这是一篇来自已证抗体库的有关人类 Oct4的综述,是根据393篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Oct4 抗体。
Oct4 同义词: OCT3; OCT4; OTF-3; OTF3; OTF4; Oct-3; Oct-4

圣克鲁斯生物技术
小鼠 单克隆(C-10)
  • 免疫组化; 小鼠; 1:400; 图 4f
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnologies, sc-5279)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4f). Nature (2020) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 s1c
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上 (图 s1c). Nucleic Acids Res (2020) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:1000; 图 2f
  • 免疫印迹; 人类; 图 2g
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2f) 和 被用于免疫印迹在人类样本上 (图 2g). Cell (2020) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫印迹在小鼠样本上. elife (2020) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:1000; 图 1b
圣克鲁斯生物技术 Oct4抗体(SANTA, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1b). elife (2020) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 1e
圣克鲁斯生物技术 Oct4抗体(Santa, sc5279)被用于被用于免疫细胞化学在人类样本上 (图 1e). Mol Ther Methods Clin Dev (2020) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 小鼠; 图 3b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫组化在小鼠样本上 (图 3b). Dev Cell (2019) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:50; 图 3s1b
圣克鲁斯生物技术 Oct4抗体(SCBT, C-10)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3s1b). elife (2019) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 3d
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上 (图 3d). Stem Cell Reports (2019) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:300; 图 e2a, e2d
  • 免疫印迹; 小鼠; 1:200; 图 e1c
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 e2a, e2d) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 e1c). Mol Syst Biol (2019) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 人类; 1:100; 图 1b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotech, sc-5279)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1b). Stem Cell Res (2019) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 s2c
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫细胞化学在人类样本上 (图 s2c). Nature (2019) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 人类; 图 4g
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc5279)被用于被用于免疫印迹在人类样本上 (图 4g). Protein Cell (2019) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc5279)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Nat Commun (2019) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 1d
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, 5279)被用于被用于免疫细胞化学在人类样本上 (图 1d). PLoS Biol (2019) ncbi
小鼠 单克隆(C-10)
  • 流式细胞仪; 人类; 1:20; 图 s2c, s4b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s2c, s4b). Cell Rep (2019) ncbi
小鼠 单克隆(C-10)
  • 免疫沉淀; 人类; 图 s2a
  • 免疫细胞化学; 人类; 图 1e
  • 免疫印迹; 人类; 图 1d
  • 免疫组化-冰冻切片; 小鼠; 图 s1b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫沉淀在人类样本上 (图 s2a), 被用于免疫细胞化学在人类样本上 (图 1e), 被用于免疫印迹在人类样本上 (图 1d) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 s1b). Sci Adv (2019) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100; 图 5h
  • 免疫印迹; 人类; 1:1000; 图 2i
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2i). Nat Commun (2019) ncbi
小鼠 单克隆(C-10)
  • 流式细胞仪; 人类; 1:50; 图 1e
  • 免疫细胞化学; 人类; 1:100; 图 1f
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1e) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 1f). Stem Cell Res (2019) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:200; 图 3a
圣克鲁斯生物技术 Oct4抗体(Sana Cruz Biotechnology, Inc, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3a). Cell Death Dis (2018) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 小鼠; 图 s4c
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫印迹在小鼠样本上 (图 s4c). J Cell Sci (2018) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:50; 图 1d
圣克鲁斯生物技术 Oct4抗体(SantaCruz, sc5279)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1d). Stem Cell Res (2018) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 小鼠; 1:50; 图 4a
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4a). Stem Cells Dev (2018) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1d
圣克鲁斯生物技术 Oct4抗体(SantaCruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1d). Development (2018) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 s6c
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology Inc, sc-5279)被用于被用于免疫细胞化学在人类样本上 (图 s6c). Nat Med (2018) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:200; 图 1b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1b). PLoS ONE (2018) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:50; 图 1f
圣克鲁斯生物技术 Oct4抗体(SantaCruz, sc5279)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1f). Stem Cell Res (2018) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 人类; 1:100; 图 5c
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5c). Nat Commun (2018) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 小鼠; 图 5a
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫组化在小鼠样本上 (图 5a). Dev Biol (2018) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 小鼠; 图 4g
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc5279)被用于被用于免疫组化在小鼠样本上 (图 4g). Nucleic Acids Res (2018) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 Oct4抗体(SantaCruz, sc-514295)被用于被用于免疫印迹在人类样本上 (图 3c). J Cell Mol Med (2018) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100; 图 1e
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1e). Stem Cell Res (2018) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 图 1c
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上 (图 1c). PLoS ONE (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100; 图 s10a
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s10a). Nat Commun (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:60; 图 1g
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:60 (图 1g). Stem Cell Res (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 s7a
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上 (图 s7a). Science (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:500; 图 s1a
圣克鲁斯生物技术 Oct4抗体(SantaCruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1a). Nat Cell Biol (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100; 图 1f
圣克鲁斯生物技术 Oct4抗体(SantaCruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1f). Stem Cell Res (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 s1d
  • 免疫细胞化学; 小鼠; 图 s2a
圣克鲁斯生物技术 Oct4抗体(SantaCruz, sc-5279)被用于被用于免疫细胞化学在人类样本上 (图 s1d) 和 被用于免疫细胞化学在小鼠样本上 (图 s2a). Cell (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:50; 图 3c
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 3c). Stem Cell Reports (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫组化-石蜡切片; 大鼠; 1:800; 图 st12
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC-5279)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:800 (图 st12). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 s2i
圣克鲁斯生物技术 Oct4抗体(SantaCruz, sc5279)被用于被用于免疫细胞化学在人类样本上 (图 s2i). J Exp Med (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; pigs ; 图 2c
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫印迹在pigs 样本上 (图 2c). Sci Rep (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:200; 图 4b
圣克鲁斯生物技术 Oct4抗体(SantaCruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4b). Cell (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 图 S1b
圣克鲁斯生物技术 Oct4抗体(Santa cruz, C-10)被用于被用于免疫细胞化学在小鼠样本上 (图 S1b). Stem Cells Int (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:200; 图 6d
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6d). Biomaterials (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:500; 图 s1q
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc5279)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1q). Cell Rep (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 人类; 1:1000; 图 7c
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc5279)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). Cell J (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 图 1b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC-5279)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). Sci Rep (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 3e
  • 免疫印迹; 人类; 图 2f
圣克鲁斯生物技术 Oct4抗体(SantaCruz, sc-5279)被用于被用于免疫细胞化学在人类样本上 (图 3e) 和 被用于免疫印迹在人类样本上 (图 2f). Cell Stem Cell (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100; 图 1d
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1d). Stem Cell Res (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 s2c
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上 (图 s2c). Nat Med (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 小鼠; 1:200; 图 s7b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, C-10)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s7b). PLoS Genet (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 小鼠; 1:5000; 图 1a
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1a). Nat Cell Biol (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 小鼠; 图 1e
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC-5279)被用于被用于免疫组化在小鼠样本上 (图 1e). Stem Cell Reports (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100; 图 1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 1C
  • 免疫印迹; 人类; 图 1E; 3F
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上 (图 1C) 和 被用于免疫印迹在人类样本上 (图 1E; 3F). Genes Dev (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:500; 图 s2
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100; 表 1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1). Methods Mol Biol (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:50; 图 1A
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1A). Stem Cell Res (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:50; 图 1A
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1A). Stem Cell Res (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:50; 图 1A
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1A). Stem Cell Res (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:50; 图 1A
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1A). Stem Cell Res (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:200; 图 s1b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s1b). Stem Cell Rev (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Stem Cell Reports (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:200; 表 1
圣克鲁斯生物技术 Oct4抗体(SCBT, SC-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (表 1). Mol Ther Methods Clin Dev (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:1000; 图 2
圣克鲁斯生物技术 Oct4抗体(santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(A-9)
  • 免疫印迹; 人类; 1:50; 图 7b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, 365509)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 7b). Oncotarget (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 图 s5a
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, C-10)被用于被用于免疫细胞化学在小鼠样本上 (图 s5a). Sci Rep (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 小鼠; 1:500; 图 s1b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, SC-5279)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s1b). Nat Commun (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(C-10)
  • 流式细胞仪; 人类; 1:50; 图 2
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2). Stem Cell Res Ther (2016) ncbi
小鼠 单克隆(C-10)
  • ChIP-Seq; 人类; 图 4a
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于ChIP-Seq在人类样本上 (图 4a). Nature (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 人类; 1:500; 图 s9c
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC-5279)被用于被用于免疫组化在人类样本上浓度为1:500 (图 s9c). Nature (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Cell Cycle (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫印迹在人类样本上 (图 1). J Korean Med Sci (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:100; 图 s1b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s1b). Sci Rep (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 1
圣克鲁斯生物技术 Oct4抗体(Santa, sc-5279)被用于被用于免疫细胞化学在人类样本上 (图 1). Folia Biol (Praha) (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:200; 图 1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1). Genome Biol (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC-5279)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100; 图 2
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:200; 图 2b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2b). Nat Cell Biol (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:200; 图 5
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc5279)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Stem Cell Reports (2016) ncbi
小鼠 单克隆(C-10)
  • 流式细胞仪; 人类; 图 s1
圣克鲁斯生物技术 Oct4抗体(santa Cruz, sc-5279)被用于被用于流式细胞仪在人类样本上 (图 s1). Stem Cell Reports (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:250; 图 s3c
圣克鲁斯生物技术 Oct4抗体(SantaCruz, sc5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 s3c). In Vitro Cell Dev Biol Anim (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫组化-冰冻切片; African green monkey; 1:400; 图 2
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:400 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:200; 图 s1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1). Nat Med (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100; 图 2
圣克鲁斯生物技术 Oct4抗体(Santa, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Mol Reprod Dev (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:500; 图 1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, 5279)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1). Cell Rep (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 2g
圣克鲁斯生物技术 Oct4抗体(Santa cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上 (图 2g). Stem Cells Int (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:250; 图 2
圣克鲁斯生物技术 Oct4抗体(santa Cruz, SC5279)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 2). Virol J (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:200; 图 3a
  • 免疫印迹; 小鼠; 1:1000; 图 1d
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). BMC Biol (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100; 图 3a
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3a). Methods Mol Biol (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 s3a
  • 免疫印迹; 人类; 图 s3b
圣克鲁斯生物技术 Oct4抗体(SantaCruz, sc-5279)被用于被用于免疫细胞化学在人类样本上 (图 s3a) 和 被用于免疫印迹在人类样本上 (图 s3b). Mol Psychiatry (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:200; 图 8
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 8). Stem Cells Int (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Oct4抗体(santa Cruz, sc-5279)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:500
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Nat Commun (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 人类; 图 3
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫组化在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 人类; 图 3b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc5279)被用于被用于免疫组化在人类样本上 (图 3b). Stem Cells Dev (2016) ncbi
小鼠 单克隆(C-10)
  • 染色质免疫沉淀 ; 人类; 图 4
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于染色质免疫沉淀 在人类样本上 (图 4), 被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:500; 图 1a
  • 免疫印迹; 小鼠; 图 1b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1b). elife (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC5279)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). J Biol Chem (2016) ncbi
小鼠 单克隆(C-10)
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 Oct4抗体(SCBT, c-10)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100; 图 s1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s1). Cell Res (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 人类; 1:750; 图 1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:500; 图 5s1a
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5s1a). elife (2016) ncbi
小鼠 单克隆(A-9)
  • 免疫印迹; 人类; 1:1000; 图 s2
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-365509)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 6
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫细胞化学在人类样本上 (图 6). Sci Rep (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:200; 图 2b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2b). J Cell Sci (2016) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS Genet (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100; 图 1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:50; 图 1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
  • 免疫细胞化学; 人类; 图 3
圣克鲁斯生物技术 Oct4抗体(santa Cruz, sc-5279)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3) 和 被用于免疫细胞化学在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100; 图 6
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). Mol Ther Methods Clin Dev (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 4
圣克鲁斯生物技术 Oct4抗体(santa Cruz, SC-5279)被用于被用于免疫细胞化学在人类样本上 (图 4). Stem Cell Reports (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 5 ug/ml; 图 3d
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC-5279)被用于被用于免疫细胞化学在人类样本上浓度为5 ug/ml (图 3d). J Vis Exp (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 4c
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 4c). BMC Musculoskelet Disord (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 牛; 1:25; 图 3
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC-5279)被用于被用于免疫细胞化学在牛样本上浓度为1:25 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:300; 图 2
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 2). J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 大鼠; 1:100
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC-5279)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100. Cell J (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100; 图 1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Stem Cells Int (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7). Cell Death Dis (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100; 图 st1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 st1). Sci Rep (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:250; 图 1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 1). Development (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; African green monkey; 1:100; 图 1s2
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC-5279)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:100 (图 1s2). elife (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:100; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 6
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Cell Biol (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 小鼠; 1:200; 图 3
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC5279)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3). Nat Biotechnol (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:500; 图 1d
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc 5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Dis Model Mech (2015) ncbi
小鼠 单克隆(C-10)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于流式细胞仪在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Biomaterials (2015) ncbi
小鼠 单克隆(C-10)
  • 流式细胞仪; 小鼠; 1:50
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于流式细胞仪在小鼠样本上浓度为1:50. PLoS ONE (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 图 3d
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上 (图 3d). Curr Mol Pharmacol (2016) ncbi
小鼠 单克隆(A-9)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-365509)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:200; 图 1
  • 免疫细胞化学; 猕猴; 1:200; 图 s10
  • 免疫细胞化学; 人类; 1:200; 图 5
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC- 5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1), 被用于免疫细胞化学在猕猴样本上浓度为1:200 (图 s10) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). Nature (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫沉淀; 小鼠; 图 3
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫沉淀在小鼠样本上 (图 3). Stem Cells (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC-5279)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 s3
  • 核糖核酸免疫沉淀; 小鼠; 图 7
  • 染色质免疫沉淀 ; 小鼠; 图 2
  • 免疫沉淀; 小鼠; 图 4
  • 免疫组化; 小鼠; 1:100; 图 1
圣克鲁斯生物技术 Oct4抗体(santa Cruz, sc-5279)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 s3), 被用于核糖核酸免疫沉淀在小鼠样本上 (图 7), 被用于染色质免疫沉淀 在小鼠样本上 (图 2), 被用于免疫沉淀在小鼠样本上 (图 4) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:500; 图 s2
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s2). PLoS ONE (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫组化-石蜡切片; 人类; 图 s2
  • 免疫细胞化学; 人类; 图 s2
圣克鲁斯生物技术 Oct4抗体(santa Cruz, SC-5279)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s2) 和 被用于免疫细胞化学在人类样本上 (图 s2). PLoS ONE (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫印迹在小鼠样本上 (图 1). Stem Cells (2015) ncbi
小鼠 单克隆(C-10)
  • 流式细胞仪; 人类; 1:100; 图 1c
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1c). EMBO J (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 图 2
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Genes Cells (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 图 s5a
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上 (图 s5a). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, C-10)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:100
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Cell Cycle (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Mol Ther (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, Sc5279)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
小鼠 单克隆(C-10)
  • 流式细胞仪; 小鼠; 1:100; 图 5c
  • 免疫细胞化学; 小鼠; 1:100; 图 5a
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5c) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5a). PLoS ONE (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:200; 图 3
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, Sc5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫印迹在大鼠样本上. Redox Biol (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:300
圣克鲁斯生物技术 Oct4抗体(Santa cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Peerj (2014) ncbi
小鼠 单克隆(A-9)
  • 免疫细胞化学; 小鼠; 1:500
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-365509)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Stem Cells Dev (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 人类; 1:200; 图 3a
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Stem Cells (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 小鼠
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫组化在小鼠样本上. Dev Biol (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 大鼠; 图 2
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在大鼠样本上 (图 2). Stem Cells (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:75
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc5279)被用于被用于免疫细胞化学在人类样本上浓度为1:75. Stem Cell Res (2014) ncbi
小鼠 单克隆(1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-101534)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 人类; 1:100
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫组化在人类样本上浓度为1:100. Virchows Arch (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫细胞化学在人类样本上. Biotechnol Bioeng (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc5279)被用于被用于免疫印迹在人类样本上浓度为1:500. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100; 图 1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Nat Commun (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:100
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Hum Reprod (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:100; 图 3a
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3a). Acta Biochim Biophys Sin (Shanghai) (2014) ncbi
小鼠 单克隆(C-10)
  • EMSA; 人类; 图 4
圣克鲁斯生物技术 Oct4抗体(Santa cruz, sc-5279)被用于被用于EMSA在人类样本上 (图 4). Gen Comp Endocrinol (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 小鼠; 图 1b
圣克鲁斯生物技术 Oct4抗体(Santa, sc-5279)被用于被用于免疫印迹在小鼠样本上 (图 1b). elife (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:500; 图 3b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3b). Mol Neurobiol (2015) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:250
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:250. Stem Cells Dev (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; domestic rabbit; 1:500
  • 免疫印迹; domestic rabbit; 1:1,000
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, SC-5279)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:500 和 被用于免疫印迹在domestic rabbit样本上浓度为1:1,000. Stem Cells Dev (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 Oct4抗体(SantaCruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 大鼠; 1:100
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫组化在大鼠样本上浓度为1:100. Mol Hum Reprod (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Int J Exp Pathol (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:100
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 人类; 1:100
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫组化在人类样本上浓度为1:100. Acta Histochem (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(C-10)
  • In-Cell Western; 犬; 1:200; 图 4
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology Inc, sc 5279)被用于被用于In-Cell Western在犬样本上浓度为1:200 (图 4). Stem Cells Transl Med (2014) ncbi
小鼠 单克隆(C-10)
  • EMSA; 小鼠
  • EMSA; 大鼠
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279X)被用于被用于EMSA在小鼠样本上 和 被用于EMSA在大鼠样本上. Am J Hum Genet (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:200; 图 2
  • 免疫印迹; 小鼠; 1:200; 图 1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 1). Sci Rep (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫组化-石蜡切片; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Biol Open (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 小鼠; 1:500
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Mol Cell Proteomics (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Oct4抗体(Santa Cruz biotechnology, sc-5279)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:500
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Stem Cell Res (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:200; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 非洲爪蛙; 1:200; 图 1b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc- 5279)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:200 (图 1b). Stem Cell Reports (2013) ncbi
小鼠 单克隆(C-10)
  • 免疫组化-石蜡切片; 小鼠; 1:200
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, SC-5279)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Stem Cells Transl Med (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫组化-石蜡切片; 小鼠; 1:100
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, #SC5279)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. J Bone Miner Res (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫组化-石蜡切片; 人类; 1:350
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:350. Mod Pathol (2014) ncbi
小鼠 单克隆(C-10)
  • 流式细胞仪; 人类
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, Sc5279)被用于被用于流式细胞仪在人类样本上. Cell Death Dis (2013) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:200
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Genomics (2013) ncbi
小鼠 单克隆(C-10)
  • 免疫组化-石蜡切片; 人类; 1:50
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Cell Death Dis (2013) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:100; 图 1
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1). PLoS Genet (2013) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:100
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Methods Mol Biol (2013) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Oct4抗体(Santa, SC-5279)被用于被用于免疫印迹在小鼠样本上. ACS Chem Biol (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Neurosci Res (2013) ncbi
小鼠 单克隆(C-10)
  • 免疫组化-石蜡切片; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 6). PLoS ONE (2013) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:500
  • 免疫印迹; 小鼠
  • 免疫细胞化学; 人类; 1:500
  • 免疫印迹; 人类
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500, 被用于免疫印迹在小鼠样本上, 被用于免疫细胞化学在人类样本上浓度为1:500 和 被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, SC-5279)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Stem Cell Rev (2013) ncbi
小鼠 单克隆(C-10)
  • 免疫组化-石蜡切片; 人类
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫细胞化学在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:500; 图 7
  • 免疫组化; 小鼠; 1:500; 图 4
  • 免疫印迹; 小鼠; 1:500; 图 4
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 7), 被用于免疫组化在小鼠样本上浓度为1:500 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Cell (2013) ncbi
小鼠 单克隆(C-10)
圣克鲁斯生物技术 Oct4抗体(Zymed, C-10)被用于. PLoS ONE (2013) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 大鼠; 1:500
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. Biochem Biophys Res Commun (2013) ncbi
小鼠 单克隆(C-10)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Cell Cycle (2013) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 小鼠; 1:200
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫组化在小鼠样本上浓度为1:200. Zygote (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 小鼠; 1:200
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Biophys J (2012) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 猕猴; 1:500
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫细胞化学在猕猴样本上浓度为1:500. Stem Cells Dev (2013) ncbi
小鼠 单克隆(C-10)
  • 流式细胞仪; 小鼠; 图 2e
  • 免疫细胞化学; 小鼠; 图 3b
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc5279)被用于被用于流式细胞仪在小鼠样本上 (图 2e) 和 被用于免疫细胞化学在小鼠样本上 (图 3b). Stem Cells (2012) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫印迹在人类样本上. Stem Cells (2012) ncbi
小鼠 单克隆(C-10)
  • 免疫组化; 小鼠; 1:100
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫组化在小鼠样本上浓度为1:100. Dev Biol (2012) ncbi
小鼠 单克隆(C-10)
  • 染色质免疫沉淀 ; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于染色质免疫沉淀 在小鼠样本上 和 被用于免疫印迹在小鼠样本上. EMBO J (2011) ncbi
小鼠 单克隆(C-10)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 7
圣克鲁斯生物技术 Oct4抗体(Santa Cruz, sc-5279)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 7). PLoS ONE (2009) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 小鼠; 1:500; 图 3
圣克鲁斯生物技术 Oct4抗体(Santa Cruz Biotechnology, sc-5279)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). Stem Cells (2006) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 s1d
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s1d). BMC Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s4
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫细胞化学在人类样本上 (图 s4). Cell Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). J Biomed Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s3a
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫细胞化学在人类样本上 (图 s3a). Stem Cell Reports (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d, 4d
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫印迹在人类样本上 (图 3d, 4d). J Cancer (2020) ncbi
domestic rabbit 单克隆(EPR17929)
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab181557)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:40; 图 4s1b
艾博抗(上海)贸易有限公司 Oct4抗体(abcam, ab19857)被用于被用于免疫细胞化学在人类样本上浓度为1:40 (图 4s1b). elife (2019) ncbi
domestic rabbit 单克隆(EPR17929)
  • 免疫细胞化学; 人类; 图 1e
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab181557)被用于被用于免疫细胞化学在人类样本上 (图 1e). Mol Ther Nucleic Acids (2019) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 Oct4抗体(abcam, ab19857)被用于被用于ChIP-Seq在小鼠样本上 (图 3b). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫印迹在人类样本上 (图 2a). Theranostics (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s5d
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5d). J Exp Med (2019) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 1:1000; 图 7e
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, 19857)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:1000 (图 7e). Stem Cell Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 8f
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab18976)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 8f). Oncotarget (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 4b
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4b). Biosci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫印迹在小鼠样本上 (图 1a). Nucleic Acids Res (2018) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 图 s1b
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab27985)被用于被用于免疫细胞化学在小鼠样本上 (图 s1b). Neuron (2018) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1s3b
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab27985)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1s3b). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:4000; 图 3s1a
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 3s1a). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1e
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫细胞化学在人类样本上 (图 1e) 和 被用于免疫印迹在人类样本上 (图 1d). Stem Cell Reports (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). Oncol Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s1a
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Hum Mol Genet (2017) ncbi
domestic rabbit 单克隆(EPR2054)
  • 免疫组化; 人类; 1:1000; 图 1f
  • 免疫印迹; 人类; 1:2000; 图 4b
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab109183)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1f) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 4b). Front Surg (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; domestic goat; 1:500; 图 1
  • 免疫印迹; domestic goat; 1:1000; 图 5C
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫细胞化学在domestic goat样本上浓度为1:500 (图 1) 和 被用于免疫印迹在domestic goat样本上浓度为1:1000 (图 5C). BMC Biotechnol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1h
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1h). Genes Dev (2016) ncbi
domestic rabbit 单克隆(EPR2054)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab109183)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Reprod Biol Endocrinol (2016) ncbi
domestic rabbit 单克隆(EPR2054)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1f
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab109183)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Front Surg (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1b
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫细胞化学在人类样本上 (图 1b). Neuroscience (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:350; 图 s2
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫细胞化学在人类样本上浓度为1:350 (图 s2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 2a
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, Ab19857)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 2a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5A
艾博抗(上海)贸易有限公司 Oct4抗体(abcam, ab19857)被用于被用于免疫印迹在人类样本上 (图 5A). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司 Oct4抗体(abcam, ab19857)被用于被用于免疫印迹在人类样本上 (图 2b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1b
  • 免疫细胞化学; 小鼠; 1:200; 图 1a
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:350; 图 1
艾博抗(上海)贸易有限公司 Oct4抗体(abcam, ab19857)被用于被用于免疫细胞化学在人类样本上浓度为1:350 (图 1). Stem Cell Rev (2016) ncbi
domestic rabbit 单克隆(EPR2054)
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab109183)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab27985)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2). Cell Tissue Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 4
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Cell Reprogram (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 s2c
  • 免疫细胞化学; 小鼠; 1:300; 图 s2c
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab18976)被用于被用于流式细胞仪在小鼠样本上 (图 s2c) 和 被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 s2c). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫细胞化学在小鼠样本上 (图 3). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 s4b
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s4b). Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 4
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Histochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, 19857)被用于被用于免疫印迹在小鼠样本上 (图 3b). BMC Genomics (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 国内马; 1:500; 图 1
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫组化在国内马样本上浓度为1:500 (图 1). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab18976)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 7
艾博抗(上海)贸易有限公司 Oct4抗体(abcam, ab19857)被用于被用于免疫细胞化学在人类样本上 (图 7). Stem Cells Int (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 1e
艾博抗(上海)贸易有限公司 Oct4抗体(abcam, ab19857)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1e). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; pigs ; 1:200; 图 5
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫细胞化学在pigs 样本上浓度为1:200 (图 5). Theriogenology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4d
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab137427)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫细胞化学在小鼠样本上 (图 2c). Stem Cells Dev (2016) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab18976)被用于. Stem Cell Reports (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3a
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, ab19857)被用于被用于免疫细胞化学在人类样本上 (图 3a). Methods Mol Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司 Oct4抗体(AbCam, AB19857)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Methods Mol Biol (2016) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Oct4抗体(Abcam, Ab19857)被用于. Nat Commun (2014) ncbi
武汉三鹰
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1e
武汉三鹰 Oct4抗体(ProteinTech, 11263-1-AP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Med Sci Monit (2019) ncbi
小鼠 单克隆(1C4B6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2b
  • 免疫印迹; 人类; 1:1000; 图 2a
武汉三鹰 Oct4抗体(ProteinTech, 60242-1-IG)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). EBioMedicine (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
武汉三鹰 Oct4抗体(ProteinTech, 11263-1-AP)被用于被用于免疫印迹在人类样本上 (图 1c). Oncol Lett (2019) ncbi
小鼠 单克隆(1C4B6)
  • 免疫印迹; 人类; 图 1a
武汉三鹰 Oct4抗体(Proteintech, 60242-1-Ig)被用于被用于免疫印迹在人类样本上 (图 1a). Theranostics (2019) ncbi
小鼠 单克隆(1C4B6)
  • 免疫印迹; 人类; 图 8c
  • 免疫组化-石蜡切片; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 图 1f
武汉三鹰 Oct4抗体(Proteintech, 60242-C1-Ig)被用于被用于免疫印迹在人类样本上 (图 8c), 被用于免疫组化-石蜡切片在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1f). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 小鼠; 图 s2
武汉三鹰 Oct4抗体(ProteinTech, 11,263-1-AP)被用于被用于免疫沉淀在小鼠样本上 (图 s2). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
武汉三鹰 Oct4抗体(ProteinTech, 11263-1-AP)被用于. Invest Ophthalmol Vis Sci (2015) ncbi
赛默飞世尔
domestic rabbit 重组(3H8L6)
  • ChIP-Seq; 小鼠; 图 s3a
赛默飞世尔 Oct4抗体(Thermofisher, 701756)被用于被用于ChIP-Seq在小鼠样本上 (图 s3a). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛默飞世尔 Oct4抗体(Thermo Fisher, Pa1-16943)被用于被用于免疫印迹在人类样本上 (图 3d). Carcinogenesis (2017) ncbi
小鼠 单克隆(9B7)
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 Oct4抗体(Thermo-Fisher, 9B7)被用于被用于免疫印迹在人类样本上 (图 4a). J Pathol (2017) ncbi
大鼠 单克隆(EM92)
  • 免疫细胞化学; 小鼠; 1:50; 表 2
赛默飞世尔 Oct4抗体(eBioscience, 53-5841)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (表 2). J Cell Physiol (2016) ncbi
小鼠 单克隆(9B7)
  • 免疫细胞化学; 人类; 1:100; 图 2h
赛默飞世尔 Oct4抗体(Thermo Scientific, MA1-104)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2h). Stem Cell Reports (2015) ncbi
大鼠 单克隆(EM92)
  • 免疫细胞化学; 人类; 表 2
赛默飞世尔 Oct4抗体(eBioscience, 14-5841-82)被用于被用于免疫细胞化学在人类样本上 (表 2). Exp Cell Res (2015) ncbi
大鼠 单克隆(EM92)
  • 流式细胞仪; 人类; 图 s3a
赛默飞世尔 Oct4抗体(eBioscience, EM92)被用于被用于流式细胞仪在人类样本上 (图 s3a). Nucleic Acids Res (2015) ncbi
安迪生物R&D
小鼠 单克隆(653108)
  • 免疫细胞化学; 人类; 1:200; 图 1d
安迪生物R&D Oct4抗体(R&D Systems, MAB17591)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1d). Stem Cell Res (2018) ncbi
domestic goat 多克隆
  • 免疫印迹; 人类; 图 5b
安迪生物R&D Oct4抗体(R&D Systems, AF1759)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2017) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:250; 图 1
安迪生物R&D Oct4抗体(R&D Systems, AF1759)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1). Stem Cell Res (2016) ncbi
大鼠 单克隆(240408)
  • 免疫印迹; 小鼠; 图 1
安迪生物R&D Oct4抗体(R&D, MAB1759)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
大鼠 单克隆(240408)
  • 免疫细胞化学; 人类; 1:200; 图 s3
安迪生物R&D Oct4抗体(R&D, MAB1759)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s3). Nat Commun (2016) ncbi
小鼠 单克隆(653108)
  • 免疫细胞化学; 人类; 图 5
安迪生物R&D Oct4抗体(R&D Systems, MAB17591)被用于被用于免疫细胞化学在人类样本上 (图 5). Cytotherapy (2015) ncbi
大鼠 单克隆(240408)
  • 免疫组化-冰冻切片; 小鼠
安迪生物R&D Oct4抗体(R&D Systems, MAB1759)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2014) ncbi
BioLegend
小鼠 单克隆(3A2A20)
  • 流式细胞仪; 人类; 图 2b
BioLegend Oct4抗体(BioLegend, 653705)被用于被用于流式细胞仪在人类样本上 (图 2b). Stem Cell Res (2019) ncbi
小鼠 单克隆(3A2A20)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend Oct4抗体(BioLegend, 653710)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Cell Death Dis (2018) ncbi
Novus Biologicals
小鼠 单克隆(OTI9B7)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2a
Novus Biologicals Oct4抗体(Novus, OTI9B7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2a). Front Endocrinol (Lausanne) (2019) ncbi
GeneTex
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
GeneTex Oct4抗体(Gene Tex, GTX101497)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 核糖核酸免疫沉淀; 人类
GeneTex Oct4抗体(GeneTex, GTX100468)被用于被用于核糖核酸免疫沉淀在人类样本上. Mol Cell (2016) ncbi
Active Motif
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 4f
Active Motif Oct4抗体(Active Motif, 39811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4f). Development (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6e
Active Motif Oct4抗体(Active Motif, 39811)被用于被用于染色质免疫沉淀 在人类样本上 (图 6e). J Cell Biol (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2a
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2750S)被用于被用于免疫印迹在人类样本上 (图 s2a). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Oct4抗体(CST, 2750)被用于被用于免疫印迹在人类样本上 (图 3c). Sci Adv (2020) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 1:200; 图 s5d
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, C30A3)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s5d). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 1:400; 图 s3a
赛信通(上海)生物试剂有限公司 Oct4抗体(CST, 2840S)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s3a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Oct4抗体(CST, 2750)被用于被用于免疫印迹在人类样本上 (图 4b). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1e
赛信通(上海)生物试剂有限公司 Oct4抗体(CST, 2750)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). Stem Cell Reports (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s1b
赛信通(上海)生物试剂有限公司 Oct4抗体(CST, 2750)被用于被用于免疫细胞化学在人类样本上 (图 s1b). Cell Rep (2019) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 1:200; 图 4a
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2840P)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4a). elife (2019) ncbi
domestic rabbit 单克隆(C30A3C1)
  • ChIP-Seq; 小鼠; 图 e1i
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 5677S)被用于被用于ChIP-Seq在小鼠样本上 (图 e1i). Mol Syst Biol (2019) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2840)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2g
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2750)被用于被用于免疫细胞化学在人类样本上 (图 2g). Oncogene (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2750)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s2a
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2750S)被用于被用于免疫细胞化学在人类样本上 (图 s2a). Cell (2018) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 1:400; 图 1b
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2840)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1b). PLoS ONE (2018) ncbi
domestic rabbit 单克隆(C52G3)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2890S)被用于被用于免疫印迹在人类样本上 (图 1c). Cell (2018) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫组化; 人类; 图 3a6
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signalling, C30A3)被用于被用于免疫组化在人类样本上 (图 3a6). Stem Cells Int (2017) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 图 1e
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling Technology, 2840)被用于被用于免疫细胞化学在人类样本上 (图 1e). Stem Cell Res Ther (2017) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling Technology, 2840)被用于被用于免疫印迹在人类样本上 (图 3a). Cancer Res (2017) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1c
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2840S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1c). Stem Cell Res Ther (2017) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 1:200; 图 1g
赛信通(上海)生物试剂有限公司 Oct4抗体(cell signalling, C30A3)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1g). Stem Cell Res (2017) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell signaling, 2840)被用于被用于免疫细胞化学在人类样本上 (图 3b). Biol Open (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 6d
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2750S)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 6d). Biomaterials (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s1e
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2750S)被用于被用于免疫细胞化学在人类样本上 (图 s1e). Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell signalling, 2750)被用于被用于免疫印迹在人类样本上浓度为1:5000. Nat Commun (2016) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫组化; 人类; 1:200; 图 1g
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, C30A3)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1g). Stem Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2750)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2750)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Neoplasia (2016) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫组化; 小鼠; 1:100; 图 2a
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2840)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2a). Ann Clin Transl Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s7b
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2750)被用于被用于免疫细胞化学在人类样本上 (图 s7b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2750)被用于被用于免疫印迹在人类样本上 (图 5e). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 小鼠; 1:500; 图 s1c
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signalling, C30A3)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1c). Dev Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2750S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫印迹; 人类; 图 1d, 2a
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2840)被用于被用于免疫印迹在人类样本上 (图 1d, 2a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 s7f
  • 免疫印迹; 人类; 图 s3h
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2750)被用于被用于免疫组化在人类样本上 (图 s7f) 和 被用于免疫印迹在人类样本上 (图 s3h). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2750)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 2). Stem Cells Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling Tech, CST-2750)被用于被用于免疫印迹在人类样本上 (图 3). Toxins (Basel) (2016) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 1:400; 图 1
  • 免疫印迹; 人类; 1:400; 图 5
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, C30A3)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:400 (图 5). Nat Med (2016) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2840)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling Technology, 2750)被用于被用于免疫印迹在人类样本上 (图 2). Stem Cells Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; domestic rabbit; 1:500; 图 5a
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2750S)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:500 (图 5a). J Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 1:100; 图 5b
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2750)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:100 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C52G3)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signal Technology, C52G3)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Biol Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2750)被用于被用于免疫细胞化学在人类样本上 (图 3). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell signaling, 2750)被用于被用于免疫印迹在人类样本上 (图 6). Glycobiology (2016) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 1:500; 图 1e
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell signaling, C30A3)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1e). Stem Cell Reports (2015) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 1:500
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, C30A3)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Stem Cell Res (2015) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 1:500; 图 1
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signalling, C30A3)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1). Stem Cell Res (2015) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 1:500; 图 1a
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signalling, C30A3)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1a). Stem Cell Res (2015) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 1:200; 表 s1
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2840)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (表 s1). J Chin Med Assoc (2015) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 1:50; 图 2Ad
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling Technology, 5177)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2Ad). Eur J Hum Genet (2016) ncbi
domestic rabbit 单克隆(C52G3)
  • 免疫细胞化学; common marmoset; 1:100; 图 2
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2890)被用于被用于免疫细胞化学在common marmoset样本上浓度为1:100 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 1:100
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling Technology, 2840)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Int J Oncol (2015) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, C30A3)被用于被用于免疫细胞化学在小鼠样本上 (图 1). J Autoimmun (2015) ncbi
domestic rabbit 单克隆(C52G3)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling Technology, C52G3)被用于被用于免疫细胞化学在人类样本上. Methods Mol Biol (2016) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2840)被用于被用于免疫细胞化学在人类样本上. Mol Biotechnol (2015) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell signaling, 2840)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Front Aging Neurosci (2014) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 1:50
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2840)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Mol Endocrinol (2014) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 1:500; 图 1
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell signaling, 2840s)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1). J Biomol Screen (2014) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 人类; 1:400
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, C30A3)被用于被用于免疫细胞化学在人类样本上浓度为1:400. Stem Cells Transl Med (2014) ncbi
小鼠 单克隆(9B7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell signaling, 4286)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, C30A3)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Mol Biotechnol (2014) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling Technologies, C30A3)被用于被用于免疫印迹在小鼠样本上. Biomolecules (2013) ncbi
domestic rabbit 单克隆(C30A3)
  • 免疫细胞化学; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Oct4抗体(Cell Signaling, 2840)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. PLoS ONE (2013) ncbi
Stemcell Technologies
单克隆(3A2A20)
  • 免疫细胞化学; 人类; 1:1000; 图 3c
干细胞技术 Oct4抗体(干细胞技术, 60093)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3c). elife (2019) ncbi
Cell Marque
小鼠 单克隆(MRQ-10)
  • 免疫组化-石蜡切片; 人类; 1:30; 图 2c
Cell Marque Oct4抗体(Cell Marque, MRQ-10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30 (图 2c). Front Surg (2016) ncbi
小鼠 单克隆(MRQ-10)
  • 免疫组化-石蜡切片; 人类; 1:30; 图 1b
Cell Marque Oct4抗体(Cell Marque, MRQ-10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30 (图 1b). J Clin Pathol (2016) ncbi
碧迪BD
小鼠 单克隆(40/Oct-3)
  • 流式细胞仪; 人类; 图 s2
碧迪BD Oct4抗体(BD Pharmingen, 560186)被用于被用于流式细胞仪在人类样本上 (图 s2). Stem Cell Res Ther (2019) ncbi
小鼠 单克隆(O50-808)
  • 流式细胞仪; 人类; 图 s1c
碧迪BD Oct4抗体(BD Biosciences, 561556)被用于被用于流式细胞仪在人类样本上 (图 s1c). Cell Rep (2019) ncbi
小鼠 单克隆(40/Oct-3)
  • 流式细胞仪; 人类; 图 1a
碧迪BD Oct4抗体(BD Biosciences, 560329)被用于被用于流式细胞仪在人类样本上 (图 1a). PLoS ONE (2017) ncbi
小鼠 单克隆(40/Oct-3)
  • 流式细胞仪; 小鼠; 图 1e
  • 免疫印迹; 小鼠; 1:5000; 图 1c
碧迪BD Oct4抗体(BD, 611202)被用于被用于流式细胞仪在小鼠样本上 (图 1e) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1c). J Cell Biol (2017) ncbi
小鼠 单克隆(O50-808)
  • 流式细胞仪; 人类; 图 2c
碧迪BD Oct4抗体(BD Pharmingen, 561556)被用于被用于流式细胞仪在人类样本上 (图 2c). Biomed Pharmacother (2017) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫细胞化学; 小鼠; 1:200; 图 1f
碧迪BD Oct4抗体(BD, 611202)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1f). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(40/Oct-3)
  • 流式细胞仪; 人类; 1:50; 图 s1
碧迪BD Oct4抗体(BD Biosciences, 560217)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s1). Nat Med (2016) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫印迹; 小鼠; 图 2
碧迪BD Oct4抗体(BD Bioscience, 611203)被用于被用于免疫印迹在小鼠样本上 (图 2). Stem Cell Reports (2016) ncbi
小鼠 单克隆(O50-808)
  • 免疫细胞化学; 人类; 1:2000; 图 s2a
碧迪BD Oct4抗体(BD Biosciences, 561555)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 s2a). Nat Commun (2016) ncbi
小鼠 单克隆(40/Oct-3)
  • 流式细胞仪; 小鼠; 图 3
  • 免疫细胞化学; 小鼠; 1:500; 图 1
碧迪BD Oct4抗体(BD Transduction Laboratories, 611203)被用于被用于流式细胞仪在小鼠样本上 (图 3) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(O50-808)
  • 免疫组化; 小鼠; 1:100
碧迪BD Oct4抗体(BD Biosciences, O50808)被用于被用于免疫组化在小鼠样本上浓度为1:100. Nature (2016) ncbi
小鼠 单克隆(O50-808)
  • 流式细胞仪; 人类; 图 4
碧迪BD Oct4抗体(BD Bioscience, 561556)被用于被用于流式细胞仪在人类样本上 (图 4). Mol Cell Biol (2016) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫细胞化学; 人类; 图 s3a
碧迪BD Oct4抗体(BD Biosciences, 611202)被用于被用于免疫细胞化学在人类样本上 (图 s3a). Cell (2015) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫组化; 人类; 1:500; 图 1
碧迪BD Oct4抗体(BD Biosciences, 611202)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1). Dis Model Mech (2015) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫印迹; 人类; 图 1
碧迪BD Oct4抗体(BD Biosciences, 611203)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫印迹; 人类; 1:1000
碧迪BD Oct4抗体(BD transduction laboratories, 611203)被用于被用于免疫印迹在人类样本上浓度为1:1000. Carcinogenesis (2015) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫印迹; 人类
碧迪BD Oct4抗体(BD Transduction, 611203)被用于被用于免疫印迹在人类样本上. Mol Cancer Res (2015) ncbi
小鼠 单克隆(O50-808)
  • 免疫细胞化学; 小鼠; 1:1200; 图 1f
  • 免疫印迹; 小鼠; 1:1200; 图 5d
碧迪BD Oct4抗体(BD Bioscience, 561555)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1200 (图 1f) 和 被用于免疫印迹在小鼠样本上浓度为1:1200 (图 5d). Sci Rep (2015) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫组化-石蜡切片; 人类; 图 s1
  • 免疫组化-石蜡切片; 小鼠; 图 s1
碧迪BD Oct4抗体(BD, 611202)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 s1). Nat Genet (2015) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫印迹; 小鼠; 1:1000; 图 2
碧迪BD Oct4抗体(BD Biosciences, 611203)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Stem Cell Reports (2015) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫组化-石蜡切片; 小鼠
碧迪BD Oct4抗体(BD, 560186)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS Genet (2015) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫细胞化学; 人类; 1:500; 图 3ef
碧迪BD Oct4抗体(BD, 611203)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3ef). Cell (2015) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫细胞化学; 小鼠; 图 3
碧迪BD Oct4抗体(BD Biosciences, 611203)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Stem Cell Reports (2014) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫印迹; 小鼠; 图 7a
碧迪BD Oct4抗体(BD, 611202)被用于被用于免疫印迹在小鼠样本上 (图 7a). elife (2014) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫组化-石蜡切片; 小鼠; 1:100
碧迪BD Oct4抗体(BD Biosciences, 611202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(O50-808)
  • 免疫细胞化学; 人类; 1:100
碧迪BD Oct4抗体(BD Biosciences, 561556)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Comp Neurol (2014) ncbi
小鼠 单克隆(40/Oct-3)
  • 流式细胞仪; 小鼠; 1:5
碧迪BD Oct4抗体(BD Biosciences, 560253)被用于被用于流式细胞仪在小鼠样本上浓度为1:5. PLoS ONE (2014) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫细胞化学; 人类; 图 3c
  • 免疫印迹; 人类; 图 1d
碧迪BD Oct4抗体(BD Biosciences, 611202)被用于被用于免疫细胞化学在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 1d). Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 1:1000
碧迪BD Oct4抗体(BD transduction laboratories, 611203)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫细胞化学; 人类
碧迪BD Oct4抗体(Becton Dickinson Pharmingen, 40/Oct3)被用于被用于免疫细胞化学在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫组化-石蜡切片; 小鼠; 1:100
碧迪BD Oct4抗体(BD Transduction Labs, 611203)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2013) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫组化; 小鼠; 图 s1
碧迪BD Oct4抗体(BD Transduction Laboratories, 611203)被用于被用于免疫组化在小鼠样本上 (图 s1). EMBO Rep (2013) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫细胞化学; 小鼠; 图 4
碧迪BD Oct4抗体(BD Pharmingen, 560329)被用于被用于免疫细胞化学在小鼠样本上 (图 4). Stem Cells (2012) ncbi
小鼠 单克隆(40/Oct-3)
  • 免疫印迹; 小鼠
碧迪BD Oct4抗体(BD Transduction Laboratories, 611202)被用于被用于免疫印迹在小鼠样本上. Cell (2008) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆(N1NK)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
徕卡显微系统(上海)贸易有限公司 Oct4抗体(Leica Microsystems, N1NK)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Hum Pathol (2015) ncbi
文章列表
  1. Yu W, Hua Y, Qiu H, Hao J, Zou K, Li Z, et al. PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis. 2020;11:506 pubmed 出版商
  2. Kyprianou C, Christodoulou N, Hamilton R, Nahaboo W, Boomgaard D, Amadei G, et al. Basement membrane remodelling regulates mouse embryogenesis. Nature. 2020;582:253-258 pubmed 出版商
  3. Hu H, Ji Q, Song M, Ren J, Liu Z, Wang Z, et al. ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res. 2020;48:6001-6018 pubmed 出版商
  4. Guo C, Ma X, Xing Y, Zheng C, Xu Y, Shan L, et al. Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells. Cell. 2020;181:621-636.e22 pubmed 出版商
  5. Chong Y, Thakur N, Paik K, Lee E, Kang C. Prognostic significance of stem cell/ epithelial-mesenchymal transition markers in periampullary/pancreatic cancers: FGFR1 is a promising prognostic marker. BMC Cancer. 2020;20:216 pubmed 出版商
  6. Atashpaz S, Samadi Shams S, Gonzalez J, Sebestyén E, Arghavanifard N, Gnocchi A, et al. ATR expands embryonic stem cell fate potential in response to replication stress. elife. 2020;9: pubmed 出版商
  7. Aldonza M, Ku J, Hong J, Kim D, Yu S, Lee M, et al. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Sci Adv. 2020;6:eaav7416 pubmed 出版商
  8. Choi I, Lim H, Cho H, Oh Y, Chou B, Bai H, et al. Transcriptional landscape of myogenesis from human pluripotent stem cells reveals a key role of TWIST1 in maintenance of skeletal muscle progenitors. elife. 2020;9: pubmed 出版商
  9. Marin Navarro A, Pronk R, van der Geest A, Oliynyk G, Nordgren A, Arsenian Henriksson M, et al. p53 controls genomic stability and temporal differentiation of human neural stem cells and affects neural organization in human brain organoids. Cell Death Dis. 2020;11:52 pubmed 出版商
  10. Nickolls A, Lee M, Espinoza D, Szczot M, Lam R, Wang Q, et al. Transcriptional Programming of Human Mechanosensory Neuron Subtypes from Pluripotent Stem Cells. Cell Rep. 2020;30:932-946.e7 pubmed 出版商
  11. Rahman M, Wruck W, Spitzhorn L, Nguyen L, Bohndorf M, Martins S, et al. The FGF, TGFβ and WNT axis Modulate Self-renewal of Human SIX2+ Urine Derived Renal Progenitor Cells. Sci Rep. 2020;10:739 pubmed 出版商
  12. Hsu H, Liu C, Lin J, Hsu T, Hsu J, Li A, et al. Involvement of collagen XVII in pluripotency gene expression and metabolic reprogramming of lung cancer stem cells. J Biomed Sci. 2020;27:5 pubmed 出版商
  13. Liu X, Ma F, Liu C, Zhu K, Li W, Xu Y, et al. UBE2O promotes the proliferation, EMT and stemness properties of breast cancer cells through the UBE2O/AMPKα2/mTORC1-MYC positive feedback loop. Cell Death Dis. 2020;11:10 pubmed 出版商
  14. Ahfeldt T, Ordureau A, Bell C, Sarrafha L, Sun C, Piccinotti S, et al. Pathogenic Pathways in Early-Onset Autosomal Recessive Parkinson's Disease Discovered Using Isogenic Human Dopaminergic Neurons. Stem Cell Reports. 2020;14:75-90 pubmed 出版商
  15. Song S, Li Y, Zhang K, Zhang X, Huang Y, Xu M, et al. Cancer Stem Cells of Diffuse Large B Cell Lymphoma Are Not Enriched in the CD45+CD19- cells but in the ALDHhigh Cells. J Cancer. 2020;11:142-152 pubmed 出版商
  16. Kawai K, Negoro R, Ichikawa M, Yamashita T, Deguchi S, Harada K, et al. Establishment of SLC15A1/PEPT1-Knockout Human-Induced Pluripotent Stem Cell Line for Intestinal Drug Absorption Studies. Mol Ther Methods Clin Dev. 2020;17:49-57 pubmed 出版商
  17. Sozen B, Cox A, De Jonghe J, Bao M, Hollfelder F, Glover D, et al. Self-Organization of Mouse Stem Cells into an Extended Potential Blastoid. Dev Cell. 2019;51:698-712.e8 pubmed 出版商
  18. Casanova M, Moscatelli M, Chauvière L, Huret C, Samson J, Liyakat Ali T, et al. A primate-specific retroviral enhancer wires the XACT lncRNA into the core pluripotency network in humans. Nat Commun. 2019;10:5652 pubmed 出版商
  19. Vijayaraj P, Minasyan A, Durra A, Karumbayaram S, Mehrabi M, Aros C, et al. Modeling Progressive Fibrosis with Pluripotent Stem Cells Identifies an Anti-fibrotic Small Molecule. Cell Rep. 2019;29:3488-3505.e9 pubmed 出版商
  20. Liu X, Huang J, Xie Y, Zhou Y, Wang R, Lou J. Napabucasin Attenuates Resistance of Breast Cancer Cells to Tamoxifen by Reducing Stem Cell-Like Properties. Med Sci Monit. 2019;25:8905-8912 pubmed 出版商
  21. Selvaraj S, Mondragón González R, Xu B, Magli A, Kim H, Laine J, et al. Screening identifies small molecules that enhance the maturation of human pluripotent stem cell-derived myotubes. elife. 2019;8: pubmed 出版商
  22. Bredenkamp N, Yang J, Clarke J, Stirparo G, von Meyenn F, Dietmann S, et al. Wnt Inhibition Facilitates RNA-Mediated Reprogramming of Human Somatic Cells to Naive Pluripotency. Stem Cell Reports. 2019;13:1083-1098 pubmed 出版商
  23. Battaglia R, Beltran A, Delic S, Dumitru R, Robinson J, Kabiraj P, et al. Site-specific phosphorylation and caspase cleavage of GFAP are new markers of Alexander disease severity. elife. 2019;8: pubmed 出版商
  24. Farhy C, Hariharan S, Ylanko J, Orozco L, Zeng F, Pass I, et al. Improving drug discovery using image-based multiparametric analysis of the epigenetic landscape. elife. 2019;8: pubmed 出版商
  25. Liu Y, Jiang Q, Liu X, Lin X, Tang Z, Liu C, et al. Cinobufotalin powerfully reversed EBV-miR-BART22-induced cisplatin resistance via stimulating MAP2K4 to antagonize non-muscle myosin heavy chain IIA/glycogen synthase 3β/β-catenin signaling pathway. EBioMedicine. 2019;48:386-404 pubmed 出版商
  26. Grande G, Milardi D, Martini M, Cenci T, Gulino G, Mancini F, et al. Protein Expression of PTTG-1, OCT-4, and KLF-4 in Seminoma: A Pilot Study. Front Endocrinol (Lausanne). 2019;10:619 pubmed 出版商
  27. Strebinger D, Deluz C, Friman E, Govindan S, Alber A, Suter D. Endogenous fluctuations of OCT4 and SOX2 bias pluripotent cell fate decisions. Mol Syst Biol. 2019;15:e9002 pubmed 出版商
  28. Malerba N, Benzoni P, Squeo G, Milanesi R, Giannetti F, Sadleir L, et al. Generation of the induced human pluripotent stem cell lines CSSi009-A from a patient with a GNB5 pathogenic variant, and CSSi010-A from a CRISPR/Cas9 engineered GNB5 knock-out human cell line. Stem Cell Res. 2019;40:101547 pubmed 出版商
  29. Li E, Zhang T, Sun X, Li Y, Geng H, Yu D, et al. Sonic hedgehog pathway mediates genistein inhibition of renal cancer stem cells. Oncol Lett. 2019;18:3081-3091 pubmed 出版商
  30. Xie C, Zhu J, Jiang Y, Chen J, Wang X, Geng S, et al. Sulforaphane Inhibits the Acquisition of Tobacco Smoke-Induced Lung Cancer Stem Cell-Like Properties via the IL-6/ΔNp63α/Notch Axis. Theranostics. 2019;9:4827-4840 pubmed 出版商
  31. Lee J, Termglinchan V, Diecke S, Itzhaki I, Lam C, Garg P, et al. Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature. 2019;572:335-340 pubmed 出版商
  32. Hu Z, Zhou M, Wu Y, Li Z, Liu X, Wu L, et al. ssODN-Mediated In-Frame Deletion with CRISPR/Cas9 Restores FVIII Function in Hemophilia A-Patient-Derived iPSCs and ECs. Mol Ther Nucleic Acids. 2019;17:198-209 pubmed 出版商
  33. Okumura T, Horie Y, Lai C, Lin H, Shoda H, Natsumoto B, et al. Robust and highly efficient hiPSC generation from patient non-mobilized peripheral blood-derived CD34+ cells using the auto-erasable Sendai virus vector. Stem Cell Res Ther. 2019;10:185 pubmed 出版商
  34. Huang X, Wei C, Li F, Jia L, Zeng P, Li J, et al. PCGF6 regulates stem cell pluripotency as a transcription activator via super-enhancer dependent chromatin interactions. Protein Cell. 2019;: pubmed 出版商
  35. Langer L, Ward J, Archer T. Tumor suppressor SMARCB1 suppresses super-enhancers to govern hESC lineage determination. elife. 2019;8: pubmed 出版商
  36. Kuang Y, Muñoz A, Nalula G, Santostefano K, Sanghez V, Sanchez G, et al. Evaluation of commonly used ectoderm markers in iPSC trilineage differentiation. Stem Cell Res. 2019;37:101434 pubmed 出版商
  37. Lavarone E, Barbieri C, Pasini D. Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity. Nat Commun. 2019;10:1679 pubmed 出版商
  38. Mair B, Tomic J, Masud S, Tonge P, Weiss A, Usaj M, et al. Essential Gene Profiles for Human Pluripotent Stem Cells Identify Uncharacterized Genes and Substrate Dependencies. Cell Rep. 2019;27:599-615.e12 pubmed 出版商
  39. Hainer S, Boskovic A, McCannell K, Rando O, Fazzio T. Profiling of Pluripotency Factors in Single Cells and Early Embryos. Cell. 2019;: pubmed 出版商
  40. Fu L, Hu Y, Song M, Liu Z, Zhang W, Yu F, et al. Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol. 2019;17:e3000201 pubmed 出版商
  41. Yap L, Wang J, Moreno Moral A, Chong L, Sun Y, Harmston N, et al. In Vivo Generation of Post-infarct Human Cardiac Muscle by Laminin-Promoted Cardiovascular Progenitors. Cell Rep. 2019;26:3231-3245.e9 pubmed 出版商
  42. Wei X, Guo J, Li Q, Jia Q, Jing Q, Li Y, et al. Bach1 regulates self-renewal and impedes mesendodermal differentiation of human embryonic stem cells. Sci Adv. 2019;5:eaau7887 pubmed 出版商
  43. Zhang S, Deng T, Tang W, He B, Furusawa T, Ambs S, et al. Epigenetic regulation of REX1 expression and chromatin binding specificity by HMGNs. Nucleic Acids Res. 2019;47:4449-4461 pubmed 出版商
  44. Cao J, Zhao M, Liu J, Zhang X, Pei Y, Wang J, et al. RACK1 Promotes Self-Renewal and Chemoresistance of Cancer Stem Cells in Human Hepatocellular Carcinoma through Stabilizing Nanog. Theranostics. 2019;9:811-828 pubmed 出版商
  45. Chen H, Poran A, Unni A, Huang S, Elemento O, Snoeck H, et al. Generation of pulmonary neuroendocrine cells and SCLC-like tumors from human embryonic stem cells. J Exp Med. 2019;216:674-687 pubmed 出版商
  46. Mathieu J, Detraux D, Kuppers D, Wang Y, Cavanaugh C, Sidhu S, et al. Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency. Nat Commun. 2019;10:632 pubmed 出版商
  47. Xie C, Zhu J, Wang X, Chen J, Geng S, Wu J, et al. Tobacco smoke induced hepatic cancer stem cell-like properties through IL-33/p38 pathway. J Exp Clin Cancer Res. 2019;38:39 pubmed 出版商
  48. Xue Y, Liao B, Xie Y, Li S, Ma X, Sun X. Establishment of an ectodermal dysplasia related gene EDA Knockout human embryonic stem cell line (WAe001-A-22) by CRISPR-Cas9 technology. Stem Cell Res. 2019;34:101379 pubmed 出版商
  49. Kim A, Lee E, Lee E, Kim J, Suk K, Lee E, et al. SIRT2 is required for efficient reprogramming of mouse embryonic fibroblasts toward pluripotency. Cell Death Dis. 2018;9:893 pubmed 出版商
  50. Sutherland L, Ruhe M, Gattegno Ho D, Mann K, Greaves J, Koscielniak M, et al. LIF-dependent survival of embryonic stem cells is regulated by a novel palmitoylated Gab1 signalling protein. J Cell Sci. 2018;131: pubmed 出版商
  51. Klein T, Günther K, Kwok C, Edenhofer F, Uceyler N. Generation of the human induced pluripotent stem cell line (UKWNLi001-A) from skin fibroblasts of a woman with Fabry disease carrying the X-chromosomal heterozygous c.708 G > C (W236C) missense mutation in exon 5 of the alpha-galactosidase-A gene. Stem Cell Res. 2018;31:222-226 pubmed 出版商
  52. Edwards N, Watson A, Betts D. Knockdown of p66Shc alters lineage-associated transcription factor expression in mouse blastocysts. Stem Cells Dev. 2018;: pubmed 出版商
  53. Klein R, Tung P, Somanath P, Fehling H, Knoepfler P. Genomic functions of developmental pluripotency associated factor 4 (Dppa4) in pluripotent stem cells and cancer. Stem Cell Res. 2018;31:83-94 pubmed 出版商
  54. Espinoza Sánchez N, Enciso J, Pelayo R, Fuentes Panana E. An NF?B-dependent mechanism of tumor cell plasticity and lateral transmission of aggressive features. Oncotarget. 2018;9:26679-26700 pubmed 出版商
  55. Pan B, Wu L, Pan L, Yang Y, Li H, Dai Y, et al. Up-regulation of microRNA-340 promotes osteosarcoma cell apoptosis while suppressing proliferation, migration, and invasion by inactivating the CTNNB1-mediated Notch signaling pathway. Biosci Rep. 2018;38: pubmed 出版商
  56. Yamane M, Ohtsuka S, Matsuura K, Nakamura A, Niwa H. Overlapping functions of Krüppel-like factor family members: targeting multiple transcription factors to maintain the naïve pluripotency of mouse embryonic stem cells. Development. 2018;145: pubmed 出版商
  57. Zhu F, Zhu Q, Ye D, Zhang Q, Yang Y, Guo X, et al. Sin3a-Tet1 interaction activates gene transcription and is required for embryonic stem cell pluripotency. Nucleic Acids Res. 2018;46:6026-6040 pubmed 出版商
  58. Toosi B, El Zawily A, Truitt L, Shannon M, Allonby O, Babu M, et al. EPHB6 augments both development and drug sensitivity of triple-negative breast cancer tumours. Oncogene. 2018;37:4073-4093 pubmed 出版商
  59. Wang C, Najm R, Xu Q, Jeong D, Walker D, Balestra M, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med. 2018;24:647-657 pubmed 出版商
  60. Chen Z, Gao Y, Yao L, Liu Y, Huang L, Yan Z, et al. LncFZD6 initiates Wnt/β-catenin and liver TIC self-renewal through BRG1-mediated FZD6 transcriptional activation. Oncogene. 2018;37:3098-3112 pubmed 出版商
  61. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  62. Marrone L, Bus C, Schöndorf D, Fitzgerald J, Kübler M, Schmid B, et al. Generation of iPSCs carrying a common LRRK2 risk allele for in vitro modeling of idiopathic Parkinson's disease. PLoS ONE. 2018;13:e0192497 pubmed 出版商
  63. Gao Y, Wilson G, Bozaoglu K, Elefanty A, Stanley E, Dottori M, et al. Generation of RAB39B knockout isogenic human embryonic stem cell lines to model RAB39B-mediated Parkinson's disease. Stem Cell Res. 2018;28:161-164 pubmed 出版商
  64. Jansch C, Günther K, Waider J, Ziegler G, Forero A, Kollert S, et al. Generation of a human induced pluripotent stem cell (iPSC) line from a 51-year-old female with attention-deficit/hyperactivity disorder (ADHD) carrying a duplication of SLC2A3. Stem Cell Res. 2018;28:136-140 pubmed 出版商
  65. Aneichyk T, Hendriks W, Yadav R, Shin D, Gao D, Vaine C, et al. Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly. Cell. 2018;172:897-909.e21 pubmed 出版商
  66. Kogut I, McCarthy S, Pavlova M, Astling D, Chen X, Jakimenko A, et al. High-efficiency RNA-based reprogramming of human primary fibroblasts. Nat Commun. 2018;9:745 pubmed 出版商
  67. Meng Y, Moore R, Tao W, Smith E, Tse J, Caslini C, et al. GATA6 phosphorylation by Erk1/2 propels exit from pluripotency and commitment to primitive endoderm. Dev Biol. 2018;436:55-65 pubmed 出版商
  68. Zhou Z, Wang L, Ge F, Gong P, Wang H, Wang F, et al. Pold3 is required for genomic stability and telomere integrity in embryonic stem cells and meiosis. Nucleic Acids Res. 2018;46:3468-3486 pubmed 出版商
  69. Hsieh W, Ramadesikan S, FEKETE D, Aguilar R. Kidney-differentiated cells derived from Lowe Syndrome patient's iPSCs show ciliogenesis defects and Six2 retention at the Golgi complex. PLoS ONE. 2018;13:e0192635 pubmed 出版商
  70. Jacko M, Weyn Vanhentenryck S, Smerdon J, Yan R, Feng H, Williams D, et al. Rbfox Splicing Factors Promote Neuronal Maturation and Axon Initial Segment Assembly. Neuron. 2018;97:853-868.e6 pubmed 出版商
  71. Vl kov K, Vachtenheim J, R da J, Hor k P, Ondru ov L. Inducibly decreased MITF levels do not affect proliferation and phenotype switching but reduce differentiation of melanoma cells. J Cell Mol Med. 2018;22:2240-2251 pubmed 出版商
  72. Wu X, Dao Thi V, Huang Y, Billerbeck E, Saha D, Hoffmann H, et al. Intrinsic Immunity Shapes Viral Resistance of Stem Cells. Cell. 2018;172:423-438.e25 pubmed 出版商
  73. Yuan F, Guo D, Liu Y, Xu Y, Gao G, Wu Y, et al. Generation of an ASS1 heterozygous knockout human embryonic stem cell line, WAe001-A-13, using CRISPR/Cas9. Stem Cell Res. 2018;26:67-71 pubmed 出版商
  74. Spitzhorn L, Rahman M, Schwindt L, Ho H, Wruck W, Bohndorf M, et al. Isolation and Molecular Characterization of Amniotic Fluid-Derived Mesenchymal Stem Cells Obtained from Caesarean Sections. Stem Cells Int. 2017;2017:5932706 pubmed 出版商
  75. Matson J, Dumitru R, Coryell P, Baxley R, Chen W, Twaroski K, et al. Rapid DNA replication origin licensing protects stem cell pluripotency. elife. 2017;6: pubmed 出版商
  76. Hazim R, Karumbayaram S, Jiang M, Dimashkie A, Lopes V, Li D, et al. Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization. Stem Cell Res Ther. 2017;8:217 pubmed 出版商
  77. Tang L, Wang M, Liu D, Gong M, Ying Q, Ye S. Sp5 induces the expression of Nanog to maintain mouse embryonic stem cell self-renewal. PLoS ONE. 2017;12:e0185714 pubmed 出版商
  78. Chen X, Janssen J, Liu J, Maggio I, t Jong A, Mikkers H, et al. In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting. Nat Commun. 2017;8:657 pubmed 出版商
  79. Alonso Barroso E, Brasil S, Briso Montiano Á, Navarrete R, Perez Cerda C, Ugarte M, et al. Generation and characterization of a human iPSC line from a patient with propionic acidemia due to defects in the PCCA gene. Stem Cell Res. 2017;23:173-177 pubmed 出版商
  80. Jin L, Vu T, Yuan G, Datta P. STRAP Promotes Stemness of Human Colorectal Cancer via Epigenetic Regulation of the NOTCH Pathway. Cancer Res. 2017;77:5464-5478 pubmed 出版商
  81. Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H, et al. Endoglin Is Essential for the Maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem Cells. Stem Cell Reports. 2017;9:464-477 pubmed 出版商
  82. Valanejad L, Lewis K, Wright M, Jiang Y, D Souza A, Karns R, et al. FXR-Gankyrin axis is involved in development of pediatric liver cancer. Carcinogenesis. 2017;38:738-747 pubmed 出版商
  83. Takahashi Y, Wu J, Suzuki K, Martínez Redondo P, Li M, Liao H, et al. Integration of CpG-free DNA induces de novo methylation of CpG islands in pluripotent stem cells. Science. 2017;356:503-508 pubmed 出版商
  84. Cha Y, Han M, Cha H, Zoldan J, Burkart A, Jung J, et al. Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c-SIRT2 axis. Nat Cell Biol. 2017;19:445-456 pubmed 出版商
  85. Iglesia R, Prado M, Cruz L, Martins V, Santos T, Lopes M. Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells. Stem Cell Res Ther. 2017;8:76 pubmed 出版商
  86. Uhlin E, Rönnholm H, Day K, Kele M, Tammimies K, Bölte S, et al. Derivation of human iPS cell lines from monozygotic twins in defined and xeno free conditions. Stem Cell Res. 2017;18:22-25 pubmed 出版商
  87. Jung Klawitter S, Ebersold J, Göhring G, Blau N, Opladen T. Generation of an iPSC line from a patient with GTP cyclohydrolase 1 (GCH1) deficiency: HDMC0061i-GCH1. Stem Cell Res. 2017;20:38-41 pubmed 出版商
  88. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, et al. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell. 2017;169:243-257.e25 pubmed 出版商
  89. Hashimoto I, Nagata T, Sekine S, Moriyama M, Shibuya K, Hojo S, et al. Prognostic significance of KLF4 expression in gastric cancer. Oncol Lett. 2017;13:819-826 pubmed 出版商
  90. Siddiqui A, Vazakidou M, Schwab A, Napoli F, Fernandez Molina C, Rapa I, et al. Thymidylate synthase is functionally associated with ZEB1 and contributes to the epithelial-to-mesenchymal transition of cancer cells. J Pathol. 2017;242:221-233 pubmed 出版商
  91. Miller E, Kobayashi G, Musso C, Allen M, Ishiy F, de Caires L, et al. EIF4A3 deficient human iPSCs and mouse models demonstrate neural crest defects that underlie Richieri-Costa-Pereira syndrome. Hum Mol Genet. 2017;26:2177-2191 pubmed 出版商
  92. Ram R, Brasch H, Dunne J, Davis P, Tan S, Itinteang T. The Identification of Three Cancer Stem Cell Subpopulations within Moderately Differentiated Lip Squamous Cell Carcinoma. Front Surg. 2017;4:12 pubmed 出版商
  93. Itakura G, Kawabata S, Ando M, Nishiyama Y, Sugai K, Ozaki M, et al. Fail-Safe System against Potential Tumorigenicity after Transplantation of iPSC Derivatives. Stem Cell Reports. 2017;8:673-684 pubmed 出版商
  94. Chen H, Zuo Q, Wang Y, Song J, Yang H, Zhang Y, et al. Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters. BMC Biotechnol. 2017;17:11 pubmed 出版商
  95. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  96. Ercan E, Han J, Di Nardo A, Winden K, Han M, Hoyo L, et al. Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex. J Exp Med. 2017;214:681-697 pubmed 出版商
  97. Flamier A, Singh S, Rasmussen T. A standardized human embryoid body platform for the detection and analysis of teratogens. PLoS ONE. 2017;12:e0171101 pubmed 出版商
  98. Genovese N, Domeier T, Telugu B, Roberts R. Enhanced Development of Skeletal Myotubes from Porcine Induced Pluripotent Stem Cells. Sci Rep. 2017;7:41833 pubmed 出版商
  99. Wu J, Platero Luengo A, Sakurai M, Sugawara A, Gil M, Yamauchi T, et al. Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell. 2017;168:473-486.e15 pubmed 出版商
  100. Maltabe V, Barka E, Kontonika M, Florou D, Kouvara Pritsouli M, Roumpi M, et al. Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity. Stem Cells Int. 2016;2016:8305624 pubmed 出版商
  101. Cirera Salinas D, Yu J, Bodak M, Ngondo R, Herbert K, Ciaudo C. Noncanonical function of DGCR8 controls mESC exit from pluripotency. J Cell Biol. 2017;216:355-366 pubmed 出版商
  102. Bharathan S, Manian K, Aalam S, Palani D, Deshpande P, Pratheesh M, et al. Systematic evaluation of markers used for the identification of human induced pluripotent stem cells. Biol Open. 2017;6:100-108 pubmed 出版商
  103. Price A, Huang E, Sebastiano V, Dunn A. A semi-interpenetrating network of polyacrylamide and recombinant basement membrane allows pluripotent cell culture in a soft, ligand-rich microenvironment. Biomaterials. 2017;121:179-192 pubmed 出版商
  104. Zhong Y, Li X, Ji Y, Li X, Li Y, Yu D, et al. Pyruvate dehydrogenase expression is negatively associated with cell stemness and worse clinical outcome in prostate cancers. Oncotarget. 2017;8:13344-13356 pubmed 出版商
  105. Hosoya M, Fujioka M, Sone T, Okamoto S, Akamatsu W, Ukai H, et al. Cochlear Cell Modeling Using Disease-Specific iPSCs Unveils a Degenerative Phenotype and Suggests Treatments for Congenital Progressive Hearing Loss. Cell Rep. 2017;18:68-81 pubmed 出版商
  106. Dormiani K, Mir Mohammad Sadeghi H, Sadeghi Aliabadi H, Forouzanfar M, Baharvand H, Ghaedi K, et al. Rational Development of A Polycistronic Plasmid with A CpG-Free Bacterial Backbone as A Potential Tool for Direct Reprogramming. Cell J. 2017;18:565-581 pubmed
  107. Zhou L, Baibakov B, Canagarajah B, Xiong B, Dean J. Genetic mosaics and time-lapse imaging identify functions of histone H3.3 residues in mouse oocytes and embryos. Development. 2017;144:519-528 pubmed 出版商
  108. Lin J, Khan M, Zapiec B, Mombaerts P. Efficient derivation of extraembryonic endoderm stem cell lines from mouse postimplantation embryos. Sci Rep. 2016;6:39457 pubmed 出版商
  109. Ang Y, Rivas R, Ribeiro A, Srivas R, Rivera J, Stone N, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016;167:1734-1749.e22 pubmed 出版商
  110. Zhu Z, Li C, Zeng Y, Ding J, Qu Z, Gu J, et al. PHB Associates with the HIRA Complex to Control an Epigenetic-Metabolic Circuit in Human ESCs. Cell Stem Cell. 2017;20:274-289.e7 pubmed 出版商
  111. Jung Klawitter S, Blau N, Sebe A, Ebersold J, Göhring G, Opladen T. Generation of an iPSC line from a patient with tyrosine hydroxylase (TH) deficiency: TH-1 iPSC. Stem Cell Res. 2016;17:580-583 pubmed 出版商
  112. Deluz C, Friman E, Strebinger D, Benke A, Raccaud M, Callegari A, et al. A role for mitotic bookmarking of SOX2 in pluripotency and differentiation. Genes Dev. 2016;30:2538-2550 pubmed
  113. Zhu P, Wang Y, Wu J, Huang G, Liu B, Ye B, et al. LncBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. Nat Commun. 2016;7:13608 pubmed 出版商
  114. Zane M, Parello C, Pennelli G, Townsend D, Merigliano S, Boscaro M, et al. Estrogen and thyroid cancer is a stem affair: A preliminary study. Biomed Pharmacother. 2017;85:399-411 pubmed 出版商
  115. Proestling K, Birner P, Balendran S, Nirtl N, Marton E, Yerlikaya G, et al. Enhanced expression of the stemness-related factors OCT4, SOX15 and TWIST1 in ectopic endometrium of endometriosis patients. Reprod Biol Endocrinol. 2016;14:81 pubmed
  116. Herring A, Messana A, Bara A, Hazelbaker D, Eggan K, Barrett L. Generation of a TLE1 homozygous knockout human embryonic stem cell line using CRISPR-Cas9. Stem Cell Res. 2016;17:430-432 pubmed 出版商
  117. Zeltner N, Fattahi F, Dubois N, Saurat N, Lafaille F, Shang L, et al. Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med. 2016;22:1421-1427 pubmed 出版商
  118. Zhu L, Gómez Durán A, Saretzki G, Jin S, Tilgner K, Melguizo Sanchís D, et al. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. J Cell Biol. 2016;215:187-202 pubmed
  119. Kele M, Day K, Rönnholm H, Schuster J, Dahl N, Falk A. Generation of human iPS cell line CTL07-II from human fibroblasts, under defined and xeno-free conditions. Stem Cell Res. 2016;17:474-478 pubmed 出版商
  120. Fukuda A, Mitani A, Miyashita T, Sado T, Umezawa A, Akutsu H. Maintenance of Xist Imprinting Depends on Chromatin Condensation State and Rnf12 Dosage in Mice. PLoS Genet. 2016;12:e1006375 pubmed 出版商
  121. Strikoudis A, Lazaris C, Trimarchi T, Galvao Neto A, Yang Y, Ntziachristos P, et al. Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a. Nat Cell Biol. 2016;18:1127-1138 pubmed 出版商
  122. Zheng X, Yang P, Lackford B, Bennett B, Wang L, Li H, et al. CNOT3-Dependent mRNA Deadenylation Safeguards the Pluripotent State. Stem Cell Reports. 2016;7:897-910 pubmed 出版商
  123. Featherston T, Yu H, Dunne J, Chibnall A, Brasch H, Davis P, et al. Cancer Stem Cells in Moderately Differentiated Buccal Mucosal Squamous Cell Carcinoma Express Components of the Renin-Angiotensin System. Front Surg. 2016;3:52 pubmed
  124. Okata S, Yuasa S, Suzuki T, Ito S, Makita N, Yoshida T, et al. Embryonic type Na+ channel ?-subunit, SCN3B masks the disease phenotype of Brugada syndrome. Sci Rep. 2016;6:34198 pubmed 出版商
  125. Cortes D, Robledo Arratia Y, Hernández Martinez R, Escobedo Ávila I, Bargas J, Velasco I. Transgenic GDNF Positively Influences Proliferation, Differentiation, Maturation and Survival of Motor Neurons Produced from Mouse Embryonic Stem Cells. Front Cell Neurosci. 2016;10:217 pubmed 出版商
  126. Yoffe Y, David M, Kalaora R, Povodovski L, Friedlander G, Feldmesser E, et al. Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells. Genes Dev. 2016;30:1991-2004 pubmed 出版商
  127. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  128. Kotoku T, Kosaka K, Nishio M, Ishida Y, Kawaichi M, Matsuda E. CIBZ Regulates Mesodermal and Cardiac Differentiation of by Suppressing T and Mesp1 Expression in Mouse Embryonic Stem Cells. Sci Rep. 2016;6:34188 pubmed 出版商
  129. Lee E, Wang J, Yumoto K, Jung Y, Cackowski F, Decker A, et al. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis. Neoplasia. 2016;18:553-66 pubmed 出版商
  130. Borgs L, Peyre E, Alix P, Hanon K, Grobarczyk B, Godin J, et al. Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects. Sci Rep. 2016;6:33377 pubmed 出版商
  131. BRADSHAW A, Wickremesekera A, Brasch H, Chibnall A, Davis P, Tan S, et al. Cancer Stem Cells in Glioblastoma Multiforme. Front Surg. 2016;3:48 pubmed 出版商
  132. Zhang L, Hua Q, Tang K, Shi C, Xie X, Zhang R. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells. Neuroscience. 2016;337:88-97 pubmed 出版商
  133. Ahmadian Baghbaderani B, Tian X, Scotty Cadet J, Shah K, Walde A, Tran H, et al. A Newly Defined and Xeno-Free Culture Medium Supports Every-Other-Day Medium Replacement in the Generation and Long-Term Cultivation of Human Pluripotent Stem Cells. PLoS ONE. 2016;11:e0161229 pubmed 出版商
  134. Magown P, Brownstone R, Rafuse V. Tumor prevention facilitates delayed transplant of stem cell-derived motoneurons. Ann Clin Transl Neurol. 2016;3:637-49 pubmed 出版商
  135. Bao X, Lian X, Palecek S. Directed Endothelial Progenitor Differentiation from Human Pluripotent Stem Cells Via Wnt Activation Under Defined Conditions. Methods Mol Biol. 2016;1481:183-96 pubmed 出版商
  136. Tancos Z, Varga E, Kovacs E, Dinnyes A, Kobolak J. Establishment of induced pluripotent stem cell (iPSC) line from a 75-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Res. 2016;17:81-83 pubmed 出版商
  137. Chandrasekaran A, Varga E, Nemes C, Tancos Z, Kobolak J, Dinnyes A. Establishment of induced pluripotent stem cell (iPSC) line from a 63-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Res. 2016;17:78-80 pubmed 出版商
  138. Tancos Z, Varga E, Kovacs E, Dinnyes A, Kobolak J. Establishment of induced pluripotent stem cell (iPSC) line from an 84-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Res. 2016;17:75-77 pubmed 出版商
  139. Ochalek A, Nemes C, Varga E, Tancos Z, Kobolak J, Dinnyes A. Establishment of induced pluripotent stem cell (iPSC) line from a 57-year old patient with sporadic Alzheimer's disease. Stem Cell Res. 2016;17:72-74 pubmed 出版商
  140. Hofbauer P, Jung J, McArdle T, Ogle B. Simple Monolayer Differentiation of Murine Cardiomyocytes via Nutrient Deprivation-Mediated Activation of β-Catenin. Stem Cell Rev. 2016;12:731-743 pubmed
  141. Chailangkarn T, Trujillo C, Freitas B, Hrvoj Mihic B, Herai R, Yu D, et al. A human neurodevelopmental model for Williams syndrome. Nature. 2016;536:338-43 pubmed
  142. Martin Gonzalez J, Morgani S, Bone R, Bonderup K, Abelchian S, Brakebusch C, et al. Embryonic Stem Cell Culture Conditions Support Distinct States Associated with Different Developmental Stages and Potency. Stem Cell Reports. 2016;7:177-91 pubmed 出版商
  143. Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J, et al. Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol. 2016;18:954-966 pubmed 出版商
  144. Vega Crespo A, Truong B, Hermann K, Awe J, Chang K, Lee P, et al. Investigating the functionality of an OCT4-short response element in human induced pluripotent stem cells. Mol Ther Methods Clin Dev. 2016;3:16050 pubmed 出版商
  145. Lv D, Yu S, Ping Y, Wu H, Zhao X, Zhang H, et al. A three-dimensional collagen scaffold cell culture system for screening anti-glioma therapeutics. Oncotarget. 2016;7:56904-56914 pubmed 出版商
  146. Wang J, Liu X, Jiang Z, Li L, Cui Z, Gao Y, et al. A novel method to limit breast cancer stem cells in states of quiescence, proliferation or differentiation: Use of gel stress in combination with stem cell growth factors. Oncol Lett. 2016;12:1355-1360 pubmed
  147. Achuta V, Grym H, Putkonen N, Louhivuori V, Kärkkäinen V, Koistinaho J, et al. Metabotropic glutamate receptor 5 responses dictate differentiation of neural progenitors to NMDA-responsive cells in fragile X syndrome. Dev Neurobiol. 2017;77:438-453 pubmed 出版商
  148. Khoa L, Azami T, Tsukiyama T, Matsushita J, Tsukiyama Fujii S, Takahashi S, et al. Visualization of the Epiblast and Visceral Endodermal Cells Using Fgf5-P2A-Venus BAC Transgenic Mice and Epiblast Stem Cells. PLoS ONE. 2016;11:e0159246 pubmed 出版商
  149. Pinet S, Bessette B, Vedrenne N, Lacroix A, Richard L, Jauberteau M, et al. TrkB-containing exosomes promote the transfer of glioblastoma aggressiveness to YKL-40-inactivated glioblastoma cells. Oncotarget. 2016;7:50349-50364 pubmed 出版商
  150. Duru N, Gernapudi R, Lo P, Yao Y, Wolfson B, Zhang Y, et al. Characterization of the CD49f+/CD44+/CD24- single-cell derived stem cell population in basal-like DCIS cells. Oncotarget. 2016;7:47511-47525 pubmed 出版商
  151. Lee M, Huang H, Chang T, Huang H, Hsieh S, Chen Y, et al. Genome-wide analysis of HIF-2? chromatin binding sites under normoxia in human bronchial epithelial cells (BEAS-2B) suggests its diverse functions. Sci Rep. 2016;6:29311 pubmed 出版商
  152. Simile M, Latte G, Demartis M, Brozzetti S, Calvisi D, Porcu A, et al. Post-translational deregulation of YAP1 is genetically controlled in rat liver cancer and determines the fate and stem-like behavior of the human disease. Oncotarget. 2016;7:49194-49216 pubmed 出版商
  153. Itahana Y, Zhang J, Göke J, Vardy L, Han R, Iwamoto K, et al. Histone modifications and p53 binding poise the p21 promoter for activation in human embryonic stem cells. Sci Rep. 2016;6:28112 pubmed 出版商
  154. Li H, Mai R, Huang H, Chou C, Chang Y, Chang Y, et al. DDX3 Represses Stemness by Epigenetically Modulating Tumor-suppressive miRNAs in Hepatocellular Carcinoma. Sci Rep. 2016;6:28637 pubmed 出版商
  155. Som A, Bloch S, Ippolito J, Achilefu S. Acidic extracellular pH of tumors induces octamer-binding transcription factor 4 expression in murine fibroblasts in vitro and in vivo. Sci Rep. 2016;6:27803 pubmed 出版商
  156. Desrochers L, Bordeleau F, Reinhart King C, Cerione R, Antonyak M. Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun. 2016;7:11958 pubmed 出版商
  157. Fagnocchi L, Cherubini A, Hatsuda H, Fasciani A, Mazzoleni S, Poli V, et al. A Myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity. Nat Commun. 2016;7:11903 pubmed 出版商
  158. Tomasello L, Musso R, Cillino G, Pitrone M, Pizzolanti G, Coppola A, et al. Donor age and long-term culture do not negatively influence the stem potential of limbal fibroblast-like stem cells. Stem Cell Res Ther. 2016;7:83 pubmed 出版商
  159. Baghbaderani B, Syama A, Sivapatham R, Pei Y, Mukherjee O, Fellner T, et al. Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications. Stem Cell Rev. 2016;12:394-420 pubmed 出版商
  160. Lu Y, Liu Y, Liao S, Tu W, Shen Y, Yan Y, et al. Epigenetic modifications promote the expression of the orphan nuclear receptor NR0B1 in human lung adenocarcinoma cells. Oncotarget. 2016;7:43162-43176 pubmed 出版商
  161. Tu S, Narendra V, Yamaji M, Vidal S, Rojas L, Wang X, et al. Co-repressor CBFA2T2 regulates pluripotency and germline development. Nature. 2016;534:387-90 pubmed 出版商
  162. Hyslop L, Blakeley P, Craven L, Richardson J, Fogarty N, Fragouli E, et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature. 2016;534:383-6 pubmed 出版商
  163. Qi D, Wang Q, Yu M, Lan R, Li S, Lu F. Mitotic phosphorylation of SOX2 mediated by Aurora kinase A is critical for the stem-cell like cell maintenance in PA-1 cells. Cell Cycle. 2016;15:2009-18 pubmed 出版商
  164. Jia M, Wei Z, Liu P, Zhao X. Silencing of ABCG2 by MicroRNA-3163 Inhibits Multidrug Resistance in Retinoblastoma Cancer Stem Cells. J Korean Med Sci. 2016;31:836-42 pubmed 出版商
  165. Zhu P, Wang Y, Huang G, Ye B, Liu B, Wu J, et al. lnc-?-Catm elicits EZH2-dependent ?-catenin stabilization and sustains liver CSC self-renewal. Nat Struct Mol Biol. 2016;23:631-9 pubmed 出版商
  166. Zhang W, Ni P, Mou C, Zhang Y, Guo H, Zhao T, et al. Cops2 promotes pluripotency maintenance by Stabilizing Nanog Protein and Repressing Transcription. Sci Rep. 2016;6:26804 pubmed 出版商
  167. Rodríguez Jiménez F, Alastrue A, Stojkovic M, Erceg S, Moreno Manzano V. Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells. Cell Tissue Res. 2016;365:295-307 pubmed 出版商
  168. Ninomiya Y, Zhao W, Saga Y. GBIQ: a non-arbitrary, non-biased method for quantification of fluorescent images. Sci Rep. 2016;6:26454 pubmed 出版商
  169. Jung J, Kang K, Kim J, Hong S, Park Y, Kim B. CXCR2 Inhibition in Human Pluripotent Stem Cells Induces Predominant Differentiation to Mesoderm and Endoderm Through Repression of mTOR, ?-Catenin, and hTERT Activities. Stem Cells Dev. 2016;25:1006-19 pubmed 出版商
  170. Reboun M, Rybová J, Dobrovolny R, Vcelak J, Veselková T, Storkanova G, et al. X-Chromosome Inactivation Analysis in Different Cell Types and Induced Pluripotent Stem Cells Elucidates the Disease Mechanism in a Rare Case of Mucopolysaccharidosis Type II in a Female. Folia Biol (Praha). 2016;62:82-9 pubmed
  171. Moshfegh C, Aires L, Kisielow M, Vogel V. A gonogenic stimulated transition of mouse embryonic stem cells with enhanced control of diverse differentiation pathways. Sci Rep. 2016;6:25104 pubmed 出版商
  172. Pandolfini L, Luzi E, Bressan D, Ucciferri N, Bertacchi M, Brandi R, et al. RISC-mediated control of selected chromatin regulators stabilizes ground state pluripotency of mouse embryonic stem cells. Genome Biol. 2016;17:94 pubmed 出版商
  173. Bie Q, Sun C, Gong A, Li C, Su Z, Zheng D, et al. Non-tumor tissue derived interleukin-17B activates IL-17RB/AKT/β-catenin pathway to enhance the stemness of gastric cancer. Sci Rep. 2016;6:25447 pubmed 出版商
  174. Chen P, Hsiao J, Sirois C, Chamberlain S. RBFOX1 and RBFOX2 are dispensable in iPSCs and iPSC-derived neurons and do not contribute to neural-specific paternal UBE3A silencing. Sci Rep. 2016;6:25368 pubmed 出版商
  175. Shahbazi M, Jedrusik A, Vuoristo S, Recher G, Hupalowska A, Bolton V, et al. Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol. 2016;18:700-708 pubmed 出版商
  176. Lu K, Wang B, Chi W, Chang Chien J, Yang J, Lee H, et al. Ovatodiolide Inhibits Breast Cancer Stem/Progenitor Cells through SMURF2-Mediated Downregulation of Hsp27. Toxins (Basel). 2016;8: pubmed 出版商
  177. Kushwaha R, Jagadish N, Kustagi M, Mendiratta G, Seandel M, Soni R, et al. Mechanism and Role of SOX2 Repression in Seminoma: Relevance to Human Germline Specification. Stem Cell Reports. 2016;6:772-783 pubmed 出版商
  178. Li D, Wang L, Hou J, Shen Q, Chen Q, Wang X, et al. Optimized Approaches for Generation of Integration-free iPSCs from Human Urine-Derived Cells with Small Molecules and Autologous Feeder. Stem Cell Reports. 2016;6:717-728 pubmed 出版商
  179. Sharova L, Sharov A, Piao Y, Stagg C, Amano T, Qian Y, et al. Emergence of undifferentiated colonies from mouse embryonic stem cells undergoing differentiation by retinoic acid treatment. In Vitro Cell Dev Biol Anim. 2016;52:616-24 pubmed 出版商
  180. Seita Y, Tsukiyama T, Iwatani C, Tsuchiya H, Matsushita J, Azami T, et al. Generation of transgenic cynomolgus monkeys that express green fluorescent protein throughout the whole body. Sci Rep. 2016;6:24868 pubmed 出版商
  181. Leung C, Mak W, Kai A, Chan K, Lee T, Ng I, et al. Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/?-catenin signaling. Oncotarget. 2016;7:29371-86 pubmed 出版商
  182. Baillie R, Itinteang T, Yu H, Brasch H, Davis P, Tan S. Cancer stem cells in moderately differentiated oral tongue squamous cell carcinoma. J Clin Pathol. 2016;69:742-4 pubmed 出版商
  183. Burridge P, Li Y, Matsa E, Wu H, Ong S, Sharma A, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med. 2016;22:547-56 pubmed 出版商
  184. Sadeghian Nodoushan F, Aflatoonian R, Borzouie Z, Akyash F, Fesahat F, Soleimani M, et al. Pluripotency and differentiation of cells from human testicular sperm extraction: An investigation of cell stemness. Mol Reprod Dev. 2016;83:312-23 pubmed 出版商
  185. Conway A, Van Nostrand E, Pratt G, Aigner S, Wilbert M, Sundararaman B, et al. Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival. Cell Rep. 2016;15:666-679 pubmed 出版商
  186. Saito H, Okita K, Fusaki N, Sabel M, Chang A, Ito F. Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells. Stem Cells Int. 2016;2016:8394960 pubmed 出版商
  187. Liu Q, Zhang R, Li D, Cheng S, Yang Y, Tian T, et al. Muse Cells, a New Type of Pluripotent Stem Cell Derived from Human Fibroblasts. Cell Reprogram. 2016;18:67-77 pubmed 出版商
  188. Sa Ngiamsuntorn K, Wongkajornsilp A, Phanthong P, Borwornpinyo S, Kitiyanant N, Chantratita W, et al. A robust model of natural hepatitis C infection using hepatocyte-like cells derived from human induced pluripotent stem cells as a long-term host. Virol J. 2016;13:59 pubmed 出版商
  189. Navarra A, Musto A, Gargiulo A, Petrosino G, Pierantoni G, Fusco A, et al. Hmga2 is necessary for Otx2-dependent exit of embryonic stem cells from the pluripotent ground state. BMC Biol. 2016;14:24 pubmed 出版商
  190. Meng G, Poon A, Liu S, Rancourt D. An Effective and Reliable Xeno-free Cryopreservation Protocol for Single Human Pluripotent Stem Cells. Methods Mol Biol. 2016;1516:47-56 pubmed 出版商
  191. Vicidomini C, Ponzoni L, Lim D, Schmeisser M, Reim D, Morello N, et al. Pharmacological enhancement of mGlu5 receptors rescues behavioral deficits in SHANK3 knock-out mice. Mol Psychiatry. 2017;22:689-702 pubmed 出版商
  192. Francis K, Ton A, Xin Y, O Halloran P, Wassif C, Malik N, et al. Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/β-catenin defects in neuronal cholesterol synthesis phenotypes. Nat Med. 2016;22:388-96 pubmed 出版商
  193. Lee T, Liu C, Chang Y, Nieh S, Lin Y, Jao S, et al. Increased chemoresistance via Snail-Raf kinase inhibitor protein signaling in colorectal cancer in response to a nicotine derivative. Oncotarget. 2016;7:23512-20 pubmed 出版商
  194. Sundararaman B, Zhan L, Blue S, Stanton R, Elkins K, Olson S, et al. Resources for the Comprehensive Discovery of Functional RNA Elements. Mol Cell. 2016;61:903-13 pubmed 出版商
  195. Ananthula S, Sinha A, El Gassim M, Batth S, Marshall G, Gardner L, et al. Geminin overexpression-dependent recruitment and crosstalk with mesenchymal stem cells enhance aggressiveness in triple negative breast cancers. Oncotarget. 2016;7:20869-89 pubmed 出版商
  196. Wang X, Hodgkinson C, Lu K, Payne A, Pratt R, Dzau V. Selenium Augments microRNA Directed Reprogramming of Fibroblasts to Cardiomyocytes via Nanog. Sci Rep. 2016;6:23017 pubmed 出版商
  197. Uda Y, Xu S, Matsumura T, Takei Y. P2Y4 Nucleotide Receptor in Neuronal Precursors Induces Glutamatergic Subtype Markers in Their Descendant Neurons. Stem Cell Reports. 2016;6:474-482 pubmed 出版商
  198. Kim J, Lee H, Park K, Choi Y, Nam J, Hong I. CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: a novel therapeutic approach for liver cancer treatment. Oncotarget. 2016;7:20395-409 pubmed 出版商
  199. Ghosheh N, Olsson B, Edsbagge J, Küppers Munther B, van Giezen M, Asplund A, et al. Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines. Stem Cells Int. 2016;2016:8648356 pubmed 出版商
  200. Myers S, Peddada S, Chatterjee N, Friedrich T, Tomoda K, Krings G, et al. SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells. elife. 2016;5:e10647 pubmed 出版商
  201. Borkent M, Bennett B, Lackford B, Bar Nur O, Brumbaugh J, Wang L, et al. A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2. Stem Cell Reports. 2016;6:704-716 pubmed 出版商
  202. Shao Z, Zhang R, Khodadadi Jamayran A, Chen B, Crowley M, Festok M, et al. The acetyllysine reader BRD3R promotes human nuclear reprogramming and regulates mitosis. Nat Commun. 2016;7:10869 pubmed 出版商
  203. Chang T, Chen C, Wu Y, Liu J, Kuo Y, Lee K, et al. Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma. PLoS ONE. 2016;11:e0149897 pubmed 出版商
  204. Xu M, Bian S, Li J, He J, Chen H, Ge L, et al. MeCP2 suppresses LIN28A expression via binding to its methylated-CpG islands in pancreatic cancer cells. Oncotarget. 2016;7:14476-85 pubmed 出版商
  205. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  206. Castaño J, Morera C, Sesé B, Boue S, Bonet Costa C, Marti M, et al. SETD7 Regulates the Differentiation of Human Embryonic Stem Cells. PLoS ONE. 2016;11:e0149502 pubmed 出版商
  207. Kang L, Yao C, Khodadadi Jamayran A, Xu W, Zhang R, Banerjee N, et al. The Universal 3D3 Antibody of Human PODXL Is Pluripotent Cytotoxic, and Identifies a Residual Population After Extended Differentiation of Pluripotent Stem Cells. Stem Cells Dev. 2016;25:556-68 pubmed 出版商
  208. Morales Hernández A, González Rico F, Román A, Rico Leo E, Alvarez Barrientos A, Sánchez L, et al. Alu retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor. Nucleic Acids Res. 2016;44:4665-83 pubmed 出版商
  209. Catanzaro G, Besharat Z, Garg N, Ronci M, Pieroni L, Miele E, et al. MicroRNAs-Proteomic Networks Characterizing Human Medulloblastoma-SLCs. Stem Cells Int. 2016;2016:2683042 pubmed 出版商
  210. Shin J, Kim T, Kim H, Kim H, Suh M, Lee S, et al. Aurkb/PP1-mediated resetting of Oct4 during the cell cycle determines the identity of embryonic stem cells. elife. 2016;5:e10877 pubmed 出版商
  211. Ahuja A, Jodkowska K, Teloni F, Bizard A, Zellweger R, Herrador R, et al. A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nat Commun. 2016;7:10660 pubmed 出版商
  212. Gehlot P, Shukla V, Gupta S, Makidon P. Detection of ALDH1 activity in rabbit hepatic VX2 tumors and isolation of ALDH1 positive cancer stem cells. J Transl Med. 2016;14:49 pubmed 出版商
  213. Scognamiglio R, Cabezas Wallscheid N, Thier M, Altamura S, Reyes A, Prendergast Ã, et al. Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell. 2016;164:668-80 pubmed 出版商
  214. Gerashchenko B, Salmina K, Eglitis J, Huna A, Grjunberga V, Erenpreisa J. Disentangling the aneuploidy and senescence paradoxes: a study of triploid breast cancers non-responsive to neoadjuvant therapy. Histochem Cell Biol. 2016;145:497-508 pubmed 出版商
  215. Gonzales Cope M, Sidoli S, Bhanu N, Won K, Garcia B. Histone H4 acetylation and the epigenetic reader Brd4 are critical regulators of pluripotency in embryonic stem cells. BMC Genomics. 2016;17:95 pubmed 出版商
  216. Wang X, Jung Y, Jun S, Lee S, Wang W, Schneider A, et al. PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun. 2016;7:10633 pubmed 出版商
  217. Dorris E, Blackshields G, Sommerville G, Alhashemi M, Dias A, McEneaney V, et al. Pluripotency markers are differentially induced by MEK inhibition in thyroid and melanoma BRAFV600E cell lines. Cancer Biol Ther. 2016;17:526-42 pubmed 出版商
  218. Walter M, Teissandier A, Pérez Palacios R, Bourc his D. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. elife. 2016;5: pubmed 出版商
  219. Li Q, Lex R, Chung H, Giovanetti S, Ji Z, Ji H, et al. The Pluripotency Factor NANOG Binds to GLI Proteins and Represses Hedgehog-mediated Transcription. J Biol Chem. 2016;291:7171-82 pubmed 出版商
  220. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  221. Quattrocelli M, Giacomazzi G, Broeckx S, Ceelen L, Bolca S, Spaas J, et al. Equine-Induced Pluripotent Stem Cells Retain Lineage Commitment Toward Myogenic and Chondrogenic Fates. Stem Cell Reports. 2016;6:55-63 pubmed 出版商
  222. Pan H, Guan D, Liu X, Li J, Wang L, Wu J, et al. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res. 2016;26:190-205 pubmed 出版商
  223. Murakami K, Günesdogan U, Zylicz J, Tang W, Sengupta R, Kobayashi T, et al. NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers. Nature. 2016;529:403-407 pubmed 出版商
  224. Umazume T, Thomas W, Campbell S, Aluri H, Thotakura S, Zoukhri D, et al. Lacrimal Gland Inflammation Deregulates Extracellular Matrix Remodeling and Alters Molecular Signature of Epithelial Stem/Progenitor Cells. Invest Ophthalmol Vis Sci. 2015;56:8392-402 pubmed 出版商
  225. Klawitter S, Fuchs N, Upton K, Muñoz Lopez M, Shukla R, Wang J, et al. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nat Commun. 2016;7:10286 pubmed 出版商
  226. Carroll B, Maetzel D, Maddocks O, Otten G, Ratcliff M, Smith G, et al. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. elife. 2016;5: pubmed 出版商
  227. Rooney G, Goodwin A, Depeille P, Sharir A, Schofield C, Yeh E, et al. Human iPS Cell-Derived Neurons Uncover the Impact of Increased Ras Signaling in Costello Syndrome. J Neurosci. 2016;36:142-52 pubmed 出版商
  228. Guye P, Ebrahimkhani M, Kipniss N, Velazquez J, Schoenfeld E, Kiani S, et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun. 2016;7:10243 pubmed 出版商
  229. Hammoud A, Kirstein N, Mournetas V, Darracq A, Broc S, Blanchard C, et al. Murine Embryonic Stem Cell Plasticity Is Regulated through Klf5 and Maintained by Metalloproteinase MMP1 and Hypoxia. PLoS ONE. 2016;11:e0146281 pubmed 出版商
  230. Vijaya Chandra S, Makhija H, Peter S, Myint Wai C, Li J, Zhu J, et al. Conservative site-specific and single-copy transgenesis in human LINE-1 elements. Nucleic Acids Res. 2016;44:e55 pubmed 出版商
  231. Higuchi A, Kao S, Ling Q, Chen Y, Li H, Alarfaj A, et al. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci Rep. 2015;5:18136 pubmed 出版商
  232. Conrad S, Azizi H, Hatami M, Kubista M, Bonin M, Hennenlotter J, et al. Expression of Genes Related to Germ Cell Lineage and Pluripotency in Single Cells and Colonies of Human Adult Germ Stem Cells. Stem Cells Int. 2016;2016:8582526 pubmed 出版商
  233. Grandy R, Whitfield T, Wu H, Fitzgerald M, VanOudenhove J, Zaidi S, et al. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation. Mol Cell Biol. 2016;36:615-27 pubmed 出版商
  234. Liu G, Zhao G, Chen X, Hao D, Zhao X, Lv X, et al. The long noncoding RNA Gm15055 represses Hoxa gene expression by recruiting PRC2 to the gene cluster. Nucleic Acids Res. 2016;44:2613-27 pubmed 出版商
  235. Ye S, Zhang D, Cheng F, Wilson D, Mackay J, He K, et al. Wnt/β-catenin and LIF-Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal. J Cell Sci. 2016;129:269-76 pubmed 出版商
  236. Kim E, Hwang S, Yoo H, Yoon J, Jeon Y, Kim H, et al. Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors. Theriogenology. 2016;85:601-16 pubmed 出版商
  237. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  238. Jia D, Tan Y, Liu H, Ooi S, Li L, Wright K, et al. Cardamonin reduces chemotherapy-enriched breast cancer stem-like cells in vitro and in vivo. Oncotarget. 2016;7:771-85 pubmed 出版商
  239. Wongtrakoongate P, Riddick G, Fucharoen S, Felsenfeld G. Association of the Long Non-coding RNA Steroid Receptor RNA Activator (SRA) with TrxG and PRC2 Complexes. PLoS Genet. 2015;11:e1005615 pubmed 出版商
  240. Freedman B, Brooks C, Lam A, Fu H, Morizane R, Agrawal V, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015;6:8715 pubmed 出版商
  241. Lee J, Lee S, Heo S, Kim K, Kim C, Kim D, et al. Novel Function of Lysine Methyltransferase G9a in the Regulation of Sox2 Protein Stability. PLoS ONE. 2015;10:e0141118 pubmed 出版商
  242. Epsztejn Litman S, Cohen Hadad Y, Aharoni S, Altarescu G, Renbaum P, Levy Lahad E, et al. Establishment of Homozygote Mutant Human Embryonic Stem Cells by Parthenogenesis. PLoS ONE. 2015;10:e0138893 pubmed 出版商
  243. Sidney L, Branch M, Dua H, Hopkinson A. Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells. Cytotherapy. 2015;17:1706-22 pubmed 出版商
  244. Jiang Y, Du M, Wu M, Zhu Y, Zhao X, Cao X, et al. Phosphatidic Acid Improves Reprogramming to Pluripotency by Reducing Apoptosis. Stem Cells Dev. 2016;25:43-54 pubmed 出版商
  245. Kuo H, Hsu H, Chen Y, Chang Y, Liu F, Wu C. Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer. Glycobiology. 2016;26:155-65 pubmed 出版商
  246. Donzelli S, Mori F, Bellissimo T, Sacconi A, Casini B, Frixa T, et al. Epigenetic silencing of miR-145-5p contributes to brain metastasis. Oncotarget. 2015;6:35183-201 pubmed 出版商
  247. Straccia M, Garcia Díaz Barriga G, Sanders P, Bombau G, Carrere J, Mairal P, et al. Quantitative high-throughput gene expression profiling of human striatal development to screen stem cell-derived medium spiny neurons. Mol Ther Methods Clin Dev. 2015;2:15030 pubmed 出版商
  248. Agu C, Soares F, Alderton A, Patel M, Ansari R, Patel S, et al. Successful Generation of Human Induced Pluripotent Stem Cell Lines from Blood Samples Held at Room Temperature for up to 48 hr. Stem Cell Reports. 2015;5:660-71 pubmed 出版商
  249. Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T. Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation. Stem Cell Reports. 2015;5:448-59 pubmed 出版商
  250. Neri T, Muggeo S, Paulis M, Caldana M, Crisafulli L, Strina D, et al. Targeted Gene Correction in Osteopetrotic-Induced Pluripotent Stem Cells for the Generation of Functional Osteoclasts. Stem Cell Reports. 2015;5:558-68 pubmed 出版商
  251. Hung S, Pébay A, Wong R. Generation of Integration-free Human Induced Pluripotent Stem Cells Using Hair-derived Keratinocytes. J Vis Exp. 2015;:e53174 pubmed 出版商
  252. Runesson E, Ackermann P, Karlsson J, Eriksson B. Nucleostemin- and Oct 3/4-positive stem/progenitor cells exhibit disparate anatomical and temporal expression during rat Achilles tendon healing. BMC Musculoskelet Disord. 2015;16:212 pubmed 出版商
  253. Kawaguchi T, Tsukiyama T, Kimura K, Matsuyama S, Minami N, Yamada M, et al. Generation of Naïve Bovine Induced Pluripotent Stem Cells Using PiggyBac Transposition of Doxycycline-Inducible Transcription Factors. PLoS ONE. 2015;10:e0135403 pubmed 出版商
  254. Liu J, Brzeszczynska J, Samuel K, Black J, Palakkan A, Anderson R, et al. Efficient episomal reprogramming of blood mononuclear cells and differentiation to hepatocytes with functional drug metabolism. Exp Cell Res. 2015;338:203-13 pubmed 出版商
  255. Ishikawa M, Ohnishi H, Skerleva D, Sakamoto T, Yamamoto N, Hotta A, et al. Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae. J Tissue Eng Regen Med. 2017;11:1766-1778 pubmed 出版商
  256. Mohammadi A, Attari F, Babapour V, Hassani S, Masoudi N, Shahverdi A, et al. Generation of Rat Embryonic Germ Cells via Inhibition of TGFß and MEK Pathways. Cell J. 2015;17:288-95 pubmed
  257. Cacchiarelli D, Trapnell C, Ziller M, Soumillon M, Cesana M, Karnik R, et al. Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency. Cell. 2015;162:412-424 pubmed 出版商
  258. Moslem M, Eberle I, Weber I, Henschler R, Cantz T. Mesenchymal Stem/Stromal Cells Derived from Induced Pluripotent Stem Cells Support CD34(pos) Hematopoietic Stem Cell Propagation and Suppress Inflammatory Reaction. Stem Cells Int. 2015;2015:843058 pubmed 出版商
  259. Xu J, Wan P, Wang M, Zhang J, Gao X, Hu B, et al. AIP1-mediated actin disassembly is required for postnatal germ cell migration and spermatogonial stem cell niche establishment. Cell Death Dis. 2015;6:e1818 pubmed 出版商
  260. Jones A, Gokhale P, Allison T, Sampson B, Athwal S, Grant S, et al. Evidence for bystander signalling between human trophoblast cells and human embryonic stem cells. Sci Rep. 2015;5:11694 pubmed 出版商
  261. Fidan K, Ebrahimi A, ÇaÄŸlayan Ã, Özçimen B, Önder T. Transgene-Free Disease-Specific iPSC Generation from Fibroblasts and Peripheral Blood Mononuclear Cells. Methods Mol Biol. 2016;1353:215-31 pubmed 出版商
  262. O Shaughnessy Kirwan A, Signolet J, Costello I, Gharbi S, Hendrich B. Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification. Development. 2015;142:2586-97 pubmed 出版商
  263. Gallego Romero I, Pavlovic B, Hernando Herraez I, Zhou X, WARD M, Banovich N, et al. A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics. elife. 2015;4:e07103 pubmed 出版商
  264. Liu J, Han Q, Peng T, Peng M, Wei B, Li D, et al. The oncogene c-Jun impedes somatic cell reprogramming. Nat Cell Biol. 2015;17:856-67 pubmed 出版商
  265. Maza I, Caspi I, Zviran A, Chomsky E, Rais Y, Viukov S, et al. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nat Biotechnol. 2015;33:769-74 pubmed 出版商
  266. Trokovic R, Weltner J, Noisa P, Raivio T, Otonkoski T. Combined negative effect of donor age and time in culture on the reprogramming efficiency into induced pluripotent stem cells. Stem Cell Res. 2015;15:254-62 pubmed 出版商
  267. Trokovic R, Weltner J, Otonkoski T. Generation of iPSC line HEL47.2 from healthy human adult fibroblasts. Stem Cell Res. 2015;15:263-5 pubmed 出版商
  268. Trokovic R, Weltner J, Otonkoski T. Generation of iPSC line HEL24.3 from human neonatal foreskin fibroblasts. Stem Cell Res. 2015;15:266-8 pubmed 出版商
  269. Szlachcic W, Switonski P, Krzyzosiak W, Figlerowicz M, Figiel M. Huntington disease iPSCs show early molecular changes in intracellular signaling, the expression of oxidative stress proteins and the p53 pathway. Dis Model Mech. 2015;8:1047-57 pubmed 出版商
  270. Huang X, Hu Q, Braun G, Pallaoro A, Morales D, ZASADZINSKI J, et al. Light-activated RNA interference in human embryonic stem cells. Biomaterials. 2015;63:70-9 pubmed 出版商
  271. Vrbsky J, Tereh T, Kyrylenko S, Dvorak P, Krejci L. MEK and TGF-beta Inhibition Promotes Reprogramming without the Use of Transcription Factor. PLoS ONE. 2015;10:e0127739 pubmed 出版商
  272. Lenzi J, De Santis R, de Turris V, Morlando M, Laneve P, Calvo A, et al. ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons. Dis Model Mech. 2015;8:755-66 pubmed 出版商
  273. Park S, Shim J, Park H, Eum D, Park M, Mi Yi J, et al. MacroH2A1 downregulation enhances the stem-like properties of bladder cancer cells by transactivation of Lin28B. Oncogene. 2016;35:1292-301 pubmed 出版商
  274. Tsai P, Chang Y, Lee Y, Ko Y, Yang Y, Lin C, et al. Differentiation of blood T cells: Reprogramming human induced pluripotent stem cells into neuronal cells. J Chin Med Assoc. 2015;78:353-9 pubmed 出版商
  275. Higuchi Y, Nguyen C, Yasuda S, McMillan M, Hasegawa K, Kahn M. Specific Direct Small Molecule p300/?-Catenin Antagonists Maintain Stem Cell Potency. Curr Mol Pharmacol. 2016;9:272-279 pubmed
  276. Adhikary G, Grun D, Balasubramanian S, Kerr C, Huang J, Eckert R. Survival of skin cancer stem cells requires the Ezh2 polycomb group protein. Carcinogenesis. 2015;36:800-10 pubmed 出版商
  277. Chen Y, Wang C, Wu J, Li L. BTG/Tob family members Tob1 and Tob2 inhibit proliferation of mouse embryonic stem cells via Id3 mRNA degradation. Biochem Biophys Res Commun. 2015;462:208-14 pubmed 出版商
  278. Wu J, Okamura D, Li M, Suzuki K, Luo C, Ma L, et al. An alternative pluripotent state confers interspecies chimaeric competency. Nature. 2015;521:316-21 pubmed 出版商
  279. Kim T, Kang B, Jang H, Kwak S, Shin J, Kim H, et al. Ctbp2 Modulates NuRD-Mediated Deacetylation of H3K27 and Facilitates PRC2-Mediated H3K27me3 in Active Embryonic Stem Cell Genes During Exit from Pluripotency. Stem Cells. 2015;33:2442-55 pubmed 出版商
  280. Fisher M, Keillor J, Xu W, Eckert R, Kerr C. Transglutaminase Is Required for Epidermal Squamous Cell Carcinoma Stem Cell Survival. Mol Cancer Res. 2015;13:1083-94 pubmed 出版商
  281. Machado C, Griesi Oliveira K, Rosenberg C, Kok F, Martins S, Passos Bueno M, et al. Collybistin binds and inhibits mTORC1 signaling: a potential novel mechanism contributing to intellectual disability and autism. Eur J Hum Genet. 2016;24:59-65 pubmed 出版商
  282. Jung K, Gupta N, Wang P, Lewis J, Gopal K, Wu F, et al. Triple negative breast cancers comprise a highly tumorigenic cell subpopulation detectable by its high responsiveness to a Sox2 regulatory region 2 (SRR2) reporter. Oncotarget. 2015;6:10366-73 pubmed
  283. Adams K, Rousso D, Umbach J, Novitch B. Foxp1-mediated programming of limb-innervating motor neurons from mouse and human embryonic stem cells. Nat Commun. 2015;6:6778 pubmed 出版商
  284. Boo K, Bhin J, Jeon Y, Kim J, Shin H, Park J, et al. Pontin functions as an essential coactivator for Oct4-dependent lincRNA expression in mouse embryonic stem cells. Nat Commun. 2015;6:6810 pubmed 出版商
  285. Sheshadri P, Ashwini A, Jahnavi S, Bhonde R, Prasanna J, Kumar A. Novel role of mitochondrial manganese superoxide dismutase in STAT3 dependent pluripotency of mouse embryonic stem cells. Sci Rep. 2015;5:9516 pubmed 出版商
  286. Sun Y, Florer J, Mayhew C, Jia Z, Zhao Z, Xu K, et al. Properties of neurons derived from induced pluripotent stem cells of Gaucher disease type 2 patient fibroblasts: potential role in neuropathology. PLoS ONE. 2015;10:e0118771 pubmed 出版商
  287. Liao J, Karnik R, Gu H, Ziller M, Clement K, Tsankov A, et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat Genet. 2015;47:469-78 pubmed 出版商
  288. Li S, Wu X, Dong C, Xie X, Wu J, Zhang X. The differential expression of OCT4 isoforms in cervical carcinoma. PLoS ONE. 2015;10:e0118033 pubmed 出版商
  289. Lu W, Fang L, Ouyang B, Zhang X, Zhan S, Feng X, et al. Actl6a protects embryonic stem cells from differentiating into primitive endoderm. Stem Cells. 2015;33:1782-93 pubmed 出版商
  290. Debowski K, Warthemann R, Lentes J, Salinas Riester G, Dressel R, Langenstroth D, et al. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach. PLoS ONE. 2015;10:e0118424 pubmed 出版商
  291. Kim S, Oceguera Yanez F, Hirohata R, Linker S, Okita K, Yamada Y, et al. KLF4 N-terminal variance modulates induced reprogramming to pluripotency. Stem Cell Reports. 2015;4:727-43 pubmed 出版商
  292. Sugawa F, Araúzo Bravo M, Yoon J, Kim K, Aramaki S, Wu G, et al. Human primordial germ cell commitment in vitro associates with a unique PRDM14 expression profile. EMBO J. 2015;34:1009-24 pubmed 出版商
  293. Hu Y, Nicholls P, Soh Y, Daniele J, Junker J, van Oudenaarden A, et al. Licensing of primordial germ cells for gametogenesis depends on genital ridge signaling. PLoS Genet. 2015;11:e1005019 pubmed 出版商
  294. Costabile V, Duraturo F, Delrio P, Rega D, Pace U, Liccardo R, et al. Lithium chloride induces mesenchymal‑to‑epithelial reverting transition in primary colon cancer cell cultures. Int J Oncol. 2015;46:1913-23 pubmed 出版商
  295. Nukaya D, Minami K, Hoshikawa R, Yokoi N, Seino S. Preferential gene expression and epigenetic memory of induced pluripotent stem cells derived from mouse pancreas. Genes Cells. 2015;20:367-81 pubmed 出版商
  296. Nakamura T, Yabuta Y, Okamoto I, Aramaki S, Yokobayashi S, Kurimoto K, et al. SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression. Nucleic Acids Res. 2015;43:e60 pubmed 出版商
  297. Yan H, Solozobova V, Zhang P, Armant O, Kuehl B, Brenner Weiss G, et al. p53 is active in murine stem cells and alters the transcriptome in a manner that is reminiscent of mutant p53. Cell Death Dis. 2015;6:e1662 pubmed 出版商
  298. Ungefroren H, Hyder A, Hinz H, Groth S, Lange H, El Sayed K, et al. Pluripotency gene expression and growth control in cultures of peripheral blood monocytes during their conversion into programmable cells of monocytic origin (PCMO): evidence for a regulatory role of autocrine activin and TGF-β. PLoS ONE. 2015;10:e0118097 pubmed 出版商
  299. Liskovykh M, Ponomartsev S, Popova E, Bader M, Kouprina N, Larionov V, et al. Stable maintenance of de novo assembled human artificial chromosomes in embryonic stem cells and their differentiated progeny in mice. Cell Cycle. 2015;14:1268-73 pubmed 出版商
  300. Fritz A, Adil M, Mao S, Schaffer D. cAMP and EPAC Signaling Functionally Replace OCT4 During Induced Pluripotent Stem Cell Reprogramming. Mol Ther. 2015;23:952-963 pubmed 出版商
  301. Rao R, Dhele N, Cheemadan S, Ketkar A, Jayandharan G, Palakodeti D, et al. Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming. Sci Rep. 2015;5:8229 pubmed 出版商
  302. Choi S, Lee H, Choi J, Kim J, Park C, Joo H, et al. Cyclosporin A induces cardiac differentiation but inhibits hemato-endothelial differentiation of P19 cells. PLoS ONE. 2015;10:e0117410 pubmed 出版商
  303. Piatti P, Lim C, Nat R, Villunger A, Geley S, Shue Y, et al. Embryonic stem cell differentiation requires full length Chd1. Sci Rep. 2015;5:8007 pubmed 出版商
  304. Su M, Song Y, He Z, Hu R, Rood D, Lai L. Administration of embryonic stem cell-derived thymic epithelial progenitors expressing MOG induces antigen-specific tolerance and ameliorates experimental autoimmune encephalomyelitis. J Autoimmun. 2015;58:36-47 pubmed 出版商
  305. Weissferdt A, Rodriguez Canales J, Liu H, Fujimoto J, Wistuba I, Moran C. Primary mediastinal seminomas: a comprehensive immunohistochemical study with a focus on novel markers. Hum Pathol. 2015;46:376-83 pubmed 出版商
  306. Irie N, Weinberger L, Tang W, Kobayashi T, Viukov S, Manor Y, et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell. 2015;160:253-68 pubmed 出版商
  307. Sivapatham R, Zeng X. Generation and Characterization of Patient-Specific Induced Pluripotent Stem Cell for Disease Modeling. Methods Mol Biol. 2016;1353:25-44 pubmed 出版商
  308. Ndisang J, Tiwari S. Mechanisms by which heme oxygenase rescue renal dysfunction in obesity. Redox Biol. 2014;2:1029-37 pubmed 出版商
  309. Wilson P, Payne T. Genetic reprogramming of human amniotic cells with episomal vectors: neural rosettes as sentinels in candidate selection for validation assays. Peerj. 2014;2:e668 pubmed 出版商
  310. Byrne S, Ortiz L, Mali P, Aach J, Church G. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res. 2015;43:e21 pubmed 出版商
  311. Wang C, Chen Y, Deng H, Gao S, Li L. Rbm46 regulates trophectoderm differentiation by stabilizing Cdx2 mRNA in early mouse embryos. Stem Cells Dev. 2015;24:904-15 pubmed 出版商
  312. Fathi A, Rasouli H, Yeganeh M, Salekdeh G, Baharvand H. Efficient differentiation of human embryonic stem cells toward dopaminergic neurons using recombinant LMX1A factor. Mol Biotechnol. 2015;57:184-94 pubmed 出版商
  313. Abu Hassan D, Li X, Ryan E, Acott T, Kelley M. Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma. Stem Cells. 2015;33:751-61 pubmed 出版商
  314. Vestergaard M, Awan A, Warzecha C, Christensen S, Andersen C. Immunofluorescence Microscopy and mRNA Analysis of Human Embryonic Stem Cells (hESCs) Including Primary Cilia Associated Signaling Pathways. Methods Mol Biol. 2016;1307:123-40 pubmed 出版商
  315. Wainwright E, Svingen T, Ng E, Wicking C, Koopman P. Primary cilia function regulates the length of the embryonic trunk axis and urogenital field in mice. Dev Biol. 2014;395:342-54 pubmed 出版商
  316. Chang Y, Chang W, Hung K, Yang D, Cheng Y, Liao Y, et al. The generation of induced pluripotent stem cells for macular degeneration as a drug screening platform: identification of curcumin as a protective agent for retinal pigment epithelial cells against oxidative stress. Front Aging Neurosci. 2014;6:191 pubmed 出版商
  317. Chau M, Deveau T, Song M, Gu X, Chen D, Wei L. iPSC Transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats. Stem Cells. 2014;32:3075-87 pubmed 出版商
  318. Ovchinnikov D, Titmarsh D, Fortuna P, Hidalgo A, Alharbi S, Whitworth D, et al. Transgenic human ES and iPS reporter cell lines for identification and selection of pluripotent stem cells in vitro. Stem Cell Res. 2014;13:251-61 pubmed 出版商
  319. Xie Y, Lu W, Liu S, Yang Q, Carver B, Li E, et al. Crosstalk between nuclear MET and SOX9/?-catenin correlates with castration-resistant prostate cancer. Mol Endocrinol. 2014;28:1629-39 pubmed 出版商
  320. Sutiwisesak R, Kitiyanant N, Kotchabhakdi N, Felsenfeld G, Andrews P, Wongtrakoongate P. Induced pluripotency enables differentiation of human nullipotent embryonal carcinoma cells N2102Ep. Biochim Biophys Acta. 2014;1843:2611-9 pubmed 出版商
  321. Mosbech C, Svingen T, Nielsen J, Toft B, Rechnitzer C, Petersen B, et al. Expression pattern of clinically relevant markers in paediatric germ cell- and sex-cord stromal tumours is similar to adult testicular tumours. Virchows Arch. 2014;465:567-77 pubmed 出版商
  322. Ueda J, Ho J, Lee K, Kitajima S, Yang H, Sun W, et al. The hypoxia-inducible epigenetic regulators Jmjd1a and G9a provide a mechanistic link between angiogenesis and tumor growth. Mol Cell Biol. 2014;34:3702-20 pubmed 出版商
  323. Onishi K, Tonge P, Nagy A, Zandstra P. Local BMP-SMAD1 signaling increases LIF receptor-dependent STAT3 responsiveness and primed-to-naive mouse pluripotent stem cell conversion frequency. Stem Cell Reports. 2014;3:156-68 pubmed 出版商
  324. Fritz A, Mao S, West M, Schaffer D. A medium-throughput analysis of signaling pathways involved in early stages of stem cell reprogramming. Biotechnol Bioeng. 2015;112:209-19 pubmed 出版商
  325. Tan G, Chan E, Molnar A, Sarkar R, Alexieva D, Isa I, et al. 5' isomiR variation is of functional and evolutionary importance. Nucleic Acids Res. 2014;42:9424-35 pubmed 出版商
  326. Liu G, Suzuki K, Li M, Qu J, Montserrat N, Tarantino C, et al. Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun. 2014;5:4330 pubmed 出版商
  327. Piazzolla D, Palla A, Pantoja C, Canamero M, de Castro I, Ortega S, et al. Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nat Commun. 2014;5:4226 pubmed 出版商
  328. Hassani S, Pakzad M, Asgari B, Taei A, Baharvand H. Suppression of transforming growth factor ? signaling promotes ground state pluripotency from single blastomeres. Hum Reprod. 2014;29:1739-48 pubmed 出版商
  329. Soltanian S, Dehghani H, Matin M, Bahrami A. Expression analysis of BORIS during pluripotent, differentiated, cancerous, and non-cancerous cell states. Acta Biochim Biophys Sin (Shanghai). 2014;46:647-58 pubmed 出版商
  330. Yu D, Swaroop M, Wang M, Baxa U, Yang R, Yan Y, et al. Niemann-Pick Disease Type C: Induced Pluripotent Stem Cell-Derived Neuronal Cells for Modeling Neural Disease and Evaluating Drug Efficacy. J Biomol Screen. 2014;19:1164-73 pubmed 出版商
  331. Ravens S, Fournier M, Ye T, Stierlé M, Dembele D, Chavant V, et al. Mof-associated complexes have overlapping and unique roles in regulating pluripotency in embryonic stem cells and during differentiation. elife. 2014;3: pubmed 出版商
  332. Ferrer M, Corneo B, Davis J, Wan Q, Miyagishima K, King R, et al. A multiplex high-throughput gene expression assay to simultaneously detect disease and functional markers in induced pluripotent stem cell-derived retinal pigment epithelium. Stem Cells Transl Med. 2014;3:911-22 pubmed 出版商
  333. Qian X, Zhao F. Collaborative interaction of Oct-2 with Oct-1 in transactivation of lactogenic hormones-induced ?-casein gene expression in mammary epithelial cells. Gen Comp Endocrinol. 2014;204:185-94 pubmed 出版商
  334. Chelmicki T, Dündar F, Turley M, Khanam T, Aktas T, Ramirez F, et al. MOF-associated complexes ensure stem cell identity and Xist repression. elife. 2014;3:e02024 pubmed 出版商
  335. Li T, Yang D, Li J, Tang Y, Yang J, Le W. Critical role of Tet3 in neural progenitor cell maintenance and terminal differentiation. Mol Neurobiol. 2015;51:142-54 pubmed 出版商
  336. Krutá M, Šeneklová M, Raška J, Salykin A, Zerzankova L, Pesl M, et al. Mutation frequency dynamics in HPRT locus in culture-adapted human embryonic stem cells and induced pluripotent stem cells correspond to their differentiated counterparts. Stem Cells Dev. 2014;23:2443-54 pubmed 出版商
  337. Jiang Y, Kou Z, Wu T, An W, Zhou R, Wang H, et al. Xist deficiency and disorders of X-inactivation in rabbit embryonic stem cells can be rescued by transcription-factor-mediated conversion. Stem Cells Dev. 2014;23:2283-96 pubmed 出版商
  338. Seki M, Masaki H, Arauchi T, Nakauchi H, Sugano S, Suzuki Y. A comparison of the rest complex binding patterns in embryonic stem cells and epiblast stem cells. PLoS ONE. 2014;9:e95374 pubmed 出版商
  339. Svingen T, Jørgensen A, Rajpert De Meyts E. Validation of endogenous normalizing genes for expression analyses in adult human testis and germ cell neoplasms. Mol Hum Reprod. 2014;20:709-18 pubmed 出版商
  340. Tan G, Cheng L, Chen T, Yu L, Tan Y. Foxm1 mediates LIF/Stat3-dependent self-renewal in mouse embryonic stem cells and is essential for the generation of induced pluripotent stem cells. PLoS ONE. 2014;9:e92304 pubmed 出版商
  341. Mouallif M, Albert A, Zeddou M, Ennaji M, Delvenne P, Guenin S. Expression profile of undifferentiated cell transcription factor 1 in normal and cancerous human epithelia. Int J Exp Pathol. 2014;95:251-9 pubmed 出版商
  342. Wen D, Saiz N, Rosenwaks Z, Hadjantonakis A, Rafii S. Completely ES cell-derived mice produced by tetraploid complementation using inner cell mass (ICM) deficient blastocysts. PLoS ONE. 2014;9:e94730 pubmed 出版商
  343. Pryzhkova M, Aria I, Cheng Q, Harris G, Zan X, Gharib M, et al. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate. Biomaterials. 2014;35:5098-109 pubmed 出版商
  344. Pertek A, Meier F, Irmler M, Beckers J, Skylaki S, Endele M, et al. Simple derivation of transgene-free iPS cells by a dual recombinase approach. Mol Biotechnol. 2014;56:697-713 pubmed 出版商
  345. Smith G, Kumar A, Saba J. Sphingosine Phosphate Lyase Regulates Murine Embryonic Stem Cell Proliferation and Pluripotency through an S1P2/STAT3 Signaling Pathway. Biomolecules. 2013;3:351-368 pubmed
  346. Sareen D, Gowing G, Sahabian A, Staggenborg K, Paradis R, Avalos P, et al. Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J Comp Neurol. 2014;522:2707-28 pubmed 出版商
  347. Ono T, Suzuki Y, Kato Y, Fujita R, Araki T, Yamashita T, et al. A single-cell and feeder-free culture system for monkey embryonic stem cells. PLoS ONE. 2014;9:e88346 pubmed 出版商
  348. Ozbey O, Sahin Z, Acar N, Ozcelik F, Ozenci A, Koksoy S, et al. Characterization of colony-forming cells in adult human articular cartilage. Acta Histochem. 2014;116:763-70 pubmed 出版商
  349. Hagiwara K, Obayashi T, Sakayori N, Yamanishi E, Hayashi R, Osumi N, et al. Molecular and cellular features of murine craniofacial and trunk neural crest cells as stem cell-like cells. PLoS ONE. 2014;9:e84072 pubmed 出版商
  350. Kanemura H, Go M, Shikamura M, Nishishita N, Sakai N, Kamao H, et al. Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration. PLoS ONE. 2014;9:e85336 pubmed 出版商
  351. Gericota B, Anderson J, Mitchell G, Borjesson D, Sturges B, Nolta J, et al. Canine epidermal neural crest stem cells: characterization and potential as therapy candidate for a large animal model of spinal cord injury. Stem Cells Transl Med. 2014;3:334-45 pubmed 出版商
  352. Kulzer J, Stitzel M, Morken M, Huyghe J, Fuchsberger C, Kuusisto J, et al. A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. Am J Hum Genet. 2014;94:186-97 pubmed 出版商
  353. Izumikawa T, Sato B, Kitagawa H. Chondroitin sulfate is indispensable for pluripotency and differentiation of mouse embryonic stem cells. Sci Rep. 2014;4:3701 pubmed 出版商
  354. Moore R, Tao W, Meng Y, Smith E, Xu X. Cell adhesion and sorting in embryoid bodies derived from N- or E-cadherin deficient murine embryonic stem cells. Biol Open. 2014;3:121-8 pubmed 出版商
  355. Gasimli L, Hickey A, Yang B, Li G, dela Rosa M, Nairn A, et al. Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages. Biochim Biophys Acta. 2014;1840:1993-2003 pubmed 出版商
  356. Honarpour N, Rose C, Brumbaugh J, Anderson J, Graham R, Sweredoski M, et al. F-box protein FBXL16 binds PP2A-B55? and regulates differentiation of embryonic stem cells along the FLK1+ lineage. Mol Cell Proteomics. 2014;13:780-91 pubmed 出版商
  357. D Anselmi F, Masiello M, Cucina A, Proietti S, Dinicola S, Pasqualato A, et al. Microenvironment promotes tumor cell reprogramming in human breast cancer cell lines. PLoS ONE. 2013;8:e83770 pubmed 出版商
  358. Adhikary G, Grun D, Kerr C, Balasubramanian S, Rorke E, Vemuri M, et al. Identification of a population of epidermal squamous cell carcinoma cells with enhanced potential for tumor formation. PLoS ONE. 2013;8:e84324 pubmed 出版商
  359. Mallon B, Hamilton R, Kozhich O, Johnson K, Fann Y, Rao M, et al. Comparison of the molecular profiles of human embryonic and induced pluripotent stem cells of isogenic origin. Stem Cell Res. 2014;12:376-86 pubmed 出版商
  360. Abdelalim E, Tooyama I. Knockdown of p53 suppresses Nanog expression in embryonic stem cells. Biochem Biophys Res Commun. 2014;443:652-7 pubmed 出版商
  361. Weidgang C, Russell R, Tata P, Kühl S, Illing A, Muller M, et al. TBX3 Directs Cell-Fate Decision toward Mesendoderm. Stem Cell Reports. 2013;1:248-65 pubmed 出版商
  362. McIntyre B, Alev C, Mechael R, Salci K, Lee J, Fiebig Comyn A, et al. Expansive generation of functional airway epithelium from human embryonic stem cells. Stem Cells Transl Med. 2014;3:7-17 pubmed 出版商
  363. Volonté A, Di Tomaso T, Spinelli M, Todaro M, Sanvito F, Albarello L, et al. Cancer-initiating cells from colorectal cancer patients escape from T cell-mediated immunosurveillance in vitro through membrane-bound IL-4. J Immunol. 2014;192:523-32 pubmed 出版商
  364. Bahney C, Hu D, Taylor A, Ferro F, Britz H, Hallgrimsson B, et al. Stem cell-derived endochondral cartilage stimulates bone healing by tissue transformation. J Bone Miner Res. 2014;29:1269-82 pubmed 出版商
  365. Kaprova Pleskacova J, Stoop H, Brüggenwirth H, Cools M, Wolffenbuttel K, Drop S, et al. Complete androgen insensitivity syndrome: factors influencing gonadal histology including germ cell pathology. Mod Pathol. 2014;27:721-30 pubmed 出版商
  366. Liu H, Zhang W, Jia Y, Yu Q, Grau G, Peng L, et al. Single-cell clones of liver cancer stem cells have the potential of differentiating into different types of tumor cells. Cell Death Dis. 2013;4:e857 pubmed 出版商
  367. Li Y, Drnevich J, Akraiko T, Band M, Li D, Wang F, et al. Gene expression profiling reveals the heterogeneous transcriptional activity of Oct3/4 and its possible interaction with Gli2 in mouse embryonic stem cells. Genomics. 2013;102:456-67 pubmed 出版商
  368. Wu X, Wang B, Dong Z, Zhou S, Liu Z, Shi G, et al. A NANOS3 mutation linked to protein degradation causes premature ovarian insufficiency. Cell Death Dis. 2013;4:e825 pubmed 出版商
  369. Subramanian V, Mazumder A, Surface L, Butty V, Fields P, Alwan A, et al. H2A.Z acidic patch couples chromatin dynamics to regulation of gene expression programs during ESC differentiation. PLoS Genet. 2013;9:e1003725 pubmed 出版商
  370. Li W, Ding S. Converting mouse epiblast stem cells into mouse embryonic stem cells by using small molecules. Methods Mol Biol. 2013;1074:31-7 pubmed 出版商
  371. Zhang X, Meyn M, Smithgall T. c-Yes tyrosine kinase is a potent suppressor of ES cell differentiation and antagonizes the actions of its closest phylogenetic relative, c-Src. ACS Chem Biol. 2014;9:139-46 pubmed 出版商
  372. Stover A, Brick D, Nethercott H, Banuelos M, Sun L, O Dowd D, et al. Process-based expansion and neural differentiation of human pluripotent stem cells for transplantation and disease modeling. J Neurosci Res. 2013;91:1247-62 pubmed 出版商
  373. Okumura L, Lesch B, Page D. The ligand binding domain of GCNF is not required for repression of pluripotency genes in mouse fetal ovarian germ cells. PLoS ONE. 2013;8:e66062 pubmed 出版商
  374. Okumura N, Akutsu H, Sugawara T, Miura T, Takezawa Y, Hosoda A, et al. ?-catenin functions pleiotropically in differentiation and tumorigenesis in mouse embryo-derived stem cells. PLoS ONE. 2013;8:e63265 pubmed 出版商
  375. Grabole N, Tischler J, Hackett J, Kim S, Tang F, Leitch H, et al. Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation. EMBO Rep. 2013;14:629-37 pubmed 出版商
  376. Sakaki Yumoto M, Liu J, Ramalho Santos M, Yoshida N, Derynck R. Smad2 is essential for maintenance of the human and mouse primed pluripotent stem cell state. J Biol Chem. 2013;288:18546-60 pubmed 出版商
  377. Delli Carri A, Onorati M, Castiglioni V, Faedo A, Camnasio S, Toselli M, et al. Human pluripotent stem cell differentiation into authentic striatal projection neurons. Stem Cell Rev. 2013;9:461-74 pubmed 出版商
  378. Barrero M, Sesé B, Marti M, Izpisua Belmonte J. Macro histone variants are critical for the differentiation of human pluripotent cells. J Biol Chem. 2013;288:16110-6 pubmed 出版商
  379. Betschinger J, Nichols J, Dietmann S, Corrin P, Paddison P, Smith A. Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell. 2013;153:335-47 pubmed 出版商
  380. Luo W, Li S, Peng B, Ye Y, Deng X, Yao K. Embryonic stem cells markers SOX2, OCT4 and Nanog expression and their correlations with epithelial-mesenchymal transition in nasopharyngeal carcinoma. PLoS ONE. 2013;8:e56324 pubmed 出版商
  381. Franck D, Gil E, Adam R, Kaplan D, Chung Y, Estrada C, et al. Evaluation of silk biomaterials in combination with extracellular matrix coatings for bladder tissue engineering with primary and pluripotent cells. PLoS ONE. 2013;8:e56237 pubmed 出版商
  382. Peng X, Gao H, Wang Y, Yang B, Liu T, Sun Y, et al. Conversion of rat embryonic stem cells into neural precursors in chemical-defined medium. Biochem Biophys Res Commun. 2013;431:783-7 pubmed 出版商
  383. Ma W, Ma J, Xu J, Qiao C, Branscum A, Cardenas A, et al. Lin28 regulates BMP4 and functions with Oct4 to affect ovarian tumor microenvironment. Cell Cycle. 2013;12:88-97 pubmed 出版商
  384. Maserati M, Dai X, Walentuk M, Mager J. Identification of four genes required for mammalian blastocyst formation. Zygote. 2014;22:331-9 pubmed 出版商
  385. Chalut K, Höpfler M, Lautenschläger F, Boyde L, Chan C, Ekpenyong A, et al. Chromatin decondensation and nuclear softening accompany Nanog downregulation in embryonic stem cells. Biophys J. 2012;103:2060-70 pubmed 出版商
  386. Putkhao K, Kocerha J, Cho I, Yang J, Parnpai R, Chan A. Pathogenic cellular phenotypes are germline transmissible in a transgenic primate model of Huntington's disease. Stem Cells Dev. 2013;22:1198-205 pubmed 出版商
  387. Turco M, Furia L, Dietze A, Fernandez Diaz L, Ronzoni S, Sciullo A, et al. Cellular heterogeneity during embryonic stem cell differentiation to epiblast stem cells is revealed by the ShcD/RaLP adaptor protein. Stem Cells. 2012;30:2423-36 pubmed 出版商
  388. Dolezalova D, Mraz M, Bárta T, Plevova K, Vinarsky V, Holubcová Z, et al. MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells. Stem Cells. 2012;30:1362-72 pubmed 出版商
  389. McDonel P, Demmers J, Tan D, Watt F, Hendrich B. Sin3a is essential for the genome integrity and viability of pluripotent cells. Dev Biol. 2012;363:62-73 pubmed 出版商
  390. Xie L, Pelz C, Wang W, Bashar A, Varlamova O, Shadle S, et al. KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription. EMBO J. 2011;30:1473-84 pubmed 出版商
  391. Santagata S, Maire C, Idbaih A, Geffers L, Correll M, Holton K, et al. CRX is a diagnostic marker of retinal and pineal lineage tumors. PLoS ONE. 2009;4:e7932 pubmed 出版商
  392. Duncan E, Muratore Schroeder T, Cook R, Garcia B, Shabanowitz J, Hunt D, et al. Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell. 2008;135:284-94 pubmed 出版商
  393. Hough S, Clements I, Welch P, Wiederholt K. Differentiation of mouse embryonic stem cells after RNA interference-mediated silencing of OCT4 and Nanog. Stem Cells. 2006;24:1467-75 pubmed