这是一篇来自已证抗体库的有关人类 Mad2的综述,是根据39篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Mad2 抗体。
Mad2 同义词: HSMAD2; MAD2; mitotic spindle assembly checkpoint protein MAD2A; MAD2 (mitotic arrest deficient, yeast, homolog)-like 1; MAD2 mitotic arrest deficient-like 1; MAD2-like protein 1; mitotic arrest deficient 2-like protein 1; mitotic arrest deficient, yeast, homolog-like 1

Bethyl
兔 多克隆
  • 免疫印迹; 人类; 1:5000; 图 3a
Bethyl Mad2抗体(Bethyl Laboratories, A300-301A)被用于被用于免疫印迹在人类样品上浓度为1:5000 (图 3a). EMBO J (2018) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 2
Bethyl Mad2抗体(Bethyl, A300-301A)被用于被用于免疫细胞化学在人类样品上 (图 2). Br J Cancer (2017) ncbi
兔 多克隆
  • proximity ligation assay; 人类; 1:250; 图 s1d
  • 免疫印迹; 人类; 图 4c
Bethyl Mad2抗体(Bethyl, A310-082A)被用于被用于proximity ligation assay在人类样品上浓度为1:250 (图 s1d) 和 被用于免疫印迹在人类样品上 (图 4c). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 5
Bethyl Mad2抗体(Bethyl Laboratories, A300-301A)被用于被用于免疫细胞化学在人类样品上浓度为1:500 (图 5). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1c
Bethyl Mad2抗体(Bethyl, A300-301 A)被用于被用于免疫印迹在人类样品上 (图 1c). Cell Cycle (2016) ncbi
兔 多克隆
  • 酶联免疫吸附测定; 人类; 1:1000; 图 1c
  • 免疫印迹; 人类; 1:1000
Bethyl Mad2抗体(Bethyl, A300-301A)被用于被用于酶联免疫吸附测定在人类样品上浓度为1:1000 (图 1c) 和 被用于免疫印迹在人类样品上浓度为1:1000. MAbs (2016) ncbi
兔 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 s4
Bethyl Mad2抗体(Bethyl, A300-301A)被用于被用于免疫印迹基因敲除验证在人类样品上 (图 s4). Cell Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 6
Bethyl Mad2抗体(Bethyl Laboratories, A300-301A)被用于被用于免疫细胞化学在人类样品上 (图 6). elife (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 1
Bethyl Mad2抗体(Bethyl Laboratories, A300-301A)被用于被用于免疫细胞化学在人类样品上 (图 1). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7c
Bethyl Mad2抗体(Bethyl Laboratories, A300-301A)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 7c). FASEB J (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:20,000; 图 1
Bethyl Mad2抗体(Bethyl Laboratories, A300-301A)被用于被用于免疫印迹在人类样品上浓度为1:20,000 (图 1). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 s1
Bethyl Mad2抗体(Bethyl, A300-301A)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200 (图 s1). Dev Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
Bethyl Mad2抗体(Bethyl Laboratories, A300-300A)被用于被用于免疫印迹在人类样品上. Biol Open (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
Bethyl Mad2抗体(Bethyl, A300-301A)被用于被用于免疫细胞化学在人类样品上. Nat Commun (2014) ncbi
兔 多克隆
  • 免疫沉淀; 人类; 1:500; 图 4
  • 免疫细胞化学; 人类
Bethyl Mad2抗体(Bethyl, A300-301A)被用于被用于免疫沉淀在人类样品上浓度为1:500 (图 4) 和 被用于免疫细胞化学在人类样品上. Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
Bethyl Mad2抗体(Bethyl, A300-301A)被用于被用于免疫印迹在人类样品上 (图 4). J Proteome Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s1c
Bethyl Mad2抗体(Bethyl, A300-300A)被用于被用于免疫印迹在人类样品上 (图 s1c). Proc Natl Acad Sci U S A (2014) ncbi
兔 多克隆
  • 免疫沉淀; 人类; 图 2b
  • 免疫印迹; 人类; 1:1000; 图 6e
  • 免疫沉淀; 小鼠; 图 2d
  • 免疫印迹; 小鼠; 1:1000; 图 6e
Bethyl Mad2抗体(Bethyl, A300-301A)被用于被用于免疫沉淀在人类样品上 (图 2b), 被用于免疫印迹在人类样品上浓度为1:1000 (图 6e), 被用于免疫沉淀在小鼠样品上 (图 2d) 和 被用于免疫印迹在小鼠样品上浓度为1:1000 (图 6e). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:300
Bethyl Mad2抗体(Bethyl, A300-300A)被用于被用于免疫印迹在人类样品上浓度为1:300. Open Biol (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-9)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 Mad2抗体(Santa Cruz, C-9)被用于被用于免疫印迹在人类样品上 (图 3c). Cell Death Dis (2016) ncbi
小鼠 单克隆(107-276-3)
  • 免疫细胞化学; 人类; 1:75; 图 2
圣克鲁斯生物技术 Mad2抗体(santa Cruz, sc-65492)被用于被用于免疫细胞化学在人类样品上浓度为1:75 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(17D10)
  • 免疫印迹; 人类; 1:1000; 图 s5a
圣克鲁斯生物技术 Mad2抗体(Santa Cruz, 17D10)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 s5a). Nat Chem Biol (2016) ncbi
小鼠 单克隆(107-276-3)
  • 免疫细胞化学; 人类; 图 2
圣克鲁斯生物技术 Mad2抗体(Santa Cruz Biotechnology, sc-65492)被用于被用于免疫细胞化学在人类样品上 (图 2). PLoS Genet (2015) ncbi
小鼠 单克隆(17D10)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mad2抗体(Santa Cruz, sc-47747)被用于被用于免疫印迹在人类样品上浓度为1:1000. Oncogene (2014) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(17D10)
  • 免疫印迹; 人类; 1:500-1:1000; 图 2
艾博抗(上海)贸易有限公司 Mad2抗体(abcam, ab10691)被用于被用于免疫印迹在人类样品上浓度为1:500-1:1000 (图 2). Oncotarget (2016) ncbi
BioLegend
兔 多克隆(Poly19246)
  • 免疫细胞化学; 小鼠; 1:300; 图 2
BioLegend Mad2抗体(Covance, PRB-452C)被用于被用于免疫细胞化学在小鼠样品上浓度为1:300 (图 2). Nat Commun (2015) ncbi
兔 多克隆(Poly19246)
  • 免疫细胞化学; 人类; 1:500
BioLegend Mad2抗体(Covance, PRB-452C)被用于被用于免疫细胞化学在人类样品上浓度为1:500. J Cell Biol (2014) ncbi
赛默飞世尔
兔 多克隆
  • 免疫细胞化学; 人类
赛默飞世尔 Mad2抗体(pierce, pa5-21594)被用于被用于免疫细胞化学在人类样品上. Cancer Lett (2015) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(D8A7)
  • 免疫印迹; 小鼠; 图 s3b
赛信通(上海)生物试剂有限公司 Mad2抗体(Cell Signaling, 4636)被用于被用于免疫印迹在小鼠样品上 (图 s3b). Oncogene (2017) ncbi
兔 单克隆(D8A7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Mad2抗体(Cell signaling, 4636)被用于被用于免疫印迹在人类样品上 (图 5). J Biol Chem (2016) ncbi
兔 单克隆(D8A7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Mad2抗体(Cell Signaling Technology, 4636)被用于被用于免疫印迹在人类样品上 (图 4a). PLoS ONE (2015) ncbi
兔 单克隆(D8A7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mad2抗体(Cell Signaling Technology, D8A7)被用于被用于免疫印迹在人类样品上. Nat Commun (2014) ncbi
碧迪BD
小鼠 单克隆(48/MAD2)
  • 免疫印迹; 小鼠; 图 1d
碧迪BD Mad2抗体(BD Biosciences, 48)被用于被用于免疫印迹在小鼠样品上 (图 1d). Cell Rep (2017) ncbi
小鼠 单克隆(48/MAD2)
  • 免疫沉淀; 小鼠; 1:1000; 图 6
碧迪BD Mad2抗体(BD Transduction, 610679)被用于被用于免疫沉淀在小鼠样品上浓度为1:1000 (图 6). elife (2016) ncbi
小鼠 单克隆(48/MAD2)
  • 免疫组化; 小鼠; 1:2000; 图 1c
  • 免疫印迹; 小鼠; 1:2000; 图 s1d
碧迪BD Mad2抗体(BD, 610679)被用于被用于免疫组化在小鼠样品上浓度为1:2000 (图 1c) 和 被用于免疫印迹在小鼠样品上浓度为1:2000 (图 s1d). Cell Rep (2016) ncbi
小鼠 单克隆(48/MAD2)
  • 免疫印迹; 人类; 图 s4b
碧迪BD Mad2抗体(BD Transduction Laboratorie, 610679)被用于被用于免疫印迹在人类样品上 (图 s4b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(48/MAD2)
  • 其他; 人类; 图 st1
碧迪BD Mad2抗体(BD, 48)被用于被用于其他在人类样品上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(48/MAD2)
  • 免疫印迹; 人类; 图 1
碧迪BD Mad2抗体(BD Biosciences, 610678)被用于被用于免疫印迹在人类样品上 (图 1). Cell Cycle (2015) ncbi
小鼠 单克隆(48/MAD2)
  • 免疫印迹; 人类; 图 s4
碧迪BD Mad2抗体(BD Biosciences, 610678)被用于被用于免疫印迹在人类样品上 (图 s4). Oncogene (2015) ncbi
小鼠 单克隆(48/MAD2)
  • 免疫沉淀; 人类; 1:500; 图 4
碧迪BD Mad2抗体(BD transduction laboratories, 610679)被用于被用于免疫沉淀在人类样品上浓度为1:500 (图 4). Nature (2015) ncbi
小鼠 单克隆(48/MAD2)
  • 免疫印迹; 人类
碧迪BD Mad2抗体(BD biosciences, 610678)被用于被用于免疫印迹在人类样品上. Cell Cycle (2014) ncbi
西格玛奥德里奇
小鼠 单克隆(17D10)
  • 免疫细胞化学; 人类
西格玛奥德里奇 Mad2抗体(Sigma-Aldrich, M8694)被用于被用于免疫细胞化学在人类样品上. J Biol Chem (2015) ncbi
文章列表
  1. Ruppert J, Samejima K, Platani M, Molina O, Kimura H, Jeyaprakash A, et al. HP1α targets the chromosomal passenger complex for activation at heterochromatin before mitotic entry. EMBO J. 2018;37: pubmed 出版商
  2. Marks D, Thomas R, Chin Y, Shah R, Khoo C, Benezra R. Mad2 Overexpression Uncovers a Critical Role for TRIP13 in Mitotic Exit. Cell Rep. 2017;19:1832-1845 pubmed 出版商
  3. Faisal A, Mak G, Gurden M, Xavier C, Anderhub S, Innocenti P, et al. Characterisation of CCT271850, a selective, oral and potent MPS1 inhibitor, used to directly measure in vivo MPS1 inhibition vs therapeutic efficacy. Br J Cancer. 2017;116:1166-1176 pubmed 出版商
  4. Li J, Dang N, Wood D, Huang J. The kinetochore-dependent and -independent formation of the CDC20-MAD2 complex and its functions in HeLa cells. Sci Rep. 2017;7:41072 pubmed 出版商
  5. Dawar S, Lim Y, Puccini J, White M, Thomas P, Bouchier Hayes L, et al. Caspase-2-mediated cell death is required for deleting aneuploid cells. Oncogene. 2017;36:2704-2714 pubmed 出版商
  6. Weaver R, Limzerwala J, Naylor R, Jeganathan K, Baker D, van Deursen J. BubR1 alterations that reinforce mitotic surveillance act against aneuploidy and cancer. elife. 2016;5: pubmed 出版商
  7. Zhang X, Ling Y, Guo Y, Bai Y, Shi X, Gong F, et al. Mps1 kinase regulates tumor cell viability via its novel role in mitochondria. Cell Death Dis. 2016;7:e2292 pubmed 出版商
  8. Fong C, Mazo G, Das T, Goodman J, Kim M, O Rourke B, et al. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. elife. 2016;5: pubmed 出版商
  9. Rowald K, Mantovan M, Passos J, Buccitelli C, Mardin B, Korbel J, et al. Negative Selection and Chromosome Instability Induced by Mad2 Overexpression Delay Breast Cancer but Facilitate Oncogene-Independent Outgrowth. Cell Rep. 2016;15:2679-91 pubmed 出版商
  10. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed 出版商
  11. Salsi V, Fantini S, Zappavigna V. NUP98 fusion oncoproteins interact with the APC/C(Cdc20) as a pseudosubstrate and prevent mitotic checkpoint complex binding. Cell Cycle. 2016;15:2275-87 pubmed 出版商
  12. Sedgwick G, Larsen M, Lischetti T, Streicher W, Jersie Christensen R, Olsen J, et al. Conformation-specific anti-Mad2 monoclonal antibodies for the dissection of checkpoint signaling. MAbs. 2016;8:689-97 pubmed 出版商
  13. Tambe M, Pruikkonen S, Mäki Jouppila J, Chen P, Elgaaen B, Straume A, et al. Novel Mad2-targeting miR-493-3p controls mitotic fidelity and cancer cells' sensitivity to paclitaxel. Oncotarget. 2016;7:12267-85 pubmed 出版商
  14. Wild T, Larsen M, Narita T, Schou J, Nilsson J, Choudhary C. The Spindle Assembly Checkpoint Is Not Essential for Viability of Human Cells with Genetically Lowered APC/C Activity. Cell Rep. 2016;14:1829-40 pubmed 出版商
  15. Baron A, von Schubert C, Cubizolles F, Siemeister G, Hitchcock M, Mengel A, et al. Probing the catalytic functions of Bub1 kinase using the small molecule inhibitors BAY-320 and BAY-524. elife. 2016;5: pubmed 出版商
  16. Mo F, Zhuang X, Liu X, Yao P, Qin B, Su Z, et al. Acetylation of Aurora B by TIP60 ensures accurate chromosomal segregation. Nat Chem Biol. 2016;12:226-32 pubmed 出版商
  17. Craney A, Kelly A, Jia L, Fedrigo I, Yu H, Rape M. Control of APC/C-dependent ubiquitin chain elongation by reversible phosphorylation. Proc Natl Acad Sci U S A. 2016;113:1540-5 pubmed 出版商
  18. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  19. Marangos P, Stevense M, Niaka K, Lagoudaki M, Nabti I, Jessberger R, et al. DNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age. Nat Commun. 2015;6:8706 pubmed 出版商
  20. Fuchs M, Luthold C, Guilbert S, Varlet A, Lambert H, Jetté A, et al. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis. PLoS Genet. 2015;11:e1005582 pubmed 出版商
  21. Voets E, Marsman J, Demmers J, Beijersbergen R, Wolthuis R. The lethal response to Cdk1 inhibition depends on sister chromatid alignment errors generated by KIF4 and isoform 1 of PRC1. Sci Rep. 2015;5:14798 pubmed 出版商
  22. Zhu L, Wang Z, Wang W, Wang C, Hua S, Su Z, et al. Mitotic Protein CSPP1 Interacts with CENP-H Protein to Coordinate Accurate Chromosome Oscillation in Mitosis. J Biol Chem. 2015;290:27053-66 pubmed 出版商
  23. Sharma B, Kolhe R, Black S, Keller J, Mivechi N, Satyanarayana A. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells. FASEB J. 2016;30:262-75 pubmed 出版商
  24. Wang Z, Katsaros D, Shen Y, Fu Y, Canuto E, Benedetto C, et al. Biological and Clinical Significance of MAD2L1 and BUB1, Genes Frequently Appearing in Expression Signatures for Breast Cancer Prognosis. PLoS ONE. 2015;10:e0136246 pubmed 出版商
  25. Milev M, Hasaj B, Saint Dic D, Snounou S, Zhao Q, Sacher M. TRAMM/TrappC12 plays a role in chromosome congression, kinetochore stability, and CENP-E recruitment. J Cell Biol. 2015;209:221-34 pubmed 出版商
  26. Czechanski A, Kim H, Byers C, Greenstein I, Stumpff J, Reinholdt L. Kif18a is specifically required for mitotic progression during germ line development. Dev Biol. 2015;402:253-262 pubmed 出版商
  27. Chen D, Ito S, Yuan H, Hyodo T, Kadomatsu K, Hamaguchi M, et al. EML4 promotes the loading of NUDC to the spindle for mitotic progression. Cell Cycle. 2015;14:1529-39 pubmed 出版商
  28. Voets E, Wolthuis R. MASTL promotes cyclin B1 destruction by enforcing Cdc20-independent binding of cyclin B1 to the APC/C. Biol Open. 2015;4:484-95 pubmed 出版商
  29. Kanu N, Grönroos E, Martinez P, Burrell R, Yi Goh X, Bartkova J, et al. SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair. Oncogene. 2015;34:5699-708 pubmed 出版商
  30. Choi M, Kim W, Cheon M, Lee C, Kim J. Polo-like kinase 1 inhibitor BI2536 causes mitotic catastrophe following activation of the spindle assembly checkpoint in non-small cell lung cancer cells. Cancer Lett. 2015;357:591-601 pubmed 出版商
  31. Brownlow N, Pike T, Zicha D, Collinson L, Parker P. Mitotic catenation is monitored and resolved by a PKCε-regulated pathway. Nat Commun. 2014;5:5685 pubmed 出版商
  32. Izawa D, Pines J. The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C. Nature. 2015;517:631-4 pubmed 出版商
  33. Goldfarb D, Hast B, Wang W, Major M. Spotlite: web application and augmented algorithms for predicting co-complexed proteins from affinity purification--mass spectrometry data. J Proteome Res. 2014;13:5944-55 pubmed 出版商
  34. Han J, Vitre B, Fachinetti D, Cleveland D. Bimodal activation of BubR1 by Bub3 sustains mitotic checkpoint signaling. Proc Natl Acad Sci U S A. 2014;111:E4185-93 pubmed 出版商
  35. Shandilya J, Toska E, Richard D, Medler K, Roberts S. WT1 interacts with MAD2 and regulates mitotic checkpoint function. Nat Commun. 2014;5:4903 pubmed 出版商
  36. Shrestha R, Tamura N, Fries A, Levin N, Clark J, Draviam V. TAO1 kinase maintains chromosomal stability by facilitating proper congression of chromosomes. Open Biol. 2014;4:130108 pubmed 出版商
  37. Ballister E, Riegman M, Lampson M. Recruitment of Mad1 to metaphase kinetochores is sufficient to reactivate the mitotic checkpoint. J Cell Biol. 2014;204:901-8 pubmed 出版商
  38. Singh A, Zapata M, Choi Y, Yoon S. GSI promotes vincristine-induced apoptosis by enhancing multi-polar spindle formation. Cell Cycle. 2014;13:157-66 pubmed 出版商
  39. Pang C, Toh S, He P, Teissier S, Ben Khalifa Y, Xue Y, et al. A functional interaction of E7 with B-Myb-MuvB complex promotes acute cooperative transcriptional activation of both S- and M-phase genes. (129 c). Oncogene. 2014;33:4039-49 pubmed 出版商