这是一篇来自已证抗体库的有关人类 Mcl-1的综述,是根据89篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Mcl-1 抗体。
Mcl-1 同义词: BCL2L3; EAT; MCL1-ES; MCL1L; MCL1S; Mcl-1; TM; bcl2-L-3; mcl1/EAT

圣克鲁斯生物技术
小鼠 单克隆(MCL-2601)
  • 免疫印迹; 人类; 图 1g
圣克鲁斯生物技术 Mcl-1抗体(Santa Cruz, sc-69840)被用于被用于免疫印迹在人类样本上 (图 1g). Front Oncol (2022) ncbi
小鼠 单克隆(G-7)
  • 免疫印迹; 人类; 1:1000; 图 5e
圣克鲁斯生物技术 Mcl-1抗体(Santa Cruz, sc-74437)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Cell Death Dis (2021) ncbi
小鼠 单克隆(22)
  • 免疫印迹; 人类; 图 4f
圣克鲁斯生物技术 Mcl-1抗体(Santa, sc-12756)被用于被用于免疫印迹在人类样本上 (图 4f). J Clin Invest (2019) ncbi
小鼠 单克隆(22)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Mcl-1抗体(Santa Cruz, SC-12756)被用于被用于免疫印迹在人类样本上 (图 6a). Nat Commun (2017) ncbi
小鼠 单克隆(22)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Mcl-1抗体(Santa Cruz, sc-12756)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(RC13)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mcl-1抗体(Santa Cruz, sc-56152)被用于被用于免疫印迹在人类样本上. Pharmacol Rep (2015) ncbi
小鼠 单克隆(22)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Mcl-1抗体(santa Cruz, SC-12756)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Cell Int (2015) ncbi
小鼠 单克隆(22)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Mcl-1抗体(Santa Cruz, sc-12756)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Death Dis (2014) ncbi
小鼠 单克隆(22)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Mcl-1抗体(Santa Cruz Biotechnology, sc-12756)被用于被用于免疫印迹在人类样本上 (图 6). Cell Death Differ (2010) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(Y37)
  • 免疫印迹; 人类; 1:1000; 图 4b, s1b
艾博抗(上海)贸易有限公司 Mcl-1抗体(Abcam, ab32087)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b, s1b). Biol Open (2019) ncbi
domestic rabbit 单克隆(Y37)
  • 免疫印迹; 人类; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 Mcl-1抗体(Abcam, ab32087)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Front Neurosci (2019) ncbi
domestic rabbit 单克隆(Y37)
  • 免疫印迹; 人类; 1:500; 图 4b
艾博抗(上海)贸易有限公司 Mcl-1抗体(Abcam, ab32087)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(Y37)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司 Mcl-1抗体(ABcam, ab32087)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(Y37)
  • 免疫印迹; 人类; 1:500; 图 2
艾博抗(上海)贸易有限公司 Mcl-1抗体(Abcam, ab32087)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(Y37)
  • 免疫组化; 人类; 1:40; 表 2
艾博抗(上海)贸易有限公司 Mcl-1抗体(Abcam, ab32087)被用于被用于免疫组化在人类样本上浓度为1:40 (表 2). Hematol Oncol (2017) ncbi
domestic rabbit 单克隆(Y37)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 Mcl-1抗体(Abcam, ab32087)被用于被用于免疫印迹在人类样本上 (图 6). Genetics (2015) ncbi
domestic rabbit 单克隆(Y37)
  • 免疫印迹; 人类; 1:500; 图 7
艾博抗(上海)贸易有限公司 Mcl-1抗体(Abcam, Y37)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(Y37)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 Mcl-1抗体(Abcam, ab32087)被用于被用于免疫印迹在人类样本上浓度为1:1000. Apoptosis (2014) ncbi
domestic rabbit 单克隆(Y37)
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司 Mcl-1抗体(Abcam, ab32087)被用于被用于免疫印迹在人类样本上浓度为1:500. Autophagy (2013) ncbi
武汉博士德生物工程有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 7a
  • 免疫印迹; 小鼠; 图 7g
  • 免疫沉淀; 人类; 图 1c
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 s1a
武汉博士德生物工程有限公司 Mcl-1抗体(oster Biological Technology, PB9132)被用于被用于免疫细胞化学在小鼠样本上 (图 7a), 被用于免疫印迹在小鼠样本上 (图 7g), 被用于免疫沉淀在人类样本上 (图 1c), 被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 s1a). J Cell Sci (2017) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛默飞世尔 Mcl-1抗体(Invitrogen, PA5-27597)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2018) ncbi
Rockland Immunochemicals
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5
Rockland Immunochemicals Mcl-1抗体(Rockland, 200-401-CR9)被用于被用于免疫印迹在小鼠样本上 (图 s5). J Clin Invest (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D2W9E)
  • 免疫印迹; 人类; 1:1000; 图 e2e
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 94296)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 e2e). EMBO Mol Med (2022) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 5453)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Immunity (2022) ncbi
domestic rabbit 单克隆(D2W9E)
  • 免疫印迹; 小鼠; 图 s4c
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell signaling, 94296S)被用于被用于免疫印迹在小鼠样本上 (图 s4c). Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 4572)被用于被用于免疫印迹在人类样本上 (图 3c). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(D2W9E)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Technology, 94296)被用于被用于免疫印迹在人类样本上 (图 2d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 小鼠; 1:500; 图 4h
  • 免疫印迹; 人类; 1:500; 图 s5a, s5b
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 5453)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4h) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 s5a, s5b). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(D2W9E)
  • 免疫印迹基因敲除验证; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 94296)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 4a). Cell Death Differ (2021) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Mcl-1抗体(CST, 5453)被用于被用于免疫印迹在小鼠样本上 (图 2a). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Technology, 5453)被用于被用于免疫印迹在人类样本上 (图 4d). J Hematol Oncol (2020) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Technology, 5453)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). elife (2020) ncbi
domestic rabbit 单克隆(D2W9E)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 94296)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). J Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5l
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Technology, 4572)被用于被用于免疫印迹在人类样本上 (图 s5l). Cell (2019) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 图 3s2e
赛信通(上海)生物试剂有限公司 Mcl-1抗体(CST, 5453)被用于被用于免疫印迹在人类样本上 (图 3s2e). elife (2019) ncbi
domestic rabbit 单克隆(D2W9E)
  • 免疫印迹; 小鼠; 图 s3d, s6c, s6f
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 94296)被用于被用于免疫印迹在小鼠样本上 (图 s3d, s6c, s6f). Science (2019) ncbi
domestic rabbit 单克隆(D2W9E)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 94296)被用于被用于免疫印迹在人类样本上 (图 3b). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 5453)被用于被用于免疫印迹在人类样本上 (图 4c). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(D2W9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Technology, 94296S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). elife (2018) ncbi
domestic rabbit 单克隆(D2W9E)
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Technology, D2W9E)被用于. Methods Mol Biol (2019) ncbi
domestic rabbit 单克隆(D35A5)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 5453)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 5453)被用于被用于免疫印迹在人类样本上 (图 3d). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 1:1000; 图 s4a
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 5453)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a). Nat Med (2017) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 Mcl-1抗体(cell signalling, 5453)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). Int J Oncol (2017) ncbi
domestic rabbit 单克隆(D2W9E)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 94296)被用于被用于免疫印迹在小鼠样本上 (图 5b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Mcl-1抗体(cell signalling, 4572)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 4572)被用于被用于免疫印迹在人类样本上 (图 5c). Oncogene (2017) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 图 10a
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 5453)被用于被用于免疫印迹在人类样本上 (图 10a). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Tech, 4572)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 4579)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 5453)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 5453)被用于被用于免疫印迹在人类样本上 (图 7b). Cancer Res (2016) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 图 s4b
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 5453)被用于被用于免疫印迹在人类样本上 (图 s4b). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Technology, 5453)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 5453)被用于被用于免疫印迹在人类样本上 (图 7a). Autophagy (2016) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 5453)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Tech, 5453S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 4572)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 4572)被用于被用于免疫印迹在人类样本上 (图 4). Mol Brain (2016) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Technolog, 5453)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 小鼠; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 5453)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1e). Int J Cancer (2016) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Tech, 5453)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Tech, 4572S)被用于被用于免疫印迹在人类样本上 (图 s6). Sci Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 4572)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 5453)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Technology, 5453)被用于被用于免疫印迹在人类样本上 (图 5). Mol Cell Proteomics (2016) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Technology, 5453)被用于被用于免疫印迹在小鼠样本上 (图 5a). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 4572)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 1:500; 图 3
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Technology, 5453P)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 小鼠; 图 2a
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Technology, 5453)被用于被用于免疫印迹在小鼠样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5g
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Technology, 4572)被用于被用于免疫印迹在人类样本上 (图 5g). Oncogene (2016) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 小鼠; 1:200; 图 9
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 5453)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 9). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 图 s7
赛信通(上海)生物试剂有限公司 Mcl-1抗体(CST, 5453)被用于被用于免疫印迹在人类样本上 (图 s7). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, D35A5)被用于被用于免疫印迹在人类样本上 (图 2a). Cancer Lett (2015) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell signaling, 5453)被用于被用于免疫印迹在人类样本上 (图 5). Cell Cycle (2015) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Technology, 5453)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Technologies, 5453)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 小鼠; 图 9
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling Technology, 5453)被用于被用于免疫印迹在小鼠样本上 (图 9). J Neurosci (2013) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, D35A5)被用于被用于免疫印迹在小鼠样本上. Mol Cancer Ther (2013) ncbi
domestic rabbit 单克隆(D35A5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Mcl-1抗体(Cell Signaling, 5453)被用于被用于免疫印迹在人类样本上 (图 5). Cell Cycle (2013) ncbi
BioVision
  • 免疫印迹; 人类; 图 6a
BioVision Mcl-1抗体(Biovision, 3035-100)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2015) ncbi
碧迪BD
小鼠 单克隆(22/Mcl-1)
  • 流式细胞仪; 人类; 图 1a
碧迪BD Mcl-1抗体(BD Biosciences, 22/Mcl-1)被用于被用于流式细胞仪在人类样本上 (图 1a). Methods Mol Biol (2019) ncbi
小鼠 单克隆(22/Mcl-1)
  • 免疫印迹; 人类; 1:1000; 图 2a
碧迪BD Mcl-1抗体(BD, 559027)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Cell Death Dis (2018) ncbi
小鼠 单克隆(22/Mcl-1)
  • 免疫印迹; 人类; 1:1000; 图 1c
碧迪BD Mcl-1抗体(BD Biosciences, 559027)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Front Immunol (2016) ncbi
小鼠 单克隆(22/Mcl-1)
  • 免疫印迹; 人类; 图 1a
碧迪BD Mcl-1抗体(BD Biosciences, 559027)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Death Dis (2016) ncbi
小鼠 单克隆(22/Mcl-1)
  • 免疫印迹; 人类; 图 1c
碧迪BD Mcl-1抗体(BD Biosciences, 559027)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2016) ncbi
小鼠 单克隆(22/Mcl-1)
碧迪BD Mcl-1抗体(Pharmingen, 559027)被用于. Cell Death Dis (2016) ncbi
小鼠 单克隆(22/Mcl-1)
  • 免疫印迹; 人类; 图 st2
碧迪BD Mcl-1抗体(BD Bioscience, 559027)被用于被用于免疫印迹在人类样本上 (图 st2). Oncotarget (2015) ncbi
小鼠 单克隆(22/Mcl-1)
  • 免疫印迹; 人类; 图 4
碧迪BD Mcl-1抗体(BD Bioscience, 559027)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(22/Mcl-1)
  • 免疫印迹; 人类; 图 7
碧迪BD Mcl-1抗体(BD Pharmingen, 559027)被用于被用于免疫印迹在人类样本上 (图 7). Chem Biol Drug Des (2015) ncbi
小鼠 单克隆(22/Mcl-1)
  • 免疫印迹; 人类; 图 5
碧迪BD Mcl-1抗体(Becton Dickinson, 559027)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2015) ncbi
文章列表
  1. Tao M, Ma H, Fu X, Wang C, Li Y, Hu X, et al. Semaphorin 3F induces colorectal cancer cell chemosensitivity by promoting P27 nuclear export. Front Oncol. 2022;12:899927 pubmed 出版商
  2. Zinngrebe J, Moepps B, Monecke T, Gierschik P, Schlichtig F, Barth T, et al. Compound heterozygous variants in OTULIN are associated with fulminant atypical late-onset ORAS. EMBO Mol Med. 2022;14:e14901 pubmed 出版商
  3. Simpson D, Pang J, Weir A, Kong I, Fritsch M, Rashidi M, et al. Interferon-γ primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. Immunity. 2022;55:423-441.e9 pubmed 出版商
  4. Bhattarai K, Kim H, Chaudhary M, Ur Rashid M, Kim J, Kim H, et al. TMBIM6 regulates redox-associated posttranslational modifications of IRE1α and ER stress response failure in aging mice and humans. Redox Biol. 2021;47:102128 pubmed 出版商
  5. Lee S, Jung J, Lee Y, Kim S, Kim J, Kim B, et al. Targeting HSF1 as a Therapeutic Strategy for Multiple Mechanisms of EGFR Inhibitor Resistance in EGFR Mutant Non-Small-Cell Lung Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  6. Ecker V, Stumpf M, Brandmeier L, Neumayer T, Pfeuffer L, Engleitner T, et al. Targeted PI3K/AKT-hyperactivation induces cell death in chronic lymphocytic leukemia. Nat Commun. 2021;12:3526 pubmed 出版商
  7. Duan Y, Jia Y, Wang J, Liu T, Cheng Z, Sang M, et al. Long noncoding RNA DGCR5 involves in tumorigenesis of esophageal squamous cell carcinoma via SRSF1-mediated alternative splicing of Mcl-1. Cell Death Dis. 2021;12:587 pubmed 出版商
  8. Wojnarowicz P, Escolano M, Huang Y, Desai B, Chin Y, Shah R, et al. Anti-tumor effects of an ID antagonist with no observed acquired resistance. NPJ Breast Cancer. 2021;7:58 pubmed 出版商
  9. Campbell K, Mason S, Winder M, Willemsen R, Cloix C, Lawson H, et al. Breast cancer dependence on MCL-1 is due to its canonical anti-apoptotic function. Cell Death Differ. 2021;: pubmed 出版商
  10. Nozaki Y, Hikita H, Tanaka S, Fukumoto K, Urabe M, Sato K, et al. Persistent hepatocyte apoptosis promotes tumorigenesis from diethylnitrosamine-transformed hepatocytes through increased oxidative stress, independent of compensatory liver regeneration. Sci Rep. 2021;11:3363 pubmed 出版商
  11. Zhou X, Chen N, Xu H, Zhou X, Wang J, Fang X, et al. Regulation of Hippo-YAP signaling by insulin-like growth factor-1 receptor in the tumorigenesis of diffuse large B-cell lymphoma. J Hematol Oncol. 2020;13:77 pubmed 出版商
  12. Arai S, Varkaris A, Nouri M, Chen S, Xie L, Balk S. MARCH5 mediates NOXA-dependent MCL1 degradation driven by kinase inhibitors and integrated stress response activation. elife. 2020;9: pubmed 出版商
  13. Shen S, Dean D, Yu Z, Hornicek F, Kan Q, Duan Z. Aberrant CDK9 expression within chordoma tissues and the therapeutic potential of a selective CDK9 inhibitor LDC000067. J Cancer. 2020;11:132-141 pubmed 出版商
  14. Tian M, Gong W, Guo J. Long non-coding RNA SNHG1 indicates poor prognosis and facilitates disease progression in acute myeloid leukemia. Biol Open. 2019;8: pubmed 出版商
  15. Zierhut C, Yamaguchi N, Paredes M, Luo J, Carroll T, Funabiki H. The Cytoplasmic DNA Sensor cGAS Promotes Mitotic Cell Death. Cell. 2019;178:302-315.e23 pubmed 出版商
  16. Kabir S, Cidado J, Andersen C, Dick C, Lin P, Mitros T, et al. The CUL5 ubiquitin ligase complex mediates resistance to CDK9 and MCL1 inhibitors in lung cancer cells. elife. 2019;8: pubmed 出版商
  17. Pan C, Jin L, Wang X, Li Y, Chun J, Boese A, et al. Inositol-triphosphate 3-kinase B confers cisplatin resistance by regulating NOX4-dependent redox balance. J Clin Invest. 2019;129:2431-2445 pubmed 出版商
  18. He M, Chaurushiya M, Webster J, Kummerfeld S, Reja R, Chaudhuri S, et al. Intrinsic apoptosis shapes the tumor spectrum linked to inactivation of the deubiquitinase BAP1. Science. 2019;364:283-285 pubmed 出版商
  19. Luo H, Jing B, Xia Y, Zhang Y, Hu M, Cai H, et al. WP1130 reveals USP24 as a novel target in T-cell acute lymphoblastic leukemia. Cancer Cell Int. 2019;19:56 pubmed 出版商
  20. Liu Y, Wang X, Deng L, Ping L, Shi Y, Zheng W, et al. ITK inhibition induced in vitro and in vivo anti-tumor activity through downregulating TCR signaling pathway in malignant T cell lymphoma. Cancer Cell Int. 2019;19:32 pubmed 出版商
  21. Dong H, Ye X, Zhong L, Xu J, Qiu J, Wang J, et al. Role of FOXO3 Activated by HIV-1 Tat in HIV-Associated Neurocognitive Disorder Neuronal Apoptosis. Front Neurosci. 2019;13:44 pubmed 出版商
  22. LeBlanc L, Lee B, Yu A, Kim M, Kambhampati A, Dupont S, et al. Yap1 safeguards mouse embryonic stem cells from excessive apoptosis during differentiation. elife. 2018;7: pubmed 出版商
  23. Smith M, Tahir S. Quantification of BCL-2 Family Members by Flow Cytometry. Methods Mol Biol. 2019;1877:163-172 pubmed 出版商
  24. Yue D, Sun X. Idelalisib promotes Bim-dependent apoptosis through AKT/FoxO3a in hepatocellular carcinoma. Cell Death Dis. 2018;9:935 pubmed 出版商
  25. Pearce M, Gamble J, Kopparapu P, O Donnell E, Mueller M, Jang H, et al. Induction of apoptosis and suppression of tumor growth by Nur77-derived Bcl-2 converting peptide in chemoresistant lung cancer cells. Oncotarget. 2018;9:26072-26085 pubmed 出版商
  26. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  27. Sorokina I, Denisenko T, Imreh G, Tyurin Kuzmin P, Kaminskyy V, Gogvadze V, et al. Involvement of autophagy in the outcome of mitotic catastrophe. Sci Rep. 2017;7:14571 pubmed 出版商
  28. Mai W, Gosa L, Daniëls V, Ta L, Tsang J, Higgins B, et al. Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nat Med. 2017;23:1342-1351 pubmed 出版商
  29. Nikhil K, Shah K. The Cdk5-Mcl-1 axis promotes mitochondrial dysfunction and neurodegeneration in a model of Alzheimer's disease. J Cell Sci. 2017;130:3023-3039 pubmed 出版商
  30. Yokoyama T, Kohn E, Brill E, Lee J. Apoptosis is augmented in high-grade serous ovarian cancer by the combined inhibition of Bcl-2/Bcl-xL and PARP. Int J Oncol. 2017;: pubmed 出版商
  31. Lee H, Kim M, Baek M, Morales L, Jang I, Slaga T, et al. Targeted disruption of TC-PTP in the proliferative compartment augments STAT3 and AKT signaling and skin tumor development. Sci Rep. 2017;7:45077 pubmed 出版商
  32. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  33. Cayrol F, Praditsuktavorn P, Fernando T, Kwiatkowski N, Marullo R, Calvo Vidal M, et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun. 2017;8:14290 pubmed 出版商
  34. Guo A, Lu P, Lee J, Zhen C, Chiosis G, Wang Y. HSP90 stabilizes B-cell receptor kinases in a multi-client interactome: PU-H71 induces CLL apoptosis in a cytoprotective microenvironment. Oncogene. 2017;36:3441-3449 pubmed 出版商
  35. Adams C, Kim A, Mitra R, Choi J, Gong J, Eischen C. BCL-W has a fundamental role in B cell survival and lymphomagenesis. J Clin Invest. 2017;127:635-650 pubmed 出版商
  36. Pandey R, Mehrotra S, Sharma S, Gudde R, Sundar S, Shaha C. Leishmania donovani-Induced Increase in Macrophage Bcl-2 Favors Parasite Survival. Front Immunol. 2016;7:456 pubmed
  37. Rodina A, Wang T, Yan P, Gomes E, Dunphy M, Pillarsetty N, et al. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature. 2016;538:397-401 pubmed 出版商
  38. Zhang Y, Zhang Y, Zhong C, Xiao F. Cr(VI) induces premature senescence through ROS-mediated p53 pathway in L-02 hepatocytes. Sci Rep. 2016;6:34578 pubmed 出版商
  39. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  40. Horn T, Ferretti S, Ebel N, Tam A, Ho S, Harbinski F, et al. High-Order Drug Combinations Are Required to Effectively Kill Colorectal Cancer Cells. Cancer Res. 2016;76:6950-6963 pubmed
  41. Klingbeil O, Lesche R, Gelato K, Haendler B, Lejeune P. Inhibition of BET bromodomain-dependent XIAP and FLIP expression sensitizes KRAS-mutated NSCLC to pro-apoptotic agents. Cell Death Dis. 2016;7:e2365 pubmed 出版商
  42. Park S, Jo D, Jo S, Shin D, Shim S, Jo Y, et al. Inhibition of never in mitosis A (NIMA)-related kinase-4 reduces survivin expression and sensitizes cancer cells to TRAIL-induced cell death. Oncotarget. 2016;7:65957-65967 pubmed 出版商
  43. Peng Y, Miao H, Wu S, Yang W, Zhang Y, Xie G, et al. ABHD5 interacts with BECN1 to regulate autophagy and tumorigenesis of colon cancer independent of PNPLA2. Autophagy. 2016;12:2167-2182 pubmed
  44. Ohmer M, Weber A, Sutter G, Ehrhardt K, Zimmermann A, Häcker G. Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis. Cell Death Dis. 2016;7:e2340 pubmed 出版商
  45. Weyhenmeyer B, Noonan J, Würstle M, Lincoln F, Johnston G, Rehm M, et al. Predicting the cell death responsiveness and sensitization of glioma cells to TRAIL and temozolomide. Oncotarget. 2016;7:61295-61311 pubmed 出版商
  46. Liu H, Li W, Yu X, Gao F, Duan Z, Ma X, et al. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis. Oncotarget. 2016;7:56338-56354 pubmed 出版商
  47. Bao H, Liu P, Jiang K, Zhang X, Xie L, Wang Z, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett. 2016;12:1058-1066 pubmed
  48. Gao Z, Liu Z, Bi M, Zhang J, Han Z, Han X, et al. Metformin induces apoptosis via a mitochondria-mediated pathway in human breast cancer cells in vitro. Exp Ther Med. 2016;11:1700-1706 pubmed
  49. Zhao J, Niu X, Li X, Edwards H, Wang G, Wang Y, et al. Inhibition of CHK1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Oncotarget. 2016;7:34785-99 pubmed 出版商
  50. Wang W, Zhan M, Li Q, Chen W, Chu H, Huang Q, et al. FXR agonists enhance the sensitivity of biliary tract cancer cells to cisplatin via SHP dependent inhibition of Bcl-xL expression. Oncotarget. 2016;7:34617-29 pubmed 出版商
  51. Kim H, Oh J, Choi S, Nam Y, Jo A, Kwon A, et al. Down-regulation of p21-activated serine/threonine kinase 1 is involved in loss of mesencephalic dopamine neurons. Mol Brain. 2016;9:45 pubmed 出版商
  52. Barroso González J, Auclair S, Luan S, Thomas L, Atkins K, Aslan J, et al. PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ. 2016;23:1448-57 pubmed 出版商
  53. Waldeck K, Cullinane C, Ardley K, Shortt J, Martin B, Tothill R, et al. Long term, continuous exposure to panobinostat induces terminal differentiation and long term survival in the TH-MYCN neuroblastoma mouse model. Int J Cancer. 2016;139:194-204 pubmed 出版商
  54. Yu L, Wu W, Gu C, Zhong D, Zhao X, Kong Y, et al. Obatoclax impairs lysosomal function to block autophagy in cisplatin-sensitive and -resistant esophageal cancer cells. Oncotarget. 2016;7:14693-707 pubmed 出版商
  55. Kline C, van den Heuvel A, Allen J, Prabhu V, Dicker D, El Deiry W. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases. Sci Signal. 2016;9:ra18 pubmed 出版商
  56. De Toni E, Ziesch A, Rizzani A, Török H, Hocke S, Lü S, et al. Inactivation of BRCA2 in human cancer cells identifies a subset of tumors with enhanced sensitivity towards death receptor-mediated apoptosis. Oncotarget. 2016;7:9477-90 pubmed 出版商
  57. Lopez J, Bessou M, Riley J, Giampazolias E, Todt F, Rochegüe T, et al. Mito-priming as a method to engineer Bcl-2 addiction. Nat Commun. 2016;7:10538 pubmed 出版商
  58. Menter T, Dickenmann M, Juskevicius D, Steiger J, Dirnhofer S, Tzankov A. Comprehensive phenotypic characterization of PTLD reveals potential reliance on EBV or NF-κB signalling instead of B-cell receptor signalling. Hematol Oncol. 2017;35:187-197 pubmed 出版商
  59. Wolfsperger F, Hogh Binder S, Schittenhelm J, Psaras T, Ritter V, Bornes L, et al. Deubiquitylating enzyme USP9x regulates radiosensitivity in glioblastoma cells by Mcl-1-dependent and -independent mechanisms. Cell Death Dis. 2016;7:e2039 pubmed 出版商
  60. Crowder R, Dicker D, El Deiry W. The Deubiquitinase Inhibitor PR-619 Sensitizes Normal Human Fibroblasts to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-mediated Cell Death. J Biol Chem. 2016;291:5960-70 pubmed 出版商
  61. Lub S, Maes A, Maes K, De Veirman K, De Bruyne E, Menu E, et al. Inhibiting the anaphase promoting complex/cyclosome induces a metaphase arrest and cell death in multiple myeloma cells. Oncotarget. 2016;7:4062-76 pubmed 出版商
  62. Vartanian S, Ma T, Lee J, Haverty P, Kirkpatrick D, Yu K, et al. Application of Mass Spectrometry Profiling to Establish Brusatol as an Inhibitor of Global Protein Synthesis. Mol Cell Proteomics. 2016;15:1220-31 pubmed 出版商
  63. Wang J, De Veirman K, De Beule N, Maes K, De Bruyne E, Van Valckenborgh E, et al. The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells. Oncotarget. 2015;6:43992-4004 pubmed 出版商
  64. Ko T, Chin H, Chuah C, Huang J, Ng K, Khaw S, et al. The BIM deletion polymorphism: A paradigm of a permissive interaction between germline and acquired TKI resistance factors in chronic myeloid leukemia. Oncotarget. 2016;7:2721-33 pubmed 出版商
  65. Bailey M, Singh T, Mero P, Moffat J, Hieter P. Dependence of Human Colorectal Cells Lacking the FBW7 Tumor Suppressor on the Spindle Assembly Checkpoint. Genetics. 2015;201:885-95 pubmed 出版商
  66. Granato M, Gilardini Montani M, Filardi M, Faggioni A, Cirone M. Capsaicin triggers immunogenic PEL cell death, stimulates DCs and reverts PEL-induced immune suppression. Oncotarget. 2015;6:29543-54 pubmed 出版商
  67. Lavik A, Zhong F, Chang M, Greenberg E, Choudhary Y, Smith M, et al. A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2. Oncotarget. 2015;6:27388-402 pubmed 出版商
  68. Tiffen J, Gunatilake D, Gallagher S, Gowrishankar K, Heinemann A, Cullinane C, et al. Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget. 2015;6:27023-36 pubmed 出版商
  69. Bresin A, Callegari E, D Abundo L, Cattani C, Bassi C, Zagatti B, et al. miR-181b as a therapeutic agent for chronic lymphocytic leukemia in the Eµ-TCL1 mouse model. Oncotarget. 2015;6:19807-18 pubmed
  70. Heinemann A, Cullinane C, De Paoli Iseppi R, Wilmott J, Gunatilake D, Madore J, et al. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling. Oncotarget. 2015;6:21507-21 pubmed
  71. Fedorenko I, Abel E, Koomen J, Fang B, Wood E, Chen Y, et al. Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells. Oncogene. 2016;35:1225-35 pubmed 出版商
  72. Nagata T, Yasukawa H, Kyogoku S, Oba T, Takahashi J, Nohara S, et al. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules. PLoS ONE. 2015;10:e0127942 pubmed 出版商
  73. Martínez A, Sesé M, Losa J, Robichaud N, Sonenberg N, Aasen T, et al. Phosphorylation of eIF4E Confers Resistance to Cellular Stress and DNA-Damaging Agents through an Interaction with 4E-T: A Rationale for Novel Therapeutic Approaches. PLoS ONE. 2015;10:e0123352 pubmed 出版商
  74. Gupta J, Igea A, Papaioannou M, López Casas P, Llonch E, Hidalgo M, et al. Pharmacological inhibition of p38 MAPK reduces tumor growth in patient-derived xenografts from colon tumors. Oncotarget. 2015;6:8539-51 pubmed
  75. Wang X, D Arcy P, Caulfield T, Paulus A, Chitta K, Mohanty C, et al. Synthesis and evaluation of derivatives of the proteasome deubiquitinase inhibitor b-AP15. Chem Biol Drug Des. 2015;86:1036-48 pubmed 出版商
  76. Yang N, Han F, Cui H, Huang J, Wang T, Zhou Y, et al. Matrine suppresses proliferation and induces apoptosis in human cholangiocarcinoma cells through suppression of JAK2/STAT3 signaling. Pharmacol Rep. 2015;67:388-93 pubmed 出版商
  77. Cui J, Sun W, Hao X, Wei M, Su X, Zhang Y, et al. EHMT2 inhibitor BIX-01294 induces apoptosis through PMAIP1-USP9X-MCL1 axis in human bladder cancer cells. Cancer Cell Int. 2015;15:4 pubmed 出版商
  78. Long J, Schoonen P, Graczyk D, O Prey J, Ryan K. p73 engages A2B receptor signalling to prime cancer cells to chemotherapy-induced death. Oncogene. 2015;34:5152-62 pubmed 出版商
  79. Lu K, Fang X, Feng L, Jiang Y, Zhou X, Liu X, et al. The STAT3 inhibitor WP1066 reverses the resistance of chronic lymphocytic leukemia cells to histone deacetylase inhibitors induced by interleukin-6. Cancer Lett. 2015;359:250-8 pubmed 出版商
  80. Valianou M, Cox A, Pichette B, Hartley S, Paladhi U, Astrinidis A. Pharmacological inhibition of Polo-like kinase 1 (PLK1) by BI-2536 decreases the viability and survival of hamartin and tuberin deficient cells via induction of apoptosis and attenuation of autophagy. Cell Cycle. 2015;14:399-407 pubmed 出版商
  81. Yan J, Zhong N, Liu G, Chen K, Liu X, Su L, et al. Usp9x- and Noxa-mediated Mcl-1 downregulation contributes to pemetrexed-induced apoptosis in human non-small-cell lung cancer cells. Cell Death Dis. 2014;5:e1316 pubmed 出版商
  82. Waitkus M, Chandrasekharan U, Willard B, Tee T, Hsieh J, Przybycin C, et al. Signal integration and gene induction by a functionally distinct STAT3 phosphoform. Mol Cell Biol. 2014;34:1800-11 pubmed 出版商
  83. Yoon H, Choi Y, Song J, Do I, Kang S, Ko Y, et al. Targeted inhibition of FAK, PYK2 and BCL-XL synergistically enhances apoptosis in ovarian clear cell carcinoma cell lines. PLoS ONE. 2014;9:e88587 pubmed 出版商
  84. Annibaldi A, Heulot M, Martinou J, Widmann C. TAT-RasGAP317-326-mediated tumor cell death sensitization can occur independently of Bax and Bak. Apoptosis. 2014;19:719-33 pubmed 出版商
  85. Crowther A, Gama V, Bevilacqua A, Chang S, Yuan H, Deshmukh M, et al. Tonic activation of Bax primes neural progenitors for rapid apoptosis through a mechanism preserved in medulloblastoma. J Neurosci. 2013;33:18098-108 pubmed 出版商
  86. Peng Y, Shi Y, Ding Z, Ke A, Gu C, Hui B, et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy. 2013;9:2056-68 pubmed 出版商
  87. Ma T, Galimberti F, Erkmen C, Memoli V, Chinyengetere F, SEMPERE L, et al. Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer. Mol Cancer Ther. 2013;12:1545-55 pubmed 出版商
  88. Carra E, Barbieri F, Marubbi D, Pattarozzi A, Favoni R, Florio T, et al. Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures. Cell Cycle. 2013;12:491-500 pubmed 出版商
  89. Son J, Varadarajan S, Bratton S. TRAIL-activated stress kinases suppress apoptosis through transcriptional upregulation of MCL-1. Cell Death Differ. 2010;17:1288-301 pubmed 出版商