这是一篇来自已证抗体库的有关人类 钙粘蛋白N (N-cadherin) 的综述,是根据476篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合钙粘蛋白N 抗体。
钙粘蛋白N 同义词: CD325; CDHN; CDw325; NCAD

赛默飞世尔
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3
赛默飞世尔钙粘蛋白N抗体(ThermoFisher, 33-3900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3). Nat Commun (2021) ncbi
小鼠 单克隆(CH-19)
  • 免疫印迹基因敲除验证; 人类; 图 3a
  • 免疫组化-石蜡切片; 人类; 图 1a, 2g
  • 免疫印迹; 人类; 图 1c, 3a
赛默飞世尔钙粘蛋白N抗体(Thermo Fisher, MA1-91128)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 3a), 被用于免疫组化-石蜡切片在人类样本上 (图 1a, 2g) 和 被用于免疫印迹在人类样本上 (图 1c, 3a). J Immunother Cancer (2021) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 人类; 1:100; 表 2
赛默飞世尔钙粘蛋白N抗体(Thermo Fisher Scientific, 3B9)被用于被用于免疫组化在人类样本上浓度为1:100 (表 2). Mod Pathol (2020) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 小鼠; 1:500; 图 4h
赛默飞世尔钙粘蛋白N抗体(Thermo, 33-3900)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4h). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5e
  • 免疫印迹; 小鼠; 1:1000; 图 s5c
赛默飞世尔钙粘蛋白N抗体(Thermo Fisher, PA5-29570)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5c). Nat Commun (2019) ncbi
小鼠 单克隆(8C11)
  • 流式细胞仪; 人类; 1:50; 图 3a, 3b
赛默飞世尔钙粘蛋白N抗体(eBioscience/Thermo, 17-3259-42)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3a, 3b). Stem Cells (2019) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-冰冻切片; 小鼠; 图 6d
赛默飞世尔钙粘蛋白N抗体(ThermoFisher, 33-3900)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6d). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(SP90)
  • 免疫组化-石蜡切片; 小鼠; 图 s4c
赛默飞世尔钙粘蛋白N抗体(Invitrogen, MA5-16324)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4c). Cell (2019) ncbi
小鼠 单克隆(3B9)
  • 免疫细胞化学; 小鼠; 1:250; 图 1a
赛默飞世尔钙粘蛋白N抗体(Thermo Fisher, 33-3900)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 1a). J Cell Sci (2019) ncbi
小鼠 单克隆(8C11)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
赛默飞世尔钙粘蛋白N抗体(eBioscience, 46-3259)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c). Mol Cancer Res (2018) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 小鼠; 1:200; 图 3a
赛默飞世尔钙粘蛋白N抗体(生活技术, 33-3900)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3a). BMC Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300
  • 免疫细胞化学; 人类; 1:200; 图 1c
  • 免疫印迹; 人类; 1:1000; 图 1e
赛默飞世尔钙粘蛋白N抗体(Thermo Fisher, PA5-19486)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300, 被用于免疫细胞化学在人类样本上浓度为1:200 (图 1c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Oncol Lett (2016) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 大鼠; 图 7b
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3B9)被用于被用于免疫组化在大鼠样本上 (图 7b). Stem Cells Int (2016) ncbi
小鼠 单克隆(3B9)
  • 免疫细胞化学; 小鼠; 图 3b
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫细胞化学在小鼠样本上 (图 3b). Hum Mol Genet (2017) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 小鼠
赛默飞世尔钙粘蛋白N抗体(Thermo Fisher, 33-3900)被用于被用于免疫组化在小鼠样本上. Methods Mol Biol (2017) ncbi
小鼠 单克隆(3B9)
  • 免疫细胞化学; 大鼠; 1:200; 图 3a
  • 免疫印迹; 大鼠; 1:200; 图 3a
赛默飞世尔钙粘蛋白N抗体(ThermoFisher Scientific, 33-3900)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 3a) 和 被用于免疫印迹在大鼠样本上浓度为1:200 (图 3a). FASEB J (2017) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类; 图 4b
赛默飞世尔钙粘蛋白N抗体(Thermo, 33-3900)被用于被用于免疫印迹在人类样本上 (图 4b). J Cell Sci (2016) ncbi
小鼠 单克隆(3B9)
  • 免疫细胞化学; 人类; 图 3c
赛默飞世尔钙粘蛋白N抗体(ZYMED, 333900)被用于被用于免疫细胞化学在人类样本上 (图 3c). Front Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛默飞世尔钙粘蛋白N抗体(生活技术, PA5-17526)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Sci Rep (2016) ncbi
小鼠 单克隆(3B9)
  • 免疫细胞化学; 人类; 图 5c
  • 免疫印迹; 人类; 图 5c
赛默飞世尔钙粘蛋白N抗体(Zymed, 3-B9)被用于被用于免疫细胞化学在人类样本上 (图 5c) 和 被用于免疫印迹在人类样本上 (图 5c). J Cell Physiol (2017) ncbi
小鼠 单克隆(3B9)
  • 免疫细胞化学; 大鼠; 1:100; 表 1
  • 免疫印迹; 大鼠; 1:500; 表 1
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (表 1) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (表 1). Spermatogenesis (2016) ncbi
小鼠 单克隆(CH-19)
  • 免疫印迹; 小鼠; 图 1a
赛默飞世尔钙粘蛋白N抗体(Thermo Scientific, MA1-91128)被用于被用于免疫印迹在小鼠样本上 (图 1a). Glia (2017) ncbi
小鼠 单克隆(3B9)
  • 免疫细胞化学; 大鼠; 1:100; 图 1
  • 免疫印迹; 大鼠; 1:500; 图 1
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 人类
赛默飞世尔钙粘蛋白N抗体(Thermo Fisher, 33-3900)被用于被用于免疫组化在人类样本上. J Proteomics (2017) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 2
  • 免疫细胞化学; 大鼠; 1:100; 图 5
  • 免疫印迹; 大鼠; 1:200; 图 5
赛默飞世尔钙粘蛋白N抗体(Invitrogen, Life Technologies, 33-3900)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 2), 被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 5) 和 被用于免疫印迹在大鼠样本上浓度为1:200 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3). Oncogene (2017) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Clin Cancer Res (2016) ncbi
小鼠 单克隆(3B9)
  • 免疫沉淀; 大鼠; 1:60; 图 2
  • 免疫细胞化学; 大鼠; 1:100; 图 1
  • 免疫印迹; 大鼠; 1:200; 图 3
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫沉淀在大鼠样本上浓度为1:60 (图 2), 被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:200 (图 3). Endocrinology (2016) ncbi
小鼠 单克隆(8C11)
  • 流式细胞仪; 人类; 图 st1
赛默飞世尔钙粘蛋白N抗体(e- Bioscienc e, 12-3259-73)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(3B9)
  • 免疫细胞化学; 大鼠; 1:100; 图 1
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1). Cell Signal (2016) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 小鼠; 1:100; 表 1
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3B9)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (表 1). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类; 图 5
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫印迹在人类样本上 (图 5). Oncogenesis (2016) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 表 2
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (表 2). FASEB J (2016) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 小鼠; 图 7
赛默飞世尔钙粘蛋白N抗体(生活技术, 33?C3900)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 1b
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3B9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 1b). J Pathol (2016) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 大鼠; 1:1000
  • 免疫印迹; African green monkey
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33?C3900)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 和 被用于免疫印迹在African green monkey样本上. J Cardiovasc Electrophysiol (2016) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类; 1:500; 图 2a
赛默飞世尔钙粘蛋白N抗体(Invitrogene, 33-3900)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2a). Exp Cell Res (2015) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类; 1:500; 图 3
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). EMBO Mol Med (2015) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3B9)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Mol Cell Cardiol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔钙粘蛋白N抗体(Pierce, PA5-29570)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 表 3
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (表 3). Nat Commun (2015) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 国内马; 1:500
  • 免疫印迹; 国内马; 1:500
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫组化-石蜡切片在国内马样本上浓度为1:500 和 被用于免疫印迹在国内马样本上浓度为1:500. Theriogenology (2015) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 大鼠; 1:100
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫组化在大鼠样本上浓度为1:100. FASEB J (2015) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔钙粘蛋白N抗体(生活技术, 3B9)被用于被用于免疫印迹在人类样本上浓度为1:1000. Pigment Cell Melanoma Res (2015) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类; 1:500
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫印迹在人类样本上浓度为1:500. BMC Cancer (2015) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 大鼠; 1:100
  • 免疫沉淀; 大鼠
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100, 被用于免疫沉淀在大鼠样本上 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Andrology (2015) ncbi
小鼠 单克隆(8C11)
  • 免疫组化; 人类; 图 3
赛默飞世尔钙粘蛋白N抗体(Thermo, MA1-2002)被用于被用于免疫组化在人类样本上 (图 3). Nat Cell Biol (2015) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 大鼠; 1:200
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3B9)被用于被用于免疫组化在大鼠样本上浓度为1:200. Exp Mol Pathol (2015) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; domestic rabbit; 图 4
  • 免疫印迹; domestic rabbit; 图 3
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3B9)被用于被用于免疫组化在domestic rabbit样本上 (图 4) 和 被用于免疫印迹在domestic rabbit样本上 (图 3). J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 小鼠
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类; 1:300
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3B9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Hum Pathol (2015) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3B9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Pathol (2015) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:125
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:125. J Cell Sci (2014) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s9a
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 333900)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s9a). Nat Commun (2014) ncbi
小鼠 单克隆(5D5)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔钙粘蛋白N抗体(Pierce, MA5-15633)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Med Rep (2014) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 大鼠; 图 6b
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3B9)被用于被用于免疫印迹在大鼠样本上 (图 6b). J Biol Chem (2014) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 8a
赛默飞世尔钙粘蛋白N抗体(生活技术, 3B9)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 8a). Nat Commun (2014) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 人类; 1:500; 图 8
赛默飞世尔钙粘蛋白N抗体(生活技术, 33-3900)被用于被用于免疫组化在人类样本上浓度为1:500 (图 8). J Cell Sci (2014) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3B9)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Ovarian Res (2014) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 人类; 1:100; 图 9
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫组化在人类样本上浓度为1:100 (图 9). Nat Protoc (2013) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Am J Pathol (2013) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 大鼠; 1:100
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫组化在大鼠样本上浓度为1:100. PLoS ONE (2013) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类; 图 4
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫印迹在人类样本上 (图 4). Lab Invest (2013) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 人类; 1:150; 图 1
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫组化在人类样本上浓度为1:150 (图 1). Histopathology (2013) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3B9)被用于被用于免疫组化-石蜡切片在小鼠样本上. FASEB J (2013) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类; 图 3
赛默飞世尔钙粘蛋白N抗体(Invitrogen, clone 3B9)被用于被用于免疫印迹在人类样本上 (图 3). Dev Biol (2013) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类; 图 3
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2013) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-冰冻切片; 大鼠; 1:100
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100. Spermatogenesis (2012) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3B9)被用于被用于免疫印迹在小鼠样本上 (图 4). Genesis (2012) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3B9)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Anticancer Res (2012) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3B9)被用于被用于免疫印迹在小鼠样本上 (图 1). Mol Cell Biol (2012) ncbi
小鼠 单克隆(3B9)
  • 免疫细胞化学; 小鼠; 图 5
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3B9)被用于被用于免疫细胞化学在小鼠样本上 (图 5). FASEB J (2012) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 小鼠; 1:200
  • 免疫印迹; 小鼠
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3b9)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上. Dev Biol (2011) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 人类; 1:20
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3B9)被用于被用于免疫组化在人类样本上浓度为1:20. Mol Vis (2011) ncbi
小鼠 单克隆(3B9)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3B9)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Tissue Eng Part A (2011) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类; 1:40; 图 5
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40 (图 5). Am J Pathol (2011) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 小鼠; 图 6
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 3B9)被用于被用于免疫组化在小鼠样本上 (图 6). Mol Cell Biol (2011) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫印迹在人类样本上. Cancer Res (2010) ncbi
小鼠 单克隆(3B9)
  • 免疫沉淀; 大鼠; 图 2
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫沉淀在大鼠样本上 (图 2). Am J Physiol Heart Circ Physiol (2011) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 小鼠; 图 5
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫组化在小鼠样本上 (图 5). Basic Res Cardiol (2011) ncbi
小鼠 单克隆(3B9)
  • 免疫细胞化学; 大鼠; 1:50; 表 1
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (表 1). Int J Biochem Cell Biol (2010) ncbi
小鼠 单克隆(3B9)
  • 免疫细胞化学; 大鼠; 1:50; 表 1
  • 免疫印迹; 大鼠; 1:250; 表 1
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (表 1) 和 被用于免疫印迹在大鼠样本上浓度为1:250 (表 1). Exp Cell Res (2010) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 人类; 1:100; 表 1
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫组化在人类样本上浓度为1:100 (表 1). Hum Pathol (2010) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). APMIS (2010) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 人类; 图 3b
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫组化在人类样本上 (图 3b). Int J Cancer (2010) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类; 1:500; 图 6
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Neuro Oncol (2009) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类; 图 4
赛默飞世尔钙粘蛋白N抗体(Zymed, 3-B9)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Physiol (2010) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类; 图 1
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫印迹在人类样本上 (图 1). Int J Androl (2010) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 小鼠; 图 7
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫印迹在小鼠样本上 (图 7). J Cell Mol Med (2009) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类; 图 3
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫印迹在人类样本上 (图 3). Clin Exp Metastasis (2008) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3b
  • 免疫印迹; 人类; 1:250; 图 5b
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3b) 和 被用于免疫印迹在人类样本上浓度为1:250 (图 5b). Mod Pathol (2009) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔钙粘蛋白N抗体(Zymed Laboratories, 3B9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Urol Oncol (2009) ncbi
小鼠 单克隆(3B9)
  • 免疫细胞化学; 小鼠; 图 6
  • 免疫印迹; 人类; 图 3c
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫细胞化学在小鼠样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 3c). Arthritis Rheum (2008) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 小鼠; 图 3
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫组化在小鼠样本上 (图 3). J Mol Cell Cardiol (2008) ncbi
小鼠 单克隆(3B9)
  • 免疫细胞化学; 大鼠; 图 2
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫细胞化学在大鼠样本上 (图 2). J Comp Neurol (2008) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类; 图 6
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫印迹在人类样本上 (图 6). Exp Cell Res (2008) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类; 图 10
赛默飞世尔钙粘蛋白N抗体(Zymed Laboratories, 33-3900)被用于被用于免疫印迹在人类样本上 (图 10). J Neurosci (2007) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 大鼠; 0.1 ug/ml
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫印迹在大鼠样本上浓度为0.1 ug/ml. Toxicol In Vitro (2007) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 小鼠
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2007) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-冰冻切片; 大鼠; 1:50
赛默飞世尔钙粘蛋白N抗体(Zymed Laboratories, 33-3900)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50. Exp Cell Res (2007) ncbi
小鼠 单克隆(3B9)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). J Biol Chem (2007) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Cancer Res (2007) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 小鼠
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫组化在小鼠样本上. Dev Biol (2007) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 犬; 1:25; 图 5
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫组化在犬样本上浓度为1:25 (图 5). Cancer Res (2006) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Clin Cancer Res (2006) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类; 图 6
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫印迹在人类样本上 (图 6). Cancer Res (2006) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 大鼠; 表 1
  • 免疫沉淀; 大鼠; 表 1
  • 免疫印迹; 大鼠; 表 1
赛默飞世尔钙粘蛋白N抗体(Invitrogen, 33-3900)被用于被用于免疫组化-石蜡切片在大鼠样本上 (表 1), 被用于免疫沉淀在大鼠样本上 (表 1) 和 被用于免疫印迹在大鼠样本上 (表 1). J Cell Physiol (2006) ncbi
小鼠 单克隆(3B9)
  • 免疫细胞化学; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫细胞化学在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 1). J Cell Sci (2005) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 人类; 图 5
  • 免疫印迹; 人类; 图 4
赛默飞世尔钙粘蛋白N抗体(Zymed Laboratories, 33-3900)被用于被用于免疫组化在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 4). J Pathol (2005) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫组化-石蜡切片在人类样本上. Histol Histopathol (2005) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 表 1
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (表 1). Dev Biol (2005) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 表 1
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (表 1). J Cell Physiol (2005) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Cell Biochem (2005) ncbi
小鼠 单克隆(13A9)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔钙粘蛋白N抗体(Zymed, 13A9)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Cell Biochem (2005) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔钙粘蛋白N抗体(ZYMED, 3B9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Gynecol Oncol (2004) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类; 图 4
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫印迹在人类样本上 (图 4). Int J Cancer (2004) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 人类; 1:125; 表 2
赛默飞世尔钙粘蛋白N抗体(ZYMED, 3B9)被用于被用于免疫组化在人类样本上浓度为1:125 (表 2). J Cutan Pathol (2004) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 6
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 6). J Androl (2004) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类; 表 1
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Int J Gynecol Cancer (2003) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 大鼠
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫印迹在大鼠样本上. Biol Reprod (2004) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 人类; 1:20; 图 3
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫组化在人类样本上浓度为1:20 (图 3). Hum Pathol (2003) ncbi
小鼠 单克隆(3B9)
  • 免疫细胞化学; 小鼠; 1:100
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. J Cell Sci (2003) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-冰冻切片; 大鼠
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900,)被用于被用于免疫组化-冰冻切片在大鼠样本上. Biol Reprod (2003) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1). Virchows Arch (2002) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). J Cell Sci (2002) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类; 1:400; 表 2
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (表 2). Virchows Arch (2002) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Arch Pathol Lab Med (2002) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 人类; 表 1
赛默飞世尔钙粘蛋白N抗体(Zymed, clone 3B9)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). J Mammary Gland Biol Neoplasia (2001) ncbi
小鼠 单克隆(3B9)
  • 免疫组化; 人类; 1:400; 图 1
赛默飞世尔钙粘蛋白N抗体(Zymed, clone 3B9)被用于被用于免疫组化在人类样本上浓度为1:400 (图 1). J Pathol (2001) ncbi
小鼠 单克隆(3B9)
  • 免疫印迹; 人类
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫印迹在人类样本上. J Cell Biol (2001) ncbi
小鼠 单克隆(3B9)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. Cancer Res (2001) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛默飞世尔钙粘蛋白N抗体(Zymed, 3B9)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Development (2001) ncbi
小鼠 单克隆(3B9)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛默飞世尔钙粘蛋白N抗体(Zymed, 33-3900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Development (2000) ncbi
小鼠 单克隆(13A9)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔钙粘蛋白N抗体(Zymed, 13A9 and 3B9)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Cancer (1999) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR1791-4)
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab76011)被用于被用于免疫印迹在人类样本上 (图 5b). Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆(EPR1791-4)
  • 免疫印迹; 小鼠; 图 5j
  • 免疫印迹; 人类; 图 5i
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab76011)被用于被用于免疫印迹在小鼠样本上 (图 5j) 和 被用于免疫印迹在人类样本上 (图 5i). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(EPR1791-4)
  • 免疫细胞化学; 小鼠; 1:200; 图 s4
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab76011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s4). iScience (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 e5a
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 e5a). Nat Immunol (2022) ncbi
domestic rabbit 单克隆(EPR1791-4)
  • 免疫印迹; 人类; 图 6f
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab76011)被用于被用于免疫印迹在人类样本上 (图 6f). J Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2a). Open Life Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Oncol Lett (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Cancer Cell Int (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3i
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5d
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3i) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5d). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2k
  • 免疫印迹; 人类; 图 2g, 3g
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab76057)被用于被用于免疫组化在人类样本上 (图 2k) 和 被用于免疫印迹在人类样本上 (图 2g, 3g). Cell Death Dis (2021) ncbi
小鼠 单克隆(5D5)
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(abcam, ab98952)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2e
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(abcam, ab18203)被用于被用于免疫印迹在人类样本上 (图 2). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫细胞化学在人类样本上浓度为1:400. Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6b
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab76057)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6b). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s4a
  • 免疫印迹; 小鼠; 图 s4c
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫细胞化学在小鼠样本上 (图 s4a) 和 被用于免疫印迹在小鼠样本上 (图 s4c). Mol Metab (2021) ncbi
domestic rabbit 单克隆(EPR1791-4)
  • 免疫印迹; 人类; 图 s4a
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab76011)被用于被用于免疫印迹在人类样本上 (图 s4a). Cell Death Differ (2021) ncbi
小鼠 单克隆(5D5)
  • 免疫细胞化学; 人类; 1:200; 图 3e
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab98952)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3e). PLoS ONE (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:250; 图 5d
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 5d). Cancer Res Treat (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Int J Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; domestic rabbit; 1:100; 图 7c
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:100 (图 7c). Invest Ophthalmol Vis Sci (2020) ncbi
domestic rabbit 单克隆(EPR1791-4)
  • 免疫印迹; 小鼠; 1:5000; 图 4a
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab76011)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4a). Front Immunol (2020) ncbi
domestic rabbit 单克隆(EPR1791-4)
  • 免疫印迹; 人类; 1:400; 图 4a
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab76011)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 4a). Cancer Manag Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 8a
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 8a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2h
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2h). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 1g
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab202030)被用于被用于免疫印迹在人类样本上 (图 1g). BMC Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1e, 3b, 4d
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab76057)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e, 3b, 4d). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3e
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3e). Front Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3d
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Cancer Cell Int (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1f,
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, Cambridge, England, ab76057)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f, ). Integr Cancer Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 8c
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, Ab18203)被用于被用于免疫细胞化学在人类样本上 (图 8c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab202030)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Biosci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7a, 7b
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a, 7b). Oncol Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 8d
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 8d). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1b, 7a
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫细胞化学在人类样本上 (图 1b, 7a) 和 被用于免疫印迹在人类样本上 (图 1a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 1:1000; 图 s3b
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab76057)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:1000 (图 s3b). Cells (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 6b, 6d
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6b, 6d). Eur Rev Med Pharmacol Sci (2019) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 s1d
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab202030)被用于被用于免疫印迹在人类样本上 (图 s1d). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在人类样本上 (图 6b). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 5 ug/ml; 图 6a
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫细胞化学在人类样本上浓度为5 ug/ml (图 6a). Cancer Cell Int (2019) ncbi
小鼠 单克隆(5D5)
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab98952)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Cancer Cell Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab76057)被用于被用于免疫印迹在人类样本上 (图 3c). J Exp Clin Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 2c
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, Ab18203)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2c). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 1:1000; 图 2b
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在pigs 样本上浓度为1:1000 (图 2b). Biosci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab76057)被用于被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:250; 图 1e
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1e). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6d
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab76057)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1h
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在人类样本上 (图 1h). Biochem Biophys Res Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 1a
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, Ab76057)被用于被用于免疫细胞化学在大鼠样本上 (图 1a). Mol Biol Cell (2017) ncbi
domestic rabbit 单克隆(EPR1791-4)
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab76011)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1e
  • 免疫印迹; 人类; 图 2h
  • 免疫印迹; 小鼠; 图 4b
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab76057)被用于被用于免疫组化在人类样本上 (图 1e), 被用于免疫印迹在人类样本上 (图 2h) 和 被用于免疫印迹在小鼠样本上 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 3
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab76057)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncol Lett (2016) ncbi
小鼠 单克隆(5D5)
  • 免疫组化-石蜡切片; 人类; 图 s1
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(abcam, ab98952)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(5D5)
  • 免疫组化; 小鼠; 1:200; 图 1
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab98952)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 5
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). Histochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2
  • 免疫印迹; 小鼠; 1:400; 图 2
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, Ab18203)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:400 (图 2). Cell Death Differ (2016) ncbi
小鼠 单克隆(5D5)
  • 免疫印迹; 人类; 图 3d
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab98952)被用于被用于免疫印迹在人类样本上 (图 3d). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR1791-4)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Epitomics, 2447-1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab18203)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(5D5)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, AB98952)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
domestic rabbit 单克隆(EPR1791-4)
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Epitomics, 2447)被用于被用于免疫印迹在人类样本上浓度为1:500. Oncotarget (2014) ncbi
小鼠 单克隆(5D5)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司钙粘蛋白N抗体(Abcam, ab98952)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5c
  • 免疫印迹; 人类; 1:1000; 图 5f
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz, sc-393933)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Front Oncol (2022) ncbi
小鼠 单克隆(CH-19)
  • 免疫组化; 小鼠; 图 3a
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz, sc-59876)被用于被用于免疫组化在小鼠样本上 (图 3a). EMBO J (2021) ncbi
小鼠 单克隆(13A9)
  • 免疫印迹; 人类; 1:100; 图 5a
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz Biotechnology, sc-59987)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 5a). Cancers (Basel) (2021) ncbi
小鼠 单克隆(8C11)
  • 免疫印迹; 人类; 1:500; 图 3d, 3f
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz Biotechnology, sc-53488)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3d, 3f). Am J Pathol (2021) ncbi
小鼠 单克隆(13A9)
  • 免疫印迹; 人类; 1:1000; 图 5c
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz, sc-59987)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(H-4)
  • 流式细胞仪; 人类; 图 s3
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz, sc-271386)被用于被用于流式细胞仪在人类样本上 (图 s3). Stem Cell Reports (2020) ncbi
小鼠 单克隆(13A9)
  • 免疫印迹; 人类; 1:500; 图 1c
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz, 13A9)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1c). Nat Commun (2019) ncbi
小鼠 单克隆(CH-19)
  • 免疫印迹; 小鼠; 图 4a
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz, sc-59876)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:500; 图 6a
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz, sc-393933)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6a). Exp Ther Med (2017) ncbi
小鼠 单克隆(8C11)
  • 免疫细胞化学; 人类; 1:1000; 图 4B
  • 免疫印迹; 人类; 图 4A
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz, sc-53488)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4B) 和 被用于免疫印迹在人类样本上 (图 4A). Oncol Lett (2017) ncbi
小鼠 单克隆(13A9)
  • 免疫印迹; 人类; 1:200; 图 5a
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz Biotechnology, Inc., sc-59987)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5a). Mol Med Rep (2017) ncbi
小鼠 单克隆(13A9)
  • 免疫印迹; 人类; 1:200; 图 1b
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz, sc-59987)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1b). Cancer Sci (2017) ncbi
小鼠 单克隆(H-4)
  • 免疫细胞化学; 大鼠; 1:50; 图 4
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz, SC271386)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 4). J Appl Toxicol (2017) ncbi
小鼠 单克隆(8C11)
  • 免疫印迹; 人类; 1:1000; 图 1d
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz Biotechnology, sc-53488)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Oncotarget (2016) ncbi
小鼠 单克隆(13A9)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术钙粘蛋白N抗体(santa Cruz, sc-59987)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(H-4)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 1:100; 图 2a
圣克鲁斯生物技术钙粘蛋白N抗体(SantaCruz, sc-271386)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz, sc-393933)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(8C11)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz, sc-53488)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(H-4)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术钙粘蛋白N抗体(SantaCruz, sc-271386)被用于被用于免疫印迹在人类样本上 (图 2b). Oncol Lett (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:2000; 图 1c
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz, sc-393933)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1c). Oncotarget (2016) ncbi
小鼠 单克隆(13A9)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz Biotechnology, sc-59987)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz, sc-8424)被用于被用于免疫印迹在人类样本上 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(D-4)
  • 免疫组化-石蜡切片; 人类; 图 4c
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz, sc-8424)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4c). BMC Genomics (2015) ncbi
小鼠 单克隆(H-4)
  • 免疫印迹; 小鼠; 1:1000; 图 s1
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz, sc-271386)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(D-4)
  • 免疫组化-石蜡切片; 人类; 1:30
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz, sc-8424)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30. PLoS ONE (2015) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 人类; 1:1500
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz Biotech, sc-8424)被用于被用于免疫印迹在人类样本上浓度为1:1500. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(D-4)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz Biotechnology, 8424)被用于被用于免疫细胞化学在人类样本上. Cancer Biol Ther (2015) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz, SC-8424)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(CH-19)
  • 免疫印迹; 小鼠; 1:4000; 图 5c
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz Biotechnology, sc-59876)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 5c). Nat Neurosci (2014) ncbi
小鼠 单克隆(H-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz Biotechnology, SC271386)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz Biotechnology, Sc-8424)被用于被用于免疫印迹在人类样本上浓度为1:200. Stem Cells (2014) ncbi
小鼠 单克隆(13A9)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术钙粘蛋白N抗体(Santa Cruz Biotechnology, sc-59987)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Neurosci Res (2013) ncbi
BioLegend
小鼠 单克隆(8C11)
  • 流式细胞仪; 人类; 图 3a
BioLegend钙粘蛋白N抗体(BioLegend, 8C11)被用于被用于流式细胞仪在人类样本上 (图 3a). Sci Rep (2018) ncbi
小鼠 单克隆(8C11)
  • 流式细胞仪; 人类
BioLegend钙粘蛋白N抗体(BioLegend, 350806)被用于被用于流式细胞仪在人类样本上. Oncol Rep (2015) ncbi
小鼠 单克隆(8C11)
  • 流式细胞仪; 人类; 图 5
BioLegend钙粘蛋白N抗体(Biolegend, 350805)被用于被用于流式细胞仪在人类样本上 (图 5). J Neuroinflammation (2015) ncbi
小鼠 单克隆(8C11)
  • 流式细胞仪; 人类; 图 3
BioLegend钙粘蛋白N抗体(Biolegend, 8C11)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(8C11)
  • 流式细胞仪; 人类; 图 4
BioLegend钙粘蛋白N抗体(Biolegend, 8C11)被用于被用于流式细胞仪在人类样本上 (图 4). PLoS ONE (2014) ncbi
安迪生物R&D
家羊 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6d
安迪生物R&D钙粘蛋白N抗体(R&D Systems, AF6426)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6d). iScience (2022) ncbi
小鼠 单克隆(691723)
  • 免疫印迹; 人类; 1:1000; 图 3h
安迪生物R&D钙粘蛋白N抗体(R&D Systems, MAB13881)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3h). Commun Biol (2021) ncbi
Novus Biologicals
小鼠 单克隆(13A9)
  • 免疫印迹; 大鼠; 图 s1
Novus Biologicals钙粘蛋白N抗体(Novus, NBP1-48309)被用于被用于免疫印迹在大鼠样本上 (图 s1). Front Neurol (2019) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 小鼠; 1:100; 图 6g
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 13116)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 6g). Front Oncol (2022) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 2g, 8d
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13,116)被用于被用于免疫印迹在人类样本上 (图 2g, 8d). Bioengineered (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 4061)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Cell Death Dis (2022) ncbi
小鼠 单克隆(RMdO 20)
  • 免疫组化-石蜡切片; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, RMdO 20)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). Front Immunol (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, D4R1H)被用于被用于免疫印迹在人类样本上 (图 4b). Biology (Basel) (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 6a, 6b
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 13116S)被用于被用于免疫印迹在人类样本上 (图 6a, 6b). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 13116S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Int J Biol Sci (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 4c, 4d
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c, 4d). Acta Pharm Sin B (2021) ncbi
小鼠 单克隆(13A9)
  • 免疫印迹; 人类; 图 s3e
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 14215)被用于被用于免疫印迹在人类样本上 (图 s3e). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 4061,)被用于被用于免疫印迹在人类样本上 (图 6d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 13116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Oncogene (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 2i
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 13116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2i). Front Oncol (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Biology (Basel) (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST (Cell Signaling Technology), 13116)被用于被用于免疫印迹在人类样本上 (图 3e). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 13116)被用于被用于免疫印迹在人类样本上 (图 4b). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫组化-石蜡切片; 人类; 图 2l
  • 免疫印迹; 人类; 图 2k
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2l) 和 被用于免疫印迹在人类样本上 (图 2k). Theranostics (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 13116)被用于被用于免疫印迹在人类样本上 (图 s3a). Oncogene (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 5
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 4061)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 5). J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 s2f
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在人类样本上 (图 s2f). Mol Oncol (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 ev1c
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 13116)被用于被用于免疫印迹在人类样本上 (图 ev1c). EMBO Mol Med (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在人类样本上 (图 3c). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 小鼠; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). Mol Cell Biol (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 3a, 3b
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a, 3b). Oncol Rep (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在人类样本上 (图 4f). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 13116S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). J Cancer (2021) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 13116 s)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Biosci (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 s1b
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在人类样本上 (图 s1b). Adv Sci (Weinh) (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫细胞化学; 人类; 1:200; 图 s1-3a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 13116S)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1-3a). elife (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫细胞化学; 人类; 1:50; 图 1g
  • 免疫印迹; 人类; 1:1000; 图 1h
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1g) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1h). elife (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 13116S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 3e). Cancer Cell Int (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:500; 图 s1
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 13116)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s1). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6e
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 13116)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6e). Oncol Rep (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 13116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Cell Prolif (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 13116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Cancer Cell Int (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫细胞化学; 人类; 1:200; 图 3h
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 13116S)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Signal Transduct Target Ther (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:500; 图 2g
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 3116)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2g). Oncogene (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 5i
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 13116)被用于被用于免疫印迹在人类样本上 (图 5i). CNS Neurosci Ther (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 3b, 3d
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b, 3d). Cell Div (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 2f, 2g
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在人类样本上 (图 2f, 2g). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 1:500; 图 2f
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, D4R1H)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 2f). Cancer Manag Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 4061)被用于被用于免疫印迹在人类样本上 (图 8a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 13116)被用于被用于免疫印迹在人类样本上 (图 3c). Int J Biol Sci (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell signaling, 13116)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogenesis (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 13116)被用于被用于免疫印迹在人类样本上 (图 7d). Am J Cancer Res (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 13116)被用于被用于免疫印迹在人类样本上 (图 3f). Int J Biol Sci (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 13116)被用于被用于免疫印迹在人类样本上 (图 2f). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(RMdO 20)
  • 免疫组化; 大鼠; 1:400; 图 7c
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, RMdo20)被用于被用于免疫组化在大鼠样本上浓度为1:400 (图 7c). Cell Prolif (2020) ncbi
小鼠 单克隆(13A9)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 13A9)被用于被用于免疫印迹在人类样本上 (图 3b). EBioMedicine (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2i
  • 免疫印迹; 人类; 1:1000; 图 2g
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, D4R1H)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2i) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2g). Front Oncol (2019) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 3i
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在人类样本上 (图 3i). Mol Oncol (2020) ncbi
小鼠 单克隆(13A9)
  • 免疫印迹; 人类; 1:2000; 图 3b
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 14215)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3b). Int J Mol Med (2019) ncbi
小鼠 单克隆(13A9)
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 14215)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 13116)被用于被用于免疫印迹在人类样本上 (图 4e). Oncogene (2020) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 13116)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在人类样本上 (图 2d). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 13116)被用于被用于免疫印迹在人类样本上 (图 3d). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 13116)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 4061)被用于被用于免疫印迹在人类样本上 (图 2a). elife (2019) ncbi
小鼠 单克隆(13A9)
  • 免疫印迹; 人类; 1:1000; 图 1b, 4d
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 14215s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b, 4d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, D4R1H)被用于被用于免疫印迹在人类样本上 (图 5a). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 13116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Cell Mol Med (2019) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 2i
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technologies, 13116S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2i). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, D4R1H)被用于被用于免疫印迹在人类样本上 (图 6b). Mol Oncol (2019) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 小鼠; 图 5f
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 13116)被用于被用于免疫印迹在小鼠样本上 (图 5f) 和 被用于免疫印迹在人类样本上 (图 1f). Cancer Lett (2019) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Biosci Rep (2018) ncbi
小鼠 单克隆(RMdO 20)
  • 免疫组化; 大鼠; 1:200; 图 3a
  • 免疫印迹; 大鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 2836)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 3a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3e). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 4061)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在人类样本上 (图 3b). J Cell Mol Med (2018) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 9d
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 9d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 13116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Exp Ther Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4C
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 4061S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4C). Oncol Lett (2017) ncbi
小鼠 单克隆(RMdO 20)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1b
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 2836)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1b). Mol Med Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s5b
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell signaling, 4061)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s5b). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(CST, 4061)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell signaling, 4061)被用于被用于免疫印迹在人类样本上 (图 2c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D4R1H)
  • 流式细胞仪; 人类; 图 S3a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 13116)被用于被用于流式细胞仪在人类样本上 (图 S3a). Neoplasia (2017) ncbi
小鼠 单克隆(RMdO 20)
  • 免疫组化; 小鼠; 1:400; 图 1b
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(cell signalling, 2836)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(RMdO 20)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell signaling, 2836)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5a). Brain Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 4061)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 4061)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(cell signalling, 4061S)被用于被用于免疫印迹在人类样本上 (图 1e). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫细胞化学; 人类; 1:200; 图 s3a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell signaling, 13116)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s3a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫组化; 人类; 图 3b
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 13116)被用于被用于免疫组化在人类样本上 (图 3b). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2e
  • 免疫细胞化学; 人类; 1:200; 图 3f
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2e), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 3f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 4061)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 13116P)被用于被用于免疫印迹在人类样本上 (图 2b). J Biol Chem (2016) ncbi
小鼠 单克隆(RMdO 20)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signalling, 2836)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(13A9)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 14215)被用于被用于免疫印迹在人类样本上 (图 1a). J Cell Mol Med (2016) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Drug Des Devel Ther (2016) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫组化; 人类; 图 4
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫组化在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在人类样本上 (图 4d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(13A9)
  • 免疫印迹; 人类; 图 3g
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 14215)被用于被用于免疫印迹在人类样本上 (图 3g). FEBS Open Bio (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3D
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 4061)被用于被用于免疫印迹在人类样本上 (图 3D). Onco Targets Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 4061)被用于被用于免疫印迹在人类样本上 (图 7a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 4061)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signalling, 13116)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 13116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 13116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫组化-石蜡切片; 人类; 1:125; 图 2
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell signaling, 13116)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:125 (图 2). Endocrinology (2016) ncbi
小鼠 单克隆(13A9)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell signalling technology, 14215S)被用于被用于免疫印迹在人类样本上 (图 4d). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在小鼠样本上 (图 5). J Cell Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Tech, 4061)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell signaling, 13116)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 1:1000; 图 4h
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 13116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). Int J Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 4061)被用于被用于免疫印迹在小鼠样本上 (图 1d). Oncogene (2016) ncbi
domestic rabbit 单克隆(D4R1H)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling Technology, 13116)被用于被用于免疫印迹在人类样本上 (图 7a). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司钙粘蛋白N抗体(Cell Signaling, 4061)被用于被用于免疫印迹在人类样本上 (图 8). Neuroendocrinology (2016) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(6G11)
  • 免疫组化-石蜡切片; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司钙粘蛋白N抗体(DAKO, 6-G11)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Cancers (Basel) (2019) ncbi
小鼠 单克隆(6G11)
  • 免疫组化-石蜡切片; 人类; 图 1c
丹科医疗器械技术服务(上海)有限公司钙粘蛋白N抗体(Dako, 6G11)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). BMC Cancer (2018) ncbi
小鼠 单克隆(6G11)
  • 免疫印迹; 人类; 图 5b, 5e
丹科医疗器械技术服务(上海)有限公司钙粘蛋白N抗体(Dako, 6G11)被用于被用于免疫印迹在人类样本上 (图 5b, 5e). J Gerontol A Biol Sci Med Sci (2017) ncbi
小鼠 单克隆(6G11)
  • 免疫组化-石蜡切片; 人类; 1:25
丹科医疗器械技术服务(上海)有限公司钙粘蛋白N抗体(Dako, 6G11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. Res Vet Sci (2015) ncbi
小鼠 单克隆(6G11)
  • 免疫细胞化学; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司钙粘蛋白N抗体(Dako, M3613)被用于被用于免疫细胞化学在人类样本上浓度为1:50. J Mol Endocrinol (2014) ncbi
小鼠 单克隆(6G11)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司钙粘蛋白N抗体(Dako, M3613)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. PLoS ONE (2012) ncbi
Bioworld
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
Bioworld钙粘蛋白N抗体(Bioworld Technology, BS-2224)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
碧迪BD
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 1:2000; 图 4f
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4f). iScience (2022) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类
碧迪BD钙粘蛋白N抗体(BD Bioscience, 610920)被用于被用于免疫印迹在人类样本上. Nat Commun (2022) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 小鼠; 图 1f, 4d
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在小鼠样本上 (图 1f, 4d). Sci Adv (2022) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化; 小鼠; 1:100; 图 4k
碧迪BD钙粘蛋白N抗体(BD, 610920)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4k). Commun Biol (2022) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 1:100; 图 3e
碧迪BD钙粘蛋白N抗体(BD Bioscience, 610920)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3e). Am J Cancer Res (2022) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 2j
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 2j). Nat Commun (2021) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 图 1e
碧迪BD钙粘蛋白N抗体(BD Bioscience, 640920)被用于被用于免疫印迹在人类样本上 (图 1e). Cancers (Basel) (2021) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s1e
  • 免疫细胞化学; 小鼠; 图 1c
碧迪BD钙粘蛋白N抗体(BD, 610920)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s1e) 和 被用于免疫细胞化学在小鼠样本上 (图 1c). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 图 1d
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610921)被用于被用于免疫印迹在人类样本上 (图 1d). Cancers (Basel) (2021) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2f
碧迪BD钙粘蛋白N抗体(BD Transduction Laboratories, 610920)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Commun Biol (2021) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化; 小鼠; 1:250; 图 s3-1e
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610921)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s3-1e). elife (2021) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 1:500; 图 5a
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610921)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Nat Commun (2021) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 5f
碧迪BD钙粘蛋白N抗体(BD, 610921)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5f). elife (2021) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200; 图 4a
碧迪BD钙粘蛋白N抗体(Transduction Laboratories, 610920)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4a). J Neurochem (2021) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化; 人类; 图 3b
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫组化在人类样本上 (图 3b). elife (2020) ncbi
小鼠 单克隆(8C11)
  • 免疫印迹; 人类; 1:1000; 图 3h
碧迪BD钙粘蛋白N抗体(BD Biosciences, 561553)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3h). elife (2020) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 1:2500; 图 5
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 5). Oncol Lett (2020) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3a
碧迪BD钙粘蛋白N抗体(BD bioscience, 610920)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3a). elife (2020) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 1:500; 图 1g
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1g). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化; 小鼠; 图 2c
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫组化在小鼠样本上 (图 2c). Cell Rep (2020) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 小鼠; 1:2000; 图 5s1a
碧迪BD钙粘蛋白N抗体(BD Biosciences, 32)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5s1a). elife (2020) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; 人类; 1:250; 图 4e
碧迪BD钙粘蛋白N抗体(BD Biosciences, clone 32)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 4e). PLoS Biol (2019) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化; 小鼠; 1:100; 图 7h
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7h). Nat Commun (2019) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化; 小鼠; 1:150; 图 4e
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610921)被用于被用于免疫组化在小鼠样本上浓度为1:150 (图 4e). elife (2019) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; 人类; 图 1e
碧迪BD钙粘蛋白N抗体(BD Bioscience, 610920)被用于被用于免疫细胞化学在人类样本上 (图 1e). Cell Death Dis (2019) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫沉淀; 人类; 1:1000; 图 7a
碧迪BD钙粘蛋白N抗体(BD, 610921)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 7a). Nat Commun (2019) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 6a
  • 免疫印迹; 小鼠; 1:200; 图 6c
碧迪BD钙粘蛋白N抗体(BD, 610920)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 6c). Biosci Rep (2019) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 图 4d
碧迪BD钙粘蛋白N抗体(BD Transduction Laboratories, 610920)被用于被用于免疫印迹在人类样本上 (图 4d). Sci Rep (2018) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 7s2g
碧迪BD钙粘蛋白N抗体(BD Transduction Laboratories, 610920)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 7s2g). elife (2018) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 1a
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610921)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1a). Nat Commun (2018) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 图 2b
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Death Dis (2018) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 图 4e
碧迪BD钙粘蛋白N抗体(BD BioScience, 610921)被用于被用于免疫印迹在人类样本上 (图 4e). EMBO J (2018) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化; 小鼠; 图 8a
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610,920)被用于被用于免疫组化在小鼠样本上 (图 8a). Acta Neuropathol Commun (2017) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 1:2500; 图 4a
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 4a). Oncotarget (2017) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-冰冻切片; 大鼠; 图 6c
  • 免疫印迹; 大鼠; 图 6i
碧迪BD钙粘蛋白N抗体(Becton-Dickinson, 610920)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 6c) 和 被用于免疫印迹在大鼠样本上 (图 6i). Development (2017) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化基因敲除验证; 小鼠; 图 2a, 2b
  • 免疫印迹基因敲除验证; 小鼠; 图 2c
碧迪BD钙粘蛋白N抗体(BD, 610921)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 2a, 2b) 和 被用于免疫印迹基因敲除验证在小鼠样本上 (图 2c). Dev Biol (2017) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 小鼠; 图 7b
碧迪BD钙粘蛋白N抗体(BD, 610920)被用于被用于免疫印迹在小鼠样本上 (图 7b). Cancer Res (2017) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化; 小鼠; 1:1000; 表 1
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; 人类; 图 4c
  • 免疫印迹; 人类; 图 4a
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫细胞化学在人类样本上 (图 4c) 和 被用于免疫印迹在人类样本上 (图 4a). Mol Cancer Res (2017) ncbi
小鼠 单克隆(8C11)
  • 免疫细胞化学; 人类; 2 ug/ml; 图 s1
碧迪BD钙粘蛋白N抗体(BD Pharmigen, 561553)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml (图 s1). Biol Open (2017) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 5b
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Oncol Lett (2017) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 图 4c
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在人类样本上 (图 4c). Oncogenesis (2017) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; 人类; 图 2b
碧迪BD钙粘蛋白N抗体(BD Bioscience, 610920)被用于被用于免疫细胞化学在人类样本上 (图 2b). Cell Stem Cell (2017) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; 人类; 1:2000; 图 4b
  • 免疫印迹; 人类; 1:2000; 图 1b
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Nat Commun (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 8a
碧迪BD钙粘蛋白N抗体(BD Transduction Labs, 610920)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 8a). Neural Dev (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Eneuro (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫沉淀; 小鼠; 图 5b
  • 免疫细胞化学; 人类; 图 s6i
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫沉淀在小鼠样本上 (图 5b) 和 被用于免疫细胞化学在人类样本上 (图 s6i). Development (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; 人类; 图 1b
  • 免疫印迹; 人类; 图 1a
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫细胞化学在人类样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1a). Int J Mol Med (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 大鼠; 1:2000; 图 3b
碧迪BD钙粘蛋白N抗体(BD Bioscience, 610920)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3b). PLoS ONE (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 小鼠; 图 s2a
  • 免疫印迹; 人类; 图 s2a
碧迪BD钙粘蛋白N抗体(BD-Transduction Laboratories, 610920)被用于被用于免疫印迹在小鼠样本上 (图 s2a) 和 被用于免疫印迹在人类样本上 (图 s2a). J Clin Invest (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 图 4e
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在人类样本上 (图 4e). Oncogenesis (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
碧迪BD钙粘蛋白N抗体(BD Transduction Laboratories, 610920)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; 人类; 1:25; 图 1
  • 免疫组化; 人类; 1:25; 图 7
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610921)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 1), 被用于免疫组化在人类样本上浓度为1:25 (图 7) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Neoplasia (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 图 6a
  • 免疫细胞化学; 犬; 图 6d
  • 免疫印迹; 犬; 图 6a
碧迪BD钙粘蛋白N抗体(BD Transduction, 610920)被用于被用于免疫印迹在人类样本上 (图 6a), 被用于免疫细胞化学在犬样本上 (图 6d) 和 被用于免疫印迹在犬样本上 (图 6a). Sci Rep (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 小鼠; 图 2c
  • 免疫印迹; 人类; 图 3b, 4c
碧迪BD钙粘蛋白N抗体(BD BIOSCIENCES, 610920)被用于被用于免疫印迹在小鼠样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 3b, 4c). Oncotarget (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; 人类; 图 5d
  • 免疫印迹; 人类; 图 5c
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6c
碧迪BD钙粘蛋白N抗体(BD Transduction Laboratories, 610920)被用于被用于免疫细胞化学在人类样本上 (图 5d), 被用于免疫印迹在人类样本上 (图 5c) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6c). Oncotarget (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化; 小鼠; 图 st1
碧迪BD钙粘蛋白N抗体(BD, 610920)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; 人类; 图 2a
碧迪BD钙粘蛋白N抗体(BD Biosciences, 32)被用于被用于免疫细胞化学在人类样本上 (图 2a). BMC Cancer (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 1
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 7
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). PLoS ONE (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 6
碧迪BD钙粘蛋白N抗体(BD Transduction Laboratories, 610920)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 6). J Mol Psychiatry (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 图 4
碧迪BD钙粘蛋白N抗体(BD, 610921)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 1:10,000; 图 1
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Schizophr Res (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; African green monkey; 1:200; 图 1
  • 免疫印迹; African green monkey; 图 6
  • 免疫印迹; 人类; 图 7
碧迪BD钙粘蛋白N抗体(BD Transduction Laboratories, 610921)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:200 (图 1), 被用于免疫印迹在African green monkey样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 7). Traffic (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 1:2000; 图 4
碧迪BD钙粘蛋白N抗体(BD, 610921)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化; 小鼠; 1:500; 图 5
  • 免疫印迹; 小鼠; 图 4a
碧迪BD钙粘蛋白N抗体(BD, 610921)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 4a). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; 小鼠; 1:500; 图 2
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2). Stem Cell Reports (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610921)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Biotechnol Bioeng (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 1:2000; 图 2f
碧迪BD钙粘蛋白N抗体(BD, 32)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2f). Nat Commun (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 图 3
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 图 3
碧迪BD钙粘蛋白N抗体(BD Transduction Lab., 610920)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 1:2500; 图 2a
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 2a). Vascul Pharmacol (2016) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 图 2
碧迪BD钙粘蛋白N抗体(BD, 610921)被用于被用于免疫印迹在人类样本上 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化; 人类; 1:25; 图 s2
碧迪BD钙粘蛋白N抗体(BD Transduction Laboratories, 610920)被用于被用于免疫组化在人类样本上浓度为1:25 (图 s2). Nat Commun (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; 小鼠; 1:100; 图 1d
碧迪BD钙粘蛋白N抗体(BD Transduction Laboratories, 610920)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1d). PLoS ONE (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 8
碧迪BD钙粘蛋白N抗体(BD Bioscience, 610920)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 8). Nat Commun (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化; 小鼠
碧迪BD钙粘蛋白N抗体(BD-Transduction laboratories, 610920)被用于被用于免疫组化在小鼠样本上. Dev Biol (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 大鼠; 1:500; 图 4b
碧迪BD钙粘蛋白N抗体(BD Bioscience, 610920)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4b). Nat Commun (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 大鼠; 1:500; 图 3
碧迪BD钙粘蛋白N抗体(BD Transduction Laboratories, 610921)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 小鼠
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6). Cell Death Dis (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化; 小鼠; 1:100; 图 4
碧迪BD钙粘蛋白N抗体(BD Transduction Lab, 610920)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). PLoS Genet (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化; 人类; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 6b
碧迪BD钙粘蛋白N抗体(BD Bioscience, 610920)被用于被用于免疫组化在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). PLoS ONE (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 1:500; 图 3
碧迪BD钙粘蛋白N抗体(BD Biosciences, 32/N-Cadherin)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 图 4d
碧迪BD钙粘蛋白N抗体(BD Transduction laboratories, 610920)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 图 3b
碧迪BD钙粘蛋白N抗体(BD, 610920)被用于被用于免疫印迹在人类样本上 (图 3b). Breast Cancer Res (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化; 小鼠; 图 5b
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫组化在小鼠样本上 (图 5b). Sci Rep (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; 人类; 1:200
  • 免疫组化; 人类; 1:200
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610921)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫组化在人类样本上浓度为1:200. Ann Biomed Eng (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 小鼠; 1:500-1:2000; 图 s2
碧迪BD钙粘蛋白N抗体(BD, 610921)被用于被用于免疫印迹在小鼠样本上浓度为1:500-1:2000 (图 s2). Nat Methods (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 图 1a
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 1:5000
碧迪BD钙粘蛋白N抗体(BD Transduction Laboratories, 610920)被用于被用于免疫印迹在人类样本上浓度为1:5000. J Biol Chem (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 小鼠; 1:500
碧迪BD钙粘蛋白N抗体(BD, 610921)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Biol Reprod (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 小鼠
碧迪BD钙粘蛋白N抗体(BD Bioscience, 32/N-Cadherin)被用于被用于免疫印迹在小鼠样本上. Neoplasia (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 图 4
碧迪BD钙粘蛋白N抗体(BD Transduction Laboratories, 610920)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; 人类
碧迪BD钙粘蛋白N抗体(BD, 610920)被用于被用于免疫细胞化学在人类样本上. Mol Syst Biol (2014) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 小鼠; 1:2000
碧迪BD钙粘蛋白N抗体(BD Transduction Laboratories, 610921)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 图 4
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在人类样本上 (图 4). Mol Biol Cell (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 1:1000
碧迪BD钙粘蛋白N抗体(BD Biosciences, BD610920)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Res (2014) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在人类样本上. PLoS Genet (2014) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
碧迪BD钙粘蛋白N抗体(BD Transduction Laboratories, 32)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 s1
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Nat Cell Biol (2014) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类
碧迪BD钙粘蛋白N抗体(BD, 610920)被用于被用于免疫印迹在人类样本上. J Exp Clin Cancer Res (2014) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化; 大鼠
碧迪BD钙粘蛋白N抗体(BD Transduction Labs, 610920)被用于被用于免疫组化在大鼠样本上. J Comp Neurol (2015) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610921)被用于被用于免疫印迹在人类样本上. J Neurosci (2014) ncbi
小鼠 单克隆(8C11)
  • 免疫印迹; 小鼠; 1:1000; 图 e4
碧迪BD钙粘蛋白N抗体(BD Pharmingen, 561553)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 e4). Nature (2014) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610921)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化; 小鼠; 1:400
  • 免疫印迹; 小鼠; 1:2000
碧迪BD钙粘蛋白N抗体(BD Transduction Labs, 610921)被用于被用于免疫组化在小鼠样本上浓度为1:400 和 被用于免疫印迹在小鼠样本上浓度为1:2000. Hippocampus (2014) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 大鼠; 1:1000
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:100
碧迪BD钙粘蛋白N抗体(BD Transduction Laboratories, 610920)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:100. Development (2014) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 小鼠
碧迪BD钙粘蛋白N抗体(BD Biosciences, 32)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在人类样本上. Br J Cancer (2014) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BD钙粘蛋白N抗体(BD Biosciences Pharmingen, clone 32)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 1
碧迪BD钙粘蛋白N抗体(BD Transduction Labs, 610920)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 1). Biol Open (2014) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫印迹在人类样本上. Exp Cell Res (2014) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类
碧迪BD钙粘蛋白N抗体(BD, 610920)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类
碧迪BD钙粘蛋白N抗体(BD, 610920)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类
碧迪BD钙粘蛋白N抗体(BD Pharmingen, 610920)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 小鼠
碧迪BD钙粘蛋白N抗体(BD Transduction Laboratories, 610920)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫组化-冰冻切片在小鼠样本上. Nature (2013) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化-石蜡切片; 人类
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610921)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫细胞化学; 大鼠; 1:250
  • 免疫印迹; 大鼠; 1:1000
碧迪BD钙粘蛋白N抗体(BD, 610921)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Purinergic Signal (2013) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类
碧迪BD钙粘蛋白N抗体(BD Transduction Laboratories, 610920)被用于被用于免疫印迹在人类样本上. Oncogene (2013) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:5000
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610921)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000. J Comp Neurol (2012) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-冰冻切片; 家羊
  • 免疫印迹; 家羊
碧迪BD钙粘蛋白N抗体(BD, 610921)被用于被用于免疫组化-冰冻切片在家羊样本上 和 被用于免疫印迹在家羊样本上. Heart Rhythm (2012) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 小鼠; 图 4e
碧迪BD钙粘蛋白N抗体(BD, 610921)被用于被用于免疫印迹在小鼠样本上 (图 4e). J Clin Invest (2011) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫印迹; 人类; 图 5
碧迪BD钙粘蛋白N抗体(BD, 32)被用于被用于免疫印迹在人类样本上 (图 5). J Cell Mol Med (2010) ncbi
小鼠 单克隆(32/N-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
碧迪BD钙粘蛋白N抗体(BD Biosciences, 610920)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2006) ncbi
西格玛奥德里奇
小鼠 单克隆(CH-19)
  • 免疫组化; 大鼠; 1:500; 图 1d
西格玛奥德里奇钙粘蛋白N抗体(Sigma-Aldrich, C1821)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1d). Sci Rep (2021) ncbi
Developmental Studies Hybridoma Bank
大鼠 单克隆(MNCD2)
  • 免疫组化-冰冻切片; 小鼠; 图 6
Developmental Studies Hybridoma Bank钙粘蛋白N抗体(DSHB, MNCD2)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6). Dev Biol (2016) ncbi
大鼠 单克隆(MNCD2)
  • 免疫组化-冰冻切片; 小鼠; 1:20; 图 1
Developmental Studies Hybridoma Bank钙粘蛋白N抗体(DSHB, MNCD2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20 (图 1). Sci Rep (2015) ncbi
文章列表
  1. Pan R, Yu Y, Zhu H, Zhang W, Qin Y, Ye L, et al. RSPO2 promotes progression of ovarian cancer through dual receptor-mediated FAK/Src signaling activation. iScience. 2022;25:105184 pubmed 出版商
  2. Pandey S, Shteinfer Kuzmine A, Chalifa Caspi V, Shoshan Barmatz V. Non-apoptotic activity of the mitochondrial protein SMAC/Diablo in lung cancer: Novel target to disrupt survival, inflammation, and immunosuppression. Front Oncol. 2022;12:992260 pubmed 出版商
  3. Chen F, Xiao M, Feng J, Wufur R, Liu K, Hu S, et al. Different Inhibition of Nrf2 by Two Keap1 Isoforms α and β to Shape Malignant Behaviour of Human Hepatocellular Carcinoma. Int J Mol Sci. 2022;23: pubmed 出版商
  4. Xie F, Zhou X, Su P, Li H, Tu Y, Du J, et al. Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nat Commun. 2022;13:4461 pubmed 出版商
  5. Wu T, Wang W, Shi G, Hao M, Wang Y, Yao M, et al. Targeting HIC1/TGF-β axis-shaped prostate cancer microenvironment restrains its progression. Cell Death Dis. 2022;13:624 pubmed 出版商
  6. Chi R, Yao C, Chen S, Liu Y, He Y, Zhang J, et al. Elevated BCAA Suppresses the Development and Metastasis of Breast Cancer. Front Oncol. 2022;12:887257 pubmed 出版商
  7. Azarnia Tehran D, Kochlamazashvili G, Pampaloni N, Sposini S, Shergill J, Lehmann M, et al. Selective endocytosis of Ca2+-permeable AMPARs by the Alzheimer's disease risk factor CALM bidirectionally controls synaptic plasticity. Sci Adv. 2022;8:eabl5032 pubmed 出版商
  8. Fleming Martinez A, D xf6 ppler H, Bastea L, Edenfield B, Liou G, Storz P. Ym1+ macrophages orchestrate fibrosis, lesion growth, and progression during development of murine pancreatic cancer. iScience. 2022;25:104327 pubmed 出版商
  9. Kimura Yoshida C, Mochida K, Kanno S, Matsuo I. USP39 is essential for mammalian epithelial morphogenesis through upregulation of planar cell polarity components. Commun Biol. 2022;5:378 pubmed 出版商
  10. Fischer A, Wannemacher J, Christ S, Koopmans T, Kadri S, Zhao J, et al. Neutrophils direct preexisting matrix to initiate repair in damaged tissues. Nat Immunol. 2022;23:518-531 pubmed 出版商
  11. Yi B, Dai K, Yan Z, Yin Z. Circular RNA PLCE1 promotes epithelial mesenchymal transformation, glycolysis in colorectal cancer and M2 polarization of tumor-associated macrophages. Bioengineered. 2022;13:6243-6256 pubmed 出版商
  12. Zhong L, Yang B, Zhang Z, Wang J, Wang X, Guo Y, et al. Targeting autophagy peptidase ATG4B with a novel natural product inhibitor Azalomycin F4a for advanced gastric cancer. Cell Death Dis. 2022;13:161 pubmed 出版商
  13. Castillo P, Aisagbonhi O, Saenz C, ElShamy W. Novel insights linking BRCA1-IRIS role in mammary gland development to formation of aggressive PABCs: the case for longer breastfeeding. Am J Cancer Res. 2022;12:396-426 pubmed
  14. Hao W, Luo Q, Menger M, Fassbender K, Liu Y. Treatment With CD52 Antibody Protects Neurons in Experimental Autoimmune Encephalomyelitis Mice During the Recovering Phase. Front Immunol. 2021;12:792465 pubmed 出版商
  15. Jacquet M, Hervouet E, Baudu T, Herfs M, Parratte C, Feugeas J, et al. GABARAPL1 Inhibits EMT Signaling through SMAD-Tageted Negative Feedback. Biology (Basel). 2021;10: pubmed 出版商
  16. Liu W, Feng Q, Liao W, Li E, Wu L. TUG1 promotes the expression of IFITM3 in hepatocellular carcinoma by competitively binding to miR-29a. J Cancer. 2021;12:6905-6920 pubmed 出版商
  17. Baeza V, Cifuentes M, Martinez F, Ramírez E, Nualart F, Ferrada L, et al. IIIG9 inhibition in adult ependymal cells changes adherens junctions structure and induces cellular detachment. Sci Rep. 2021;11:18537 pubmed 出版商
  18. Li X, Pan F, He B, Fang C. Inhibition of ADAM10 ameliorates doxorubicin-induced cardiac remodeling by suppressing N-cadherin cleavage. Open Life Sci. 2021;16:856-866 pubmed 出版商
  19. Wang C, Yang Z, Xu E, Shen X, Wang X, Li Z, et al. Apolipoprotein C-II induces EMT to promote gastric cancer peritoneal metastasis via PI3K/AKT/mTOR pathway. Clin Transl Med. 2021;11:e522 pubmed 出版商
  20. da Silva F, Zhang K, Pinson A, Fatti E, Wilsch Bräuninger M, Herbst J, et al. Mitotic WNT signalling orchestrates neurogenesis in the developing neocortex. EMBO J. 2021;40:e108041 pubmed 出版商
  21. Wu Q, Zhang W, Liu Y, Huang Y, Wu H, Ma C. Histone deacetylase 1 facilitates aerobic glycolysis and growth of endometrial cancer. Oncol Lett. 2021;22:721 pubmed 出版商
  22. Zhao C, Ling X, Xia Y, Yan B, Guan Q. The m6A methyltransferase METTL3 controls epithelial-mesenchymal transition, migration and invasion of breast cancer through the MALAT1/miR-26b/HMGA2 axis. Cancer Cell Int. 2021;21:441 pubmed 出版商
  23. Cho A, Jin Y, An Y, Kim J, Choi Y, Lee J, et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun. 2021;12:4730 pubmed 出版商
  24. Mao C, Jiang S, Wang X, Tao S, Jiang B, Mao C, et al. BCAR1 plays critical roles in the formation and immunoevasion of invasive circulating tumor cells in lung adenocarcinoma. Int J Biol Sci. 2021;17:2461-2475 pubmed 出版商
  25. Zou J, Zhu X, Xiang D, Zhang Y, Li J, Su Z, et al. LIX1-like protein promotes liver cancer progression via miR-21-3p-mediated inhibition of fructose-1,6-bisphosphatase. Acta Pharm Sin B. 2021;11:1578-1591 pubmed 出版商
  26. Lee S, Jung J, Lee Y, Kim S, Kim J, Kim B, et al. Targeting HSF1 as a Therapeutic Strategy for Multiple Mechanisms of EGFR Inhibitor Resistance in EGFR Mutant Non-Small-Cell Lung Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  27. Luo C, Xu X, Liu C, He S, Chen J, Feng Y, et al. RBFOX2/GOLIM4 Splicing Axis Activates Vesicular Transport Pathway to Promote Nasopharyngeal Carcinogenesis. Adv Sci (Weinh). 2021;8:e2004852 pubmed 出版商
  28. Cheng X, Wang J, Liu C, Jiang T, Yang N, Liu D, et al. Zinc transporter SLC39A13/ZIP13 facilitates the metastasis of human ovarian cancer cells via activating Src/FAK signaling pathway. J Exp Clin Cancer Res. 2021;40:199 pubmed 出版商
  29. Wu Y, Guo Q, Ju X, Hu Z, Xia L, Deng Y, et al. HNRNPH1-stabilized LINC00662 promotes ovarian cancer progression by activating the GRP78/p38 pathway. Oncogene. 2021;40:4770-4782 pubmed 出版商
  30. Song M, Zhao G, Sun H, Yao S, Zhou Z, Jiang P, et al. circPTPN12/miR-21-5 p/∆Np63α pathway contributes to human endometrial fibrosis. elife. 2021;10: pubmed 出版商
  31. Jiang H, Deng W, Zhu K, Zeng Z, Hu B, Zhou Z, et al. LINC00467 Promotes Prostate Cancer Progression via M2 Macrophage Polarization and the miR-494-3p/STAT3 Axis. Front Oncol. 2021;11:661431 pubmed 出版商
  32. Urdiciain A, Erausquin E, Zelaya M, Zazpe I, Lanciego J, Melendez B, et al. Silencing of Histone Deacetylase 6 Decreases Cellular Malignancy and Contributes to Primary Cilium Restoration, Epithelial-to-Mesenchymal Transition Reversion, and Autophagy Inhibition in Glioblastoma Cell Lines. Biology (Basel). 2021;10: pubmed 出版商
  33. Li X, Lin P, Tao Y, Jiang X, Li T, Wang Y, et al. LECT 2 Antagonizes FOXM1 Signaling via Inhibiting MET to Retard PDAC Progression. Front Cell Dev Biol. 2021;9:661122 pubmed 出版商
  34. Nasu M, Esumi S, Hatakeyama J, Tamamaki N, Shimamura K. Two-Phase Lineage Specification of Telencephalon Progenitors Generated From Mouse Embryonic Stem Cells. Front Cell Dev Biol. 2021;9:632381 pubmed 出版商
  35. Wang X, Li X, Lin F, Sun H, Lin Y, Wang Z, et al. The lnc-CTSLP8 upregulates CTSL1 as a competitive endogenous RNA and promotes ovarian cancer metastasis. J Exp Clin Cancer Res. 2021;40:151 pubmed 出版商
  36. Chen X, Ma W, Yao Y, Zhang Q, Li J, Wu X, et al. Serum deprivation-response protein induces apoptosis in hepatocellular carcinoma through ASK1-JNK/p38 MAPK pathways. Cell Death Dis. 2021;12:425 pubmed 出版商
  37. Oh T, Lee M, Lee Y, Kim G, Lee D, You J, et al. PGC1α Loss Promotes Lung Cancer Metastasis through Epithelial-Mesenchymal Transition. Cancers (Basel). 2021;13: pubmed 出版商
  38. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  39. O Hare M, Amarnani D, Whitmore H, An M, Marino C, Ramos L, et al. Targeting Runt-Related Transcription Factor 1 Prevents Pulmonary Fibrosis and Reduces Expression of Severe Acute Respiratory Syndrome Coronavirus 2 Host Mediators. Am J Pathol. 2021;191:1193-1208 pubmed 出版商
  40. Kariya Y, Oyama M, Suzuki T, Kariya Y. αvβ3 Integrin induces partial EMT independent of TGF-β signaling. Commun Biol. 2021;4:490 pubmed 出版商
  41. Morcom L, Gobius I, Marsh A, Suárez R, Lim J, Bridges C, et al. DCC regulates astroglial development essential for telencephalic morphogenesis and corpus callosum formation. elife. 2021;10: pubmed 出版商
  42. Fayad R, Rojas M, Partisani M, Finetti P, Dib S, Abélanet S, et al. EFA6B regulates a stop signal for collective invasion in breast cancer. Nat Commun. 2021;12:2198 pubmed 出版商
  43. Gao S, Gao L, Wang S, Shi X, Yue C, Wei S, et al. ATF3 Suppresses Growth and Metastasis of Clear Cell Renal Cell Carcinoma by Deactivating EGFR/AKT/GSK3β/β-Catenin Signaling Pathway. Front Cell Dev Biol. 2021;9:618987 pubmed 出版商
  44. Sugita J, Fujiu K, Nakayama Y, Matsubara T, Matsuda J, Oshima T, et al. Cardiac macrophages prevent sudden death during heart stress. Nat Commun. 2021;12:1910 pubmed 出版商
  45. Wan L, Wang Y, Zhang Z, Wang J, Niu M, Wu Y, et al. Elevated TEFM expression promotes growth and metastasis through activation of ROS/ERK signaling in hepatocellular carcinoma. Cell Death Dis. 2021;12:325 pubmed 出版商
  46. Sun Y, Jing J, Xu H, Xu L, Hu H, Tang C, et al. N-cadherin inhibitor creates a microenvironment that protect TILs from immune checkpoints and Treg cells. J Immunother Cancer. 2021;9: pubmed 出版商
  47. Shao G, Fan X, Zhang P, Liu X, Huang L, Ji S. Methylation-dependent MCM6 repression induced by LINC00472 inhibits triple-negative breast cancer metastasis by disturbing the MEK/ERK signaling pathway. Aging (Albany NY). 2021;13:4962-4975 pubmed 出版商
  48. Zhang C, Chen L, Liu Y, Huang J, Liu A, Xu Y, et al. Downregulated METTL14 accumulates BPTF that reinforces super-enhancers and distal lung metastasis via glycolytic reprogramming in renal cell carcinoma. Theranostics. 2021;11:3676-3693 pubmed 出版商
  49. Galbraith L, Mui E, Nixon C, Hedley A, Strachan D, Mackay G, et al. PPAR-gamma induced AKT3 expression increases levels of mitochondrial biogenesis driving prostate cancer. Oncogene. 2021;40:2355-2366 pubmed 出版商
  50. Can xe8 S, Van Snick J, Uyttenhove C, Pilotte L, van den Eynde B. TGFβ1 neutralization displays therapeutic efficacy through both an immunomodulatory and a non-immune tumor-intrinsic mechanism. J Immunother Cancer. 2021;9: pubmed 出版商
  51. Wan X, Hou J, Liu S, Zhang Y, Li W, Zhang Y, et al. Estrogen Receptor α Mediates Doxorubicin Sensitivity in Breast Cancer Cells by Regulating E-Cadherin. Front Cell Dev Biol. 2021;9:583572 pubmed 出版商
  52. Fu C, Zhang Q, Wang A, Yang S, Jiang Y, Bai L, et al. EWI-2 controls nucleocytoplasmic shuttling of EGFR signaling molecules and miRNA sorting in exosomes to inhibit prostate cancer cell metastasis. Mol Oncol. 2021;15:1543-1565 pubmed 出版商
  53. Mondal T, Shivange G, Tihagam R, Lyerly E, Battista M, Talwar D, et al. Unexpected PD-L1 immune evasion mechanism in TNBC, ovarian, and other solid tumors by DR5 agonist antibodies. EMBO Mol Med. 2021;13:e12716 pubmed 出版商
  54. Grönroos P, Ilmarinen T, Skottman H. Directed Differentiation of Human Pluripotent Stem Cells towards Corneal Endothelial-Like Cells under Defined Conditions. Cells. 2021;10: pubmed 出版商
  55. Ding L, Fang Y, Li Y, Hu Q, Ai M, Deng K, et al. AIMP3 inhibits cell growth and metastasis of lung adenocarcinoma through activating a miR-96-5p-AIMP3-p53 axis. J Cell Mol Med. 2021;25:3019-3030 pubmed 出版商
  56. Delgado E, Erickson H, Tao J, Monga S, Duncan A, Anakk S. Scaffolding Protein IQGAP1 is Dispensable But Its Overexpression Promotes Hepatocellular Carcinoma via YAP1 Signaling. Mol Cell Biol. 2021;: pubmed 出版商
  57. Zhou H, Qin L, Jiang Q, Murray K, Zhang H, Li B, et al. Caveolae-mediated Tie2 signaling contributes to CCM pathogenesis in a brain endothelial cell-specific Pdcd10-deficient mouse model. Nat Commun. 2021;12:504 pubmed 出版商
  58. Okawa E, Gupta M, Kahraman S, Goli P, Sakaguchi M, Hu J, et al. Essential roles of insulin and IGF-1 receptors during embryonic lineage development. Mol Metab. 2021;47:101164 pubmed 出版商
  59. Hu X, Villodre E, Larson R, Rahal O, Wang X, Gong Y, et al. Decorin-mediated suppression of tumorigenesis, invasion, and metastasis in inflammatory breast cancer. Commun Biol. 2021;4:72 pubmed 出版商
  60. Dilshat R, Fock V, Kenny C, Gerritsen I, Lasseur R, Travnickova J, et al. MITF reprograms the extracellular matrix and focal adhesion in melanoma. elife. 2021;10: pubmed 出版商
  61. Zhang K, Wang D, Cai H, Cao M, Zhang Y, Zhuang P, et al. IL‑6 plays a crucial role in epithelial‑mesenchymal transition and pro‑metastasis induced by sorafenib in liver cancer. Oncol Rep. 2021;45:1105-1117 pubmed 出版商
  62. Luo X, Gong H, Gao H, Wu Y, Sun W, Li Z, et al. Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2. Cell Death Differ. 2021;: pubmed 出版商
  63. Hexiao T, Yuquan B, Lecai X, Yanhong W, Li S, Weidong H, et al. Knockdown of CENPF inhibits the progression of lung adenocarcinoma mediated by ERβ2/5 pathway. Aging (Albany NY). 2021;13:2604-2625 pubmed 出版商
  64. Jiang Y, Han Q, Zhao H, Zhang J. Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp Clin Cancer Res. 2021;40:13 pubmed 出版商
  65. Ye D, Wang S, Huang Y, Wang X, Chi P. USP43 directly regulates ZEB1 protein, mediating proliferation and metastasis of colorectal cancer. J Cancer. 2021;12:404-416 pubmed 出版商
  66. Jiang X, Xu Y, Ren H, Jiang J, Wudu M, Wang Q, et al. KLHL18 inhibits the proliferation, migration, and invasion of non-small cell lung cancer by inhibiting PI3K/PD-L1 axis activity. Cell Biosci. 2020;10:139 pubmed 出版商
  67. van Berkel A, Santos T, Shaweis H, van Weering J, Toonen R, Verhage M. Loss of MUNC18-1 leads to retrograde transport defects in neurons. J Neurochem. 2021;157:450-466 pubmed 出版商
  68. Roth J, Muench K, Asokan A, Mallett V, Gai H, Verma Y, et al. 16p11.2 microdeletion imparts transcriptional alterations in human iPSC-derived models of early neural development. elife. 2020;9: pubmed 出版商
  69. Hu Q, Masuda T, Kuramitsu S, Tobo T, Sato K, Kidogami S, et al. Potential association of LOXL1 with peritoneal dissemination in gastric cancer possibly via promotion of EMT. PLoS ONE. 2020;15:e0241140 pubmed 出版商
  70. Hosseini K, Taubenberger A, Werner C, Fischer Friedrich E. EMT-Induced Cell-Mechanical Changes Enhance Mitotic Rounding Strength. Adv Sci (Weinh). 2020;7:2001276 pubmed 出版商
  71. Zhang Y, Zhang L, Lu S, Xiang Y, Zeng C, He T, et al. Long Non-coding RNA CASC15 Promotes Intrahepatic Cholangiocarcinoma Possibly through Inducing PRDX2/PI3K/AKT Axis. Cancer Res Treat. 2021;53:184-198 pubmed 出版商
  72. Wang T, Gao X, Zhou K, Jiang T, Gao S, Liu P, et al. Role of ARID1A in epithelial‑mesenchymal transition in breast cancer and its effect on cell sensitivity to 5‑FU. Int J Mol Med. 2020;46:1683-1694 pubmed 出版商
  73. Aikin T, Peterson A, Pokrass M, Clark H, Regot S. MAPK activity dynamics regulate non-cell autonomous effects of oncogene expression. elife. 2020;9: pubmed 出版商
  74. Wang Y, Gao G, Wu Y, Wang Y, Wu X, Zhou Q. S100A4 Silencing Facilitates Corneal Wound Healing After Alkali Burns by Promoting Autophagy via Blocking the PI3K/Akt/mTOR Signaling Pathway. Invest Ophthalmol Vis Sci. 2020;61:19 pubmed 出版商
  75. Oliemuller E, Newman R, Tsang S, Foo S, Muirhead G, Noor F, et al. SOX11 promotes epithelial/mesenchymal hybrid state and alters tropism of invasive breast cancer cells. elife. 2020;9: pubmed 出版商
  76. Liu Y, Li L, Liu X, Wang Y, Liu L, Peng L, et al. Arginine methylation of SHANK2 by PRMT7 promotes human breast cancer metastasis through activating endosomal FAK signalling. elife. 2020;9: pubmed 出版商
  77. Sun Z, Ji N, Ma Q, Zhu R, Chen Z, Wang Z, et al. Epithelial-Mesenchymal Transition in Asthma Airway Remodeling Is Regulated by the IL-33/CD146 Axis. Front Immunol. 2020;11:1598 pubmed 出版商
  78. Cui P, Jing P, Liu X, Xu W. Prognostic Significance of PD-L1 Expression and Its Tumor-Intrinsic Functions in Hypopharyngeal Squamous Cell Carcinoma. Cancer Manag Res. 2020;12:5893-5902 pubmed 出版商
  79. Huang F, Zheng C, Huang L, Lin C, Wang J. USP18 directly regulates Snail1 protein through ubiquitination pathway in colorectal cancer. Cancer Cell Int. 2020;20:346 pubmed 出版商
  80. Pseftogas A, Xanthopoulos K, Poutahidis T, Ainali C, Dafou D, Panteris E, et al. The Tumor Suppressor CYLD Inhibits Mammary Epithelial to Mesenchymal Transition by the Coordinated Inhibition of YAP/TAZ and TGF Signaling. Cancers (Basel). 2020;12: pubmed 出版商
  81. Wang W, Wang H, Xiang L, Ni T, Jin F, Deng J, et al. DJ‑1 is a new prognostic marker and predicts chemotherapy efficacy in colorectal cancer. Oncol Rep. 2020;44:77-90 pubmed 出版商
  82. Dias A, Lozovska A, Wymeersch F, Novoa A, Binagui Casas A, Sobral D, et al. A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation. elife. 2020;9: pubmed 出版商
  83. Christgen M, Bartels S, van Luttikhuizen J, Bublitz J, Rieger L, Christgen H, et al. E-cadherin to P-cadherin switching in lobular breast cancer with tubular elements. Mod Pathol. 2020;33:2483-2498 pubmed 出版商
  84. Huang W, Yu D, Wang M, Han Y, Lin J, Wei D, et al. ITGBL1 promotes cell migration and invasion through stimulating the TGF-β signalling pathway in hepatocellular carcinoma. Cell Prolif. 2020;53:e12836 pubmed 出版商
  85. Lin Z, Lin X, Zhu L, Huang J, Huang Y. TRIM2 directly deubiquitinates and stabilizes Snail1 protein, mediating proliferation and metastasis of lung adenocarcinoma. Cancer Cell Int. 2020;20:228 pubmed 出版商
  86. Wen X, Wan J, He Q, Wang M, Li S, Jiang M, et al. p190A inactivating mutations cause aberrant RhoA activation and promote malignant transformation via the Hippo-YAP pathway in endometrial cancer. Signal Transduct Target Ther. 2020;5:81 pubmed 出版商
  87. Qi J, Liu S, Liu W, Cai G, Liao G. Identification of UAP1L1 as tumor promotor in gastric cancer through regulation of CDK6. Aging (Albany NY). 2020;12:6904-6927 pubmed 出版商
  88. Tian Q, Yuan P, Quan C, Li M, Xiao J, Zhang L, et al. Phosphorylation of BCKDK of BCAA catabolism at Y246 by Src promotes metastasis of colorectal cancer. Oncogene. 2020;39:3980-3996 pubmed 出版商
  89. Liu F, Hu L, Pei Y, Zheng K, Wang W, Li S, et al. Long non-coding RNA AFAP1-AS1 accelerates the progression of melanoma by targeting miR-653-5p/RAI14 axis. BMC Cancer. 2020;20:258 pubmed 出版商
  90. Liang W, Gao R, Yang M, Wang X, Cheng K, Shi X, et al. MARCKSL1 promotes the proliferation, migration and invasion of lung adenocarcinoma cells. Oncol Lett. 2020;19:2272-2280 pubmed 出版商
  91. Alafate W, Li X, Zuo J, Zhang H, Xiang J, Wu W, et al. Elevation of CXCL1 indicates poor prognosis and radioresistance by inducing mesenchymal transition in glioblastoma. CNS Neurosci Ther. 2020;26:475-485 pubmed 出版商
  92. Singh S, Adam M, Matkar P, Bugyei Twum A, Desjardins J, Chen H, et al. Endothelial-specific Loss of IFT88 Promotes Endothelial-to-Mesenchymal Transition and Exacerbates Bleomycin-induced Pulmonary Fibrosis. Sci Rep. 2020;10:4466 pubmed 出版商
  93. Moon H, Hippenmeyer S, Luo L, Wynshaw Boris A. LIS1 determines cleavage plane positioning by regulating actomyosin-mediated cell membrane contractility. elife. 2020;9: pubmed 出版商
  94. Guo Y, Zhang Z, Wang Z, Liu G, Liu Y, Wang H. Astragalus polysaccharides inhibit ovarian cancer cell growth via microRNA-27a/FBXW7 signaling pathway. Biosci Rep. 2020;40: pubmed 出版商
  95. Jin T, Liu M, Liu Y, Li Y, Xu Z, He H, et al. Lcn2-derived Circular RNA (hsa_circ_0088732) Inhibits Cell Apoptosis and Promotes EMT in Glioma via the miR-661/RAB3D Axis. Front Oncol. 2020;10:170 pubmed 出版商
  96. Kim K, Shin W, Kang M, Lee S, Kim D, Kang R, et al. Presynaptic PTPσ regulates postsynaptic NMDA receptor function through direct adhesion-independent mechanisms. elife. 2020;9: pubmed 出版商
  97. Wang X, Shan Y, Tan Q, Tan C, Zhang H, Liu J, et al. MEX3A knockdown inhibits the development of pancreatic ductal adenocarcinoma. Cancer Cell Int. 2020;20:63 pubmed 出版商
  98. Chen Z, Zhang J, Xue H, Qian M, Guo X, Gao X, et al. Nitidine Chloride Is a Potential Alternative Therapy for Glioma Through Inducing Endoplasmic Reticulum Stress and Alleviating Epithelial-Mesenchymal Transition. Integr Cancer Ther. 2020;19:1534735419900927 pubmed 出版商
  99. Dong C, Zhang J, Fang S, Liu F. IGFBP5 increases cell invasion and inhibits cell proliferation by EMT and Akt signaling pathway in Glioblastoma multiforme cells. Cell Div. 2020;15:4 pubmed 出版商
  100. Wang S, Qi Y, Gao X, Qiu W, Liu Q, Guo X, et al. Hypoxia-induced lncRNA PDIA3P1 promotes mesenchymal transition via sponging of miR-124-3p in glioma. Cell Death Dis. 2020;11:168 pubmed 出版商
  101. Wang X, Jian X, Dou J, Wei Z, Zhao F. Decreasing Microtubule Actin Cross-Linking Factor 1 Inhibits Melanoma Metastasis by Decreasing Epithelial to Mesenchymal Transition. Cancer Manag Res. 2020;12:663-673 pubmed 出版商
  102. Tian S, Peng P, Li J, Deng H, Zhan N, Zeng Z, et al. SERPINH1 regulates EMT and gastric cancer metastasis via the Wnt/β-catenin signaling pathway. Aging (Albany NY). 2020;12:3574-3593 pubmed 出版商
  103. Zhang Y, Du P, Li Y, Zhu Q, Song X, Liu S, et al. TASP1 Promotes Gallbladder Cancer Cell Proliferation and Metastasis by Up-regulating FAM49B via PI3K/AKT Pathway. Int J Biol Sci. 2020;16:739-751 pubmed 出版商
  104. Hu D, Chen H, Lou L, Zhang H, Yang G. SKA3 promotes lung adenocarcinoma metastasis through the EGFR-PI3K-Akt axis. Biosci Rep. 2020;40: pubmed 出版商
  105. Chandrasekaran B, Dahiya N, Tyagi A, Kolluru V, Saran U, Baby B, et al. Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis. 2020;9:23 pubmed 出版商
  106. Liu K, Yu Q, Li H, Xie C, Wu Y, Ma D, et al. BIRC7 promotes epithelial-mesenchymal transition and metastasis in papillary thyroid carcinoma through restraining autophagy. Am J Cancer Res. 2020;10:78-94 pubmed
  107. Feng Y, Ji D, Huang Y, Ji B, Zhang Y, Li J, et al. TGM3 functions as a tumor suppressor by repressing epithelial‑to‑mesenchymal transition and the PI3K/AKT signaling pathway in colorectal cancer. Oncol Rep. 2020;43:864-876 pubmed 出版商
  108. Guoren Z, Zhaohui F, Wei Z, Mei W, Yuan W, Lin S, et al. TFAP2A Induced ITPKA Serves as an Oncogene and Interacts with DBN1 in Lung Adenocarcinoma. Int J Biol Sci. 2020;16:504-514 pubmed 出版商
  109. Xiong G, Chen J, Zhang G, Wang S, Kawasaki K, Zhu J, et al. Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction. Proc Natl Acad Sci U S A. 2020;117:3748-3758 pubmed 出版商
  110. Lin L, Li Y, Liu M, Li Q, Liu Q, Li R. The Interleukin-33/ST2 axis promotes glioma mesenchymal transition, stemness and TMZ resistance via JNK activation. Aging (Albany NY). 2020;12:1685-1703 pubmed 出版商
  111. Liao S, Chen H, Liu M, Gan L, Li C, Zhang W, et al. Aquaporin 9 inhibits growth and metastasis of hepatocellular carcinoma cells via Wnt/β-catenin pathway. Aging (Albany NY). 2020;12:1527-1544 pubmed 出版商
  112. Yang W, Chen Z, Ma X, Ouyang X, Fang J, Wei H. Co-overexpression of VEGF and GDNF in adipose-derived stem cells optimizes therapeutic effect in neurogenic erectile dysfunction model. Cell Prolif. 2020;53:e12756 pubmed 出版商
  113. Li Q, Mao F, Zhou B, Huang Y, Zou Z, Dendekker A, et al. p53 Integrates Temporal WDR5 Inputs during Neuroectoderm and Mesoderm Differentiation of Mouse Embryonic Stem Cells. Cell Rep. 2020;30:465-480.e6 pubmed 出版商
  114. Du X, Zhang Z, Zheng X, Zhang H, Dong D, Zhang Z, et al. An electrochemical biosensor for the detection of epithelial-mesenchymal transition. Nat Commun. 2020;11:192 pubmed 出版商
  115. Liu Q, Borcherding N, Shao P, Maina P, Zhang W, Qi H. Contribution of synergism between PHF8 and HER2 signalling to breast cancer development and drug resistance. EBioMedicine. 2020;51:102612 pubmed 出版商
  116. Cai H, Li J, Zhang Y, Liao Y, Zhu Y, Wang C, et al. LDHA Promotes Oral Squamous Cell Carcinoma Progression Through Facilitating Glycolysis and Epithelial-Mesenchymal Transition. Front Oncol. 2019;9:1446 pubmed 出版商
  117. Dos Santos Carvalho S, Moreau M, Hien Y, Garcia M, Aubailly N, Henderson D, et al. Vangl2 acts at the interface between actin and N-cadherin to modulate mammalian neuronal outgrowth. elife. 2020;9: pubmed 出版商
  118. Suzuki D, Flahou C, Yoshikawa N, Stirblyte I, Hayashi Y, Sawaguchi A, et al. iPSC-Derived Platelets Depleted of HLA Class I Are Inert to Anti-HLA Class I and Natural Killer Cell Immunity. Stem Cell Reports. 2020;14:49-59 pubmed 出版商
  119. Wang H, Chen Z, Wang S, Gao X, Qian M, Qiu W, et al. TGFβ1-induced beta-site APP-cleaving enzyme 2 upregulation promotes tumorigenesis through the NF-κB signalling pathway in human gliomas. Mol Oncol. 2020;14:407-425 pubmed 出版商
  120. Piprek R, Kolasa M, Podkowa D, Kloc M, Kubiak J. N-Cadherin Is Critical for the Survival of Germ Cells, the Formation of Steroidogenic Cells, and the Architecture of Developing Mouse Gonads. Cells. 2019;8: pubmed 出版商
  121. Quach C, Song Y, Guo H, Li S, Maazi H, Fung M, et al. A truncating mutation in the autophagy gene UVRAG drives inflammation and tumorigenesis in mice. Nat Commun. 2019;10:5681 pubmed 出版商
  122. Hiepen C, Jatzlau J, Hildebrandt S, Kampfrath B, Goktas M, Murgai A, et al. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biol. 2019;17:e3000557 pubmed 出版商
  123. Jiang K, Zhi X, Ma Y, Zhou L. Long non-coding RNA TOB1-AS1 modulates cell proliferation, apoptosis, migration and invasion through miR-23a/NEU1 axis via Wnt/b-catenin pathway in gastric cancer. Eur Rev Med Pharmacol Sci. 2019;23:9890-9899 pubmed 出版商
  124. Hu Y, Ma Y, Liu J, Cai Y, Zhang M, Fang X. LINC01128 expedites cervical cancer progression by regulating miR-383-5p/SFN axis. BMC Cancer. 2019;19:1157 pubmed 出版商
  125. Wu X, Chen S, Lu C. Amyloid precursor protein promotes the migration and invasion of breast cancer cells by regulating the MAPK signaling pathway. Int J Mol Med. 2019;: pubmed 出版商
  126. Zhang J, Zhang Z, Sun J, Ma Q, Zhao W, Chen X, et al. MiR-942 regulates the function of breast cancer cell by targeting FOXA2. Biosci Rep. 2019;39: pubmed 出版商
  127. Zhou S, da Silva S, Siegel P, Philip A. CD109 acts as a gatekeeper of the epithelial trait by suppressing epithelial to mesenchymal transition in squamous cell carcinoma cells in vitro. Sci Rep. 2019;9:16317 pubmed 出版商
  128. Chen X, Xiong X, Cui D, Yang F, Wei D, Li H, et al. DEPTOR is an in vivo tumor suppressor that inhibits prostate tumorigenesis via the inactivation of mTORC1/2 signals. Oncogene. 2020;39:1557-1571 pubmed 出版商
  129. Valentiner U, Knips J, Pries R, Clauditz T, Münscher A, Sauter G, et al. Selectin Binding Sites Are Involved in Cell Adhesive Properties of Head and Neck Squamous Cell Carcinoma. Cancers (Basel). 2019;11: pubmed 出版商
  130. Matsumoto S, Yamamichi T, Shinzawa K, Kasahara Y, Nojima S, Kodama T, et al. GREB1 induced by Wnt signaling promotes development of hepatoblastoma by suppressing TGFβ signaling. Nat Commun. 2019;10:3882 pubmed 出版商
  131. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  132. Wei C, Zhu M, Zhang P, Yang X, Wang L, Ying J, et al. Elevated kindlin-2 promotes tumour progression and angiogenesis through the mTOR/VEGFA pathway in melanoma. Aging (Albany NY). 2019;11:6273-6285 pubmed 出版商
  133. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  134. Li Q, Lai Q, He C, Fang Y, Yan Q, Zhang Y, et al. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res. 2019;38:334 pubmed 出版商
  135. Sharma S, Carmona A, Skowronek A, Yu F, Collins M, Naik S, et al. Apoptotic signalling targets the post-endocytic sorting machinery of the death receptor Fas/CD95. Nat Commun. 2019;10:3105 pubmed 出版商
  136. Wang X, Liu R, Zhu W, Chu H, Yu H, Wei P, et al. UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis. Nature. 2019;571:127-131 pubmed 出版商
  137. Adams C, Htwe H, Marsh T, Wang A, Montoya M, Subbaraj L, et al. Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer. elife. 2019;8: pubmed 出版商
  138. Roy A, Murphy R, Deng M, MacDonald J, Bammler T, Aldinger K, et al. PI3K-Yap activity drives cortical gyrification and hydrocephalus in mice. elife. 2019;8: pubmed 出版商
  139. Slobodnyuk K, Radic N, Ivanova S, Lladó A, Trempolec N, Zorzano A, et al. Autophagy-induced senescence is regulated by p38α signaling. Cell Death Dis. 2019;10:376 pubmed 出版商
  140. Lubbers E, Murphy N, Musa H, Huang C, Gupta R, Price M, et al. Defining new mechanistic roles for αII spectrin in cardiac function. J Biol Chem. 2019;294:9576-9591 pubmed 出版商
  141. Kim E, Lisby A, Ma C, Lo N, Ehmer U, Hayer K, et al. Promotion of growth factor signaling as a critical function of β-catenin during HCC progression. Nat Commun. 2019;10:1909 pubmed 出版商
  142. Tang L, Wen J, Wen P, Li X, Gong M, Li Q. Long non-coding RNA LINC01314 represses cell migration, invasion, and angiogenesis in gastric cancer via the Wnt/β-catenin signaling pathway by down-regulating KLK4. Cancer Cell Int. 2019;19:94 pubmed 出版商
  143. Liu Y, Xue M, Du S, Feng W, Zhang K, Zhang L, et al. Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT. Nat Commun. 2019;10:1637 pubmed 出版商
  144. Zhang D, Zhou H, Liu J, Mao J. Long Noncoding RNA ASB16-AS1 Promotes Proliferation, Migration, and Invasion in Glioma Cells. Biomed Res Int. 2019;2019:5437531 pubmed 出版商
  145. Hlavac N, VandeVord P. Astrocyte Mechano-Activation by High-Rate Overpressure Involves Alterations in Structural and Junctional Proteins. Front Neurol. 2019;10:99 pubmed 出版商
  146. Novielli Kuntz N, Jelen M, Barr K, DeLalio L, Feng Q, Isakson B, et al. Ablation of both Cx40 and Panx1 results in similar cardiovascular phenotypes exhibited in Cx40 knockout mice. Biosci Rep. 2019;39: pubmed 出版商
  147. Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn L, Rosenthal B, et al. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell. 2019;176:790-804.e13 pubmed 出版商
  148. Liu Z, Liu J, Dong X, Hu X, Jiang Y, Li L, et al. Tn antigen promotes human colorectal cancer metastasis via H-Ras mediated epithelial-mesenchymal transition activation. J Cell Mol Med. 2019;23:2083-2092 pubmed 出版商
  149. Li Y, Merkel C, Zeng X, Heier J, Cantrell P, Sun M, et al. The N-cadherin interactome in primary cardiomyocytes as defined using quantitative proximity proteomics. J Cell Sci. 2019;132: pubmed 出版商
  150. Aggarwal S, Gabrovsek L, Langeberg L, Golkowski M, Ong S, Smith F, et al. Depletion of dAKAP1-protein kinase A signaling islands from the outer mitochondrial membrane alters breast cancer cell metabolism and motility. J Biol Chem. 2019;294:3152-3168 pubmed 出版商
  151. Zhang Z, Chen J, Huang W, Ning D, Liu Q, Wang C, et al. FAM134B induces tumorigenesis and epithelial-to-mesenchymal transition via Akt signaling in hepatocellular carcinoma. Mol Oncol. 2019;13:792-810 pubmed 出版商
  152. Lee C, Cheng Y, Chang C, Lin C, Chang J. Alpha-tubulin acetyltransferase/MEC-17 regulates cancer cell migration and invasion through epithelial-mesenchymal transition suppression and cell polarity disruption. Sci Rep. 2018;8:17477 pubmed 出版商
  153. Song X, Chen H, Zhang C, Yu Y, Chen Z, Liang H, et al. SRC-3 inhibition blocks tumor growth of pancreatic ductal adenocarcinoma. Cancer Lett. 2019;442:310-319 pubmed 出版商
  154. Eley L, Alqahtani A, MacGrogan D, Richardson R, Murphy L, Salguero Jimenez A, et al. A novel source of arterial valve cells linked to bicuspid aortic valve without raphe in mice. elife. 2018;7: pubmed 出版商
  155. Shimoda Y, Ubukata Y, Handa T, Yokobori T, Watanabe T, Gantumur D, et al. High expression of forkhead box protein C2 is associated with aggressive phenotypes and poor prognosis in clinical hepatocellular carcinoma. BMC Cancer. 2018;18:597 pubmed 出版商
  156. Hsu J, Xia W, Hsu Y, Chan L, Yu W, Cha J, et al. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun. 2018;9:1908 pubmed 出版商
  157. Wang X, Du C, He X, Deng X, He Y, Zhou X. MiR-4463 inhibits the migration of human aortic smooth muscle cells by AMOT. Biosci Rep. 2018;38: pubmed 出版商
  158. Park J, Kim I, Choi J, Lim H, Shin J, Kim Y, et al. AHNAK Loss in Mice Promotes Type II Pneumocyte Hyperplasia and Lung Tumor Development. Mol Cancer Res. 2018;16:1287-1298 pubmed 出版商
  159. Sakai Takemura F, Narita A, Masuda S, Wakamatsu T, Watanabe N, Nishiyama T, et al. Premyogenic progenitors derived from human pluripotent stem cells expand in floating culture and differentiate into transplantable myogenic progenitors. Sci Rep. 2018;8:6555 pubmed 出版商
  160. Zhao X, Peng Z, Long L, Chen N, Zheng H, Deng D, et al. Lentiviral vector delivery of short hairpin RNA to NgR1 promotes nerve regeneration and locomotor recovery in injured rat spinal cord. Sci Rep. 2018;8:5447 pubmed 出版商
  161. Zheng C, Wang J, Lin M, Zhang P, Liu L, Lin J, et al. CDK5RAP3 suppresses Wnt/β-catenin signaling by inhibiting AKT phosphorylation in gastric cancer. J Exp Clin Cancer Res. 2018;37:59 pubmed 出版商
  162. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  163. Hsieh W, Ramadesikan S, FEKETE D, Aguilar R. Kidney-differentiated cells derived from Lowe Syndrome patient's iPSCs show ciliogenesis defects and Six2 retention at the Golgi complex. PLoS ONE. 2018;13:e0192635 pubmed 出版商
  164. Zhao H, Klausen C, Li Y, Zhu H, Wang Y, Leung P. Bone morphogenetic protein 2 promotes human trophoblast cell invasion by upregulating N-cadherin via non-canonical SMAD2/3 signaling. Cell Death Dis. 2018;9:174 pubmed 出版商
  165. Glaeser K, Urban M, Fenech E, Voloshanenko O, Kranz D, Lari F, et al. ERAD-dependent control of the Wnt secretory factor Evi. EMBO J. 2018;37: pubmed 出版商
  166. Vl kov K, Vachtenheim J, R da J, Hor k P, Ondru ov L. Inducibly decreased MITF levels do not affect proliferation and phenotype switching but reduce differentiation of melanoma cells. J Cell Mol Med. 2018;22:2240-2251 pubmed 出版商
  167. Hamada N, Iwamoto I, Tabata H, Nagata K. MUNC18-1 gene abnormalities are involved in neurodevelopmental disorders through defective cortical architecture during brain development. Acta Neuropathol Commun. 2017;5:92 pubmed 出版商
  168. Cottard F, Madi Berthélémy P, Erdmann E, Schaff Wendling F, Keime C, Ye T, et al. Dual effects of constitutively active androgen receptor and full-length androgen receptor for N-cadherin regulation in prostate cancer. Oncotarget. 2017;8:72008-72020 pubmed 出版商
  169. Rong X, Wang B, Palladino E, de Aguiar Vallim T, Ford D, Tontonoz P. ER phospholipid composition modulates lipogenesis during feeding and in obesity. J Clin Invest. 2017;127:3640-3651 pubmed 出版商
  170. Wang W, Liu F, Wang C, Wang C, Tang Y, Jiang Z. Glutathione S-transferase A1 mediates nicotine-induced lung cancer cell metastasis by promoting epithelial-mesenchymal transition. Exp Ther Med. 2017;14:1783-1788 pubmed 出版商
  171. Roberts S, Dun X, Doddrell R, Mindos T, Drake L, Onaitis M, et al. Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve. Development. 2017;144:3114-3125 pubmed 出版商
  172. Logan C, Rajakaruna S, Bowen C, Radice G, Robinson M, Menko A. N-cadherin regulates signaling mechanisms required for lens fiber cell elongation and lens morphogenesis. Dev Biol. 2017;428:118-134 pubmed 出版商
  173. Lu J, Yang Y, Guo G, Liu Y, Zhang Z, Dong S, et al. IKBKE regulates cell proliferation and epithelial-mesenchymal transition of human malignant glioma via the Hippo pathway. Oncotarget. 2017;8:49502-49514 pubmed 出版商
  174. Liu S, Cheng C. Akt Signaling Is Sustained by a CD44 Splice Isoform-Mediated Positive Feedback Loop. Cancer Res. 2017;77:3791-3801 pubmed 出版商
  175. Sai K, Wang S, Kaito A, Fujiwara T, Maruo T, Itoh Y, et al. Multiple roles of afadin in the ultrastructural morphogenesis of mouse hippocampal mossy fiber synapses. J Comp Neurol. 2017;525:2719-2734 pubmed 出版商
  176. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  177. Samson E, Tsao D, Zimak J, McLaughlin R, Trenton N, Mace E, et al. The coordinating role of IQGAP1 in the regulation of local, endosome-specific actin networks. Biol Open. 2017;6:785-799 pubmed 出版商
  178. Wu Y, Jhao Y, Cheng Y, Chen Y. 15-Deoxy-?12,14-prostaglandin J2 inhibits migration of human thyroid carcinoma cells by disrupting focal adhesion complex and adherens junction. Oncol Lett. 2017;13:2569-2576 pubmed 出版商
  179. Li P, Wang Y, Mao X, Jiang Y, Liu J, Li J, et al. CRB3 downregulation confers breast cancer stem cell traits through TAZ/?-catenin. Oncogenesis. 2017;6:e322 pubmed 出版商
  180. Kim D, Ko H, Park G, Hur D, Kim Y, Yang J. Vandetanib and ADAM inhibitors synergistically attenuate the pathological migration of EBV-infected retinal pigment epithelial cells by regulating the VEGF-mediated MAPK pathway. Exp Ther Med. 2017;13:1415-1425 pubmed 出版商
  181. Liao Z, Zhao L, Cai M, Xi M, He L, Yu F, et al. P300 promotes migration, invasion and epithelial-mesenchymal transition in a nasopharyngeal carcinoma cell line. Oncol Lett. 2017;13:763-769 pubmed 出版商
  182. Hu X, Zhang Z, Liang Z, Xie D, Zhang T, Yu D, et al. Downregulation of feline sarcoma-related protein inhibits cell migration, invasion and epithelial-mesenchymal transition via the ERK/AP-1 pathway in bladder urothelial cell carcinoma. Oncol Lett. 2017;13:686-694 pubmed 出版商
  183. Li P, Zhang R, Wang L, Gan Y, Xu Y, Song L, et al. Long-term load duration induces N-cadherin down-regulation and loss of cell phenotype of nucleus pulposus cells in a disc bioreactor culture. Biosci Rep. 2017;37: pubmed 出版商
  184. Huang T, Song J, Zheng F, Pang H, Zhao Y, Gu H, et al. Protection of FK506 against neuronal apoptosis and axonal injury following experimental diffuse axonal injury. Mol Med Rep. 2017;15:3001-3010 pubmed 出版商
  185. Shen C, Kuo Y, Chen C, Chen M, Cheng Y. MMP1 expression is activated by Slug and enhances multi-drug resistance (MDR) in breast cancer. PLoS ONE. 2017;12:e0174487 pubmed 出版商
  186. Menicacci B, Laurenzana A, Chillà A, Margheri F, Peppicelli S, Tanganelli E, et al. Chronic Resveratrol Treatment Inhibits MRC5 Fibroblast SASP-Related Protumoral Effects on Melanoma Cells. J Gerontol A Biol Sci Med Sci. 2017;72:1187-1195 pubmed 出版商
  187. Riascos Bernal D, Chinnasamy P, Gross J, Almonte V, Egaña Gorroño L, Parikh D, et al. Inhibition of Smooth Muscle ?-Catenin Hinders Neointima Formation After Vascular Injury. Arterioscler Thromb Vasc Biol. 2017;37:879-888 pubmed 出版商
  188. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  189. Bi Y, Shen W, Min M, Liu Y. MicroRNA-7 functions as a tumor-suppressor gene by regulating ILF2 in pancreatic carcinoma. Int J Mol Med. 2017;39:900-906 pubmed 出版商
  190. Chang Y, Lin T, Campbell M, Pan C, Lee S, Lee H, et al. REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-refractory prostate cancer. Sci Rep. 2017;7:42795 pubmed 出版商
  191. Zhai S, Liu C, Zhang L, Zhu J, Guo J, Zhang J, et al. PLCE1 Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional Activity of Snail. Neoplasia. 2017;19:154-164 pubmed 出版商
  192. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  193. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  194. Gemel J, Su Z, Gileles Hillel A, Khalyfa A, Gozal D, Beyer E. Intermittent hypoxia causes NOX2-dependent remodeling of atrial connexins. BMC Cell Biol. 2017;18:7 pubmed 出版商
  195. Yu M, Lu B, Liu Y, Me Y, Wang L, Li H. Interference with Tim-3 protein expression attenuates the invasion of clear cell renal cell carcinoma and aggravates anoikis. Mol Med Rep. 2017;15:1103-1108 pubmed 出版商
  196. Bershteyn M, Nowakowski T, Pollen A, Di Lullo E, Nene A, Wynshaw Boris A, et al. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell. 2017;20:435-449.e4 pubmed 出版商
  197. Fang S, Yu L, Mei H, Yang J, Gao T, Cheng A, et al. Cisplatin promotes mesenchymal-like characteristics in osteosarcoma through Snail. Oncol Lett. 2016;12:5007-5014 pubmed 出版商
  198. Maltabe V, Barka E, Kontonika M, Florou D, Kouvara Pritsouli M, Roumpi M, et al. Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity. Stem Cells Int. 2016;2016:8305624 pubmed 出版商
  199. Le Dour C, Macquart C, Sera F, Homma S, Bonne G, Morrow J, et al. Decreased WNT/?-catenin signalling contributes to the pathogenesis of dilated cardiomyopathy caused by mutations in the lamin a/C gene. Hum Mol Genet. 2017;26:333-343 pubmed 出版商
  200. Song L, Yu A, Murray K, Cortopassi G. Bipolar cell reduction precedes retinal ganglion neuron loss in a complex 1 knockout mouse model. Brain Res. 2017;1657:232-244 pubmed 出版商
  201. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  202. Kusumoto H, Shintani Y, Kanzaki R, Kawamura T, Funaki S, Minami M, et al. Podocalyxin influences malignant potential by controlling epithelial-mesenchymal transition in lung adenocarcinoma. Cancer Sci. 2017;108:528-535 pubmed 出版商
  203. Yu J, Lei R, Zhuang X, Li X, Li G, Lev S, et al. MicroRNA-182 targets SMAD7 to potentiate TGF?-induced epithelial-mesenchymal transition and metastasis of cancer cells. Nat Commun. 2016;7:13884 pubmed 出版商
  204. Han X, Fang Z, Wang H, Jiao R, Zhou J, Fang N. CUL4A functions as an oncogene in ovarian cancer and is directly regulated by miR-494. Biochem Biophys Res Commun. 2016;480:675-681 pubmed 出版商
  205. Van Itallie C, Tietgens A, Anderson J. Visualizing the dynamic coupling of claudin strands to the actin cytoskeleton through ZO-1. Mol Biol Cell. 2017;28:524-534 pubmed 出版商
  206. Ma H, Wang L, Liu J, Qian L. Direct Cardiac Reprogramming as a Novel Therapeutic Strategy for Treatment of Myocardial Infarction. Methods Mol Biol. 2017;1521:69-88 pubmed
  207. Bosch P, Fuller L, Sleeth C, Weiner J. Akirin2 is essential for the formation of the cerebral cortex. Neural Dev. 2016;11:21 pubmed
  208. Chaudhury A, Cheema S, Fachini J, Kongchan N, Lu G, Simon L, et al. CELF1 is a central node in post-transcriptional regulatory programmes underlying EMT. Nat Commun. 2016;7:13362 pubmed 出版商
  209. Gong F, Guo Y, Niu Y, Jin J, Zhang X, Shi X, et al. Epigenetic silencing of TET2 and TET3 induces an EMT-like process in melanoma. Oncotarget. 2017;8:315-328 pubmed 出版商
  210. Gilbert J, Man H. The X-Linked Autism Protein KIAA2022/KIDLIA Regulates Neurite Outgrowth via N-Cadherin and ?-Catenin Signaling. Eneuro. 2016;3: pubmed
  211. Gao Y, Mruk D, Chen H, Lui W, Lee W, Cheng C. Regulation of the blood-testis barrier by a local axis in the testis: role of laminin ?2 in the basement membrane. FASEB J. 2017;31:584-597 pubmed 出版商
  212. Lian G, Dettenhofer M, Lu J, Downing M, Chenn A, Wong T, et al. Filamin A- and formin 2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development. 2016;143:4509-4520 pubmed
  213. Cain S, Mularczyk E, Singh M, Massam Wu T, Kielty C. ADAMTS-10 and -6 differentially regulate cell-cell junctions and focal adhesions. Sci Rep. 2016;6:35956 pubmed 出版商
  214. Polusani S, Kalmykov E, Chandrasekhar A, Zucker S, Nicholson B. Cell coupling mediated by connexin 26 selectively contributes to reduced adhesivity and increased migration. J Cell Sci. 2016;129:4399-4410 pubmed
  215. Lobato Álvarez J, Roldán M, López Murillo T, González Ramírez R, Bonilla Delgado J, Shoshani L. The Apical Localization of Na+, K+-ATPase in Cultured Human Retinal Pigment Epithelial Cells Depends on Expression of the ?2 Subunit. Front Physiol. 2016;7:450 pubmed
  216. Andrade A, Hope J, Allen A, Yorgan V, Lipscombe D, Pan J. A rare schizophrenia risk variant of CACNA1I disrupts CaV3.3 channel activity. Sci Rep. 2016;6:34233 pubmed 出版商
  217. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  218. Takeuchi S, Iwama S, Takagi H, Kiyota A, Nakashima K, Izumida H, et al. Tomosyn Negatively Regulates Arginine Vasopressin Secretion in Embryonic Stem Cell-Derived Neurons. PLoS ONE. 2016;11:e0164544 pubmed 出版商
  219. Shenoy A, Jin Y, Luo H, Tang M, Pampo C, Shao R, et al. Epithelial-to-mesenchymal transition confers pericyte properties on cancer cells. J Clin Invest. 2016;126:4174-4186 pubmed 出版商
  220. Mai H, Xu X, Mei G, Hong T, Huang J, Wang T, et al. The interplay between HPIP and casein kinase 1? promotes renal cell carcinoma growth and metastasis via activation of mTOR pathway. Oncogenesis. 2016;5:e260 pubmed 出版商
  221. Dubail J, Vasudevan D, Wang L, Earp S, Jenkins M, Haltiwanger R, et al. Impaired ADAMTS9 secretion: A potential mechanism for eye defects in Peters Plus Syndrome. Sci Rep. 2016;6:33974 pubmed 出版商
  222. Matos M, Lapyckyj L, Rosso M, Besso M, Mencucci M, Briggiler C, et al. Identification of a Novel Human E-Cadherin Splice Variant and Assessment of Its Effects Upon EMT-Related Events. J Cell Physiol. 2017;232:1368-1386 pubmed 出版商
  223. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  224. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  225. Lee E, Wang J, Yumoto K, Jung Y, Cackowski F, Decker A, et al. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis. Neoplasia. 2016;18:553-66 pubmed 出版商
  226. Kim M, Jeong J, Seo J, Kim H, Kim S, Jin W. Dysregulated JAK2 expression by TrkC promotes metastasis potential, and EMT program of metastatic breast cancer. Sci Rep. 2016;6:33899 pubmed 出版商
  227. Kong X, Liu F, Gao J. MiR-155 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells through the activation of PI3K/SGK3/β-catenin signaling pathways. Oncotarget. 2016;7:66051-66060 pubmed 出版商
  228. Vardaki I, Ceder S, Rutishauser D, Baltatzis G, Foukakis T, Panaretakis T. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget. 2016;7:74966-74978 pubmed 出版商
  229. Li N, Lee W, Cheng C. Overexpression of plastin 3 in Sertoli cells disrupts actin microfilament bundle homeostasis and perturbs the tight junction barrier. Spermatogenesis. 2016;6:e1206353 pubmed 出版商
  230. Matkar P, Singh K, Rudenko D, Kim Y, Kuliszewski M, Prud homme G, et al. Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma. Oncotarget. 2016;7:69489-69506 pubmed 出版商
  231. Szewczyk L, Brozko N, Nagalski A, Röckle I, Werneburg S, Hildebrandt H, et al. ST8SIA2 promotes oligodendrocyte differentiation and the integrity of myelin and axons. Glia. 2017;65:34-49 pubmed 出版商
  232. Liu L, Phua Y, Lee R, Ma X, Jenkins Y, Novy K, et al. Homo- and Heterotypic Association Regulates Signaling by the SgK269/PEAK1 and SgK223 Pseudokinases. J Biol Chem. 2016;291:21571-21583 pubmed
  233. Busse B, Bezrukov L, Blank P, Zimmerberg J. Resin embedded multicycle imaging (REMI): a tool to evaluate protein domains. Sci Rep. 2016;6:30284 pubmed 出版商
  234. Kim R, Kaushik N, Suh Y, Yoo K, Cui Y, Kim M, et al. Radiation driven epithelial-mesenchymal transition is mediated by Notch signaling in breast cancer. Oncotarget. 2016;7:53430-53442 pubmed 出版商
  235. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  236. Zeller P, Legendre A, Jacques S, Fleury M, Gilard F, Tcherkez G, et al. Hepatocytes cocultured with Sertoli cells in bioreactor favors Sertoli barrier tightness in rat. J Appl Toxicol. 2017;37:287-295 pubmed 出版商
  237. Li N, Mruk D, Chen H, Wong C, Lee W, Cheng C. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43. Sci Rep. 2016;6:29667 pubmed 出版商
  238. Choi S, Kee H, Kurz T, Hansen F, Ryu Y, Kim G, et al. Class I HDACs specifically regulate E-cadherin expression in human renal epithelial cells. J Cell Mol Med. 2016;20:2289-2298 pubmed 出版商
  239. Pailler E, Oulhen M, Billiot F, Galland A, Auger N, Faugeroux V, et al. Method for semi-automated microscopy of filtration-enriched circulating tumor cells. BMC Cancer. 2016;16:477 pubmed 出版商
  240. Dorland Y, Malinova T, van Stalborch A, Grieve A, van Geemen D, Jansen N, et al. The F-BAR protein pacsin2 inhibits asymmetric VE-cadherin internalization from tensile adherens junctions. Nat Commun. 2016;7:12210 pubmed 出版商
  241. Cox A, Barrandon O, Cai E, Rios J, Chavez J, Bonnyman C, et al. Resolving Discrepant Findings on ANGPTL8 in ?-Cell Proliferation: A Collaborative Approach to Resolving the Betatrophin Controversy. PLoS ONE. 2016;11:e0159276 pubmed 出版商
  242. Grassi M, Palma C, Thomé C, Lanfredi G, Poersch A, Faça V. Proteomic analysis of ovarian cancer cells during epithelial-mesenchymal transition (EMT) induced by epidermal growth factor (EGF) reveals mechanisms of cell cycle control. J Proteomics. 2017;151:2-11 pubmed 出版商
  243. Yang S, Tsai C, Pan Y, Yeh C, Pang J, Takano M, et al. MART-10, a newly synthesized vitamin D analog, represses metastatic potential of head and neck squamous carcinoma cells. Drug Des Devel Ther. 2016;10:1995-2002 pubmed 出版商
  244. He Z, Forest F, Gain P, Rageade D, Bernard A, Acquart S, et al. 3D map of the human corneal endothelial cell. Sci Rep. 2016;6:29047 pubmed 出版商
  245. Gao Y, Lui W, Lee W, Cheng C. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells. Sci Rep. 2016;6:28589 pubmed 出版商
  246. Hou H, Chen L, Zha Z, Cai S, Tan M, Guo G, et al. Long form collapsin response mediator protein-1 promotes the migration and invasion of osteosarcoma cells. Oncol Lett. 2016;12:23-28 pubmed
  247. Folmsbee S, Wilcox D, Tyberghein K, De Bleser P, Tourtellotte W, van Hengel J, et al. ?T-catenin in restricted brain cell types and its potential connection to autism. J Mol Psychiatry. 2016;4:2 pubmed 出版商
  248. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed 出版商
  249. Li Q, Sodroski C, Lowey B, Schweitzer C, Cha H, Zhang F, et al. Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition. Proc Natl Acad Sci U S A. 2016;113:7620-5 pubmed 出版商
  250. Qi Y, Yu J, Han W, Fan X, Qian H, Wei H, et al. A splicing isoform of TEAD4 attenuates the Hippo-YAP signalling to inhibit tumour proliferation. Nat Commun. 2016;7:ncomms11840 pubmed 出版商
  251. De Cian M, Pauper E, Bandiera R, Vidal V, Sacco S, Gregoire E, et al. Amplification of R-spondin1 signaling induces granulosa cell fate defects and cancers in mouse adult ovary. Oncogene. 2017;36:208-218 pubmed 出版商
  252. Clark A, Petty H. Identification of lesion subtypes in biopsies of ductal carcinoma in situ of the breast using biomarker ratio imaging microscopy. Sci Rep. 2016;6:27039 pubmed 出版商
  253. Qi J, Li T, Bian H, Li F, Ju Y, Gao S, et al. SNAI1 promotes the development of HCC through the enhancement of proliferation and inhibition of apoptosis. FEBS Open Bio. 2016;6:326-37 pubmed 出版商
  254. Hong L, Pan F, Jiang H, Zhang L, Liu Y, Cai C, et al. miR-125b inhibited epithelial-mesenchymal transition of triple-negative breast cancer by targeting MAP2K7. Onco Targets Ther. 2016;9:2639-48 pubmed 出版商
  255. Chesnokova V, Zonis S, Zhou C, Recouvreux M, Ben Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250-9 pubmed 出版商
  256. Zhang H, Prado K, Zhang K, Peek E, Lee J, Wang X, et al. Biased Expression of the FOXP3Δ3 Isoform in Aggressive Bladder Cancer Mediates Differentiation and Cisplatin Chemotherapy Resistance. Clin Cancer Res. 2016;22:5349-5361 pubmed
  257. Lee Y, Kim S, Song S, Hong H, Lee Y, Oh B, et al. Crosstalk between CCL7 and CCR3 promotes metastasis of colon cancer cells via ERK-JNK signaling pathways. Oncotarget. 2016;7:36842-36853 pubmed 出版商
  258. Bie Q, Sun C, Gong A, Li C, Su Z, Zheng D, et al. Non-tumor tissue derived interleukin-17B activates IL-17RB/AKT/β-catenin pathway to enhance the stemness of gastric cancer. Sci Rep. 2016;6:25447 pubmed 出版商
  259. Alaee M, Danesh G, Pasdar M. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53. PLoS ONE. 2016;11:e0154323 pubmed 出版商
  260. García Bea A, Walker M, Hyde T, Kleinman J, Harrison P, Lane T. Metabotropic glutamate receptor 3 (mGlu3; mGluR3; GRM3) in schizophrenia: Antibody characterisation and a semi-quantitative western blot study. Schizophr Res. 2016;177:18-27 pubmed 出版商
  261. Shah B, Lutter D, Bochenek M, Kato K, Tsytsyura Y, Glyvuk N, et al. C3G/Rapgef1 Is Required in Multipolar Neurons for the Transition to a Bipolar Morphology during Cortical Development. PLoS ONE. 2016;11:e0154174 pubmed 出版商
  262. Chiang K, Yeh T, Chen S, Pang J, Yeh C, Hsu J, et al. The Vitamin D Analog, MART-10, Attenuates Triple Negative Breast Cancer Cells Metastatic Potential. Int J Mol Sci. 2016;17: pubmed 出版商
  263. Liu S, Zhou F, Shen Y, Zhang Y, Yin H, Zeng Y, et al. Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells. Oncotarget. 2016;7:32876-92 pubmed 出版商
  264. Montalbano M, Curcurù G, Shirafkan A, Vento R, Rastellini C, Cicalese L. Modeling of Hepatocytes Proliferation Isolated from Proximal and Distal Zones from Human Hepatocellular Carcinoma Lesion. PLoS ONE. 2016;11:e0153613 pubmed 出版商
  265. Wen M, Wang J, Chiu Y, Wang M, Lee S, Tai C. N-Cadherin Regulates Cell Migration Through a Rab5-Dependent Temporal Control of Macropinocytosis. Traffic. 2016;17:769-85 pubmed 出版商
  266. Huang M, Liu T, Ma P, Mitteer R, Zhang Z, Kim H, et al. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J Clin Invest. 2016;126:1801-14 pubmed 出版商
  267. Yu J, Berga S, Johnston MacAnanny E, Sidell N, Bagchi I, Bagchi M, et al. Endometrial Stromal Decidualization Responds Reversibly to Hormone Stimulation and Withdrawal. Endocrinology. 2016;157:2432-46 pubmed 出版商
  268. Falcão V, Maschio D, de Fontes C, Oliveira R, Santos Silva J, Almeida A, et al. Reduced insulin secretion function is associated with pancreatic islet redistribution of cell adhesion molecules (CAMS) in diabetic mice after prolonged high-fat diet. Histochem Cell Biol. 2016;146:13-31 pubmed 出版商
  269. Yin K, Yin W, Wang Y, Zhou L, Liu Y, Yang G, et al. MiR-206 suppresses epithelial mesenchymal transition by targeting TGF-? signaling in estrogen receptor positive breast cancer cells. Oncotarget. 2016;7:24537-48 pubmed 出版商
  270. Park S, Kim J, Kim N, Yang K, Shim J, Heo K. Estradiol, TGF-?1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration. Oncol Lett. 2016;11:1895-1902 pubmed
  271. Chen H, Mruk D, Lee W, Cheng C. Planar Cell Polarity (PCP) Protein Vangl2 Regulates Ectoplasmic Specialization Dynamics via Its Effects on Actin Microfilaments in the Testes of Male Rats. Endocrinology. 2016;157:2140-59 pubmed 出版商
  272. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  273. Thakur A, Nigri J, Lac S, Leca J, Bressy C, Berthezene P, et al. TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma. Cell Death Differ. 2016;23:1358-70 pubmed 出版商
  274. Chang H, Liu Y, Xue M, Liu H, Du S, Zhang L, et al. Synergistic action of master transcription factors controls epithelial-to-mesenchymal transition. Nucleic Acids Res. 2016;44:2514-27 pubmed 出版商
  275. Chang T, Chen C, Wu Y, Liu J, Kuo Y, Lee K, et al. Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma. PLoS ONE. 2016;11:e0149897 pubmed 出版商
  276. Li D, Sinha T, Ajima R, Seo H, Yamaguchi T, Wang J. Spatial regulation of cell cohesion by Wnt5a during second heart field progenitor deployment. Dev Biol. 2016;412:18-31 pubmed 出版商
  277. Yang Z, Liu S, Zhu M, Zhang H, Wang J, Xu Q, et al. PS341 inhibits hepatocellular and colorectal cancer cells through the FOXO3/CTNNB1 signaling pathway. Sci Rep. 2016;6:22090 pubmed 出版商
  278. Zou M, Zhu W, Wang L, Shi L, Gao R, Ou Y, et al. AEG-1/MTDH-activated autophagy enhances human malignant glioma susceptibility to TGF-β1-triggered epithelial-mesenchymal transition. Oncotarget. 2016;7:13122-38 pubmed 出版商
  279. Wang X, Ma C, Zong Z, Xiao Y, Li N, Guo C, et al. A20 inhibits the motility of HCC cells induced by TNF-α. Oncotarget. 2016;7:14742-54 pubmed 出版商
  280. Lee S, Shatadal S, Griep A. Dlg-1 Interacts With and Regulates the Activities of Fibroblast Growth Factor Receptors and EphA2 in the Mouse Lens. Invest Ophthalmol Vis Sci. 2016;57:707-18 pubmed 出版商
  281. Jackson S, Olufs Z, Tran K, Zaidan N, Sridharan R. Alternative Routes to Induced Pluripotent Stem Cells Revealed by Reprogramming of the Neural Lineage. Stem Cell Reports. 2016;6:302-11 pubmed 出版商
  282. Skardal A, Devarasetty M, Forsythe S, Atala A, Soker S. A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening. Biotechnol Bioeng. 2016;113:2020-32 pubmed 出版商
  283. Chojnacka K, Bilinska B, Mruk D. Interleukin 1alpha-induced disruption of the Sertoli cell cytoskeleton affects gap junctional communication. Cell Signal. 2016;28:469-480 pubmed 出版商
  284. Kim D, Helfman D. Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene. 2016;35:4495-508 pubmed 出版商
  285. Wang X, Jung Y, Jun S, Lee S, Wang W, Schneider A, et al. PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun. 2016;7:10633 pubmed 出版商
  286. Sun H, Chen J, Qian W, Kang J, Wang J, Jiang L, et al. Integrated long non-coding RNA analyses identify novel regulators of epithelial-mesenchymal transition in the mouse model of pulmonary fibrosis. J Cell Mol Med. 2016;20:1234-46 pubmed 出版商
  287. Bertoldo M, Guibert E, Faure M, Guillou F, Ramé C, Nadal Desbarats L, et al. Specific deletion of AMP-activated protein kinase (α1AMPK) in mouse Sertoli cells modifies germ cell quality. Mol Cell Endocrinol. 2016;423:96-112 pubmed 出版商
  288. Little E, Camp E, Wang C, Watson P, Watson D, Cole D. The CaSm (LSm1) oncogene promotes transformation, chemoresistance and metastasis of pancreatic cancer cells. Oncogenesis. 2016;5:e182 pubmed 出版商
  289. Yue X, Zhao Y, Zhang C, Li J, Liu Z, Liu J, et al. Leukemia inhibitory factor promotes EMT through STAT3-dependent miR-21 induction. Oncotarget. 2016;7:3777-90 pubmed 出版商
  290. Noh H, Hah Y, Ha J, Kang M, Zada S, Rha S, et al. Regulation of the epithelial to mesenchymal transition and metastasis by Raf kinase inhibitory protein-dependent Notch1 activity. Oncotarget. 2016;7:4632-46 pubmed 出版商
  291. Wang F, Feng Y, Li P, Wang K, Feng L, Liu Y, et al. RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma. Oncotarget. 2016;7:4279-97 pubmed 出版商
  292. Li N, Mruk D, Mok K, Li M, Wong C, Lee W, et al. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption. FASEB J. 2016;30:1436-52 pubmed 出版商
  293. Yan L, Liu Y, Xiang J, Wu Q, Xu L, Luo X, et al. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol. 2016;48:471-84 pubmed 出版商
  294. Wang G, Yu Y, Sun C, Liu T, Liang T, Zhan L, et al. STAT3 selectively interacts with Smad3 to antagonize TGF-β signalling. Oncogene. 2016;35:4388-98 pubmed 出版商
  295. Bartscht T, Rosien B, Rades D, Kaufmann R, Biersack H, Lehnert H, et al. Dasatinib blocks transcriptional and promigratory responses to transforming growth factor-beta in pancreatic adenocarcinoma cells through inhibition of Smad signalling: implications for in vivo mode of action. Mol Cancer. 2015;14:199 pubmed 出版商
  296. Lyon C, Wadey K, George S. Soluble N-cadherin: A novel inhibitor of VSMC proliferation and intimal thickening. Vascul Pharmacol. 2016;78:53-62 pubmed 出版商
  297. Wang J, Lu R, Yang J, Li H, He Z, Jing N, et al. TRPC6 specifically interacts with APP to inhibit its cleavage by γ-secretase and reduce Aβ production. Nat Commun. 2015;6:8876 pubmed 出版商
  298. Fridriksdottir A, Kim J, Villadsen R, Klitgaard M, Hopkinson B, Petersen O, et al. Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture. Nat Commun. 2015;6:8786 pubmed 出版商
  299. Bhate A, Parker D, Bebee T, Ahn J, Arif W, Rashan E, et al. ESRP2 controls an adult splicing programme in hepatocytes to support postnatal liver maturation. Nat Commun. 2015;6:8768 pubmed 出版商
  300. Koudelkova P, Weber G, Mikulits W. Liver Sinusoidal Endothelial Cells Escape Senescence by Loss of p19ARF. PLoS ONE. 2015;10:e0142134 pubmed 出版商
  301. McCart Reed A, Kutasovic J, Vargas A, Jayanthan J, Al Murrani A, Reid L, et al. An epithelial to mesenchymal transition programme does not usually drive the phenotype of invasive lobular carcinomas. J Pathol. 2016;238:489-94 pubmed 出版商
  302. Burns J, Kelly M, Hoa M, Morell R, Kelley M. Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner ear. Nat Commun. 2015;6:8557 pubmed 出版商
  303. Ou Yang L, Xiao S, Liu P, Yi S, Zhang X, Ou Yang S, et al. Forkhead box C1 induces epithelial‑mesenchymal transition and is a potential therapeutic target in nasopharyngeal carcinoma. Mol Med Rep. 2015;12:8003-9 pubmed 出版商
  304. Nassal M, Werdich A, Wan X, Hoshi M, Deschênes I, Rosenbaum D, et al. Phosphorylation at Connexin43 Serine-368 Is Necessary for Myocardial Conduction During Metabolic Stress. J Cardiovasc Electrophysiol. 2016;27:110-9 pubmed 出版商
  305. Arya P, Rainey M, Bhattacharyya S, Mohapatra B, George M, Kuracha M, et al. The endocytic recycling regulatory protein EHD1 Is required for ocular lens development. Dev Biol. 2015;408:41-55 pubmed 出版商
  306. Martínez Revollar G, Garay E, Martín Tapia D, Nava P, Huerta M, Lopez Bayghen E, et al. Heterogeneity between triple negative breast cancer cells due to differential activation of Wnt and PI3K/AKT pathways. Exp Cell Res. 2015;339:67-80 pubmed 出版商
  307. Marchi S, Corricelli M, Trapani E, Bravi L, Pittaro A, Delle Monache S, et al. Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Mol Med. 2015;7:1403-17 pubmed 出版商
  308. Nagaoka K, Fujii K, Zhang H, Usuda K, Watanabe G, Ivshina M, et al. CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis. Oncogene. 2016;35:2893-901 pubmed 出版商
  309. Yan M, Yao C, Chow J, Chang C, Hwang P, Chuang S, et al. Fucoidan Elevates MicroRNA-29b to Regulate DNMT3B-MTSS1 Axis and Inhibit EMT in Human Hepatocellular Carcinoma Cells. Mar Drugs. 2015;13:6099-116 pubmed 出版商
  310. Yokdang N, Hatakeyama J, Wald J, Simion C, Tellez J, Chang D, et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene. 2016;35:2932-47 pubmed 出版商
  311. Basheer W, Harris B, Mentrup H, Abreha M, Thames E, Lea J, et al. Cardiomyocyte-specific overexpression of the ubiquitin ligase Wwp1 contributes to reduction in Connexin 43 and arrhythmogenesis. J Mol Cell Cardiol. 2015;88:1-13 pubmed 出版商
  312. Poitelon Y, Bogni S, Matafora V, Della Flora Nunes G, Hurley E, Ghidinelli M, et al. Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Nat Commun. 2015;6:8303 pubmed 出版商
  313. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  314. Brigidi G, Santyr B, Shimell J, Jovellar B, Bamji S. Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5. Nat Commun. 2015;6:8200 pubmed 出版商
  315. Noritake K, Aki T, Funakoshi T, Unuma K, Uemura K. Direct Exposure to Ethanol Disrupts Junctional Cell-Cell Contact and Hippo-YAP Signaling in HL-1 Murine Atrial Cardiomyocytes. PLoS ONE. 2015;10:e0136952 pubmed 出版商
  316. Gonzalez J, Ramachandran J, Xie L, Contreras J, Fraidenraich D. Selective Connexin43 Inhibition Prevents Isoproterenol-Induced Arrhythmias and Lethality in Muscular Dystrophy Mice. Sci Rep. 2015;5:13490 pubmed 出版商
  317. He S, Zhao Z, Yang Y, O Connell D, Zhang X, Oh S, et al. Truncating mutation in the autophagy gene UVRAG confers oncogenic properties and chemosensitivity in colorectal cancers. Nat Commun. 2015;6:7839 pubmed 出版商
  318. Russell R, Perkhofer L, Liebau S, Lin Q, Lechel A, Feld F, et al. Loss of ATM accelerates pancreatic cancer formation and epithelial-mesenchymal transition. Nat Commun. 2015;6:7677 pubmed 出版商
  319. Xu J, Wan P, Wang M, Zhang J, Gao X, Hu B, et al. AIP1-mediated actin disassembly is required for postnatal germ cell migration and spermatogonial stem cell niche establishment. Cell Death Dis. 2015;6:e1818 pubmed 出版商
  320. Nagahara T, Shiraha H, Sawahara H, Uchida D, Takeuchi Y, Iwamuro M, et al. Hepatic stellate cells promote upregulation of epithelial cell adhesion molecule and epithelial-mesenchymal transition in hepatic cancer cells. Oncol Rep. 2015;34:1169-77 pubmed 出版商
  321. O Carroll S, Kho D, Wiltshire R, Nelson V, Rotimi O, Johnson R, et al. Pro-inflammatory TNFα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. J Neuroinflammation. 2015;12:131 pubmed 出版商
  322. Preuße K, Tveriakhina L, Schuster Gossler K, Gaspar C, Rosa A, Henrique D, et al. Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo. PLoS Genet. 2015;11:e1005328 pubmed 出版商
  323. Lee Y, Han M, Baek S, Kim S, Oh S. MED30 Regulates the Proliferation and Motility of Gastric Cancer Cells. PLoS ONE. 2015;10:e0130826 pubmed 出版商
  324. Lindskog C, Linné J, Fagerberg L, Hallström B, Sundberg C, Lindholm M, et al. The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling. BMC Genomics. 2015;16:475 pubmed 出版商
  325. Rojas F, Gonzalez D, Cortes N, Ampuero E, Hernández D, Fritz E, et al. Reactive oxygen species trigger motoneuron death in non-cell-autonomous models of ALS through activation of c-Abl signaling. Front Cell Neurosci. 2015;9:203 pubmed 出版商
  326. Rode K, Sieme H, Richterich P, Brehm R. Characterization of the equine blood-testis barrier during tubular development in normal and cryptorchid stallions. Theriogenology. 2015;84:763-72 pubmed 出版商
  327. Li N, Mruk D, Wong C, Lee W, Han D, Cheng C. Actin-bundling protein plastin 3 is a regulator of ectoplasmic specialization dynamics during spermatogenesis in the rat testis. FASEB J. 2015;29:3788-805 pubmed 出版商
  328. Zhang W, Gu Y, Sun Q, Siegel D, Tolias P, Yang Z, et al. Ex Vivo Maintenance of Primary Human Multiple Myeloma Cells through the Optimization of the Osteoblastic Niche. PLoS ONE. 2015;10:e0125995 pubmed 出版商
  329. Liu S, Tetzlaff M, Wang T, Yang R, Xie L, Zhang G, et al. miR-200c/Bmi1 axis and epithelial-mesenchymal transition contribute to acquired resistance to BRAF inhibitor treatment. Pigment Cell Melanoma Res. 2015;28:431-41 pubmed 出版商
  330. Giribaldi M, Muñoz A, Halvorsen K, Patel A, Rai P. MTH1 expression is required for effective transformation by oncogenic HRAS. Oncotarget. 2015;6:11519-29 pubmed
  331. ORELLANA R, Kato S, Erices R, Bravo M, Gonzalez P, Oliva B, et al. Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells. BMC Cancer. 2015;15:290 pubmed 出版商
  332. Zarzycka M, Chojnacka K, Mruk D, Górowska E, Hejmej A, Kotula Balak M, et al. Flutamide alters the distribution of c-Src and affects the N-cadherin-β-catenin complex in the seminiferous epithelium of adult rat. Andrology. 2015;3:569-81 pubmed 出版商
  333. Li Y, Drabsch Y, Pujuguet P, Ren J, van Laar T, Zhang L, et al. Genetic depletion and pharmacological targeting of αv integrin in breast cancer cells impairs metastasis in zebrafish and mouse xenograft models. Breast Cancer Res. 2015;17:28 pubmed 出版商
  334. Mandara M, Reginato A, Foiani G, Baroni M, Poli F, Gasparinetti N, et al. Papillary meningioma in the dog: A clinicopathological case series study. Res Vet Sci. 2015;100:213-9 pubmed 出版商
  335. Yarilin D, Xu K, Turkekul M, Fan N, Romin Y, Fijisawa S, et al. Machine-based method for multiplex in situ molecular characterization of tissues by immunofluorescence detection. Sci Rep. 2015;5:9534 pubmed 出版商
  336. Malchenko S, Sredni S, Hashimoto H, Kasai A, Nagayasu K, Xie J, et al. A mouse model of human primitive neuroectodermal tumors resulting from microenvironmentally-driven malignant transformation of orthotopically transplanted radial glial cells. PLoS ONE. 2015;10:e0121707 pubmed 出版商
  337. Bazellières E, Conte V, Elosegui Artola A, Serra Picamal X, Bintanel Morcillo M, Roca Cusachs P, et al. Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat Cell Biol. 2015;17:409-20 pubmed 出版商
  338. Skardal A, Devarasetty M, Rodman C, Atala A, Soker S. Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro. Ann Biomed Eng. 2015;43:2361-73 pubmed 出版商
  339. Tom Dieck S, Kochen L, Hanus C, Heumüller M, Bartnik I, Nassim Assir B, et al. Direct visualization of newly synthesized target proteins in situ. Nat Methods. 2015;12:411-4 pubmed 出版商
  340. Qiao Y, Shiue C, Zhu J, Zhuang T, Jonsson P, Wright A, et al. AP-1-mediated chromatin looping regulates ZEB2 transcription: new insights into TNFα-induced epithelial-mesenchymal transition in triple-negative breast cancer. Oncotarget. 2015;6:7804-14 pubmed
  341. Tennakoon A, Izawa T, Wijesundera K, Katou Ichikawa C, Tanaka M, Golbar H, et al. Analysis of glial fibrillary acidic protein (GFAP)-expressing ductular cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA). Exp Mol Pathol. 2015;98:476-85 pubmed 出版商
  342. Kageyama T, Hayashi R, Hara S, Yoshikawa K, Ishikawa Y, Yamato M, et al. Spontaneous acquisition of infinite proliferative capacity by a rabbit corneal endothelial cell line with maintenance of phenotypic and physiological characteristics. J Tissue Eng Regen Med. 2017;11:1057-1064 pubmed 出版商
  343. Lin Y, Yang Z, Xu A, Dong P, Huang Y, Liu H, et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3β/CTNNB1 signaling pathway. Sci Rep. 2015;5:8997 pubmed 出版商
  344. Wang G, Liu G, Ye Y, Fu Y, Zhang X. The role of microRNA-1274a in the tumorigenesis of gastric cancer: accelerating cancer cell proliferation and migration via directly targeting FOXO4. Biochem Biophys Res Commun. 2015;459:629-35 pubmed 出版商
  345. Yuan L, Seong E, Beuscher J, Arikkath J. δ-Catenin Regulates Spine Architecture via Cadherin and PDZ-dependent Interactions. J Biol Chem. 2015;290:10947-57 pubmed 出版商
  346. Jiang X, Ma T, Zhang Y, Zhang H, Yin S, Zheng W, et al. Specific deletion of Cdh2 in Sertoli cells leads to altered meiotic progression and subfertility of mice. Biol Reprod. 2015;92:79 pubmed 出版商
  347. Cai K, Wang Y, Smith E, Smedberg J, Yang D, Yang W, et al. Global deletion of Trp53 reverts ovarian tumor phenotype of the germ cell-deficient white spotting variant (Wv) mice. Neoplasia. 2015;17:89-100 pubmed 出版商
  348. Zhang J, Upadhya D, Lu L, Reneker L. Fibroblast growth factor receptor 2 (FGFR2) is required for corneal epithelial cell proliferation and differentiation during embryonic development. PLoS ONE. 2015;10:e0117089 pubmed 出版商
  349. Gong X, Yi J, Carmon K, Crumbley C, Xiong W, Thomas A, et al. Aberrant RSPO3-LGR4 signaling in Keap1-deficient lung adenocarcinomas promotes tumor aggressiveness. Oncogene. 2015;34:4692-701 pubmed 出版商
  350. Samulitis B, Pond K, Pond E, Cress A, Patel H, Wisner L, et al. Gemcitabine resistant pancreatic cancer cell lines acquire an invasive phenotype with collateral hypersensitivity to histone deacetylase inhibitors. Cancer Biol Ther. 2015;16:43-51 pubmed 出版商
  351. Xu M, Zhu C, Zhao X, Chen C, Zhang H, Yuan H, et al. Atypical ubiquitin E3 ligase complex Skp1-Pam-Fbxo45 controls the core epithelial-to-mesenchymal transition-inducing transcription factors. Oncotarget. 2015;6:979-94 pubmed
  352. Davidson B, Holth A, Hellesylt E, Tan T, Huang R, Tropé C, et al. The clinical role of epithelial-mesenchymal transition and stem cell markers in advanced-stage ovarian serous carcinoma effusions. Hum Pathol. 2015;46:1-8 pubmed 出版商
  353. Busskamp V, Lewis N, Guye P, Ng A, Shipman S, Byrne S, et al. Rapid neurogenesis through transcriptional activation in human stem cells. Mol Syst Biol. 2014;10:760 pubmed 出版商
  354. Lee Y, Ehninger D, Zhou M, Oh J, Kang M, Kwak C, et al. Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome. Nat Neurosci. 2014;17:1736-43 pubmed 出版商
  355. Tao W, Moore R, Smith E, Xu X. Hormonal induction and roles of Disabled-2 in lactation and involution. PLoS ONE. 2014;9:e110737 pubmed 出版商
  356. Phillips Krawczak C, Singla A, Starokadomskyy P, Deng Z, Osborne D, Li H, et al. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A. Mol Biol Cell. 2015;26:91-103 pubmed 出版商
  357. Sun Q, Cibas E, Huang H, Hodgson L, Overholtzer M. Induction of entosis by epithelial cadherin expression. Cell Res. 2014;24:1288-98 pubmed 出版商
  358. Suh S, Yoo J, Cui R, Kaur B, Huebner K, Lee T, et al. FHIT suppresses epithelial-mesenchymal transition (EMT) and metastasis in lung cancer through modulation of microRNAs. PLoS Genet. 2014;10:e1004652 pubmed 出版商
  359. Cai X, Dai Z, Reeves R, Caballero Benítez A, Duran K, Delrow J, et al. Autonomous stimulation of cancer cell plasticity by the human NKG2D lymphocyte receptor coexpressed with its ligands on cancer cells. PLoS ONE. 2014;9:e108942 pubmed 出版商
  360. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  361. Wei H, Nickoloff J, Chen W, Liu H, Lo W, Chang Y, et al. FOXF1 mediates mesenchymal stem cell fusion-induced reprogramming of lung cancer cells. Oncotarget. 2014;5:9514-29 pubmed
  362. Sun Y, Hu L, Zheng H, Bagnoli M, Guo Y, Rupaimoole R, et al. MiR-506 inhibits multiple targets in the epithelial-to-mesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer. J Pathol. 2015;235:25-36 pubmed 出版商
  363. Mok K, Mruk D, Cheng C. rpS6 regulates blood-testis barrier dynamics through Akt-mediated effects on MMP-9. J Cell Sci. 2014;127:4870-82 pubmed 出版商
  364. Ye T, Ip J, Fu A, Ip N. Cdk5-mediated phosphorylation of RapGEF2 controls neuronal migration in the developing cerebral cortex. Nat Commun. 2014;5:4826 pubmed 出版商
  365. Li J, Liu J, Li P, Mao X, Li W, Yang J, et al. Loss of LKB1 disrupts breast epithelial cell polarity and promotes breast cancer metastasis and invasion. J Exp Clin Cancer Res. 2014;33:70 pubmed 出版商
  366. Friedman L, Riemslagh F, Sullivan J, Mesias R, Williams F, Huntley G, et al. Cadherin-8 expression, synaptic localization, and molecular control of neuronal form in prefrontal corticostriatal circuits. J Comp Neurol. 2015;523:75-92 pubmed 出版商
  367. Chen F, Zhuang M, Peng J, Wang X, Huang T, Li S, et al. Baicalein inhibits migration and invasion of gastric cancer cells through suppression of the TGF-β signaling pathway. Mol Med Rep. 2014;10:1999-2003 pubmed 出版商
  368. Gou W, Zhao Y, Lu H, Yang X, Xiu Y, Zhao S, et al. The role of RhoC in epithelial-to-mesenchymal transition of ovarian carcinoma cells. BMC Cancer. 2014;14:477 pubmed 出版商
  369. Ohkawa T, Satake S, Yokoi N, Miyazaki Y, Ohshita T, Sobue G, et al. Identification and characterization of GABA(A) receptor autoantibodies in autoimmune encephalitis. J Neurosci. 2014;34:8151-63 pubmed 出版商
  370. Kudo Sakamoto Y, Akazawa H, Ito K, Takano J, Yano M, Yabumoto C, et al. Calpain-dependent cleavage of N-cadherin is involved in the progression of post-myocardial infarction remodeling. J Biol Chem. 2014;289:19408-19 pubmed 出版商
  371. Katanosaka Y, Iwasaki K, Ujihara Y, Takatsu S, Nishitsuji K, Kanagawa M, et al. TRPV2 is critical for the maintenance of cardiac structure and function in mice. Nat Commun. 2014;5:3932 pubmed 出版商
  372. Karayannis T, Au E, Patel J, Kruglikov I, Markx S, Delorme R, et al. Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission. Nature. 2014;511:236-40 pubmed
  373. Jung S, Ohk J, Jeong D, Li C, Lee S, Duan J, et al. Distinct regulatory effect of the p34SEI-1 oncoprotein on cancer metastasis in HER2/neu-positive and -negative cells. Int J Oncol. 2014;45:189-96 pubmed 出版商
  374. Nikitczuk J, Patil S, Matikainen Ankney B, Scarpa J, Shapiro M, Benson D, et al. N-cadherin regulates molecular organization of excitatory and inhibitory synaptic circuits in adult hippocampus in vivo. Hippocampus. 2014;24:943-962 pubmed 出版商
  375. Gong K, Kung L, Magni G, Bhargava A, Jasmin L. Increased response to glutamate in small diameter dorsal root ganglion neurons after sciatic nerve injury. PLoS ONE. 2014;9:e95491 pubmed 出版商
  376. Hatakeyama J, Wakamatsu Y, Nagafuchi A, Kageyama R, Shigemoto R, Shimamura K. Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates. Development. 2014;141:1671-82 pubmed 出版商
  377. Mato E, Gonzalez C, Moral A, Pérez J, Bell O, Lerma E, et al. ABCG2/BCRP gene expression is related to epithelial-mesenchymal transition inducer genes in a papillary thyroid carcinoma cell line (TPC-1). J Mol Endocrinol. 2014;52:289-300 pubmed 出版商
  378. Reaves D, Fagan Solis K, Dunphy K, Oliver S, Scott D, Fleming J. The role of lipolysis stimulated lipoprotein receptor in breast cancer and directing breast cancer cell behavior. PLoS ONE. 2014;9:e91747 pubmed 出版商
  379. Sehgal L, Mukhopadhyay A, Rajan A, Khapare N, Sawant M, Vishal S, et al. 14-3-3?-Mediated transport of plakoglobin to the cell border is required for the initiation of desmosome assembly in vitro and in vivo. J Cell Sci. 2014;127:2174-88 pubmed 出版商
  380. Toyoshima D, Mandai K, Maruo T, Supriyanto I, Togashi H, Inoue T, et al. Afadin regulates puncta adherentia junction formation and presynaptic differentiation in hippocampal neurons. PLoS ONE. 2014;9:e89763 pubmed 出版商
  381. Yoshida T, Ozawa Y, Kimura T, Sato Y, Kuznetsov G, Xu S, et al. Eribulin mesilate suppresses experimental metastasis of breast cancer cells by reversing phenotype from epithelial-mesenchymal transition (EMT) to mesenchymal-epithelial transition (MET) states. Br J Cancer. 2014;110:1497-505 pubmed 出版商
  382. Peitsch W, Doerflinger Y, Fischer Colbrie R, Huck V, Bauer A, Utikal J, et al. Desmoglein 2 depletion leads to increased migration and upregulation of the chemoattractant secretoneurin in melanoma cells. PLoS ONE. 2014;9:e89491 pubmed 出版商
  383. Brueggmann D, Templeman C, Starzinski Powitz A, Rao N, Gayther S, Lawrenson K. Novel three-dimensional in vitro models of ovarian endometriosis. J Ovarian Res. 2014;7:17 pubmed 出版商
  384. Moore R, Tao W, Meng Y, Smith E, Xu X. Cell adhesion and sorting in embryoid bodies derived from N- or E-cadherin deficient murine embryonic stem cells. Biol Open. 2014;3:121-8 pubmed 出版商
  385. Fantozzi A, Gruber D, Pisarsky L, Heck C, Kunita A, Yilmaz M, et al. VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation. Cancer Res. 2014;74:1566-75 pubmed 出版商
  386. Miura S, Hamada S, Masamune A, Satoh K, Shimosegawa T. CUB-domain containing protein 1 represses the epithelial phenotype of pancreatic cancer cells. Exp Cell Res. 2014;321:209-18 pubmed 出版商
  387. Zaganjor E, Osborne J, Weil L, Díaz Martínez L, Gonzales J, Singel S, et al. Ras regulates kinesin 13 family members to control cell migration pathways in transformed human bronchial epithelial cells. Oncogene. 2014;33:5457-66 pubmed 出版商
  388. Mei H, Nakatsu M, Baclagon E, Deng S. Frizzled 7 maintains the undifferentiated state of human limbal stem/progenitor cells. Stem Cells. 2014;32:938-45 pubmed 出版商
  389. Almenar Queralt A, Kim S, Benner C, Herrera C, Kang D, Garcia Bassets I, et al. Presenilins regulate neurotrypsin gene expression and neurotrypsin-dependent agrin cleavage via cyclic AMP response element-binding protein (CREB) modulation. J Biol Chem. 2013;288:35222-36 pubmed 出版商
  390. Haisler W, Timm D, Gage J, Tseng H, Killian T, Souza G. Three-dimensional cell culturing by magnetic levitation. Nat Protoc. 2013;8:1940-9 pubmed 出版商
  391. Kumar M, Allison D, Baranova N, Wamsley J, Katz A, Bekiranov S, et al. NF-?B regulates mesenchymal transition for the induction of non-small cell lung cancer initiating cells. PLoS ONE. 2013;8:e68597 pubmed 出版商
  392. Prox J, Bernreuther C, Altmeppen H, Grendel J, Glatzel M, D Hooge R, et al. Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions. J Neurosci. 2013;33:12915-28, 12928a pubmed 出版商
  393. Stover A, Brick D, Nethercott H, Banuelos M, Sun L, O Dowd D, et al. Process-based expansion and neural differentiation of human pluripotent stem cells for transplantation and disease modeling. J Neurosci Res. 2013;91:1247-62 pubmed 出版商
  394. Sjödahl G, Lövgren K, Lauss M, Patschan O, Gudjonsson S, Chebil G, et al. Toward a molecular pathologic classification of urothelial carcinoma. Am J Pathol. 2013;183:681-91 pubmed 出版商
  395. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498:492-6 pubmed 出版商
  396. Sigurdsson V, Ingthorsson S, Hilmarsdottir B, Gustafsdottir S, Franzdóttir S, Arason A, et al. Expression and functional role of sprouty-2 in breast morphogenesis. PLoS ONE. 2013;8:e60798 pubmed 出版商
  397. Qian X, Mruk D, Cheng C. Rai14 (retinoic acid induced protein 14) is involved in regulating f-actin dynamics at the ectoplasmic specialization in the rat testis*. PLoS ONE. 2013;8:e60656 pubmed 出版商
  398. Lee J, Mhawech Fauceglia P, Lee N, Parsanian L, Lin Y, Gayther S, et al. A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro. Lab Invest. 2013;93:528-42 pubmed 出版商
  399. Rakha E, Teoh T, Lee A, Nolan C, Ellis I, Green A. Further evidence that E-cadherin is not a tumour suppressor gene in invasive ductal carcinoma of the breast: an immunohistochemical study. Histopathology. 2013;62:695-701 pubmed 出版商
  400. Martiáñez T, Lamarca A, Casals N, Gella A. N-cadherin expression is regulated by UTP in schwannoma cells. Purinergic Signal. 2013;9:259-70 pubmed 出版商
  401. Danielson L, Park D, Rotllan N, Chamorro Jorganes A, Guijarro M, Fernandez Hernando C, et al. Cardiovascular dysregulation of miR-17-92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesis. FASEB J. 2013;27:1460-7 pubmed 出版商
  402. Wang Q, Lin J, Chan S, Lin J. The Xin repeat-containing protein, mXinβ, initiates the maturation of the intercalated discs during postnatal heart development. Dev Biol. 2013;374:264-80 pubmed 出版商
  403. Tran M, Choi W, Wszolek M, Navai N, Lee I, Nitti G, et al. The p63 protein isoform ?Np63? inhibits epithelial-mesenchymal transition in human bladder cancer cells: role of MIR-205. J Biol Chem. 2013;288:3275-88 pubmed 出版商
  404. Nagaishi M, Nobusawa S, Tanaka Y, Ikota H, Yokoo H, Nakazato Y. Slug, twist, and E-cadherin as immunohistochemical biomarkers in meningeal tumors. PLoS ONE. 2012;7:e46053 pubmed 出版商
  405. Ezponda T, Popovic R, Shah M, Martinez Garcia E, Zheng Y, Min D, et al. The histone methyltransferase MMSET/WHSC1 activates TWIST1 to promote an epithelial-mesenchymal transition and invasive properties of prostate cancer. Oncogene. 2013;32:2882-90 pubmed 出版商
  406. Tang E, Xiao X, Mruk D, Qian X, Mok K, Jenardhanan P, et al. Microtubule affinity-regulating kinase 4 (MARK4) is a component of the ectoplasmic specialization in the rat testis. Spermatogenesis. 2012;2:117-126 pubmed
  407. Swope D, Li J, Muller E, Radice G. Analysis of a Jup hypomorphic allele reveals a critical threshold for postnatal viability. Genesis. 2012;50:717-27 pubmed 出版商
  408. Stoyianni A, Goussia A, Pentheroudakis G, Siozopoulou V, Ioachim E, Krikelis D, et al. Immunohistochemical study of the epithelial-mesenchymal transition phenotype in cancer of unknown primary: incidence, correlations and prognostic utility. Anticancer Res. 2012;32:1273-81 pubmed
  409. Mortillo S, Elste A, Ge Y, Patil S, Hsiao K, Huntley G, et al. Compensatory redistribution of neuroligins and N-cadherin following deletion of synaptic ?1-integrin. J Comp Neurol. 2012;520:2041-52 pubmed 出版商
  410. Chkourko H, Guerrero Serna G, Lin X, Darwish N, Pohlmann J, Cook K, et al. Remodeling of mechanical junctions and of microtubule-associated proteins accompany cardiac connexin43 lateralization. Heart Rhythm. 2012;9:1133-1140.e6 pubmed 出版商
  411. Swope D, Cheng L, Gao E, Li J, Radice G. Loss of cadherin-binding proteins ?-catenin and plakoglobin in the heart leads to gap junction remodeling and arrhythmogenesis. Mol Cell Biol. 2012;32:1056-67 pubmed 出版商
  412. Schneider D, Wu M, Le T, Cho S, Brenner M, Blackburn M, et al. Cadherin-11 contributes to pulmonary fibrosis: potential role in TGF-? production and epithelial to mesenchymal transition. FASEB J. 2012;26:503-12 pubmed 出版商
  413. Maddala R, Chauhan B, Walker C, Zheng Y, Robinson M, Lang R, et al. Rac1 GTPase-deficient mouse lens exhibits defects in shape, suture formation, fiber cell migration and survival. Dev Biol. 2011;360:30-43 pubmed 出版商
  414. Saghizadeh M, Soleymani S, Harounian A, Bhakta B, Troyanovsky S, Brunken W, et al. Alterations of epithelial stem cell marker patterns in human diabetic corneas and effects of c-met gene therapy. Mol Vis. 2011;17:2177-90 pubmed
  415. Watanabe R, Hayashi R, Kimura Y, Tanaka Y, Kageyama T, Hara S, et al. A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation. Tissue Eng Part A. 2011;17:2213-9 pubmed 出版商
  416. Ferro F, Spelat R, Falini G, Gallelli A, D Aurizio F, Puppato E, et al. Adipose tissue-derived stem cell in vitro differentiation in a three-dimensional dental bud structure. Am J Pathol. 2011;178:2299-310 pubmed 出版商
  417. Yang Y, Ahn Y, Gibbons D, Zang Y, Lin W, Thilaganathan N, et al. The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice. J Clin Invest. 2011;121:1373-85 pubmed 出版商
  418. Li J, Swope D, Raess N, Cheng L, Muller E, Radice G. Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of {beta}-catenin signaling. Mol Cell Biol. 2011;31:1134-44 pubmed 出版商
  419. Liu M, Sakamaki T, Casimiro M, Willmarth N, Quong A, Ju X, et al. The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res. 2010;70:10464-73 pubmed 出版商
  420. Palatinus J, O Quinn M, Barker R, Harris B, Jourdan J, Gourdie R. ZO-1 determines adherens and gap junction localization at intercalated disks. Am J Physiol Heart Circ Physiol. 2011;300:H583-94 pubmed 出版商
  421. Schoenauer R, Emmert M, Felley A, Ehler E, Brokopp C, Weber B, et al. EH-myomesin splice isoform is a novel marker for dilated cardiomyopathy. Basic Res Cardiol. 2011;106:233-47 pubmed 出版商
  422. Su L, Cheng C, Mruk D. Adjudin-mediated Sertoli-germ cell junction disassembly affects Sertoli cell barrier function in vitro and in vivo. Int J Biochem Cell Biol. 2010;42:1864-75 pubmed 出版商
  423. Su L, Mruk D, Lee W, Cheng C. Differential effects of testosterone and TGF-?3 on endocytic vesicle-mediated protein trafficking events at the blood-testis barrier. Exp Cell Res. 2010;316:2945-60 pubmed 出版商
  424. Flatmark K, Davidson B, Kristian A, Stavnes H, Førsund M, Reed W. Exploring the peritoneal surface malignancy phenotype--a pilot immunohistochemical study of human pseudomyxoma peritonei and derived animal models. Hum Pathol. 2010;41:1109-19 pubmed 出版商
  425. Kaarteenaho R, Sormunen R, Paakko P. Variable expression of tenascin-C, osteopontin and fibronectin in inflammatory myofibroblastic tumour of the lung. APMIS. 2010;118:91-100 pubmed 出版商
  426. D Eliseo D, Pisu P, Romano C, Tubaro A, De Nunzio C, Morrone S, et al. Granzyme B is expressed in urothelial carcinoma and promotes cancer cell invasion. Int J Cancer. 2010;127:1283-94 pubmed 出版商
  427. Yiin J, Hu B, Jarzynka M, Feng H, Liu K, Wu J, et al. Slit2 inhibits glioma cell invasion in the brain by suppression of Cdc42 activity. Neuro Oncol. 2009;11:779-89 pubmed 出版商
  428. Lapyckyj L, Castillo L, Matos M, Gabrielli N, Lüthy I, Vazquez Levin M. Expression analysis of epithelial cadherin and related proteins in IBH-6 and IBH-4 human breast cancer cell lines. J Cell Physiol. 2010;222:596-605 pubmed 出版商
  429. Marín Briggiler C, Lapyckyj L, Gonzalez Echeverria M, Rawe V, Alvarez Sedó C, Vazquez Levin M. Neural cadherin is expressed in human gametes and participates in sperm-oocyte interaction events. Int J Androl. 2010;33:e228-39 pubmed 出版商
  430. Hwang C, Song K, Kim C, Choi H, Guo X, Law P, et al. Epigenetic programming of mu-opioid receptor gene in mouse brain is regulated by MeCP2 and Brg1 chromatin remodelling factor. J Cell Mol Med. 2009;13:3591-615 pubmed 出版商
  431. Walenda T, Bork S, Horn P, Wein F, Saffrich R, Diehlmann A, et al. Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J Cell Mol Med. 2010;14:337-50 pubmed 出版商
  432. Li Z, Zhou Z, Welch D, Donahue H. Expressing connexin 43 in breast cancer cells reduces their metastasis to lungs. Clin Exp Metastasis. 2008;25:893-901 pubmed 出版商
  433. Mosnier J, Kandel C, Cazals Hatem D, Bou Hanna C, Gournay J, Jarry A, et al. N-cadherin serves as diagnostic biomarker in intrahepatic and perihilar cholangiocarcinomas. Mod Pathol. 2009;22:182-90 pubmed 出版商
  434. Fondrevelle M, Kantelip B, Reiter R, Chopin D, Thiery J, Monnien F, et al. The expression of Twist has an impact on survival in human bladder cancer and is influenced by the smoking status. Urol Oncol. 2009;27:268-76 pubmed 出版商
  435. Agarwal S, Lee D, Kiener H, Brenner M. Coexpression of two mesenchymal cadherins, cadherin 11 and N-cadherin, on murine fibroblast-like synoviocytes. Arthritis Rheum. 2008;58:1044-54 pubmed 出版商
  436. Li J, Levin M, Xiong Y, Petrenko N, Patel V, Radice G. N-cadherin haploinsufficiency affects cardiac gap junctions and arrhythmic susceptibility. J Mol Cell Cardiol. 2008;44:597-606 pubmed 出版商
  437. Lim S, Lim K, Giuliano R, Federoff H. Temporal and spatial localization of nectin-1 and l-afadin during synaptogenesis in hippocampal neurons. J Comp Neurol. 2008;507:1228-44 pubmed 出版商
  438. Wu J, Yan H, Chen W, Chen W, Wang C, Chi Y, et al. JNK signaling pathway is required for bFGF-mediated surface cadherin downregulation on HUVEC. Exp Cell Res. 2008;314:421-9 pubmed 出版商
  439. Braun A, Xu H, Hu F, Kocherlakota P, Siegel D, Chander P, et al. Paucity of pericytes in germinal matrix vasculature of premature infants. J Neurosci. 2007;27:12012-24 pubmed
  440. Zhang S, Liu Y, Huang G, Liu L. Aconitine alters connexin43 phosphorylation status and [Ca2+] oscillation patterns in cultured ventricular myocytes of neonatal rats. Toxicol In Vitro. 2007;21:1476-85 pubmed
  441. Hwang C, Song K, Kim C, Choi H, Guo X, Law P, et al. Evidence of endogenous mu opioid receptor regulation by epigenetic control of the promoters. Mol Cell Biol. 2007;27:4720-36 pubmed
  442. Wang C, Mruk D, Lee W, Cheng C. Coxsackie and adenovirus receptor (CAR) is a product of Sertoli and germ cells in rat testes which is localized at the Sertoli-Sertoli and Sertoli-germ cell interface. Exp Cell Res. 2007;313:1373-92 pubmed
  443. Sharma M, Henderson B. IQ-domain GTPase-activating protein 1 regulates beta-catenin at membrane ruffles and its role in macropinocytosis of N-cadherin and adenomatous polyposis coli. J Biol Chem. 2007;282:8545-56 pubmed
  444. Chang M, Boulden J, Sutanto Ward E, DuHadaway J, Soler A, Muller A, et al. Bin1 ablation in mammary gland delays tissue remodeling and drives cancer progression. Cancer Res. 2007;67:100-7 pubmed
  445. Akins M, Greer C. Axon behavior in the olfactory nerve reflects the involvement of catenin-cadherin mediated adhesion. J Comp Neurol. 2006;499:979-89 pubmed
  446. Blixt A, Landgren H, Johansson B, Carlsson P. Foxe3 is required for morphogenesis and differentiation of the anterior segment of the eye and is sensitive to Pax6 gene dosage. Dev Biol. 2007;302:218-29 pubmed
  447. Moreno Bueno G, Cubillo E, Sarrio D, Peinado H, Rodriguez Pinilla S, Villa S, et al. Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition. Cancer Res. 2006;66:9543-56 pubmed
  448. Lascombe I, Clairotte A, Fauconnet S, Bernardini S, Wallerand H, Kantelip B, et al. N-cadherin as a novel prognostic marker of progression in superficial urothelial tumors. Clin Cancer Res. 2006;12:2780-7 pubmed
  449. Liu Z, Xiao M, Balint K, Smalley K, Brafford P, Qiu R, et al. Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res. 2006;66:4182-90 pubmed
  450. Sarkar O, Xia W, Mruk D. Adjudin-mediated junction restructuring in the seminiferous epithelium leads to displacement of soluble guanylate cyclase from adherens junctions. J Cell Physiol. 2006;208:175-87 pubmed
  451. Kim Y, Sauer C, Testa K, Wahl J, Svoboda R, Johnson K, et al. Modulating the strength of cadherin adhesion: evidence for a novel adhesion complex. J Cell Sci. 2005;118:3883-94 pubmed
  452. Sun X, Wei L, Liden J, Hui G, Dahlman Wright K, Hjerpe A, et al. Molecular characterization of tumour heterogeneity and malignant mesothelioma cell differentiation by gene profiling. J Pathol. 2005;207:91-101 pubmed
  453. Bassarova A, Torlakovic E, Sedloev T, Hristova S, Trifonov D, Nesland J. Simultaneous bilateral breast carcinoma: Histopathological characteristics and CD44/catenin-cadherin profile. Histol Histopathol. 2005;20:791-9 pubmed 出版商
  454. Xia W, Cheng C. TGF-beta3 regulates anchoring junction dynamics in the seminiferous epithelium of the rat testis via the Ras/ERK signaling pathway: An in vivo study. Dev Biol. 2005;280:321-43 pubmed
  455. Xia W, Wong C, Lee N, Lee W, Cheng C. Disruption of Sertoli-germ cell adhesion function in the seminiferous epithelium of the rat testis can be limited to adherens junctions without affecting the blood-testis barrier integrity: an in vivo study using an androgen suppression model. J Cell Physiol. 2005;205:141-57 pubmed
  456. Knudsen K, Sauer C, Johnson K, Wheelock M. Effect of N-cadherin misexpression by the mammary epithelium in mice. J Cell Biochem. 2005;95:1093-107 pubmed
  457. Marques F, Fonsechi Carvasan G, de Angelo Andrade L, Bottcher Luiz F. Immunohistochemical patterns for alpha- and beta-catenin, E- and N-cadherin expression in ovarian epithelial tumors. Gynecol Oncol. 2004;94:16-24 pubmed
  458. Kapoor P, Saunders M, Li Z, Zhou Z, Sheaffer N, Kunze E, et al. Breast cancer metastatic potential: correlation with increased heterotypic gap junctional intercellular communication between breast cancer cells and osteoblastic cells. Int J Cancer. 2004;111:693-7 pubmed
  459. Bassarova A, Nesland J, Sedloev T, Danielsen H, Christova S. Pilomatrix carcinoma with lymph node metastases. J Cutan Pathol. 2004;31:330-5 pubmed
  460. Lee N, Mruk D, Conway A, Cheng C. Zyxin, axin, and Wiskott-Aldrich syndrome protein are adaptors that link the cadherin/catenin protein complex to the cytoskeleton at adherens junctions in the seminiferous epithelium of the rat testis. J Androl. 2004;25:200-15 pubmed
  461. Ng J, Han A, Edelson M, Rosenblum N. Oncoprotein profiles of primary peritoneal malignant mixed müllerian tumors. Int J Gynecol Cancer. 2003;13:870-4 pubmed
  462. Siu M, Cheng C. Interactions of proteases, protease inhibitors, and the beta1 integrin/laminin gamma3 protein complex in the regulation of ectoplasmic specialization dynamics in the rat testis. Biol Reprod. 2004;70:945-64 pubmed
  463. Ordonez N. Value of E-cadherin and N-cadherin immunostaining in the diagnosis of mesothelioma. Hum Pathol. 2003;34:749-55 pubmed
  464. Luo Y, Radice G. Cadherin-mediated adhesion is essential for myofibril continuity across the plasma membrane but not for assembly of the contractile apparatus. J Cell Sci. 2003;116:1471-9 pubmed
  465. Lee N, Mruk D, Lee W, Cheng C. Is the cadherin/catenin complex a functional unit of cell-cell actin-based adherens junctions in the rat testis?. Biol Reprod. 2003;68:489-508 pubmed
  466. Rocha A, Soares P, Machado J, Máximo V, Fonseca E, Franssila K, et al. Mucoepidermoid carcinoma of the thyroid: a tumour histotype characterised by P-cadherin neoexpression and marked abnormalities of E-cadherin/catenins complex. Virchows Arch. 2002;440:498-504 pubmed
  467. Ferreira Cornwell M, Luo Y, Narula N, Lenox J, Lieberman M, Radice G. Remodeling the intercalated disc leads to cardiomyopathy in mice misexpressing cadherins in the heart. J Cell Sci. 2002;115:1623-34 pubmed
  468. Paredes J, Milanezi F, Viegas L, Amendoeira I, Schmitt F. P-cadherin expression is associated with high-grade ductal carcinoma in situ of the breast. Virchows Arch. 2002;440:16-21 pubmed
  469. Laskin W, Miettinen M. Epithelial-type and neural-type cadherin expression in malignant noncarcinomatous neoplasms with epithelioid features that involve the soft tissues. Arch Pathol Lab Med. 2002;126:425-31 pubmed
  470. Wheelock M, Soler A, Knudsen K. Cadherin junctions in mammary tumors. J Mammary Gland Biol Neoplasia. 2001;6:275-85 pubmed
  471. Rocha A, Soares P, Seruca R, Máximo V, Matias Guiu X, Cameselle Teijeiro J, et al. Abnormalities of the E-cadherin/catenin adhesion complex in classical papillary thyroid carcinoma and in its diffuse sclerosing variant. J Pathol. 2001;194:358-66 pubmed
  472. Gottardi C, Wong E, Gumbiner B. E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. J Cell Biol. 2001;153:1049-60 pubmed
  473. Li G, Satyamoorthy K, Herlyn M. N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res. 2001;61:3819-25 pubmed
  474. Luo Y, Ferreira Cornwell M, Baldwin H, Kostetskii I, Lenox J, Lieberman M, et al. Rescuing the N-cadherin knockout by cardiac-specific expression of N- or E-cadherin. Development. 2001;128:459-69 pubmed
  475. van Raamsdonk C, Tilghman S. Dosage requirement and allelic expression of PAX6 during lens placode formation. Development. 2000;127:5439-48 pubmed
  476. Peralta Soler A, Knudsen K, Salazar H, Han A, Keshgegian A. P-cadherin expression in breast carcinoma indicates poor survival. Cancer. 1999;86:1263-72 pubmed