这是一篇来自已证抗体库的有关人类 NDUFB8的综述,是根据28篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合NDUFB8 抗体。
NDUFB8 同义词: ASHI; CI-ASHI; MC1DN32

艾博抗(上海)贸易有限公司
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 人类; 图 s4b
艾博抗(上海)贸易有限公司 NDUFB8抗体(Abcam, ab110242)被用于被用于免疫印迹在人类样本上 (图 s4b). iScience (2021) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 NDUFB8抗体(Abcam, ab110242)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Cell Commun Signal (2021) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 NDUFB8抗体(Abcam, ab110242)被用于被用于免疫印迹在小鼠样本上 (图 2d). Hum Mol Genet (2021) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司 NDUFB8抗体(Abcam, ab110242)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Nat Commun (2021) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 NDUFB8抗体(Abcam, ab110242)被用于被用于免疫印迹在人类样本上 (图 2c). J Biol Chem (2021) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 NDUFB8抗体(Abcam, ab110242)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Front Genet (2020) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫细胞化学; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 NDUFB8抗体(ABCAM, 20E9DH10C12)被用于被用于免疫细胞化学在小鼠样本上 (图 5c). Arch Immunol Ther Exp (Warsz) (2019) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司 NDUFB8抗体(Abcam, ab110242)被用于被用于免疫组化在人类样本上. J Transl Med (2016) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫组化; 人类; 1:100; 图 4
艾博抗(上海)贸易有限公司 NDUFB8抗体(Abcam, ab110242)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 小鼠; 1:1000; 表 2
艾博抗(上海)贸易有限公司 NDUFB8抗体(Abcam, AB110242)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 2). EMBO J (2016) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 小鼠; 500 ug/ml; 图 2
艾博抗(上海)贸易有限公司 NDUFB8抗体(Abcam, ab110242)被用于被用于免疫印迹在小鼠样本上浓度为500 ug/ml (图 2). Autophagy (2016) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫组化-石蜡切片; 人类; 图 1a
艾博抗(上海)贸易有限公司 NDUFB8抗体(Abcam, ab110242)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Ann Neurol (2016) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 小鼠; 1:250; 图 3d
艾博抗(上海)贸易有限公司 NDUFB8抗体(Abcam, Ab110242)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 3d). Sci Rep (2015) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 NDUFB8抗体(Abcam, ab110242)被用于被用于免疫印迹在人类样本上. Eur J Hum Genet (2015) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 人类; 图 s4
艾博抗(上海)贸易有限公司 NDUFB8抗体(Abcam, ab110242)被用于被用于免疫印迹在人类样本上 (图 s4). Nat Commun (2014) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 NDUFB8抗体(Abcam, ab110242)被用于被用于免疫印迹在人类样本上. Scand J Med Sci Sports (2014) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 NDUFB8抗体(Abcam, ab110242)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Neurosci Methods (2014) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 人类; 1:250
艾博抗(上海)贸易有限公司 NDUFB8抗体(Abcam, Ab110242)被用于被用于免疫印迹在人类样本上浓度为1:250. FASEB J (2014) ncbi
赛默飞世尔
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 小鼠; 图 s2l
赛默飞世尔 NDUFB8抗体(Invitrogen, 459210)被用于被用于免疫印迹在小鼠样本上 (图 s2l). Mol Metab (2021) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 人类; 1:5000
赛默飞世尔 NDUFB8抗体(分子探针, 459210)被用于被用于免疫印迹在人类样本上浓度为1:5000. Hum Mol Genet (2017) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 NDUFB8抗体(Invitrogen, 459210)被用于被用于免疫印迹在小鼠样本上 (图 1d). Oncotarget (2016) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 NDUFB8抗体(生活技术, 459210)被用于被用于免疫印迹在人类样本上 (图 5). BMC Cancer (2016) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 小鼠
赛默飞世尔 NDUFB8抗体(Invitrogen, #459210)被用于被用于免疫印迹在小鼠样本上. Front Physiol (2015) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫组化-石蜡切片; 小鼠; 1:2000
赛默飞世尔 NDUFB8抗体(Invitrogen, #459210)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000. PLoS ONE (2015) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 小鼠
赛默飞世尔 NDUFB8抗体(Invitrogen, A31857)被用于被用于免疫印迹在小鼠样本上. Cell Cycle (2014) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 大鼠; 图 9
赛默飞世尔 NDUFB8抗体(Invitrogen, clone 20E9DH10C12)被用于被用于免疫印迹在大鼠样本上 (图 9). Free Radic Biol Med (2013) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 人类; 图 2
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛默飞世尔 NDUFB8抗体(分子探针, 459210)被用于被用于免疫印迹在人类样本上 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Brain (2013) ncbi
小鼠 单克隆(20E9DH10C12)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 NDUFB8抗体(Invitrogen, 459210)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2012) ncbi
文章列表
  1. Yoshida J, Ohishi T, Abe H, Ohba S, Inoue H, Usami I, et al. Mitochondrial complex I inhibitors suppress tumor growth through concomitant acidification of the intra- and extracellular environment. iScience. 2021;24:103497 pubmed 出版商
  2. Sabbir M, Taylor C, Zahradka P. CAMKK2 regulates mitochondrial function by controlling succinate dehydrogenase expression, post-translational modification, megacomplex assembly, and activity in a cell-type-specific manner. Cell Commun Signal. 2021;19:98 pubmed 出版商
  3. Zhou X, Mikaeloff F, Curbo S, Zhao Q, Kuiper R, Vegvari A, et al. Coordinated pyruvate kinase activity is crucial for metabolic adaptation and cell survival during mitochondrial dysfunction. Hum Mol Genet. 2021;30:2012-2026 pubmed 出版商
  4. Basse A, Agerholm M, Farup J, Dalbram E, Nielsen J, Ørtenblad N, et al. Nampt controls skeletal muscle development by maintaining Ca2+ homeostasis and mitochondrial integrity. Mol Metab. 2021;53:101271 pubmed 出版商
  5. Sato M, Kadomatsu T, Miyata K, Warren J, Tian Z, Zhu S, et al. The lncRNA Caren antagonizes heart failure by inactivating DNA damage response and activating mitochondrial biogenesis. Nat Commun. 2021;12:2529 pubmed 出版商
  6. Jin X, Zhang Z, Nie Z, Wang C, Meng F, Yi Q, et al. An animal model for mitochondrial tyrosyl-tRNA synthetase deficiency reveals links between oxidative phosphorylation and retinal function. J Biol Chem. 2021;296:100437 pubmed 出版商
  7. Ng Y, Thompson K, Loher D, Hopton S, Falkous G, Hardy S, et al. Novel MT-ND Gene Variants Causing Adult-Onset Mitochondrial Disease and Isolated Complex I Deficiency. Front Genet. 2020;11:24 pubmed 出版商
  8. Wyżewski Z, Gregorczyk Zboroch K, Mielcarska M, Bossowska Nowicka M, Struzik J, Szczepanowska J, et al. Mitochondrial Heat Shock Response Induced by Ectromelia Virus is Accompanied by Reduced Apoptotic Potential in Murine L929 Fibroblasts. Arch Immunol Ther Exp (Warsz). 2019;67:401-414 pubmed 出版商
  9. Borgia D, Malena A, Spinazzi M, Desbats M, Salviati L, Russell A, et al. Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients. Hum Mol Genet. 2017;26:1087-1103 pubmed 出版商
  10. White S, McDermott M, Sufit R, Kosmac K, Bugg A, Gonzalez Freire M, et al. Walking performance is positively correlated to calf muscle fiber size in peripheral artery disease subjects, but fibers show aberrant mitophagy: an observational study. J Transl Med. 2016;14:284 pubmed 出版商
  11. D Andrea A, Gritti I, Nicoli P, Giorgio M, Doni M, Conti A, et al. The mitochondrial translation machinery as a therapeutic target in Myc-driven lymphomas. Oncotarget. 2016;7:72415-72430 pubmed 出版商
  12. Phillips J, Laude A, Lightowlers R, Morris C, Turnbull D, Lax N. Development of passive CLARITY and immunofluorescent labelling of multiple proteins in human cerebellum: understanding mechanisms of neurodegeneration in mitochondrial disease. Sci Rep. 2016;6:26013 pubmed 出版商
  13. Scott A, Wilkinson A, Wilkinson J. Basal metabolic state governs AIF-dependent growth support in pancreatic cancer cells. BMC Cancer. 2016;16:286 pubmed 出版商
  14. Carbognin E, Betto R, Soriano M, Smith A, Martello G. Stat3 promotes mitochondrial transcription and oxidative respiration during maintenance and induction of naive pluripotency. EMBO J. 2016;35:618-34 pubmed 出版商
  15. Xie C, Ginet V, Sun Y, Koike M, Zhou K, Li T, et al. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy. 2016;12:410-23 pubmed 出版商
  16. Grünewald A, Rygiel K, Hepplewhite P, Morris C, Picard M, Turnbull D. Mitochondrial DNA Depletion in Respiratory Chain-Deficient Parkinson Disease Neurons. Ann Neurol. 2016;79:366-78 pubmed 出版商
  17. Brandauer J, Andersen M, Kellezi H, Risis S, Frøsig C, Vienberg S, et al. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD. Front Physiol. 2015;6:85 pubmed 出版商
  18. Braun M, Hettinger N, Koentges C, Pfeil K, Cimolai M, Hoffmann M, et al. Myocardial mitochondrial and contractile function are preserved in mice lacking adiponectin. PLoS ONE. 2015;10:e0119416 pubmed 出版商
  19. Gouspillou G, Scheede Bergdahl C, Spendiff S, Vuda M, Meehan B, Mlynarski H, et al. Anthracycline-containing chemotherapy causes long-term impairment of mitochondrial respiration and increased reactive oxygen species release in skeletal muscle. Sci Rep. 2015;5:8717 pubmed 出版商
  20. Zou P, Liu L, Zheng L, Liu L, Stoneman R, Cho A, et al. Targeting FoxO1 with AS1842856 suppresses adipogenesis. Cell Cycle. 2014;13:3759-67 pubmed 出版商
  21. Oláhová M, Haack T, Alston C, Houghton J, He L, Morris A, et al. A truncating PET100 variant causing fatal infantile lactic acidosis and isolated cytochrome c oxidase deficiency. Eur J Hum Genet. 2015;23:935-9 pubmed 出版商
  22. Boczonadi V, Müller J, Pyle A, Munkley J, Dor T, Quartararo J, et al. EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nat Commun. 2014;5:4287 pubmed 出版商
  23. Andersen T, Schmidt J, Thomassen M, Hornstrup T, Frandsen U, Randers M, et al. A preliminary study: effects of football training on glucose control, body composition, and performance in men with type 2 diabetes. Scand J Med Sci Sports. 2014;24 Suppl 1:43-56 pubmed 出版商
  24. Grünewald A, Lax N, Rocha M, Reeve A, Hepplewhite P, Rygiel K, et al. Quantitative quadruple-label immunofluorescence of mitochondrial and cytoplasmic proteins in single neurons from human midbrain tissue. J Neurosci Methods. 2014;232:143-9 pubmed 出版商
  25. Gouspillou G, Sgarioto N, Kapchinsky S, Purves Smith F, Norris B, Pion C, et al. Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans. FASEB J. 2014;28:1621-33 pubmed 出版商
  26. Dun Y, Vargas J, Brot N, Finnemann S. Independent roles of methionine sulfoxide reductase A in mitochondrial ATP synthesis and as antioxidant in retinal pigment epithelial cells. Free Radic Biol Med. 2013;65:1340-1351 pubmed 出版商
  27. Morató L, Galino J, Ruiz M, Calingasan N, Starkov A, Dumont M, et al. Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy. Brain. 2013;136:2432-43 pubmed 出版商
  28. Lewis E, Wilkinson A, Jackson J, Mehra R, Varambally S, Chinnaiyan A, et al. The enzymatic activity of apoptosis-inducing factor supports energy metabolism benefiting the growth and invasiveness of advanced prostate cancer cells. J Biol Chem. 2012;287:43862-75 pubmed 出版商