这是一篇来自已证抗体库的有关人类 NR1的综述,是根据51篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合NR1 抗体。
NR1 同义词: GluN1; MRD8; NDHMSD; NDHMSR; NMD-R1; NMDA1; NMDAR1; NR1

赛默飞世尔
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 图 2g
赛默飞世尔 NR1抗体(Thermo, 32-0500)被用于被用于免疫印迹在小鼠样本上 (图 2g). J Neurochem (2017) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 大鼠; 图 3a
赛默飞世尔 NR1抗体(Zymed, 320500)被用于被用于免疫印迹在大鼠样本上 (图 3a). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫组化; 小鼠; 1:50; 图 3
  • 免疫印迹; 小鼠; 图 3
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔 NR1抗体(生活技术, 32-0500)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3), 被用于免疫印迹在小鼠样本上 (图 3), 被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). J Pathol (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔 NR1抗体(Invitrogen, 32-0500)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 重组(1H13L3)
  • 抑制或激活实验; 大鼠; 图 s2
赛默飞世尔 NR1抗体(ThermoFisher, 700685)被用于被用于抑制或激活实验在大鼠样本上 (图 s2). Brain Res (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 大鼠; 1:5000
赛默飞世尔 NR1抗体(Invitrogen, 32-0500)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. Exp Neurol (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫细胞化学; 小鼠; 1:1500
赛默飞世尔 NR1抗体(Invitrogen, MAb 54.1)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1500. J Neurosci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 NR1抗体(Thermo Fisher Scientific, PA3-102)被用于. J Neurochem (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 NR1抗体(Life Technolog., 32-0500)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci Res (2014) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 大鼠
赛默飞世尔 NR1抗体(Zymed, 32-0500)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(54.1)
  • 免疫细胞化学; 大鼠; 图 2
赛默飞世尔 NR1抗体(Invitrogen, 32-0500)被用于被用于免疫细胞化学在大鼠样本上 (图 2). J Biol Chem (2012) ncbi
小鼠 单克隆(54.1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3
赛默飞世尔 NR1抗体(Invitrogen, 32-0500)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2011) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 NR1抗体(Zymed, 32-0500)被用于被用于免疫印迹在大鼠样本上 (图 5). Neurobiol Dis (2011) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 NR1抗体(Invitrogen, 32-0500)被用于被用于免疫印迹在大鼠样本上 (图 5). Neurobiol Dis (2011) ncbi
小鼠 单克隆(54.1)
  • 免疫组化-自由浮动切片; little skate; 1:1000; 图 3
赛默飞世尔 NR1抗体(Invitrogen, 32-0500)被用于被用于免疫组化-自由浮动切片在little skate样本上浓度为1:1000 (图 3). J Exp Biol (2010) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 大鼠; 1:400; 图 4
赛默飞世尔 NR1抗体(Zymed, 32-0500)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 4). Eur J Neurosci (2010) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 人类
赛默飞世尔 NR1抗体(Zymed, 54.1)被用于被用于免疫印迹在人类样本上. Prog Neuropsychopharmacol Biol Psychiatry (2003) ncbi
Synaptic Systems
小鼠 单克隆(M68)
  • 免疫组化; 斑马鱼; 1:400; 图 6c
Synaptic Systems NR1抗体(Synaptic Systems, 114 011)被用于被用于免疫组化在斑马鱼样本上浓度为1:400 (图 6c). Invest Ophthalmol Vis Sci (2021) ncbi
小鼠 单克隆(M68)
  • 免疫组化; 斑马鱼; 1:200; 图 4d
Synaptic Systems NR1抗体(Synaptic Systems, 114011)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 4d). Sci Adv (2021) ncbi
小鼠 单克隆(M68)
  • 免疫印迹; 小鼠; 图 3g
Synaptic Systems NR1抗体(Synaptic Systems, 114011)被用于被用于免疫印迹在小鼠样本上 (图 3g). Neuron (2021) ncbi
小鼠 单克隆(M68)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 6e
Synaptic Systems NR1抗体(Synaptic Systems, 114-011)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 6e). Front Neurosci (2019) ncbi
小鼠 单克隆(M68)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
Synaptic Systems NR1抗体(Synaptic systems, 114 011)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). elife (2020) ncbi
小鼠 单克隆(M68)
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
Synaptic Systems NR1抗体(Synaptic Systems, 114011)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6c). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(M68)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
Synaptic Systems NR1抗体(Synaptic Systems, 114011)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Neurosci (2016) ncbi
小鼠 单克隆(M68)
  • 免疫印迹; 小鼠; 1:3000; 图 1c
Synaptic Systems NR1抗体(Synaptic Systems, 114011)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1c). Science (2016) ncbi
小鼠 单克隆(M68)
  • 免疫印迹; 大鼠; 1:1000; 图 s3
Synaptic Systems NR1抗体(Synaptic Systems, 114 011)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s3). Mol Biol Cell (2015) ncbi
小鼠 单克隆(M68)
  • 免疫印迹; 小鼠; 图 6
Synaptic Systems NR1抗体(SYSY, M68)被用于被用于免疫印迹在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR2481(2))
  • 免疫印迹; 小鼠; 图 4p
艾博抗(上海)贸易有限公司 NR1抗体(Abcam, ab109182)被用于被用于免疫印迹在小鼠样本上 (图 4p). EBioMedicine (2022) ncbi
domestic rabbit 单克隆(EPR2480Y)
  • 免疫印迹; 大鼠; 1:1000; 图 2f
艾博抗(上海)贸易有限公司 NR1抗体(Abcam, ab68144)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2f). Aging Cell (2020) ncbi
domestic rabbit 单克隆(EPR2481(2))
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 NR1抗体(Abcam, ab109182)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(EPR2481(2))
  • 免疫印迹; 大鼠; 1:2000; 图 5
艾博抗(上海)贸易有限公司 NR1抗体(Abcam, ab109182)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR2481(2))
  • 免疫印迹; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 NR1抗体(Epitomics, 2824-1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(S308-48)
  • 免疫组化-冰冻切片; 人类; 1:250; 图 5
  • 免疫细胞化学; 人类; 1:250; 图 5
  • 免疫印迹; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司 NR1抗体(abcam, ab134308)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:250 (图 5), 被用于免疫细胞化学在人类样本上浓度为1:250 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EPR2481(2))
  • 免疫印迹; 小鼠; 图 7
艾博抗(上海)贸易有限公司 NR1抗体(Abcam, ab109182)被用于被用于免疫印迹在小鼠样本上 (图 7). J Neurosci (2015) ncbi
Novus Biologicals
小鼠 单克隆(R1JHL)
  • 免疫印迹; 小鼠; 1:2000; 图 7a
Novus Biologicals NR1抗体(Novus, NB300-118)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7a). Mol Neurodegener (2022) ncbi
Alomone Labs
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 人类; 1:400; 图 3a
Alomone Labs NR1抗体(Alomone, AGC-001)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:400 (图 3a). Front Neuroanat (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 1e
Alomone Labs NR1抗体(Alomone labs, AGC-001)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1e). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 s2
Alomone Labs NR1抗体(Alomone Labs, AGC-001)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s2). Diabetes (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 1:2000; 图 5f
赛信通(上海)生物试剂有限公司 NR1抗体(CST, 5704)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5f). elife (2022) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 NR1抗体(Cell Signaling, 5704S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 NR1抗体(Cell Signaling, 5704)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Brain (2019) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 NR1抗体(Cell Signaling Technology, D65B7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). J Neurosci (2018) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 图 4I
赛信通(上海)生物试剂有限公司 NR1抗体(Cell Signaling, D65B7)被用于被用于免疫印迹在小鼠样本上 (图 4I). elife (2017) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫细胞化学; 小鼠; 图 1g
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司 NR1抗体(Cell Signaling, 5704)被用于被用于免疫细胞化学在小鼠样本上 (图 1g) 和 被用于免疫印迹在小鼠样本上 (图 1h). Exp Neurol (2017) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 1:2000; 图 7b
赛信通(上海)生物试剂有限公司 NR1抗体(Cell signaling, 5704S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7b). Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 NR1抗体(Cell Signaling, 5704)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 NR1抗体(Cell signaling, 3381)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Int J Neuropsychopharmacol (2016) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 1:500; 图 5
赛信通(上海)生物试剂有限公司 NR1抗体(Cell Signaling Technology, D65B7)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Anesthesiology (2015) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫沉淀; 小鼠; 1:1000; 图 1d
西格玛奥德里奇 NR1抗体(Sigma, G8913)被用于被用于免疫沉淀在小鼠样本上浓度为1:1000 (图 1d). Ann Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s1
西格玛奥德里奇 NR1抗体(Sigma, G8913)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s1). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 NR1抗体(Sigma, G8913)被用于. J Neurosci (2015) ncbi
文章列表
  1. Puntambekar S, Moutinho M, Lin P, Jadhav V, Tumbleson Brink D, Balaji A, et al. CX3CR1 deficiency aggravates amyloid driven neuronal pathology and cognitive decline in Alzheimer's disease. Mol Neurodegener. 2022;17:47 pubmed 出版商
  2. Coviello S, Gramuntell Y, Klimczak P, Varea E, Blasco Iba xf1 ez J, Crespo C, et al. Phenotype and Distribution of Immature Neurons in the Human Cerebral Cortex Layer II. Front Neuroanat. 2022;16:851432 pubmed 出版商
  3. Zhou Q, Li S, Li M, Ke D, Wang Q, Yang Y, et al. Human tau accumulation promotes glycogen synthase kinase-3β acetylation and thus upregulates the kinase: A vicious cycle in Alzheimer neurodegeneration. EBioMedicine. 2022;78:103970 pubmed 出版商
  4. Zheng R, Du Y, Wang X, Liao T, Zhang Z, Wang N, et al. KIF2C regulates synaptic plasticity and cognition in mice through dynamic microtubule depolymerization. elife. 2022;11: pubmed 出版商
  5. Kilonzo K, van der Veen B, Teutsch J, Schulz S, Kapanaiah S, Liss B, et al. Delayed-matching-to-position working memory in mice relies on NMDA-receptors in prefrontal pyramidal cells. Sci Rep. 2021;11:8788 pubmed 出版商
  6. Xie J, Jusuf P, Bui B, Dudczig S, Sztal T, Goodbourn P. Altered Visual Function in a Larval Zebrafish Knockout of Neurodevelopmental Risk Gene pdzk1. Invest Ophthalmol Vis Sci. 2021;62:29 pubmed 出版商
  7. Golan M, Boulanger Weill J, Pinot A, Fontanaud P, Faucherre A, Gajbhiye D, et al. Synaptic communication mediates the assembly of a self-organizing circuit that controls reproduction. Sci Adv. 2021;7: pubmed 出版商
  8. Kuijpers M, Kochlamazashvili G, Stumpf A, Puchkov D, Swaminathan A, Lucht M, et al. Neuronal Autophagy Regulates Presynaptic Neurotransmission by Controlling the Axonal Endoplasmic Reticulum. Neuron. 2021;109:299-313.e9 pubmed 出版商
  9. Yeung J, Palpagama T, Tate W, Peppercorn K, Waldvogel H, Faull R, et al. The Acute Effects of Amyloid-Beta1-42 on Glutamatergic Receptor and Transporter Expression in the Mouse Hippocampus. Front Neurosci. 2019;13:1427 pubmed 出版商
  10. Sclip A, Sudhof T. LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses. elife. 2020;9: pubmed 出版商
  11. Ye J, Yin Y, Liu H, Fang L, Tao X, Wei L, et al. Tau inhibits PKA by nuclear proteasome-dependent PKAR2α elevation with suppressed CREB/GluA1 phosphorylation. Aging Cell. 2020;19:e13055 pubmed 出版商
  12. Zhang H, Tian X, Lu X, Xu D, Guo Y, Dong Z, et al. TMEM25 modulates neuronal excitability and NMDA receptor subunit NR2B degradation. J Clin Invest. 2019;129:3864-3876 pubmed 出版商
  13. Zhong L, Xu Y, Zhuo R, Wang T, Wang K, Huang R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer's disease model. Nat Commun. 2019;10:1365 pubmed 出版商
  14. Zheng Y, Liu A, Wang Z, Cao Q, Wang W, Lin L, et al. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain. 2019;142:787-807 pubmed 出版商
  15. Wang W, Rein B, Zhang F, Tan T, Zhong P, Qin L, et al. Chemogenetic Activation of Prefrontal Cortex Rescues Synaptic and Behavioral Deficits in a Mouse Model of 16p11.2 Deletion Syndrome. J Neurosci. 2018;38:5939-5948 pubmed 出版商
  16. Wang Y, Figueiredo D, Sun X, Dong Z, Chen W, Cui W, et al. Controlling of glutamate release by neuregulin3 via inhibiting the assembly of the SNARE complex. Proc Natl Acad Sci U S A. 2018;115:2508-2513 pubmed 出版商
  17. Frank R, Zhu F, Komiyama N, Grant S. Hierarchical organization and genetically separable subfamilies of PSD95 postsynaptic supercomplexes. J Neurochem. 2017;142:504-511 pubmed 出版商
  18. Niu Y, Dai Z, Liu W, Zhang C, Yang Y, Guo Z, et al. Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory. elife. 2017;6: pubmed 出版商
  19. Bodrikov V, Pauschert A, Kochlamazashvili G, Stuermer C. Reggie-1 and reggie-2 (flotillins) participate in Rab11a-dependent cargo trafficking, spine synapse formation and LTP-related AMPA receptor (GluA1) surface exposure in mouse hippocampal neurons. Exp Neurol. 2017;289:31-45 pubmed 出版商
  20. Le H, Ahn B, Lee H, Shin A, Chae S, Lee S, et al. Disruption of Ninjurin1 Leads to Repetitive and Anxiety-Like Behaviors in Mice. Mol Neurobiol. 2017;54:7353-7368 pubmed 出版商
  21. Qi X, Zhang K, Xu T, Yamaki V, Wei Z, Huang M, et al. Sex Differences in Long-Term Potentiation at Temporoammonic-CA1 Synapses: Potential Implications for Memory Consolidation. PLoS ONE. 2016;11:e0165891 pubmed 出版商
  22. Sierra Valdez F, Ruiz Suárez J, Delint Ramirez I. Pentobarbital modifies the lipid raft-protein interaction: A first clue about the anesthesia mechanism on NMDA and GABAA receptors. Biochim Biophys Acta. 2016;1858:2603-2610 pubmed 出版商
  23. Pan B, Huang X, Deng C. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats. Sci Rep. 2016;6:30040 pubmed 出版商
  24. Planaguma J, Haselmann H, Mannara F, Petit Pedrol M, Grünewald B, Aguilar E, et al. Ephrin-B2 prevents N-methyl-D-aspartate receptor antibody effects on memory and neuroplasticity. Ann Neurol. 2016;80:388-400 pubmed 出版商
  25. Roshanravan H, Kim E, Dryer S. NMDA Receptors as Potential Therapeutic Targets in Diabetic Nephropathy: Increased Renal NMDA Receptor Subunit Expression in Akita Mice and Reduced Nephropathy Following Sustained Treatment With Memantine or MK-801. Diabetes. 2016;65:3139-50 pubmed 出版商
  26. Shen J, Wang R, He Z, Huang H, He X, Zhou J, et al. NMDA receptors participate in the progression of diabetic kidney disease by decreasing Cdc42-GTP activation in podocytes. J Pathol. 2016;240:149-60 pubmed 出版商
  27. Sun X, Li L, Liu F, Huang Z, Bean J, Jiao H, et al. Lrp4 in astrocytes modulates glutamatergic transmission. Nat Neurosci. 2016;19:1010-8 pubmed 出版商
  28. Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, et al. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun. 2016;7: pubmed 出版商
  29. Heise C, Schroeder J, Schoen M, Halbedl S, Reim D, Woelfle S, et al. Selective Localization of Shanks to VGLUT1-Positive Excitatory Synapses in the Mouse Hippocampus. Front Cell Neurosci. 2016;10:106 pubmed 出版商
  30. Traunmüller L, Gomez A, Nguyen T, Scheiffele P. Control of neuronal synapse specification by a highly dedicated alternative splicing program. Science. 2016;352:982-6 pubmed 出版商
  31. Frank R, Komiyama N, Ryan T, Zhu F, O Dell T, Grant S. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016;7:11264 pubmed 出版商
  32. Würdemann T, Kersten M, Tokay T, Guli X, Kober M, Rohde M, et al. Stereotactic injection of cerebrospinal fluid from anti-NMDA receptor encephalitis into rat dentate gyrus impairs NMDA receptor function. Brain Res. 2016;1633:10-18 pubmed 出版商
  33. Posa L, Accarie A, Noble F, Marie N. Methadone Reverses Analgesic Tolerance Induced by Morphine Pretreatment. Int J Neuropsychopharmacol. 2016;19: pubmed 出版商
  34. Liu S, Mi W, Li Q, Zhang M, Han P, Hu S, et al. Spinal IL-33/ST2 Signaling Contributes to Neuropathic Pain via Neuronal CaMKII-CREB and Astroglial JAK2-STAT3 Cascades in Mice. Anesthesiology. 2015;123:1154-69 pubmed 出版商
  35. Li M, Yang S, Xing B, Ferguson B, Gulchina Y, Li Y, et al. LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment. Exp Neurol. 2015;273:190-201 pubmed 出版商
  36. SÅ‚oniecka M, Le Roux S, Boman P, Byström B, Zhou Q, Danielson P. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ. PLoS ONE. 2015;10:e0134157 pubmed 出版商
  37. Gingras S, Earls L, Howell S, Smeyne R, Zakharenko S, Pelletier S. SCYL2 Protects CA3 Pyramidal Neurons from Excitotoxicity during Functional Maturation of the Mouse Hippocampus. J Neurosci. 2015;35:10510-22 pubmed 出版商
  38. Ferreira J, Schmidt J, Rio P, Águas R, Rooyakkers A, Li K, et al. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome. J Neurosci. 2015;35:8462-79 pubmed 出版商
  39. Lo S, Wang Y, Weber M, Larson J, Scearce Levie K, Sheng M. Caspase-3 deficiency results in disrupted synaptic homeostasis and impaired attention control. J Neurosci. 2015;35:2118-32 pubmed 出版商
  40. Garcia Alvarez G, Lu B, Yap K, Wong L, Thevathasan J, Lim L, et al. STIM2 regulates PKA-dependent phosphorylation and trafficking of AMPARs. Mol Biol Cell. 2015;26:1141-59 pubmed 出版商
  41. Choi T, Jung S, Nah J, Ko H, Jo S, Chung G, et al. Low levels of methyl β-cyclodextrin disrupt GluA1-dependent synaptic potentiation but not synaptic depression. J Neurochem. 2015;132:276-85 pubmed 出版商
  42. Abazyan S, Yang E, Abazyan B, Xia M, Yang C, Rojas C, et al. Mutant disrupted-in-schizophrenia 1 in astrocytes: focus on glutamate metabolism. J Neurosci Res. 2014;92:1659-68 pubmed 出版商
  43. Lee S, Sharma M, S dhof T, Shen J. Synaptic function of nicastrin in hippocampal neurons. Proc Natl Acad Sci U S A. 2014;111:8973-8 pubmed 出版商
  44. Kennard J, Guevremont D, Mason Parker S, Abraham W, Williams J. Redistribution of ionotropic glutamate receptors detected by laser microdissection of the rat dentate gyrus 48 h following LTP induction in vivo. PLoS ONE. 2014;9:e92972 pubmed 出版商
  45. She K, Ferreira J, Carvalho A, Craig A. Glutamate binding to the GluN2B subunit controls surface trafficking of N-methyl-D-aspartate (NMDA) receptors. J Biol Chem. 2012;287:27432-45 pubmed 出版商
  46. She K, Craig A. NMDA receptors mediate synaptic competition in culture. PLoS ONE. 2011;6:e24423 pubmed 出版商
  47. Gibbs S, Chattopadhyaya B, Desgent S, Awad P, Clerk Lamalice O, Levesque M, et al. Long-term consequences of a prolonged febrile seizure in a dual pathology model. Neurobiol Dis. 2011;43:312-21 pubmed 出版商
  48. Kennard J, Barmanray R, Sampurno S, Ozturk E, Reid C, Paradiso L, et al. Stargazin and AMPA receptor membrane expression is increased in the somatosensory cortex of Genetic Absence Epilepsy Rats from Strasbourg. Neurobiol Dis. 2011;42:48-54 pubmed 出版商
  49. Zhang Z, Bodznick D. The importance of N-methyl-D-aspartate (NMDA) receptors in subtraction of electrosensory reafference in the dorsal nucleus of skates. J Exp Biol. 2010;213:2700-9 pubmed 出版商
  50. Ouardouz M, Lema P, Awad P, Di Cristo G, Carmant L. N-methyl-D-aspartate, hyperpolarization-activated cation current (Ih) and gamma-aminobutyric acid conductances govern the risk of epileptogenesis following febrile seizures in rat hippocampus. Eur J Neurosci. 2010;31:1252-60 pubmed 出版商
  51. Thompson P, Egbufoama S, Vawter M. SNAP-25 reduction in the hippocampus of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:411-7 pubmed