这是一篇来自已证抗体库的有关人类 NR2B的综述,是根据83篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合NR2B 抗体。
NR2B 同义词: EIEE27; GluN2B; MRD6; NMDAR2B; NR2B; NR3; hNR3; glutamate receptor ionotropic, NMDA 2B; N-methyl D-aspartate receptor subtype 2B; N-methyl-D-aspartate receptor subunit 3; glutamate [NMDA] receptor subunit epsilon-2; glutamate receptor subunit epsilon-2; glutamate receptor, ionotropic, N-methyl D-aspartate 2B

艾博抗(上海)贸易有限公司
兔 多克隆
  • 免疫印迹; 大鼠; 1:3000; 图 2a
艾博抗(上海)贸易有限公司 NR2B抗体(Abcam, ab65783)被用于被用于免疫印迹在大鼠样品上浓度为1:3000 (图 2a). Mol Cell Neurosci (2018) ncbi
兔 单克隆(EP1858Y)
  • 免疫印迹; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 NR2B抗体(Abcam, Ab81271)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 3a). J Neurosci (2018) ncbi
小鼠 单克隆(NR2B)
  • 免疫印迹; 小鼠; 图 5h
艾博抗(上海)贸易有限公司 NR2B抗体(Abcam, ab28373)被用于被用于免疫印迹在小鼠样品上 (图 5h). Diabetes (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 6
艾博抗(上海)贸易有限公司 NR2B抗体(Abcam, AB65783)被用于被用于免疫细胞化学在人类样品上浓度为1:200 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(NR2B)
  • 免疫印迹; 小鼠; 图 2b
艾博抗(上海)贸易有限公司 NR2B抗体(Abcam, ab28373)被用于被用于免疫印迹在小鼠样品上 (图 2b). EBioMedicine (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2f
艾博抗(上海)贸易有限公司 NR2B抗体(Abcam, ab73014)被用于被用于免疫印迹在小鼠样品上 (图 2f). EBioMedicine (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 NR2B抗体(Abcam, ab65783)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4a). Mol Pain (2016) ncbi
兔 多克隆
  • 其他; 大鼠; 1:400; 图 6b
艾博抗(上海)贸易有限公司 NR2B抗体(Abcam, ab65783)被用于被用于其他在大鼠样品上浓度为1:400 (图 6b). Front Mol Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 8
艾博抗(上海)贸易有限公司 NR2B抗体(abcam, ab65783)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 8). Anesthesiology (2015) ncbi
小鼠 单克隆(NR2B)
  • 免疫印迹; 小鼠; 1:2000; 图 5
艾博抗(上海)贸易有限公司 NR2B抗体(Abcam, ab28373)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 5). Int J Neuropsychopharmacol (2016) ncbi
小鼠 单克隆(NR2B)
  • 免疫印迹; 小鼠; 1:1000; 图 3a,b
艾博抗(上海)贸易有限公司 NR2B抗体(Abcam, ab28373)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3a,b). PLoS ONE (2015) ncbi
赛默飞世尔
小鼠 单克隆(NR2B)
  • 免疫细胞化学; 人类; 1:1000; 图 2h
  • 免疫印迹; 人类; 1:500; 图 2c
赛默飞世尔 NR2B抗体(Thermo Scientific, MA1-2014)被用于被用于免疫细胞化学在人类样品上浓度为1:1000 (图 2h) 和 被用于免疫印迹在人类样品上浓度为1:500 (图 2c). Sci Rep (2017) ncbi
小鼠 单克隆(NR2B)
  • 免疫印迹; 小鼠; 1:2000; 图 7b
赛默飞世尔 NR2B抗体(ThermoFisher Scientific, MA1-2014)被用于被用于免疫印迹在小鼠样品上浓度为1:2000 (图 7b). Mol Neurobiol (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 6a
赛默飞世尔 NR2B抗体(分子探针, A-6474)被用于被用于免疫细胞化学在大鼠样品上浓度为1:500 (图 6a). J Cell Physiol (2017) ncbi
小鼠 单克隆(NR2B)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 NR2B抗体(Thermo Fisher, MA1-2014)被用于被用于免疫印迹在小鼠样品上 (图 3). Curr Alzheimer Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 5
赛默飞世尔 NR2B抗体(Molecular Probes/Invitrogen, A-6474)被用于被用于免疫印迹在小鼠样品上浓度为1:200 (图 5). J Alzheimers Dis (2015) ncbi
小鼠 单克隆(NR2B)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 NR2B抗体(Pierce, MA1-2014)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. Brain Behav Immun (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:250
  • 免疫印迹; 大鼠; 1:500
赛默飞世尔 NR2B抗体(生活技术, A-6474)被用于被用于免疫细胞化学在大鼠样品上浓度为1:250 和 被用于免疫印迹在大鼠样品上浓度为1:500. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠
赛默飞世尔 NR2B抗体(分子探针, A-6474)被用于被用于免疫组化在大鼠样品上. Neuroscience (2013) ncbi
小鼠 单克隆(B3-13B11)
  • 免疫细胞化学; 大鼠
赛默飞世尔 NR2B抗体(Invitrogen, 32-0700)被用于被用于免疫细胞化学在大鼠样品上. J Biol Chem (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 表 1.
赛默飞世尔 NR2B抗体(Invitrogen, A-6474)被用于被用于免疫印迹在小鼠样品上 (表 1.). Neurochem Int (2012) ncbi
兔 多克隆
  • 免疫沉淀; 小鼠; 1 ug/ml; 图 3
赛默飞世尔 NR2B抗体(Invitrogen, A6474)被用于被用于免疫沉淀在小鼠样品上浓度为1 ug/ml (图 3). Proc Natl Acad Sci U S A (2010) ncbi
MyBioSource
大鼠 单克隆(S59-36)
  • 免疫沉淀; 小鼠; 图 2a
MyBioSource NR2B抗体(MyBioSource, MBS800075)被用于被用于免疫沉淀在小鼠样品上 (图 2a). Exp Neurol (2018) ncbi
Alomone Labs
兔 多克隆
  • 免疫印迹; 小鼠; 图 4I
Alomone Labs NR2B抗体(Alomone labs, AGC-003)被用于被用于免疫印迹在小鼠样品上 (图 4I). elife (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:50
Alomone Labs NR2B抗体(Alomone labs, AGC-003)被用于被用于免疫细胞化学在小鼠样品上浓度为1:50. Neuroscience (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
Alomone Labs NR2B抗体(Alomone, AGC-003)被用于被用于免疫印迹在小鼠样品上浓度为1:500. J Neurosci (2015) ncbi
北京傲锐东源
兔 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 5h
北京傲锐东源 NR2B抗体(OriGene, TA309191)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 5h). J Exp Med (2016) ncbi
安迪生物R&D
兔 多克隆
  • 免疫印迹; 大鼠; 1:5000; 图 2
安迪生物R&D NR2B抗体(R&D Systems, PPS013)被用于被用于免疫印迹在大鼠样品上浓度为1:5000 (图 2). Neuroscience (2015) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(D15B3)
  • 免疫细胞化学; 小鼠; 图 2c
  • 免疫印迹; 小鼠; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 NR2B抗体(Cell Signaling, 4212)被用于被用于免疫细胞化学在小鼠样品上 (图 2c) 和 被用于免疫印迹在小鼠样品上浓度为1:2000 (图 3). Exp Neurol (2018) ncbi
兔 单克隆(D15B3)
  • 免疫印迹; 大鼠; 图 7b
赛信通(上海)生物试剂有限公司 NR2B抗体(Cell Signaling, 4212)被用于被用于免疫印迹在大鼠样品上 (图 7b). J Neurosci (2016) ncbi
兔 单克隆(D15B3)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 NR2B抗体(Cell signaling, 4212)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1). Cell Div (2016) ncbi
兔 单克隆(D15B3)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 NR2B抗体(Cell Signaling Tech, 4212)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
兔 单克隆(D15B3)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 NR2B抗体(Cell Signaling Technology, 4212S)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 2). Mol Brain (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:200
赛信通(上海)生物试剂有限公司 NR2B抗体(Cell Signaling, 4208S)被用于被用于免疫印迹在大鼠样品上浓度为1:200. Neuroscience (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 NR2B抗体(CST, 4207)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. Brain Res Bull (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司 NR2B抗体(CST, 4208)被用于被用于免疫印迹在大鼠样品上浓度为1:500. Brain Res Bull (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:200; 图 4
赛信通(上海)生物试剂有限公司 NR2B抗体(Cell Signaling, 4208S)被用于被用于免疫印迹在大鼠样品上浓度为1:200 (图 4). Brain Struct Funct (2015) ncbi
默克密理博中国
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6b
默克密理博中国 NR2B抗体(Millipore, AB1557P)被用于被用于免疫组化在小鼠样品上浓度为1:1000 (图 6b). J Comp Neurol (2019) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2e
默克密理博中国 NR2B抗体(EMD Millipore, 06-600)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 2e). Aging Cell (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
默克密理博中国 NR2B抗体(Millipore, 06-600)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 3a). J Neurosci (2018) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图 9e
默克密理博中国 NR2B抗体(Millipore, 06-600)被用于被用于免疫印迹在大鼠样品上浓度为1:2000 (图 9e). Mol Neurobiol (2018) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3a
默克密理博中国 NR2B抗体(Millipore, AB1557P)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 3a). Sci Rep (2017) ncbi
小鼠 单克隆(13A11)
  • 免疫印迹; 小鼠; 1:1000; 图 s1d
默克密理博中国 NR2B抗体(Millipore, MAB5220)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s1d). Nat Commun (2016) ncbi
小鼠 单克隆(BWJHL)
  • 免疫印迹; 大鼠; 1:2000; 图 6a
默克密理博中国 NR2B抗体(Millipore, 05-920)被用于被用于免疫印迹在大鼠样品上浓度为1:2000 (图 6a). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b
默克密理博中国 NR2B抗体(EMD Millipore, AB1557)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 4b). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6a
默克密理博中国 NR2B抗体(Millipore, 06-600)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 6a). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s4
默克密理博中国 NR2B抗体(Millipore, 06-600)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
默克密理博中国 NR2B抗体(Merck KGaA, 06-600)被用于被用于免疫印迹在人类样品上 (图 5). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
默克密理博中国 NR2B抗体(Millipore, 06-600)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 7a). Nat Commun (2016) ncbi
小鼠 单克隆(BWJHL)
  • 免疫印迹; 小鼠; 图 2
默克密理博中国 NR2B抗体(Millipore, 05-920)被用于被用于免疫印迹在小鼠样品上 (图 2). Nature (2016) ncbi
小鼠 单克隆(BWJHL)
  • 免疫印迹; 大鼠
默克密理博中国 NR2B抗体(Millipore, 05-920)被用于被用于免疫印迹在大鼠样品上. J Neurosci (2016) ncbi
小鼠 单克隆(BWJHL)
  • 免疫印迹; 大鼠; 1:1000; 图 11
默克密理博中国 NR2B抗体(Millipore, 05-920)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 11). J Neurosci (2015) ncbi
小鼠 单克隆(13A11)
  • 免疫印迹; 小鼠; 图 5a
默克密理博中国 NR2B抗体(Millipore, MAB5220)被用于被用于免疫印迹在小鼠样品上 (图 5a). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
默克密理博中国 NR2B抗体(Millipore, AB1557P)被用于被用于免疫印迹在小鼠样品上 (图 4). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫沉淀; 小鼠; 1:1000; 图 2a
  • 免疫印迹; 小鼠; 图 2a
默克密理博中国 NR2B抗体(Millipore, 06-600)被用于被用于免疫沉淀在小鼠样品上浓度为1:1000 (图 2a) 和 被用于免疫印迹在小鼠样品上 (图 2a). Transl Psychiatry (2015) ncbi
小鼠 单克隆(BWJHL)
  • 免疫印迹; 大鼠; 图 3c
默克密理博中国 NR2B抗体(Millipore, 05-920)被用于被用于免疫印迹在大鼠样品上 (图 3c). Neural Dev (2015) ncbi
小鼠 单克隆(BWJHL)
  • 免疫印迹; 大鼠; 1:2000
默克密理博中国 NR2B抗体(Millipore, 05-920)被用于被用于免疫印迹在大鼠样品上浓度为1:2000. Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 NR2B抗体(Millipore, 07-398)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
默克密理博中国 NR2B抗体(Millipore, 07-398)被用于被用于免疫印迹在小鼠样品上浓度为1:500. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(1C6.5C4)
  • 免疫印迹; 大鼠; 1:20
默克密理博中国 NR2B抗体(EMD Millipore, MAB5778)被用于被用于免疫印迹在大鼠样品上浓度为1:20. Neuroscience (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 表 1
默克密理博中国 NR2B抗体(Millipore, 06-600)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (表 1). Alcohol Clin Exp Res (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 图  5
  • 免疫印迹; 大鼠; 1:500; 图  5
默克密理博中国 NR2B抗体(Chemicon, AB1557P)被用于被用于免疫组化在大鼠样品上 (图  5) 和 被用于免疫印迹在大鼠样品上浓度为1:500 (图  5). Neurobiol Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s5
默克密理博中国 NR2B抗体(Upstate Biotechnology, 0 -600)被用于被用于免疫印迹在小鼠样品上浓度为1:1000 (图 s5). Nat Med (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 NR2B抗体(Millipore, 06-600)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. Mol Psychiatry (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
默克密理博中国 NR2B抗体(Millipore, 06-600)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Hippocampus (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
默克密理博中国 NR2B抗体(EMD Millipore, AB1557P)被用于被用于免疫印迹在人类样品上浓度为1:500. Thromb Res (2014) ncbi
兔 多克隆
  • 免疫印迹; domestic ferret; 1:500
默克密理博中国 NR2B抗体(Millipore, AB1557P)被用于被用于免疫印迹在domestic ferret样品上浓度为1:500. Neural Plast (2013) ncbi
小鼠 单克隆(BWJHL)
  • 免疫印迹; 大鼠
默克密理博中国 NR2B抗体(Millipore, 05-920)被用于被用于免疫印迹在大鼠样品上. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
默克密理博中国 NR2B抗体(Millipore, 06-600)被用于被用于免疫印迹在小鼠样品上. J Neurosci (2013) ncbi
小鼠 单克隆(13A11)
  • 免疫沉淀; 小鼠; 4 ug/time
  • 免疫印迹; 小鼠; 1:200
默克密理博中国 NR2B抗体(Chemicon, MAB5220)被用于被用于免疫沉淀在小鼠样品上浓度为4 ug/time 和 被用于免疫印迹在小鼠样品上浓度为1:200. Neurobiol Learn Mem (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 NR2B抗体(Millipore, 06-600)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. ASN Neuro (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 1
默克密理博中国 NR2B抗体(Millipore, 06-600)被用于被用于免疫印迹在大鼠样品上浓度为1:500 (图 1). Mol Psychiatry (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 NR2B抗体(Millipore, 06-600)被用于被用于免疫印迹在大鼠样品上浓度为1:1000. Eur J Neurosci (2013) ncbi
小鼠 单克隆(1C6.5C4)
  • 免疫印迹; 小鼠; 1:5,000
默克密理博中国 NR2B抗体(Millipore, MAB5778)被用于被用于免疫印迹在小鼠样品上浓度为1:5,000. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
默克密理博中国 NR2B抗体(Millipore, 06-600)被用于被用于免疫印迹在小鼠样品上. Eur J Pharmacol (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
默克密理博中国 NR2B抗体(Millipore, AB1557P)被用于被用于免疫印迹在小鼠样品上浓度为1:500. J Neurochem (2013) ncbi
小鼠 单克隆(1C6.5C4)
  • 免疫细胞化学; 大鼠; 1:20
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 NR2B抗体(Millipore, MAB5778)被用于被用于免疫细胞化学在大鼠样品上浓度为1:20 和 被用于免疫印迹在大鼠样品上浓度为1:1000. J Comp Neurol (2010) ncbi
碧迪BD
小鼠 单克隆(13/NMDAR2B)
  • 免疫印迹; 小鼠; 图 2e
碧迪BD NR2B抗体(BD, 610416)被用于被用于免疫印迹在小鼠样品上 (图 2e). Sci Rep (2017) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫印迹; 大鼠; 图 3a
碧迪BD NR2B抗体(BD biosciences, 610417)被用于被用于免疫印迹在大鼠样品上 (图 3a). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫印迹; 小鼠; 图 5
碧迪BD NR2B抗体(BD Biosciences, 610416)被用于被用于免疫印迹在小鼠样品上 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫细胞化学; 小鼠; 图 5
碧迪BD NR2B抗体(BD Transduction Laboratories, 610416)被用于被用于免疫细胞化学在小鼠样品上 (图 5). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫印迹; 人类; 1:500
碧迪BD NR2B抗体(BD Biosciences, 610416)被用于被用于免疫印迹在人类样品上浓度为1:500. Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD NR2B抗体(BD Transduction, 610417)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫组化; 大鼠; 1 ug/ml; 图 2a
碧迪BD NR2B抗体(BD Transduction, 610416)被用于被用于免疫组化在大鼠样品上浓度为1 ug/ml (图 2a). Front Synaptic Neurosci (2015) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD NR2B抗体(BD Transduction Laboratories, 610416)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Ann Neurol (2015) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫印迹; 大鼠
碧迪BD NR2B抗体(BD Biosciences, 610417)被用于被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫印迹; 小鼠
碧迪BD NR2B抗体(BD Transduction Labs, 610417)被用于被用于免疫印迹在小鼠样品上. J Neuroinflammation (2014) ncbi
西格玛奥德里奇
兔 多克隆
  • 免疫组化; 大鼠; 1:50; 图 4
  • 免疫印迹; 大鼠; 图 7
西格玛奥德里奇 NR2B抗体(Sigma-Aldrich, SAB4501305)被用于被用于免疫组化在大鼠样品上浓度为1:50 (图 4) 和 被用于免疫印迹在大鼠样品上 (图 7). Chem Biol Interact (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2e
西格玛奥德里奇 NR2B抗体(Sigma-Aldrich, M2442)被用于被用于免疫印迹在小鼠样品上浓度为1:500 (图 2e). Aging Cell (2018) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 9e
西格玛奥德里奇 NR2B抗体(Sigma, M2442)被用于被用于免疫印迹在大鼠样品上浓度为1:1000 (图 9e). Mol Neurobiol (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4b
西格玛奥德里奇 NR2B抗体(Sigma-Aldrich, M2442)被用于被用于免疫印迹在小鼠样品上 (图 4b). Korean J Physiol Pharmacol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:100
西格玛奥德里奇 NR2B抗体(Sigma, M2442)被用于被用于免疫印迹在小鼠样品上浓度为1:100. Ann Neurol (2015) ncbi
文章列表
  1. Shepard A, Scheffel J, Yu W. Relationships between neuronal birthdates and tonotopic positions in the mouse cochlear nucleus. J Comp Neurol. 2019;527:999-1011 pubmed 出版商
  2. Egbenya D, Hussain S, Lai Y, Xia J, Anderson A, Davanger S. Changes in synaptic AMPA receptor concentration and composition in chronic temporal lobe epilepsy. Mol Cell Neurosci. 2018;92:93-103 pubmed 出版商
  3. Nesterov S, Skorobogatova Y, Panteleeva A, Pavlik L, Mikheeva I, Yaguzhinsky L, et al. NMDA and GABA receptor presence in rat heart mitochondria. Chem Biol Interact. 2018;291:40-46 pubmed 出版商
  4. Baglietto Vargas D, Prieto G, Limon A, Forner S, Rodriguez Ortiz C, Ikemura K, et al. Impaired AMPA signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer's disease. Aging Cell. 2018;:e12791 pubmed 出版商
  5. Wang W, Rein B, Zhang F, Tan T, Zhong P, Qin L, et al. Chemogenetic Activation of Prefrontal Cortex Rescues Synaptic and Behavioral Deficits in a Mouse Model of 16p11.2 Deletion Syndrome. J Neurosci. 2018;38:5939-5948 pubmed 出版商
  6. Lu F, Shao G, Wang Y, Guan S, Burlingame A, Liu X, et al. Hypoxia-ischemia modifies postsynaptic GluN2B-containing NMDA receptor complexes in the neonatal mouse brain. Exp Neurol. 2018;299:65-74 pubmed 出版商
  7. Arcego D, Toniazzo A, Krolow R, Lampert C, Berlitz C, Dos Santos Garcia E, et al. Impact of High-Fat Diet and Early Stress on Depressive-Like Behavior and Hippocampal Plasticity in Adult Male Rats. Mol Neurobiol. 2018;55:2740-2753 pubmed 出版商
  8. Chakraborty M, Chen L, Fridel E, Klein M, Senft R, Sarkar A, et al. Overexpression of human NR2B receptor subunit in LMAN causes stuttering and song sequence changes in adult zebra finches. Sci Rep. 2017;7:942 pubmed 出版商
  9. Barad Z, Grattan D, Leitch B. NMDA Receptor Expression in the Thalamus of the Stargazer Model of Absence Epilepsy. Sci Rep. 2017;7:42926 pubmed 出版商
  10. Kim J, Ko A, Hyun H, Min S, Kim J. PDI regulates seizure activity via NMDA receptor redox in rats. Sci Rep. 2017;7:42491 pubmed 出版商
  11. Niu Y, Dai Z, Liu W, Zhang C, Yang Y, Guo Z, et al. Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory. elife. 2017;6: pubmed 出版商
  12. Li W, Liu M, Deng S, Liu Y, Shang L, Ding J, et al. ASIC1a regulates insular long-term depression and is required for the extinction of conditioned taste aversion. Nat Commun. 2016;7:13770 pubmed 出版商
  13. Pearson Leary J, McNay E. Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory. J Neurosci. 2016;36:11851-11864 pubmed
  14. Hayano Y, Takasu K, Koyama Y, Yamada M, Ogawa K, Minami K, et al. Dorsal horn interneuron-derived Netrin-4 contributes to spinal sensitization in chronic pain via Unc5B. J Exp Med. 2016;213:2949-2966 pubmed
  15. Le H, Ahn B, Lee H, Shin A, Chae S, Lee S, et al. Disruption of Ninjurin1 Leads to Repetitive and Anxiety-Like Behaviors in Mice. Mol Neurobiol. 2017;54:7353-7368 pubmed 出版商
  16. McQuail J, Beas B, Kelly K, Simpson K, Frazier C, Setlow B, et al. NR2A-Containing NMDARs in the Prefrontal Cortex Are Required for Working Memory and Associated with Age-Related Cognitive Decline. J Neurosci. 2016;36:12537-12548 pubmed
  17. Van Hummel A, Bi M, Ippati S, van der Hoven J, Volkerling A, Lee W, et al. No Overt Deficits in Aged Tau-Deficient C57Bl/6.Mapttm1(EGFP)Kit GFP Knockin Mice. PLoS ONE. 2016;11:e0163236 pubmed 出版商
  18. Ampuero E, Jury N, Hartel S, Marzolo M, van Zundert B. Interfering of the Reelin/ApoER2/PSD95 Signaling Axis Reactivates Dendritogenesis of Mature Hippocampal Neurons. J Cell Physiol. 2017;232:1187-1199 pubmed 出版商
  19. Yan S, Du F, Wu L, Zhang Z, Zhong C, Yu Q, et al. F1F0 ATP Synthase-Cyclophilin D Interaction Contributes to Diabetes-Induced Synaptic Dysfunction and Cognitive Decline. Diabetes. 2016;65:3482-3494 pubmed
  20. El Jamal S, Taylor E, Abd Elmageed Z, Alamodi A, Selimovic D, Alkhateeb A, et al. Interferon gamma-induced apoptosis of head and neck squamous cell carcinoma is connected to indoleamine-2,3-dioxygenase via mitochondrial and ER stress-associated pathways. Cell Div. 2016;11:11 pubmed 出版商
  21. Sierra Valdez F, Ruiz Suárez J, Delint Ramirez I. Pentobarbital modifies the lipid raft-protein interaction: A first clue about the anesthesia mechanism on NMDA and GABAA receptors. Biochim Biophys Acta. 2016;1858:2603-2610 pubmed 出版商
  22. Cheng Y, Huang C, Lee Y, Tien L, Ku W, Chien R, et al. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep. 2016;6:30314 pubmed 出版商
  23. Emanuele M, Esposito A, Camerini S, Antonucci F, Ferrara S, Seghezza S, et al. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts. EBioMedicine. 2016;7:191-204 pubmed 出版商
  24. Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, et al. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun. 2016;7: pubmed 出版商
  25. Zhao T, Li C, Wei W, Zhang H, Ma D, Song X, et al. Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat. Sci Rep. 2016;6:26865 pubmed 出版商
  26. Reinhard J, Kriz A, Galic M, Angliker N, Rajalu M, Vogt K, et al. The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory. Nat Commun. 2016;7:11613 pubmed 出版商
  27. Frank R, Komiyama N, Ryan T, Zhu F, O Dell T, Grant S. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016;7:11264 pubmed 出版商
  28. Liang Y, Liu Y, Hou B, Zhang W, Liu M, Sun Y, et al. CREB-regulated transcription coactivator 1 enhances CREB-dependent gene expression in spinal cord to maintain the bone cancer pain in mice. Mol Pain. 2016;12: pubmed 出版商
  29. Kurbatskaya K, Phillips E, Croft C, Dentoni G, Hughes M, Wade M, et al. Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer's disease brain. Acta Neuropathol Commun. 2016;4:34 pubmed 出版商
  30. Schedin Weiss S, Caesar I, Winblad B, Blom H, Tjernberg L. Super-resolution microscopy reveals ?-secretase at both sides of the neuronal synapse. Acta Neuropathol Commun. 2016;4:29 pubmed 出版商
  31. Shih Y, Hsueh Y. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation. Nat Commun. 2016;7:11020 pubmed 出版商
  32. Hussain S, Ringsevjen H, Egbenya D, Skjervold T, Davanger S. SNARE Protein Syntaxin-1 Colocalizes Closely with NMDA Receptor Subunit NR2B in Postsynaptic Spines in the Hippocampus. Front Mol Neurosci. 2016;9:10 pubmed 出版商
  33. Mei Y, Monteiro P, Zhou Y, Kim J, Gao X, Fu Z, et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature. 2016;530:481-4 pubmed 出版商
  34. Furman J, Sompol P, Kraner S, Pleiss M, Putman E, Dunkerson J, et al. Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury. J Neurosci. 2016;36:1502-15 pubmed 出版商
  35. Bean L, Kumar A, Rani A, Guidi M, Rosario A, Cruz P, et al. Re-Opening the Critical Window for Estrogen Therapy. J Neurosci. 2015;35:16077-93 pubmed 出版商
  36. Kim S, Kim T, Lee H, Kong Y, Kaang B. Mind Bomb-2 Regulates Hippocampus-dependent Memory Formation and Synaptic Plasticity. Korean J Physiol Pharmacol. 2015;19:515-22 pubmed 出版商
  37. Hatanaka Y, Watase K, Wada K, Nagai Y. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1. Sci Rep. 2015;5:16102 pubmed 出版商
  38. Lin T, Liu Y, Shih Y, Chen S, Huang T, Chang C, et al. Neurodegeneration in Amygdala Precedes Hippocampus in the APPswe/ PS1dE9 Mouse Model of Alzheimer's Disease. Curr Alzheimer Res. 2015;12:951-63 pubmed
  39. Tajerian M, Leu D, Yang P, Huang T, Kingery W, Clark J. Differential Efficacy of Ketamine in the Acute versus Chronic Stages of Complex Regional Pain Syndrome in Mice. Anesthesiology. 2015;123:1435-47 pubmed 出版商
  40. Mayanagi T, Yasuda H, Sobue K. PSD-Zip70 Deficiency Causes Prefrontal Hypofunction Associated with Glutamatergic Synapse Maturation Defects by Dysregulation of Rap2 Activity. J Neurosci. 2015;35:14327-40 pubmed 出版商
  41. Corcoran K, Leaderbrand K, Jovasevic V, Guedea A, Kassam F, Radulovic J. Regulation of fear extinction versus other affective behaviors by discrete cortical scaffolding complexes associated with NR2B and PKA signaling. Transl Psychiatry. 2015;5:e657 pubmed 出版商
  42. Posa L, Accarie A, Noble F, Marie N. Methadone Reverses Analgesic Tolerance Induced by Morphine Pretreatment. Int J Neuropsychopharmacol. 2016;19: pubmed 出版商
  43. Corbel C, Hernandez I, Wu B, Kosik K. Developmental attenuation of N-methyl-D-aspartate receptor subunit expression by microRNAs. Neural Dev. 2015;10:20 pubmed 出版商
  44. Forrest C, McNair K, Pisar M, Khalil O, Darlington L, Stone T. Altered hippocampal plasticity by prenatal kynurenine administration, kynurenine-3-monoxygenase (KMO) deletion or galantamine. Neuroscience. 2015;310:91-105 pubmed 出版商
  45. Li M, Yang S, Xing B, Ferguson B, Gulchina Y, Li Y, et al. LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment. Exp Neurol. 2015;273:190-201 pubmed 出版商
  46. Henstridge C, Jackson R, Kim J, Herrmann A, Wright A, Harris S, et al. Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathol Commun. 2015;3:53 pubmed 出版商
  47. Liu J, Zhang X, Zhang W, Gu G, Wang P. Effects of Sevoflurane on Young Male Adult C57BL/6 Mice Spatial Cognition. PLoS ONE. 2015;10:e0134217 pubmed 出版商
  48. Liu H, Li Y, Wang Y, Wang X, An X, Wang S, et al. The distinct role of NR2B subunit in the enhancement of visual plasticity in adulthood. Mol Brain. 2015;8:49 pubmed 出版商
  49. Pasek J, Wang X, Colbran R. Differential CaMKII regulation by voltage-gated calcium channels in the striatum. Mol Cell Neurosci. 2015;68:234-43 pubmed 出版商
  50. Farley M, Swulius M, Waxham M. Electron tomographic structure and protein composition of isolated rat cerebellar, hippocampal and cortical postsynaptic densities. Neuroscience. 2015;304:286-301 pubmed 出版商
  51. Tang Y, Ye M, Du Y, Qiu X, Lv X, Yang W, et al. EGFR signaling upregulates surface expression of the GluN2B-containing NMDA receptor and contributes to long-term potentiation in the hippocampus. Neuroscience. 2015;304:109-21 pubmed 出版商
  52. Atkin G, Moore S, Lu Y, Nelson R, Tipper N, Rajpal G, et al. Loss of F-box only protein 2 (Fbxo2) disrupts levels and localization of select NMDA receptor subunits, and promotes aberrant synaptic connectivity. J Neurosci. 2015;35:6165-78 pubmed 出版商
  53. Bidoret C, Bouvier G, Ayon A, Szapiro G, Casado M. Properties and molecular identity of NMDA receptors at synaptic and non-synaptic inputs in cerebellar molecular layer interneurons. Front Synaptic Neurosci. 2015;7:1 pubmed 出版商
  54. Kaufman A, Salazar S, Haas L, Yang J, Kostylev M, Jeng A, et al. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol. 2015;77:953-71 pubmed 出版商
  55. Van Skike C, Diaz Granados J, Matthews D. Chronic intermittent ethanol exposure produces persistent anxiety in adolescent and adult rats. Alcohol Clin Exp Res. 2015;39:262-71 pubmed 出版商
  56. Galinato M, Orio L, Mandyam C. Methamphetamine differentially affects BDNF and cell death factors in anatomically defined regions of the hippocampus. Neuroscience. 2015;286:97-108 pubmed 出版商
  57. Di Maio R, Cannon J, Greenamyre J. Post-status epilepticus treatment with the cannabinoid agonist WIN 55,212-2 prevents chronic epileptic hippocampal damage in rats. Neurobiol Dis. 2015;73:356-65 pubmed 出版商
  58. Gascon E, Lynch K, Ruan H, Almeida S, Verheyden J, Seeley W, et al. Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med. 2014;20:1444-51 pubmed 出版商
  59. Ledonne A, Nobili A, Latagliata E, Cavallucci V, Guatteo E, Puglisi Allegra S, et al. Neuregulin 1 signalling modulates mGluR1 function in mesencephalic dopaminergic neurons. Mol Psychiatry. 2015;20:959-73 pubmed 出版商
  60. Ma Q, Ying M, Sui X, Zhang H, Huang H, Yang L, et al. Chronic copper exposure causes spatial memory impairment, selective loss of hippocampal synaptic proteins, and activation of PKR/eIF2α pathway in mice. J Alzheimers Dis. 2015;43:1413-27 pubmed 出版商
  61. Connors E, Shaik A, Migliore M, Kentner A. Environmental enrichment mitigates the sex-specific effects of gestational inflammation on social engagement and the hypothalamic pituitary adrenal axis-feedback system. Brain Behav Immun. 2014;42:178-90 pubmed 出版商
  62. Fernandes J, Vieira M, Carreto L, Santos M, Duarte C, Carvalho A, et al. In vitro ischemia triggers a transcriptional response to down-regulate synaptic proteins in hippocampal neurons. PLoS ONE. 2014;9:e99958 pubmed 出版商
  63. Liu X, Liu Y, Zhang J, Zhang W, Sun Y, Gu X, et al. Intrathecal administration of roscovitine prevents remifentanil-induced postoperative hyperalgesia and decreases the phosphorylation of N-methyl-D-aspartate receptor and metabotropic glutamate receptor 5 in spinal cord. Brain Res Bull. 2014;106:9-16 pubmed 出版商
  64. Nikitczuk J, Patil S, Matikainen Ankney B, Scarpa J, Shapiro M, Benson D, et al. N-cadherin regulates molecular organization of excitatory and inhibitory synaptic circuits in adult hippocampus in vivo. Hippocampus. 2014;24:943-962 pubmed 出版商
  65. Bustos F, Varela Nallar L, Campos M, Henriquez B, Phillips M, Opazo C, et al. PSD95 suppresses dendritic arbor development in mature hippocampal neurons by occluding the clustering of NR2B-NMDA receptors. PLoS ONE. 2014;9:e94037 pubmed 出版商
  66. Kim A, Zamora Martinez E, Edwards S, Mandyam C. Structural reorganization of pyramidal neurons in the medial prefrontal cortex of alcohol dependent rats is associated with altered glial plasticity. Brain Struct Funct. 2015;220:1705-20 pubmed 出版商
  67. Niesman I, Schilling J, Shapiro L, Kellerhals S, Bonds J, Kleschevnikov A, et al. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice. J Neuroinflammation. 2014;11:39 pubmed 出版商
  68. Kalev Zylinska M, Green T, Morel Kopp M, Sun P, Park Y, Lasham A, et al. N-methyl-D-aspartate receptors amplify activation and aggregation of human platelets. Thromb Res. 2014;133:837-47 pubmed 出版商
  69. Mao Y, Pallas S. Cross-modal plasticity results in increased inhibition in primary auditory cortical areas. Neural Plast. 2013;2013:530651 pubmed 出版商
  70. Wang Y, Briz V, Chishti A, Bi X, Baudry M. Distinct roles for ?-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. J Neurosci. 2013;33:18880-92 pubmed 出版商
  71. Trotter J, Lee G, Kazdoba T, Crowell B, Domogauer J, Mahoney H, et al. Dab1 is required for synaptic plasticity and associative learning. J Neurosci. 2013;33:15652-68 pubmed 出版商
  72. Leaderbrand K, Corcoran K, Radulovic J. Co-activation of NR2A and NR2B subunits induces resistance to fear extinction. Neurobiol Learn Mem. 2014;113:35-40 pubmed 出版商
  73. Wang H, Yan H, Zhang S, Wei X, Zheng J, Li J. The GluN3A subunit exerts a neuroprotective effect in brain ischemia and the hypoxia process. ASN Neuro. 2013;5:231-42 pubmed 出版商
  74. Wei J, Yuen E, Liu W, Li X, Zhong P, Karatsoreos I, et al. Estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and cognition. Mol Psychiatry. 2014;19:588-98 pubmed 出版商
  75. Gupta S, Hillman B, Prakash A, Ugale R, Stairs D, Dravid S. Effect of D-cycloserine in conjunction with fear extinction training on extracellular signal-regulated kinase activation in the medial prefrontal cortex and amygdala in rat. Eur J Neurosci. 2013;37:1811-22 pubmed 出版商
  76. Abrahao K, Ariwodola O, Butler T, Rau A, Skelly M, Carter E, et al. Locomotor sensitization to ethanol impairs NMDA receptor-dependent synaptic plasticity in the nucleus accumbens and increases ethanol self-administration. J Neurosci. 2013;33:4834-42 pubmed 出版商
  77. Nagakura A, Shitaka Y, Yarimizu J, Matsuoka N. Characterization of cognitive deficits in a transgenic mouse model of Alzheimer's disease and effects of donepezil and memantine. Eur J Pharmacol. 2013;703:53-61 pubmed 出版商
  78. Berg L, Larsson M, Morland C, Gundersen V. Pre- and postsynaptic localization of NMDA receptor subunits at hippocampal mossy fibre synapses. Neuroscience. 2013;230:139-50 pubmed 出版商
  79. Almonte A, Qadri L, Sultan F, Watson J, Mount D, Rumbaugh G, et al. Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity. J Neurochem. 2013;124:109-22 pubmed 出版商
  80. Hayashi H, Eguchi Y, Fukuchi Nakaishi Y, Takeya M, Nakagata N, Tanaka K, et al. A potential neuroprotective role of apolipoprotein E-containing lipoproteins through low density lipoprotein receptor-related protein 1 in normal tension glaucoma. J Biol Chem. 2012;287:25395-406 pubmed 出版商
  81. Wigestrand M, Fonnum F, Ivar Walaas S. Subunit-specific modulation of [(3)H]MK-801 binding to NMDA receptors mediated by dopamine receptor ligands in rodent brain. Neurochem Int. 2012;61:266-76 pubmed 出版商
  82. Faust T, Chang E, Kowal C, Berlin R, Gazaryan I, Bertini E, et al. Neurotoxic lupus autoantibodies alter brain function through two distinct mechanisms. Proc Natl Acad Sci U S A. 2010;107:18569-74 pubmed 出版商
  83. Swulius M, Kubota Y, Forest A, Waxham M. Structure and composition of the postsynaptic density during development. J Comp Neurol. 2010;518:4243-60 pubmed 出版商