这是一篇来自已证抗体库的有关人类 PAI-1 (PAI-1) 的综述,是根据27篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合PAI-1 抗体。
PAI-1 同义词: PAI; PAI-1; PAI1; PLANH1

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR21850-82)
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司PAI-1抗体(Epitomics, EPR21850-82)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Oncol Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 图 5
艾博抗(上海)贸易有限公司PAI-1抗体(Abcam, ab66705)被用于被用于免疫印迹在pigs 样本上 (图 5). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(1D5)
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司PAI-1抗体(Abcam, ab125687)被用于被用于免疫印迹在小鼠样本上 (图 1). Iran J Basic Med Sci (2016) ncbi
小鼠 单克隆(1D5)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司PAI-1抗体(Abcam, ab125687)被用于被用于免疫印迹在人类样本上浓度为1:1000. FEBS Lett (2015) ncbi
小鼠 单克隆(1D5)
  • 免疫印迹; 人类; 1:2000; 图 4
艾博抗(上海)贸易有限公司PAI-1抗体(Abcam, ab125687)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Mol Med Rep (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-9)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术PAI-1抗体(Santa Cruz, sc-5297)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(C-9)
  • 免疫印迹; 人类; 1:500; 图 2c
圣克鲁斯生物技术PAI-1抗体(SantaCruz, sc-5297)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2c). Oncol Lett (2016) ncbi
小鼠 单克隆(C-9)
  • 免疫细胞化学; 人类; 图 s1a
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术PAI-1抗体(Santa cruz, sc-5297)被用于被用于免疫细胞化学在人类样本上 (图 s1a) 和 被用于免疫印迹在人类样本上 (图 3a). Cell Cycle (2015) ncbi
小鼠 单克隆(C-9)
  • 免疫细胞化学; pigs ; 图 1
圣克鲁斯生物技术PAI-1抗体(Santa cruz, sc-5297)被用于被用于免疫细胞化学在pigs 样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(C-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术PAI-1抗体(Santa Cruz Biotechnology, sc-5297)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C-9)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术PAI-1抗体(Santa Cruz, sc-5297)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Biol Chem (2013) ncbi
赛默飞世尔
小鼠 单克隆(1D5)
  • 免疫组化-石蜡切片; 人类; 图 3b
赛默飞世尔PAI-1抗体(ThermoFisher, MA5-17171)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). Cell Metab (2019) ncbi
小鼠 单克隆(1D5)
  • 免疫印迹; 人类; 1:600
赛默飞世尔PAI-1抗体(Zymed, 1D5)被用于被用于免疫印迹在人类样本上浓度为1:600. Tumour Biol (2012) ncbi
安迪生物R&D
小鼠 单克隆(242816)
  • 免疫印迹; 人类; 图 1d
安迪生物R&DPAI-1抗体(R&D Systems, MAB1786)被用于被用于免疫印迹在人类样本上 (图 1d). Cell Rep (2019) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(1D5)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
  • 免疫印迹; 人类; 1:1000
亚诺法生技股份有限公司PAI-1抗体(Abnova, 1D5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:1000. Oncotarget (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D9C4)
  • 免疫印迹; 小鼠; 图 4e, 5f
赛信通(上海)生物试剂有限公司PAI-1抗体(Cell Signaling, 11907)被用于被用于免疫印迹在小鼠样本上 (图 4e, 5f). J Cell Mol Med (2019) ncbi
domestic rabbit 单克隆(D9C4)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司PAI-1抗体(Cell Signaling Technology, 11907)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Cell Signal (2017) ncbi
domestic rabbit 单克隆(D9C4)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司PAI-1抗体(cell signalling, 11907S)被用于被用于免疫印迹在人类样本上 (图 7a). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(D9C4)
  • 免疫组化; 人类; 图 5c
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司PAI-1抗体(Cell Signaling, 11907)被用于被用于免疫组化在人类样本上 (图 5c) 和 被用于免疫印迹在人类样本上 (图 5a). Connect Tissue Res (2015) ncbi
碧迪BD
小鼠 单克隆(41/PAI-1)
  • 其他; 人类; 图 4c
碧迪BDPAI-1抗体(BD Biosciences, 612024)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(41/PAI-1)
  • reverse phase protein lysate microarray; 人类; 图 st6
碧迪BDPAI-1抗体(BD Biosciences, 612024)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
小鼠 单克隆(41/PAI-1)
  • reverse phase protein lysate microarray; 人类; 图 3a
碧迪BDPAI-1抗体(BD Biosciences, 612024)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
小鼠 单克隆(41/PAI-1)
  • 免疫印迹; 人类; 图 7e
碧迪BDPAI-1抗体(BD Transduction Laboratories, 612024)被用于被用于免疫印迹在人类样本上 (图 7e). Oncogene (2017) ncbi
小鼠 单克隆(41/PAI-1)
  • 免疫印迹; 人类; 图 6b
碧迪BDPAI-1抗体(BD Transduction Laboratories, 612024)被用于被用于免疫印迹在人类样本上 (图 6b). Breast Cancer Res (2016) ncbi
小鼠 单克隆(41/PAI-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s1
碧迪BDPAI-1抗体(BD科学, P612024)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s1). BMC Cancer (2016) ncbi
小鼠 单克隆(41/PAI-1)
  • 免疫印迹; 人类; 1:5000
碧迪BDPAI-1抗体(BD Biosciences, 612025)被用于被用于免疫印迹在人类样本上浓度为1:5000. J Cell Physiol (2015) ncbi
小鼠 单克隆(41/PAI-1)
  • 免疫印迹; 人类; 图 11
碧迪BDPAI-1抗体(BD Transduction, 612025)被用于被用于免疫印迹在人类样本上 (图 11). Nucleic Acids Res (2015) ncbi
文章列表
  1. Wiley C, Liu S, Limbad C, Zawadzka A, Beck J, Demaria M, et al. SILAC Analysis Reveals Increased Secretion of Hemostasis-Related Factors by Senescent Cells. Cell Rep. 2019;28:3329-3337.e5 pubmed 出版商
  2. Huang X, Xue H, Ma J, Zhang Y, Zhang J, Liu Y, et al. Salidroside ameliorates Adriamycin nephropathy in mice by inhibiting β-catenin activity. J Cell Mol Med. 2019;23:4443-4453 pubmed 出版商
  3. Thompson P, Shah A, Ntranos V, Van Gool F, Atkinson M, Bhushan A. Targeted Elimination of Senescent Beta Cells Prevents Type 1 Diabetes. Cell Metab. 2019;29:1045-1060.e10 pubmed 出版商
  4. Peng J, Liang S, Li L. sFRP1 exerts effects on gastric cancer cells through GSK3β/Rac1‑mediated restraint of TGFβ/Smad3 signaling. Oncol Rep. 2019;41:224-234 pubmed 出版商
  5. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  6. Yan Y, Zhao W, Huang Y, Tong H, Xia Y, Jiang Q, et al. Loss of Polycomb Group Protein Pcgf1 Severely Compromises Proper Differentiation of Embryonic Stem Cells. Sci Rep. 2017;7:46276 pubmed 出版商
  7. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  8. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  9. Hau A, Leivo M, Gilder A, Hu J, Gonias S, Hansel D. mTORC2 activation is regulated by the urokinase receptor (uPAR) in bladder cancer. Cell Signal. 2017;29:96-106 pubmed 出版商
  10. Chan D, Hui W, Wang J, Yung M, Hui L, Qin Y, et al. DLX1 acts as a crucial target of FOXM1 to promote ovarian cancer aggressiveness by enhancing TGF-β/SMAD4 signaling. Oncogene. 2017;36:1404-1416 pubmed 出版商
  11. LAW M, Ferreira R, Davis B, Higgins P, Kim J, Castellano R, et al. CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment. Breast Cancer Res. 2016;18:80 pubmed 出版商
  12. Ding Y, Zhang H, Lu A, Zhou Z, Zhong M, Shen D, et al. Effect of urokinase-type plasminogen activator system in gastric cancer with peritoneal metastasis. Oncol Lett. 2016;11:4208-4216 pubmed
  13. Eirin A, Ebrahimi B, Kwon S, Fiala J, Williams B, Woollard J, et al. Restoration of Mitochondrial Cardiolipin Attenuates Cardiac Damage in Swine Renovascular Hypertension. J Am Heart Assoc. 2016;5: pubmed 出版商
  14. Liang Q, Wang B, Pang L, Wang Y, Zheng M, Wang Q, et al. Application of citrate as a tricarboxylic acid (TCA) cycle intermediate, prevents diabetic-induced heart damages in mice. Iran J Basic Med Sci. 2016;19:43-8 pubmed
  15. Wang X, Wang N, Li H, Liu M, Cao F, Yu X, et al. Up-Regulation of PAI-1 and Down-Regulation of uPA Are Involved in Suppression of Invasiveness and Motility of Hepatocellular Carcinoma Cells by a Natural Compound Berberine. Int J Mol Sci. 2016;17:577 pubmed 出版商
  16. Koussounadis A, Langdon S, Um I, Kay C, Francis K, Harrison D, et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer. 2016;16:205 pubmed 出版商
  17. Pavon M, Arroyo Solera I, Tellez Gabriel M, Leon X, Virós D, Lopez M, et al. Enhanced cell migration and apoptosis resistance may underlie the association between high SERPINE1 expression and poor outcome in head and neck carcinoma patients. Oncotarget. 2015;6:29016-33 pubmed 出版商
  18. Huna A, Salmina K, Erenpreisa J, Vazquez Martin A, Krigerts J, Inashkina I, et al. Role of stress-activated OCT4A in the cell fate decisions of embryonal carcinoma cells treated with etoposide. Cell Cycle. 2015;14:2969-84 pubmed 出版商
  19. Carthy J, Sundqvist A, Heldin A, van Dam H, Kletsas D, Heldin C, et al. Tamoxifen Inhibits TGF-β-Mediated Activation of Myofibroblasts by Blocking Non-Smad Signaling Through ERK1/2. J Cell Physiol. 2015;230:3084-92 pubmed 出版商
  20. Liu X, Chen Z, Xu C, Leng X, Cao H, Ouyang G, et al. Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation. Nucleic Acids Res. 2015;43:5081-98 pubmed 出版商
  21. Zhang W, Pei Y, Zhong L, Wen B, Cao S, Han J. Pluripotent and Metabolic Features of Two Types of Porcine iPSCs Derived from Defined Mouse and Human ES Cell Culture Conditions. PLoS ONE. 2015;10:e0124562 pubmed 出版商
  22. Li C, Zhu H, Bai W, Su L, Liu J, Cai W, et al. MiR-10a and miR-181c regulate collagen type I generation in hypertrophic scars by targeting PAI-1 and uPA. FEBS Lett. 2015;589:380-9 pubmed 出版商
  23. Huang W, Li L, Tian X, Yan J, Yang X, Wang X, et al. Astragalus and Paeoniae Radix Rubra extract (APE) inhibits hepatic stellate cell activation by modulating transforming growth factor-β/Smad pathway. Mol Med Rep. 2015;11:2569-77 pubmed 出版商
  24. Zhang X, Ma Y, You T, Tian X, Zhang H, Zhu Q, et al. Roles of TGF-β/Smad signaling pathway in pathogenesis and development of gluteal muscle contracture. Connect Tissue Res. 2015;56:9-17 pubmed 出版商
  25. Feng Y, Wu H, Xu Y, Zhang Z, Liu T, Lin X, et al. Zinc finger protein 451 is a novel Smad corepressor in transforming growth factor-? signaling. J Biol Chem. 2014;289:2072-83 pubmed 出版商
  26. Sharma A, Diecke S, Zhang W, Lan F, He C, Mordwinkin N, et al. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J Biol Chem. 2013;288:18439-47 pubmed 出版商
  27. Popnikolov N, Dalwadi B, Thomas J, Johannes G, Imagawa W. Association of autotaxin and lysophosphatidic acid receptor 3 with aggressiveness of human breast carcinoma. Tumour Biol. 2012;33:2237-43 pubmed 出版商