这是一篇来自已证抗体库的有关人类 NANOG的综述,是根据229篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合NANOG 抗体。
NANOG 同义词: homeobox protein NANOG; homeobox transcription factor Nanog; homeobox transcription factor Nanog-delta 48

艾博抗(上海)贸易有限公司
兔 单克隆(EPR2027(2))
  • 免疫细胞化学; 人类; 1:200; 图 2c
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2c). Stem Cell Res Ther (2019) ncbi
兔 单克隆(EPR2027(2))
  • 免疫组化-石蜡切片; 人类; 图 3a
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). Theranostics (2019) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 1e
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1e). Bone Res (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫印迹在小鼠样本上 (图 1a). Nucleic Acids Res (2018) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 s1c
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 s1c). Nat Med (2018) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 s2a
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 s2a). Cell (2018) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫组化在小鼠样本上 (图 3a). Dev Biol (2018) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3a
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, 80892)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3a). Methods Mol Biol (2018) ncbi
兔 单克隆(EPR2027(2))
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫印迹在人类样本上 (图 2c). Int J Mol Sci (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab808692)被用于被用于免疫细胞化学在小鼠样本上 (图 3b). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫印迹在人类样本上 (图 1d). Stem Cell Reports (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s5d
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫印迹在小鼠样本上 (图 s5d). Cell Stem Cell (2017) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:100; 图 1b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1b). Front Surg (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫印迹在人类样本上 (图 3c). Int J Mol Sci (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 山羊; 图 3A
  • 免疫印迹; 山羊; 1:1000; 图 5C
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在山羊样本上 (图 3A) 和 被用于免疫印迹在山羊样本上浓度为1:1000 (图 5C). BMC Biotechnol (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 5d
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 5d). Stem Cell Res (2017) ncbi
兔 单克隆(EPR2027(2))
  • 免疫细胞化学; 人类; 1:500; 图 6f
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6f). Biomaterials (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). J Biol Chem (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 s1e
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 s1e). Cell (2016) ncbi
兔 单克隆(EPR2027(2))
  • 免疫细胞化学; 人类; 1:200; 图 4
  • 免疫细胞化学; 猪; 1:200; 图 4
艾博抗(上海)贸易有限公司 NANOG抗体(abcam, ab109250)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4) 和 被用于免疫细胞化学在猪样本上浓度为1:200 (图 4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 1C
  • 免疫印迹; 人类; 图 1E; 3F
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 1C) 和 被用于免疫印迹在人类样本上 (图 1E; 3F). Genes Dev (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1e
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1e). Front Surg (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 1b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 1b). Neuroscience (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1b). Open Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 斑马鱼; 1:1000; 图 3
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, Ab80892)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(23D2-3C6)
  • 免疫细胞化学; 人类; 1:2500; 图 s1
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab173368)被用于被用于免疫细胞化学在人类样本上浓度为1:2500 (图 s1). Sci Rep (2016) ncbi
兔 单克隆(EPR2027(2))
  • 免疫细胞化学; 人类; 图 6
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫细胞化学在人类样本上 (图 6). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:700; 图 s1b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫印迹在小鼠样本上浓度为1:700 (图 s1b). Nat Commun (2016) ncbi
兔 单克隆(EPR2027(2))
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 1d
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1d). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 5
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Stem Cell Reports (2016) ncbi
兔 单克隆(EPR2027(2))
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫印迹在人类样本上 (图 5). Breast Cancer Res Treat (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 2a
艾博抗(上海)贸易有限公司 NANOG抗体(abcam, ab80892)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 2a). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 4
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Cell Reprogram (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 5
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, AB80892)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Stem Cell Reports (2016) ncbi
兔 单克隆(EPR2027(2))
  • 免疫组化-石蜡切片; 人类; 1:25; 图 1
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 1). J Ovarian Res (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 NANOG抗体(abcam, ab21624)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 1
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 NANOG抗体(abcam, 21624)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1) 和 被用于免疫印迹在人类样本上. Nat Commun (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 2
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, Ab-21624)被用于被用于免疫细胞化学在人类样本上 (图 2). Nucleic Acids Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 兔; 1:500; 图 5a
艾博抗(上海)贸易有限公司 NANOG抗体(abcam, ab21624)被用于被用于免疫印迹在兔样本上浓度为1:500 (图 5a). J Transl Med (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 s3g
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s3g). Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 NANOG抗体(AbCam, Ab21624)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Biol Ther (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 1
艾博抗(上海)贸易有限公司 NANOG抗体(abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; equine; 1:500; 图 1
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫组化在equine样本上浓度为1:500 (图 1). Stem Cell Reports (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 s1
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1). Cell Res (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 7
艾博抗(上海)贸易有限公司 NANOG抗体(abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 7). Stem Cells Int (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 1B
  • 免疫印迹; 小鼠; 图 1C
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1B) 和 被用于免疫印迹在小鼠样本上 (图 1C). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 2b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2b). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫细胞化学在人类样本上 (图 1). Stem Cell Res Ther (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 3b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624,)被用于被用于免疫细胞化学在人类样本上 (图 3b). Methods Mol Biol (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:700; 图 1d
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上浓度为1:700 (图 1d). Dis Model Mech (2015) ncbi
兔 多克隆
  • 流式细胞仪; 人类; 图 s8
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于流式细胞仪在人类样本上 (图 s8). Nature (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 s5c
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s5c). Nature (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 3
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 3). Stem Cell Res Ther (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 2
  • 免疫沉淀; 小鼠; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 s3
艾博抗(上海)贸易有限公司 NANOG抗体(abcam, ab21624)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2), 被用于免疫沉淀在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 s2
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 猪; 1:200
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫印迹在猪样本上浓度为1:200. Anim Reprod Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:300
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫印迹在人类样本上浓度为1:300. Stem Cell Rev (2014) ncbi
兔 单克隆(EPR2027(2))
  • 流式细胞仪; 人类
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于流式细胞仪在人类样本上. Cell Death Dis (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫印迹在人类样本上. Oncol Rep (2013) ncbi
兔 多克隆
  • 流式细胞仪; 人类; 图 s8
艾博抗(上海)贸易有限公司 NANOG抗体(abcam, ab21624)被用于被用于流式细胞仪在人类样本上 (图 s8). Int J Cancer (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s4
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). EMBO Rep (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab-80892)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Cell Transplant (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上. Protein Cell (2012) ncbi
安迪生物R&D
山羊 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1d
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1d). Stem Cell Res (2018) ncbi
山羊 多克隆
  • 免疫组化; 人类; 1:50; 图 5c
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫组化在人类样本上浓度为1:50 (图 5c). Nat Commun (2018) ncbi
山羊 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5k
安迪生物R&D NANOG抗体(R&D Systems, AF1997-SP)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5k). Proc Natl Acad Sci U S A (2017) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:25; 图 1g
安迪生物R&D NANOG抗体(RD Systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 1g). Stem Cell Res (2017) ncbi
山羊 多克隆
  • 免疫组化; 人类; 1:100; 图 S2A
安迪生物R&D NANOG抗体(R&D, AF1997)被用于被用于免疫组化在人类样本上浓度为1:100 (图 S2A). PLoS ONE (2017) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:150; 图 s1b
安迪生物R&D NANOG抗体(R&D, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:150 (图 s1b). Sci Rep (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 图 s2c
安迪生物R&D NANOG抗体(R&D, AF1997)被用于被用于免疫细胞化学在人类样本上 (图 s2c). Nat Med (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 小鼠; 图 6e
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在小鼠样本上 (图 6e). Proc Natl Acad Sci U S A (2016) ncbi
山羊 多克隆
  • 免疫组化; 人类; 1:50; 图 1a
安迪生物R&D NANOG抗体(R&D, AF1997)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1a). Stem Cell Res (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:250; 图 s2
安迪生物R&D NANOG抗体(R&D, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 s2). Sci Rep (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 6.7 ug/ml; 图 s2
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为6.7 ug/ml (图 s2). PLoS ONE (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:2000; 图 2
安迪生物R&D NANOG抗体(R&D systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 2). Stem Cell Reports (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 1A
安迪生物R&D NANOG抗体(R&D, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1A). Stem Cell Res (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 1A
安迪生物R&D NANOG抗体(R&D, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1A). Stem Cell Res (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 1A
安迪生物R&D NANOG抗体(R&D, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1A). Stem Cell Res (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 1A
安迪生物R&D NANOG抗体(R&D, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1A). Stem Cell Res (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 图 1??s3.
  • 免疫细胞化学; 大鼠; 图 S1c
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上 (图 1??s3.) 和 被用于免疫细胞化学在大鼠样本上 (图 S1c). elife (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 6.7 ug/ml; 图 1
安迪生物R&D NANOG抗体(R&D systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为6.7 ug/ml (图 1). Stem Cell Rev (2016) ncbi
山羊 多克隆
  • 免疫组化; 人类; 1:500; 图 s9c
安迪生物R&D NANOG抗体(R&D, AF1977)被用于被用于免疫组化在人类样本上浓度为1:500 (图 s9c). Nature (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 3
安迪生物R&D NANOG抗体(R&D Bioscience, AF 1997)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3). J Biol Chem (2016) ncbi
山羊 多克隆
  • 免疫印迹; 人类; 图 7
安迪生物R&D NANOG抗体(R & D, AF1997)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:100
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Nature (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 图 s1
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上 (图 s1). Sci Rep (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 5s1a
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5s1a). elife (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; African green monkey; 1:50; 图 1
安迪生物R&D NANOG抗体(R&D Systems, 1997)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:50 (图 1). BMC Res Notes (2015) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 图 4
安迪生物R&D NANOG抗体(R&D systems, AF1997)被用于被用于免疫细胞化学在人类样本上 (图 4). Stem Cell Reports (2015) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 10 ug/ml; 图 3c
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为10 ug/ml (图 3c). J Vis Exp (2015) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 2.5 ug/ml
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为2.5 ug/ml. Mol Hum Reprod (2015) ncbi
山羊 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3
安迪生物R&D NANOG抗体(R&D, AF1997)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Sci Rep (2015) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:100
安迪生物R&D NANOG抗体(R&D Systems, 1997)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Nature (2015) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上. Cell (2015) ncbi
山羊 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2,3,7,s1
  • 免疫组化-石蜡切片; 小鼠; 图 2,3,7,s1
安迪生物R&D NANOG抗体(R&D, AF1997)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2,3,7,s1) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 2,3,7,s1). Nat Genet (2015) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:100
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:100. PLoS ONE (2015) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:100
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Curr Protoc Stem Cell Biol (2015) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 1d
安迪生物R&D NANOG抗体(R&D, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1d). Cell (2015) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:500
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Methods Mol Biol (2016) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:100
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Methods Mol Biol (2016) ncbi
山羊 多克隆
  • 免疫印迹; 人类
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2015) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:100
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Stem Cells Transl Med (2014) ncbi
山羊 多克隆
  • 免疫细胞化学; 牛
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在牛样本上. Int J Mol Sci (2014) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:10
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:10. Integr Biol (Camb) (2013) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:200
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Stem Cells Dev (2013) ncbi
山羊 多克隆
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
山羊 多克隆
  • 免疫印迹; 人类
安迪生物R&D NANOG抗体(R & D Systems, AF1997)被用于被用于免疫印迹在人类样本上. Oncogene (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(1E6C4)
  • 免疫沉淀; 人类; 图 5g
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-293121)被用于被用于免疫沉淀在人类样本上 (图 5g). Theranostics (2019) ncbi
小鼠 单克隆(1E6C4)
  • 免疫细胞化学; 人类; 1:100; 图 1e
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-293121)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1e). Stem Cell Res (2018) ncbi
小鼠 单克隆(1E6C4)
  • 免疫印迹; 人类; 1:500; 图 2e
  • 免疫组化; 小鼠; 1:500; 图 1f
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, SC-293121)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2e) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 1f). Nat Commun (2017) ncbi
小鼠 单克隆(5A10)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-134218)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(1E6C4)
  • 免疫细胞化学; 小鼠; 1:500; 图 1b
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-293121)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1b). Protein Cell (2017) ncbi
小鼠 单克隆(1E6C4)
  • 免疫印迹; 人类; 1:100; 图 7b
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, 293121)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 7b). Oncotarget (2016) ncbi
小鼠 单克隆(1E6C4)
  • 流式细胞仪; 人类; 1:50; 图 2
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-293121)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2). Stem Cell Res Ther (2016) ncbi
小鼠 单克隆(J-29)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-81961)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(J-29)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 NANOG抗体(santa Cruz, sc-81961)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(5A10)
  • 免疫细胞化学; 水牛; 图 2
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, SC134218)被用于被用于免疫细胞化学在水牛样本上 (图 2). Cell J (2015) ncbi
小鼠 单克隆(1E6C4)
  • 免疫细胞化学; 小鼠; 1:500; 图 3b
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-293121)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3b). Acta Biochim Biophys Sin (Shanghai) (2014) ncbi
小鼠 单克隆(A-11)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-374001)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(J-29)
  • 免疫印迹; 人类
圣克鲁斯生物技术 NANOG抗体(Santa Cruz Biotechnology, J29)被用于被用于免疫印迹在人类样本上. Stem Cells (2014) ncbi
小鼠 单克隆(5A10)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-134218)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Exp Cell Res (2014) ncbi
小鼠 单克隆(H-2)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-374103)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Biol Chem (2013) ncbi
赛默飞世尔
小鼠 单克隆(23D2-3C6)
  • 免疫细胞化学; 人类; 1:100; 图 1f
赛默飞世尔 NANOG抗体(Thermo Fisher, MA1-017)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1f). Stem Cell Res (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 NANOG抗体(Thermo-Fisher, PA1-097)被用于被用于免疫印迹在人类样本上 (图 4a). J Pathol (2017) ncbi
小鼠 单克隆(23D2-3C6)
  • 免疫细胞化学; 人类; 1:100; 图 1d
赛默飞世尔 NANOG抗体(ThermoFisher Scientific, MA1-017)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1d). Stem Cell Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1d
赛默飞世尔 NANOG抗体(ThermoFisher, PA1-097)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1d). Sci Rep (2016) ncbi
小鼠 单克隆(hNanog.2)
  • 免疫细胞化学; 人类; 1:50; 图 1
赛默飞世尔 NANOG抗体(eBioscience, 14-5768-82)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 3a
赛默飞世尔 NANOG抗体(Invitrogen, PA5- 20889)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3a). Methods Mol Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛默飞世尔 NANOG抗体(Thermo Fisher Scientific, PA1-097)被用于被用于免疫印迹在人类样本上 (图 2). Stem Cells Int (2016) ncbi
小鼠 单克隆(23D2-3C6)
  • 免疫印迹; 人类; 1:1000; 图 s2
赛默飞世尔 NANOG抗体(Thermo Fisher Scientific, MA1-017)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(23D2-3C6)
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 NANOG抗体(Thermo Scientific, MA1-017)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS Genet (2015) ncbi
小鼠 单克隆(23D2-3C6)
  • 免疫细胞化学; 人类; 1:100; 图 2h
赛默飞世尔 NANOG抗体(Thermo Scientific, MA1-017)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2h). Stem Cell Reports (2015) ncbi
小鼠 单克隆(hNanog.2)
  • 免疫细胞化学; 人类
赛默飞世尔 NANOG抗体(eBioscience, 14-5768-82)被用于被用于免疫细胞化学在人类样本上. Methods Mol Biol (2016) ncbi
小鼠 单克隆(1E6C4)
  • 免疫细胞化学; 人类; 1:250
赛默飞世尔 NANOG抗体(Thermo Fisher Scientific, 1E6C4)被用于被用于免疫细胞化学在人类样本上浓度为1:250. Neuromolecular Med (2014) ncbi
Novus Biologicals
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:300; 图 1
Novus Biologicals NANOG抗体(Novus Biologicals, NB100-58842)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 1). Genome Biol (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 1
Novus Biologicals NANOG抗体(Novus Biologicals, NB100-58842)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1). Stem Cell Reports (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1
Novus Biologicals NANOG抗体(Novus Biologicals, NB100-58842)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2
  • 染色质免疫沉淀 ; 小鼠; 1:250; 图 5
  • 免疫印迹; 小鼠; 1:1000; 图 2
Novus Biologicals NANOG抗体(Novus Biologicals, NB100-58842)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2), 被用于染色质免疫沉淀 在小鼠样本上浓度为1:250 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2014) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(2E11)
  • In-Cell Western; 狗; 1:200; 图 4
亚诺法生技股份有限公司 NANOG抗体(Abnova, H00079923-M02)被用于被用于In-Cell Western在狗样本上浓度为1:200 (图 4). Stem Cells Transl Med (2014) ncbi
LifeSpan Biosciences
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:50
LifeSpan Biosciences NANOG抗体(Lifespan, LS-B1193)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. Tissue Eng Part A (2013) ncbi
GeneTex
兔 多克隆
  • 免疫印迹; 人类
GeneTex NANOG抗体(GeneTex, GTX100863)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(NNG-811)
  • 免疫组化; 人类; 1:50; 图 5
西格玛奥德里奇 NANOG抗体(Sigma, N3038)被用于被用于免疫组化在人类样本上浓度为1:50 (图 5). Histochem Cell Biol (2016) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(D73G4)
  • 免疫细胞化学; 人类; 图 5b
  • 免疫印迹; 人类; 图 2a, 2h
赛信通(上海)生物试剂有限公司 NANOG抗体(CST, 4903)被用于被用于免疫细胞化学在人类样本上 (图 5b) 和 被用于免疫印迹在人类样本上 (图 2a, 2h). Theranostics (2019) ncbi
兔 单克隆(D73G4)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). J Mol Biol (2018) ncbi
兔 单克隆(D73G4)
  • 免疫组化; 人类; 1:250; 图 5d
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, D73G4)被用于被用于免疫组化在人类样本上浓度为1:250 (图 5d). Nat Commun (2018) ncbi
兔 单克隆(D73G4)
  • 免疫细胞化学; 人类; 图 3b
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling Technology, 4903)被用于被用于免疫细胞化学在人类样本上 (图 3b). Cancer Res (2017) ncbi
兔 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:400; 图 s1
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s1). Orphanet J Rare Dis (2017) ncbi
兔 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:200; 图 s1a
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903S)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1a). Int J Mol Sci (2017) ncbi
小鼠 单克隆(1E6C4)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4893)被用于被用于免疫印迹在人类样本上 (图 2a). Mol Cancer Res (2017) ncbi
兔 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:200; 图 1g
赛信通(上海)生物试剂有限公司 NANOG抗体(cell signalling, 4903S)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1g). Stem Cell Res (2017) ncbi
兔 单克隆(D73G4)
  • 免疫细胞化学; African green monkey; 1:800; 图 1B
  • 免疫细胞化学; 人类; 1:800; 图 4B
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:800 (图 1B) 和 被用于免疫细胞化学在人类样本上浓度为1:800 (图 4B). PLoS ONE (2017) ncbi
兔 单克隆(D73G4)
  • 免疫细胞化学; 人类; 图 2a
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell signaling, 4903)被用于被用于免疫细胞化学在人类样本上 (图 2a). Biol Open (2017) ncbi
小鼠 单克隆(1E6C4)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell signaling, 1E6C4)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 3580)被用于被用于免疫印迹在人类样本上 (图 4c). Front Pharmacol (2016) ncbi
兔 单克隆(D73G4)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell signaling, 4903)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Front Physiol (2016) ncbi
兔 单克隆(D73G4)
  • 流式细胞仪; 人类; 1:200; 图 1b
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, D73G4)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1b). J Cell Biol (2016) ncbi
兔 单克隆(D73G4)
  • 免疫组化; 人类; 1:200; 图 1h
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903S)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1h). Stem Cell Res (2016) ncbi
小鼠 单克隆(1E6C4)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4893)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
兔 单克隆(D73G4)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903)被用于被用于免疫印迹在人类样本上 (图 5e). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1d, 2a
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 3580)被用于被用于免疫印迹在人类样本上 (图 1d, 2a). Sci Rep (2016) ncbi
小鼠 单克隆(1E6C4)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4893)被用于被用于免疫印迹在人类样本上 (图 2). Stem Cells Dev (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling Tech, CST-3580)被用于被用于免疫印迹在人类样本上 (图 3). Toxins (Basel) (2016) ncbi
兔 单克隆(D73G4)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1d
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, D73G4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1d). J Clin Pathol (2016) ncbi
兔 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:300; 图 S1B
赛信通(上海)生物试剂有限公司 NANOG抗体(CST, D73G4)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 S1B). J Clin Invest (2016) ncbi
兔 单克隆(D73G4)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2016) ncbi
兔 单克隆(D73G4)
  • 染色质免疫沉淀 ; 人类; 1:100; 图 5b
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, D73G4)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:100 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5c). Nat Commun (2016) ncbi
兔 单克隆(D73G4)
  • 免疫细胞化学; 人类; 图 s1
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell signaling, D73G4)被用于被用于免疫细胞化学在人类样本上 (图 s1). Stem Cell Reports (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 3580)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nature (2015) ncbi
兔 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:500; 图 1e
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell signaling, D73G4)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1e). Stem Cell Reports (2015) ncbi
小鼠 单克隆(1E6C4)
  • 流式细胞仪; 人类; 1:500; 图 2
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4893)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 2). Stem Cell Reports (2015) ncbi
兔 单克隆(D73G4)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell signaling, D73G4)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 表 s1
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 3580)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (表 s1). J Chin Med Assoc (2015) ncbi
兔 单克隆(D73G4)
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上. Sci Rep (2015) ncbi
兔 单克隆(D73G4)
  • 免疫组化; 人类; 1:100; 图 5
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling Technologies, 4903)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5). Stem Cell Rev (2015) ncbi
兔 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:50; 图 2Ab
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling Technology, 8750)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2Ab). Eur J Hum Genet (2016) ncbi
小鼠 单克隆(1E6C4)
  • 免疫细胞化学; white-tufted-ear marmoset; 1:100; 图 2
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4893)被用于被用于免疫细胞化学在white-tufted-ear marmoset样本上浓度为1:100 (图 2). PLoS ONE (2015) ncbi
兔 单克隆(D73G4)
  • 免疫细胞化学; white-tufted-ear marmoset; 1:300; 图 2
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903)被用于被用于免疫细胞化学在white-tufted-ear marmoset样本上浓度为1:300 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling Technology, 3580)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Int J Oncol (2015) ncbi
兔 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:500
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell signaling, 4903S)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Peerj (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 3580S)被用于被用于免疫细胞化学在人类样本上. Mol Syst Biol (2014) ncbi
兔 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, D73G4)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(1E6C4)
  • 免疫细胞化学; 人类; 1:100; 图 6
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell signaling technology, 4893)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). Hum Reprod (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell signaling, 3580)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Front Aging Neurosci (2014) ncbi
兔 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:50
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Mol Endocrinol (2014) ncbi
兔 单克隆(D73G4)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 7
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, D73G4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 7) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Nat Commun (2014) ncbi
兔 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903S)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Stem Cells Dev (2014) ncbi
兔 单克隆(D73G4)
  • 免疫组化; 人类; 1:300
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 NANOG抗体(cst, D73G4)被用于被用于免疫组化在人类样本上浓度为1:300 和 被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2014) ncbi
兔 单克隆(D73G4)
  • 流式细胞仪; 小鼠; 1:15
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 5448)被用于被用于流式细胞仪在小鼠样本上浓度为1:15. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:400
赛信通(上海)生物试剂有限公司 NANOG抗体(CST, 3580)被用于被用于免疫细胞化学在人类样本上浓度为1:400. Cytotechnology (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 3580)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Neuro Oncol (2013) ncbi
小鼠 单克隆(1E6C4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signalling, 4893)被用于被用于免疫印迹在人类样本上. Oncogene (2013) ncbi
兔 单克隆(D73G4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signalling, 4903)被用于被用于免疫印迹在人类样本上. Oncogene (2013) ncbi
小鼠 单克隆(1E6C4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling Technology, 4893)被用于被用于免疫印迹在人类样本上. Stem Cells (2012) ncbi
默克密理博中国
兔 多克隆
  • 免疫细胞化学; 人类; 图 1c
默克密理博中国 NANOG抗体(EMD Millipore, AB9220)被用于被用于免疫细胞化学在人类样本上 (图 1c). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(7F7.1)
  • 免疫组化; 人类; 1:100; 图 4
默克密理博中国 NANOG抗体(Merck Millipore, MABD24A4)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4). Mol Med Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
默克密理博中国 NANOG抗体(Millipore, AB5731)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
兔 多克隆
  • 流式细胞仪; 人类; 图 1c
默克密理博中国 NANOG抗体(Millipore, FCABS352A4)被用于被用于流式细胞仪在人类样本上 (图 1c). Stem Cells Transl Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3
默克密理博中国 NANOG抗体(Chemicon, AB9220)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
默克密理博中国 NANOG抗体(Millipore, AB5731)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(7F7.1)
  • 免疫细胞化学; 人类; 1:100; 图 s1
  • 免疫细胞化学; 猪; 1:100; 图 2
默克密理博中国 NANOG抗体(Chemicon, MABD24)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s1) 和 被用于免疫细胞化学在猪样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 3
  • 免疫印迹; 小鼠; 1:1000; 图 3
默克密理博中国 NANOG抗体(Millipore, ab9220)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 图 st2
默克密理博中国 NANOG抗体(Millipore, AB5731)被用于被用于ChIP-Seq在小鼠样本上 (图 st2). Epigenetics Chromatin (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2c
默克密理博中国 NANOG抗体(Calbiochem-EMD Biosciences, SC1000)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). BMC Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1a
默克密理博中国 NANOG抗体(Calbiochem, SC1000)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1a). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 牛; 1:250; 图 3
默克密理博中国 NANOG抗体(Millipore, AB5731)被用于被用于免疫细胞化学在牛样本上浓度为1:250 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(7F7.1)
  • 免疫印迹; 人类
默克密理博中国 NANOG抗体(EMD Millipore, MABD24)被用于被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
兔 多克隆
  • 流式细胞仪; 人类
默克密理博中国 NANOG抗体(Millipore, FCABS352A4)被用于被用于流式细胞仪在人类样本上. Sci Rep (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:100
默克密理博中国 NANOG抗体(Millipore, AB5731)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 s8
  • 免疫细胞化学; 猕猴; 1:100; 图 s10
  • 免疫细胞化学; 小鼠; 1:100; 图 s4
默克密理博中国 NANOG抗体(Millipore, SC1000)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s8), 被用于免疫细胞化学在猕猴样本上浓度为1:100 (图 s10) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s4). Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1200; 图 7a
默克密理博中国 NANOG抗体(Millipore, AB9220)被用于被用于免疫印迹在小鼠样本上浓度为1:1200 (图 7a). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
默克密理博中国 NANOG抗体(Millipore, AB5731)被用于被用于免疫印迹在小鼠样本上 (图 1). Epigenetics Chromatin (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:150
默克密理博中国 NANOG抗体(Millipore, 9220)被用于被用于免疫细胞化学在人类样本上浓度为1:150. Stem Cell Res (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
默克密理博中国 NANOG抗体(Millipore, AB5731)被用于被用于免疫细胞化学在小鼠样本上. Acta Pharmacol Sin (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2
默克密理博中国 NANOG抗体(Millipore, AB9220)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500; 图 2e3
默克密理博中国 NANOG抗体(Millipore, Ab9220)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2e3). J Mol Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
默克密理博中国 NANOG抗体(Millipore, AB9220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
默克密理博中国 NANOG抗体(Millipore, AB5731)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
默克密理博中国 NANOG抗体(Millipore, AB5731)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
默克密理博中国 NANOG抗体(EMD Millipore, AB9220)被用于被用于免疫细胞化学在人类样本上. J Biomed Mater Res B Appl Biomater (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
默克密理博中国 NANOG抗体(Millipore Corporation, AB9220)被用于被用于免疫印迹在人类样本上 (图 1). Evid Based Complement Alternat Med (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
默克密理博中国 NANOG抗体(Millipore, AB5731)被用于被用于免疫细胞化学在小鼠样本上. J Biol Chem (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
默克密理博中国 NANOG抗体(Millipore, AB5731)被用于被用于免疫细胞化学在小鼠样本上. Cell Res (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
默克密理博中国 NANOG抗体(Millipore, AB9220)被用于被用于免疫印迹在小鼠样本上. Nucleic Acids Res (2012) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠
  • 免疫印迹; 小鼠
默克密理博中国 NANOG抗体(Chemicon, AB5731)被用于被用于染色质免疫沉淀 在小鼠样本上 和 被用于免疫印迹在小鼠样本上. EMBO J (2011) ncbi
碧迪BD
小鼠 单克隆(N31-355)
  • 免疫细胞化学; 人类; 1:200; 图 3a
碧迪BD NANOG抗体(BD Biosciences, 560482)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3a). Stem Cell Res (2018) ncbi
小鼠 单克隆(N31-355)
  • 免疫细胞化学; 人类; 1:200; 表 1
碧迪BD NANOG抗体(BD Biosciences, 560482)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (表 1). Stem Cell Res (2017) ncbi
小鼠 单克隆(N31-355)
  • 流式细胞仪; 人类; 图 1a
碧迪BD NANOG抗体(BD Biosciences, 562259)被用于被用于流式细胞仪在人类样本上 (图 1a). PLoS ONE (2017) ncbi
小鼠 单克隆(N31-355)
  • 免疫细胞化学; 人类; 1:500; 图 1
碧迪BD NANOG抗体(BD, 560482)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1). Nature (2016) ncbi
小鼠 单克隆(N31-355)
  • 免疫细胞化学; 人类; 1:500; 图 7
碧迪BD NANOG抗体(BD Biosciences, 560791)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 7). J Steroid Biochem Mol Biol (2017) ncbi
小鼠 单克隆(L96-549)
  • 免疫细胞化学; 人类; 1:100; 图 s2a
碧迪BD NANOG抗体(BD Biosciences, 560109)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s2a). Nat Commun (2016) ncbi
小鼠 单克隆(N31-355)
  • 流式细胞仪; 人类; 图 5e
碧迪BD NANOG抗体(BD Biosciences, 560873)被用于被用于流式细胞仪在人类样本上 (图 5e). Oncotarget (2015) ncbi
小鼠 单克隆(N31-355)
  • 流式细胞仪; 人类; 图 s3a
碧迪BD NANOG抗体(BD Biosciences, N31-355)被用于被用于流式细胞仪在人类样本上 (图 s3a). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(N31-355)
  • 流式细胞仪; 小鼠; 1:20; 图 6c
碧迪BD NANOG抗体(BD Bioscience, 560873)被用于被用于流式细胞仪在小鼠样本上浓度为1:20 (图 6c). J Cell Mol Med (2014) ncbi
文章列表
  1. Zhou H, Wang L, Zhang C, Hu J, Chen J, Du W, et al. Feasibility of repairing full-thickness skin defects by iPSC-derived epithelial stem cells seeded on a human acellular amniotic membrane. Stem Cell Res Ther. 2019;10:155 pubmed 出版商
  2. Cao J, Zhao M, Liu J, Zhang X, Pei Y, Wang J, et al. RACK1 Promotes Self-Renewal and Chemoresistance of Cancer Stem Cells in Human Hepatocellular Carcinoma through Stabilizing Nanog. Theranostics. 2019;9:811-828 pubmed 出版商
  3. Chen X, Zhi X, Wang J, Su J. RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res. 2018;6:34 pubmed 出版商
  4. Quintero C, Laursen K, Mongan N, Luo M, Gudas L. CARM1 (PRMT4) Acts as a Transcriptional Coactivator during Retinoic Acid-Induced Embryonic Stem Cell Differentiation. J Mol Biol. 2018;430:4168-4182 pubmed 出版商
  5. Weltner J, Balboa D, Katayama S, Bespalov M, Krjutskov K, Jouhilahti E, et al. Human pluripotent reprogramming with CRISPR activators. Nat Commun. 2018;9:2643 pubmed 出版商
  6. Zhu F, Zhu Q, Ye D, Zhang Q, Yang Y, Guo X, et al. Sin3a-Tet1 interaction activates gene transcription and is required for embryonic stem cell pluripotency. Nucleic Acids Res. 2018;46:6026-6040 pubmed 出版商
  7. Wang C, Najm R, Xu Q, Jeong D, Walker D, Balestra M, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med. 2018;24:647-657 pubmed 出版商
  8. Wu M, Liu S, Gao Y, Bai H, Machairaki V, Li G, et al. Conditional gene knockout and reconstitution in human iPSCs with an inducible Cas9 system. Stem Cell Res. 2018;29:6-14 pubmed 出版商
  9. Gao Y, Wilson G, Bozaoglu K, Elefanty A, Stanley E, Dottori M, et al. Generation of RAB39B knockout isogenic human embryonic stem cell lines to model RAB39B-mediated Parkinson's disease. Stem Cell Res. 2018;28:161-164 pubmed 出版商
  10. Aneichyk T, Hendriks W, Yadav R, Shin D, Gao D, Vaine C, et al. Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly. Cell. 2018;172:897-909.e21 pubmed 出版商
  11. Kogut I, McCarthy S, Pavlova M, Astling D, Chen X, Jakimenko A, et al. High-efficiency RNA-based reprogramming of human primary fibroblasts. Nat Commun. 2018;9:745 pubmed 出版商
  12. Meng Y, Moore R, Tao W, Smith E, Tse J, Caslini C, et al. GATA6 phosphorylation by Erk1/2 propels exit from pluripotency and commitment to primitive endoderm. Dev Biol. 2018;436:55-65 pubmed 出版商
  13. He J, Weng Z, Wu S, Boheler K. Generation of Induced Pluripotent Stem Cells from Patients with COL3A1 Mutations and Differentiation to Smooth Muscle Cells for ECM-Surfaceome Analyses. Methods Mol Biol. 2018;1722:261-302 pubmed 出版商
  14. Yuan F, Guo D, Liu Y, Xu Y, Gao G, Wu Y, et al. Generation of an ASS1 heterozygous knockout human embryonic stem cell line, WAe001-A-13, using CRISPR/Cas9. Stem Cell Res. 2018;26:67-71 pubmed 出版商
  15. Kim H, Kang Y, Byun J, Jang S, Rho G, Lee J, et al. Midkine and NANOG Have Similar Immunohistochemical Expression Patterns and Contribute Equally to an Adverse Prognosis of Oral Squamous Cell Carcinoma. Int J Mol Sci. 2017;18: pubmed 出版商
  16. Krendl C, Shaposhnikov D, Rishko V, Ori C, Ziegenhain C, Sass S, et al. GATA2/3-TFAP2A/C transcription factor network couples human pluripotent stem cell differentiation to trophectoderm with repression of pluripotency. Proc Natl Acad Sci U S A. 2017;114:E9579-E9588 pubmed 出版商
  17. Hazim R, Karumbayaram S, Jiang M, Dimashkie A, Lopes V, Li D, et al. Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization. Stem Cell Res Ther. 2017;8:217 pubmed 出版商
  18. Tang L, Wang M, Liu D, Gong M, Ying Q, Ye S. Sp5 induces the expression of Nanog to maintain mouse embryonic stem cell self-renewal. PLoS ONE. 2017;12:e0185714 pubmed 出版商
  19. Alonso Barroso E, Brasil S, Briso Montiano Á, Navarrete R, Perez Cerda C, Ugarte M, et al. Generation and characterization of a human iPSC line from a patient with propionic acidemia due to defects in the PCCA gene. Stem Cell Res. 2017;23:173-177 pubmed 出版商
  20. Ning B, Zhao W, Qian C, Liu P, Li Q, Li W, et al. USP26 functions as a negative regulator of cellular reprogramming by stabilising PRC1 complex components. Nat Commun. 2017;8:349 pubmed 出版商
  21. Jin L, Vu T, Yuan G, Datta P. STRAP Promotes Stemness of Human Colorectal Cancer via Epigenetic Regulation of the NOTCH Pathway. Cancer Res. 2017;77:5464-5478 pubmed 出版商
  22. Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H, et al. Endoglin Is Essential for the Maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem Cells. Stem Cell Reports. 2017;9:464-477 pubmed 出版商
  23. Aguisanda F, Yeh C, Chen C, Li R, Beers J, Zou J, et al. Neural stem cells for disease modeling of Wolman disease and evaluation of therapeutics. Orphanet J Rare Dis. 2017;12:120 pubmed 出版商
  24. Jeziorowska D, Fontaine V, Jouve C, Villard E, Dussaud S, Akbar D, et al. Differential Sarcomere and Electrophysiological Maturation of Human iPSC-Derived Cardiac Myocytes in Monolayer vs. Aggregation-Based Differentiation Protocols. Int J Mol Sci. 2017;18: pubmed 出版商
  25. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  26. Liu S, Ye Z, Gao Y, He C, Williams D, MOLITERNO A, et al. Generation of human iPSCs from an essential thrombocythemia patient carrying a V501L mutation in the MPL gene. Stem Cell Res. 2017;18:57-59 pubmed 出版商
  27. Uhlin E, Rönnholm H, Day K, Kele M, Tammimies K, Bölte S, et al. Derivation of human iPS cell lines from monozygotic twins in defined and xeno free conditions. Stem Cell Res. 2017;18:22-25 pubmed 出版商
  28. Jung Klawitter S, Ebersold J, Göhring G, Blau N, Opladen T. Generation of an iPSC line from a patient with GTP cyclohydrolase 1 (GCH1) deficiency: HDMC0061i-GCH1. Stem Cell Res. 2017;20:38-41 pubmed 出版商
  29. Yan Y, Zhao W, Huang Y, Tong H, Xia Y, Jiang Q, et al. Loss of Polycomb Group Protein Pcgf1 Severely Compromises Proper Differentiation of Embryonic Stem Cells. Sci Rep. 2017;7:46276 pubmed 出版商
  30. Choi J, Clement K, Huebner A, Webster J, Rose C, Brumbaugh J, et al. DUSP9 Modulates DNA Hypomethylation in Female Mouse Pluripotent Stem Cells. Cell Stem Cell. 2017;20:706-719.e7 pubmed 出版商
  31. Siddiqui A, Vazakidou M, Schwab A, Napoli F, Fernandez Molina C, Rapa I, et al. Thymidylate synthase is functionally associated with ZEB1 and contributes to the epithelial-to-mesenchymal transition of cancer cells. J Pathol. 2017;242:221-233 pubmed 出版商
  32. Ram R, Brasch H, Dunne J, Davis P, Tan S, Itinteang T. The Identification of Three Cancer Stem Cell Subpopulations within Moderately Differentiated Lip Squamous Cell Carcinoma. Front Surg. 2017;4:12 pubmed 出版商
  33. Geng Z, Walsh P, Truong V, Hill C, Ebeling M, Kapphahn R, et al. Generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration. PLoS ONE. 2017;12:e0173575 pubmed 出版商
  34. Marinowic D, Majolo F, Sebben A, da Silva V, Lopes T, Paglioli E, et al. Induced pluripotent stem cells from patients with focal cortical dysplasia and refractory epilepsy. Mol Med Rep. 2017;15:2049-2056 pubmed 出版商
  35. Kakiuchi S, Minami Y, Miyata Y, Mizutani Y, Goto H, Kawamoto S, et al. NANOG Expression as a Responsive Biomarker during Treatment with Hedgehog Signal Inhibitor in Acute Myeloid Leukemia. Int J Mol Sci. 2017;18: pubmed 出版商
  36. Chen H, Zuo Q, Wang Y, Song J, Yang H, Zhang Y, et al. Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters. BMC Biotechnol. 2017;17:11 pubmed 出版商
  37. Arioka Y, Ito H, Hirata A, Semi K, Yamada Y, Seishima M. Behavior of leucine-rich repeat-containing G-protein coupled receptor 5-expressing cells in the reprogramming process. Stem Cell Res. 2017;20:1-9 pubmed 出版商
  38. Yamashita T, Miyamoto Y, Bando Y, Ono T, Kobayashi S, Doi A, et al. Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells. PLoS ONE. 2017;12:e0171947 pubmed 出版商
  39. Tang Y, Cheng L. Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury. Protein Cell. 2017;8:273-283 pubmed 出版商
  40. Flamier A, Singh S, Rasmussen T. A standardized human embryoid body platform for the detection and analysis of teratogens. PLoS ONE. 2017;12:e0171101 pubmed 出版商
  41. Bharathan S, Manian K, Aalam S, Palani D, Deshpande P, Pratheesh M, et al. Systematic evaluation of markers used for the identification of human induced pluripotent stem cells. Biol Open. 2017;6:100-108 pubmed 出版商
  42. Price A, Huang E, Sebastiano V, Dunn A. A semi-interpenetrating network of polyacrylamide and recombinant basement membrane allows pluripotent cell culture in a soft, ligand-rich microenvironment. Biomaterials. 2017;121:179-192 pubmed 出版商
  43. Zhong Y, Li X, Ji Y, Li X, Li Y, Yu D, et al. Pyruvate dehydrogenase expression is negatively associated with cell stemness and worse clinical outcome in prostate cancers. Oncotarget. 2017;8:13344-13356 pubmed 出版商
  44. Xiao Y, Ma H, Wan P, Qin D, Wang X, Zhang X, et al. Trp-Asp (WD) Repeat Domain 1 Is Essential for Mouse Peri-implantation Development and Regulates Cofilin Phosphorylation. J Biol Chem. 2017;292:1438-1448 pubmed 出版商
  45. Ang Y, Rivas R, Ribeiro A, Srivas R, Rivera J, Stone N, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016;167:1734-1749.e22 pubmed 出版商
  46. Jung Klawitter S, Blau N, Sebe A, Ebersold J, Göhring G, Opladen T. Generation of an iPSC line from a patient with tyrosine hydroxylase (TH) deficiency: TH-1 iPSC. Stem Cell Res. 2016;17:580-583 pubmed 出版商
  47. Xu D, Zhou P, Wang Y, Zhang Y, Zhang R, Zhang L, et al. miR-150 Suppresses the Proliferation and Tumorigenicity of Leukemia Stem Cells by Targeting the Nanog Signaling Pathway. Front Pharmacol. 2016;7:439 pubmed
  48. Prieto P, Fernandez Velasco M, Fernández Santos M, Sanchez P, Terrón V, Martín Sanz P, et al. Cell Expansion-Dependent Inflammatory and Metabolic Profile of Human Bone Marrow Mesenchymal Stem Cells. Front Physiol. 2016;7:548 pubmed
  49. Gong L, Pan X, Chen H, Rao L, Zeng Y, Hang H, et al. p53 isoform Δ133p53 promotes efficiency of induced pluripotent stem cells and ensures genomic integrity during reprogramming. Sci Rep. 2016;6:37281 pubmed 出版商
  50. Zeltner N, Fattahi F, Dubois N, Saurat N, Lafaille F, Shang L, et al. Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med. 2016;22:1421-1427 pubmed 出版商
  51. Zhu L, Gómez Durán A, Saretzki G, Jin S, Tilgner K, Melguizo Sanchís D, et al. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. J Cell Biol. 2016;215:187-202 pubmed
  52. Hayashi Y, Hsiao E, Sami S, Lancero M, Schlieve C, Nguyen T, et al. BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence. Proc Natl Acad Sci U S A. 2016;113:13057-13062 pubmed
  53. Varga E, Nemes C, Táncos Z, Bock I, Berzsenyi S, Lévay G, et al. Establishment of EHMT1 mutant induced pluripotent stem cell (iPSC) line from a 11-year-old Kleefstra syndrome (KS) patient with autism and normal intellectual performance. Stem Cell Res. 2016;17:531-533 pubmed 出版商
  54. Kele M, Day K, Rönnholm H, Schuster J, Dahl N, Falk A. Generation of human iPS cell line CTL07-II from human fibroblasts, under defined and xeno-free conditions. Stem Cell Res. 2016;17:474-478 pubmed 出版商
  55. Yuan Y, Yang Y, Tian Y, Park J, Dai A, Roberts R, et al. Efficient long-term cryopreservation of pluripotent stem cells at -80?°C. Sci Rep. 2016;6:34476 pubmed 出版商
  56. Okata S, Yuasa S, Suzuki T, Ito S, Makita N, Yoshida T, et al. Embryonic type Na+ channel ?-subunit, SCN3B masks the disease phenotype of Brugada syndrome. Sci Rep. 2016;6:34198 pubmed 出版商
  57. Yoffe Y, David M, Kalaora R, Povodovski L, Friedlander G, Feldmesser E, et al. Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells. Genes Dev. 2016;30:1991-2004 pubmed 出版商
  58. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  59. Kotoku T, Kosaka K, Nishio M, Ishida Y, Kawaichi M, Matsuda E. CIBZ Regulates Mesodermal and Cardiac Differentiation of by Suppressing T and Mesp1 Expression in Mouse Embryonic Stem Cells. Sci Rep. 2016;6:34188 pubmed 出版商
  60. Borgs L, Peyre E, Alix P, Hanon K, Grobarczyk B, Godin J, et al. Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects. Sci Rep. 2016;6:33377 pubmed 出版商
  61. BRADSHAW A, Wickremesekera A, Brasch H, Chibnall A, Davis P, Tan S, et al. Cancer Stem Cells in Glioblastoma Multiforme. Front Surg. 2016;3:48 pubmed 出版商
  62. Zhang L, Hua Q, Tang K, Shi C, Xie X, Zhang R. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells. Neuroscience. 2016;337:88-97 pubmed 出版商
  63. Ahmadian Baghbaderani B, Tian X, Scotty Cadet J, Shah K, Walde A, Tran H, et al. A Newly Defined and Xeno-Free Culture Medium Supports Every-Other-Day Medium Replacement in the Generation and Long-Term Cultivation of Human Pluripotent Stem Cells. PLoS ONE. 2016;11:e0161229 pubmed 出版商
  64. Thamodaran V, Bruce A. p38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development. Open Biol. 2016;6: pubmed 出版商
  65. Liu Z, Hui Y, Shi L, Chen Z, Xu X, Chi L, et al. Efficient CRISPR/Cas9-Mediated Versatile, Predictable, and Donor-Free Gene Knockout in Human Pluripotent Stem Cells. Stem Cell Reports. 2016;7:496-507 pubmed 出版商
  66. Tancos Z, Varga E, Kovacs E, Dinnyes A, Kobolak J. Establishment of induced pluripotent stem cell (iPSC) line from a 75-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Res. 2016;17:81-83 pubmed 出版商
  67. Chandrasekaran A, Varga E, Nemes C, Tancos Z, Kobolak J, Dinnyes A. Establishment of induced pluripotent stem cell (iPSC) line from a 63-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Res. 2016;17:78-80 pubmed 出版商
  68. Tancos Z, Varga E, Kovacs E, Dinnyes A, Kobolak J. Establishment of induced pluripotent stem cell (iPSC) line from an 84-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Res. 2016;17:75-77 pubmed 出版商
  69. Ochalek A, Nemes C, Varga E, Tancos Z, Kobolak J, Dinnyes A. Establishment of induced pluripotent stem cell (iPSC) line from a 57-year old patient with sporadic Alzheimer's disease. Stem Cell Res. 2016;17:72-74 pubmed 出版商
  70. Liu Z, Ning G, Xu R, Cao Y, Meng A, Wang Q. Fscn1 is required for the trafficking of TGF-β family type I receptors during endoderm formation. Nat Commun. 2016;7:12603 pubmed 出版商
  71. Fang D, Yan S, Yu Q, Chen D, Yan S. Mfn2 is Required for Mitochondrial Development and Synapse Formation in Human Induced Pluripotent Stem Cells/hiPSC Derived Cortical Neurons. Sci Rep. 2016;6:31462 pubmed 出版商
  72. Lv D, Yu S, Ping Y, Wu H, Zhao X, Zhang H, et al. A three-dimensional collagen scaffold cell culture system for screening anti-glioma therapeutics. Oncotarget. 2016;7:56904-56914 pubmed 出版商
  73. Long Y, Xu M, Li R, Dai S, Beers J, Chen G, et al. Induced Pluripotent Stem Cells for Disease Modeling and Evaluation of Therapeutics for Niemann-Pick Disease Type A. Stem Cells Transl Med. 2016;5:1644-1655 pubmed
  74. Sun Y, Paşca S, Portmann T, Goold C, Worringer K, Guan W, et al. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients. elife. 2016;5: pubmed 出版商
  75. Cheng Y, Huang C, Lee Y, Tien L, Ku W, Chien R, et al. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep. 2016;6:30314 pubmed 出版商
  76. Pijuan Galitó S, Tamm C, Schuster J, Sobol M, Forsberg L, Merry C, et al. Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture. Nat Commun. 2016;7:12170 pubmed 出版商
  77. Lee M, Huang H, Chang T, Huang H, Hsieh S, Chen Y, et al. Genome-wide analysis of HIF-2? chromatin binding sites under normoxia in human bronchial epithelial cells (BEAS-2B) suggests its diverse functions. Sci Rep. 2016;6:29311 pubmed 出版商
  78. Simile M, Latte G, Demartis M, Brozzetti S, Calvisi D, Porcu A, et al. Post-translational deregulation of YAP1 is genetically controlled in rat liver cancer and determines the fate and stem-like behavior of the human disease. Oncotarget. 2016;7:49194-49216 pubmed 出版商
  79. Li H, Mai R, Huang H, Chou C, Chang Y, Chang Y, et al. DDX3 Represses Stemness by Epigenetically Modulating Tumor-suppressive miRNAs in Hepatocellular Carcinoma. Sci Rep. 2016;6:28637 pubmed 出版商
  80. Zhang Y, Cabarcas S, Zheng J, Sun L, Mathews L, Zhang X, et al. Cryptotanshinone targets tumor-initiating cells through down-regulation of stemness genes expression. Oncol Lett. 2016;11:3803-3812 pubmed
  81. Desrochers L, Bordeleau F, Reinhart King C, Cerione R, Antonyak M. Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun. 2016;7:11958 pubmed 出版商
  82. Tomasello L, Musso R, Cillino G, Pitrone M, Pizzolanti G, Coppola A, et al. Donor age and long-term culture do not negatively influence the stem potential of limbal fibroblast-like stem cells. Stem Cell Res Ther. 2016;7:83 pubmed 出版商
  83. Baghbaderani B, Syama A, Sivapatham R, Pei Y, Mukherjee O, Fellner T, et al. Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications. Stem Cell Rev. 2016;12:394-420 pubmed 出版商
  84. Lu Y, Liu Y, Liao S, Tu W, Shen Y, Yan Y, et al. Epigenetic modifications promote the expression of the orphan nuclear receptor NR0B1 in human lung adenocarcinoma cells. Oncotarget. 2016;7:43162-43176 pubmed 出版商
  85. Hyslop L, Blakeley P, Craven L, Richardson J, Fogarty N, Fragouli E, et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature. 2016;534:383-6 pubmed 出版商
  86. Jang H, Hong Y, Choi H, Song H, Byun S, Uhm S, et al. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion. PLoS ONE. 2016;11:e0156491 pubmed 出版商
  87. Brosh R, Hrynyk I, Shen J, Waghray A, Zheng N, Lemischka I. A dual molecular analogue tuner for dissecting protein function in mammalian cells. Nat Commun. 2016;7:11742 pubmed 出版商
  88. Momcilovic O, Sivapatham R, Oron T, Meyer M, Mooney S, Rao M, et al. Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson's Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations. PLoS ONE. 2016;11:e0154890 pubmed 出版商
  89. Jung J, Kang K, Kim J, Hong S, Park Y, Kim B. CXCR2 Inhibition in Human Pluripotent Stem Cells Induces Predominant Differentiation to Mesoderm and Endoderm Through Repression of mTOR, ?-Catenin, and hTERT Activities. Stem Cells Dev. 2016;25:1006-19 pubmed 出版商
  90. Hou D, Jin Y, Nie X, Zhang M, Ta N, Zhao L, et al. Derivation of Porcine Embryonic Stem-Like Cells from In Vitro-Produced Blastocyst-Stage Embryos. Sci Rep. 2016;6:25838 pubmed 出版商
  91. Moshfegh C, Aires L, Kisielow M, Vogel V. A gonogenic stimulated transition of mouse embryonic stem cells with enhanced control of diverse differentiation pathways. Sci Rep. 2016;6:25104 pubmed 出版商
  92. Pandolfini L, Luzi E, Bressan D, Ucciferri N, Bertacchi M, Brandi R, et al. RISC-mediated control of selected chromatin regulators stabilizes ground state pluripotency of mouse embryonic stem cells. Genome Biol. 2016;17:94 pubmed 出版商
  93. Deglincerti A, Croft G, Pietila L, Zernicka Goetz M, Siggia E, Brivanlou A. Self-organization of the in vitro attached human embryo. Nature. 2016;533:251-4 pubmed 出版商
  94. Lu K, Wang B, Chi W, Chang Chien J, Yang J, Lee H, et al. Ovatodiolide Inhibits Breast Cancer Stem/Progenitor Cells through SMURF2-Mediated Downregulation of Hsp27. Toxins (Basel). 2016;8: pubmed 出版商
  95. Silva S, Levy D, Ruiz J, de Melo T, Isaac C, Fidelis M, et al. Oxysterols in adipose tissue-derived mesenchymal stem cell proliferation and death. J Steroid Biochem Mol Biol. 2017;169:164-175 pubmed 出版商
  96. Kushwaha R, Jagadish N, Kustagi M, Mendiratta G, Seandel M, Soni R, et al. Mechanism and Role of SOX2 Repression in Seminoma: Relevance to Human Germline Specification. Stem Cell Reports. 2016;6:772-783 pubmed 出版商
  97. Thakkar A, Wang B, Picon Ruiz M, Buchwald P, Ince T. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat. 2016;157:77-90 pubmed 出版商
  98. Baillie R, Itinteang T, Yu H, Brasch H, Davis P, Tan S. Cancer stem cells in moderately differentiated oral tongue squamous cell carcinoma. J Clin Pathol. 2016;69:742-4 pubmed 出版商
  99. Stelloh C, Reimer M, Pulakanti K, Blinka S, Peterson J, Pinello L, et al. The cohesin-associated protein Wapal is required for proper Polycomb-mediated gene silencing. Epigenetics Chromatin. 2016;9:14 pubmed 出版商
  100. Stratigopoulos G, Burnett L, Rausch R, Gill R, Penn D, Skowronski A, et al. Hypomorphism of Fto and Rpgrip1l causes obesity in mice. J Clin Invest. 2016;126:1897-910 pubmed 出版商
  101. Isotani A, Yamagata K, Okabe M, Ikawa M. Generation of Hprt-disrupted rat through mouse?rat ES chimeras. Sci Rep. 2016;6:24215 pubmed 出版商
  102. Liu Q, Zhang R, Li D, Cheng S, Yang Y, Tian T, et al. Muse Cells, a New Type of Pluripotent Stem Cell Derived from Human Fibroblasts. Cell Reprogram. 2016;18:67-77 pubmed 出版商
  103. Navarra A, Musto A, Gargiulo A, Petrosino G, Pierantoni G, Fusco A, et al. Hmga2 is necessary for Otx2-dependent exit of embryonic stem cells from the pluripotent ground state. BMC Biol. 2016;14:24 pubmed 出版商
  104. Meng G, Poon A, Liu S, Rancourt D. An Effective and Reliable Xeno-free Cryopreservation Protocol for Single Human Pluripotent Stem Cells. Methods Mol Biol. 2016;1516:47-56 pubmed 出版商
  105. Sakakini N, Turchi L, Bergon A, Holota H, Rekima S, Lopez F, et al. A Positive Feed-forward Loop Associating EGR1 and PDGFA Promotes Proliferation and Self-renewal in Glioblastoma Stem Cells. J Biol Chem. 2016;291:10684-99 pubmed 出版商
  106. Lee T, Liu C, Chang Y, Nieh S, Lin Y, Jao S, et al. Increased chemoresistance via Snail-Raf kinase inhibitor protein signaling in colorectal cancer in response to a nicotine derivative. Oncotarget. 2016;7:23512-20 pubmed 出版商
  107. Ananthula S, Sinha A, El Gassim M, Batth S, Marshall G, Gardner L, et al. Geminin overexpression-dependent recruitment and crosstalk with mesenchymal stem cells enhance aggressiveness in triple negative breast cancers. Oncotarget. 2016;7:20869-89 pubmed 出版商
  108. Sagi I, Chia G, Golan Lev T, Peretz M, Weissbein U, Sui L, et al. Derivation and differentiation of haploid human embryonic stem cells. Nature. 2016;532:107-11 pubmed 出版商
  109. Zou L, Chen Q, Quanbeck Z, Bechtold J, Kaufman D. Angiogenic activity mediates bone repair from human pluripotent stem cell-derived osteogenic cells. Sci Rep. 2016;6:22868 pubmed 出版商
  110. Borkent M, Bennett B, Lackford B, Bar Nur O, Brumbaugh J, Wang L, et al. A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2. Stem Cell Reports. 2016;6:704-716 pubmed 出版商
  111. Shao Z, Zhang R, Khodadadi Jamayran A, Chen B, Crowley M, Festok M, et al. The acetyllysine reader BRD3R promotes human nuclear reprogramming and regulates mitosis. Nat Commun. 2016;7:10869 pubmed 出版商
  112. Virant Klun I, Kenda Suster N, Smrkolj S. Small putative NANOG, SOX2, and SSEA-4-positive stem cells resembling very small embryonic-like stem cells in sections of ovarian tissue in patients with ovarian cancer. J Ovarian Res. 2016;9:12 pubmed 出版商
  113. Chang T, Chen C, Wu Y, Liu J, Kuo Y, Lee K, et al. Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma. PLoS ONE. 2016;11:e0149897 pubmed 出版商
  114. Xu M, Bian S, Li J, He J, Chen H, Ge L, et al. MeCP2 suppresses LIN28A expression via binding to its methylated-CpG islands in pancreatic cancer cells. Oncotarget. 2016;7:14476-85 pubmed 出版商
  115. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  116. Morales Hernández A, González Rico F, Román A, Rico Leo E, Alvarez Barrientos A, Sánchez L, et al. Alu retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor. Nucleic Acids Res. 2016;44:4665-83 pubmed 出版商
  117. Catanzaro G, Besharat Z, Garg N, Ronci M, Pieroni L, Miele E, et al. MicroRNAs-Proteomic Networks Characterizing Human Medulloblastoma-SLCs. Stem Cells Int. 2016;2016:2683042 pubmed 出版商
  118. Gehlot P, Shukla V, Gupta S, Makidon P. Detection of ALDH1 activity in rabbit hepatic VX2 tumors and isolation of ALDH1 positive cancer stem cells. J Transl Med. 2016;14:49 pubmed 出版商
  119. Liu C, Chen S, Wu M, Jao S, Lin Y, Yang C, et al. The molecular and clinical verification of therapeutic resistance via the p38 MAPK-Hsp27 axis in lung cancer. Oncotarget. 2016;7:14279-90 pubmed 出版商
  120. Scognamiglio R, Cabezas Wallscheid N, Thier M, Altamura S, Reyes A, Prendergast Ã, et al. Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell. 2016;164:668-80 pubmed 出版商
  121. Gerashchenko B, Salmina K, Eglitis J, Huna A, Grjunberga V, Erenpreisa J. Disentangling the aneuploidy and senescence paradoxes: a study of triploid breast cancers non-responsive to neoadjuvant therapy. Histochem Cell Biol. 2016;145:497-508 pubmed 出版商
  122. Wang X, Jung Y, Jun S, Lee S, Wang W, Schneider A, et al. PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun. 2016;7:10633 pubmed 出版商
  123. Dorris E, Blackshields G, Sommerville G, Alhashemi M, Dias A, McEneaney V, et al. Pluripotency markers are differentially induced by MEK inhibition in thyroid and melanoma BRAFV600E cell lines. Cancer Biol Ther. 2016;17:526-42 pubmed 出版商
  124. Zhang Q, Dan J, Wang H, Guo R, Mao J, Fu H, et al. Tcstv1 and Tcstv3 elongate telomeres of mouse ES cells. Sci Rep. 2016;6:19852 pubmed 出版商
  125. Li Q, Lex R, Chung H, Giovanetti S, Ji Z, Ji H, et al. The Pluripotency Factor NANOG Binds to GLI Proteins and Represses Hedgehog-mediated Transcription. J Biol Chem. 2016;291:7171-82 pubmed 出版商
  126. Kyttälä A, Moraghebi R, Valensisi C, Kettunen J, Andrus C, Pasumarthy K, et al. Genetic Variability Overrides the Impact of Parental Cell Type and Determines iPSC Differentiation Potential. Stem Cell Reports. 2016;6:200-12 pubmed 出版商
  127. Quattrocelli M, Giacomazzi G, Broeckx S, Ceelen L, Bolca S, Spaas J, et al. Equine-Induced Pluripotent Stem Cells Retain Lineage Commitment Toward Myogenic and Chondrogenic Fates. Stem Cell Reports. 2016;6:55-63 pubmed 出版商
  128. Pan H, Guan D, Liu X, Li J, Wang L, Wu J, et al. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res. 2016;26:190-205 pubmed 出版商
  129. Carroll B, Maetzel D, Maddocks O, Otten G, Ratcliff M, Smith G, et al. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. elife. 2016;5: pubmed 出版商
  130. Guye P, Ebrahimkhani M, Kipniss N, Velazquez J, Schoenfeld E, Kiani S, et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun. 2016;7:10243 pubmed 出版商
  131. Hammoud A, Kirstein N, Mournetas V, Darracq A, Broc S, Blanchard C, et al. Murine Embryonic Stem Cell Plasticity Is Regulated through Klf5 and Maintained by Metalloproteinase MMP1 and Hypoxia. PLoS ONE. 2016;11:e0146281 pubmed 出版商
  132. Vijaya Chandra S, Makhija H, Peter S, Myint Wai C, Li J, Zhu J, et al. Conservative site-specific and single-copy transgenesis in human LINE-1 elements. Nucleic Acids Res. 2016;44:e55 pubmed 出版商
  133. Conrad S, Azizi H, Hatami M, Kubista M, Bonin M, Hennenlotter J, et al. Expression of Genes Related to Germ Cell Lineage and Pluripotency in Single Cells and Colonies of Human Adult Germ Stem Cells. Stem Cells Int. 2016;2016:8582526 pubmed 出版商
  134. Ou L, Fang L, Tang H, Qiao H, Zhang X, Wang Z. Dickkopf Wnt signaling pathway inhibitor 1 regulates the differentiation of mouse embryonic stem cells in vitro and in vivo. Mol Med Rep. 2016;13:720-30 pubmed 出版商
  135. Rohnalter V, Roth K, Finkernagel F, Adhikary T, Obert J, Dorzweiler K, et al. A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype. Oncotarget. 2015;6:40005-25 pubmed 出版商
  136. Wongtrakoongate P, Riddick G, Fucharoen S, Felsenfeld G. Association of the Long Non-coding RNA Steroid Receptor RNA Activator (SRA) with TrxG and PRC2 Complexes. PLoS Genet. 2015;11:e1005615 pubmed 出版商
  137. Ramaswamy K, Yik W, Wang X, Oliphant E, Lu W, Shibata D, et al. Derivation of induced pluripotent stem cells from orangutan skin fibroblasts. BMC Res Notes. 2015;8:577 pubmed 出版商
  138. Werner A, Iwasaki S, McGourty C, Medina Ruiz S, Teerikorpi N, Fedrigo I, et al. Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 2015;525:523-7 pubmed 出版商
  139. Agu C, Soares F, Alderton A, Patel M, Ansari R, Patel S, et al. Successful Generation of Human Induced Pluripotent Stem Cell Lines from Blood Samples Held at Room Temperature for up to 48 hr. Stem Cell Reports. 2015;5:660-71 pubmed 出版商
  140. Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T. Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation. Stem Cell Reports. 2015;5:448-59 pubmed 出版商
  141. Neri T, Muggeo S, Paulis M, Caldana M, Crisafulli L, Strina D, et al. Targeted Gene Correction in Osteopetrotic-Induced Pluripotent Stem Cells for the Generation of Functional Osteoclasts. Stem Cell Reports. 2015;5:558-68 pubmed 出版商
  142. Hung S, Pébay A, Wong R. Generation of Integration-free Human Induced Pluripotent Stem Cells Using Hair-derived Keratinocytes. J Vis Exp. 2015;:e53174 pubmed 出版商
  143. Choi H, Kim J, Hong Y, Song H, Seo H, Do J. In vivo reprogrammed pluripotent stem cells from teratomas share analogous properties with their in vitro counterparts. Sci Rep. 2015;5:13559 pubmed 出版商
  144. Kawaguchi T, Tsukiyama T, Kimura K, Matsuyama S, Minami N, Yamada M, et al. Generation of Naïve Bovine Induced Pluripotent Stem Cells Using PiggyBac Transposition of Doxycycline-Inducible Transcription Factors. PLoS ONE. 2015;10:e0135403 pubmed 出版商
  145. Kang R, Zhou Y, Tan S, Zhou G, Aagaard L, Xie L, et al. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Res Ther. 2015;6:144 pubmed 出版商
  146. Laperle A, Hsiao C, Lampe M, Mortier J, Saha K, Palecek S, et al. α-5 Laminin Synthesized by Human Pluripotent Stem Cells Promotes Self-Renewal. Stem Cell Reports. 2015;5:195-206 pubmed 出版商
  147. Zandi M, Muzaffar M, Shah S, Kumar Singh M, Palta P, Kumar Singla S, et al. Optimization of Buffalo (Bubalus bubalis) Embryonic Stem Cell Culture System. Cell J. 2015;17:264-73 pubmed
  148. Ju S, Huang C, Huang W, Su Y. Identification of thiostrepton as a novel therapeutic agent that targets human colon cancer stem cells. Cell Death Dis. 2015;6:e1801 pubmed 出版商
  149. Fidan K, Ebrahimi A, ÇaÄŸlayan Ã, Özçimen B, Önder T. Transgene-Free Disease-Specific iPSC Generation from Fibroblasts and Peripheral Blood Mononuclear Cells. Methods Mol Biol. 2016;1353:215-31 pubmed 出版商
  150. Krivega M, Essahib W, Van de Velde H. WNT3 and membrane-associated β-catenin regulate trophectoderm lineage differentiation in human blastocysts. Mol Hum Reprod. 2015;21:711-22 pubmed 出版商
  151. Galoian K, Qureshi A, D Ippolito G, Schiller P, Molinari M, Johnstone A, et al. Epigenetic regulation of embryonic stem cell marker miR302C in human chondrosarcoma as determinant of antiproliferative activity of proline-rich polypeptide 1. Int J Oncol. 2015;47:465-72 pubmed 出版商
  152. Szlachcic W, Switonski P, Krzyzosiak W, Figlerowicz M, Figiel M. Huntington disease iPSCs show early molecular changes in intracellular signaling, the expression of oxidative stress proteins and the p53 pathway. Dis Model Mech. 2015;8:1047-57 pubmed 出版商
  153. Kawamura N, Nimura K, Nagano H, Yamaguchi S, Nonomura N, Kaneda Y. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget. 2015;6:22361-74 pubmed
  154. Beers J, Linask K, Chen J, Siniscalchi L, Lin Y, Zheng W, et al. A cost-effective and efficient reprogramming platform for large-scale production of integration-free human induced pluripotent stem cells in chemically defined culture. Sci Rep. 2015;5:11319 pubmed 出版商
  155. Deng S, Zhang Y, Xu C, Ma D. MicroRNA-125b-2 overexpression represses ectodermal differentiation of mouse embryonic stem cells. Int J Mol Med. 2015;36:355-62 pubmed 出版商
  156. Tsai P, Chang Y, Lee Y, Ko Y, Yang Y, Lin C, et al. Differentiation of blood T cells: Reprogramming human induced pluripotent stem cells into neuronal cells. J Chin Med Assoc. 2015;78:353-9 pubmed 出版商
  157. Palla A, Piazzolla D, Alcazar N, Cañamero M, Graña O, Gómez López G, et al. The pluripotency factor NANOG promotes the formation of squamous cell carcinomas. Sci Rep. 2015;5:10205 pubmed 出版商
  158. Zhou H, Martínez H, Sun B, Li A, Zimmer M, Katsanis N, et al. Rapid and Efficient Generation of Transgene-Free iPSC from a Small Volume of Cryopreserved Blood. Stem Cell Rev. 2015;11:652-65 pubmed 出版商
  159. Wu J, Okamura D, Li M, Suzuki K, Luo C, Ma L, et al. An alternative pluripotent state confers interspecies chimaeric competency. Nature. 2015;521:316-21 pubmed 出版商
  160. McHugh C, Chen C, Chow A, Surka C, Tran C, McDonel P, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature. 2015;521:232-6 pubmed 出版商
  161. Machado C, Griesi Oliveira K, Rosenberg C, Kok F, Martins S, Passos Bueno M, et al. Collybistin binds and inhibits mTORC1 signaling: a potential novel mechanism contributing to intellectual disability and autism. Eur J Hum Genet. 2016;24:59-65 pubmed 出版商
  162. Grow E, Flynn R, CHAVEZ S, Bayless N, Wossidlo M, Wesche D, et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature. 2015;522:221-5 pubmed 出版商
  163. Driscoll C, Tonne J, El Khatib M, Cattaneo R, Ikeda Y, Devaux P. Nuclear reprogramming with a non-integrating human RNA virus. Stem Cell Res Ther. 2015;6:48 pubmed 出版商
  164. Lee D, Su J, Kim H, Chang B, Papatsenko D, Zhao R, et al. Modeling familial cancer with induced pluripotent stem cells. Cell. 2015;161:240-54 pubmed 出版商
  165. Boo K, Bhin J, Jeon Y, Kim J, Shin H, Park J, et al. Pontin functions as an essential coactivator for Oct4-dependent lincRNA expression in mouse embryonic stem cells. Nat Commun. 2015;6:6810 pubmed 出版商
  166. Sheshadri P, Ashwini A, Jahnavi S, Bhonde R, Prasanna J, Kumar A. Novel role of mitochondrial manganese superoxide dismutase in STAT3 dependent pluripotency of mouse embryonic stem cells. Sci Rep. 2015;5:9516 pubmed 出版商
  167. Sun Y, Florer J, Mayhew C, Jia Z, Zhao Z, Xu K, et al. Properties of neurons derived from induced pluripotent stem cells of Gaucher disease type 2 patient fibroblasts: potential role in neuropathology. PLoS ONE. 2015;10:e0118771 pubmed 出版商
  168. Liao J, Karnik R, Gu H, Ziller M, Clement K, Tsankov A, et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat Genet. 2015;47:469-78 pubmed 出版商
  169. Debowski K, Warthemann R, Lentes J, Salinas Riester G, Dressel R, Langenstroth D, et al. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach. PLoS ONE. 2015;10:e0118424 pubmed 出版商
  170. Pino Barrio M, García García E, Menéndez P, Martínez Serrano A. V-myc immortalizes human neural stem cells in the absence of pluripotency-associated traits. PLoS ONE. 2015;10:e0118499 pubmed 出版商
  171. Costabile V, Duraturo F, Delrio P, Rega D, Pace U, Liccardo R, et al. Lithium chloride induces mesenchymal‑to‑epithelial reverting transition in primary colon cancer cell cultures. Int J Oncol. 2015;46:1913-23 pubmed 出版商
  172. Toh Y, Xing J, Yu H. Modulation of integrin and E-cadherin-mediated adhesions to spatially control heterogeneity in human pluripotent stem cell differentiation. Biomaterials. 2015;50:87-97 pubmed 出版商
  173. Ohlemacher S, Iglesias C, Sridhar A, Gamm D, Meyer J. Generation of highly enriched populations of optic vesicle-like retinal cells from human pluripotent stem cells. Curr Protoc Stem Cell Biol. 2015;32:1H.8.1-20 pubmed 出版商
  174. Irie N, Weinberger L, Tang W, Kobayashi T, Viukov S, Manor Y, et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell. 2015;160:253-68 pubmed 出版商
  175. Denton K, Xu C, Li X. Modeling Axonal Phenotypes with Human Pluripotent Stem Cells. Methods Mol Biol. 2016;1353:309-21 pubmed 出版商
  176. Sivapatham R, Zeng X. Generation and Characterization of Patient-Specific Induced Pluripotent Stem Cell for Disease Modeling. Methods Mol Biol. 2016;1353:25-44 pubmed 出版商
  177. Bittencourt D, Lee B, Gao L, Gerke D, Stallcup M. Role of distinct surfaces of the G9a ankyrin repeat domain in histone and DNA methylation during embryonic stem cell self-renewal and differentiation. Epigenetics Chromatin. 2014;7:27 pubmed 出版商
  178. Wilson P, Payne T. Genetic reprogramming of human amniotic cells with episomal vectors: neural rosettes as sentinels in candidate selection for validation assays. Peerj. 2014;2:e668 pubmed 出版商
  179. Byrne S, Ortiz L, Mali P, Aach J, Church G. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res. 2015;43:e21 pubmed 出版商
  180. Busskamp V, Lewis N, Guye P, Ng A, Shipman S, Byrne S, et al. Rapid neurogenesis through transcriptional activation in human stem cells. Mol Syst Biol. 2014;10:760 pubmed 出版商
  181. Shimamoto A, Kagawa H, Zensho K, Sera Y, Kazuki Y, Osaki M, et al. Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture. PLoS ONE. 2014;9:e112900 pubmed 出版商
  182. Akoury E, Zhang L, Ao A, Slim R. NLRP7 and KHDC3L, the two maternal-effect proteins responsible for recurrent hydatidiform moles, co-localize to the oocyte cytoskeleton. Hum Reprod. 2015;30:159-69 pubmed 出版商
  183. Vestergaard M, Awan A, Warzecha C, Christensen S, Andersen C. Immunofluorescence Microscopy and mRNA Analysis of Human Embryonic Stem Cells (hESCs) Including Primary Cilia Associated Signaling Pathways. Methods Mol Biol. 2016;1307:123-40 pubmed 出版商
  184. Jia D, Yang W, Li L, Liu H, Tan Y, Ooi S, et al. β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer. Cell Death Differ. 2015;22:298-310 pubmed 出版商
  185. Chang Y, Chang W, Hung K, Yang D, Cheng Y, Liao Y, et al. The generation of induced pluripotent stem cells for macular degeneration as a drug screening platform: identification of curcumin as a protective agent for retinal pigment epithelial cells against oxidative stress. Front Aging Neurosci. 2014;6:191 pubmed 出版商
  186. Ovchinnikov D, Titmarsh D, Fortuna P, Hidalgo A, Alharbi S, Whitworth D, et al. Transgenic human ES and iPS reporter cell lines for identification and selection of pluripotent stem cells in vitro. Stem Cell Res. 2014;13:251-61 pubmed 出版商
  187. Xie Y, Lu W, Liu S, Yang Q, Carver B, Li E, et al. Crosstalk between nuclear MET and SOX9/?-catenin correlates with castration-resistant prostate cancer. Mol Endocrinol. 2014;28:1629-39 pubmed 出版商
  188. Liu G, Suzuki K, Li M, Qu J, Montserrat N, Tarantino C, et al. Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun. 2014;5:4330 pubmed 出版商
  189. Xu X, Zhang L, Xie X. Somatostatin receptor type 2 contributes to the self-renewal of murine embryonic stem cells. Acta Pharmacol Sin. 2014;35:1023-30 pubmed 出版商
  190. Piazzolla D, Palla A, Pantoja C, Canamero M, de Castro I, Ortega S, et al. Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nat Commun. 2014;5:4226 pubmed 出版商
  191. Soltanian S, Dehghani H, Matin M, Bahrami A. Expression analysis of BORIS during pluripotent, differentiated, cancerous, and non-cancerous cell states. Acta Biochim Biophys Sin (Shanghai). 2014;46:647-58 pubmed 出版商
  192. Alvarez A, Field M, Bushnev S, Longo M, Sugaya K. The effects of histone deacetylase inhibitors on glioblastoma-derived stem cells. J Mol Neurosci. 2015;55:7-20 pubmed 出版商
  193. Ferrer M, Corneo B, Davis J, Wan Q, Miyagishima K, King R, et al. A multiplex high-throughput gene expression assay to simultaneously detect disease and functional markers in induced pluripotent stem cell-derived retinal pigment epithelium. Stem Cells Transl Med. 2014;3:911-22 pubmed 出版商
  194. Krutá M, Šeneklová M, Raška J, Salykin A, Zerzankova L, Pesl M, et al. Mutation frequency dynamics in HPRT locus in culture-adapted human embryonic stem cells and induced pluripotent stem cells correspond to their differentiated counterparts. Stem Cells Dev. 2014;23:2443-54 pubmed 出版商
  195. Brandl C, Zimmermann S, Milenkovic V, Rosendahl S, Grassmann F, Milenkovic A, et al. In-depth characterisation of Retinal Pigment Epithelium (RPE) cells derived from human induced pluripotent stem cells (hiPSC). Neuromolecular Med. 2014;16:551-64 pubmed 出版商
  196. Uh K, Park C, Choi K, Park J, Jeong Y, Roh S, et al. Analysis of imprinted IGF2/H19 gene methylation and expression in normal fertilized and parthenogenetic embryonic stem cells of pigs. Anim Reprod Sci. 2014;147:47-55 pubmed 出版商
  197. Schuster A, Klotz M, Schwab T, Di Liddo R, Bertalot T, Schrenk S, et al. Maintenance of the enteric stem cell niche by bacterial lipopolysaccharides? Evidence and perspectives. J Cell Mol Med. 2014;18:1429-43 pubmed 出版商
  198. Tan G, Cheng L, Chen T, Yu L, Tan Y. Foxm1 mediates LIF/Stat3-dependent self-renewal in mouse embryonic stem cells and is essential for the generation of induced pluripotent stem cells. PLoS ONE. 2014;9:e92304 pubmed 出版商
  199. Chen W, Ho C, Chang Y, Chen H, Lin C, Ling T, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014;5:3472 pubmed 出版商
  200. Lin Y, Kuo K, Wuputra K, Lin S, Ku C, Yang Y, et al. Bovine induced pluripotent stem cells are more resistant to apoptosis than testicular cells in response to mono-(2-ethylhexyl) phthalate. Int J Mol Sci. 2014;15:5011-31 pubmed 出版商
  201. Peng X, Liu T, Shi C, Zhang L, Wang Y, Zhao W, et al. Germline transmission of an embryonic stem cell line derived from BALB/c cataract mice. PLoS ONE. 2014;9:e90707 pubmed 出版商
  202. Ono T, Suzuki Y, Kato Y, Fujita R, Araki T, Yamashita T, et al. A single-cell and feeder-free culture system for monkey embryonic stem cells. PLoS ONE. 2014;9:e88346 pubmed 出版商
  203. Kohler E, Baruah J, Urao N, Ushio Fukai M, Fukai T, Chatterjee I, et al. Low-dose 6-bromoindirubin-3'-oxime induces partial dedifferentiation of endothelial cells to promote increased neovascularization. Stem Cells. 2014;32:1538-52 pubmed 出版商
  204. Gkountela S, Li Z, Chin C, Lee S, Clark A. PRMT5 is required for human embryonic stem cell proliferation but not pluripotency. Stem Cell Rev. 2014;10:230-9 pubmed 出版商
  205. Hagiwara K, Obayashi T, Sakayori N, Yamanishi E, Hayashi R, Osumi N, et al. Molecular and cellular features of murine craniofacial and trunk neural crest cells as stem cell-like cells. PLoS ONE. 2014;9:e84072 pubmed 出版商
  206. Gericota B, Anderson J, Mitchell G, Borjesson D, Sturges B, Nolta J, et al. Canine epidermal neural crest stem cells: characterization and potential as therapy candidate for a large animal model of spinal cord injury. Stem Cells Transl Med. 2014;3:334-45 pubmed 出版商
  207. Massumi M, Hoveizi E, Baktash P, Hooti A, Ghazizadeh L, Nadri S, et al. Efficient programming of human eye conjunctiva-derived induced pluripotent stem (ECiPS) cells into definitive endoderm-like cells. Exp Cell Res. 2014;322:51-61 pubmed 出版商
  208. Toko H, Hariharan N, Konstandin M, Ormachea L, McGregor M, Gude N, et al. Differential regulation of cellular senescence and differentiation by prolyl isomerase Pin1 in cardiac progenitor cells. J Biol Chem. 2014;289:5348-56 pubmed 出版商
  209. Myers F, Silver J, Zhuge Y, Beygui R, Zarins C, Lee L, et al. Robust pluripotent stem cell expansion and cardiomyocyte differentiation via geometric patterning. Integr Biol (Camb). 2013;5:1495-506 pubmed 出版商
  210. Liu H, Zhang W, Jia Y, Yu Q, Grau G, Peng L, et al. Single-cell clones of liver cancer stem cells have the potential of differentiating into different types of tumor cells. Cell Death Dis. 2013;4:e857 pubmed 出版商
  211. Chen Y, Huang W, Chang S, Chang K, Kao S, Lo J, et al. Enhanced filopodium formation and stem-like phenotypes in a novel metastatic head and neck cancer cell model. Oncol Rep. 2013;30:2829-37 pubmed 出版商
  212. Wang L, Zhu H, Wu J, Li N, Hua J. Characterization of embryonic stem-like cells derived from HEK293T cells through miR302/367 expression and their potentiality to differentiate into germ-like cells. Cytotechnology. 2014;66:729-40 pubmed 出版商
  213. Kao T, Lee H, Higuchi A, Ling Q, Yu W, Chou Y, et al. Suppression of cancer-initiating cells and selection of adipose-derived stem cells cultured on biomaterials having specific nanosegments. J Biomed Mater Res B Appl Biomater. 2014;102:463-76 pubmed 出版商
  214. Yu P, Yan M, Lai H, Huang R, Chou Y, Lin W, et al. Downregulation of miR-29 contributes to cisplatin resistance of ovarian cancer cells. Int J Cancer. 2014;134:542-51 pubmed 出版商
  215. Chang C, Chen C, Wu M, Chen Y, Chen C, Sheu S, et al. Active Component of Antrodia cinnamomea Mycelia Targeting Head and Neck Cancer Initiating Cells through Exaggerated Autophagic Cell Death. Evid Based Complement Alternat Med. 2013;2013:946451 pubmed 出版商
  216. Duggal G, Heindryckx B, Warrier S, O Leary T, Van der Jeught M, Lierman S, et al. Influence of activin A supplementation during human embryonic stem cell derivation on germ cell differentiation potential. Stem Cells Dev. 2013;22:3141-55 pubmed 出版商
  217. Grabole N, Tischler J, Hackett J, Kim S, Tang F, Leitch H, et al. Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation. EMBO Rep. 2013;14:629-37 pubmed 出版商
  218. Sharma A, Diecke S, Zhang W, Lan F, He C, Mordwinkin N, et al. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J Biol Chem. 2013;288:18439-47 pubmed 出版商
  219. Sakaki Yumoto M, Liu J, Ramalho Santos M, Yoshida N, Derynck R. Smad2 is essential for maintenance of the human and mouse primed pluripotent stem cell state. J Biol Chem. 2013;288:18546-60 pubmed 出版商
  220. Zemp F, Lun X, McKenzie B, Zhou H, Maxwell L, Sun B, et al. Treating brain tumor-initiating cells using a combination of myxoma virus and rapamycin. Neuro Oncol. 2013;15:904-20 pubmed 出版商
  221. Xu Y, Wei X, Wang M, Zhang R, Fu Y, Xing M, et al. Proliferation rate of somatic cells affects reprogramming efficiency. J Biol Chem. 2013;288:9767-78 pubmed 出版商
  222. Hansel M, Gramignoli R, Blake W, Davila J, Skvorak K, Dorko K, et al. Increased reprogramming of human fetal hepatocytes compared with adult hepatocytes in feeder-free conditions. Cell Transplant. 2014;23:27-38 pubmed 出版商
  223. Hoss M, Saric T, Denecke B, Peinkofer G, Bovi M, Groll J, et al. Expansion and differentiation of germline-derived pluripotent stem cells on biomaterials. Tissue Eng Part A. 2013;19:1067-80 pubmed 出版商
  224. Yang S, Harnish E, Leeuw T, Dietz U, Batchelder E, Wright P, et al. Compound screening platform using human induced pluripotent stem cells to identify small molecules that promote chondrogenesis. Protein Cell. 2012;3:934-42 pubmed 出版商
  225. Zhang J, Espinoza L, Kinders R, Lawrence S, Pfister T, Zhou M, et al. NANOG modulates stemness in human colorectal cancer. Oncogene. 2013;32:4397-405 pubmed 出版商
  226. Xu X, Wang Q, Long Y, Zhang R, Wei X, Xing M, et al. Stress-mediated p38 activation promotes somatic cell reprogramming. Cell Res. 2013;23:131-41 pubmed 出版商
  227. Dolezalova D, Mraz M, Bárta T, Plevova K, Vinarsky V, Holubcová Z, et al. MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells. Stem Cells. 2012;30:1362-72 pubmed 出版商
  228. Freudenberg J, Ghosh S, Lackford B, Yellaboina S, Zheng X, Li R, et al. Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity. Nucleic Acids Res. 2012;40:3364-77 pubmed 出版商
  229. Xie L, Pelz C, Wang W, Bashar A, Varlamova O, Shadle S, et al. KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription. EMBO J. 2011;30:1473-84 pubmed 出版商