy R, McKenna M, Lamb G. Sarcoplasmic reticulum Ca2+ uptake and leak properties, and SERCA isoform expression, in type I and type II fibres of human skeletal muscle. J Physiol. 2014;592:1381-95 pubmed 出版商
  128. Furuya N, Ikeda S, Sato S, Soma S, Ezaki J, Oliva Trejo J, et al. PARK2/Parkin-mediated mitochondrial clearance contributes to proteasome activation during slow-twitch muscle atrophy via NFE2L1 nuclear translocation. Autophagy. 2014;10:631-41 pubmed 出版商
  129. Gouspillou G, Sgarioto N, Kapchinsky S, Purves Smith F, Norris B, Pion C, et al. Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans. FASEB J. 2014;28:1621-33 pubmed 出版商
  130. Zhang Y, Zhang X, Gao L, Liu Y, Jiang D, Chen K, et al. Growth/differentiation factor 1 alleviates pressure overload-induced cardiac hypertrophy and dysfunction. Biochim Biophys Acta. 2014;1842:232-44 pubmed 出版商
  131. Lundgreen K, Lian O, Engebretsen L, Scott A. Lower muscle regenerative potential in full-thickness supraspinatus tears compared to partial-thickness tears. Acta Orthop. 2013;84:565-70 pubmed 出版商
  132. Hauerslev S, Sveen M, Vissing J, Krag T. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I. PLoS ONE. 2013;8:e66929 pubmed 出版商
  133. Panguluri S, Tur J, Fukumoto J, Deng W, Sneed K, Kolliputi N, et al. Hyperoxia-induced hypertrophy and ion channel remodeling in left ventricle. Am J Physiol Heart Circ Physiol. 2013;304:H1651-61 pubmed 出版商
  134. Harmelink C, Peng Y, Debenedittis P, Chen H, Shou W, Jiao K. Myocardial Mycn is essential for mouse ventricular wall morphogenesis. Dev Biol. 2013;373:53-63 pubmed 出版商
  135. Barton E, Park S, James J, Makarewich C, Philippou A, Eletto D, et al. Deletion of muscle GRP94 impairs both muscle and body growth by inhibiting local IGF production. FASEB J. 2012;26:3691-702 pubmed 出版商
  136. An C, Dong Y, Hagiwara N. Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6. BMC Dev Biol. 2011;11:59 pubmed 出版商