这是一篇来自已证抗体库的有关人类 OCLN的综述,是根据357篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合OCLN 抗体。
OCLN 同义词: BLCPMG; PPP1R115; PTORCH1

赛默飞世尔
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; African green monkey; 图 1a
赛默飞世尔 OCLN抗体(Thermo Fisher, 33-1500)被用于被用于免疫细胞化学在African green monkey样本上 (图 1a). PLoS ONE (2022) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 6a
赛默飞世尔 OCLN抗体(Thermo Fisher, 33-1500)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 6a). elife (2021) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 大鼠; 1:5000; 图 4c
  • 免疫组化; African green monkey; 1:100; 图 1d
  • 免疫印迹; African green monkey; 1:5000; 图 4c
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 4c), 被用于免疫组化在African green monkey样本上浓度为1:100 (图 1d) 和 被用于免疫印迹在African green monkey样本上浓度为1:5000 (图 4c). Pharmaceutics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 5a
赛默飞世尔 OCLN抗体(Thermo Scientific, 40-4700)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 5a). Nat Commun (2021) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 小鼠; 图 7
赛默飞世尔 OCLN抗体(Thermo Fisher Scientific, 33-1500)被用于被用于免疫组化在小鼠样本上 (图 7). Front Cell Infect Microbiol (2021) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 小鼠; 图 2e
赛默飞世尔 OCLN抗体(Thermo Fisher, 33-1500)被用于被用于免疫印迹在小鼠样本上 (图 2e). Front Med (Lausanne) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 9b
  • 免疫印迹; 人类; 图 9i
赛默飞世尔 OCLN抗体(Thermofisher, 71-1500)被用于被用于免疫印迹在小鼠样本上 (图 9b) 和 被用于免疫印迹在人类样本上 (图 9i). J Biomed Sci (2021) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 小鼠; 1:100; 图 4b
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4b). J Exp Med (2021) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 小鼠; 图 3c
赛默飞世尔 OCLN抗体(Thermo Scientific, 33-1500)被用于被用于免疫组化在小鼠样本上 (图 3c). Neurotrauma Rep (2020) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 小鼠; 1:50; 图 8e
赛默飞世尔 OCLN抗体(Invitrogen, 331500)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 8e). Acta Neuropathol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4f
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫印迹在小鼠样本上 (图 4f). PLoS ONE (2020) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2a
赛默飞世尔 OCLN抗体(Invitrogen, 331500)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2a). Sci Rep (2020) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 2e, 6g, s1a
  • 免疫组化; 人类; 图 1b
  • 免疫细胞化学; 犬; 图 1d
赛默飞世尔 OCLN抗体(ThermoFisher Scientific, 33-1500)被用于被用于免疫细胞化学在人类样本上 (图 2e, 6g, s1a), 被用于免疫组化在人类样本上 (图 1b) 和 被用于免疫细胞化学在犬样本上 (图 1d). iScience (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6d
赛默飞世尔 OCLN抗体(Zymed, 71-1500)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6d). Cell Mol Gastroenterol Hepatol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2b
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫印迹在人类样本上 (图 s2b). J Mol Cell Biol (2019) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5b
赛默飞世尔 OCLN抗体(Thermo Fisher, 33-1500)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3f
赛默飞世尔 OCLN抗体(Invitrogen, 406100)被用于被用于免疫组化在小鼠样本上 (图 3f). elife (2019) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 小鼠; 图 2d
赛默飞世尔 OCLN抗体(Abcam, 33-1500)被用于被用于免疫组化在小鼠样本上 (图 2d). Cell Mol Gastroenterol Hepatol (2019) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 人类; 1:40; 图 s1b
赛默飞世尔 OCLN抗体(Thermo Scientific, OC-3F10)被用于被用于免疫组化在人类样本上浓度为1:40 (图 s1b). Mol Hum Reprod (2019) ncbi
domestic rabbit 单克隆(6HCLC)
  • 免疫印迹; 小鼠; 1:500-1:1000; 图 3
赛默飞世尔 OCLN抗体(Thermo Fisher Scientific, 6HCLC)被用于被用于免疫印迹在小鼠样本上浓度为1:500-1:1000 (图 3). Biol Pharm Bull (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2a
赛默飞世尔 OCLN抗体(Zymed Laboratories, 71-1500)被用于被用于免疫印迹在大鼠样本上 (图 2a). J Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2g
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫印迹在小鼠样本上 (图 s2g). J Clin Invest (2017) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 人类; 1:100; 图 5l
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5l). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5g
赛默飞世尔 OCLN抗体(Thermo Fisher Scientific, 71-1500)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5g). Nat Commun (2017) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 小鼠; 1:2000; 图 3b
赛默飞世尔 OCLN抗体(Invitrogen, 331500)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 犬; 1:200; 图 7d
  • 免疫印迹; 犬; 图 7e
赛默飞世尔 OCLN抗体(BD Biosciences, 71-1500)被用于被用于免疫细胞化学在犬样本上浓度为1:200 (图 7d) 和 被用于免疫印迹在犬样本上 (图 7e). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4f
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫印迹在小鼠样本上 (图 4f). J Clin Invest (2017) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 小鼠; 图 2b
赛默飞世尔 OCLN抗体(生活技术, 331500)被用于被用于免疫印迹在小鼠样本上 (图 2b). Redox Biol (2017) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 2a
赛默飞世尔 OCLN抗体(Thermo Fisher Scientific, OC-3F10)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 犬; 图 5a
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫细胞化学在犬样本上 (图 5a). IEEE Trans Nanobioscience (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:100; 图 4b
  • 免疫印迹; 人类; 1:1000; 表 3
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (表 3). Mol Cell Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:150; 图 6a
  • 免疫印迹; 大鼠; 1:300; 图 6g
赛默飞世尔 OCLN抗体(Invitrogen, 40-4700)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:150 (图 6a) 和 被用于免疫印迹在大鼠样本上浓度为1:300 (图 6g). Toxicol Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 犬; 1:50; 图 7a
赛默飞世尔 OCLN抗体(Zymed, 71-1500)被用于被用于免疫细胞化学在犬样本上浓度为1:50 (图 7a). Can J Physiol Pharmacol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛默飞世尔 OCLN抗体(Invitrogen, 40-4700)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
  • 免疫印迹; 人类; 1:1000; 图 2a
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). J Biol Chem (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; domestic rabbit; 1:1000; 图 6b
赛默飞世尔 OCLN抗体(Thermo Fisher, 33-1511)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 6b). J Cell Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). Transl Res (2017) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 人类; 图 1.1
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫组化在人类样本上 (图 1.1). Biometals (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Inflamm Bowel Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 3c
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 3c). Mol Pharm (2016) ncbi
domestic rabbit 单克隆(6HCLC)
  • 免疫印迹; 人类; 图 s1
赛默飞世尔 OCLN抗体(Invitrogen, 710192)被用于被用于免疫印迹在人类样本上 (图 s1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(6HCLC)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛默飞世尔 OCLN抗体(生活技术, 710192)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Exp Neurol (2016) ncbi
domestic rabbit 重组(6H10L9)
  • 免疫印迹; pigs ; 图 6A
赛默飞世尔 OCLN抗体(ThermoScientific, 6H10L9)被用于被用于免疫印迹在pigs 样本上 (图 6A). Toxins (Basel) (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 2.5 ug/ml; 图 3d
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为2.5 ug/ml (图 3d). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 犬; 1:200; 图 4a
  • 免疫印迹; 犬; 1:1000; 图 3d
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 3d). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 7 ug/ml; 表 s5
  • 免疫印迹; 小鼠; 3 ug/ml; 表 s5
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫组化在小鼠样本上浓度为7 ug/ml (表 s5) 和 被用于免疫印迹在小鼠样本上浓度为3 ug/ml (表 s5). Brain Behav Immun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:250; 表 1
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫印迹在大鼠样本上浓度为1:250 (表 1). Spermatogenesis (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:400; 图 4l
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 4l). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 犬; 1:200; 图 5
  • 免疫印迹; 犬; 1:1000; 图 8a
赛默飞世尔 OCLN抗体(Invitrogen, 331500)被用于被用于免疫细胞化学在犬样本上浓度为1:200 (图 5) 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 8a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
  • 免疫印迹; 大鼠; 1:1000; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1), 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 大鼠; 1:100
赛默飞世尔 OCLN抗体(Thermo Fisher, 33-1500)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100. J Appl Toxicol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:250; 图 2
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫印迹在大鼠样本上浓度为1:250 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 小鼠; 图 3a
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫印迹在小鼠样本上 (图 3a). Neurobiol Dis (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:200; 图 2f
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2f). Mol Pharm (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 2
赛默飞世尔 OCLN抗体(Invitrogen, Life Technologies, 33-1500)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:250; 图 5
赛默飞世尔 OCLN抗体(Invitrogen, Life Technologies, 71-1500)被用于被用于免疫印迹在大鼠样本上浓度为1:250 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s8
赛默飞世尔 OCLN抗体(生活技术, 331588)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s8). Nat Commun (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 OCLN抗体(Thermo Scientific, 331588)被用于被用于免疫细胞化学在人类样本上 (图 2). J Neuroimmune Pharmacol (2017) ncbi
domestic rabbit 单克隆(6HCLC)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 OCLN抗体(Invitrogen, 710192)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4
赛默飞世尔 OCLN抗体(生活技术, 711500)被用于被用于免疫组化在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Eur Cell Mater (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 大鼠; 2.5 ug/ml; 图 5
  • 免疫沉淀; 大鼠; 3 ug/ml; 图 5
  • 免疫印迹; 大鼠; 0.5 ug/ml; 图 5
赛默飞世尔 OCLN抗体(Life Technologies Australia Pty, 33-1500)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为2.5 ug/ml (图 5), 被用于免疫沉淀在大鼠样本上浓度为3 ug/ml (图 5) 和 被用于免疫印迹在大鼠样本上浓度为0.5 ug/ml (图 5). Reprod Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 4
  • 免疫印迹; 大鼠; 1:500; 图 2
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 2). Respir Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛默飞世尔 OCLN抗体(Thermo Fisher Scientific, 71-1500)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s6
赛默飞世尔 OCLN抗体(生活技术, 711500)被用于被用于免疫组化在小鼠样本上 (图 s6). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔 OCLN抗体(生活技术, 33-1500)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
  • 免疫印迹; pigs ; 1:1000; 图 3
赛默飞世尔 OCLN抗体(Zymed, 71-1500)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在pigs 样本上浓度为1:1000 (图 3). Int J Mol Med (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 小鼠; 1:300; 图 4
  • 免疫印迹; 小鼠; 1:3000; 图 4
赛默飞世尔 OCLN抗体(Zymed Laboratories, 33-1500)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4). J Biol Chem (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; pigs ; 1:100; 图 3
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫细胞化学在pigs 样本上浓度为1:100 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫细胞化学在人类样本上 (图 4). Exp Biol Med (Maywood) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Peptides (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:250; 图 3
赛默飞世尔 OCLN抗体(Invitrogen, 711500)被用于被用于免疫印迹在大鼠样本上浓度为1:250 (图 3). Endocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Ultrastruct Pathol (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:200; 图 2
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). ALTEX (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s2
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 小鼠; 图 8
赛默飞世尔 OCLN抗体(Invitrogen, 331500)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 1
赛默飞世尔 OCLN抗体(生活技术, 71-1500)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-石蜡切片; 家羊; 1:50; 图 4
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:50 (图 4). Pediatr Crit Care Med (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹基因敲除验证; 人类; 图 1
赛默飞世尔 OCLN抗体(Thermo Fisher, noca)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1). Biol Pharm Bull (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 小鼠; 1:200; 图 5
  • 免疫细胞化学; 人类; 1:200; 图 6
赛默飞世尔 OCLN抗体(Invitrogen, 331500)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 6). Oncotarget (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Thermo Fisher Scientific, 71-1500)被用于. Front Mol Neurosci (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 图 3
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫印迹在犬样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 3). J Cell Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 小鼠; 1:50; 图 3
赛默飞世尔 OCLN抗体(生活技术, 33-1500)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 重组(6H10L9)
  • 免疫印迹; 人类; 1:3000; 图 8
赛默飞世尔 OCLN抗体(Thermo Scientific, ABfinity (No catalogue number))被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 8). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:50; 表 2
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50 (表 2). FASEB J (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4c
  • 免疫印迹; 小鼠; 1:2000; 图 4b
赛默飞世尔 OCLN抗体(Cell Signaling, 331500)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4b). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 犬; 1:600; 图 1
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:600 (图 1). Vet Dermatol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 图 3
赛默飞世尔 OCLN抗体(Zymed, 71-1500)被用于被用于免疫印迹在牛样本上 (图 3). Am J Physiol Cell Physiol (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:100; 图 s2
  • 酶联免疫吸附测定; 人类; 1:50; 图 s2
  • 免疫印迹; 人类; 图 s2
赛默飞世尔 OCLN抗体(Thermo Scientific, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s2), 被用于酶联免疫吸附测定在人类样本上浓度为1:50 (图 s2) 和 被用于免疫印迹在人类样本上 (图 s2). FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 2.5 ug/ml; 图 4
  • 免疫印迹; 大鼠; 1:125; 图 3
赛默飞世尔 OCLN抗体(Zymed, 71-1500)被用于被用于免疫细胞化学在大鼠样本上浓度为2.5 ug/ml (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:125 (图 3). Asian J Androl (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于. elife (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:200; 图 2
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Methods (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于. Cancer Cell Int (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Thermo Fisher Scientific, 71-1500)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen Life Technologies, 711500)被用于. Mol Med Rep (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 OCLN抗体(生活技术, 71-1500)被用于被用于免疫印迹在人类样本上 (图 1c). Oncogene (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于. Exp Cell Res (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 1,2,3
赛默飞世尔 OCLN抗体(Invitrogen, 33-C1500)被用于被用于免疫印迹在人类样本上 (图 1,2,3). Tissue Barriers (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 人类; 5 ug/ml
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫组化在人类样本上浓度为5 ug/ml. Support Care Cancer (2016) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔 OCLN抗体(生活技术, OC-3F10)被用于被用于免疫细胞化学在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 小鼠; 图 2b
赛默飞世尔 OCLN抗体(生活技术, OC-3F10)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2b). Immunity (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:200; 图 2b
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2b). Viral Immunol (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:250
赛默飞世尔 OCLN抗体(生活技术, 33-1500)被用于被用于免疫组化在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:250. J Neurosci (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:50
  • 免疫印迹; 人类; 1:200
赛默飞世尔 OCLN抗体(生活技术, 33-1500)被用于被用于免疫细胞化学在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:200. J Neurosci Res (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬
赛默飞世尔 OCLN抗体(生活技术, 404700)被用于被用于免疫印迹在犬样本上. J Cell Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 犬
赛默飞世尔 OCLN抗体(生活技术, 71-1500)被用于被用于免疫细胞化学在犬样本上. J Cell Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 鸡; 1:1000
赛默飞世尔 OCLN抗体(Beyotime, 71-1500)被用于被用于免疫印迹在鸡样本上浓度为1:1000. J Anim Physiol Anim Nutr (Berl) (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen Life Technologies, 71-1500)被用于. Exp Ther Med (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(生活技术, 71-1500)被用于. Am J Clin Nutr (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen, 71-1,500)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于. Reprod Toxicol (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:100
赛默飞世尔 OCLN抗体(Invitrogen, 42?C2400)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100. Cell Tissue Res (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于. FASEB J (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen, 711500)被用于. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 人类; 1:100; 图 3b
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3b). Exp Dermatol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于. Radiat Prot Dosimetry (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 大鼠; 1:500; 图 3c
  • 免疫印迹; 大鼠; 1:500; 图 2a
赛默飞世尔 OCLN抗体(生活技术, 331500)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 3c) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 2a). J Cell Sci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(生活技术, 71-1500)被用于. Biomaterials (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 2.5 ug/ml
赛默飞世尔 OCLN抗体(生活技术, 33-1500)被用于被用于免疫细胞化学在人类样本上浓度为2.5 ug/ml. Biomaterials (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 小鼠
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫印迹在小鼠样本上. Physiol Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(生活技术, 71-1500)被用于. J Allergy Clin Immunol (2015) ncbi
domestic rabbit 重组(6H10L9)
  • 免疫印迹; 人类
赛默飞世尔 OCLN抗体(Thermo Scientific, 6H10L9)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 猕猴; 图 s1b
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫印迹在猕猴样本上 (图 s1b). Hepatology (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫细胞化学在人类样本上 (图 5). Acta Neuropathol (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 人类; 图 6
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫组化在人类样本上 (图 6). Nat Cell Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 犬; 图 6
  • 免疫印迹; 犬; 图 3
赛默飞世尔 OCLN抗体(生活技术, 33-1500)被用于被用于免疫细胞化学在犬样本上 (图 6) 和 被用于免疫印迹在犬样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 人类
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫组化在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen, 40-4700)被用于. Endocrinology (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Zymed Laboratories, 71-1500)被用于. Fluids Barriers CNS (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(生活技术, 71-1500)被用于. J Neurosci (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Cell Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen, 40-4700)被用于. J Cell Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于. Mol Biol Cell (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 人类
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫组化-冰冻切片在人类样本上. BMJ Open (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 6
赛默飞世尔 OCLN抗体(Invitrogen, OC-F10)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 人类; 1:50
赛默飞世尔 OCLN抗体(生活技术, 33-1500)被用于被用于免疫组化在人类样本上浓度为1:50. Int J Cosmet Sci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于. J Cereb Blood Flow Metab (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于. J Mol Med (Berl) (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen Life Technologies, 71-1500)被用于. Mol Med Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen, 71-C1500)被用于. Exp Cell Res (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 豚鼠
赛默飞世尔 OCLN抗体(ZYMED, 33-1500)被用于被用于免疫组化在豚鼠样本上. Reprod Fertil Dev (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Zymed-Life Technologies, 71-1500)被用于. Eur J Pharm Sci (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上. Infect Immun (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Nat Commun (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Eur J Pharm Biopharm (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 小鼠; 1:500; 图 3
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3). Cell Cycle (2014) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 5 ug/ml
  • 免疫印迹; 小鼠; 2 ug/ml
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于被用于免疫细胞化学在小鼠样本上浓度为5 ug/ml 和 被用于免疫印迹在小鼠样本上浓度为2 ug/ml. Mol Neurobiol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Invitrogen, 71-1500)被用于. Endocrinology (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛默飞世尔 OCLN抗体(生活技术, OC-3F10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Jpn J Infect Dis (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 非洲爪蛙; 图 3
赛默飞世尔 OCLN抗体(Invitrogen, 331500)被用于被用于免疫组化-冰冻切片在非洲爪蛙样本上 (图 3). PLoS ONE (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 小鼠; 1:300; 图 4
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Sci Transl Med (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Int J Mol Med (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫印迹在人类样本上. Surg Obes Relat Dis (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 家羊; 1:500
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫印迹在家羊样本上浓度为1:500. BMC Vet Res (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
赛默飞世尔 OCLN抗体(生活技术, OC-3F10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类
赛默飞世尔 OCLN抗体(Zymed laboratories, OC-3F10)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-石蜡切片; 猕猴; 1:400
赛默飞世尔 OCLN抗体(生活技术, 33-1500)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:400. Exp Toxicol Pathol (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Zymed-Life Technologies, 71-1500)被用于. Pharm Res (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). J Virol (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔 OCLN抗体(InvitrogenAG, 33-1500)被用于被用于免疫细胞化学在人类样本上 (图 3). Tissue Barriers (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Zymed Laboratories, 71-1500)被用于. J Invest Dermatol (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫组化在小鼠样本上浓度为1:200. Am J Pathol (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 人类; 1:250
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:250. J Neurosurg (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5b
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5b). Nat Immunol (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 大鼠; 1:200
  • 免疫印迹; 大鼠; 1:200
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 和 被用于免疫印迹在大鼠样本上浓度为1:200. Tissue Barriers (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 s5
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫细胞化学在人类样本上 (图 s5). Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Zymed, 71-1500)被用于. Perit Dial Int (2015) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 豚鼠; 1:250
  • 免疫印迹; 豚鼠; 1:500
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫组化在豚鼠样本上浓度为1:250 和 被用于免疫印迹在豚鼠样本上浓度为1:500. Int J Mol Med (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 小鼠; 1:150
  • 免疫印迹; 小鼠; 1:200
赛默飞世尔 OCLN抗体(生活技术, 331500)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 和 被用于免疫印迹在小鼠样本上浓度为1:200. FASEB J (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔 OCLN抗体(Invitrogen, 33?C1500)被用于被用于免疫细胞化学在人类样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Physiol Rep (2013) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Zymed Laboratories, 71-1500)被用于. Clin Nutr (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; pigs ; 1:500
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫印迹在pigs 样本上浓度为1:500. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 犬
  • 免疫印迹; 犬
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫细胞化学在犬样本上 和 被用于免疫印迹在犬样本上. Exp Cell Res (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2). Exp Cell Res (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫细胞化学在人类样本上 (图 3). Biol Open (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:100; 图 2
  • 免疫组化; 人类; 1:100; 图 1
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2) 和 被用于免疫组化在人类样本上浓度为1:100 (图 1). Cell Tissue Res (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 小鼠; 图 5
赛默飞世尔 OCLN抗体(生活技术, 33-1500)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Biomaterials (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 大鼠
赛默飞世尔 OCLN抗体(生活技术, 33-1500)被用于被用于免疫细胞化学在大鼠样本上. BMC Neurosci (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 2.5 ug/ml; 图 5
  • 免疫印迹; 人类; 2 ug/ml; 图 5
赛默飞世尔 OCLN抗体(Zymed/Invitrogen, 33-1500)被用于被用于免疫细胞化学在人类样本上浓度为2.5 ug/ml (图 5) 和 被用于免疫印迹在人类样本上浓度为2 ug/ml (图 5). J Virol (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫印迹在人类样本上 (图 2). Clin Sci (Lond) (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 家羊; 1:5000; 图 2
赛默飞世尔 OCLN抗体(Invitrogen, OC-3 F10)被用于被用于免疫印迹在家羊样本上浓度为1:5000 (图 2). Neurotoxicol Teratol (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫印迹在人类样本上 (图 4). PLoS Pathog (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类
赛默飞世尔 OCLN抗体(Invitrogen, 33-1520)被用于被用于免疫印迹在人类样本上. J Neurosci (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 8a
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫印迹在人类样本上 (图 8a). Front Immunol (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 1:3000; 图 2
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 2). J Invest Dermatol (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 s2
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上 (图 s2). Carcinogenesis (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 1, 2
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫印迹在人类样本上 (图 1, 2). J Virol (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 小鼠; 图 3
赛默飞世尔 OCLN抗体(Invitrogen, 331500)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). Am J Pathol (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 小鼠; 1:100; 图 4
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). Am J Physiol Gastrointest Liver Physiol (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔 OCLN抗体(Zymed Laboratories, OC-3F10)被用于被用于免疫细胞化学在人类样本上 (图 1). Cell Tissue Res (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:250; 图 7
  • 免疫印迹; 人类; 1:2000; 图 7
赛默飞世尔 OCLN抗体(Invitrogen, clone OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 7) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 7). Am J Physiol Heart Circ Physiol (2012) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫细胞化学在人类样本上 (图 1). Pancreas (2013) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫细胞化学在人类样本上 (图 5). Biomaterials (2012) ncbi
小鼠 单克隆(OC-3F10)
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于. J Tissue Eng Regen Med (2014) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫印迹在人类样本上 (图 2). Antiviral Res (2012) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 大鼠; 1:500; 图 2
赛默飞世尔 OCLN抗体(Invitrogen, 331500)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2). J Neuroimmune Pharmacol (2012) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 小鼠; 1:250; 图 3
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 3). J Neuroinflammation (2012) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类
赛默飞世尔 OCLN抗体(Zymed Laboratories, OC-3F10)被用于被用于免疫印迹在人类样本上. PLoS Genet (2012) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 1:250; 图 4a
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 4a). PLoS ONE (2012) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 4a
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 4a). Anesthesiology (2012) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2012) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 大鼠; 图 6
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫组化在大鼠样本上 (图 6). PLoS ONE (2012) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; domestic rabbit; 1:200; 图 2
赛默飞世尔 OCLN抗体(Zymed, clone OC-3F10)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:200 (图 2). Int J Alzheimers Dis (2012) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 OCLN抗体(Invitrogen, clone OC-3F10)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Lett (2012) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-石蜡切片; domestic rabbit; 1:200; 图 4
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:200 (图 4). PLoS Pathog (2012) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 犬; 图 1
  • 免疫印迹; 犬; 图 2, 4
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫细胞化学在犬样本上 (图 1) 和 被用于免疫印迹在犬样本上 (图 2, 4). PLoS ONE (2012) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 人类; 1:100; 图 1
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). Histopathology (2012) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫细胞化学在人类样本上 (图 2). Food Funct (2012) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫印迹在人类样本上 (图 1). Cell Tissue Res (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 人类; 2.5 ug/ml; 图 3
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫组化-冰冻切片在人类样本上浓度为2.5 ug/ml (图 3). Am J Physiol Lung Cell Mol Physiol (2012) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫印迹在人类样本上 (图 2). Liver Int (2012) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Histochem Cell Biol (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS ONE (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 小鼠; 图 5
赛默飞世尔 OCLN抗体(Invitrogen, 3F10)被用于被用于免疫细胞化学在小鼠样本上 (图 5). J Neurosci (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 小鼠; 图 9
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫印迹在小鼠样本上 (图 9). Am J Physiol Renal Physiol (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:100; 图 9a
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 9a). Cell Microbiol (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:100; 图 2
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Exp Cell Res (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 1:1000; 图 4
  • 免疫细胞化学; 犬; 1:25; 图 1
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4) 和 被用于免疫细胞化学在犬样本上浓度为1:25 (图 1). Mol Biol Cell (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫印迹在人类样本上 (图 4). Int J Oncol (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 6
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫细胞化学在人类样本上 (图 6). J Pharm Sci (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 OCLN抗体(Zymed/Invitrogen, clone OC-3F10)被用于被用于免疫印迹在人类样本上 (图 2). J Virol (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫印迹在小鼠样本上 (图 3). Cell Mol Life Sci (2012) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 家羊; 1:5000; 图 1
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫印迹在家羊样本上浓度为1:5000 (图 1). Brain Res (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 OCLN抗体(NeoMarkers, clone OC-3F10)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; pigs ; 图 1
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫印迹在pigs 样本上 (图 1). Am J Pathol (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫组化在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). J Invest Dermatol (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 2.5 ug/ml; 图 5a
  • 免疫印迹; 人类; 图 6a
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为2.5 ug/ml (图 5a) 和 被用于免疫印迹在人类样本上 (图 6a). J Allergy Clin Immunol (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2010) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 s2
  • 免疫印迹; 人类; 图 2
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上 (图 s2) 和 被用于免疫印迹在人类样本上 (图 2). PLoS Pathog (2010) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 大鼠; 图 1a
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在大鼠样本上 (图 1a). Mol Biol Cell (2010) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 大鼠; 1:50; 表 1
  • 免疫印迹; 大鼠; 1:250; 表 1
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (表 1) 和 被用于免疫印迹在大鼠样本上浓度为1:250 (表 1). Exp Cell Res (2010) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上 (图 2). Curr Biol (2010) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 OCLN抗体(Zymed, clone OC-3F10)被用于被用于免疫印迹在人类样本上 (图 1). J Viral Hepat (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:100; 图 3a
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3a). Am J Pathol (2010) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 犬; 1:50; 图 2
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫细胞化学在犬样本上浓度为1:50 (图 2). J Cell Biochem (2010) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:100; 图 2
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Cell Physiol (2010) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 大鼠; 1:200; 图 5
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 5). Am J Physiol Gastrointest Liver Physiol (2010) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 3a
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 3a). PLoS Pathog (2010) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 OCLN抗体(Zymed, 33-1,500)被用于被用于免疫细胞化学在人类样本上 (图 2). J Cell Physiol (2010) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 1:500; 图 3
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Gastroenterology (2010) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:200; 图 1
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Proc Natl Acad Sci U S A (2010) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 猫; 1:50; 图 2c
  • 免疫组化; 人类; 1:50; 图 2a
赛默飞世尔 OCLN抗体(Invitrogen, 33-1500)被用于被用于免疫组化在猫样本上浓度为1:50 (图 2c) 和 被用于免疫组化在人类样本上浓度为1:50 (图 2a). Biotech Histochem (2011) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 OCLN抗体(Zymed Laboratories Inc, OC-3F10)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2010) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 人类; 1:100; 图 2
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2). Med Mol Morphol (2009) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:25; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncogene (2010) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 家羊; 1:5000; 图 3a
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫印迹在家羊样本上浓度为1:5000 (图 3a). Am J Physiol Heart Circ Physiol (2010) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 5h
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上 (图 5h) 和 被用于免疫印迹在人类样本上 (图 4a). Cell Tissue Res (2009) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 1
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 1). Invest Ophthalmol Vis Sci (2009) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫印迹在人类样本上 (图 5). Proteomics (2009) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 大鼠; 2 ug/ml
  • 免疫印迹; 大鼠; 2.5 ug/ml
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为2 ug/ml 和 被用于免疫印迹在大鼠样本上浓度为2.5 ug/ml. Acta Histochem (2010) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 大鼠; 1:5; 图 4
  • 免疫印迹; 大鼠; 1:300; 图 7
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:5 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:300 (图 7). Microsc Res Tech (2009) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Surg Res (2009) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 牛; 图 3
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫印迹在牛样本上 (图 3). J Biol Chem (2009) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫印迹在大鼠样本上 (图 3). J Neurochem (2009) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 1
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 1). J Histochem Cytochem (2009) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 大鼠; 1:500
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Am J Physiol Gastrointest Liver Physiol (2009) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 大鼠; 1:100; 表 3
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (表 3). Histochem Cell Biol (2009) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:50; 图 4
  • 免疫印迹; 人类; 图 2a
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4) 和 被用于免疫印迹在人类样本上 (图 2a). Toxicol In Vitro (2009) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Biol (2008) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 犬; 1:250; 图 4b
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在犬样本上浓度为1:250 (图 4b). J Parasitol (2009) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 3b
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫细胞化学在人类样本上 (图 3b). Neurosci Lett (2008) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 小鼠; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛默飞世尔 OCLN抗体(Zymed, clone OC-3F10)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). J Neurochem (2008) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:200
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Stem Cells (2008) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 大鼠; 图 6
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫印迹在大鼠样本上 (图 6). J Neurochem (2008) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-石蜡切片; 人类; 图 2a
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). AIDS (2008) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 大鼠; 1:100
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100. J Pharm Sci (2008) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; domestic rabbit; 图 5
  • 免疫印迹; domestic rabbit; 图 4
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上 (图 5) 和 被用于免疫印迹在domestic rabbit样本上 (图 4). J Neuroinflammation (2008) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). J Mol Histol (2008) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 犬; 图 5
  • 免疫印迹; 犬; 图 3
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫细胞化学在犬样本上 (图 5) 和 被用于免疫印迹在犬样本上 (图 3). Mol Membr Biol (2008) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 大鼠; 图 2c
赛默飞世尔 OCLN抗体(Zymed Laboratories, 33-1500)被用于被用于免疫细胞化学在大鼠样本上 (图 2c). Am J Physiol Gastrointest Liver Physiol (2008) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 大鼠; 1:100; 图 7A
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 7A). Liver Int (2008) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 大鼠; 1:100; 图 1
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). J Neurochem (2007) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 人类; 图 7c
  • 免疫细胞化学; 人类; 图 1d-f
  • 免疫印迹; 人类; 图 2b
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫组化-冰冻切片在人类样本上 (图 7c), 被用于免疫细胞化学在人类样本上 (图 1d-f) 和 被用于免疫印迹在人类样本上 (图 2b). J Invest Dermatol (2008) ncbi
domestic rabbit 多克隆
赛默飞世尔 OCLN抗体(Zymed Laboratories, 71-1500)被用于. J Exp Med (2007) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Mol Endocrinol (2007) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫细胞化学在人类样本上 (图 5). Invest Ophthalmol Vis Sci (2007) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔 OCLN抗体(Invitrogen, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Virol (2007) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 犬; 1:250; 表 1
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在犬样本上浓度为1:250 (表 1). In Vitro Cell Dev Biol Anim (2007) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 6
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 6). Neuroscience (2007) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:200; 图 1
  • 免疫印迹; 人类; 1:500; 图 3
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 3). J Virol (2007) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 犬; 1:100
赛默飞世尔 OCLN抗体(Zymed Laboratories, 33-1500)被用于被用于免疫细胞化学在犬样本上浓度为1:100. Exp Cell Res (2007) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:200; 图 6D
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6D). Mol Biol Cell (2007) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫印迹在人类样本上 (图 2). Mol Biol Cell (2006) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 人类; 1:50; 图 2
赛默飞世尔 OCLN抗体(Zymed, 33-1,500)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2). Histochem Cell Biol (2007) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-石蜡切片; domestic rabbit; 10,000 ug/ml; 图 3d
赛默飞世尔 OCLN抗体(ZYMED, OC- 3F10)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为10,000 ug/ml (图 3d). J Biomed Mater Res B Appl Biomater (2007) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 犬
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫细胞化学在犬样本上. Proc Natl Acad Sci U S A (2006) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫印迹在人类样本上 (图 4). Int J Mol Med (2006) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; domestic rabbit; 2 ug/ml; 图 8
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫组化在domestic rabbit样本上浓度为2 ug/ml (图 8). Nephrol Dial Transplant (2006) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Cell Sci (2005) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫印迹在人类样本上 (图 2). Endocrinology (2006) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; pigs ; 1:100
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在pigs 样本上浓度为1:100. Histochem Cell Biol (2006) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 图 4d
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上 (图 4d). J Biomed Mater Res B Appl Biomater (2006) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:200; 图 4c
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4c). Int J Radiat Biol (2005) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类; 1:250; 图 4b
  • 免疫印迹; 人类; 1:1000; 图 4a
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Gastroenterology (2005) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 4
  • 免疫细胞化学; 大鼠; 1:100; 图 1
  • 免疫印迹; 犬; 图 1
  • 免疫印迹; African green monkey; 图 4
  • 免疫印迹; 仓鼠; 图 4
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫印迹在人类样本上 (图 4), 被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1), 被用于免疫印迹在犬样本上 (图 1), 被用于免疫印迹在African green monkey样本上 (图 4) 和 被用于免疫印迹在仓鼠样本上 (图 4). Mol Cancer Res (2004) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 3
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 3). J Histochem Cytochem (2004) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 犬; 图 1
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫组化在犬样本上 (图 1). ScientificWorldJournal (2004) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫沉淀; 人类; 图 9
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 7
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫沉淀在人类样本上 (图 9), 被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 7). J Clin Endocrinol Metab (2004) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 犬; 图 8
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫细胞化学在犬样本上 (图 8). J Cell Sci (2004) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫印迹; 人类; 图 1b
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫印迹在人类样本上 (图 1b). J Invest Dermatol (2003) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2c
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2c). Mod Pathol (2004) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 人类; 图 1
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫组化在人类样本上 (图 1). Br J Dermatol (2003) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 小鼠; 1:1600
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1600. Am J Respir Cell Mol Biol (2002) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫细胞化学; 人类
赛默飞世尔 OCLN抗体(Zymed, 33-1500)被用于被用于免疫细胞化学在人类样本上. Methods Mol Biol (2002) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化; 人类; 1:100; 图 1
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). Hum Pathol (2002) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 人类
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫组化-冰冻切片在人类样本上. Genes Dev (2002) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-冰冻切片; 人类
赛默飞世尔 OCLN抗体(Zymed, OC-3F10)被用于被用于免疫组化-冰冻切片在人类样本上. J Cell Sci (2002) ncbi
小鼠 单克隆(OC-3F10)
  • 免疫组化-石蜡切片; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛默飞世尔 OCLN抗体(Zymed, 33?C1500)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). J Invest Dermatol (2001) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:250; 图 7a
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab222691)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:250 (图 7a). Brain (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 3c
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab31721)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3c). Brain (2022) ncbi
domestic rabbit 单克隆(EPR20992)
  • 免疫组化; 小鼠; 图 2l
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab216327)被用于被用于免疫组化在小鼠样本上 (图 2l). Front Immunol (2021) ncbi
domestic rabbit 单克隆(EPR8208)
  • 免疫印迹; 小鼠; 1:1000; 图 1e
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab167161)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1e) 和 被用于免疫印迹在人类样本上 (图 2a). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 单克隆(EPR20992)
  • 免疫组化-石蜡切片; 小鼠; 图 8a
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab216327)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(EPR20992)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab216327)被用于被用于免疫组化在小鼠样本上. JHEP Rep (2021) ncbi
domestic rabbit 单克隆(EPR20992)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 5e
  • 免疫印迹; 大鼠; 图 5f
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab216327)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 5e) 和 被用于免疫印迹在大鼠样本上 (图 5f). Front Pharmacol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2j
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab31721)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2j). Front Immunol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 图 1d
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab31721)被用于被用于免疫印迹在pigs 样本上 (图 1d). Animals (Basel) (2020) ncbi
domestic rabbit 单克隆(EPR8208)
  • 免疫印迹; 小鼠; 1:1000; 图 7i
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab167161)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7i). Nat Commun (2020) ncbi
domestic rabbit 单克隆(EPR8208)
  • 免疫印迹; 小鼠; 图 2f, 4a
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab167161)被用于被用于免疫印迹在小鼠样本上 (图 2f, 4a). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR8208)
  • 免疫组化-冰冻切片; 小鼠; 1:4000; 图 2c
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab167161)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:4000 (图 2c). elife (2019) ncbi
domestic rabbit 单克隆(EPR20992)
  • 免疫印迹; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab216327)被用于被用于免疫印迹在小鼠样本上 (图 2c). Cell Mol Gastroenterol Hepatol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5d
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab31721)被用于被用于免疫印迹在小鼠样本上 (图 5d). Dis Model Mech (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 6c
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab31721)被用于被用于免疫细胞化学在人类样本上 (图 6c). Stem Cell Res Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3d
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab31721)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d). Histochem Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 8c
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, Ab31721)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 8c). Hear Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:250; 图 3e
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab31721)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 3e). Acta Physiol (Oxf) (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8a
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab31721)被用于被用于免疫印迹在人类样本上 (图 8a). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:250; 图 7a
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab31721)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 7a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 4
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab31721)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Drug Des Devel Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab31721)被用于被用于免疫印迹在小鼠样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab31721)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 1:250; 图 6b
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab31721)被用于被用于免疫印迹在pigs 样本上浓度为1:250 (图 6b). Vet Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:50; 图 1c
  • 免疫印迹; 大鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab31721)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 1c) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 3b). Brain Res (2016) ncbi
domestic rabbit 单克隆(EPR8208)
  • 酶联免疫吸附测定; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 OCLN抗体(abcam, ab167161)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:1000 (图 4). Front Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 6
艾博抗(上海)贸易有限公司 OCLN抗体(abcam, ab31721)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). Virol J (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:500; 图 4
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, Ab31721)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 4). Exp Cell Res (2016) ncbi
domestic rabbit 单克隆(EPR8208)
  • 免疫印迹; 小鼠; 图 5k
艾博抗(上海)贸易有限公司 OCLN抗体(abcam, EPR8208)被用于被用于免疫印迹在小鼠样本上 (图 5k). Nat Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s2
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab31721)被用于被用于免疫细胞化学在小鼠样本上 (图 s2). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab31721)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab31721)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Pharmacol Res (2016) ncbi
domestic rabbit 单克隆(EPR8208)
  • 免疫印迹; 大鼠; 1:1000; 图 7
艾博抗(上海)贸易有限公司 OCLN抗体(Abcam, ab167161)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7). Sci Rep (2015) ncbi
domestic rabbit 单克隆(EPR8208)
  • 免疫组化; 小鼠; 1:50; 图 1d
  • 免疫印迹; 小鼠; 1:1000; 图 5f
艾博抗(上海)贸易有限公司 OCLN抗体(Epitomics (now Abcam), ab167161)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5f). Endocrinology (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(E-5)
  • 免疫组化; 小鼠; 1:600; 图 6b
圣克鲁斯生物技术 OCLN抗体(Santa cruz, sc-133256)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 6b). Ann Clin Transl Neurol (2022) ncbi
小鼠 单克隆(F-11)
  • 免疫印迹; 小鼠; 1:100; 图 5j
圣克鲁斯生物技术 OCLN抗体(Santa Cruz, sc-133255)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 5j). Nutrients (2021) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类; 1:100; 图 6c
圣克鲁斯生物技术 OCLN抗体(Santa, SC-133256)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6c). Front Immunol (2020) ncbi
小鼠 单克隆(F-7)
  • 免疫印迹; 大鼠; 1:500; 图 5b
圣克鲁斯生物技术 OCLN抗体(Santa Cruz Biotechnology, sc-271842)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5b). Mol Med Rep (2017) ncbi
小鼠 单克隆(F-11)
  • 免疫印迹; 人类; 1:200; 图 1d
圣克鲁斯生物技术 OCLN抗体(SantaCruz, sc-133255)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1d). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:200; 图 4c
圣克鲁斯生物技术 OCLN抗体(SantaCruz, sc-133256)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4c). Oncotarget (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫组化-石蜡切片; 小鼠; 1:100
圣克鲁斯生物技术 OCLN抗体(Santa Cruz Biotechnology, sc-133256)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Exp Ther Med (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 小鼠; 1:500; 图 5
圣克鲁斯生物技术 OCLN抗体(santa cruz, sc- 133256)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Nutr Res (2015) ncbi
小鼠 单克隆(F-11)
  • 免疫细胞化学; 人类; 图 s1a
圣克鲁斯生物技术 OCLN抗体(Santa Cruz, F-11)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Mol Biol Cell (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 OCLN抗体(Santa Cruz, sc-133256)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Br J Nutr (2014) ncbi
小鼠 单克隆(F-11)
  • 免疫印迹; 人类; 1:100
圣克鲁斯生物技术 OCLN抗体(Santa Cruz Biotechnology, sc-133255)被用于被用于免疫印迹在人类样本上浓度为1:100. PLoS ONE (2014) ncbi
Novus Biologicals
domestic rabbit 多克隆(6F12-H4)
  • 免疫组化; 小鼠; 1:600; 图 5b
Novus Biologicals OCLN抗体(Novus, NBP1-87402)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 5b). Eur J Nutr (2020) ncbi
domestic rabbit 多克隆(6F12-H4)
  • 免疫组化-石蜡切片; 小鼠; 1:600; 图 3a
Novus Biologicals OCLN抗体(Novus, NBP1-87402)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:600 (图 3a). Int J Mol Sci (2020) ncbi
文章列表
  1. Hamdi L, Nabat H, Goldberg Y, Fainstein N, Segal S, Mediouni E, et al. Exercise training alters autoimmune cell invasion into the brain in autoimmune encephalomyelitis. Ann Clin Transl Neurol. 2022;9:1792-1806 pubmed 出版商
  2. Cegarra C, Cameron B, Chaves C, Dabdoubi T, Do T, Gen xea t B, et al. An innovative strategy to identify new targets for delivering antibodies to the brain has led to the exploration of the integrin family. PLoS ONE. 2022;17:e0274667 pubmed 出版商
  3. Ali M, Falkenhain K, Njiru B, Murtaza Ali M, Ruiz Uribe N, Haft Javaherian M, et al. VEGF signalling causes stalls in brain capillaries and reduces cerebral blood flow in Alzheimer's mice. Brain. 2022;145:1449-1463 pubmed 出版商
  4. Sasson E, Anzi S, Bell B, Yakovian O, Zorsky M, Deutsch U, et al. Nano-scale architecture of blood-brain barrier tight-junctions. elife. 2021;10: pubmed 出版商
  5. Deng F, Hu J, Yang X, Sun Q, Lin Z, Zhao B, et al. Gut Microbial Metabolite Pravastatin Attenuates Intestinal Ischemia/Reperfusion Injury Through Promoting IL-13 Release From Type II Innate Lymphoid Cells via IL-33/ST2 Signaling. Front Immunol. 2021;12:704836 pubmed 出版商
  6. Watanabe D, Nakagawa S, Morofuji Y, Tóth A, Vastag M, Aruga J, et al. Characterization of a Primate Blood-Brain Barrier Co-Culture Model Prepared from Primary Brain Endothelial Cells, Pericytes and Astrocytes. Pharmaceutics. 2021;13: pubmed 出版商
  7. Zhang Z, Zhang L, Zhang Q, Liu B, Li F, Xin Y, et al. HO-1/CO Maintains Intestinal Barrier Integrity through NF-κB/MLCK Pathway in Intestinal HO-1-/- Mice. Oxid Med Cell Longev. 2021;2021:6620873 pubmed 出版商
  8. Jiang D, Zhang J, Lin S, Wang Y, Chen Y, Fan J. Prolyl Endopeptidase Gene Disruption Improves Gut Dysbiosis and Non-alcoholic Fatty Liver Disease in Mice Induced by a High-Fat Diet. Front Cell Dev Biol. 2021;9:628143 pubmed 出版商
  9. Fayad R, Rojas M, Partisani M, Finetti P, Dib S, Abélanet S, et al. EFA6B regulates a stop signal for collective invasion in breast cancer. Nat Commun. 2021;12:2198 pubmed 出版商
  10. Sun Y, Wu D, Zeng W, Chen Y, Guo M, Lu B, et al. The Role of Intestinal Dysbacteriosis Induced Arachidonic Acid Metabolism Disorder in Inflammaging in Atherosclerosis. Front Cell Infect Microbiol. 2021;11:618265 pubmed 出版商
  11. Ngamsri K, Gamper Tsigaras J, Reutershan J, Konrad F. Fractalkine Is Linked to the Necrosome Pathway in Acute Pulmonary Inflammation. Front Med (Lausanne). 2021;8:591790 pubmed 出版商
  12. Tang X, Wang W, Hong G, Duan C, Zhu S, Tian Y, et al. Gut microbiota-mediated lysophosphatidylcholine generation promotes colitis in intestinal epithelium-specific Fut2 deficiency. J Biomed Sci. 2021;28:20 pubmed 出版商
  13. Antonuccio P, Marini H, Micali A, Romeo C, Granese R, Retto A, et al. The Nutraceutical N-Palmitoylethanolamide (PEA) Reveals Widespread Molecular Effects Unmasking New Therapeutic Targets in Murine Varicocele. Nutrients. 2021;13: pubmed 出版商
  14. Spatz M, Ciocan D, Merlen G, Rainteau D, Humbert L, Gomes Rochette N, et al. Bile acid-receptor TGR5 deficiency worsens liver injury in alcohol-fed mice by inducing intestinal microbiota dysbiosis. JHEP Rep. 2021;3:100230 pubmed 出版商
  15. Guan Y, Chen K, Quan D, Kang L, Yang D, Wu H, et al. The Combination of Scutellaria baicalensis Georgi and Sophora japonica L. ameliorate Renal Function by Regulating Gut Microbiota in Spontaneously Hypertensive Rats. Front Pharmacol. 2020;11:575294 pubmed 出版商
  16. Nikolakopoulou A, Wang Y, Ma Q, Sagare A, Montagne A, Huuskonen M, et al. Endothelial LRP1 protects against neurodegeneration by blocking cyclophilin A. J Exp Med. 2021;218: pubmed 出版商
  17. Gong Y, Jin X, Yuan B, Lv Y, Yan G, Liu M, et al. G Protein-Coupled Receptor 109A Maintains the Intestinal Integrity and Protects Against ETEC Mucosal Infection by Promoting IgA Secretion. Front Immunol. 2020;11:583652 pubmed 出版商
  18. Tian M, Chen J, Wu Z, Song H, Yang F, Cui C, et al. Fat Encapsulation Reduces Diarrhea in Piglets Partially by Repairing the Intestinal Barrier and Improving Fatty Acid Transport. Animals (Basel). 2020;11: pubmed 出版商
  19. Vita S, Redell J, Maynard M, Zhao J, Grill R, Dash P, et al. P-glycoprotein Expression Is Upregulated in a Pre-Clinical Model of Traumatic Brain Injury. Neurotrauma Rep. 2020;1:207-217 pubmed 出版商
  20. Devraj G, Guérit S, Seele J, Spitzer D, Macas J, Khel M, et al. HIF-1α is involved in blood-brain barrier dysfunction and paracellular migration of bacteria in pneumococcal meningitis. Acta Neuropathol. 2020;140:183-208 pubmed 出版商
  21. Peroutka R, Buzza M, Mukhopadhyay S, Johnson T, Driesbaugh K, Antalis T. Testisin/Prss21 deficiency causes increased vascular permeability and a hemorrhagic phenotype during luteal angiogenesis. PLoS ONE. 2020;15:e0234407 pubmed 出版商
  22. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11:2488 pubmed 出版商
  23. Matsubara J, Tian Y, Cui J, Zeglinski M, Hiroyasu S, Turner C, et al. Retinal Distribution and Extracellular Activity of Granzyme B: A Serine Protease That Degrades Retinal Pigment Epithelial Tight Junctions and Extracellular Matrix Proteins. Front Immunol. 2020;11:574 pubmed 出版商
  24. Shi H, Wang Q, Zheng M, Hao S, Lum J, Chen X, et al. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J Neuroinflammation. 2020;17:77 pubmed 出版商
  25. Hu H, Hone E, Provencher E, Sprowls S, Farooqi I, Corbin D, et al. MiR-34a Interacts with Cytochrome c and Shapes Stroke Outcomes. Sci Rep. 2020;10:3233 pubmed 出版商
  26. Shinde T, Perera A, Vemuri R, Gondalia S, Beale D, Karpe A, et al. Synbiotic supplementation with prebiotic green banana resistant starch and probiotic Bacillus coagulans spores ameliorates gut inflammation in mouse model of inflammatory bowel diseases. Eur J Nutr. 2020;: pubmed 出版商
  27. Ear J, Saklecha A, Rajapakse N, Choi J, Ghassemian M, Kufareva I, et al. Tyrosine-Based Signals Regulate the Assembly of Daple⋅PARD3 Complex at Cell-Cell Junctions. iScience. 2020;23:100859 pubmed 出版商
  28. Shastri S, Shinde T, Sohal S, Gueven N, Eri R. Idebenone Protects against Acute Murine Colitis via Antioxidant and Anti-Inflammatory Mechanisms. Int J Mol Sci. 2020;21: pubmed 出版商
  29. Xing T, Benderman L, Sabu S, Parker J, Yang J, Lu Q, et al. Tight Junction Protein Claudin-7 Is Essential for Intestinal Epithelial Stem Cell Self-Renewal and Differentiation. Cell Mol Gastroenterol Hepatol. 2020;9:641-659 pubmed 出版商
  30. Bendriem R, Singh S, Aleem A, Antonetti D, Ross M. Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex. elife. 2019;8: pubmed 出版商
  31. Wang R, Yu R, Zhu C, Lin H, Lu X, Wang H. Tubulin detyrosination promotes human trophoblast syncytium formation. J Mol Cell Biol. 2019;: pubmed 出版商
  32. Benz F, Wichitnaowarat V, Lehmann M, Germano R, Mihova D, Macas J, et al. Low wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice. elife. 2019;8: pubmed 出版商
  33. Wang Y, Sabbagh M, Gu X, Rattner A, Williams J, Nathans J. Beta-catenin signaling regulates barrier-specific gene expression in circumventricular organ and ocular vasculatures. elife. 2019;8: pubmed 出版商
  34. Kiyohara H, Sujino T, Teratani T, Miyamoto K, Arai M, Nomura E, et al. Toll-Like Receptor 7 Agonist-Induced Dermatitis Causes Severe Dextran Sulfate Sodium Colitis by Altering the Gut Microbiome and Immune Cells. Cell Mol Gastroenterol Hepatol. 2019;7:135-156 pubmed 出版商
  35. DaSilva Arnold S, Kuo C, Davra V, Remache Y, Kim P, Fisher J, et al. ZEB2, a master regulator of the epithelial-mesenchymal transition, mediates trophoblast differentiation. Mol Hum Reprod. 2019;25:61-75 pubmed 出版商
  36. Kim Y, Lee M, Gu H, Kim J, Jeong S, Yeo S, et al. HIF-1α activation in myeloid cells accelerates dextran sodium sulfate-induced colitis progression in mice. Dis Model Mech. 2018;11: pubmed 出版商
  37. Suzuki S, Tanaka A, Nakamura H, Murayama T. Knockout of Ceramide Kinase Aggravates Pathological and Lethal Responses in Mice with Experimental Colitis. Biol Pharm Bull. 2018;41:797-805 pubmed 出版商
  38. Rempe R, Hartz A, Soldner E, Sokola B, Alluri S, Abner E, et al. Matrix Metalloproteinase-Mediated Blood-Brain Barrier Dysfunction in Epilepsy. J Neurosci. 2018;38:4301-4315 pubmed 出版商
  39. Hazim R, Karumbayaram S, Jiang M, Dimashkie A, Lopes V, Li D, et al. Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization. Stem Cell Res Ther. 2017;8:217 pubmed 出版商
  40. Katsumata O, Mori M, Sawane Y, Niimura T, Ito A, Okamoto H, et al. Cellular and subcellular localization of ADP-ribosylation factor 6 in mouse peripheral tissues. Histochem Cell Biol. 2017;148:577-596 pubmed 出版商
  41. Yang A, Inamine T, Hochrath K, Chen P, Wang L, Llorente C, et al. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest. 2017;127:2829-2841 pubmed 出版商
  42. Benedicto I, Lehmann G, Ginsberg M, Nolan D, Bareja R, Elemento O, et al. Concerted regulation of retinal pigment epithelium basement membrane and barrier function by angiocrine factors. Nat Commun. 2017;8:15374 pubmed 出版商
  43. Yanagida K, Liu C, Faraco G, Galvani S, Smith H, Burg N, et al. Size-selective opening of the blood-brain barrier by targeting endothelial sphingosine 1-phosphate receptor 1. Proc Natl Acad Sci U S A. 2017;114:4531-4536 pubmed 出版商
  44. Lapierre L, Manning E, Mitchell K, Caldwell C, Goldenring J. Interaction of phosphorylated Rab11-FIP2 with Eps15 regulates apical junction composition. Mol Biol Cell. 2017;28:1088-1100 pubmed 出版商
  45. Tung K, Harakal J, Qiao H, Rival C, Li J, Paul A, et al. Egress of sperm autoantigen from seminiferous tubules maintains systemic tolerance. J Clin Invest. 2017;127:1046-1060 pubmed 出版商
  46. Prasad S, Sajja R, Kaisar M, Park J, Villalba H, Liles T, et al. Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol. 2017;12:58-69 pubmed 出版商
  47. Ni Y, Teng T, Li R, Simonyi A, Sun G, Lee J. TNFα alters occludin and cerebral endothelial permeability: Role of p38MAPK. PLoS ONE. 2017;12:e0170346 pubmed 出版商
  48. Zhang J, Chen S, Cai J, Hou Z, Wang X, Kachelmeier A, et al. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage-like melanocytes from the young mouse vestibular system. Hear Res. 2017;345:10-22 pubmed 出版商
  49. Kraya R, Komin A, Searson P. On Chip Bioelectric Impedance Spectroscopy Reveals the Effect of P-Glycoprotein Efflux Pumps on the Paracellular Impedance of Tight Junctions at the Blood-Brain Barrier. IEEE Trans Nanobioscience. 2016;15:697-703 pubmed 出版商
  50. Sivagurunathan S, Palanisamy K, Arunachalam J, Chidambaram S. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway. Mol Cell Biochem. 2017;427:145-156 pubmed 出版商
  51. Cao X, Shen L, Wu S, Yan C, Zhou Y, Xiong G, et al. Urban fine particulate matter exposure causes male reproductive injury through destroying blood-testis barrier (BTB) integrity. Toxicol Lett. 2017;266:1-12 pubmed 出版商
  52. Zhang H, Zhang P, Gao Y, Li C, Wang H, Chen L, et al. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep. 2017;15:57-64 pubmed 出版商
  53. Capra J, Eskelinen S. MDCK cells are capable of water secretion and reabsorption in response to changes in the ionic environment. Can J Physiol Pharmacol. 2017;95:72-83 pubmed 出版商
  54. Hurtado Alvarado G, Dominguez Salazar E, Velazquez Moctezuma J, Gómez González B. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction. PLoS ONE. 2016;11:e0167236 pubmed 出版商
  55. Lin Z, Zhang Y, Xia Y, Xu X, Jiao X, Sun J. Salmonella enteritidis Effector AvrA Stabilizes Intestinal Tight Junctions via the JNK Pathway. J Biol Chem. 2016;291:26837-26849 pubmed 出版商
  56. Martínez Rendón J, Sánchez Guzmán E, Rueda A, González J, Gulias Cañizo R, Aquino Jarquin G, et al. TRPV4 Regulates Tight Junctions and Affects Differentiation in a Cell Culture Model of the Corneal Epithelium. J Cell Physiol. 2017;232:1794-1807 pubmed 出版商
  57. Chehaibi K, le Maire L, Bradoni S, Escolà J, Blanco Vaca F, Slimane M. Effect of PPAR-β/δ agonist GW0742 treatment in the acute phase response and blood-brain barrier permeability following brain injury. Transl Res. 2017;182:27-48 pubmed 出版商
  58. Majka G, Wiecek G, Sróttek M, Spiewak K, Brindell M, Koziel J, et al. The impact of lactoferrin with different levels of metal saturation on the intestinal epithelial barrier function and mucosal inflammation. Biometals. 2016;29:1019-1033 pubmed
  59. Keppner A, Malsure S, Nobile A, Auberson M, Bonny O, Hummler E. Altered Prostasin (CAP1/Prss8) Expression Favors Inflammation and Tissue Remodeling in DSS-induced Colitis. Inflamm Bowel Dis. 2016;22:2824-2839 pubmed
  60. Mendonça M, Soares E, de Jesus M, Ceragioli H, Batista Ã, Nyúl Tóth Ã, et al. PEGylation of Reduced Graphene Oxide Induces Toxicity in Cells of the Blood-Brain Barrier: An in Vitro and in Vivo Study. Mol Pharm. 2016;13:3913-3924 pubmed
  61. Xiong J, Zhou M, Wang Y, Chen L, Xu W, Wang Y, et al. Protein Kinase D2 Protects against Acute Colitis Induced by Dextran Sulfate Sodium in Mice. Sci Rep. 2016;6:34079 pubmed 出版商
  62. Feng X, Zhang D, Wang Y, Fan R, Hong F, Zhang Y, et al. Dopamine enhances duodenal epithelial permeability via the dopamine D5 receptor in rodent. Acta Physiol (Oxf). 2017;220:113-123 pubmed 出版商
  63. Shang V, Kendall D, Roberts R. ?9-Tetrahydrocannabinol reverses TNF?-induced increase in airway epithelial cell permeability through CB2 receptors. Biochem Pharmacol. 2016;120:63-71 pubmed 出版商
  64. Kuan W, Bennett N, He X, Skepper J, Martynyuk N, Wijeyekoon R, et al. ?-Synuclein pre-formed fibrils impair tight junction protein expression without affecting cerebral endothelial cell function. Exp Neurol. 2016;285:72-81 pubmed 出版商
  65. Springler A, Hessenberger S, Schatzmayr G, Mayer E. Early Activation of MAPK p44/42 Is Partially Involved in DON-Induced Disruption of the Intestinal Barrier Function and Tight Junction Network. Toxins (Basel). 2016;8: pubmed 出版商
  66. Qian Y, Li C, Jiang A, Ge S, Gu P, Fan X, et al. HIV-1 gp120 Glycoprotein Interacting with Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN) Down-Regulates Tight Junction Proteins to Disrupt the Blood Retinal Barrier and Increase Its Permeability. J Biol Chem. 2016;291:22977-22987 pubmed
  67. Ahn C, Shin D, Lee D, Kang S, Seok J, Kang H, et al. Expression of claudins, occludin, junction adhesion molecule A and zona occludens 1 in canine organs. Mol Med Rep. 2016;14:3697-703 pubmed 出版商
  68. de Sousa Rodrigues M, Bekhbat M, Houser M, Chang J, Walker D, Jones D, et al. Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice. Brain Behav Immun. 2017;59:158-172 pubmed 出版商
  69. Lan A, Blais A, Coelho D, Capron J, Maarouf M, Benamouzig R, et al. Dual effects of a high-protein diet on DSS-treated mice during colitis resolution phase. Am J Physiol Gastrointest Liver Physiol. 2016;311:G624-G633 pubmed 出版商
  70. Li N, Lee W, Cheng C. Overexpression of plastin 3 in Sertoli cells disrupts actin microfilament bundle homeostasis and perturbs the tight junction barrier. Spermatogenesis. 2016;6:e1206353 pubmed 出版商
  71. Wardill H, Bowen J, Van Sebille Y, Secombe K, Coller J, Ball I, et al. TLR4-Dependent Claudin-1 Internalization and Secretagogue-Mediated Chloride Secretion Regulate Irinotecan-Induced Diarrhea. Mol Cancer Ther. 2016;15:2767-2779 pubmed
  72. Ronaghan N, Shang J, Iablokov V, Zaheer R, Colarusso P, Dion S, et al. The serine protease-mediated increase in intestinal epithelial barrier function is dependent on occludin and requires an intact tight junction. Am J Physiol Gastrointest Liver Physiol. 2016;311:G466-79 pubmed 出版商
  73. Stammler A, Lüftner B, Kliesch S, Weidner W, Bergmann M, Middendorff R, et al. Highly Conserved Testicular Localization of Claudin-11 in Normal and Impaired Spermatogenesis. PLoS ONE. 2016;11:e0160349 pubmed 出版商
  74. Zhang L, Du S, Lu Y, Liu C, Tian Z, Yang C, et al. Puerarin transport across a Calu-3 cell monolayer - an in vitro model of nasal mucosa permeability and the influence of paeoniflorin and menthol. Drug Des Devel Ther. 2016;10:2227-37 pubmed 出版商
  75. Pang J, Wu Y, Peng J, Yang P, Kuai L, Qin X, et al. Potential implications of Apolipoprotein E in early brain injury after experimental subarachnoid hemorrhage: Involvement in the modulation of blood-brain barrier integrity. Oncotarget. 2016;7:56030-56044 pubmed 出版商
  76. Zeller P, Legendre A, Jacques S, Fleury M, Gilard F, Tcherkez G, et al. Hepatocytes cocultured with Sertoli cells in bioreactor favors Sertoli barrier tightness in rat. J Appl Toxicol. 2017;37:287-295 pubmed 出版商
  77. Li N, Mruk D, Chen H, Wong C, Lee W, Cheng C. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43. Sci Rep. 2016;6:29667 pubmed 出版商
  78. Raguz J, Jerić I, Niault T, Nowacka J, Kuzet S, Rupp C, et al. Epidermal RAF prevents allergic skin disease. elife. 2016;5: pubmed 出版商
  79. Zhang Z, Yan J, Shi H. Role of Hypoxia Inducible Factor 1 in Hyperglycemia-Exacerbated Blood-Brain Barrier Disruption in Ischemic Stroke. Neurobiol Dis. 2016;95:82-92 pubmed 出版商
  80. Yang G, Zhu Y, Zhang W, Zhou D, Zhai C, Wang J. Influence of orally fed a select mixture of Bacillus probiotics on intestinal T-cell migration in weaned MUC4 resistant pigs following Escherichia coli challenge. Vet Res. 2016;47:71 pubmed 出版商
  81. Clark P, Al Ahmad A, Qian T, Zhang R, Wilson H, Weichert J, et al. Analysis of Cancer-Targeting Alkylphosphocholine Analogue Permeability Characteristics Using a Human Induced Pluripotent Stem Cell Blood-Brain Barrier Model. Mol Pharm. 2016;13:3341-9 pubmed 出版商
  82. Ge X, Huang S, Gao H, Han Z, Chen F, Zhang S, et al. miR-21-5p alleviates leakage of injured brain microvascular endothelial barrier in vitro through suppressing inflammation and apoptosis. Brain Res. 2016;1650:31-40 pubmed 出版商
  83. Stremmel W, Staffer S, Gan Schreier H, Wannhoff A, Bach M, Gauss A. Phosphatidylcholine passes through lateral tight junctions for paracellular transport to the apical side of the polarized intestinal tumor cell-line CaCo2. Biochim Biophys Acta. 2016;1861:1161-1169 pubmed 出版商
  84. Gao Y, Lui W, Lee W, Cheng C. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells. Sci Rep. 2016;6:28589 pubmed 出版商
  85. Campos Y, Qiu X, Gomero E, Wakefield R, Horner L, Brutkowski W, et al. Alix-mediated assembly of the actomyosin-tight junction polarity complex preserves epithelial polarity and epithelial barrier. Nat Commun. 2016;7:11876 pubmed 出版商
  86. Löffler T, Flunkert S, Temmel M, Hutter Paier B. Decreased Plasma A? in Hyperlipidemic APPSL Transgenic Mice Is Associated with BBB Dysfunction. Front Neurosci. 2016;10:232 pubmed 出版商
  87. Rodriguez M, Kaushik A, Lapierre J, Dever S, El Hage N, Nair M. Electro-Magnetic Nano-Particle Bound Beclin1 siRNA Crosses the Blood-Brain Barrier to Attenuate the Inflammatory Effects of HIV-1 Infection in Vitro. J Neuroimmune Pharmacol. 2017;12:120-132 pubmed 出版商
  88. Wang X, Fan F, Cao Q. Modified Pulsatilla decoction attenuates oxazolone-induced colitis in mice through suppression of inflammation and epithelial barrier disruption. Mol Med Rep. 2016;14:1173-9 pubmed 出版商
  89. Lee S, Kim H, Kim K, Lee H, Lee S, Lee D. Arhgap17, a RhoGTPase activating protein, regulates mucosal and epithelial barrier function in the mouse colon. Sci Rep. 2016;6:26923 pubmed 出版商
  90. Lehner C, Gehwolf R, Ek J, Korntner S, Bauer H, Bauer H, et al. The blood-tendon barrier: identification and characterisation of a novel tissue barrier in tendon blood vessels. Eur Cell Mater. 2016;31:296-311 pubmed
  91. Poon C, Madawala R, Dowland S, Murphy C. Nectin-3 Is Increased in the Cell Junctions of the Uterine Epithelium at Implantation. Reprod Sci. 2016;23:1580-1592 pubmed
  92. Xu S, Xue X, You K, Fu J. Caveolin-1 regulates the expression of tight junction proteins during hyperoxia-induced pulmonary epithelial barrier breakdown. Respir Res. 2016;17:50 pubmed 出版商
  93. Teo W, Merino V, Cho S, Korangath P, Liang X, Wu R, et al. HOXA5 determines cell fate transition and impedes tumor initiation and progression in breast cancer through regulation of E-cadherin and CD24. Oncogene. 2016;35:5539-5551 pubmed 出版商
  94. Vorvis C, Hatziapostolou M, Mahurkar Joshi S, Koutsioumpa M, Williams J, Donahue T, et al. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2016;310:G1124-37 pubmed 出版商
  95. Kobayashi K, Tsugami Y, Matsunaga K, Oyama S, Kuki C, Kumura H. Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with ?-casein expression in mammary epithelial cells. Biochim Biophys Acta. 2016;1863:2006-16 pubmed 出版商
  96. Inada M, Izawa G, Kobayashi W, Ozawa M. 293 cells express both epithelial as well as mesenchymal cell adhesion molecules. Int J Mol Med. 2016;37:1521-7 pubmed 出版商
  97. Liu S, Zhou F, Shen Y, Zhang Y, Yin H, Zeng Y, et al. Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells. Oncotarget. 2016;7:32876-92 pubmed 出版商
  98. Guerrera D, Shah J, Vasileva E, Sluysmans S, Méan I, Jond L, et al. PLEKHA7 Recruits PDZD11 to Adherens Junctions to Stabilize Nectins. J Biol Chem. 2016;291:11016-29 pubmed 出版商
  99. Sa Ngiamsuntorn K, Wongkajornsilp A, Phanthong P, Borwornpinyo S, Kitiyanant N, Chantratita W, et al. A robust model of natural hepatitis C infection using hepatocyte-like cells derived from human induced pluripotent stem cells as a long-term host. Virol J. 2016;13:59 pubmed 出版商
  100. Kwon J, Jeong S, Choi I, Kim N. ADAM10 Is Involved in Cell Junction Assembly in Early Porcine Embryo Development. PLoS ONE. 2016;11:e0152921 pubmed 出版商
  101. Liu W, Cai H, Lin M, Zhu L, Gao L, Zhong R, et al. MicroRNA-107 prevents amyloid-beta induced blood-brain barrier disruption and endothelial cell dysfunction by targeting Endophilin-1. Exp Cell Res. 2016;343:248-257 pubmed 出版商
  102. Wardill H, Gibson R, Van Sebille Y, Secombe K, Logan R, Bowen J. A novel in vitro platform for the study of SN38-induced mucosal damage and the development of Toll-like receptor 4-targeted therapeutic options. Exp Biol Med (Maywood). 2016;241:1386-94 pubmed 出版商
  103. Yang C, Demars K, Hawkins K, Candelario Jalil E. Adropin reduces paracellular permeability of rat brain endothelial cells exposed to ischemia-like conditions. Peptides. 2016;81:29-37 pubmed 出版商
  104. Mathewson N, Jenq R, Mathew A, Koenigsknecht M, Hanash A, Toubai T, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol. 2016;17:505-513 pubmed 出版商
  105. Chen H, Mruk D, Lee W, Cheng C. Planar Cell Polarity (PCP) Protein Vangl2 Regulates Ectoplasmic Specialization Dynamics via Its Effects on Actin Microfilaments in the Testes of Male Rats. Endocrinology. 2016;157:2140-59 pubmed 出版商
  106. Kacem M, Agili F, Tounsi H, Zribi H, Zaraa I, Mokni M, et al. Immunohistological study of tight junction protein expression in mal de Meleda. Ultrastruct Pathol. 2016;40:176-80 pubmed 出版商
  107. Kuehn A, Kletting S, de Souza Carvalho Wodarz C, Repnik U, Griffiths G, Fischer U, et al. Human alveolar epithelial cells expressing tight junctions to model the air-blood barrier. ALTEX. 2016;33:251-60 pubmed 出版商
  108. Ji X, Liu Y, Hurd R, Wang J, Fitzmaurice B, Nishina P, et al. Retinal Pigment Epithelium Atrophy 1 (rpea1): A New Mouse Model With Retinal Detachment Caused by a Disruption of Protein Kinase C, θ. Invest Ophthalmol Vis Sci. 2016;57:877-88 pubmed 出版商
  109. Shukla P, Chaudhry K, Mir H, Gangwar R, Yadav N, Manda B, et al. Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation. BMC Cancer. 2016;16:189 pubmed 出版商
  110. Jang C, Oh S, Wada S, Rowe G, Liu L, Chan M, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med. 2016;22:421-6 pubmed 出版商
  111. Strazielle N, Creidy R, Malcus C, Boucraut J, Ghersi Egea J. T-Lymphocytes Traffic into the Brain across the Blood-CSF Barrier: Evidence Using a Reconstituted Choroid Plexus Epithelium. PLoS ONE. 2016;11:e0150945 pubmed 出版商
  112. Liu H, Garzoni L, Herry C, Durosier L, Cao M, Burns P, et al. Can Monitoring Fetal Intestinal Inflammation Using Heart Rate Variability Analysis Signal Incipient Necrotizing Enterocolitis of the Neonate?. Pediatr Crit Care Med. 2016;17:e165-76 pubmed 出版商
  113. Fang Z, He Q, Li Q, Chen X, Baral S, Jin H, et al. MicroRNA-150 regulates blood-brain barrier permeability via Tie-2 after permanent middle cerebral artery occlusion in rats. FASEB J. 2016;30:2097-107 pubmed 出版商
  114. Shirasago Y, Shimizu Y, Tanida I, Suzuki T, Suzuki R, Sugiyama K, et al. Occludin-Knockout Human Hepatic Huh7.5.1-8-Derived Cells Are Completely Resistant to Hepatitis C Virus Infection. Biol Pharm Bull. 2016;39:839-48 pubmed 出版商
  115. Ibrahim A, Mander S, Hussein K, Elsherbiny N, Smith S, Al Shabrawey M, et al. Hyperhomocysteinemia disrupts retinal pigment epithelial structure and function with features of age-related macular degeneration. Oncotarget. 2016;7:8532-45 pubmed 出版商
  116. Sántha P, Veszelka S, Hoyk Z, Mészáros M, Walter F, Tóth A, et al. Restraint Stress-Induced Morphological Changes at the Blood-Brain Barrier in Adult Rats. Front Mol Neurosci. 2015;8:88 pubmed 出版商
  117. Shang V, O Sullivan S, Kendall D, Roberts R. The endogenous cannabinoid anandamide increases human airway epithelial cell permeability through an arachidonic acid metabolite. Pharmacol Res. 2016;105:152-63 pubmed 出版商
  118. Villarroel Espíndola F, Tapia C, González Stegmaier R, Concha I, Slebe J. Polyglucosan Molecules Induce Mitochondrial Impairment and Apoptosis in Germ Cells Without Affecting the Integrity and Functionality of Sertoli Cells. J Cell Physiol. 2016;231:2142-52 pubmed 出版商
  119. Miquel S, Martín R, Lashermes A, Gillet M, Meleine M, Gelot A, et al. Anti-nociceptive effect of Faecalibacterium prausnitzii in non-inflammatory IBS-like models. Sci Rep. 2016;6:19399 pubmed 出版商
  120. Lou N, Takano T, Pei Y, Xavier A, Goldman S, Nedergaard M. Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier. Proc Natl Acad Sci U S A. 2016;113:1074-9 pubmed 出版商
  121. Grozdanović M, ÄŒavić M, NeÅ¡ić A, Andjelković U, Akbari P, Smit J, et al. Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions. Biochim Biophys Acta. 2016;1860:516-26 pubmed 出版商
  122. Li N, Mruk D, Mok K, Li M, Wong C, Lee W, et al. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption. FASEB J. 2016;30:1436-52 pubmed 出版商
  123. Shi Y, Liu T, Fu J, Xu W, Wu L, Hou A, et al. Vitamin D/VDR signaling attenuates lipopolysaccharide‑induced acute lung injury by maintaining the integrity of the pulmonary epithelial barrier. Mol Med Rep. 2016;13:1186-94 pubmed 出版商
  124. Kim H, Cronin M, Ahrens K, Papastavros V, Santoro D, Marsella R. A comparative study of epidermal tight junction proteins in a dog model of atopic dermatitis. Vet Dermatol. 2016;27:40-e11 pubmed 出版商
  125. Arévalo Turrubiarte M, Perruchot M, Finot L, Mayeur F, Dessauge F. Phenotypic and functional characterization of two bovine mammary epithelial cell lines in 2D and 3D models. Am J Physiol Cell Physiol. 2016;310:C348-56 pubmed 出版商
  126. Frankowski J, Demars K, Ahmad A, Hawkins K, Yang C, Leclerc J, et al. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Sci Rep. 2015;5:17956 pubmed 出版商
  127. Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015;6:8989 pubmed 出版商
  128. Nadeem A, Thomas P, Ulf M, Elena N, Anggakusuma A, Mohamed B, et al. Cell culture-derived HCV cannot infect synovial fibroblasts. Sci Rep. 2015;5:18043 pubmed 出版商
  129. Castro V, Bertrand L, Luethen M, Dabrowski S, Lombardi J, Morgan L, et al. Occludin controls HIV transcription in brain pericytes via regulation of SIRT-1 activation. FASEB J. 2016;30:1234-46 pubmed 出版商
  130. McCabe M, Foo C, Dinger M, Smooker P, Stanton P. Claudin-11 and occludin are major contributors to Sertoli cell tight junction function, in vitro. Asian J Androl. 2016;18:620-6 pubmed 出版商
  131. Rodrigo Albors A, Tazaki A, Rost F, Nowoshilow S, Chara O, Tanaka E. Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration. elife. 2015;4:e10230 pubmed 出版商
  132. Stebbins M, Wilson H, Canfield S, Qian T, Palecek S, Shusta E. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods. 2016;101:93-102 pubmed 出版商
  133. Vandenhaute E, Stump Guthier C, Losada M, Tenenbaum T, Rudolph H, Ishikawa H, et al. The choroid plexus may be an underestimated site of tumor invasion to the brain: an in vitro study using neuroblastoma cell lines. Cancer Cell Int. 2015;15:102 pubmed 出版商
  134. Freedman B, Brooks C, Lam A, Fu H, Morizane R, Agrawal V, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015;6:8715 pubmed 出版商
  135. Kim C, Kim J, Jo K, Lee Y, Sohn E, Yoo N, et al. OSSC1E-K19, a novel phytochemical component of Osteomeles schwerinae, prevents glycated albumin-induced retinal vascular injury in rats. Mol Med Rep. 2015;12:7279-84 pubmed 出版商
  136. Barbáchano A, Fernández Barral A, Pereira F, Segura M, Ordóñez Morán P, Carrillo de Santa Pau E, et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene. 2016;35:2991-3003 pubmed 出版商
  137. Martínez Revollar G, Garay E, Martín Tapia D, Nava P, Huerta M, Lopez Bayghen E, et al. Heterogeneity between triple negative breast cancer cells due to differential activation of Wnt and PI3K/AKT pathways. Exp Cell Res. 2015;339:67-80 pubmed 出版商
  138. Cravo A, Carter E, Erkan M, Harvey E, Furutani Seiki M, MRSNY R. Hippo pathway elements Co-localize with Occludin: A possible sensor system in pancreatic epithelial cells. Tissue Barriers. 2015;3:e1037948 pubmed 出版商
  139. Wardill H, Logan R, Bowen J, Van Sebille Y, Gibson R. Tight junction defects are seen in the buccal mucosa of patients receiving standard dose chemotherapy for cancer. Support Care Cancer. 2016;24:1779-88 pubmed 出版商
  140. Blume C, Reale R, Held M, Millar T, Collins J, Davies D, et al. Temporal Monitoring of Differentiated Human Airway Epithelial Cells Using Microfluidics. PLoS ONE. 2015;10:e0139872 pubmed 出版商
  141. Lee J, Tato C, Joyce Shaikh B, Gulen M, Gulan F, Cayatte C, et al. Interleukin-23-Independent IL-17 Production Regulates Intestinal Epithelial Permeability. Immunity. 2015;43:727-38 pubmed 出版商
  142. Valere K, Rapista A, Eugenin E, Lu W, Chang T. Human Alpha-Defensin HNP1 Increases HIV Traversal of the Epithelial Barrier: A Potential Role in STI-Mediated Enhancement of HIV Transmission. Viral Immunol. 2015;28:609-15 pubmed 出版商
  143. Brkic M, Balusu S, Van Wonterghem E, Gorlé N, Benilova I, Kremer A, et al. Amyloid β Oligomers Disrupt Blood-CSF Barrier Integrity by Activating Matrix Metalloproteinases. J Neurosci. 2015;35:12766-78 pubmed 出版商
  144. Dong H, Chen Z, Wang C, Xiong Z, Zhao W, Jia C, et al. Rictor Regulates Spermatogenesis by Controlling Sertoli Cell Cytoskeletal Organization and Cell Polarity in the Mouse Testis. Endocrinology. 2015;156:4244-56 pubmed 出版商
  145. Zhao Y, Zhao L, Wang P, Miao Y, Liu Y, Wang Z, et al. Overexpression of miR-18a negatively regulates myocyte enhancer factor 2D to increase the permeability of the blood-tumor barrier via Krüppel-like factor 4-mediated downregulation of zonula occluden-1, claudin-5, and occludin. J Neurosci Res. 2015;93:1891-902 pubmed 出版商
  146. Janosevic D, Axis J, Bacallao R, Amsler K. Occludin Content Modulates Hydrogen Peroxide-Induced Increase in Renal Epithelial Paracellular Permeability. J Cell Biochem. 2016;117:769-79 pubmed 出版商
  147. Liu S, Zhao J, Fan X, Liu G, Jiao H, Wang X, et al. Rapamycin, a specific inhibitor of the target of rapamycin complex 1, disrupts intestinal barrier integrity in broiler chicks. J Anim Physiol Anim Nutr (Berl). 2016;100:323-30 pubmed 出版商
  148. Yuksel H, Yilmaz O, Karaman M, Fırıncı F, Turkeli A, Kanik E, et al. Vascular endothelial growth factor antagonism restores epithelial barrier dysfunction via affecting zonula occludens proteins. Exp Ther Med. 2015;10:362-368 pubmed
  149. Tan F, Fu W, Cheng N, Meng D, Gu Y. Ligustrazine reduces blood-brain barrier permeability in a rat model of focal cerebral ischemia and reperfusion. Exp Ther Med. 2015;9:1757-1762 pubmed
  150. Goichon A, Bertrand J, Chan P, Lecleire S, Coquard A, Cailleux A, et al. Enteral delivery of proteins enhances the expression of proteins involved in the cytoskeleton and protein biosynthesis in human duodenal mucosa. Am J Clin Nutr. 2015;102:359-67 pubmed 出版商
  151. Chang C, Lin C, Lu C, Martel J, Ko Y, Ojcius D, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun. 2015;6:7489 pubmed 出版商
  152. Ek C, D Angelo B, Lehner C, Nathanielsz P, Li C, Mallard C. Expression of tight junction proteins and transporters for xenobiotic metabolism at the blood-CSF barrier during development in the nonhuman primate (P. hamadryas). Reprod Toxicol. 2015;56:32-44 pubmed 出版商
  153. Morita S, Furube E, Mannari T, Okuda H, Tatsumi K, Wanaka A, et al. Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain. Cell Tissue Res. 2016;363:497-511 pubmed 出版商
  154. Li N, Mruk D, Wong C, Lee W, Han D, Cheng C. Actin-bundling protein plastin 3 is a regulator of ectoplasmic specialization dynamics during spermatogenesis in the rat testis. FASEB J. 2015;29:3788-805 pubmed 出版商
  155. Suárez Causado A, Caballero Díaz D, Bertrán E, Roncero C, Addante A, García Álvaro M, et al. HGF/c-Met signaling promotes liver progenitor cell migration and invasion by an epithelial-mesenchymal transition-independent, phosphatidyl inositol-3 kinase-dependent pathway in an in vitro model. Biochim Biophys Acta. 2015;1853:2453-63 pubmed 出版商
  156. Abdayem R, Callejon S, Portes P, Kirilov P, Demarne F, Pirot F, et al. Modulation of transepithelial electric resistance (TEER) in reconstructed human epidermis by excipients known to permeate intestinal tight junctions. Exp Dermatol. 2015;24:686-91 pubmed 出版商
  157. Son Y, Heo K, Bae M, Lee C, Cho W, Kim S, et al. Injury to the blood-testis barrier after low-dose-rate chronic radiation exposure in mice. Radiat Prot Dosimetry. 2015;167:316-20 pubmed 出版商
  158. Cong X, Zhang Y, Li J, Mei M, Ding C, Xiang R, et al. Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells. J Cell Sci. 2015;128:2271-86 pubmed 出版商
  159. Staat C, Coisne C, Dabrowski S, Stamatovic S, Andjelkovic A, Wolburg H, et al. Mode of action of claudin peptidomimetics in the transient opening of cellular tight junction barriers. Biomaterials. 2015;54:9-20 pubmed 出版商
  160. Wu S, Yi J, Zhang Y, Zhou J, Sun J. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep. 2015;3: pubmed 出版商
  161. Pothoven K, Norton J, Hulse K, Suh L, Carter R, Rocci E, et al. Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease. J Allergy Clin Immunol. 2015;136:737-746.e4 pubmed 出版商
  162. Li F, Duggal R, Oliva O, Karki S, Surolia R, Wang Z, et al. Heme oxygenase-1 protects corexit 9500A-induced respiratory epithelial injury across species. PLoS ONE. 2015;10:e0122275 pubmed 出版商
  163. Scull M, Shi C, De Jong Y, Gerold G, Ries M, von Schaewen M, et al. Hepatitis C virus infects rhesus macaque hepatocytes and simianized mice. Hepatology. 2015;62:57-67 pubmed 出版商
  164. Haarmann A, Nowak E, Deiß A, van der Pol S, Monoranu C, Kooij G, et al. Soluble VCAM-1 impairs human brain endothelial barrier integrity via integrin α-4-transduced outside-in signalling. Acta Neuropathol. 2015;129:639-52 pubmed 出版商
  165. Bazellières E, Conte V, Elosegui Artola A, Serra Picamal X, Bintanel Morcillo M, Roca Cusachs P, et al. Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat Cell Biol. 2015;17:409-20 pubmed 出版商
  166. Muramatsu R, Kuroda M, Matoba K, Lin H, Takahashi C, Koyama Y, et al. Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system. J Biol Chem. 2015;290:11515-25 pubmed 出版商
  167. Fredriksson K, Van Itallie C, Aponte A, Gucek M, Tietgens A, Anderson J. Proteomic analysis of proteins surrounding occludin and claudin-4 reveals their proximity to signaling and trafficking networks. PLoS ONE. 2015;10:e0117074 pubmed 出版商
  168. Strick Marchand H, Dusséaux M, Darche S, Huntington N, Legrand N, Masse Ranson G, et al. A novel mouse model for stable engraftment of a human immune system and human hepatocytes. PLoS ONE. 2015;10:e0119820 pubmed 出版商
  169. Lee J, Choi H, Na W, Ju B, Yune T. 17β-estradiol inhibits MMP-9 and SUR1/TrpM4 expression and activation and thereby attenuates BSCB disruption/hemorrhage after spinal cord injury in male rats. Endocrinology. 2015;156:1838-50 pubmed 出版商
  170. Furihata T, Kawamatsu S, Ito R, Saito K, Suzuki S, Kishida S, et al. Hydrocortisone enhances the barrier properties of HBMEC/ciβ, a brain microvascular endothelial cell line, through mesenchymal-to-endothelial transition-like effects. Fluids Barriers CNS. 2015;12:7 pubmed 出版商
  171. Boulay A, Mazeraud A, Cisternino S, Saubaméa B, Mailly P, Jourdren L, et al. Immune quiescence of the brain is set by astroglial connexin 43. J Neurosci. 2015;35:4427-39 pubmed 出版商
  172. Sohet F, Lin C, Munji R, Lee S, Ruderisch N, Soung A, et al. LSR/angulin-1 is a tricellular tight junction protein involved in blood-brain barrier formation. J Cell Biol. 2015;208:703-11 pubmed 出版商
  173. ErLin S, WenJie W, LiNing W, BingXin L, MingDe L, Yan S, et al. Musashi-1 maintains blood-testis barrier structure during spermatogenesis and regulates stress granule formation upon heat stress. Mol Biol Cell. 2015;26:1947-56 pubmed 出版商
  174. Röhl M, Tjernlund A, Mehta S, Pettersson P, Bailey R, Broliden K. Comparable mRNA expression of inflammatory markers but lower claudin-1 mRNA levels in foreskin tissue of HSV-2 seropositive versus seronegative asymptomatic Kenyan young men. BMJ Open. 2015;5:e006627 pubmed 出版商
  175. Benoit B, Laugerette F, Plaisancié P, Géloën A, Bodennec J, Estienne M, et al. Increasing fat content from 20 to 45 wt% in a complex diet induces lower endotoxemia in parallel with an increased number of intestinal goblet cells in mice. Nutr Res. 2015;35:346-56 pubmed 出版商
  176. Momeny M, Saunus J, Marturana F, McCart Reed A, Black D, Sala G, et al. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget. 2015;6:3932-46 pubmed
  177. Chajra H, Amstutz B, Schweikert K, Auriol D, Redziniak G, Lefèvre F. Opioid receptor delta as a global modulator of skin differentiation and barrier function repair. Int J Cosmet Sci. 2015;37:386-94 pubmed 出版商
  178. Ek C, D Angelo B, Baburamani A, Lehner C, Leverin A, Smith P, et al. Brain barrier properties and cerebral blood flow in neonatal mice exposed to cerebral hypoxia-ischemia. J Cereb Blood Flow Metab. 2015;35:818-27 pubmed 出版商
  179. Peng H, Li C, Kadow S, Henry B, Steinmann J, Becker K, et al. Acid sphingomyelinase inhibition protects mice from lung edema and lethal Staphylococcus aureus sepsis. J Mol Med (Berl). 2015;93:675-89 pubmed 出版商
  180. Chen M, Yang T, Meng X, Sun T. Azithromycin attenuates cigarette smoke extract-induced oxidative stress injury in human alveolar epithelial cells. Mol Med Rep. 2015;11:3414-22 pubmed 出版商
  181. Li Z, Liu Y, Liu X, Xue Y, Wang P, Liu L. Low-dose endothelial monocyte-activating polypeptide-II increases permeability of blood-tumor barrier via a PKC-ζ/PP2A-dependent signaling mechanism. Exp Cell Res. 2015;331:257-66 pubmed 出版商
  182. Lee S, Kwon J, Choi I, Kim N. Expression and function of transcription factor AP-2? in early embryonic development of porcine parthenotes. Reprod Fertil Dev. 2015;: pubmed 出版商
  183. Kreft M, Jerman U, Lasič E, Hevir Kene N, Rižner T, Peternel L, et al. The characterization of the human cell line Calu-3 under different culture conditions and its use as an optimized in vitro model to investigate bronchial epithelial function. Eur J Pharm Sci. 2015;69:1-9 pubmed 出版商
  184. Azizi P, Zyla R, Guan S, Wang C, Liu J, Bolz S, et al. Clathrin-dependent entry and vesicle-mediated exocytosis define insulin transcytosis across microvascular endothelial cells. Mol Biol Cell. 2015;26:740-50 pubmed 出版商
  185. Nicolas V, Liévin Le Moal V. Antisecretory factor peptide AF-16 inhibits the secreted autotransporter toxin-stimulated transcellular and paracellular passages of fluid in cultured human enterocyte-like cells. Infect Immun. 2015;83:907-22 pubmed 出版商
  186. Vitiello E, Ferreira J, Maiato H, Balda M, Matter K. The tumour suppressor DLC2 ensures mitotic fidelity by coordinating spindle positioning and cell-cell adhesion. Nat Commun. 2014;5:5826 pubmed 出版商
  187. Watari A, Hashegawa M, Yagi K, Kondoh M. Homoharringtonine increases intestinal epithelial permeability by modulating specific claudin isoforms in Caco-2 cell monolayers. Eur J Pharm Biopharm. 2015;89:232-8 pubmed 出版商
  188. Qiao X, Roth I, Féraille E, Hasler U. Different effects of ZO-1, ZO-2 and ZO-3 silencing on kidney collecting duct principal cell proliferation and adhesion. Cell Cycle. 2014;13:3059-75 pubmed 出版商
  189. Fernandes S, Salta S, Bravo J, Silva A, Summavielle T. Acetyl-L-Carnitine Prevents Methamphetamine-Induced Structural Damage on Endothelial Cells via ILK-Related MMP-9 Activity. Mol Neurobiol. 2016;53:408-422 pubmed 出版商
  190. Tang E, Mok K, Lee W, Cheng C. EB1 regulates tubulin and actin cytoskeletal networks at the sertoli cell blood-testis barrier in male rats: an in vitro study. Endocrinology. 2015;156:680-93 pubmed 出版商
  191. Shirasago Y, Sekizuka T, Saito K, Suzuki T, Wakita T, Hanada K, et al. Isolation and characterization of an Huh.7.5.1-derived cell clone highly permissive to hepatitis C virus. Jpn J Infect Dis. 2015;68:81-8 pubmed 出版商
  192. Wiechmann A, Ceresa B, Howard E. Diurnal variation of tight junction integrity associates inversely with matrix metalloproteinase expression in Xenopus laevis corneal epithelium: implications for circadian regulation of homeostatic surface cell desquamation. PLoS ONE. 2014;9:e113810 pubmed 出版商
  193. Braniste V, Al Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6:263ra158 pubmed 出版商
  194. Lei Q, Qiang F, Chao D, Di W, Guoqian Z, Bo Y, et al. Amelioration of hypoxia and LPS-induced intestinal epithelial barrier dysfunction by emodin through the suppression of the NF-κB and HIF-1α signaling pathways. Int J Mol Med. 2014;34:1629-39 pubmed 出版商
  195. Casselbrant A, Elias E, Fändriks L, Wallenius V. Expression of tight-junction proteins in human proximal small intestinal mucosa before and after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis. 2015;11:45-53 pubmed 出版商
  196. Tao S, Duanmu Y, Dong H, Tian J, Ni Y, Zhao R. A high-concentrate diet induced colonic epithelial barrier disruption is associated with the activating of cell apoptosis in lactating goats. BMC Vet Res. 2014;10:235 pubmed 出版商
  197. Wögenstein K, Szabo S, Lunova M, Wiche G, Haybaeck J, Strnad P, et al. Epiplakin deficiency aggravates murine caerulein-induced acute pancreatitis and favors the formation of acinar keratin granules. PLoS ONE. 2014;9:e108323 pubmed 出版商
  198. Kelsey L, Katoch P, Ray A, Mitra S, Chakraborty S, Lin M, et al. Vitamin D3 regulates the formation and degradation of gap junctions in androgen-responsive human prostate cancer cells. PLoS ONE. 2014;9:e106437 pubmed 出版商
  199. Gumber S, Nusrat A, Villinger F. Immunohistological characterization of intercellular junction proteins in rhesus macaque intestine. Exp Toxicol Pathol. 2014;66:437-44 pubmed 出版商
  200. Kreft M, Jerman U, Lasič E, LaniÅ¡nik Rižner T, Hevir Kene N, Peternel L, et al. The characterization of the human nasal epithelial cell line RPMI 2650 under different culture conditions and their optimization for an appropriate in vitro nasal model. Pharm Res. 2015;32:665-79 pubmed 出版商
  201. Bankwitz D, Vieyres G, Hueging K, Bitzegeio J, Doepke M, Chhatwal P, et al. Role of hypervariable region 1 for the interplay of hepatitis C virus with entry factors and lipoproteins. J Virol. 2014;88:12644-55 pubmed 出版商
  202. Ragupathy S, Esmaeili F, Paschoud S, Sublet E, Citi S, Borchard G. Toll-like receptor 2 regulates the barrier function of human bronchial epithelial monolayers through atypical protein kinase C zeta, and an increase in expression of claudin-1. Tissue Barriers. 2014;2:e29166 pubmed 出版商
  203. Crespi A, Bertoni A, Ferrari I, Padovano V, Della Mina P, Berti E, et al. POF1B localizes to desmosomes and regulates cell adhesion in human intestinal and keratinocyte cell lines. J Invest Dermatol. 2015;135:192-201 pubmed 出版商
  204. Tawfik A, Markand S, Al Shabrawey M, Mayo J, Reynolds J, Bearden S, et al. Alterations of retinal vasculature in cystathionine-?-synthase heterozygous mice: a model of mild to moderate hyperhomocysteinemia. Am J Pathol. 2014;184:2573-85 pubmed 出版商
  205. Jakimovski D, Schneider H, Frei K, Kennes L, Bertalanffy H. Bleeding propensity of cavernous malformations: impact of tight junction alterations on the occurrence of overt hematoma. J Neurosurg. 2014;121:613-20 pubmed 出版商
  206. Benoit B, Plaisancie P, Geloen A, Estienne M, Debard C, Meugnier E, et al. Pasture v. standard dairy cream in high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier. Br J Nutr. 2014;112:520-35 pubmed 出版商
  207. Gerlach K, Hwang Y, Nikolaev A, Atreya R, Dornhoff H, Steiner S, et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol. 2014;15:676-86 pubmed 出版商
  208. Altshuler A, Lamadrid I, Li D, Ma S, Kurre L, Schmid Schonbein G, et al. Transmural intestinal wall permeability in severe ischemia after enteral protease inhibition. PLoS ONE. 2014;9:e96655 pubmed 出版商
  209. Grosse B, Degrouard J, Jaillard D, Cassio D. Build them up and break them down: Tight junctions of cell lines expressing typical hepatocyte polarity with a varied repertoire of claudins. Tissue Barriers. 2013;1:e25210 pubmed 出版商
  210. Reaves D, Fagan Solis K, Dunphy K, Oliver S, Scott D, Fleming J. The role of lipolysis stimulated lipoprotein receptor in breast cancer and directing breast cancer cell behavior. PLoS ONE. 2014;9:e91747 pubmed 出版商
  211. Yang D, Zuo C, Wang X, Meng X, Xue B, Liu N, et al. Complete replication of hepatitis B virus and hepatitis C virus in a newly developed hepatoma cell line. Proc Natl Acad Sci U S A. 2014;111:E1264-73 pubmed 出版商
  212. Retana C, Sanchez E, Perez Lopez A, Cruz A, Lagunas J, Cruz C, et al. Alterations of intercellular junctions in peritoneal mesothelial cells from patients undergoing dialysis: effect of retinoic Acid. Perit Dial Int. 2015;35:275-87 pubmed 出版商
  213. Wang S, Liu S, Mao J, Wen D. Effect of retinoic acid on the tight junctions of the retinal pigment epithelium-choroid complex of guinea pigs with lens-induced myopia in vivo. Int J Mol Med. 2014;33:825-32 pubmed 出版商
  214. Xiao W, Feng Y, Holst J, Hartmann B, Yang H, Teitelbaum D. Glutamate prevents intestinal atrophy via luminal nutrient sensing in a mouse model of total parenteral nutrition. FASEB J. 2014;28:2073-87 pubmed 出版商
  215. Fiorentino M, Levine M, Sztein M, Fasano A. Effect of wild-type Shigella species and attenuated Shigella vaccine candidates on small intestinal barrier function, antigen trafficking, and cytokine release. PLoS ONE. 2014;9:e85211 pubmed 出版商
  216. Boyer Di Ponio J, El Ayoubi F, Glacial F, Ganeshamoorthy K, Driancourt C, Godet M, et al. Instruction of circulating endothelial progenitors in vitro towards specialized blood-brain barrier and arterial phenotypes. PLoS ONE. 2014;9:e84179 pubmed 出版商
  217. Altshuler A, Richter M, Modestino A, Penn A, Heller M, Schmid Schonbein G. Removal of luminal content protects the small intestine during hemorrhagic shock but is not sufficient to prevent lung injury. Physiol Rep. 2013;1:e00109 pubmed 出版商
  218. Jesus P, Ouelaa W, François M, Riachy L, Guérin C, Aziz M, et al. Alteration of intestinal barrier function during activity-based anorexia in mice. Clin Nutr. 2014;33:1046-53 pubmed 出版商
  219. Zhang S, Liu Z, Heldsinger A, Owyang C, Yu S. Intraluminal acid activates esophageal nodose C fibers after mast cell activation. Am J Physiol Gastrointest Liver Physiol. 2014;306:G200-7 pubmed 出版商
  220. Rincon Heredia R, Flores Benitez D, Flores Maldonado C, Bonilla Delgado J, García Hernández V, Verdejo Torres O, et al. Ouabain induces endocytosis and degradation of tight junction proteins through ERK1/2-dependent pathways. Exp Cell Res. 2014;320:108-18 pubmed 出版商
  221. Sugimoto K, Ichikawa Tomikawa N, Satohisa S, Akashi Y, Kanai R, Saito T, et al. The tight-junction protein claudin-6 induces epithelial differentiation from mouse F9 and embryonic stem cells. PLoS ONE. 2013;8:e75106 pubmed 出版商
  222. Hernández Monge J, Garay E, Raya Sandino A, Vargas Sierra O, Diaz Chavez J, Popoca Cuaya M, et al. Papillomavirus E6 oncoprotein up-regulates occludin and ZO-2 expression in ovariectomized mice epidermis. Exp Cell Res. 2013;319:2588-603 pubmed 出版商
  223. Hirashima T, Hosokawa Y, Iino T, Nagayama M. On fundamental cellular processes for emergence of collective epithelial movement. Biol Open. 2013;2:660-6 pubmed 出版商
  224. Someya M, Kojima T, Ogawa M, Ninomiya T, Nomura K, Takasawa A, et al. Regulation of tight junctions by sex hormones in normal human endometrial epithelial cells and uterus cancer cell line Sawano. Cell Tissue Res. 2013;354:481-94 pubmed 出版商
  225. Soscia D, Sequeira S, Schramm R, Jayarathanam K, Cantara S, Larsen M, et al. Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters. Biomaterials. 2013;34:6773-84 pubmed 出版商
  226. Watson P, Paterson J, Thom G, Ginman U, Lundquist S, Webster C. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier. BMC Neurosci. 2013;14:59 pubmed 出版商
  227. Liu Z, He J. Cell-cell contact-mediated hepatitis C virus (HCV) transfer, productive infection, and replication and their requirement for HCV receptors. J Virol. 2013;87:8545-58 pubmed 出版商
  228. Cheng Y, Lan K, Lee W, Tseng S, Hung L, Lin H, et al. Amiodarone inhibits the entry and assembly steps of hepatitis C virus life cycle. Clin Sci (Lond). 2013;125:439-48 pubmed 出版商
  229. Szczepkowska A, Lagaraine C, Robert V, Dufourny L, Thiery J, Skipor J. Effect of a two-week treatment with a low dose of 2,2'4,4',5,5'-hexachlorobiphenyl (PCB153) on tight junction protein expression in ovine choroid plexus during long and short photoperiods. Neurotoxicol Teratol. 2013;37:63-7 pubmed 出版商
  230. Sourisseau M, Michta M, Zony C, Israelow B, Hopcraft S, Narbus C, et al. Temporal analysis of hepatitis C virus cell entry with occludin directed blocking antibodies. PLoS Pathog. 2013;9:e1003244 pubmed 出版商
  231. Mishra R, Singh S. HIV-1 Tat C modulates expression of miRNA-101 to suppress VE-cadherin in human brain microvascular endothelial cells. J Neurosci. 2013;33:5992-6000 pubmed 出版商
  232. Fiorentino M, Lammers K, Levine M, Sztein M, Fasano A. In vitro Intestinal Mucosal Epithelial Responses to Wild-Type Salmonella Typhi and Attenuated Typhoid Vaccines. Front Immunol. 2013;4:17 pubmed 出版商
  233. Kirschner N, Rosenthal R, Furuse M, Moll I, Fromm M, Brandner J. Contribution of tight junction proteins to ion, macromolecule, and water barrier in keratinocytes. J Invest Dermatol. 2013;133:1161-9 pubmed 出版商
  234. Kyuno D, Kojima T, Yamaguchi H, Ito T, Kimura Y, Imamura M, et al. Protein kinase C? inhibitor protects against downregulation of claudin-1 during epithelial-mesenchymal transition of pancreatic cancer. Carcinogenesis. 2013;34:1232-43 pubmed 出版商
  235. Kim S, Ishida H, Yamane D, Yi M, Swinney D, Foung S, et al. Contrasting roles of mitogen-activated protein kinases in cellular entry and replication of hepatitis C virus: MKNK1 facilitates cell entry. J Virol. 2013;87:4214-24 pubmed 出版商
  236. Kissoon Singh V, Moreau F, Trusevych E, Chadee K. Entamoeba histolytica exacerbates epithelial tight junction permeability and proinflammatory responses in Muc2(-/-) mice. Am J Pathol. 2013;182:852-65 pubmed 出版商
  237. Stenman L, Holma R, Eggert A, Korpela R. A novel mechanism for gut barrier dysfunction by dietary fat: epithelial disruption by hydrophobic bile acids. Am J Physiol Gastrointest Liver Physiol. 2013;304:G227-34 pubmed 出版商
  238. Takasawa A, Kojima T, Ninomiya T, Tsujiwaki M, Murata M, Tanaka S, et al. Behavior of tricellulin during destruction and formation of tight junctions under various extracellular calcium conditions. Cell Tissue Res. 2013;351:73-84 pubmed 出版商
  239. Cheung T, Ganatra M, Peters E, Truskey G. Effect of cellular senescence on the albumin permeability of blood-derived endothelial cells. Am J Physiol Heart Circ Physiol. 2012;303:H1374-83 pubmed 出版商
  240. Wang J, Novak I. Ion transport in human pancreatic duct epithelium, Capan-1 cells, is regulated by secretin, VIP, acetylcholine, and purinergic receptors. Pancreas. 2013;42:452-60 pubmed 出版商
  241. Cantara S, Soscia D, Sequeira S, Jean Gilles R, Castracane J, Larsen M. Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity. Biomaterials. 2012;33:8372-82 pubmed 出版商
  242. Baek H, Noh Y, Lee J, Yeon S, Jeong J, Kwon H. Autonomous isolation, long-term culture and differentiation potential of adult salivary gland-derived stem/progenitor cells. J Tissue Eng Regen Med. 2014;8:717-27 pubmed 出版商
  243. Sandmann L, Wilson M, Back D, Wedemeyer H, Manns M, Steinmann E, et al. Anti-retroviral drugs do not facilitate hepatitis C virus (HCV) infection in vitro. Antiviral Res. 2012;96:51-8 pubmed 出版商
  244. Northrop N, Yamamoto B. Persistent neuroinflammatory effects of serial exposure to stress and methamphetamine on the blood-brain barrier. J Neuroimmune Pharmacol. 2012;7:951-68 pubmed 出版商
  245. Ji K, Tsirka S. Inflammation modulates expression of laminin in the central nervous system following ischemic injury. J Neuroinflammation. 2012;9:159 pubmed 出版商
  246. Morel A, Hinkal G, Thomas C, Fauvet F, Courtois Cox S, Wierinckx A, et al. EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice. PLoS Genet. 2012;8:e1002723 pubmed 出版商
  247. Guzman Aranguez A, Woodward A, Pintor J, ARGUESO P. Targeted disruption of core 1 ?1,3-galactosyltransferase (C1galt1) induces apical endocytic trafficking in human corneal keratinocytes. PLoS ONE. 2012;7:e36628 pubmed 出版商
  248. Rittner H, Amasheh S, Moshourab R, Hackel D, Yamdeu R, Mousa S, et al. Modulation of tight junction proteins in the perineurium to facilitate peripheral opioid analgesia. Anesthesiology. 2012;116:1323-34 pubmed 出版商
  249. Kelsey L, Katoch P, Johnson K, Batra S, Mehta P. Retinoids regulate the formation and degradation of gap junctions in androgen-responsive human prostate cancer cells. PLoS ONE. 2012;7:e32846 pubmed 出版商
  250. Géraud C, Evdokimov K, Straub B, Peitsch W, Demory A, Dörflinger Y, et al. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids. PLoS ONE. 2012;7:e34206 pubmed 出版商
  251. Jiang X, Guo M, Su J, Lu B, Ma D, Zhang R, et al. Simvastatin blocks blood-brain barrier disruptions induced by elevated cholesterol both in vivo and in vitro. Int J Alzheimers Dis. 2012;2012:109324 pubmed 出版商
  252. Hsieh J, Lu C, Huang C, Shieh G, Su B, Su Y, et al. Acquisition of an enhanced aggressive phenotype in human lung cancer cells selected by suboptimal doses of cisplatin following cell deattachment and reattachment. Cancer Lett. 2012;321:36-44 pubmed 出版商
  253. Ritchie J, Rui H, Zhou X, Iida T, Kodoma T, Ito S, et al. Inflammation and disintegration of intestinal villi in an experimental model for Vibrio parahaemolyticus-induced diarrhea. PLoS Pathog. 2012;8:e1002593 pubmed 出版商
  254. Dukes J, Whitley P, Chalmers A. The PIKfyve inhibitor YM201636 blocks the continuous recycling of the tight junction proteins claudin-1 and claudin-2 in MDCK cells. PLoS ONE. 2012;7:e28659 pubmed 出版商
  255. Korompay A, Borka K, Lotz G, Somorácz A, Törzsök P, Erdélyi Belle B, et al. Tricellulin expression in normal and neoplastic human pancreas. Histopathology. 2012;60:E76-86 pubmed 出版商
  256. Fernandes I, de Freitas V, Reis C, Mateus N. A new approach on the gastric absorption of anthocyanins. Food Funct. 2012;3:508-16 pubmed 出版商
  257. Kyuno D, Kojima T, Ito T, Yamaguchi H, Tsujiwaki M, Takasawa A, et al. Protein kinase C? inhibitor enhances the sensitivity of human pancreatic cancer HPAC cells to Clostridium perfringens enterotoxin via claudin-4. Cell Tissue Res. 2011;346:369-81 pubmed 出版商
  258. Nguyen Hoang A, Chen P, Juarez J, Sachamitr P, Billing B, Bosnjak L, et al. Dendritic cell functional properties in a three-dimensional tissue model of human lung mucosa. Am J Physiol Lung Cell Mol Physiol. 2012;302:L226-37 pubmed 出版商
  259. Lan K, Wang Y, Lee W, Lan K, Tseng S, Hung L, et al. Multiple effects of Honokiol on the life cycle of hepatitis C virus. Liver Int. 2012;32:989-97 pubmed 出版商
  260. Lee S, Shin J, Kwon H, Weiner I, Han K. Renal ischemia-reperfusion injury causes intercalated cell-specific disruption of occludin in the collecting duct. Histochem Cell Biol. 2011;136:637-47 pubmed 出版商
  261. Chi F, Wang L, Zheng X, Wu C, Jong A, Sheard M, et al. Meningitic Escherichia coli K1 penetration and neutrophil transmigration across the blood-brain barrier are modulated by alpha7 nicotinic receptor. PLoS ONE. 2011;6:e25016 pubmed 出版商
  262. Carman A, Mills J, Krenz A, Kim D, Bynoe M. Adenosine receptor signaling modulates permeability of the blood-brain barrier. J Neurosci. 2011;31:13272-80 pubmed 出版商
  263. Lubarski I, Asher C, Garty H. FXYD5 (dysadherin) regulates the paracellular permeability in cultured kidney collecting duct cells. Am J Physiol Renal Physiol. 2011;301:F1270-80 pubmed 出版商
  264. Quaranta M, Vincentini O, Felli C, Spadaro F, Silano M, Moricoli D, et al. Exogenous HIV-1 Nef upsets the IFN-?-induced impairment of human intestinal epithelial integrity. PLoS ONE. 2011;6:e23442 pubmed 出版商
  265. Humen M, Perez P, Liévin Le Moal V. Lipid raft-dependent adhesion of Giardia intestinalis trophozoites to a cultured human enterocyte-like Caco-2/TC7 cell monolayer leads to cytoskeleton-dependent functional injuries. Cell Microbiol. 2011;13:1683-702 pubmed 出版商
  266. Kojima T, Takasawa A, Kyuno D, Ito T, Yamaguchi H, Hirata K, et al. Downregulation of tight junction-associated MARVEL protein marvelD3 during epithelial-mesenchymal transition in human pancreatic cancer cells. Exp Cell Res. 2011;317:2288-98 pubmed 出版商
  267. Dukes J, Fish L, Richardson J, Blaikley E, Burns S, Caunt C, et al. Functional ESCRT machinery is required for constitutive recycling of claudin-1 and maintenance of polarity in vertebrate epithelial cells. Mol Biol Cell. 2011;22:3192-205 pubmed 出版商
  268. Belgiovine C, Chiodi I, Mondello C. Relocalization of cell adhesion molecules during neoplastic transformation of human fibroblasts. Int J Oncol. 2011;39:1199-204 pubmed 出版商
  269. Jahn K, Biazik J, Braet F. GM1 expression in caco-2 cells: characterisation of a fundamental passage-dependent transformation of a cell line. J Pharm Sci. 2011;100:3751-62 pubmed 出版商
  270. Ciesek S, Westhaus S, Wicht M, Wappler I, Henschen S, Sarrazin C, et al. Impact of intra- and interspecies variation of occludin on its function as coreceptor for authentic hepatitis C virus particles. J Virol. 2011;85:7613-21 pubmed 出版商
  271. Yan J, Zhang Z, Shi H. HIF-1 is involved in high glucose-induced paracellular permeability of brain endothelial cells. Cell Mol Life Sci. 2012;69:115-28 pubmed 出版商
  272. Lagaraine C, Skipor J, Szczepkowska A, Dufourny L, Thiery J. Tight junction proteins vary in the choroid plexus of ewes according to photoperiod. Brain Res. 2011;1393:44-51 pubmed 出版商
  273. Kwon Y, Cukierman E, Godwin A. Differential expressions of adhesive molecules and proteases define mechanisms of ovarian tumor cell matrix penetration/invasion. PLoS ONE. 2011;6:e18872 pubmed 出版商
  274. Butt O, Buehler P, D Agnillo F. Blood-brain barrier disruption and oxidative stress in guinea pig after systemic exposure to modified cell-free hemoglobin. Am J Pathol. 2011;178:1316-28 pubmed 出版商
  275. Kirschner N, Haftek M, Niessen C, Behne M, Furuse M, Moll I, et al. CD44 regulates tight-junction assembly and barrier function. J Invest Dermatol. 2011;131:932-43 pubmed 出版商
  276. De Benedetto A, Rafaels N, McGirt L, Ivanov A, Georas S, Cheadle C, et al. Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol. 2011;127:773-86.e1-7 pubmed 出版商
  277. Haarmann A, Deiss A, Prochaska J, Foerch C, Weksler B, Romero I, et al. Evaluation of soluble junctional adhesion molecule-A as a biomarker of human brain endothelial barrier breakdown. PLoS ONE. 2010;5:e13568 pubmed 出版商
  278. Eyre N, Drummer H, Beard M. The SR-BI partner PDZK1 facilitates hepatitis C virus entry. PLoS Pathog. 2010;6:e1001130 pubmed 出版商
  279. Govindarajan R, Chakraborty S, Johnson K, Falk M, Wheelock M, Johnson K, et al. Assembly of connexin43 into gap junctions is regulated differentially by E-cadherin and N-cadherin in rat liver epithelial cells. Mol Biol Cell. 2010;21:4089-107 pubmed 出版商
  280. Su L, Mruk D, Lee W, Cheng C. Differential effects of testosterone and TGF-?3 on endocytic vesicle-mediated protein trafficking events at the blood-testis barrier. Exp Cell Res. 2010;316:2945-60 pubmed 出版商
  281. Cong W, Hirose T, Harita Y, Yamashita A, Mizuno K, Hirano H, et al. ASPP2 regulates epithelial cell polarity through the PAR complex. Curr Biol. 2010;20:1408-14 pubmed 出版商
  282. Burgel B, Friesland M, Koch A, Manns M, Wedemeyer H, Weissenborn K, et al. Hepatitis C virus enters human peripheral neuroblastoma cells - evidence for extra-hepatic cells sustaining hepatitis C virus penetration. J Viral Hepat. 2011;18:562-70 pubmed 出版商
  283. Yamaguchi H, Kojima T, Ito T, Kimura Y, Imamura M, Son S, et al. Transcriptional control of tight junction proteins via a protein kinase C signal pathway in human telomerase reverse transcriptase-transfected human pancreatic duct epithelial cells. Am J Pathol. 2010;177:698-712 pubmed 出版商
  284. Garay E, Patino Lopez G, Islas S, Alarcón L, Canche Pool E, Valle Rios R, et al. CRTAM: A molecule involved in epithelial cell adhesion. J Cell Biochem. 2010;111:111-22 pubmed 出版商
  285. Kojima T, Fuchimoto J, Yamaguchi H, Ito T, Takasawa A, Ninomiya T, et al. c-Jun N-terminal kinase is largely involved in the regulation of tricellular tight junctions via tricellulin in human pancreatic duct epithelial cells. J Cell Physiol. 2010;225:720-33 pubmed 出版商
  286. De la Serre C, Ellis C, Lee J, Hartman A, Rutledge J, Raybould H. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol. 2010;299:G440-8 pubmed 出版商
  287. Schubert Unkmeir A, Konrad C, Slanina H, Czapek F, Hebling S, Frosch M. Neisseria meningitidis induces brain microvascular endothelial cell detachment from the matrix and cleavage of occludin: a role for MMP-8. PLoS Pathog. 2010;6:e1000874 pubmed 出版商
  288. Yakovich A, Huang Q, Du J, Jiang B, Barnard J. Vectorial TGFbeta signaling in polarized intestinal epithelial cells. J Cell Physiol. 2010;224:398-404 pubmed 出版商
  289. Ciesek S, Steinmann E, Iken M, Ott M, Helfritz F, Wappler I, et al. Glucocorticosteroids increase cell entry by hepatitis C virus. Gastroenterology. 2010;138:1875-84 pubmed 出版商
  290. Ploss A, Khetani S, Jones C, Syder A, Trehan K, Gaysinskaya V, et al. Persistent hepatitis C virus infection in microscale primary human hepatocyte cultures. Proc Natl Acad Sci U S A. 2010;107:3141-5 pubmed 出版商
  291. Karim M, Biswas S, Bhattacherjee P, Paterson C. Comparison of tight junction protein expression in the ciliary epithelia of mouse, rabbit, cat and human eyes. Biotech Histochem. 2011;86:161-7 pubmed 出版商
  292. Chakraborty S, Mitra S, Falk M, Caplan S, Wheelock M, Johnson K, et al. E-cadherin differentially regulates the assembly of Connexin43 and Connexin32 into gap junctions in human squamous carcinoma cells. J Biol Chem. 2010;285:10761-76 pubmed 出版商
  293. Ohkuni T, Kojima T, Ogasawara N, Masaki T, Ninomiya T, Kikuchi S, et al. Expression and localization of tricellulin in human nasal epithelial cells in vivo and in vitro. Med Mol Morphol. 2009;42:204-11 pubmed 出版商
  294. Joannes A, Bonnomet A, Bindels S, Polette M, Gilles C, Burlet H, et al. Fhit regulates invasion of lung tumor cells. Oncogene. 2010;29:1203-13 pubmed 出版商
  295. Sadowska G, Malaeb S, Stonestreet B. Maternal glucocorticoid exposure alters tight junction protein expression in the brain of fetal sheep. Am J Physiol Heart Circ Physiol. 2010;298:H179-88 pubmed 出版商
  296. Kamekura R, Kojima T, Koizumi J, Ogasawara N, Kurose M, Go M, et al. Thymic stromal lymphopoietin enhances tight-junction barrier function of human nasal epithelial cells. Cell Tissue Res. 2009;338:283-93 pubmed 出版商
  297. Shimazaki J, Higa K, Kato N, Satake Y. Barrier function of cultivated limbal and oral mucosal epithelial cell sheets. Invest Ophthalmol Vis Sci. 2009;50:5672-80 pubmed 出版商
  298. Matsumoto M, Oyamada K, Takahashi H, Sato T, Hatakeyama S, Nakayama K. Large-scale proteomic analysis of tyrosine-phosphorylation induced by T-cell receptor or B-cell receptor activation reveals new signaling pathways. Proteomics. 2009;9:3549-63 pubmed 出版商
  299. Nicholson M, Lindsay L, Murphy C. Ovarian hormones control the changing expression of claudins and occludin in rat uterine epithelial cells during early pregnancy. Acta Histochem. 2010;112:42-52 pubmed 出版商
  300. Sobarzo C, Lustig L, Ponzio R, Suescun M, Denduchis B. Effects of di(2-ethylhexyl) phthalate on gap and tight junction protein expression in the testis of prepubertal rats. Microsc Res Tech. 2009;72:868-77 pubmed 出版商
  301. Waldow T, Witt W, Janke A, Ulmer A, Buzin A, Matschke K. Cell-cell junctions and vascular endothelial growth factor in rat lung as affected by ischemia/reperfusion and preconditioning with inhaled nitric oxide. J Surg Res. 2009;157:30-42 pubmed 出版商
  302. Murakami T, Felinski E, Antonetti D. Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor-induced permeability. J Biol Chem. 2009;284:21036-46 pubmed 出版商
  303. McCaffrey G, Willis C, Staatz W, Nametz N, Quigley C, Hom S, et al. Occludin oligomeric assemblies at tight junctions of the blood-brain barrier are altered by hypoxia and reoxygenation stress. J Neurochem. 2009;110:58-71 pubmed 出版商
  304. Alanne M, Pummi K, Heape A, Grenman R, Peltonen J, Peltonen S. Tight junction proteins in human Schwann cell autotypic junctions. J Histochem Cytochem. 2009;57:523-9 pubmed 出版商
  305. Tian J, Hao L, Chandra P, Jones D, Willams I, Gewirtz A, et al. Dietary glutamine and oral antibiotics each improve indexes of gut barrier function in rat short bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2009;296:G348-55 pubmed 出版商
  306. Son S, Kojima T, Decaens C, Yamaguchi H, Ito T, Imamura M, et al. Knockdown of tight junction protein claudin-2 prevents bile canalicular formation in WIF-B9 cells. Histochem Cell Biol. 2009;131:411-24 pubmed 出版商
  307. McLaughlin J, Lambert D, Padfield P, Burt J, O Neill C. The mycotoxin patulin, modulates tight junctions in caco-2 cells. Toxicol In Vitro. 2009;23:83-9 pubmed 出版商
  308. Sugimoto M, Inoko A, Shiromizu T, Nakayama M, Zou P, Yonemura S, et al. The keratin-binding protein Albatross regulates polarization of epithelial cells. J Cell Biol. 2008;183:19-28 pubmed 出版商
  309. Hemphill A, Vonlaufen N, Golaz J, Burgener I. Infection of primary canine duodenal epithelial cell cultures with Neospora caninum. J Parasitol. 2009;95:372-80 pubmed 出版商
  310. Neuhaus W, Wirth M, Plattner V, Germann B, Gabor F, Noe C. Expression of Claudin-1, Claudin-3 and Claudin-5 in human blood-brain barrier mimicking cell line ECV304 is inducible by glioma-conditioned media. Neurosci Lett. 2008;446:59-64 pubmed 出版商
  311. Chen X, Lan X, Roche I, Liu R, Geiger J. Caffeine protects against MPTP-induced blood-brain barrier dysfunction in mouse striatum. J Neurochem. 2008;107:1147-57 pubmed 出版商
  312. Van Hoof D, Braam S, Dormeyer W, Ward van Oostwaard D, Heck A, Krijgsveld J, et al. Feeder-free monolayer cultures of human embryonic stem cells express an epithelial plasma membrane protein profile. Stem Cells. 2008;26:2777-81 pubmed 出版商
  313. McCaffrey G, Seelbach M, Staatz W, Nametz N, Quigley C, Campos C, et al. Occludin oligomeric assembly at tight junctions of the blood-brain barrier is disrupted by peripheral inflammatory hyperalgesia. J Neurochem. 2008;106:2395-409 pubmed 出版商
  314. Bouschbacher M, Bomsel M, Verronèse E, Gofflo S, Ganor Y, Dezutter Dambuyant C, et al. Early events in HIV transmission through a human reconstructed vaginal mucosa. AIDS. 2008;22:1257-66 pubmed 出版商
  315. Neuhaus W, Plattner V, Wirth M, Germann B, Lachmann B, Gabor F, et al. Validation of in vitro cell culture models of the blood-brain barrier: tightness characterization of two promising cell lines. J Pharm Sci. 2008;97:5158-75 pubmed 出版商
  316. Chen X, Gawryluk J, Wagener J, Ghribi O, Geiger J. Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer's disease. J Neuroinflammation. 2008;5:12 pubmed 出版商
  317. Takano K, Kojima T, Ogasawara N, Go M, Kikuchi S, Ninomiya T, et al. Expression of tight junction proteins in epithelium including Ck20-positive M-like cells of human adenoids in vivo and in vitro. J Mol Histol. 2008;39:265-73 pubmed 出版商
  318. Paschoud S, Citi S. Inducible overexpression of cingulin in stably transfected MDCK cells does not affect tight junction organization and gene expression. Mol Membr Biol. 2008;25:1-13 pubmed
  319. Lussier C, Babeu J, Auclair B, Perreault N, Boudreau F. Hepatocyte nuclear factor-4alpha promotes differentiation of intestinal epithelial cells in a coculture system. Am J Physiol Gastrointest Liver Physiol. 2008;294:G418-28 pubmed
  320. Kojima T, Takano K, Yamamoto T, Murata M, Son S, Imamura M, et al. Transforming growth factor-beta induces epithelial to mesenchymal transition by down-regulation of claudin-1 expression and the fence function in adult rat hepatocytes. Liver Int. 2008;28:534-45 pubmed
  321. McCaffrey G, Staatz W, Quigley C, Nametz N, Seelbach M, Campos C, et al. Tight junctions contain oligomeric protein assembly critical for maintaining blood-brain barrier integrity in vivo. J Neurochem. 2007;103:2540-55 pubmed 出版商
  322. Ohnemus U, Kohrmeyer K, Houdek P, Rohde H, Wladykowski E, Vidal S, et al. Regulation of epidermal tight-junctions (TJ) during infection with exfoliative toxin-negative Staphylococcus strains. J Invest Dermatol. 2008;128:906-16 pubmed
  323. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204:2349-62 pubmed
  324. Dhasarathy A, Kajita M, Wade P. The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen receptor-alpha. Mol Endocrinol. 2007;21:2907-18 pubmed
  325. Mandell K, Berglin L, Severson E, Edelhauser H, Parkos C. Expression of JAM-A in the human corneal endothelium and retinal pigment epithelium: localization and evidence for role in barrier function. Invest Ophthalmol Vis Sci. 2007;48:3928-36 pubmed
  326. Moser L, Carter M, Schultz Cherry S. Astrovirus increases epithelial barrier permeability independently of viral replication. J Virol. 2007;81:11937-45 pubmed
  327. Golaz J, Vonlaufen N, Hemphill A, Burgener I. Establishment and characterization of a primary canine duodenal epithelial cell culture. In Vitro Cell Dev Biol Anim. 2007;43:176-85 pubmed
  328. Morgan L, Shah B, Rivers L, Barden L, Groom A, Chung R, et al. Inflammation and dephosphorylation of the tight junction protein occludin in an experimental model of multiple sclerosis. Neuroscience. 2007;147:664-73 pubmed
  329. Beau I, Cotte Laffitte J, Amsellem R, Servin A. A protein kinase A-dependent mechanism by which rotavirus affects the distribution and mRNA level of the functional tight junction-associated protein, occludin, in human differentiated intestinal Caco-2 cells. J Virol. 2007;81:8579-86 pubmed
  330. Hernandez S, Chavez Munguia B, Gonzalez Mariscal L. ZO-2 silencing in epithelial cells perturbs the gate and fence function of tight junctions and leads to an atypical monolayer architecture. Exp Cell Res. 2007;313:1533-47 pubmed
  331. Stucke V, Timmerman E, Vandekerckhove J, Gevaert K, Hall A. The MAGUK protein MPP7 binds to the polarity protein hDlg1 and facilitates epithelial tight junction formation. Mol Biol Cell. 2007;18:1744-55 pubmed
  332. Mitra S, Annamalai L, Chakraborty S, Johnson K, Song X, Batra S, et al. Androgen-regulated formation and degradation of gap junctions in androgen-responsive human prostate cancer cells. Mol Biol Cell. 2006;17:5400-16 pubmed
  333. Anstrom J, Thore C, Moody D, Brown W. Immunolocalization of tight junction proteins in blood vessels in human germinal matrix and cortex. Histochem Cell Biol. 2007;127:205-13 pubmed
  334. Uchino Y, Shimmura S, Miyashita H, Taguchi T, Kobayashi H, Shimazaki J, et al. Amniotic membrane immobilized poly(vinyl alcohol) hybrid polymer as an artificial cornea scaffold that supports a stratified and differentiated corneal epithelium. J Biomed Mater Res B Appl Biomater. 2007;81:201-6 pubmed
  335. Larre I, Ponce A, Fiorentino R, Shoshani L, Contreras R, Cereijido M. Contacts and cooperation between cells depend on the hormone ouabain. Proc Natl Acad Sci U S A. 2006;103:10911-6 pubmed
  336. Herouy Y, Kahle B, Idzko M, Eberth I, Norgauer J, Pannier F, et al. Tight junctions and compression therapy in chronic venous insufficiency. Int J Mol Med. 2006;18:215-9 pubmed
  337. Gonzalez Mariscal L, Namorado M, Martin D, Sierra G, Reyes J. The tight junction proteins claudin-7 and -8 display a different subcellular localization at Henle's loops and collecting ducts of rabbit kidney. Nephrol Dial Transplant. 2006;21:2391-8 pubmed
  338. Watson C, Hoare C, Garrod D, Carlson G, Warhurst G. Interferon-gamma selectively increases epithelial permeability to large molecules by activating different populations of paracellular pores. J Cell Sci. 2005;118:5221-30 pubmed
  339. Zhu L, Li X, Zeng R, Gorodeski G. Changes in tight junctional resistance of the cervical epithelium are associated with modulation of content and phosphorylation of occludin 65-kilodalton and 50-kilodalton forms. Endocrinology. 2006;147:977-89 pubmed
  340. Schierack P, Nordhoff M, Pollmann M, Weyrauch K, Amasheh S, Lodemann U, et al. Characterization of a porcine intestinal epithelial cell line for in vitro studies of microbial pathogenesis in swine. Histochem Cell Biol. 2006;125:293-305 pubmed
  341. Miyashita H, Shimmura S, Kobayashi H, Taguchi T, Asano Kato N, Uchino Y, et al. Collagen-immobilized poly(vinyl alcohol) as an artificial cornea scaffold that supports a stratified corneal epithelium. J Biomed Mater Res B Appl Biomater. 2006;76:56-63 pubmed
  342. Haton C, Lebrun F, Benderitter M, Griffiths N. Maintenance of differentiation capacity of HT-29 cells after radiation exposure. Int J Radiat Biol. 2005;81:211-20 pubmed
  343. Clark E, Hoare C, Tanianis Hughes J, Carlson G, Warhurst G. Interferon gamma induces translocation of commensal Escherichia coli across gut epithelial cells via a lipid raft-mediated process. Gastroenterology. 2005;128:1258-67 pubmed
  344. Bordin M, D Atri F, Guillemot L, Citi S. Histone deacetylase inhibitors up-regulate the expression of tight junction proteins. Mol Cancer Res. 2004;2:692-701 pubmed
  345. Go M, Kojima T, Takano K, Murata M, Ichimiya S, Tsubota H, et al. Expression and function of tight junctions in the crypt epithelium of human palatine tonsils. J Histochem Cytochem. 2004;52:1627-38 pubmed
  346. Somosy Z, Forgacs Z, Bognár G, Horvath K, Horváth G. Alteration of tight and adherens junctions on 50-Hz magnetic field exposure in Madin Darby canine kidney (MDCK) cells. ScientificWorldJournal. 2004;4 Suppl 2:75-82 pubmed
  347. Zeng R, Li X, Gorodeski G. Estrogen abrogates transcervical tight junctional resistance by acceleration of occludin modulation. J Clin Endocrinol Metab. 2004;89:5145-55 pubmed
  348. Sundberg U, Beauchemin N, Obrink B. The cytoplasmic domain of CEACAM1-L controls its lateral localization and the organization of desmosomes in polarized epithelial cells. J Cell Sci. 2004;117:1091-104 pubmed
  349. Kahle B, Idzko M, Norgauer J, Rabe E, Herouy Y. Tightening tight junctions with compression therapy. J Invest Dermatol. 2003;121:1228-9 pubmed
  350. Billings S, Walsh S, Fisher C, Nusrat A, Weiss S, Folpe A. Aberrant expression of tight junction-related proteins ZO-1, claudin-1 and occludin in synovial sarcoma: an immunohistochemical study with ultrastructural correlation. Mod Pathol. 2004;17:141-9 pubmed
  351. Malminen M, Koivukangas V, Peltonen J, Karvonen S, Oikarinen A, Peltonen S. Immunohistological distribution of the tight junction components ZO-1 and occludin in regenerating human epidermis. Br J Dermatol. 2003;149:255-60 pubmed
  352. Evans S, Blyth D, Wong T, Sanjar S, West M. Decreased distribution of lung epithelial junction proteins after intratracheal antigen or lipopolysaccharide challenge: correlation with neutrophil influx and levels of BALF sE-cadherin. Am J Respir Cell Mol Biol. 2002;27:446-54 pubmed
  353. Tavelin S, Gråsjö J, Taipalensuu J, Ocklind G, Artursson P. Applications of epithelial cell culture in studies of drug transport. Methods Mol Biol. 2002;188:233-72 pubmed
  354. Busch C, Hanssen T, Wagener C, Obrink B. Down-regulation of CEACAM1 in human prostate cancer: correlation with loss of cell polarity, increased proliferation rate, and Gleason grade 3 to 4 transition. Hum Pathol. 2002;33:290-8 pubmed
  355. Gudjonsson T, Villadsen R, Nielsen H, Rønnov Jessen L, Bissell M, Petersen O. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev. 2002;16:693-706 pubmed
  356. Gudjonsson T, Rønnov Jessen L, Villadsen R, Rank F, Bissell M, Petersen O. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci. 2002;115:39-50 pubmed
  357. Pummi K, Malminen M, Aho H, Karvonen S, Peltonen J, Peltonen S. Epidermal tight junctions: ZO-1 and occludin are expressed in mature, developing, and affected skin and in vitro differentiating keratinocytes. J Invest Dermatol. 2001;117:1050-8 pubmed