这是一篇来自已证抗体库的有关人类 Mad2的综述,是根据28篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Mad2 抗体。
Mad2 同义词: HSMAD2; MAD2

圣克鲁斯生物技术
小鼠 单克隆(C-9)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 Mad2抗体(Santa Cruz, C-9)被用于被用于免疫印迹在人类样本上 (图 3c). Cell Death Dis (2016) ncbi
小鼠 单克隆(107-276-3)
  • 免疫细胞化学; 人类; 1:75; 图 2
圣克鲁斯生物技术 Mad2抗体(santa Cruz, sc-65492)被用于被用于免疫细胞化学在人类样本上浓度为1:75 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(17D10)
  • 免疫印迹; 人类; 1:1000; 图 s5a
圣克鲁斯生物技术 Mad2抗体(Santa Cruz, 17D10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5a). Nat Chem Biol (2016) ncbi
小鼠 单克隆(107-276-3)
  • 免疫细胞化学; 人类; 图 2
圣克鲁斯生物技术 Mad2抗体(Santa Cruz Biotechnology, sc-65492)被用于被用于免疫细胞化学在人类样本上 (图 2). PLoS Genet (2015) ncbi
小鼠 单克隆(17D10)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mad2抗体(Santa Cruz, sc-47747)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncogene (2014) ncbi
BioLegend
domestic rabbit 多克隆(Poly19246)
  • 免疫细胞化学; 人类; 1:500; 图 5d
BioLegend Mad2抗体(Covance, PRB-452C)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5d). elife (2019) ncbi
domestic rabbit 多克隆(Poly19246)
  • 免疫组化; 小鼠; 1:300; 图 3c
BioLegend Mad2抗体(Biolegend, 924601)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 3c). Nat Commun (2019) ncbi
domestic rabbit 多克隆(Poly19246)
  • 免疫组化; 小鼠; 1:300; 图 s2b
BioLegend Mad2抗体(Biolegend, 924601)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 s2b). Curr Biol (2019) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(17D10)
  • 免疫印迹; 人类; 1:500-1:1000; 图 2
艾博抗(上海)贸易有限公司 Mad2抗体(abcam, ab10691)被用于被用于免疫印迹在人类样本上浓度为1:500-1:1000 (图 2). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 5
  • 免疫印迹; 人类; 1:500; 图 3
艾博抗(上海)贸易有限公司 Mad2抗体(Abcam, ab97777)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7b
安迪生物R&D Mad2抗体(亲和, AF4005)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7b). J Neuroinflammation (2022) ncbi
赛默飞世尔
domestic rabbit 多克隆
赛默飞世尔 Mad2抗体(pierce, pa5-21594)被用于. Cancer Lett (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D8A7)
  • 免疫印迹; 小鼠; 图 s3b
赛信通(上海)生物试剂有限公司 Mad2抗体(Cell Signaling, 4636)被用于被用于免疫印迹在小鼠样本上 (图 s3b). Oncogene (2017) ncbi
domestic rabbit 单克隆(D8A7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Mad2抗体(Cell signaling, 4636)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D8A7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Mad2抗体(Cell Signaling Technology, 4636)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D8A7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mad2抗体(Cell Signaling Technology, D8A7)被用于被用于免疫印迹在人类样本上. Nat Commun (2014) ncbi
碧迪BD
小鼠 单克隆(48/MAD2)
  • 免疫印迹; 大鼠; 1:1000; 图 2a
碧迪BD Mad2抗体(BD, 610679)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2a). Sci Adv (2021) ncbi
小鼠 单克隆(48/MAD2)
  • 免疫印迹; 小鼠; 图 1d
碧迪BD Mad2抗体(BD Biosciences, 48)被用于被用于免疫印迹在小鼠样本上 (图 1d). Cell Rep (2017) ncbi
小鼠 单克隆(48/MAD2)
  • 免疫沉淀; 小鼠; 1:1000; 图 6
碧迪BD Mad2抗体(BD Transduction, 610679)被用于被用于免疫沉淀在小鼠样本上浓度为1:1000 (图 6). elife (2016) ncbi
小鼠 单克隆(48/MAD2)
  • 免疫组化; 小鼠; 1:2000; 图 1c
  • 免疫印迹; 小鼠; 1:2000; 图 s1d
碧迪BD Mad2抗体(BD, 610679)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s1d). Cell Rep (2016) ncbi
小鼠 单克隆(48/MAD2)
  • 免疫印迹; 人类; 图 s4b
碧迪BD Mad2抗体(BD Transduction Laboratorie, 610679)被用于被用于免疫印迹在人类样本上 (图 s4b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(48/MAD2)
  • 其他; 人类; 图 st1
碧迪BD Mad2抗体(BD, 48)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(48/MAD2)
  • 免疫印迹; 人类; 图 1
碧迪BD Mad2抗体(BD Biosciences, 610678)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2015) ncbi
小鼠 单克隆(48/MAD2)
  • 免疫印迹; 人类; 图 s4
碧迪BD Mad2抗体(BD Biosciences, 610678)被用于被用于免疫印迹在人类样本上 (图 s4). Oncogene (2015) ncbi
小鼠 单克隆(48/MAD2)
  • 免疫沉淀; 人类; 1:500; 图 4
碧迪BD Mad2抗体(BD transduction laboratories, 610679)被用于被用于免疫沉淀在人类样本上浓度为1:500 (图 4). Nature (2015) ncbi
小鼠 单克隆(48/MAD2)
  • 免疫印迹; 人类
碧迪BD Mad2抗体(BD biosciences, 610678)被用于被用于免疫印迹在人类样本上. Cell Cycle (2014) ncbi
MBL International
单克隆
  • 免疫印迹; 人类
MBL International Mad2抗体(MBL, K0167-3)被用于被用于免疫印迹在人类样本上. Biol Open (2015) ncbi
单克隆
  • 免疫沉淀; 人类; 1:500
MBL International Mad2抗体(MBL, K0167-3)被用于被用于免疫沉淀在人类样本上浓度为1:500. J Cell Sci (2015) ncbi
单克隆
  • 染色质免疫沉淀 ; 小鼠
MBL International Mad2抗体(MBL, K0167-3)被用于被用于染色质免疫沉淀 在小鼠样本上. Cell Cycle (2014) ncbi
文章列表
  1. Ding R, Li H, Liu Y, Ou W, Zhang X, Chai H, et al. Activating cGAS-STING axis contributes to neuroinflammation in CVST mouse model and induces inflammasome activation and microglia pyroptosis. J Neuroinflammation. 2022;19:137 pubmed 出版商
  2. Valussi M, Besser J, Wystub Lis K, Zukunft S, Richter M, Kubin T, et al. Repression of Osmr and Fgfr1 by miR-1/133a prevents cardiomyocyte dedifferentiation and cell cycle entry in the adult heart. Sci Adv. 2021;7:eabi6648 pubmed 出版商
  3. Conti D, Gul P, Islam A, Martín Durán J, Pickersgill R, Draviam V. Kinetochores attached to microtubule-ends are stabilised by Astrin bound PP1 to ensure proper chromosome segregation. elife. 2019;8: pubmed 出版商
  4. Paim L, FitzHarris G. Tetraploidy causes chromosomal instability in acentriolar mouse embryos. Nat Commun. 2019;10:4834 pubmed 出版商
  5. Vázquez Diez C, Paim L, FitzHarris G. Cell-Size-Independent Spindle Checkpoint Failure Underlies Chromosome Segregation Error in Mouse Embryos. Curr Biol. 2019;29:865-873.e3 pubmed 出版商
  6. Marks D, Thomas R, Chin Y, Shah R, Khoo C, Benezra R. Mad2 Overexpression Uncovers a Critical Role for TRIP13 in Mitotic Exit. Cell Rep. 2017;19:1832-1845 pubmed 出版商
  7. Dawar S, Lim Y, Puccini J, White M, Thomas P, Bouchier Hayes L, et al. Caspase-2-mediated cell death is required for deleting aneuploid cells. Oncogene. 2017;36:2704-2714 pubmed 出版商
  8. Weaver R, Limzerwala J, Naylor R, Jeganathan K, Baker D, van Deursen J. BubR1 alterations that reinforce mitotic surveillance act against aneuploidy and cancer. elife. 2016;5: pubmed 出版商
  9. Zhang X, Ling Y, Guo Y, Bai Y, Shi X, Gong F, et al. Mps1 kinase regulates tumor cell viability via its novel role in mitochondria. Cell Death Dis. 2016;7:e2292 pubmed 出版商
  10. Rowald K, Mantovan M, Passos J, Buccitelli C, Mardin B, Korbel J, et al. Negative Selection and Chromosome Instability Induced by Mad2 Overexpression Delay Breast Cancer but Facilitate Oncogene-Independent Outgrowth. Cell Rep. 2016;15:2679-91 pubmed 出版商
  11. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed 出版商
  12. Tambe M, Pruikkonen S, Mäki Jouppila J, Chen P, Elgaaen B, Straume A, et al. Novel Mad2-targeting miR-493-3p controls mitotic fidelity and cancer cells' sensitivity to paclitaxel. Oncotarget. 2016;7:12267-85 pubmed 出版商
  13. Mo F, Zhuang X, Liu X, Yao P, Qin B, Su Z, et al. Acetylation of Aurora B by TIP60 ensures accurate chromosomal segregation. Nat Chem Biol. 2016;12:226-32 pubmed 出版商
  14. Craney A, Kelly A, Jia L, Fedrigo I, Yu H, Rape M. Control of APC/C-dependent ubiquitin chain elongation by reversible phosphorylation. Proc Natl Acad Sci U S A. 2016;113:1540-5 pubmed 出版商
  15. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  16. Zhou H, Wang T, Zheng T, Teng J, Chen J. Cep57 is a Mis12-interacting kinetochore protein involved in kinetochore targeting of Mad1-Mad2. Nat Commun. 2016;7:10151 pubmed 出版商
  17. Fuchs M, Luthold C, Guilbert S, Varlet A, Lambert H, Jetté A, et al. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis. PLoS Genet. 2015;11:e1005582 pubmed 出版商
  18. Wang Z, Katsaros D, Shen Y, Fu Y, Canuto E, Benedetto C, et al. Biological and Clinical Significance of MAD2L1 and BUB1, Genes Frequently Appearing in Expression Signatures for Breast Cancer Prognosis. PLoS ONE. 2015;10:e0136246 pubmed 出版商
  19. Chen D, Ito S, Yuan H, Hyodo T, Kadomatsu K, Hamaguchi M, et al. EML4 promotes the loading of NUDC to the spindle for mitotic progression. Cell Cycle. 2015;14:1529-39 pubmed 出版商
  20. Voets E, Wolthuis R. MASTL promotes cyclin B1 destruction by enforcing Cdc20-independent binding of cyclin B1 to the APC/C. Biol Open. 2015;4:484-95 pubmed 出版商
  21. Kanu N, Grönroos E, Martinez P, Burrell R, Yi Goh X, Bartkova J, et al. SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair. Oncogene. 2015;34:5699-708 pubmed 出版商
  22. Boekhout M, Wolthuis R. Nek2A destruction marks APC/C activation at the prophase-to-prometaphase transition by spindle-checkpoint-restricted Cdc20. J Cell Sci. 2015;128:1639-53 pubmed 出版商
  23. Choi M, Kim W, Cheon M, Lee C, Kim J. Polo-like kinase 1 inhibitor BI2536 causes mitotic catastrophe following activation of the spindle assembly checkpoint in non-small cell lung cancer cells. Cancer Lett. 2015;357:591-601 pubmed 出版商
  24. Brownlow N, Pike T, Zicha D, Collinson L, Parker P. Mitotic catenation is monitored and resolved by a PKCε-regulated pathway. Nat Commun. 2014;5:5685 pubmed 出版商
  25. Izawa D, Pines J. The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C. Nature. 2015;517:631-4 pubmed 出版商
  26. d Alcontres M, Palacios J, Mejias D, Blasco M. TopoII? prevents telomere fragility and formation of ultra thin DNA bridges during mitosis through TRF1-dependent binding to telomeres. Cell Cycle. 2014;13:1463-81 pubmed 出版商
  27. Singh A, Zapata M, Choi Y, Yoon S. GSI promotes vincristine-induced apoptosis by enhancing multi-polar spindle formation. Cell Cycle. 2014;13:157-66 pubmed 出版商
  28. Pang C, Toh S, He P, Teissier S, Ben Khalifa Y, Xue Y, et al. A functional interaction of E7 with B-Myb-MuvB complex promotes acute cooperative transcriptional activation of both S- and M-phase genes. (129 c). Oncogene. 2014;33:4039-49 pubmed 出版商