这是一篇来自已证抗体库的有关人类 NANOG的综述,是根据184篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合NANOG 抗体。
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR2027(2))
  • 免疫印迹; 人类; 1:2000; 图 2e, 3a
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2e, 3a). Cancer Sci (2021) ncbi
domestic rabbit 单克隆(EPR2027(2))
  • 免疫印迹; 人类; 1:1000; 图 5j
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5j). Oncogenesis (2020) ncbi
小鼠 单克隆(NNG-811)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 NANOG抗体(abcam, ab62734)被用于被用于免疫印迹在人类样本上. Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 4a
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4a). JCI Insight (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s1c
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, Ab21624)被用于被用于免疫细胞化学在人类样本上 (图 s1c). Nucleic Acids Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2f
  • 免疫印迹; 人类; 图 2g
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 2f) 和 被用于免疫印迹在人类样本上 (图 2g). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上. elife (2020) ncbi
domestic rabbit 单克隆(EPR2027(2))
  • 免疫印迹; 人类; 1:1000; 图 5e
艾博抗(上海)贸易有限公司 NANOG抗体(AbCam, ab109250)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(EPR2027(2))
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s3
  • 免疫细胞化学; 人类; 1:20; 图 s5
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s3) 和 被用于免疫细胞化学在人类样本上浓度为1:20 (图 s5). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(EPR2027(2))
  • 免疫印迹; 人类; 图 3d, 4d
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫印迹在人类样本上 (图 3d, 4d). J Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫组化在小鼠样本上 (图 1b). Dev Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 5c
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1d, e2i
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1d, e2i). Mol Syst Biol (2019) ncbi
domestic rabbit 单克隆(EPR2027(2))
  • 免疫细胞化学; 人类; 图 1e
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫细胞化学在人类样本上 (图 1e). Mol Ther Nucleic Acids (2019) ncbi
domestic rabbit 单克隆(EPR2027(2))
  • 免疫细胞化学; 人类; 1:200; 图 2c
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2c). Stem Cell Res Ther (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1d
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, 21624)被用于被用于免疫细胞化学在人类样本上 (图 1d). PLoS Biol (2019) ncbi
domestic rabbit 单克隆(EPR2027(2))
  • 免疫组化-石蜡切片; 人类; 图 3a
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). Theranostics (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s5d
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5d). J Exp Med (2019) ncbi
domestic rabbit 单克隆(EPR2027(2))
  • 免疫印迹; 人类; 1:5000; 图 1b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1b). Oncol Lett (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1f
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫印迹在人类样本上 (图 1f). Med Sci Monit (2019) ncbi
domestic rabbit 单克隆(EPR2027(2))
  • 免疫印迹; 人类; 1:3000; 图 1d
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1d). Mol Med Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 1e
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1e). Bone Res (2018) ncbi
  • 免疫印迹; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab70482)被用于被用于免疫印迹在小鼠样本上 (图 5b). Mol Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫印迹在小鼠样本上 (图 1a). Nucleic Acids Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s1c
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 s1c). Nat Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s2a
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 s2a). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫组化在小鼠样本上 (图 3a). Dev Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3a
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, 80892)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3a). Methods Mol Biol (2018) ncbi
domestic rabbit 单克隆(EPR2027(2))
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫印迹在人类样本上 (图 2c). Int J Mol Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab808692)被用于被用于免疫细胞化学在小鼠样本上 (图 3b). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫印迹在人类样本上 (图 1d). Stem Cell Reports (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5d
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫印迹在小鼠样本上 (图 s5d). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 1b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1b). Front Surg (2017) ncbi
小鼠 单克隆(NNG-811)
  • 免疫组化-石蜡切片; 人类; 1:75; 图 S4
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab62734)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:75 (图 S4). Int J Mol Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫印迹在人类样本上 (图 3c). Int J Mol Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; domestic goat; 图 3A
  • 免疫印迹; domestic goat; 1:1000; 图 5C
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在domestic goat样本上 (图 3A) 和 被用于免疫印迹在domestic goat样本上浓度为1:1000 (图 5C). BMC Biotechnol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5d
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 5d). Stem Cell Res (2017) ncbi
domestic rabbit 单克隆(EPR2027(2))
  • 免疫细胞化学; 人类; 1:500; 图 6f
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6f). Biomaterials (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s1e
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 s1e). Cell (2016) ncbi
domestic rabbit 单克隆(EPR2027(2))
  • 免疫细胞化学; 人类; 1:200; 图 4
  • 免疫细胞化学; pigs ; 1:200; 图 4
艾博抗(上海)贸易有限公司 NANOG抗体(abcam, ab109250)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4) 和 被用于免疫细胞化学在pigs 样本上浓度为1:200 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1C
  • 免疫印迹; 人类; 图 1E; 3F
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 1C) 和 被用于免疫印迹在人类样本上 (图 1E; 3F). Genes Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1e
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1e). Front Surg (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 1b). Neuroscience (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1b). Open Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:1000; 图 3
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, Ab80892)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(23D2-3C6)
  • 免疫细胞化学; 人类; 1:2500; 图 s1
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab173368)被用于被用于免疫细胞化学在人类样本上浓度为1:2500 (图 s1). Sci Rep (2016) ncbi
  • 免疫细胞化学; 人类; 1:500
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab77095)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Nature (2016) ncbi
domestic rabbit 单克隆(EPR2027(2))
  • 免疫细胞化学; 人类; 图 6
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫细胞化学在人类样本上 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:700; 图 s1b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫印迹在小鼠样本上浓度为1:700 (图 s1b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EPR2027(2))
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 1d
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1d). PLoS ONE (2016) ncbi
小鼠 单克隆(NNG-811)
  • 免疫细胞化学; 人类; 1:100; 图 1f
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab62734)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1f). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 5
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(EPR2027(2))
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫印迹在人类样本上 (图 5). Breast Cancer Res Treat (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 2a
艾博抗(上海)贸易有限公司 NANOG抗体(abcam, ab80892)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 2a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 4
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Cell Reprogram (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, AB80892)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(EPR2027(2))
  • 免疫组化-石蜡切片; 人类; 1:25; 图 1
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 1). J Ovarian Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 NANOG抗体(abcam, ab21624)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 1
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 NANOG抗体(abcam, 21624)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1) 和 被用于免疫印迹在人类样本上. Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, Ab-21624)被用于被用于免疫细胞化学在人类样本上 (图 2). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; domestic rabbit; 1:500; 图 5a
艾博抗(上海)贸易有限公司 NANOG抗体(abcam, ab21624)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:500 (图 5a). J Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 s3g
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s3g). Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 NANOG抗体(AbCam, Ab21624)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Biol Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1
艾博抗(上海)贸易有限公司 NANOG抗体(abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Sci Rep (2016) ncbi
  • 免疫细胞化学; 小鼠; 图 s2
  • 免疫印迹; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab70482)被用于被用于免疫细胞化学在小鼠样本上 (图 s2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 国内马; 1:500; 图 1
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫组化在国内马样本上浓度为1:500 (图 1). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 s1
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1). Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 7
艾博抗(上海)贸易有限公司 NANOG抗体(abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 7). Stem Cells Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 1B
  • 免疫印迹; 小鼠; 图 1C
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1B) 和 被用于免疫印迹在小鼠样本上 (图 1C). Mol Med Rep (2016) ncbi
  • 免疫细胞化学; pigs ; 1:200; 图 5
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab70482)被用于被用于免疫细胞化学在pigs 样本上浓度为1:200 (图 5). Theriogenology (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3b
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab21624,)被用于被用于免疫细胞化学在人类样本上 (图 3b). Methods Mol Biol (2016) ncbi
小鼠 单克隆(NNG-811)
  • 免疫细胞化学; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab62734)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). BMC Genomics (2015) ncbi
  • 免疫细胞化学; 人类; 1:250
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab70482)被用于被用于免疫细胞化学在人类样本上浓度为1:250. Mol Ther (2015) ncbi
  • 免疫印迹; pigs ; 1:1000
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab77095)被用于被用于免疫印迹在pigs 样本上浓度为1:1000. Int J Biochem Cell Biol (2015) ncbi
domestic rabbit 单克隆(EPR2027(2))
  • 流式细胞仪; 人类
艾博抗(上海)贸易有限公司 NANOG抗体(Abcam, ab109250)被用于被用于流式细胞仪在人类样本上. Cell Death Dis (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(1E6C4)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-293121)被用于被用于免疫印迹在人类样本上 (图 7a). Biomolecules (2020) ncbi
小鼠 单克隆(H-2)
  • 免疫细胞化学; 人类; 1:50; 图 3s1b
圣克鲁斯生物技术 NANOG抗体(SCBT, H-2)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3s1b). elife (2019) ncbi
小鼠 单克隆(1E6C4)
  • 免疫细胞化学; 人类; 图 1a
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-293121)被用于被用于免疫细胞化学在人类样本上 (图 1a). Adipocyte (2019) ncbi
小鼠 单克隆(1E6C4)
  • 免疫印迹; 人类; 图 1d
圣克鲁斯生物技术 NANOG抗体(Santa Cruz Biotechnology, sc-293121)被用于被用于免疫印迹在人类样本上 (图 1d). Sci Adv (2019) ncbi
小鼠 单克隆(1E6C4)
  • 免疫沉淀; 人类; 图 5g
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-293121)被用于被用于免疫沉淀在人类样本上 (图 5g). Theranostics (2019) ncbi
小鼠 单克隆(1E6C4)
  • 免疫细胞化学; 人类; 1:100; 图 1e
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-293121)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1e). Stem Cell Res (2018) ncbi
小鼠 单克隆(1E6C4)
  • 免疫组化; 小鼠; 1:500; 图 1f
  • 免疫印迹; 人类; 1:500; 图 2e
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, SC-293121)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1f) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2e). Nat Commun (2017) ncbi
小鼠 单克隆(5A10)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-134218)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(1E6C4)
  • 免疫细胞化学; 小鼠; 1:500; 图 1b
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-293121)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1b). Protein Cell (2017) ncbi
小鼠 单克隆(1E6C4)
  • 免疫印迹; 人类; 1:100; 图 7b
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, 293121)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 7b). Oncotarget (2016) ncbi
小鼠 单克隆(1E6C4)
  • 流式细胞仪; 人类; 1:50; 图 2
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-293121)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2). Stem Cell Res Ther (2016) ncbi
小鼠 单克隆(J-29)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-81961)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(J-29)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 NANOG抗体(santa Cruz, sc-81961)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(5A10)
  • 免疫细胞化学; domestic water buffalo; 图 2
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, SC134218)被用于被用于免疫细胞化学在domestic water buffalo样本上 (图 2). Cell J (2015) ncbi
小鼠 单克隆(1E6C4)
  • 免疫细胞化学; 小鼠; 1:500; 图 3b
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-293121)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3b). Acta Biochim Biophys Sin (Shanghai) (2014) ncbi
小鼠 单克隆(A-11)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-374001)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(J-29)
  • 免疫印迹; 人类
圣克鲁斯生物技术 NANOG抗体(Santa Cruz Biotechnology, J29)被用于被用于免疫印迹在人类样本上. Stem Cells (2014) ncbi
小鼠 单克隆(5A10)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-134218)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Exp Cell Res (2014) ncbi
小鼠 单克隆(H-2)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术 NANOG抗体(Santa Cruz, sc-374103)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Biol Chem (2013) ncbi
赛默飞世尔
小鼠 单克隆(hNanog.2)
  • 免疫细胞化学; 人类; 1:50; 图 3a
  • 免疫印迹; 人类; 1:500; 图 s5
赛默飞世尔 NANOG抗体(eBioscience, hNanog.2)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 s5). Genes (Basel) (2021) ncbi
小鼠 单克隆(23D2-3C6)
  • 免疫细胞化学; 人类; 1:100; 图 1f
赛默飞世尔 NANOG抗体(Thermo Fisher, MA1-017)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1f). Stem Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 NANOG抗体(Thermo-Fisher, PA1-097)被用于被用于免疫印迹在人类样本上 (图 4a). J Pathol (2017) ncbi
小鼠 单克隆(23D2-3C6)
  • 免疫细胞化学; 人类; 1:100; 图 1d
赛默飞世尔 NANOG抗体(ThermoFisher Scientific, MA1-017)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1d). Stem Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1d
赛默飞世尔 NANOG抗体(ThermoFisher, PA1-097)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1d). Sci Rep (2016) ncbi
小鼠 单克隆(hNanog.2)
  • 免疫细胞化学; 人类; 1:50; 图 1
赛默飞世尔 NANOG抗体(eBioscience, 14-5768-82)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 3a
赛默飞世尔 NANOG抗体(Invitrogen, PA5- 20889)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3a). Methods Mol Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛默飞世尔 NANOG抗体(Thermo Fisher Scientific, PA1-097)被用于被用于免疫印迹在人类样本上 (图 2). Stem Cells Int (2016) ncbi
小鼠 单克隆(23D2-3C6)
  • 免疫印迹; 人类; 1:1000; 图 s2
赛默飞世尔 NANOG抗体(Thermo Fisher Scientific, MA1-017)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(23D2-3C6)
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 NANOG抗体(Thermo Scientific, MA1-017)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS Genet (2015) ncbi
小鼠 单克隆(23D2-3C6)
  • 免疫细胞化学; 人类; 1:100; 图 2h
赛默飞世尔 NANOG抗体(Thermo Scientific, MA1-017)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2h). Stem Cell Reports (2015) ncbi
小鼠 单克隆(hNanog.2)
  • 免疫细胞化学; 人类
赛默飞世尔 NANOG抗体(eBioscience, 14-5768-82)被用于被用于免疫细胞化学在人类样本上. Methods Mol Biol (2016) ncbi
小鼠 单克隆(1E6C4)
  • 免疫细胞化学; 人类; 1:250
赛默飞世尔 NANOG抗体(Thermo Fisher Scientific, 1E6C4)被用于被用于免疫细胞化学在人类样本上浓度为1:250. Neuromolecular Med (2014) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 s1c
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s1c). Stem Cell Res Ther (2021) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 s1c
安迪生物R&D NANOG抗体(R&D Systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s1c). NPJ Parkinsons Dis (2021) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 s13b
安迪生物R&D NANOG抗体(R&D, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s13b). Nat Cell Biol (2021) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:100
安迪生物R&D NANOG抗体(R & D systems, AF1997)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Commun Biol (2021) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 3b
安迪生物R&D NANOG抗体(R&D Systems, AF2729)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 3b). Stem Cells Transl Med (2019) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5b
Novus Biologicals NANOG抗体(Novus Biologicals, NBP1-77109)被用于被用于免疫印迹在大鼠样本上 (图 5b). Stem Cell Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:300; 图 1
Novus Biologicals NANOG抗体(Novus Biologicals, NB100-58842)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 1). Genome Biol (2016) ncbi
domestic rabbit 多克隆
Novus Biologicals NANOG抗体(Novus Biologicals, NB100-58842)被用于. Stem Cell Reports (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals NANOG抗体(Novus Biologicals, NB100-58842)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals NANOG抗体(Novus Biologicals, NB100-58842)被用于. Nat Commun (2014) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(2E11)
  • In-Cell Western; 犬; 1:200; 图 4
亚诺法生技股份有限公司 NANOG抗体(Abnova, H00079923-M02)被用于被用于In-Cell Western在犬样本上浓度为1:200 (图 4). Stem Cells Transl Med (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 猕猴; 1:400; 图 2c
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signalling, D73G4)被用于被用于免疫细胞化学在猕猴样本上浓度为1:400 (图 2c). Sci Rep (2021) ncbi
小鼠 单克隆(1E6C4)
  • 免疫组化; 人类; 图 1f
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 NANOG抗体(CST, 4893)被用于被用于免疫组化在人类样本上 (图 1f) 和 被用于免疫印迹在人类样本上 (图 1d). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:200; 图 3b
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 5232)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3b). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 3580)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 s4c
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 3580)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s4c). Adv Sci (Weinh) (2020) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:1000; 图 2g
赛信通(上海)生物试剂有限公司 NANOG抗体(CST, 5232)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2g). Sci Adv (2020) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:400; 图 5b
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signalling, 4903)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 5b). Cells (2020) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫印迹; 小鼠; 1:2000; 图 4b
赛信通(上海)生物试剂有限公司 NANOG抗体(CST, 4903S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4b). JCI Insight (2020) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling Technology, 4903)被用于被用于免疫细胞化学在小鼠样本上 (图 5a). Cell Stem Cell (2020) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling Technology, 4903)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling Technology, 4903)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogenesis (2020) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:400; 图 2e
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2e). Sci Adv (2020) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:200; 图 5d
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903S)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5d). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:800; 图 s3a
赛信通(上海)生物试剂有限公司 NANOG抗体(CST, 4903S)被用于被用于免疫细胞化学在人类样本上浓度为1:800 (图 s3a). Sci Rep (2020) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 NANOG抗体(CST, 4903)被用于被用于免疫印迹在小鼠样本上 (图 5c). Biomed Pharmacother (2020) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling Technologies, 4903)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Ther Oncolytics (2019) ncbi
小鼠 单克隆(1E6C4)
  • 免疫组化-石蜡切片; 小鼠; 图 s4c
赛信通(上海)生物试剂有限公司 NANOG抗体(细胞SIGNALLING, 1E6C4)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4c). Theranostics (2019) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 图 5b
  • 免疫印迹; 人类; 图 2a, 2h
赛信通(上海)生物试剂有限公司 NANOG抗体(CST, 4903)被用于被用于免疫细胞化学在人类样本上 (图 5b) 和 被用于免疫印迹在人类样本上 (图 2a, 2h). Theranostics (2019) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). J Mol Biol (2018) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫组化; 人类; 1:250; 图 5d
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, D73G4)被用于被用于免疫组化在人类样本上浓度为1:250 (图 5d). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 图 3b
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling Technology, 4903)被用于被用于免疫细胞化学在人类样本上 (图 3b). Cancer Res (2017) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:400; 图 s1
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s1). Orphanet J Rare Dis (2017) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:200; 图 s1a
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903S)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1a). Int J Mol Sci (2017) ncbi
小鼠 单克隆(1E6C4)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4893)被用于被用于免疫印迹在人类样本上 (图 2a). Mol Cancer Res (2017) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:200; 图 1g
赛信通(上海)生物试剂有限公司 NANOG抗体(cell signalling, 4903S)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1g). Stem Cell Res (2017) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; African green monkey; 1:800; 图 1B
  • 免疫细胞化学; 人类; 1:800; 图 4B
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:800 (图 1B) 和 被用于免疫细胞化学在人类样本上浓度为1:800 (图 4B). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 图 2a
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell signaling, 4903)被用于被用于免疫细胞化学在人类样本上 (图 2a). Biol Open (2017) ncbi
小鼠 单克隆(1E6C4)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell signaling, 1E6C4)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 3580)被用于被用于免疫印迹在人类样本上 (图 4c). Front Pharmacol (2016) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell signaling, 4903)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Front Physiol (2016) ncbi
domestic rabbit 单克隆(D73G4)
  • 流式细胞仪; 人类; 1:200; 图 1b
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, D73G4)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1b). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫组化; 人类; 1:200; 图 1h
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903S)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1h). Stem Cell Res (2016) ncbi
小鼠 单克隆(1E6C4)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4893)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903)被用于被用于免疫印迹在人类样本上 (图 5e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d, 2a
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 3580)被用于被用于免疫印迹在人类样本上 (图 1d, 2a). Sci Rep (2016) ncbi
小鼠 单克隆(1E6C4)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4893)被用于被用于免疫印迹在人类样本上 (图 2). Stem Cells Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling Tech, CST-3580)被用于被用于免疫印迹在人类样本上 (图 3). Toxins (Basel) (2016) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1d
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, D73G4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1d). J Clin Pathol (2016) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:300; 图 S1B
赛信通(上海)生物试剂有限公司 NANOG抗体(CST, D73G4)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 S1B). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D73G4)
  • 染色质免疫沉淀 ; 人类; 1:100; 图 5b
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, D73G4)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:100 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 图 s1
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell signaling, D73G4)被用于被用于免疫细胞化学在人类样本上 (图 s1). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:500; 图 1e
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell signaling, D73G4)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1e). Stem Cell Reports (2015) ncbi
小鼠 单克隆(1E6C4)
  • 流式细胞仪; 人类; 1:500; 图 2
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4893)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 2). Stem Cell Reports (2015) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell signaling, D73G4)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上. Sci Rep (2015) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫组化; 人类; 1:100; 图 5
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling Technologies, 4903)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5). Stem Cell Rev (2015) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:50; 图 2Ab
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling Technology, 8750)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2Ab). Eur J Hum Genet (2016) ncbi
小鼠 单克隆(1E6C4)
  • 免疫细胞化学; common marmoset; 1:100; 图 2
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4893)被用于被用于免疫细胞化学在common marmoset样本上浓度为1:100 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; common marmoset; 1:300; 图 2
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903)被用于被用于免疫细胞化学在common marmoset样本上浓度为1:300 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:500
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell signaling, 4903S)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Peerj (2014) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, D73G4)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(1E6C4)
  • 免疫细胞化学; 人类; 1:100; 图 6
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell signaling technology, 4893)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). Hum Reprod (2015) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:50
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Mol Endocrinol (2014) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 7
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, D73G4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 7) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Nat Commun (2014) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 4903S)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Stem Cells Dev (2014) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫组化; 人类; 1:300
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 NANOG抗体(cst, D73G4)被用于被用于免疫组化在人类样本上浓度为1:300 和 被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2014) ncbi
domestic rabbit 单克隆(D73G4)
  • 流式细胞仪; 小鼠; 1:15
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling, 5448)被用于被用于流式细胞仪在小鼠样本上浓度为1:15. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D73G4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signalling, 4903)被用于被用于免疫印迹在人类样本上. Oncogene (2013) ncbi
小鼠 单克隆(1E6C4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signalling, 4893)被用于被用于免疫印迹在人类样本上. Oncogene (2013) ncbi
小鼠 单克隆(1E6C4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 NANOG抗体(Cell Signaling Technology, 4893)被用于被用于免疫印迹在人类样本上. Stem Cells (2012) ncbi
碧迪BD
小鼠 单克隆(N31-355)
  • 免疫细胞化学; 人类; 1:200; 图 3a
碧迪BD NANOG抗体(BD Biosciences, 560482)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3a). Stem Cell Res (2018) ncbi
小鼠 单克隆(N31-355)
  • 免疫细胞化学; 人类; 1:200; 表 1
碧迪BD NANOG抗体(BD Biosciences, 560482)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (表 1). Stem Cell Res (2017) ncbi
小鼠 单克隆(N31-355)
  • 流式细胞仪; 人类; 图 1a
碧迪BD NANOG抗体(BD Biosciences, 562259)被用于被用于流式细胞仪在人类样本上 (图 1a). PLoS ONE (2017) ncbi
小鼠 单克隆(N31-355)
  • 免疫细胞化学; 人类; 1:500; 图 1
碧迪BD NANOG抗体(BD, 560482)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1). Nature (2016) ncbi
小鼠 单克隆(N31-355)
  • 免疫细胞化学; 人类; 1:500; 图 7
碧迪BD NANOG抗体(BD Biosciences, 560791)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 7). J Steroid Biochem Mol Biol (2017) ncbi
小鼠 单克隆(L96-549)
  • 免疫细胞化学; 人类; 1:100; 图 s2a
碧迪BD NANOG抗体(BD Biosciences, 560109)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s2a). Nat Commun (2016) ncbi
小鼠 单克隆(N31-355)
  • 流式细胞仪; 人类; 图 5e
碧迪BD NANOG抗体(BD Biosciences, 560873)被用于被用于流式细胞仪在人类样本上 (图 5e). Oncotarget (2015) ncbi
小鼠 单克隆(N31-355)
  • 流式细胞仪; 人类; 图 s3a
碧迪BD NANOG抗体(BD Biosciences, N31-355)被用于被用于流式细胞仪在人类样本上 (图 s3a). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(N31-355)
  • 流式细胞仪; 小鼠; 1:20; 图 6c
碧迪BD NANOG抗体(BD Bioscience, 560873)被用于被用于流式细胞仪在小鼠样本上浓度为1:20 (图 6c). J Cell Mol Med (2014) ncbi
文章列表
  1. Elhussieny A, Nogami K, Sakai Takemura F, Maruyama Y, Takemura N, Soliman W, et al. Mesenchymal stem cells derived from human induced pluripotent stem cells improve the engraftment of myogenic cells by secreting urokinase-type plasminogen activator receptor (uPAR). Stem Cell Res Ther. 2021;12:532 pubmed 出版商
  2. Generali M, Satheesha S, Bode P, Wanner D, Schafer B, Casanova E. High Frequency of Tumor Propagating Cells in Fusion-Positive Rhabdomyosarcoma. Genes (Basel). 2021;12: pubmed 出版商
  3. Ji Z, Chen S, Cui J, Huang W, Zhang R, Wei J, et al. Oct4-dependent FoxC1 activation improves the survival and neovascularization of mesenchymal stem cells under myocardial ischemia. Stem Cell Res Ther. 2021;12:483 pubmed 出版商
  4. Wang K, Liu S, Dou Z, Zhang S, Yang X. Loss of Krüppel-like factor 9 facilitates stemness in ovarian cancer ascites-derived multicellular spheroids via Notch1/slug signaling. Cancer Sci. 2021;112:4220-4233 pubmed 出版商
  5. Rodriguez Polo I, Mißbach S, Petkov S, Mattern F, Maierhofer A, Grządzielewska I, et al. A piggyBac-based platform for genome editing and clonal rhesus macaque iPSC line derivation. Sci Rep. 2021;11:15439 pubmed 出版商
  6. Yoo J, Lee D, Park S, Shin H, Lee K, Kim D, et al. Trophoblast glycoprotein is a marker for efficient sorting of ventral mesencephalic dopaminergic precursors derived from human pluripotent stem cells. NPJ Parkinsons Dis. 2021;7:61 pubmed 出版商
  7. Gan G, Shi Z, Liu D, Zhang S, Zhu H, Wang Y, et al. 3-hydroxyanthranic acid increases the sensitivity of hepatocellular carcinoma to sorafenib by decreasing tumor cell stemness. Cell Death Discov. 2021;7:173 pubmed 出版商
  8. Truong D, Phlairaharn T, Eßwein B, Gruber C, Tümen D, Baligács E, et al. Non-invasive and high-throughput interrogation of exon-specific isoform expression. Nat Cell Biol. 2021;23:652-663 pubmed 出版商
  9. Tang C, Han J, Dalvi S, Manian K, Winschel L, Volland S, et al. A human model of Batten disease shows role of CLN3 in phagocytosis at the photoreceptor-RPE interface. Commun Biol. 2021;4:161 pubmed 出版商
  10. Aban C, Lombardi A, Neiman G, Biani M, La Greca A, Waisman A, et al. Downregulation of E-cadherin in pluripotent stem cells triggers partial EMT. Sci Rep. 2021;11:2048 pubmed 出版商
  11. Lu M, Qin X, Zhou Y, Li G, Liu Z, Geng X, et al. Long non-coding RNA LINC00665 promotes gemcitabine resistance of Cholangiocarcinoma cells via regulating EMT and stemness properties through miR-424-5p/BCL9L axis. Cell Death Dis. 2021;12:72 pubmed 出版商
  12. Wang H, Wang M, Wen Y, Xu C, Chen X, Wu D, et al. Biphasic Regulation of Mesenchymal Genes Controls Fate Switches During Hematopoietic Differentiation of Human Pluripotent Stem Cells. Adv Sci (Weinh). 2020;7:2001019 pubmed 出版商
  13. Kim K, Wu Y, Yoon J, Adachi K, Wu G, Velychko S, et al. Reprogramming competence of OCT factors is determined by transactivation domains. Sci Adv. 2020;6: pubmed 出版商
  14. Chen G, Liu B, Yin S, Li S, Guo Y, Wang M, et al. Hypoxia induces an endometrial cancer stem-like cell phenotype via HIF-dependent demethylation of SOX2 mRNA. Oncogenesis. 2020;9:81 pubmed 出版商
  15. Stauske M, Rodriguez Polo I, Haas W, Knorr D, Borchert T, Streckfuss Bömeke K, et al. Non-Human Primate iPSC Generation, Cultivation, and Cardiac Differentiation under Chemically Defined Conditions. Cells. 2020;9: pubmed 出版商
  16. Liao T, Lin C, Jiang J, Yang S, Teng H, Yang M. Harnessing stemness and PD-L1 expression by AT-rich interaction domain-containing protein 3B in colorectal cancer. Theranostics. 2020;10:6095-6112 pubmed 出版商
  17. Li W, Zhang N, Jin C, Long M, Rajabi H, Yasumizu Y, et al. MUC1-C drives stemness in progression of colitis to colorectal cancer. JCI Insight. 2020;5: pubmed 出版商
  18. Hu H, Ji Q, Song M, Ren J, Liu Z, Wang Z, et al. ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res. 2020;48:6001-6018 pubmed 出版商
  19. Gunne Braden A, Sullivan A, Gharibi B, Sheriff R, Maity A, Wang Y, et al. GATA3 Mediates a Fast, Irreversible Commitment to BMP4-Driven Differentiation in Human Embryonic Stem Cells. Cell Stem Cell. 2020;26:693-706.e9 pubmed 出版商
  20. Guo C, Ma X, Xing Y, Zheng C, Xu Y, Shan L, et al. Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells. Cell. 2020;181:621-636.e22 pubmed 出版商
  21. Atashpaz S, Samadi Shams S, Gonzalez J, Sebestyén E, Arghavanifard N, Gnocchi A, et al. ATR expands embryonic stem cell fate potential in response to replication stress. elife. 2020;9: pubmed 出版商
  22. Chen J, Chen S, Zhuo L, Zhu Y, Zheng H. Regulation of cancer stem cell properties, angiogenesis, and vasculogenic mimicry by miR-450a-5p/SOX2 axis in colorectal cancer. Cell Death Dis. 2020;11:173 pubmed 出版商
  23. Zang M, Guo J, Liu L, Jin F, Feng X, An G, et al. Cdc37 suppression induces plasma cell immaturation and bortezomib resistance in multiple myeloma via Xbp1s. Oncogenesis. 2020;9:31 pubmed 出版商
  24. Chen Y, Li Y, Chou C, Chiew M, Huang H, Ho J, et al. Control of matrix stiffness promotes endodermal lineage specification by regulating SMAD2/3 via lncRNA LINC00458. Sci Adv. 2020;6:eaay0264 pubmed 出版商
  25. Zhen X, Choi H, Kim J, Kim S, Liu R, Yun B, et al. Machilin D, a Lignin Derived from Saururus chinensis, Suppresses Breast Cancer Stem Cells and Inhibits NF-κB Signaling. Biomolecules. 2020;10: pubmed 出版商
  26. Marin Navarro A, Pronk R, van der Geest A, Oliynyk G, Nordgren A, Arsenian Henriksson M, et al. p53 controls genomic stability and temporal differentiation of human neural stem cells and affects neural organization in human brain organoids. Cell Death Dis. 2020;11:52 pubmed 出版商
  27. Rahman M, Wruck W, Spitzhorn L, Nguyen L, Bohndorf M, Martins S, et al. The FGF, TGFβ and WNT axis Modulate Self-renewal of Human SIX2+ Urine Derived Renal Progenitor Cells. Sci Rep. 2020;10:739 pubmed 出版商
  28. Skoda J, Neradil J, Staniczkova Zambo I, Nunukova A, Macsek P, Borankova K, et al. Serial Xenotransplantation in NSG Mice Promotes a Hybrid Epithelial/Mesenchymal Gene Expression Signature and Stemness in Rhabdomyosarcoma Cells. Cancers (Basel). 2020;12: pubmed 出版商
  29. Song S, Li Y, Zhang K, Zhang X, Huang Y, Xu M, et al. Cancer Stem Cells of Diffuse Large B Cell Lymphoma Are Not Enriched in the CD45+CD19- cells but in the ALDHhigh Cells. J Cancer. 2020;11:142-152 pubmed 出版商
  30. Sozen B, Cox A, De Jonghe J, Bao M, Hollfelder F, Glover D, et al. Self-Organization of Mouse Stem Cells into an Extended Potential Blastoid. Dev Cell. 2019;51:698-712.e8 pubmed 出版商
  31. Casanova M, Moscatelli M, Chauvière L, Huret C, Samson J, Liyakat Ali T, et al. A primate-specific retroviral enhancer wires the XACT lncRNA into the core pluripotency network in humans. Nat Commun. 2019;10:5652 pubmed 出版商
  32. Selvaraj S, Mondragón González R, Xu B, Magli A, Kim H, Laine J, et al. Screening identifies small molecules that enhance the maturation of human pluripotent stem cell-derived myotubes. elife. 2019;8: pubmed 出版商
  33. Zhan Y, Li R, Feng C, Li X, Huang S, Wang L, et al. Chlorogenic acid inhibits esophageal squamous cell carcinoma growth in vitro and in vivo by downregulating the expression of BMI1 and SOX2. Biomed Pharmacother. 2020;121:109602 pubmed 出版商
  34. Strebinger D, Deluz C, Friman E, Govindan S, Alber A, Suter D. Endogenous fluctuations of OCT4 and SOX2 bias pluripotent cell fate decisions. Mol Syst Biol. 2019;15:e9002 pubmed 出版商
  35. Zhao H, Wu S, Li H, Duan Q, Zhang Z, Shen Q, et al. ROS/KRAS/AMPK Signaling Contributes to Gemcitabine-Induced Stem-like Cell Properties in Pancreatic Cancer. Mol Ther Oncolytics. 2019;14:299-312 pubmed 出版商
  36. Sharma N, Gupta V, Dauer P, Kesh K, Hadad R, Giri B, et al. O-GlcNAc modification of Sox2 regulates self-renewal in pancreatic cancer by promoting its stability. Theranostics. 2019;9:3410-3424 pubmed 出版商
  37. Hu Z, Zhou M, Wu Y, Li Z, Liu X, Wu L, et al. ssODN-Mediated In-Frame Deletion with CRISPR/Cas9 Restores FVIII Function in Hemophilia A-Patient-Derived iPSCs and ECs. Mol Ther Nucleic Acids. 2019;17:198-209 pubmed 出版商
  38. Zhou H, Wang L, Zhang C, Hu J, Chen J, Du W, et al. Feasibility of repairing full-thickness skin defects by iPSC-derived epithelial stem cells seeded on a human acellular amniotic membrane. Stem Cell Res Ther. 2019;10:155 pubmed 出版商
  39. Radhakrishnan S, Trentz O, Reddy M, Rela M, Kandasamy M, Sellathamby S. In vitro transdifferentiation of human adipose tissue-derived stem cells to neural lineage cells - a stage-specific incidence. Adipocyte. 2019;8:164-177 pubmed 出版商
  40. Fu L, Hu Y, Song M, Liu Z, Zhang W, Yu F, et al. Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol. 2019;17:e3000201 pubmed 出版商
  41. Wei X, Guo J, Li Q, Jia Q, Jing Q, Li Y, et al. Bach1 regulates self-renewal and impedes mesendodermal differentiation of human embryonic stem cells. Sci Adv. 2019;5:eaau7887 pubmed 出版商
  42. Cao J, Zhao M, Liu J, Zhang X, Pei Y, Wang J, et al. RACK1 Promotes Self-Renewal and Chemoresistance of Cancer Stem Cells in Human Hepatocellular Carcinoma through Stabilizing Nanog. Theranostics. 2019;9:811-828 pubmed 出版商
  43. Chen H, Poran A, Unni A, Huang S, Elemento O, Snoeck H, et al. Generation of pulmonary neuroendocrine cells and SCLC-like tumors from human embryonic stem cells. J Exp Med. 2019;216:674-687 pubmed 出版商
  44. Li L, Feng R, Fei S, Cao J, Zhu Q, Ji G, et al. NANOGP8 expression regulates gastric cancer cell progression by transactivating DBC1 in gastric cancer MKN-45 cells. Oncol Lett. 2019;17:555-563 pubmed 出版商
  45. Chen L, Yang G, Dong H. Everolimus Reverses Palbociclib Resistance in ER+ Human Breast Cancer Cells by Inhibiting Phosphatidylinositol 3-Kinase(PI3K)/Akt/Mammalian Target of Rapamycin (mTOR) Pathway. Med Sci Monit. 2019;25:77-86 pubmed 出版商
  46. Zhang C, Wang Y. Metformin attenuates cells stemness and epithelial‑mesenchymal transition in colorectal cancer cells by inhibiting the Wnt3a/β‑catenin pathway. Mol Med Rep. 2019;19:1203-1209 pubmed 出版商
  47. Chen X, Zhi X, Wang J, Su J. RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res. 2018;6:34 pubmed 出版商
  48. Kaindl J, Meiser I, Majer J, Sommer A, Krach F, Katsen Globa A, et al. Zooming in on Cryopreservation of hiPSCs and Neural Derivatives: A Dual-Center Study Using Adherent Vitrification. Stem Cells Transl Med. 2019;8:247-259 pubmed 出版商
  49. Quintero C, Laursen K, Mongan N, Luo M, Gudas L. CARM1 (PRMT4) Acts as a Transcriptional Coactivator during Retinoic Acid-Induced Embryonic Stem Cell Differentiation. J Mol Biol. 2018;430:4168-4182 pubmed 出版商
  50. Lin S, Liu Q, Lelyveld V, Choe J, Szostak J, Gregory R. Mettl1/Wdr4-Mediated m7G tRNA Methylome Is Required for Normal mRNA Translation and Embryonic Stem Cell Self-Renewal and Differentiation. Mol Cell. 2018;71:244-255.e5 pubmed 出版商
  51. Weltner J, Balboa D, Katayama S, Bespalov M, Krjutskov K, Jouhilahti E, et al. Human pluripotent reprogramming with CRISPR activators. Nat Commun. 2018;9:2643 pubmed 出版商
  52. Zhu F, Zhu Q, Ye D, Zhang Q, Yang Y, Guo X, et al. Sin3a-Tet1 interaction activates gene transcription and is required for embryonic stem cell pluripotency. Nucleic Acids Res. 2018;46:6026-6040 pubmed 出版商
  53. Wang C, Najm R, Xu Q, Jeong D, Walker D, Balestra M, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med. 2018;24:647-657 pubmed 出版商
  54. Wu M, Liu S, Gao Y, Bai H, Machairaki V, Li G, et al. Conditional gene knockout and reconstitution in human iPSCs with an inducible Cas9 system. Stem Cell Res. 2018;29:6-14 pubmed 出版商
  55. Aneichyk T, Hendriks W, Yadav R, Shin D, Gao D, Vaine C, et al. Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly. Cell. 2018;172:897-909.e21 pubmed 出版商
  56. Meng Y, Moore R, Tao W, Smith E, Tse J, Caslini C, et al. GATA6 phosphorylation by Erk1/2 propels exit from pluripotency and commitment to primitive endoderm. Dev Biol. 2018;436:55-65 pubmed 出版商
  57. He J, Weng Z, Wu S, Boheler K. Generation of Induced Pluripotent Stem Cells from Patients with COL3A1 Mutations and Differentiation to Smooth Muscle Cells for ECM-Surfaceome Analyses. Methods Mol Biol. 2018;1722:261-302 pubmed 出版商
  58. Yuan F, Guo D, Liu Y, Xu Y, Gao G, Wu Y, et al. Generation of an ASS1 heterozygous knockout human embryonic stem cell line, WAe001-A-13, using CRISPR/Cas9. Stem Cell Res. 2018;26:67-71 pubmed 出版商
  59. Kim H, Kang Y, Byun J, Jang S, Rho G, Lee J, et al. Midkine and NANOG Have Similar Immunohistochemical Expression Patterns and Contribute Equally to an Adverse Prognosis of Oral Squamous Cell Carcinoma. Int J Mol Sci. 2017;18: pubmed 出版商
  60. Tang L, Wang M, Liu D, Gong M, Ying Q, Ye S. Sp5 induces the expression of Nanog to maintain mouse embryonic stem cell self-renewal. PLoS ONE. 2017;12:e0185714 pubmed 出版商
  61. Ning B, Zhao W, Qian C, Liu P, Li Q, Li W, et al. USP26 functions as a negative regulator of cellular reprogramming by stabilising PRC1 complex components. Nat Commun. 2017;8:349 pubmed 出版商
  62. Jin L, Vu T, Yuan G, Datta P. STRAP Promotes Stemness of Human Colorectal Cancer via Epigenetic Regulation of the NOTCH Pathway. Cancer Res. 2017;77:5464-5478 pubmed 出版商
  63. Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H, et al. Endoglin Is Essential for the Maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem Cells. Stem Cell Reports. 2017;9:464-477 pubmed 出版商
  64. Aguisanda F, Yeh C, Chen C, Li R, Beers J, Zou J, et al. Neural stem cells for disease modeling of Wolman disease and evaluation of therapeutics. Orphanet J Rare Dis. 2017;12:120 pubmed 出版商
  65. Jeziorowska D, Fontaine V, Jouve C, Villard E, Dussaud S, Akbar D, et al. Differential Sarcomere and Electrophysiological Maturation of Human iPSC-Derived Cardiac Myocytes in Monolayer vs. Aggregation-Based Differentiation Protocols. Int J Mol Sci. 2017;18: pubmed 出版商
  66. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  67. Liu S, Ye Z, Gao Y, He C, Williams D, MOLITERNO A, et al. Generation of human iPSCs from an essential thrombocythemia patient carrying a V501L mutation in the MPL gene. Stem Cell Res. 2017;18:57-59 pubmed 出版商
  68. Uhlin E, Rönnholm H, Day K, Kele M, Tammimies K, Bölte S, et al. Derivation of human iPS cell lines from monozygotic twins in defined and xeno free conditions. Stem Cell Res. 2017;18:22-25 pubmed 出版商
  69. Jung Klawitter S, Ebersold J, Göhring G, Blau N, Opladen T. Generation of an iPSC line from a patient with GTP cyclohydrolase 1 (GCH1) deficiency: HDMC0061i-GCH1. Stem Cell Res. 2017;20:38-41 pubmed 出版商
  70. Yan Y, Zhao W, Huang Y, Tong H, Xia Y, Jiang Q, et al. Loss of Polycomb Group Protein Pcgf1 Severely Compromises Proper Differentiation of Embryonic Stem Cells. Sci Rep. 2017;7:46276 pubmed 出版商
  71. Choi J, Clement K, Huebner A, Webster J, Rose C, Brumbaugh J, et al. DUSP9 Modulates DNA Hypomethylation in Female Mouse Pluripotent Stem Cells. Cell Stem Cell. 2017;20:706-719.e7 pubmed 出版商
  72. Siddiqui A, Vazakidou M, Schwab A, Napoli F, Fernandez Molina C, Rapa I, et al. Thymidylate synthase is functionally associated with ZEB1 and contributes to the epithelial-to-mesenchymal transition of cancer cells. J Pathol. 2017;242:221-233 pubmed 出版商
  73. Ram R, Brasch H, Dunne J, Davis P, Tan S, Itinteang T. The Identification of Three Cancer Stem Cell Subpopulations within Moderately Differentiated Lip Squamous Cell Carcinoma. Front Surg. 2017;4:12 pubmed 出版商
  74. Kakiuchi S, Minami Y, Miyata Y, Mizutani Y, Goto H, Kawamoto S, et al. NANOG Expression as a Responsive Biomarker during Treatment with Hedgehog Signal Inhibitor in Acute Myeloid Leukemia. Int J Mol Sci. 2017;18: pubmed 出版商
  75. Chen H, Zuo Q, Wang Y, Song J, Yang H, Zhang Y, et al. Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters. BMC Biotechnol. 2017;17:11 pubmed 出版商
  76. Arioka Y, Ito H, Hirata A, Semi K, Yamada Y, Seishima M. Behavior of leucine-rich repeat-containing G-protein coupled receptor 5-expressing cells in the reprogramming process. Stem Cell Res. 2017;20:1-9 pubmed 出版商
  77. Yamashita T, Miyamoto Y, Bando Y, Ono T, Kobayashi S, Doi A, et al. Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells. PLoS ONE. 2017;12:e0171947 pubmed 出版商
  78. Tang Y, Cheng L. Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury. Protein Cell. 2017;8:273-283 pubmed 出版商
  79. Flamier A, Singh S, Rasmussen T. A standardized human embryoid body platform for the detection and analysis of teratogens. PLoS ONE. 2017;12:e0171101 pubmed 出版商
  80. Bharathan S, Manian K, Aalam S, Palani D, Deshpande P, Pratheesh M, et al. Systematic evaluation of markers used for the identification of human induced pluripotent stem cells. Biol Open. 2017;6:100-108 pubmed 出版商
  81. Price A, Huang E, Sebastiano V, Dunn A. A semi-interpenetrating network of polyacrylamide and recombinant basement membrane allows pluripotent cell culture in a soft, ligand-rich microenvironment. Biomaterials. 2017;121:179-192 pubmed 出版商
  82. Zhong Y, Li X, Ji Y, Li X, Li Y, Yu D, et al. Pyruvate dehydrogenase expression is negatively associated with cell stemness and worse clinical outcome in prostate cancers. Oncotarget. 2017;8:13344-13356 pubmed 出版商
  83. Xiao Y, Ma H, Wan P, Qin D, Wang X, Zhang X, et al. Trp-Asp (WD) Repeat Domain 1 Is Essential for Mouse Peri-implantation Development and Regulates Cofilin Phosphorylation. J Biol Chem. 2017;292:1438-1448 pubmed 出版商
  84. Ang Y, Rivas R, Ribeiro A, Srivas R, Rivera J, Stone N, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016;167:1734-1749.e22 pubmed 出版商
  85. Jung Klawitter S, Blau N, Sebe A, Ebersold J, Göhring G, Opladen T. Generation of an iPSC line from a patient with tyrosine hydroxylase (TH) deficiency: TH-1 iPSC. Stem Cell Res. 2016;17:580-583 pubmed 出版商
  86. Xu D, Zhou P, Wang Y, Zhang Y, Zhang R, Zhang L, et al. miR-150 Suppresses the Proliferation and Tumorigenicity of Leukemia Stem Cells by Targeting the Nanog Signaling Pathway. Front Pharmacol. 2016;7:439 pubmed
  87. Prieto P, Fernandez Velasco M, Fernández Santos M, Sanchez P, Terrón V, Martín Sanz P, et al. Cell Expansion-Dependent Inflammatory and Metabolic Profile of Human Bone Marrow Mesenchymal Stem Cells. Front Physiol. 2016;7:548 pubmed
  88. Zhu L, Gómez Durán A, Saretzki G, Jin S, Tilgner K, Melguizo Sanchís D, et al. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. J Cell Biol. 2016;215:187-202 pubmed
  89. Kele M, Day K, Rönnholm H, Schuster J, Dahl N, Falk A. Generation of human iPS cell line CTL07-II from human fibroblasts, under defined and xeno-free conditions. Stem Cell Res. 2016;17:474-478 pubmed 出版商
  90. Yuan Y, Yang Y, Tian Y, Park J, Dai A, Roberts R, et al. Efficient long-term cryopreservation of pluripotent stem cells at -80?°C. Sci Rep. 2016;6:34476 pubmed 出版商
  91. Okata S, Yuasa S, Suzuki T, Ito S, Makita N, Yoshida T, et al. Embryonic type Na+ channel ?-subunit, SCN3B masks the disease phenotype of Brugada syndrome. Sci Rep. 2016;6:34198 pubmed 出版商
  92. Yoffe Y, David M, Kalaora R, Povodovski L, Friedlander G, Feldmesser E, et al. Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells. Genes Dev. 2016;30:1991-2004 pubmed 出版商
  93. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  94. BRADSHAW A, Wickremesekera A, Brasch H, Chibnall A, Davis P, Tan S, et al. Cancer Stem Cells in Glioblastoma Multiforme. Front Surg. 2016;3:48 pubmed 出版商
  95. Zhang L, Hua Q, Tang K, Shi C, Xie X, Zhang R. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells. Neuroscience. 2016;337:88-97 pubmed 出版商
  96. Thamodaran V, Bruce A. p38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development. Open Biol. 2016;6: pubmed 出版商
  97. Liu Z, Ning G, Xu R, Cao Y, Meng A, Wang Q. Fscn1 is required for the trafficking of TGF-β family type I receptors during endoderm formation. Nat Commun. 2016;7:12603 pubmed 出版商
  98. Fang D, Yan S, Yu Q, Chen D, Yan S. Mfn2 is Required for Mitochondrial Development and Synapse Formation in Human Induced Pluripotent Stem Cells/hiPSC Derived Cortical Neurons. Sci Rep. 2016;6:31462 pubmed 出版商
  99. Chailangkarn T, Trujillo C, Freitas B, Hrvoj Mihic B, Herai R, Yu D, et al. A human neurodevelopmental model for Williams syndrome. Nature. 2016;536:338-43 pubmed
  100. Lv D, Yu S, Ping Y, Wu H, Zhao X, Zhang H, et al. A three-dimensional collagen scaffold cell culture system for screening anti-glioma therapeutics. Oncotarget. 2016;7:56904-56914 pubmed 出版商
  101. Pijuan Galitó S, Tamm C, Schuster J, Sobol M, Forsberg L, Merry C, et al. Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture. Nat Commun. 2016;7:12170 pubmed 出版商
  102. Lee M, Huang H, Chang T, Huang H, Hsieh S, Chen Y, et al. Genome-wide analysis of HIF-2? chromatin binding sites under normoxia in human bronchial epithelial cells (BEAS-2B) suggests its diverse functions. Sci Rep. 2016;6:29311 pubmed 出版商
  103. Simile M, Latte G, Demartis M, Brozzetti S, Calvisi D, Porcu A, et al. Post-translational deregulation of YAP1 is genetically controlled in rat liver cancer and determines the fate and stem-like behavior of the human disease. Oncotarget. 2016;7:49194-49216 pubmed 出版商
  104. Li H, Mai R, Huang H, Chou C, Chang Y, Chang Y, et al. DDX3 Represses Stemness by Epigenetically Modulating Tumor-suppressive miRNAs in Hepatocellular Carcinoma. Sci Rep. 2016;6:28637 pubmed 出版商
  105. Zhang Y, Cabarcas S, Zheng J, Sun L, Mathews L, Zhang X, et al. Cryptotanshinone targets tumor-initiating cells through down-regulation of stemness genes expression. Oncol Lett. 2016;11:3803-3812 pubmed
  106. Desrochers L, Bordeleau F, Reinhart King C, Cerione R, Antonyak M. Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun. 2016;7:11958 pubmed 出版商
  107. Tomasello L, Musso R, Cillino G, Pitrone M, Pizzolanti G, Coppola A, et al. Donor age and long-term culture do not negatively influence the stem potential of limbal fibroblast-like stem cells. Stem Cell Res Ther. 2016;7:83 pubmed 出版商
  108. Lu Y, Liu Y, Liao S, Tu W, Shen Y, Yan Y, et al. Epigenetic modifications promote the expression of the orphan nuclear receptor NR0B1 in human lung adenocarcinoma cells. Oncotarget. 2016;7:43162-43176 pubmed 出版商
  109. Jang H, Hong Y, Choi H, Song H, Byun S, Uhm S, et al. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion. PLoS ONE. 2016;11:e0156491 pubmed 出版商
  110. Momcilovic O, Sivapatham R, Oron T, Meyer M, Mooney S, Rao M, et al. Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson's Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations. PLoS ONE. 2016;11:e0154890 pubmed 出版商
  111. Jung J, Kang K, Kim J, Hong S, Park Y, Kim B. CXCR2 Inhibition in Human Pluripotent Stem Cells Induces Predominant Differentiation to Mesoderm and Endoderm Through Repression of mTOR, ?-Catenin, and hTERT Activities. Stem Cells Dev. 2016;25:1006-19 pubmed 出版商
  112. Pandolfini L, Luzi E, Bressan D, Ucciferri N, Bertacchi M, Brandi R, et al. RISC-mediated control of selected chromatin regulators stabilizes ground state pluripotency of mouse embryonic stem cells. Genome Biol. 2016;17:94 pubmed 出版商
  113. Deglincerti A, Croft G, Pietila L, Zernicka Goetz M, Siggia E, Brivanlou A. Self-organization of the in vitro attached human embryo. Nature. 2016;533:251-4 pubmed 出版商
  114. Hossini A, Quast A, Plötz M, Grauel K, Exner T, Küchler J, et al. PI3K/AKT Signaling Pathway Is Essential for Survival of Induced Pluripotent Stem Cells. PLoS ONE. 2016;11:e0154770 pubmed 出版商
  115. Lu K, Wang B, Chi W, Chang Chien J, Yang J, Lee H, et al. Ovatodiolide Inhibits Breast Cancer Stem/Progenitor Cells through SMURF2-Mediated Downregulation of Hsp27. Toxins (Basel). 2016;8: pubmed 出版商
  116. Silva S, Levy D, Ruiz J, de Melo T, Isaac C, Fidelis M, et al. Oxysterols in adipose tissue-derived mesenchymal stem cell proliferation and death. J Steroid Biochem Mol Biol. 2017;169:164-175 pubmed 出版商
  117. Kushwaha R, Jagadish N, Kustagi M, Mendiratta G, Seandel M, Soni R, et al. Mechanism and Role of SOX2 Repression in Seminoma: Relevance to Human Germline Specification. Stem Cell Reports. 2016;6:772-783 pubmed 出版商
  118. Thakkar A, Wang B, Picon Ruiz M, Buchwald P, Ince T. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat. 2016;157:77-90 pubmed 出版商
  119. Baillie R, Itinteang T, Yu H, Brasch H, Davis P, Tan S. Cancer stem cells in moderately differentiated oral tongue squamous cell carcinoma. J Clin Pathol. 2016;69:742-4 pubmed 出版商
  120. Stratigopoulos G, Burnett L, Rausch R, Gill R, Penn D, Skowronski A, et al. Hypomorphism of Fto and Rpgrip1l causes obesity in mice. J Clin Invest. 2016;126:1897-910 pubmed 出版商
  121. Isotani A, Yamagata K, Okabe M, Ikawa M. Generation of Hprt-disrupted rat through mouse?rat ES chimeras. Sci Rep. 2016;6:24215 pubmed 出版商
  122. Liu Q, Zhang R, Li D, Cheng S, Yang Y, Tian T, et al. Muse Cells, a New Type of Pluripotent Stem Cell Derived from Human Fibroblasts. Cell Reprogram. 2016;18:67-77 pubmed 出版商
  123. Meng G, Poon A, Liu S, Rancourt D. An Effective and Reliable Xeno-free Cryopreservation Protocol for Single Human Pluripotent Stem Cells. Methods Mol Biol. 2016;1516:47-56 pubmed 出版商
  124. Lee T, Liu C, Chang Y, Nieh S, Lin Y, Jao S, et al. Increased chemoresistance via Snail-Raf kinase inhibitor protein signaling in colorectal cancer in response to a nicotine derivative. Oncotarget. 2016;7:23512-20 pubmed 出版商
  125. Borkent M, Bennett B, Lackford B, Bar Nur O, Brumbaugh J, Wang L, et al. A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2. Stem Cell Reports. 2016;6:704-716 pubmed 出版商
  126. Shao Z, Zhang R, Khodadadi Jamayran A, Chen B, Crowley M, Festok M, et al. The acetyllysine reader BRD3R promotes human nuclear reprogramming and regulates mitosis. Nat Commun. 2016;7:10869 pubmed 出版商
  127. Virant Klun I, Kenda Suster N, Smrkolj S. Small putative NANOG, SOX2, and SSEA-4-positive stem cells resembling very small embryonic-like stem cells in sections of ovarian tissue in patients with ovarian cancer. J Ovarian Res. 2016;9:12 pubmed 出版商
  128. Chang T, Chen C, Wu Y, Liu J, Kuo Y, Lee K, et al. Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma. PLoS ONE. 2016;11:e0149897 pubmed 出版商
  129. Xu M, Bian S, Li J, He J, Chen H, Ge L, et al. MeCP2 suppresses LIN28A expression via binding to its methylated-CpG islands in pancreatic cancer cells. Oncotarget. 2016;7:14476-85 pubmed 出版商
  130. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  131. Morales Hernández A, González Rico F, Román A, Rico Leo E, Alvarez Barrientos A, Sánchez L, et al. Alu retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor. Nucleic Acids Res. 2016;44:4665-83 pubmed 出版商
  132. Catanzaro G, Besharat Z, Garg N, Ronci M, Pieroni L, Miele E, et al. MicroRNAs-Proteomic Networks Characterizing Human Medulloblastoma-SLCs. Stem Cells Int. 2016;2016:2683042 pubmed 出版商
  133. Gehlot P, Shukla V, Gupta S, Makidon P. Detection of ALDH1 activity in rabbit hepatic VX2 tumors and isolation of ALDH1 positive cancer stem cells. J Transl Med. 2016;14:49 pubmed 出版商
  134. Liu C, Chen S, Wu M, Jao S, Lin Y, Yang C, et al. The molecular and clinical verification of therapeutic resistance via the p38 MAPK-Hsp27 axis in lung cancer. Oncotarget. 2016;7:14279-90 pubmed 出版商
  135. Scognamiglio R, Cabezas Wallscheid N, Thier M, Altamura S, Reyes A, Prendergast Ã, et al. Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell. 2016;164:668-80 pubmed 出版商
  136. Wang X, Jung Y, Jun S, Lee S, Wang W, Schneider A, et al. PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun. 2016;7:10633 pubmed 出版商
  137. Dorris E, Blackshields G, Sommerville G, Alhashemi M, Dias A, McEneaney V, et al. Pluripotency markers are differentially induced by MEK inhibition in thyroid and melanoma BRAFV600E cell lines. Cancer Biol Ther. 2016;17:526-42 pubmed 出版商
  138. Zhang Q, Dan J, Wang H, Guo R, Mao J, Fu H, et al. Tcstv1 and Tcstv3 elongate telomeres of mouse ES cells. Sci Rep. 2016;6:19852 pubmed 出版商
  139. Walter M, Teissandier A, Pérez Palacios R, Bourc his D. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. elife. 2016;5: pubmed 出版商
  140. Kyttälä A, Moraghebi R, Valensisi C, Kettunen J, Andrus C, Pasumarthy K, et al. Genetic Variability Overrides the Impact of Parental Cell Type and Determines iPSC Differentiation Potential. Stem Cell Reports. 2016;6:200-12 pubmed 出版商
  141. Quattrocelli M, Giacomazzi G, Broeckx S, Ceelen L, Bolca S, Spaas J, et al. Equine-Induced Pluripotent Stem Cells Retain Lineage Commitment Toward Myogenic and Chondrogenic Fates. Stem Cell Reports. 2016;6:55-63 pubmed 出版商
  142. Pan H, Guan D, Liu X, Li J, Wang L, Wu J, et al. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res. 2016;26:190-205 pubmed 出版商
  143. Guye P, Ebrahimkhani M, Kipniss N, Velazquez J, Schoenfeld E, Kiani S, et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun. 2016;7:10243 pubmed 出版商
  144. Hammoud A, Kirstein N, Mournetas V, Darracq A, Broc S, Blanchard C, et al. Murine Embryonic Stem Cell Plasticity Is Regulated through Klf5 and Maintained by Metalloproteinase MMP1 and Hypoxia. PLoS ONE. 2016;11:e0146281 pubmed 出版商
  145. Vijaya Chandra S, Makhija H, Peter S, Myint Wai C, Li J, Zhu J, et al. Conservative site-specific and single-copy transgenesis in human LINE-1 elements. Nucleic Acids Res. 2016;44:e55 pubmed 出版商
  146. Conrad S, Azizi H, Hatami M, Kubista M, Bonin M, Hennenlotter J, et al. Expression of Genes Related to Germ Cell Lineage and Pluripotency in Single Cells and Colonies of Human Adult Germ Stem Cells. Stem Cells Int. 2016;2016:8582526 pubmed 出版商
  147. Ou L, Fang L, Tang H, Qiao H, Zhang X, Wang Z. Dickkopf Wnt signaling pathway inhibitor 1 regulates the differentiation of mouse embryonic stem cells in vitro and in vivo. Mol Med Rep. 2016;13:720-30 pubmed 出版商
  148. Kim E, Hwang S, Yoo H, Yoon J, Jeon Y, Kim H, et al. Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors. Theriogenology. 2016;85:601-16 pubmed 出版商
  149. Rohnalter V, Roth K, Finkernagel F, Adhikary T, Obert J, Dorzweiler K, et al. A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype. Oncotarget. 2015;6:40005-25 pubmed 出版商
  150. Wongtrakoongate P, Riddick G, Fucharoen S, Felsenfeld G. Association of the Long Non-coding RNA Steroid Receptor RNA Activator (SRA) with TrxG and PRC2 Complexes. PLoS Genet. 2015;11:e1005615 pubmed 出版商
  151. Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T. Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation. Stem Cell Reports. 2015;5:448-59 pubmed 出版商
  152. Neri T, Muggeo S, Paulis M, Caldana M, Crisafulli L, Strina D, et al. Targeted Gene Correction in Osteopetrotic-Induced Pluripotent Stem Cells for the Generation of Functional Osteoclasts. Stem Cell Reports. 2015;5:558-68 pubmed 出版商
  153. Laperle A, Hsiao C, Lampe M, Mortier J, Saha K, Palecek S, et al. α-5 Laminin Synthesized by Human Pluripotent Stem Cells Promotes Self-Renewal. Stem Cell Reports. 2015;5:195-206 pubmed 出版商
  154. Zandi M, Muzaffar M, Shah S, Kumar Singh M, Palta P, Kumar Singla S, et al. Optimization of Buffalo (Bubalus bubalis) Embryonic Stem Cell Culture System. Cell J. 2015;17:264-73 pubmed
  155. Fidan K, Ebrahimi A, ÇaÄŸlayan Ã, Özçimen B, Önder T. Transgene-Free Disease-Specific iPSC Generation from Fibroblasts and Peripheral Blood Mononuclear Cells. Methods Mol Biol. 2016;1353:215-31 pubmed 出版商
  156. Kawamura N, Nimura K, Nagano H, Yamaguchi S, Nonomura N, Kaneda Y. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget. 2015;6:22361-74 pubmed
  157. Palla A, Piazzolla D, Alcazar N, Cañamero M, Graña O, Gómez López G, et al. The pluripotency factor NANOG promotes the formation of squamous cell carcinomas. Sci Rep. 2015;5:10205 pubmed 出版商
  158. Zhou H, Martínez H, Sun B, Li A, Zimmer M, Katsanis N, et al. Rapid and Efficient Generation of Transgene-Free iPSC from a Small Volume of Cryopreserved Blood. Stem Cell Rev. 2015;11:652-65 pubmed 出版商
  159. Machado C, Griesi Oliveira K, Rosenberg C, Kok F, Martins S, Passos Bueno M, et al. Collybistin binds and inhibits mTORC1 signaling: a potential novel mechanism contributing to intellectual disability and autism. Eur J Hum Genet. 2016;24:59-65 pubmed 出版商
  160. Debowski K, Warthemann R, Lentes J, Salinas Riester G, Dressel R, Langenstroth D, et al. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach. PLoS ONE. 2015;10:e0118424 pubmed 出版商
  161. Hossini A, Megges M, Prigione A, Lichtner B, Toliat M, Wruck W, et al. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics. 2015;16:84 pubmed 出版商
  162. Fritz A, Adil M, Mao S, Schaffer D. cAMP and EPAC Signaling Functionally Replace OCT4 During Induced Pluripotent Stem Cell Reprogramming. Mol Ther. 2015;23:952-963 pubmed 出版商
  163. Yang F, Zhang J, Liu Y, Cheng D, Wang H. Structure and functional evaluation of porcine NANOG that is a single-exon gene and has two pseudogenes. Int J Biochem Cell Biol. 2015;59:142-52 pubmed 出版商
  164. Sivapatham R, Zeng X. Generation and Characterization of Patient-Specific Induced Pluripotent Stem Cell for Disease Modeling. Methods Mol Biol. 2016;1353:25-44 pubmed 出版商
  165. Wilson P, Payne T. Genetic reprogramming of human amniotic cells with episomal vectors: neural rosettes as sentinels in candidate selection for validation assays. Peerj. 2014;2:e668 pubmed 出版商
  166. Byrne S, Ortiz L, Mali P, Aach J, Church G. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res. 2015;43:e21 pubmed 出版商
  167. Shimamoto A, Kagawa H, Zensho K, Sera Y, Kazuki Y, Osaki M, et al. Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture. PLoS ONE. 2014;9:e112900 pubmed 出版商
  168. Akoury E, Zhang L, Ao A, Slim R. NLRP7 and KHDC3L, the two maternal-effect proteins responsible for recurrent hydatidiform moles, co-localize to the oocyte cytoskeleton. Hum Reprod. 2015;30:159-69 pubmed 出版商
  169. Xie Y, Lu W, Liu S, Yang Q, Carver B, Li E, et al. Crosstalk between nuclear MET and SOX9/?-catenin correlates with castration-resistant prostate cancer. Mol Endocrinol. 2014;28:1629-39 pubmed 出版商
  170. Piazzolla D, Palla A, Pantoja C, Canamero M, de Castro I, Ortega S, et al. Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nat Commun. 2014;5:4226 pubmed 出版商
  171. Soltanian S, Dehghani H, Matin M, Bahrami A. Expression analysis of BORIS during pluripotent, differentiated, cancerous, and non-cancerous cell states. Acta Biochim Biophys Sin (Shanghai). 2014;46:647-58 pubmed 出版商
  172. Krutá M, Šeneklová M, Raška J, Salykin A, Zerzankova L, Pesl M, et al. Mutation frequency dynamics in HPRT locus in culture-adapted human embryonic stem cells and induced pluripotent stem cells correspond to their differentiated counterparts. Stem Cells Dev. 2014;23:2443-54 pubmed 出版商
  173. Brandl C, Zimmermann S, Milenkovic V, Rosendahl S, Grassmann F, Milenkovic A, et al. In-depth characterisation of Retinal Pigment Epithelium (RPE) cells derived from human induced pluripotent stem cells (hiPSC). Neuromolecular Med. 2014;16:551-64 pubmed 出版商
  174. Schuster A, Klotz M, Schwab T, Di Liddo R, Bertalot T, Schrenk S, et al. Maintenance of the enteric stem cell niche by bacterial lipopolysaccharides? Evidence and perspectives. J Cell Mol Med. 2014;18:1429-43 pubmed 出版商
  175. Chen W, Ho C, Chang Y, Chen H, Lin C, Ling T, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014;5:3472 pubmed 出版商
  176. Peng X, Liu T, Shi C, Zhang L, Wang Y, Zhao W, et al. Germline transmission of an embryonic stem cell line derived from BALB/c cataract mice. PLoS ONE. 2014;9:e90707 pubmed 出版商
  177. Ono T, Suzuki Y, Kato Y, Fujita R, Araki T, Yamashita T, et al. A single-cell and feeder-free culture system for monkey embryonic stem cells. PLoS ONE. 2014;9:e88346 pubmed 出版商
  178. Kohler E, Baruah J, Urao N, Ushio Fukai M, Fukai T, Chatterjee I, et al. Low-dose 6-bromoindirubin-3'-oxime induces partial dedifferentiation of endothelial cells to promote increased neovascularization. Stem Cells. 2014;32:1538-52 pubmed 出版商
  179. Gericota B, Anderson J, Mitchell G, Borjesson D, Sturges B, Nolta J, et al. Canine epidermal neural crest stem cells: characterization and potential as therapy candidate for a large animal model of spinal cord injury. Stem Cells Transl Med. 2014;3:334-45 pubmed 出版商
  180. Massumi M, Hoveizi E, Baktash P, Hooti A, Ghazizadeh L, Nadri S, et al. Efficient programming of human eye conjunctiva-derived induced pluripotent stem (ECiPS) cells into definitive endoderm-like cells. Exp Cell Res. 2014;322:51-61 pubmed 出版商
  181. Liu H, Zhang W, Jia Y, Yu Q, Grau G, Peng L, et al. Single-cell clones of liver cancer stem cells have the potential of differentiating into different types of tumor cells. Cell Death Dis. 2013;4:e857 pubmed 出版商
  182. Sharma A, Diecke S, Zhang W, Lan F, He C, Mordwinkin N, et al. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J Biol Chem. 2013;288:18439-47 pubmed 出版商
  183. Zhang J, Espinoza L, Kinders R, Lawrence S, Pfister T, Zhou M, et al. NANOG modulates stemness in human colorectal cancer. Oncogene. 2013;32:4397-405 pubmed 出版商
  184. Dolezalova D, Mraz M, Bárta T, Plevova K, Vinarsky V, Holubcová Z, et al. MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells. Stem Cells. 2012;30:1362-72 pubmed 出版商