这是一篇来自已证抗体库的有关人类 MYL2的综述,是根据68篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合MYL2 抗体。
MYL2 同义词: CMH10; MLC-2s/v; MLC2

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR3741)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 MYL2抗体(Abcam, ab92721)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). J Proteomics (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 MYL2抗体(Abcam, ab-79935)被用于被用于免疫印迹在小鼠样本上 (图 3a). Int J Biol Sci (2017) ncbi
domestic rabbit 单克隆(EPR3741)
  • 免疫细胞化学; 人类; 图 s2i
艾博抗(上海)贸易有限公司 MYL2抗体(Abcam, ab92721)被用于被用于免疫细胞化学在人类样本上 (图 s2i). Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:100; 图 5f
艾博抗(上海)贸易有限公司 MYL2抗体(Abcam, ab79935)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 5f). Nat Biotechnol (2017) ncbi
domestic rabbit 单克隆(EPR3741)
  • 免疫印迹; 小鼠; 图 s4
艾博抗(上海)贸易有限公司 MYL2抗体(abcam, ab92721)被用于被用于免疫印迹在小鼠样本上 (图 s4). Biol Sex Differ (2016) ncbi
domestic rabbit 单克隆(EPR3741)
  • 流式细胞仪; 小鼠; 图 s4
艾博抗(上海)贸易有限公司 MYL2抗体(Abcam, ab92721)被用于被用于流式细胞仪在小鼠样本上 (图 s4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR3741)
  • 免疫印迹; 人类; 图 8e
艾博抗(上海)贸易有限公司 MYL2抗体(Abcam, EPR3741)被用于被用于免疫印迹在人类样本上 (图 8e). Oncogene (2016) ncbi
domestic rabbit 单克隆(EPR3741)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 MYL2抗体(Abcam, ab92721)被用于被用于免疫印迹在小鼠样本上. Anal Biochem (2014) ncbi
domestic rabbit 单克隆(EPR3741)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 MYL2抗体(Abcam, ab92721)被用于被用于免疫印迹在小鼠样本上. J Mol Cell Cardiol (2013) ncbi
domestic rabbit 单克隆(EPR3741)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 MYL2抗体(Abcam, ab92721)被用于被用于免疫印迹在大鼠样本上. Cardiovasc Diabetol (2012) ncbi
Synaptic Systems
小鼠 单克隆(330G5)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
Synaptic Systems MYL2抗体(Synaptic systems, 310111)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). Stem Cell Reports (2016) ncbi
小鼠 单克隆(330G5)
  • 免疫细胞化学; 小鼠; 图 s2
Synaptic Systems MYL2抗体(Synaptic Systems, 310-111)被用于被用于免疫细胞化学在小鼠样本上 (图 s2). Stem Cell Reports (2015) ncbi
小鼠 单克隆(330G5)
  • 免疫细胞化学; 人类; 1:50; 图 s10
Synaptic Systems MYL2抗体(Synaptic Systems, 310 111)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s10). Nat Biotechnol (2015) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(Ser19)
  • 免疫印迹; 小鼠; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling Technology, 3675)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1e). Int J Biol Sci (2021) ncbi
小鼠 单克隆(Ser19)
  • 免疫细胞化学; 小鼠; 1:50; 图 4g
  • 免疫印迹; 小鼠; 1:500; 图 4f
赛信通(上海)生物试剂有限公司 MYL2抗体(CST, 3675)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 4g) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 4f). Nat Commun (2021) ncbi
小鼠 单克隆(Ser19)
  • 免疫印迹; 人类; 图 2a
  • 免疫印迹; 小鼠; 1:500; 图 1e
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling Technology, 3675)被用于被用于免疫印迹在人类样本上 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1e). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3f
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3f). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(Ser19)
  • 免疫印迹; 大鼠; 图 3d
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling Technology, 3675)被用于被用于免疫印迹在大鼠样本上 (图 3d). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(Ser19)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类; 1:200
赛信通(上海)生物试剂有限公司 MYL2抗体(CST, 3675S)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上浓度为1:200. Signal Transduct Target Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 7k
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling Technology, Danvers, MA, USA, #3674)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 7k). Sci Rep (2020) ncbi
小鼠 单克隆(Ser19)
  • 免疫组化; 大鼠; 1:50
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling Technology, 3675s)被用于被用于免疫组化在大鼠样本上浓度为1:50. Biol Proced Online (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5s1c
  • 免疫印迹; 小鼠; 1:1000; 图 6f
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5s1c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6f). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 4h
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4h). Nat Commun (2019) ncbi
小鼠 单克隆(Ser19)
  • 免疫细胞化学; 小鼠; 1:200; 图 6h
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3675)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 6h). J Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674)被用于被用于免疫印迹在人类样本上 (图 2a). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674)被用于被用于免疫印迹在小鼠样本上 (图 5b). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7g
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674)被用于被用于免疫印迹在小鼠样本上 (图 7g). J Biol Chem (2018) ncbi
小鼠 单克隆(Ser19)
  • 免疫细胞化学; 犬; 1:200; 图 s7f
  • 免疫细胞化学; 人类; 1:200; 图 s7e
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3675)被用于被用于免疫细胞化学在犬样本上浓度为1:200 (图 s7f) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 s7e). J Cell Sci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674)被用于被用于免疫印迹在人类样本上 (图 6a). Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 9l
  • 免疫印迹; 小鼠; 图 9o
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 9l) 和 被用于免疫印迹在小鼠样本上 (图 9o). Dev Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s1e
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s1e). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2b
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674)被用于被用于免疫组化在人类样本上 (图 2b). Mol Biol Cell (2017) ncbi
小鼠 单克隆(Ser19)
  • 免疫组化; 人类; 图 2b
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3675)被用于被用于免疫组化在人类样本上 (图 2b). Mol Biol Cell (2017) ncbi
小鼠 单克隆(Ser19)
  • 免疫细胞化学; 人类; 1:100; 图 s1f
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell signaling, 3675)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s1f). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4g
赛信通(上海)生物试剂有限公司 MYL2抗体(cell signalling, 3674)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4g). Oncotarget (2017) ncbi
小鼠 单克隆(Ser19)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling Technology, 3675)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Cancer Lett (2017) ncbi
小鼠 单克隆(Ser19)
  • 免疫印迹; 大鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3675)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4e
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674)被用于被用于免疫印迹在小鼠样本上 (图 4e). Vascul Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 仓鼠; 图 6a
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell signaling, 3674)被用于被用于免疫细胞化学在仓鼠样本上 (图 6a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(Ser19)
  • 免疫组化-石蜡切片; 人类; 图 4g
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 36755)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4g). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3b
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3b). Redox Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Integr Biol (Camb) (2016) ncbi
小鼠 单克隆(Ser19)
  • 免疫细胞化学; 人类; 1:50; 图 3
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3675)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 斑马鱼; 1:200; 图 s9
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674)被用于被用于免疫细胞化学在斑马鱼样本上浓度为1:200 (图 s9). Development (2016) ncbi
小鼠 单克隆(Ser19)
  • 免疫组化-冰冻切片; 斑马鱼; 1:25; 图 7
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell signaling, 3675)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:25 (图 7). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 8
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674)被用于被用于免疫细胞化学在人类样本上 (图 8). PLoS ONE (2016) ncbi
小鼠 单克隆(Ser19)
  • 免疫印迹; 人类; 1:1000; 图 9b
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signalling, 3675)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9b). Sci Rep (2016) ncbi
小鼠 单克隆(Ser19)
  • 免疫细胞化学; 人类; 1:100; 图 5
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell signaling, 3675)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). Cell Cycle (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s4
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s4). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 2
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell signaling, 3674S)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2). Nature (2016) ncbi
小鼠 单克隆(Ser19)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling Technology, 3675)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s4a
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s4a
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling Technologies, 3674L)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s4a) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s4a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling Technology, 3674)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 6
  • 免疫组化; 小鼠; 1:100; 图 6
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3674)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 1:1000; 图 1
  • 免疫印迹; 人类; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling Technology, 3674S)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 1:50; 图 1
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling Technology, 3674)被用于被用于免疫印迹在牛样本上浓度为1:50 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(Ser19)
  • 免疫组化; 小鼠; 1:300; 图 7
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3675S)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 7). J Cell Sci (2016) ncbi
小鼠 单克隆(Ser19)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3675S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Mol Med Rep (2015) ncbi
小鼠 单克隆(Ser19)
  • 免疫印迹; 人类; 1:500; 图 5f
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signalling, 3675)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5f). Nat Commun (2015) ncbi
小鼠 单克隆(Ser19)
  • 免疫组化; 人类; 图 2c
  • 免疫组化; 小鼠; 图 2c
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3675)被用于被用于免疫组化在人类样本上 (图 2c), 被用于免疫组化在小鼠样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上 (图 2b). J Immunol (2015) ncbi
小鼠 单克隆(Ser19)
  • 免疫组化; 人类; 图 2c
  • 免疫组化; 小鼠; 图 2c
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3675)被用于被用于免疫组化在人类样本上 (图 2c), 被用于免疫组化在小鼠样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上 (图 2b). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(Ser19)
  • 免疫细胞化学; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell signaling technology, 3675)被用于被用于免疫细胞化学在小鼠样本上 (图 s3). Nature (2014) ncbi
小鼠 单克隆(Ser19)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3675)被用于被用于免疫印迹在人类样本上 (图 6). Cardiovasc Res (2014) ncbi
小鼠 单克隆(Ser19)
  • 免疫细胞化学; 犬
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3675)被用于被用于免疫细胞化学在犬样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(Ser19)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling Technology, 3675)被用于被用于免疫印迹在小鼠样本上. Int J Biochem Cell Biol (2014) ncbi
小鼠 单克隆(Ser19)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3675)被用于被用于免疫组化-石蜡切片在小鼠样本上. Invest Ophthalmol Vis Sci (2013) ncbi
小鼠 单克隆(Ser19)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 MYL2抗体(Cell Signaling, 3675S)被用于被用于免疫细胞化学在人类样本上. J Cell Sci (2012) ncbi
文章列表
  1. Gan C, Zou Y, Xia Y, Zhang T, Chen D, Lan G, et al. Inhibition of Death-associated Protein Kinase 1 protects against Epileptic Seizures in mice. Int J Biol Sci. 2021;17:2356-2366 pubmed 出版商
  2. Jungwirth U, van Weverwijk A, Evans R, Jenkins L, Vicente D, Alexander J, et al. Impairment of a distinct cancer-associated fibroblast population limits tumour growth and metastasis. Nat Commun. 2021;12:3516 pubmed 出版商
  3. Zhang Z, Zhang L, Zhang Q, Liu B, Li F, Xin Y, et al. HO-1/CO Maintains Intestinal Barrier Integrity through NF-κB/MLCK Pathway in Intestinal HO-1-/- Mice. Oxid Med Cell Longev. 2021;2021:6620873 pubmed 出版商
  4. Shi X, Wen Z, Wang Y, Liu Y, Shi K, Jiu Y. Feedback-Driven Mechanisms Between Phosphorylated Caveolin-1 and Contractile Actin Assemblies Instruct Persistent Cell Migration. Front Cell Dev Biol. 2021;9:665919 pubmed 出版商
  5. Zhuan B, Wang X, Wang M, Li Z, Yuan Q, Xie J, et al. Hypoxia induces pulmonary artery smooth muscle dysfunction through mitochondrial fragmentation-mediated endoplasmic reticulum stress. Aging (Albany NY). 2020;12:23684-23697 pubmed 出版商
  6. Wen X, Wan J, He Q, Wang M, Li S, Jiang M, et al. p190A inactivating mutations cause aberrant RhoA activation and promote malignant transformation via the Hippo-YAP pathway in endometrial cancer. Signal Transduct Target Ther. 2020;5:81 pubmed 出版商
  7. Gremlich S, Roth Kleiner M, Equey L, Fytianos K, Schittny J, Cremona T. Tenascin-C inactivation impacts lung structure and function beyond lung development. Sci Rep. 2020;10:5118 pubmed 出版商
  8. Aaltonen N, Singha P, Jakupović H, Wirth T, Samaranayake H, Pasonen Seppänen S, et al. High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils. Biol Proced Online. 2020;22:6 pubmed 出版商
  9. Yang N, Yu L, Deng Y, Han Q, Wang J, Yu L, et al. Identification and characterization of proteins that are differentially expressed in adipose tissue of olanzapine-induced insulin resistance rat by iTRAQ quantitative proteomics. J Proteomics. 2020;212:103570 pubmed 出版商
  10. Laurin M, Gomez N, Levorse J, Sendoel A, Sribour M, Fuchs E. An RNAi screen unravels the complexities of Rho GTPase networks in skin morphogenesis. elife. 2019;8: pubmed 出版商
  11. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  12. Mason D, Collins J, Dawahare J, Nguyen T, Lin Y, Voytik Harbin S, et al. YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. J Cell Biol. 2019;218:1369-1389 pubmed 出版商
  13. Georgouli M, Herraiz C, Crosas Molist E, Fanshawe B, Maiques O, Perdrix A, et al. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell. 2019;176:757-774.e23 pubmed 出版商
  14. Albrengues J, Shields M, Ng D, Park C, Ambrico A, Poindexter M, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361: pubmed 出版商
  15. Ge J, Burnier L, Adamopoulou M, Kwa M, Schaks M, Rottner K, et al. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells. J Biol Chem. 2018;293:9358-9369 pubmed 出版商
  16. Ibar C, Kirichenko E, Keepers B, Enners E, Fleisch K, Irvine K. Tension-dependent regulation of mammalian Hippo signaling through LIMD1. J Cell Sci. 2018;131: pubmed 出版商
  17. Unbekandt M, Belshaw S, Bower J, Clarke M, Cordes J, Crighton D, et al. Discovery of Potent and Selective MRCK Inhibitors with Therapeutic Effect on Skin Cancer. Cancer Res. 2018;78:2096-2114 pubmed 出版商
  18. Logan C, Rajakaruna S, Bowen C, Radice G, Robinson M, Menko A. N-cadherin regulates signaling mechanisms required for lens fiber cell elongation and lens morphogenesis. Dev Biol. 2017;428:118-134 pubmed 出版商
  19. Tang A, Choi J, Kotzin J, Yang Y, Hong C, Hobson N, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017;545:305-310 pubmed 出版商
  20. Lin Y, Zhen Y, Chien K, Lee I, Lin W, Chen M, et al. LIMCH1 regulates nonmuscle myosin-II activity and suppresses cell migration. Mol Biol Cell. 2017;28:1054-1065 pubmed 出版商
  21. Zheng B, Wang J, Tang L, Tan C, Zhao Z, Xiao Y, et al. Involvement of Rictor/mTORC2 in cardiomyocyte differentiation of mouse embryonic stem cells in vitro. Int J Biol Sci. 2017;13:110-121 pubmed 出版商
  22. Priya R, Liang X, Teo J, Duszyc K, Yap A, Gomez G. ROCK1 but not ROCK2 contributes to RhoA signaling and NMIIA-mediated contractility at the epithelial zonula adherens. Mol Biol Cell. 2017;28:12-20 pubmed 出版商
  23. Ang Y, Rivas R, Ribeiro A, Srivas R, Rivera J, Stone N, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016;167:1734-1749.e22 pubmed 出版商
  24. Protze S, Liu J, Nussinovitch U, Ohana L, Backx P, Gepstein L, et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat Biotechnol. 2017;35:56-68 pubmed 出版商
  25. Bonan S, Albrengues J, Grasset E, Kuzet S, Nottet N, Bourget I, et al. Membrane-bound ICAM-1 contributes to the onset of proinvasive tumor stroma by controlling acto-myosin contractility in carcinoma-associated fibroblasts. Oncotarget. 2017;8:1304-1320 pubmed 出版商
  26. Platet N, Hinkel I, Richert L, Murdamoothoo D, Moufok Sadoun A, Vanier M, et al. The tumor suppressor CDX2 opposes pro-metastatic biomechanical modifications of colon cancer cells through organization of the actin cytoskeleton. Cancer Lett. 2017;386:57-64 pubmed 出版商
  27. Scotcher J, Prysyazhna O, Boguslavskyi A, Kistamás K, Hadgraft N, Martin E, et al. Disulfide-activated protein kinase G I? regulates cardiac diastolic relaxation and fine-tunes the Frank-Starling response. Nat Commun. 2016;7:13187 pubmed 出版商
  28. Schubert C, Raparelli V, Westphal C, Dworatzek E, Petrov G, Kararigas G, et al. Reduction of apoptosis and preservation of mitochondrial integrity under ischemia/reperfusion injury is mediated by estrogen receptor ?. Biol Sex Differ. 2016;7:53 pubmed 出版商
  29. Prasad A, Ketsawatsomkron P, Nuno D, Koval O, Dibbern M, Venema A, et al. Role of CaMKII in Ang-II-dependent small artery remodeling. Vascul Pharmacol. 2016;87:172-179 pubmed 出版商
  30. Webb B, White K, Grillo Hill B, Schönichen A, Choi C, Barber D. A Histidine Cluster in the Cytoplasmic Domain of the Na-H Exchanger NHE1 Confers pH-sensitive Phospholipid Binding and Regulates Transporter Activity. J Biol Chem. 2016;291:24096-24104 pubmed
  31. Chen P, Qin L, Li G, Tellides G, Simons M. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGF?)-dependent smooth muscle cell phenotype modulation. Sci Rep. 2016;6:33407 pubmed 出版商
  32. Coburn L, Lopez H, Caldwell B, Moussa E, Yap C, Priya R, et al. Contact inhibition of locomotion and mechanical cross-talk between cell-cell and cell-substrate adhesion determine the pattern of junctional tension in epithelial cell aggregates. Mol Biol Cell. 2016;27:3436-3448 pubmed
  33. Yuan S, Pardue S, Shen X, Alexander J, Orr A, Kevil C. Hydrogen sulfide metabolism regulates endothelial solute barrier function. Redox Biol. 2016;9:157-166 pubmed 出版商
  34. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033-1042 pubmed 出版商
  35. Freddo A, Shoffner S, Shao Y, Taniguchi K, Grosse A, Guysinger M, et al. Coordination of signaling and tissue mechanics during morphogenesis of murine intestinal villi: a role for mitotic cell rounding. Integr Biol (Camb). 2016;8:918-28 pubmed 出版商
  36. Dorland Y, Malinova T, van Stalborch A, Grieve A, van Geemen D, Jansen N, et al. The F-BAR protein pacsin2 inhibits asymmetric VE-cadherin internalization from tensile adherens junctions. Nat Commun. 2016;7:12210 pubmed 出版商
  37. Kudová J, Prochazkova J, Vašíček O, Perecko T, Sedláčková M, Pesl M, et al. HIF-1alpha Deficiency Attenuates the Cardiomyogenesis of Mouse Embryonic Stem Cells. PLoS ONE. 2016;11:e0158358 pubmed 出版商
  38. Zhang J, Jiang Z, Liu X, Meng A. Eph/ephrin signaling maintains the boundary of dorsal forerunner cell cluster during morphogenesis of the zebrafish embryonic left-right organizer. Development. 2016;143:2603-15 pubmed 出版商
  39. Raman R, Damle I, Rote R, Banerjee S, Dingare C, Sonawane M. aPKC regulates apical localization of Lgl to restrict elongation of microridges in developing zebrafish epidermis. Nat Commun. 2016;7:11643 pubmed 出版商
  40. Mannhardt I, Breckwoldt K, Letuffe Brenière D, Schaaf S, Schulz H, Neuber C, et al. Human Engineered Heart Tissue: Analysis of Contractile Force. Stem Cell Reports. 2016;7:29-42 pubmed 出版商
  41. Zhang X, Adderley S, Breslin J. Activation of RhoA, but Not Rac1, Mediates Early Stages of S1P-Induced Endothelial Barrier Enhancement. PLoS ONE. 2016;11:e0155490 pubmed 出版商
  42. Sharanek A, Burban A, Burbank M, Le Guevel R, Li R, Guillouzo A, et al. Rho-kinase/myosin light chain kinase pathway plays a key role in the impairment of bile canaliculi dynamics induced by cholestatic drugs. Sci Rep. 2016;6:24709 pubmed 出版商
  43. Guen V, Gamble C, Perez D, Bourassa S, Zappel H, Gartner J, et al. STAR syndrome-associated CDK10/Cyclin M regulates actin network architecture and ciliogenesis. Cell Cycle. 2016;15:678-88 pubmed 出版商
  44. Elosegui Artola A, Oria R, Chen Y, Kosmalska A, Pérez González C, Castro N, et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol. 2016;18:540-8 pubmed 出版商
  45. Muramatsu T, Kozaki K, Imoto S, Yamaguchi R, Tsuda H, Kawano T, et al. The hypusine cascade promotes cancer progression and metastasis through the regulation of RhoA in squamous cell carcinoma. Oncogene. 2016;35:5304-5316 pubmed 出版商
  46. Zhou Z, Tang A, Wong W, Bamezai S, Goddard L, Shenkar R, et al. Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature. 2016;532:122-6 pubmed 出版商
  47. Yuan X, Cao J, He X, Serra R, Qu J, Cao X, et al. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nat Commun. 2016;7:11024 pubmed 出版商
  48. Sakar M, Eyckmans J, Pieters R, Eberli D, Nelson B, Chen C. Cellular forces and matrix assembly coordinate fibrous tissue repair. Nat Commun. 2016;7:11036 pubmed 出版商
  49. Kim D, Helfman D. Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene. 2016;35:4495-508 pubmed 出版商
  50. Heemskerk N, Schimmel L, Oort C, van Rijssel J, Yin T, Ma B, et al. F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling. Nat Commun. 2016;7:10493 pubmed 出版商
  51. Tien S, Lee H, Yang Y, Lin M, Chen Y, Chang Z. The Shp2-induced epithelial disorganization defect is reversed by HDAC6 inhibition independent of Cdc42. Nat Commun. 2016;7:10420 pubmed 出版商
  52. Lampi M, Faber C, Huynh J, Bordeleau F, Zanotelli M, Reinhart King C. Simvastatin Ameliorates Matrix Stiffness-Mediated Endothelial Monolayer Disruption. PLoS ONE. 2016;11:e0147033 pubmed 出版商
  53. Jimeno D, Gómez C, Calzada N, de la Villa P, Lillo C, Santos E. RASGRF2 controls nuclear migration in postnatal retinal cone photoreceptors. J Cell Sci. 2016;129:729-42 pubmed 出版商
  54. Yamakawa H, Muraoka N, Miyamoto K, Sadahiro T, Isomi M, Haginiwa S, et al. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions. Stem Cell Reports. 2015;5:1128-1142 pubmed 出版商
  55. Zhang X, Zhang T, Gao F, Li Q, Shen C, Li Y, et al. Fasudil, a Rho‑kinase inhibitor, prevents intima‑media thickening in a partially ligated carotid artery mouse model: Effects of fasudil in flow‑induced vascular remodeling. Mol Med Rep. 2015;12:7317-25 pubmed 出版商
  56. Caporali A, Meloni M, Nailor A, Mitić T, Shantikumar S, Riu F, et al. p75(NTR)-dependent activation of NF-κB regulates microRNA-503 transcription and pericyte-endothelial crosstalk in diabetes after limb ischaemia. Nat Commun. 2015;6:8024 pubmed 出版商
  57. Birket M, Ribeiro M, Verkerk A, Ward D, Leitoguinho A, Den Hartogh S, et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol. 2015;33:970-9 pubmed 出版商
  58. Lainé A, Martin B, Luka M, Mir L, Auffray C, Lucas B, et al. Foxo1 Is a T Cell-Intrinsic Inhibitor of the RORγt-Th17 Program. J Immunol. 2015;195:1791-803 pubmed 出版商
  59. Kim J, Lee G, Won Y, Lee M, Kwak J, Chun C, et al. Matrix cross-linking-mediated mechanotransduction promotes posttraumatic osteoarthritis. Proc Natl Acad Sci U S A. 2015;112:9424-9 pubmed 出版商
  60. Acton S, Farrugia A, Astarita J, Mourão Sá D, Jenkins R, Nye E, et al. Dendritic cells control fibroblastic reticular network tension and lymph node expansion. Nature. 2014;514:498-502 pubmed 出版商
  61. Menhofer M, Bartel D, Liebl J, Kubisch R, Busse J, Wagner E, et al. In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor. Cardiovasc Res. 2014;104:303-14 pubmed 出版商
  62. Tokuda S, Higashi T, Furuse M. ZO-1 knockout by TALEN-mediated gene targeting in MDCK cells: involvement of ZO-1 in the regulation of cytoskeleton and cell shape. PLoS ONE. 2014;9:e104994 pubmed 出版商
  63. Wang Y, Zhao W, Zhang L, Zhao Y, Li F, Zhang Z, et al. Molecular and cellular basis of the regulation of lymphatic contractility and lymphatic absorption. Int J Biochem Cell Biol. 2014;53:134-40 pubmed 出版商
  64. Carberry S, Zweyer M, Swandulla D, Ohlendieck K. Comparative proteomic analysis of the contractile-protein-depleted fraction from normal versus dystrophic skeletal muscle. Anal Biochem. 2014;446:108-15 pubmed 出版商
  65. Yuan Y, Yeh L, Liu H, Yamanaka O, Hardie W, Kao W, et al. Targeted overexpression of TGF-? in the corneal epithelium of adult transgenic mice induces changes in anterior segment morphology and activates noncanonical Wnt signaling. Invest Ophthalmol Vis Sci. 2013;54:1829-37 pubmed 出版商
  66. Wang Y, Tanner B, Lombardo A, Tremble S, Maughan D, VanBuren P, et al. Cardiac myosin isoforms exhibit differential rates of MgADP release and MgATP binding detected by myocardial viscoelasticity. J Mol Cell Cardiol. 2013;54:1-8 pubmed 出版商
  67. Yi T, Cheema Y, Tremble S, Bell S, Chen Z, Subramanian M, et al. Zinc-induced cardiomyocyte relaxation in a rat model of hyperglycemia is independent of myosin isoform. Cardiovasc Diabetol. 2012;11:135 pubmed 出版商
  68. Ma M, Chircop M. SNX9, SNX18 and SNX33 are required for progression through and completion of mitosis. J Cell Sci. 2012;125:4372-82 pubmed 出版商