这是一篇来自已证抗体库的有关人类 NeuN的综述,是根据85篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合NeuN 抗体。
NeuN 同义词: FOX-3; FOX3; HRNBP3; NEUN

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4b). Nat Commun (2022) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:500; 图 s9a
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s9a). Adv Sci (Weinh) (2022) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 图 5j
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5j). EBioMedicine (2022) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s2c
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s2c). Sci Adv (2022) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3c
  • 免疫印迹; 小鼠; 1:1000; 图 3d
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Cell Rep (2022) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 小鼠; 1:3000; 图 7f
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:3000 (图 7f). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
  • 免疫印迹; 小鼠; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 6i
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, EPR12763)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 6i). NPJ Aging Mech Dis (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:500; 图 s6a
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s6a). Aging Cell (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:100; 图 3b
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3b). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:100; 图 2d
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2d). J Neuroinflammation (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 图 s1b
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上 (图 s1b). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:3000; 图 3d
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:3000 (图 3d). Mol Brain (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1a). Aging Cell (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 图 1d
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上 (图 1d). Front Mol Biosci (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4b). Histochem Cell Biol (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 图 1e
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1e). J Neuroinflammation (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 1:800; 图 s1b
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 (图 s1b). Cell Death Differ (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2a
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s2a
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2a) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s2a). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:3000; 图 5e, s4
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 5e, s4). Proc Jpn Acad Ser B Phys Biol Sci (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 4
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 4). Front Neurol (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 小鼠; 图 7e
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫印迹在小鼠样本上 (图 7e). Adv Sci (Weinh) (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, AB177487)被用于被用于免疫组化在小鼠样本上浓度为1:500. Nat Commun (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 人类; 1:300; 图 s3-1c
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在人类样本上浓度为1:300 (图 s3-1c). elife (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 大鼠; 图 4a
  • 免疫组化-石蜡切片; 大鼠; 图 2e
  • 流式细胞仪; 大鼠; 图 4c
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4a), 被用于免疫组化-石蜡切片在大鼠样本上 (图 2e) 和 被用于流式细胞仪在大鼠样本上 (图 4c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:1000; 图 s3b
艾博抗(上海)贸易有限公司 NeuN抗体(abcam, EPR12763)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s3b). elife (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 5a). Mol Ther Methods Clin Dev (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 猕猴; 1:500; 图 4a
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab128886)被用于被用于免疫细胞化学在猕猴样本上浓度为1:500 (图 4a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6b
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, Ab177487)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6b). Theranostics (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:500; 图 2f
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2f). Front Mol Neurosci (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:200; 图 s1c
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 s1c). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫细胞化学; 大鼠; 1:300; 图 s1d
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫细胞化学在大鼠样本上浓度为1:300 (图 s1d). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7a
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7a). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫细胞化学; 大鼠; 图 4, 7
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫细胞化学在大鼠样本上 (图 4, 7). Peerj (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 小鼠; 1:1000; 图 2a, 5b
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, Ab177487)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a, 5b). elife (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 大鼠; 1:1000; 图 3h
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3h). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆
  • 流式细胞仪; 小鼠; 1:100; 图 1a
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab209898)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). PLoS Biol (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 图 5e
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5e). PLoS Biol (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; pigs ; 1:2000; 图 4f
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在pigs 样本上浓度为1:2000 (图 4f). Nature (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 2b
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 2b). BMC Med Genomics (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:500; 图 s3b
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, EPR 12763)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s3b). Front Mol Neurosci (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 小鼠; 图 1f
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫印迹在小鼠样本上 (图 1f). J Exp Med (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上 (图 2a). Cell (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:500; 图 3m
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 3m). Brain Struct Funct (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 大鼠; 1:5000; 图 5g
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 5g). Behav Brain Res (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:1000; 图 6c
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6c). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; Zonotrichia leucophrys; 1:500; 图 2d
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在Zonotrichia leucophrys样本上浓度为1:500 (图 2d). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 图 1c
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, EPR12763)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c). FASEB J (2019) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab204681)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2). Epilepsia (2018) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1b). J Histochem Cytochem (2018) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 人类; 图 5e
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab190195)被用于被用于免疫细胞化学在人类样本上 (图 5e). Mol Biol Cell (2018) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 小鼠; 1:10,000; 图 7a
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 7a). F1000Res (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 3b). Neuropharmacology (2018) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1). J Physiol (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3a). Acta Neuropathol (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:1000; 图 s2d
艾博抗(上海)贸易有限公司 NeuN抗体(abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s2d). Nature (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 人类; 1:100; 图 s10a
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s10a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6d
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6d). Ann Neurol (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:800; 图 8e
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, EPR12763)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 8e). Development (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4a). F1000Res (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 人类; 1:300; 图 3
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, Ab177487)被用于被用于免疫组化在人类样本上浓度为1:300 (图 3). J Alzheimers Dis (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫细胞化学; 小鼠; 1:2000; 图 s3c
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 s3c). Neuron (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 图 st1
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 人类; 1:1000; 图 7
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 大鼠; 图 5
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 5). Mol Brain (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 3
艾博抗(上海)贸易有限公司 NeuN抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 3). Sci Rep (2016) ncbi
BioLegend
小鼠 单克隆(1B7)
  • 免疫组化; 大鼠; 1:1000; 图 3d
BioLegend NeuN抗体(BioLegend, SIG-39860)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 3d). Mol Brain (2021) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 1:1000; 图 5e, s4
BioLegend NeuN抗体(BioLegend, SIG-39860)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5e, s4). Proc Jpn Acad Ser B Phys Biol Sci (2021) ncbi
小鼠 单克隆(1B7)
  • 免疫印迹; 小鼠; 1:2000; 图 4o
BioLegend NeuN抗体(Biolegend, 834501)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4o). J Neuroinflammation (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 2d
BioLegend NeuN抗体(Biolegend, SIG-39860)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 2d). Front Aging Neurosci (2018) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 图 st1
BioLegend NeuN抗体(BioLegend, 834501)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2b
Novus Biologicals NeuN抗体(Novus, NBP1-77686X)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2b). Redox Biol (2021) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-自由浮动切片; 人类; 1:100; 图 6
Novus Biologicals NeuN抗体(Novus, NBP1-92693)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:100 (图 6). Cereb Cortex Commun (2021) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 1:400; 图 1b
Novus Biologicals NeuN抗体(Novus, NBP1-92693)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1b). Genes Dev (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3c
Novus Biologicals NeuN抗体(Novus Biologicals, NBP1-77686)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3c). Neurobiol Aging (2016) ncbi
domestic rabbit 多克隆
Novus Biologicals NeuN抗体(Novus, NBP1-77686SS)被用于. Sci Rep (2015) ncbi
EnCor Biotechnology
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6a
EnCor Biotechnology NeuN抗体(EnCor Biotechnology, MCA-1B7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7h
EnCor Biotechnology NeuN抗体(EnCor Biotechnology, RPCA-FOX3)被用于被用于免疫组化在小鼠样本上 (图 7h). Cell (2019) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
EnCor Biotechnology NeuN抗体(EnCor Biotechnology, MCA-1B7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). Gene Ther (2016) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 2
EnCor Biotechnology NeuN抗体(EnCor Biotechnology, MCA-1B7)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2015) ncbi
赛默飞世尔
小鼠 单克隆(1B7)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 4a, 4b, 4c
赛默飞世尔 NeuN抗体(Invitrogen, MA5-33103)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 4a, 4b, 4c). Brain Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s1a
赛默飞世尔 NeuN抗体(Thermo Fisher Scientific, PA5-37407)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1a). Neuron (2020) ncbi
Synaptic Systems
鸡 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:200; 图 4f
Synaptic Systems NeuN抗体(Synaptic Systems, 266006)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:200 (图 4f). Brain Behav Immun (2021) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:100; 图 3d
Synaptic Systems NeuN抗体(Synaptic Systems, 266006)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3d). Stem Cell Res (2019) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(E4M5P)
  • 免疫组化-冰冻切片; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 NeuN抗体(Cell Signaling, 94403)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6d). Cell Death Dis (2020) ncbi
Neuromics
单克隆
  • 免疫组化; 小鼠; 1:1000; 图 s4d
Neuromics NeuN抗体(Neuromics, MO22122)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s4d). Proc Natl Acad Sci U S A (2018) ncbi
文章列表
  1. O Shea T, Ao Y, Wang S, Wollenberg A, Kim J, Ramos Espinoza R, et al. Lesion environments direct transplanted neural progenitors towards a wound repair astroglial phenotype in mice. Nat Commun. 2022;13:5702 pubmed 出版商
  2. Chen K, Hu Q, Xie Z, Yang G. Monocyte NLRP3-IL-1β Hyperactivation Mediates Neuronal and Synaptic Dysfunction in Perioperative Neurocognitive Disorder. Adv Sci (Weinh). 2022;9:e2104106 pubmed 出版商
  3. Zhou Q, Li S, Li M, Ke D, Wang Q, Yang Y, et al. Human tau accumulation promotes glycogen synthase kinase-3β acetylation and thus upregulates the kinase: A vicious cycle in Alzheimer neurodegeneration. EBioMedicine. 2022;78:103970 pubmed 出版商
  4. Georgiou L, Echeverr xed a A, Georgiou A, Kuhn B. Ca+ activity maps of astrocytes tagged by axoastrocytic AAV transfer. Sci Adv. 2022;8:eabe5371 pubmed 出版商
  5. Qureshi Y, Berman D, Marsh S, Klein R, Patel V, Simoes S, et al. The neuronal retromer can regulate both neuronal and microglial phenotypes of Alzheimer's disease. Cell Rep. 2022;38:110262 pubmed 出版商
  6. Kettwig M, Ternka K, Wendland K, Krüger D, Zampar S, Schob C, et al. Interferon-driven brain phenotype in a mouse model of RNaseT2 deficient leukoencephalopathy. Nat Commun. 2021;12:6530 pubmed 出版商
  7. Luo R, Fan Y, Yang J, Ye M, Zhang D, Guo K, et al. A novel missense variant in ACAA1 contributes to early-onset Alzheimer's disease, impairs lysosomal function, and facilitates amyloid-β pathology and cognitive decline. Signal Transduct Target Ther. 2021;6:325 pubmed 出版商
  8. Banerjee S, Ghoshal S, Girardet C, Demars K, Yang C, Niehoff M, et al. Adropin correlates with aging-related neuropathology in humans and improves cognitive function in aging mice. NPJ Aging Mech Dis. 2021;7:23 pubmed 出版商
  9. Xu X, Shen X, Wang J, Feng W, Wang M, Miao X, et al. YAP prevents premature senescence of astrocytes and cognitive decline of Alzheimer's disease through regulating CDK6 signaling. Aging Cell. 2021;20:e13465 pubmed 出版商
  10. Xiao X, Li W, Rong D, Xu Z, Zhang Z, Ye H, et al. Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis. Cell Death Discov. 2021;7:212 pubmed 出版商
  11. Ho M, Yen C, Hsieh T, Kao T, Chiu J, Chiang Y, et al. CCL5 via GPX1 activation protects hippocampal memory function after mild traumatic brain injury. Redox Biol. 2021;46:102067 pubmed 出版商
  12. Levenga J, Wong H, Milstead R, LaPlante L, Hoeffer C. Immunohistological Examination of AKT Isoforms in the Brain: Cell-Type Specificity That May Underlie AKT's Role in Complex Brain Disorders and Neurological Disease. Cereb Cortex Commun. 2021;2:tgab036 pubmed 出版商
  13. Xiao J, Cai T, Fang Y, Liu R, Flores J, Wang W, et al. Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model. J Neuroinflammation. 2021;18:160 pubmed 出版商
  14. Wang Y, Su Y, Yu G, Wang X, Chen X, Yu B, et al. Reduced Oligodendrocyte Precursor Cell Impairs Astrocytic Development in Early Life Stress. Adv Sci (Weinh). 2021;8:e2101181 pubmed 出版商
  15. Smith E, Farshim P, Flomen R, Jones S, McAteer S, Deverman B, et al. Use of high-content imaging to quantify transduction of AAV-PHP viruses in the brain following systemic delivery. Brain Commun. 2021;3:fcab105 pubmed 出版商
  16. Asahina M, Fujinawa R, Hirayama H, Tozawa R, Kajii Y, Suzuki T. Reversibility of motor dysfunction in the rat model of NGLY1 deficiency. Mol Brain. 2021;14:91 pubmed 出版商
  17. Zhang J, Wu N, Wang S, Yao Z, Xiao F, Lu J, et al. Neuronal loss and microgliosis are restricted to the core of Aβ deposits in mouse models of Alzheimer's disease. Aging Cell. 2021;20:e13380 pubmed 出版商
  18. Vicente Rodríguez M, Singh N, Turkheimer F, Peris Yague A, Randall K, Veronese M, et al. Resolving the cellular specificity of TSPO imaging in a rat model of peripherally-induced neuroinflammation. Brain Behav Immun. 2021;96:154-167 pubmed 出版商
  19. Chang B, Guan H, Wang X, Chen Z, Zhu W, Wei X, et al. Cox4i2 Triggers an Increase in Reactive Oxygen Species, Leading to Ferroptosis and Apoptosis in HHV7 Infected Schwann Cells. Front Mol Biosci. 2021;8:660072 pubmed 出版商
  20. Kimura E, Kohda M, Maekawa F, Fujii Kuriyama Y, Tohyama C. Neurons expressing the aryl hydrocarbon receptor in the locus coeruleus and island of Calleja major are novel targets of dioxin in the mouse brain. Histochem Cell Biol. 2021;156:147-163 pubmed 出版商
  21. Fairley L, Sahara N, Aoki I, Ji B, Suhara T, Higuchi M, et al. Neuroprotective effect of mitochondrial translocator protein ligand in a mouse model of tauopathy. J Neuroinflammation. 2021;18:76 pubmed 出版商
  22. Fang Y, Jiang Q, Li S, Zhu H, Xu R, Song N, et al. Opposing functions of β-arrestin 1 and 2 in Parkinson's disease via microglia inflammation and Nprl3. Cell Death Differ. 2021;28:1822-1836 pubmed 出版商
  23. Liu X, Wang Q, Yang Y, Stewart T, Shi M, Soltys D, et al. Reduced erythrocytic CHCHD2 mRNA is associated with brain pathology of Parkinson's disease. Acta Neuropathol Commun. 2021;9:37 pubmed 出版商
  24. Asahina M, Fujinawa R, Fujihira H, Masahara Negishi Y, Andou T, Tozawa R, et al. JF1/B6F1 Ngly1-/- mouse as an isogenic animal model of NGLY1 deficiency. Proc Jpn Acad Ser B Phys Biol Sci. 2021;97:89-102 pubmed 出版商
  25. Zareba Paslawska J, Patra K, Kluzer L, Revesz T, Svenningsson P. Tau Isoform-Driven CBD Pathology Transmission in Oligodendrocytes in Humanized Tau Mice. Front Neurol. 2020;11:589471 pubmed 出版商
  26. Zhang D, Liu C, Li H, Jiao J. Deficiency of STING Signaling in Embryonic Cerebral Cortex Leads to Neurogenic Abnormalities and Autistic-Like Behaviors. Adv Sci (Weinh). 2020;7:2002117 pubmed 出版商
  27. Smith S, Chen X, Brier L, Bumstead J, Rensing N, Ringel A, et al. Astrocyte deletion of α2-Na/K ATPase triggers episodic motor paralysis in mice via a metabolic pathway. Nat Commun. 2020;11:6164 pubmed 出版商
  28. Roth J, Muench K, Asokan A, Mallett V, Gai H, Verma Y, et al. 16p11.2 microdeletion imparts transcriptional alterations in human iPSC-derived models of early neural development. elife. 2020;9: pubmed 出版商
  29. Chen Y, Li J, Ma B, Li N, Wang S, Sun Z, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging (Albany NY). 2020;12:18274-18296 pubmed 出版商
  30. Suzuki G, Imura S, Hosokawa M, Katsumata R, Nonaka T, Hisanaga S, et al. α-synuclein strains that cause distinct pathologies differentially inhibit proteasome. elife. 2020;9: pubmed 出版商
  31. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11:2488 pubmed 出版商
  32. Tan J, Zhang X, Li D, Liu G, Wang Y, Zhang D, et al. scAAV2-Mediated C3 Transferase Gene Therapy in a Rat Model with Retinal Ischemia/Reperfusion Injuries. Mol Ther Methods Clin Dev. 2020;17:894-903 pubmed 出版商
  33. Du T, Zhu G, Chen Y, Shi L, Liu D, Liu Y, et al. Anterior thalamic nucleus stimulation protects hippocampal neurons by activating autophagy in epileptic monkeys. Aging (Albany NY). 2020;12:6324-6339 pubmed 出版商
  34. Lee D, Kam M, Lee S, Lee H, Lee D. Peroxiredoxin 5 deficiency exacerbates iron overload-induced neuronal death via ER-mediated mitochondrial fission in mouse hippocampus. Cell Death Dis. 2020;11:204 pubmed 出版商
  35. Morse S, Boltersdorf T, Harriss B, Chan T, Baxan N, Jung H, et al. Neuron labeling with rhodamine-conjugated Gd-based MRI contrast agents delivered to the brain via focused ultrasound. Theranostics. 2020;10:2659-2674 pubmed 出版商
  36. Yu Z, Chen N, Hu D, Chen W, Yuan Y, Meng S, et al. Decreased Density of Perineuronal Net in Prelimbic Cortex Is Linked to Depressive-Like Behavior in Young-Aged Rats. Front Mol Neurosci. 2020;13:4 pubmed 出版商
  37. Sun Y, Guo Y, Feng X, Jia M, Ai N, Dong Y, et al. The behavioural and neuropathologic sexual dimorphism and absence of MIP-3α in tau P301S mouse model of Alzheimer's disease. J Neuroinflammation. 2020;17:72 pubmed 出版商
  38. Liu X, Gao C, Yuan J, Xiang T, Gong Z, Luo H, et al. Subdural haematomas drain into the extracranial lymphatic system through the meningeal lymphatic vessels. Acta Neuropathol Commun. 2020;8:16 pubmed 出版商
  39. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  40. Yue D, Zhao J, Chen H, Guo M, Chen C, Zhou Y, et al. MicroRNA-7, synergizes with RORα, negatively controls the pathology of brain tissue inflammation. J Neuroinflammation. 2020;17:28 pubmed 出版商
  41. Yu Y, Wu M, Zhang N, Yin H, Shu B, Duan W. A pilot study on searching for peri-nuclear NeuN-positive cells. Peerj. 2020;8:e8254 pubmed 出版商
  42. Bowie E, Goetz S. TTBK2 and primary cilia are essential for the connectivity and survival of cerebellar Purkinje neurons. elife. 2020;9: pubmed 出版商
  43. Borges Merjane C, Kim O, Jonas P. Functional Electron Microscopy, "Flash and Freeze," of Identified Cortical Synapses in Acute Brain Slices. Neuron. 2020;105:992-1006.e6 pubmed 出版商
  44. Giridharan V, Collodel A, Generoso J, Scaini G, Wassather R, Selvaraj S, et al. Neuroinflammation trajectories precede cognitive impairment after experimental meningitis-evidence from an in vivo PET study. J Neuroinflammation. 2020;17:5 pubmed 出版商
  45. Streeter K, Sunshine M, Brant J, Sandoval A, Maden M, Fuller D. Molecular and histologic outcomes following spinal cord injury in spiny mice, Acomys cahirinus. J Comp Neurol. 2020;528:1535-1547 pubmed 出版商
  46. Suh J, Romano D, Nitschke L, Herrick S, DiMarzio B, Dzhala V, et al. Loss of Ataxin-1 Potentiates Alzheimer's Pathogenesis by Elevating Cerebral BACE1 Transcription. Cell. 2019;178:1159-1175.e17 pubmed 出版商
  47. Zhang Q, Zhu W, Xu F, Dai X, Shi L, Cai W, et al. The interleukin-4/PPARγ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury. PLoS Biol. 2019;17:e3000330 pubmed 出版商
  48. Rojek K, Krzemien J, Dolezyczek H, Boguszewski P, Kaczmarek L, Konopka W, et al. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol. 2019;17:e3000253 pubmed 出版商
  49. Vrselja Z, Daniele S, Silbereis J, Talpo F, Morozov Y, Sousa A, et al. Restoration of brain circulation and cellular functions hours post-mortem. Nature. 2019;568:336-343 pubmed 出版商
  50. Vogel S, Schäfer C, Hess S, Folz Donahue K, Nelles M, Minassian A, et al. The in vivo timeline of differentiation of engrafted human neural progenitor cells. Stem Cell Res. 2019;37:101429 pubmed 出版商
  51. Telegina D, Kolosova N, Kozhevnikova O. Immunohistochemical localization of NGF, BDNF, and their receptors in a normal and AMD-like rat retina. BMC Med Genomics. 2019;12:48 pubmed 出版商
  52. Upadhyay A, Hosseinibarkooie S, Schneider S, Kaczmarek A, Torres Benito L, Mendoza Ferreira N, et al. Neurocalcin Delta Knockout Impairs Adult Neurogenesis Whereas Half Reduction Is Not Pathological. Front Mol Neurosci. 2019;12:19 pubmed 出版商
  53. Zhu C, Li B, Frontzek K, Liu Y, Aguzzi A. SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. J Exp Med. 2019;216:743-756 pubmed 出版商
  54. Joy M, Ben Assayag E, Shabashov Stone D, Liraz Zaltsman S, Mazzitelli J, Arenas M, et al. CCR5 Is a Therapeutic Target for Recovery after Stroke and Traumatic Brain Injury. Cell. 2019;176:1143-1157.e13 pubmed 出版商
  55. Yu Q, Liu Y, Zhu Y, Wang Y, Li Q, Yin D. Genetic labeling reveals temporal and spatial expression pattern of D2 dopamine receptor in rat forebrain. Brain Struct Funct. 2019;224:1035-1049 pubmed 出版商
  56. Lian S, Xu B, Wang D, Wang L, Li W, Yao R, et al. Possible mechanisms of prenatal cold stress induced-anxiety-like behavior depression in offspring rats. Behav Brain Res. 2019;359:304-311 pubmed 出版商
  57. Shepard A, Scheffel J, Yu W. Relationships between neuronal birthdates and tonotopic positions in the mouse cochlear nucleus. J Comp Neurol. 2019;527:999-1011 pubmed 出版商
  58. Nie S, Tan Y, Zhang Z, Chen G, Xiong J, Hu D, et al. Bilateral Implantation of Shear Stress Modifier in ApoE Knockout Mouse Induces Cognitive Impairment and Tau Abnormalities. Front Aging Neurosci. 2018;10:303 pubmed 出版商
  59. Larson T, Thatra N, Hou D, Hu R, Brenowitz E. Seasonal changes in neuronal turnover in a forebrain nucleus in adult songbirds. J Comp Neurol. 2019;527:767-779 pubmed 出版商
  60. Kanetake T, Sassa T, Nojiri K, Sawai M, Hattori S, Miyakawa T, et al. Neural symptoms in a gene knockout mouse model of Sjögren-Larsson syndrome are associated with a decrease in 2-hydroxygalactosylceramide. FASEB J. 2019;33:928-941 pubmed 出版商
  61. Weidner L, Kannan P, Mitsios N, Kang S, Hall M, Theodore W, et al. The expression of inflammatory markers and their potential influence on efflux transporters in drug-resistant mesial temporal lobe epilepsy tissue. Epilepsia. 2018;59:1507-1517 pubmed 出版商
  62. Liu J, Modo M. Quantification of the Extracellular Matrix Molecule Thrombospondin 1 and Its Pericellular Association in the Brain Using a Semiautomated Computerized Approach. J Histochem Cytochem. 2018;66:643-662 pubmed 出版商
  63. Wang Y, Figueiredo D, Sun X, Dong Z, Chen W, Cui W, et al. Controlling of glutamate release by neuregulin3 via inhibiting the assembly of the SNARE complex. Proc Natl Acad Sci U S A. 2018;115:2508-2513 pubmed 出版商
  64. Caneus J, Granic A, Rademakers R, Dickson D, Coughlan C, CHIAL H, et al. Mitotic defects lead to neuronal aneuploidy and apoptosis in frontotemporal lobar degeneration caused by MAPT mutations. Mol Biol Cell. 2018;29:575-586 pubmed 出版商
  65. McCarthy G, Bridges C, Blednov Y, Harris R. CNS cell-type localization and LPS response of TLR signaling pathways. F1000Res. 2017;6:1144 pubmed 出版商
  66. Xie Z, Enkhjargal B, Wu L, Zhou K, Sun C, Hu X, et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142-151 pubmed 出版商
  67. Zhang M, Chen D, Xia J, Han W, Cui X, Neuenkirchen N, et al. Post-transcriptional regulation of mouse neurogenesis by Pumilio proteins. Genes Dev. 2017;31:1354-1369 pubmed 出版商
  68. Fu C, Xue J, Wang R, Chen J, Ma L, Liu Y, et al. Chemosensitive Phox2b-expressing neurons are crucial for hypercapnic ventilatory response in the nucleus tractus solitarius. J Physiol. 2017;595:4973-4989 pubmed 出版商
  69. Schludi M, Becker L, Garrett L, Gendron T, Zhou Q, Schreiber F, et al. Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss. Acta Neuropathol. 2017;134:241-254 pubmed 出版商
  70. Becker L, Huang B, Bieri G, Ma R, Knowles D, Jafar Nejad P, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 2017;544:367-371 pubmed 出版商
  71. Ehrlich M, Mozafari S, Glatza M, Starost L, Velychko S, Hallmann A, et al. Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci U S A. 2017;114:E2243-E2252 pubmed 出版商
  72. Kemp K, Cerminara N, Hares K, Redondo J, Cook A, Haynes H, et al. Cytokine therapy-mediated neuroprotection in a Friedreich's ataxia mouse model. Ann Neurol. 2017;81:212-226 pubmed 出版商
  73. Harris L, Zalucki O, Gobius I, McDonald H, Osinki J, Harvey T, et al. Transcriptional regulation of intermediate progenitor cell generation during hippocampal development. Development. 2016;143:4620-4630 pubmed
  74. Rangasamy S, Olfers S, Gerald B, Hilbert A, Svejda S, Narayanan V. Reduced neuronal size and mTOR pathway activity in the Mecp2 A140V Rett syndrome mouse model. F1000Res. 2016;5:2269 pubmed
  75. He Q, Xiong L, Liu F, He X, Feng G, Shang F, et al. MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection. Sci Rep. 2016;6:35205 pubmed 出版商
  76. Dekens D, Naudé P, Engelborghs S, Vermeiren Y, Van Dam D, Oude Voshaar R, et al. Neutrophil Gelatinase-Associated Lipocalin and its Receptors in Alzheimer's Disease (AD) Brain Regions: Differential Findings in AD with and without Depression. J Alzheimers Dis. 2017;55:763-776 pubmed
  77. Zhang B, Bailey W, McVicar A, Gensel J. Age increases reactive oxygen species production in macrophages and potentiates oxidative damage after spinal cord injury. Neurobiol Aging. 2016;47:157-167 pubmed 出版商
  78. Redmond S, Mei F, Eshed Eisenbach Y, Osso L, Leshkowitz D, Shen Y, et al. Somatodendritic Expression of JAM2 Inhibits Oligodendrocyte Myelination. Neuron. 2016;91:824-836 pubmed 出版商
  79. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  80. Brai E, Alina Raio N, Alberi L. Notch1 hallmarks fibrillary depositions in sporadic Alzheimer's disease. Acta Neuropathol Commun. 2016;4:64 pubmed 出版商
  81. Zhai W, Chen D, Shen H, Chen Z, Li H, Yu Z, et al. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain. 2016;9:66 pubmed 出版商
  82. Chen C, Meng S, Xue Y, Han Y, Sun C, Deng J, et al. Epigenetic modification of PKMζ rescues aging-related cognitive impairment. Sci Rep. 2016;6:22096 pubmed 出版商
  83. Gilkes J, Bloom M, Heldermon C. Mucopolysaccharidosis IIIB confers enhanced neonatal intracranial transduction by AAV8 but not by 5, 9 or rh10. Gene Ther. 2016;23:263-71 pubmed 出版商
  84. Frankowski J, Demars K, Ahmad A, Hawkins K, Yang C, Leclerc J, et al. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Sci Rep. 2015;5:17956 pubmed 出版商
  85. Zou H, Feng R, Huang Y, Tripodi J, Najfeld V, Tsankova N, et al. Double minute amplification of mutant PDGF receptor α in a mouse glioma model. Sci Rep. 2015;5:8468 pubmed 出版商