这是一篇来自已证抗体库的有关人类 PARP的综述,是根据678篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合PARP 抗体。
PARP 同义词: ADPRT; ADPRT 1; ADPRT1; ARTD1; PARP; PARP-1; PPOL; pADPRT-1

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(E51)
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 人类; 1:1000; 图 s5b
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(E102)
  • 免疫印迹; 人类; 图 7f
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32138)被用于被用于免疫印迹在人类样本上 (图 7f). Sci Adv (2021) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 大鼠; 图 1f
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在大鼠样本上 (图 1f). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(E51)
  • 免疫组化-石蜡切片; 小鼠; 图 4e
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4e). J Cell Commun Signal (2021) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 人类; 1:700; 图 2
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在人类样本上浓度为1:700 (图 2). Int J Endocrinol (2021) ncbi
domestic rabbit 单克隆(E102)
  • 免疫印迹; 人类; 1:700; 图 2
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32138)被用于被用于免疫印迹在人类样本上浓度为1:700 (图 2). Int J Endocrinol (2021) ncbi
domestic rabbit 单克隆(Y34)
  • 免疫印迹; 人类; 1:5000; 图 5k
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32561)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5k). Mol Ther Oncolytics (2021) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 大鼠; 1:1000; 图 2h
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2h). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 1:300; 图 5s1g
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab227244)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:300 (图 5s1g). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5c
  • 免疫印迹; 小鼠; 1:5000; 图 5a
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab227244)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5c) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5a). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 单克隆(E102)
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32138)被用于被用于免疫印迹在人类样本上 (图 4a). Cells (2021) ncbi
domestic rabbit 单克隆(E102)
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32138)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 人类; 1:500; 图 4i
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4i). Mol Med Rep (2021) ncbi
domestic rabbit 单克隆(EPR18461)
  • 免疫印迹; 人类; 1:500; 图 4i
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab191217)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4i). Mol Med Rep (2021) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 人类; 1:250; 图 3e
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 3e). Cancer Res Treat (2021) ncbi
domestic rabbit 单克隆(EPR18461)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab191217)被用于被用于免疫印迹在人类样本上 (图 2c). Theranostics (2020) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在人类样本上 (图 2c). Theranostics (2020) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 小鼠; 1:1000; 图 5g
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5g). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(E102)
  • 免疫印迹; 小鼠; 1:1000; 图 5g
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32138)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5g). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(E51)
  • 免疫细胞化学; 人类; 图 1f
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫细胞化学在人类样本上 (图 1f). Sci Rep (2020) ncbi
domestic rabbit 单克隆(Y34)
  • 免疫印迹; 人类; 1:3000; 图 2b
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32561)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2b). Med Sci Monit (2019) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 人类; 图 4e
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在人类样本上 (图 4e). Epigenetics (2019) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 人类; 1:1000; 图 4h
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, Ab32064)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). Nat Commun (2019) ncbi
小鼠 单克隆(4B5BD2)
  • 免疫印迹; 人类; 1:1000; 图 5g
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab110315)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5g). J Cell Sci (2019) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32071)被用于被用于免疫印迹在人类样本上 (图 1a). Nucleic Acids Res (2019) ncbi
domestic rabbit 单克隆(Y34)
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32561)被用于被用于免疫印迹在人类样本上 (图 4b). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 人类; 1:1000; 图 9c
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9c). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 大鼠; 图 3c
  • 免疫印迹; 人类; 1:3000; 图 3c
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在大鼠样本上 (图 3c) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 3c). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 人类; 1:1000; 图 4c, 4f
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c, 4f). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3d
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab4830)被用于被用于免疫印迹在大鼠样本上 (图 3d). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在人类样本上 (图 5b). Med Sci Monit (2019) ncbi
domestic rabbit 单克隆(EPR18461)
  • 免疫印迹; 小鼠; 图 s1a
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab191217)被用于被用于免疫印迹在小鼠样本上 (图 s1a). Cell Res (2019) ncbi
domestic rabbit 单克隆(E102)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4a, 4c, 4e
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32138)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4a, 4c, 4e). Hum Pathol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab4830)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Cancer Sci (2019) ncbi
domestic rabbit 单克隆
  • 染色质免疫沉淀 ; 大鼠; 图 s1a
  • 免疫印迹; 大鼠; 图 s1e
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32071)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 s1a) 和 被用于免疫印迹在大鼠样本上 (图 s1e). Genes Dev (2018) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 人类; 1:20,000; 图 3a
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 3a). EMBO Mol Med (2018) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32071)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2b
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab4830)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). J Cell Mol Med (2017) ncbi
单克隆
  • 免疫印迹; 人类; 1:500; 图 s1b
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab110915)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s1b). Cell Cycle (2017) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; Spodoptera litura; 图 5j
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在Spodoptera litura样本上 (图 5j). Sci Rep (2016) ncbi
domestic rabbit 单克隆(E102)
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, E-102)被用于被用于免疫印迹在人类样本上 (图 4a). Oncogene (2017) ncbi
domestic rabbit 单克隆(E51)
  • 免疫组化; 人类; 图 7d
  • 免疫印迹; 人类; 图 5c
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫组化在人类样本上 (图 7d) 和 被用于免疫印迹在人类样本上 (图 5c). Onco Targets Ther (2016) ncbi
domestic rabbit 单克隆(E102)
  • 免疫印迹; 人类; 图 9
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32138)被用于被用于免疫印迹在人类样本上 (图 9). Autophagy (2016) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 人类; 图 9
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在人类样本上 (图 9). Autophagy (2016) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在人类样本上 (图 3). J Cancer (2016) ncbi
单克隆
  • 免疫组化; 大鼠; 1:200; 图 1
  • 免疫印迹; 大鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab110915)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Hum Mol Genet (2016) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32071)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 人类; 图 6i
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab 32064)被用于被用于免疫印迹在人类样本上 (图 6i). Sci Rep (2015) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32071)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(Y34)
  • 免疫印迹; 小鼠; 图 6c
艾博抗(上海)贸易有限公司 PARP抗体(abcam, ab32561)被用于被用于免疫印迹在小鼠样本上 (图 6c). Front Pharmacol (2015) ncbi
domestic rabbit 单克隆(E102)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32138)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 6a). Mol Cell Endocrinol (2016) ncbi
domestic rabbit 单克隆(E51)
  • 免疫组化; 小鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5b). Oncotarget (2015) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 人类; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Mol Cancer (2015) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32071)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(E51)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, AB32064)被用于被用于免疫印迹在人类样本上. Cell Oncol (Dordr) (2015) ncbi
domestic rabbit 单克隆(E102)
  • 免疫组化-冰冻切片; 大鼠; 1:50
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, Ab32138)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50. Mol Vis (2014) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 3e
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32071)被用于被用于免疫印迹在人类样本上 (图 3e). J Cell Biochem (2015) ncbi
domestic rabbit 单克隆(E51)
  • 免疫组化-冰冻切片; 小鼠; 2 ug/ml
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为2 ug/ml. J Virol (2014) ncbi
domestic rabbit 单克隆(Y34)
  • 免疫组化-冰冻切片; fruit fly ; 1:100
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32561)被用于被用于免疫组化-冰冻切片在fruit fly 样本上浓度为1:100. PLoS Genet (2014) ncbi
domestic rabbit 单克隆(E51)
  • 免疫组化-石蜡切片; fruit fly ; 1:1500
艾博抗(上海)贸易有限公司 PARP抗体(Abcam, ab32064)被用于被用于免疫组化-石蜡切片在fruit fly 样本上浓度为1:1500. Hum Mol Genet (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-8007)被用于被用于免疫印迹在人类样本上 (图 3b). Pharmaceutics (2022) ncbi
小鼠 单克隆(194C1439)
  • 免疫印迹; 大鼠; 1:2000; 图 5f
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-56196)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5f). Brain Behav (2022) ncbi
小鼠 单克隆(10H)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 PARP抗体(Santa Cruz Biotechnology, sc-56198)被用于被用于免疫印迹在小鼠样本上. Int J Mol Sci (2021) ncbi
小鼠 单克隆(B-10)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-74470)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2021) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 1:2500; 图 s5b
圣克鲁斯生物技术 PARP抗体(Santa, sc-8007)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 s5b). NPJ Precis Oncol (2021) ncbi
小鼠 单克隆(B-10)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1a
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-74470)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1a). Cells (2021) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 2e
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-8007)被用于被用于免疫印迹在人类样本上 (图 2e). Mol Cancer (2020) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 PARP抗体(Santa cruz, F2)被用于被用于免疫印迹在人类样本上 (图 3c). PLoS Pathog (2019) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 小鼠; 图 s13h
圣克鲁斯生物技术 PARP抗体(SCBT, 8007)被用于被用于免疫印迹在小鼠样本上 (图 s13h). Science (2019) ncbi
小鼠 单克隆(194C1439)
  • 免疫印迹; 人类; 图 10
圣克鲁斯生物技术 PARP抗体(Santa Cruz Biotechnology,, sc-56196)被用于被用于免疫印迹在人类样本上 (图 10). Biomolecules (2019) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 PARP抗体(Santa Cruz, F-2)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2019) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 小鼠; 图 1b
圣克鲁斯生物技术 PARP抗体(Santa, E-8)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cell Death Dis (2019) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 1:1000; 图 2a
圣克鲁斯生物技术 PARP抗体(SantaCruz, sc-8007)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Cell Rep (2018) ncbi
小鼠 单克隆(D-1)
  • 染色质免疫沉淀 ; 人类; 图 s4b
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-365315)被用于被用于染色质免疫沉淀 在人类样本上 (图 s4b). Nat Commun (2018) ncbi
小鼠 单克隆(F-2)
  • 免疫沉淀; 小鼠; 1:1000; 图 1b
  • 免疫印迹; 小鼠; 1:1000; 图 1b
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-8007)被用于被用于免疫沉淀在小鼠样本上浓度为1:1000 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Cell Death Differ (2018) ncbi
小鼠 单克隆(C2-10)
  • 免疫印迹; 人类; 图 7d
圣克鲁斯生物技术 PARP抗体(SantaCruz, sc-53643)被用于被用于免疫印迹在人类样本上 (图 7d). Cell (2018) ncbi
小鼠 单克隆(C2-10)
  • 免疫印迹; 小鼠; 图 s5e
圣克鲁斯生物技术 PARP抗体(SantaCruz, sc-53643)被用于被用于免疫印迹在小鼠样本上 (图 s5e). Cell (2018) ncbi
小鼠 单克隆(194C1439)
  • 免疫印迹; 人类; 图 5f
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-56,196)被用于被用于免疫印迹在人类样本上 (图 5f). BMC Cancer (2017) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 3f
圣克鲁斯生物技术 PARP抗体(SantaCruz, SC-8007)被用于被用于免疫印迹在人类样本上 (图 3f). Oncotarget (2017) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 1:1000; 图 5n
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-8007)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5n). Gut (2018) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 2e
圣克鲁斯生物技术 PARP抗体(SantaCruz, SC-8007)被用于被用于免疫印迹在人类样本上 (图 2e). Mol Cell Biol (2017) ncbi
小鼠 单克隆(42)
  • 免疫印迹; 人类; 1:2500; 图 4C
圣克鲁斯生物技术 PARP抗体(Santa cruz, sc-136208)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 4C). Mol Med Rep (2017) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 1d
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-8007)被用于被用于免疫印迹在人类样本上 (图 1d). Oncotarget (2017) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术 PARP抗体(Santa Cruz, 8007)被用于被用于免疫印迹在人类样本上 (图 2c). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(C2-10)
  • 免疫印迹; 人类; 图 4c
圣克鲁斯生物技术 PARP抗体(Santa Cruz Biotechnology, sc-53643)被用于被用于免疫印迹在人类样本上 (图 4c). Cell Death Dis (2017) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 1:1000; 图 s4a
圣克鲁斯生物技术 PARP抗体(Santa CruZ, SC-8007)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a). Nat Commun (2017) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 人类; 图 5f
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-56197)被用于被用于免疫印迹在人类样本上 (图 5f). PLoS Pathog (2017) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 1:1000; 图 6d
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc8007)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Sci Rep (2017) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 4c
圣克鲁斯生物技术 PARP抗体(SantaCruz, sc8007)被用于被用于免疫印迹在人类样本上 (图 4c). Expert Opin Ther Targets (2017) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 6e
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-8007)被用于被用于免疫印迹在人类样本上 (图 6e). Oncotarget (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 4h
圣克鲁斯生物技术 PARP抗体(SantaCruz, sc-8007)被用于被用于免疫印迹在人类样本上 (图 4h). PLoS ONE (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 PARP抗体(Santa Cruz, SC-8007)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-8007)被用于被用于免疫印迹在小鼠样本上 (图 5). J Cancer (2016) ncbi
小鼠 单克隆(E-8)
  • 免疫细胞化学; 人类; 图 1
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-74469)被用于被用于免疫细胞化学在人类样本上 (图 1). Radiat Oncol (2016) ncbi
小鼠 单克隆(194C1439)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-56196)被用于被用于免疫印迹在人类样本上 (图 5). Mol Med Rep (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 小鼠; 1:500; 图 4c
圣克鲁斯生物技术 PARP抗体(Santa cruz, sc-8007)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4c). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 PARP抗体(santa Cruz, sc-74469)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(194C1439)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-56196)被用于被用于免疫印迹在人类样本上 (图 3). Onco Targets Ther (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术 PARP抗体(Santa Cruz, Sc-8007)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Future Oncol (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-8007)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(194C1439)
  • 免疫印迹; 大鼠; 1:1000; 图 4
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-56196)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Exp Ther Med (2016) ncbi
小鼠 单克隆(10H)
  • 免疫沉淀; fruit fly ; 图 4
圣克鲁斯生物技术 PARP抗体(santa Cruz, sc-56198)被用于被用于免疫沉淀在fruit fly 样本上 (图 4). PLoS Genet (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术 PARP抗体(Santa Cruz Biotechnology, sc-8007)被用于被用于免疫印迹在人类样本上 (图 2c). PLoS ONE (2016) ncbi
小鼠 单克隆(C2-10)
  • 免疫细胞化学; 小鼠; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 s4
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-53643)被用于被用于免疫细胞化学在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 PARP抗体(Santa Cruz Biotechnology, sc8007)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 1:1000; 图 s1
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-8007)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 PARP抗体(SantaCruz, sc-8007)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Cell Biol (2015) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-8007)被用于被用于免疫印迹在人类样本上 (图 1). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(194C1439)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-56196)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(F-2)
  • 免疫组化-石蜡切片; 人类; 图 st1
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-8007)被用于被用于免疫组化-石蜡切片在人类样本上 (图 st1). PLoS ONE (2015) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 PARP抗体(Santa Cruz Biotechnology, sc-8007)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Cell (2015) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-56197)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 PARP抗体(Santa, sc-8007)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(10H)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 PARP抗体(Santa, sc-56198)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 st2
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-8007)被用于被用于免疫印迹在人类样本上 (图 st2). Oncotarget (2015) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 PARP抗体(Santa Cruz Biotechnology, F-2)被用于被用于免疫印迹在人类样本上 (图 6). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-56197)被用于被用于免疫印迹在人类样本上 (图 2). Acta Pharmacol Sin (2015) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 1:2000; 图 6
圣克鲁斯生物技术 PARP抗体(Santa Cruz, SC- 8007)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Melanoma Res (2015) ncbi
小鼠 单克隆(D-1)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-365315)被用于被用于免疫印迹在人类样本上 (图 4a). Sci Rep (2015) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 PARP抗体(santa Cruz, sc-8007)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(C2-10)
  • 免疫印迹; 人类; 图 5C
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-53643)被用于被用于免疫印迹在人类样本上 (图 5C). Oncotarget (2015) ncbi
小鼠 单克隆(194C1439)
  • 免疫印迹; 人类; 1:200; 图 6
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-56196)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6). Sci Rep (2015) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 PARP抗体(Santa Cruz Biotechnology, SC-8007)被用于被用于免疫印迹在人类样本上. Basic Res Cardiol (2015) ncbi
小鼠 单克隆(3H2844)
  • 免疫印迹; 大鼠; 图 1
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-71848)被用于被用于免疫印迹在大鼠样本上 (图 1). Neurotox Res (2015) ncbi
小鼠 单克隆(194C1439)
  • 免疫印迹; 人类; 1:200; 图 1c
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-56196)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1c). Nat Commun (2015) ncbi
小鼠 单克隆(B-10)
  • 免疫印迹; 人类
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-74470)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(B-10)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 PARP抗体(Santa Cruz Biotechnology, sc-74470)被用于被用于免疫印迹在人类样本上 (图 3a). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-8007)被用于被用于免疫印迹在人类样本上. Mol Cancer Res (2015) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 s3
圣克鲁斯生物技术 PARP抗体(Santa Cruz Biotechnologies, sc8007)被用于被用于免疫印迹在人类样本上 (图 s3). Oncogene (2015) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-8007)被用于被用于免疫印迹在人类样本上浓度为1:500. Cancer Cell (2014) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 PARP抗体(Santa Cruz Biotechnology, sc-8007)被用于被用于免疫印迹在人类样本上. J Cancer Res Clin Oncol (2015) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-8007)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(E-8)
  • 染色质免疫沉淀 ; 小鼠; 图 s6a
  • 免疫细胞化学; 小鼠; 图 1e
圣克鲁斯生物技术 PARP抗体(Santa Cruz Biotechnology, sc-74469x)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s6a) 和 被用于免疫细胞化学在小鼠样本上 (图 1e). Nucleic Acids Res (2014) ncbi
小鼠 单克隆(D-1)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 PARP抗体(Santa Cruz Biotechnology, SC-365315)被用于被用于免疫印迹在人类样本上 (图 7). Br J Nutr (2014) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 PARP抗体(Santa Cruz, sc-8007)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nucleic Acids Res (2011) ncbi
赛默飞世尔
domestic rabbit 单克隆(C.384.8)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 1a
赛默飞世尔 PARP抗体(Invitrogen, MA5-15031)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 1a). J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(C.384.8)
  • 免疫印迹; 人类; 图 4c
赛默飞世尔 PARP抗体(pierce, MA5-15031)被用于被用于免疫印迹在人类样本上 (图 4c). Front Genet (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 图 5c
赛默飞世尔 PARP抗体(Thermo Fisher, 44-698G)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 5c). Mol Ther Oncolytics (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 6
赛默飞世尔 PARP抗体(Thermo Fisher, PA5-16452)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6). Tissue Eng Part C Methods (2016) ncbi
小鼠 单克隆(123)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 PARP抗体(Invitrogen, 436400)被用于被用于免疫印迹在人类样本上 (图 3). Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(123)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 PARP抗体(Invitrogen, 436400)被用于被用于免疫印迹在人类样本上 (图 3). Int J Mol Sci (2015) ncbi
小鼠 单克隆(123)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 PARP抗体(Invitrogen, 436400)被用于被用于免疫印迹在人类样本上 (图 1). Cell Rep (2015) ncbi
小鼠 单克隆(123)
  • 免疫沉淀; 人类; 图 1
赛默飞世尔 PARP抗体(Invitrogen, 436400)被用于被用于免疫沉淀在人类样本上 (图 1). Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(C-2-10)
  • 免疫组化-石蜡切片; 人类; 1:1500
  • 免疫印迹; 人类; 1:1500
赛默飞世尔 PARP抗体(Pierce, MA3-950)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1500 和 被用于免疫印迹在人类样本上浓度为1:1500. Neuroscience (2013) ncbi
小鼠 单克隆(C-2-10)
  • 免疫印迹; 人类
赛默飞世尔 PARP抗体(Invitrogen, C-2-10)被用于被用于免疫印迹在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(C-2-10)
  • 免疫印迹; 人类
赛默飞世尔 PARP抗体(Affinity Bioreagents, MA3-950)被用于被用于免疫印迹在人类样本上. Exp Cell Res (2009) ncbi
小鼠 单克隆(C-2-10)
  • 免疫印迹; 小鼠; 1:1000; 图 1A
赛默飞世尔 PARP抗体(Zymed, C-2-10)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1A). Cell Death Differ (2007) ncbi
小鼠 单克隆(C-2-10)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 PARP抗体(Zymed, C-2-10)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2004) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(A6.4.12)
  • 免疫印迹; 人类; 图 4b
伯乐(Bio-Rad)公司 PARP抗体(Serotec, MCA1522G)被用于被用于免疫印迹在人类样本上 (图 4b). Nature (2017) ncbi
小鼠 单克隆(A6.4.12)
  • 免疫印迹基因敲除验证; 人类; 图 1a
  • 免疫组化; 人类; 图 1b
伯乐(Bio-Rad)公司 PARP抗体(Serotec, MCA1522G)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1a) 和 被用于免疫组化在人类样本上 (图 1b). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(A6.4.12)
  • 免疫印迹; 人类; 1:1000; 图 3
伯乐(Bio-Rad)公司 PARP抗体(Bio-Rad, MCA1522G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(A6.4.12)
  • 免疫细胞化学; 大鼠; 1:500
伯乐(Bio-Rad)公司 PARP抗体(AbD Serotec, MCA1522G)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
Active Motif
domestic rabbit 多克隆
  • proximity ligation assay; 人类; 图 7
Active Motif PARP抗体(Active Motif, 39559)被用于被用于proximity ligation assay在人类样本上 (图 7). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
Active Motif PARP抗体(ActiveMotif, 39559)被用于被用于免疫印迹在小鼠样本上 (图 6). elife (2016) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(A6.4.12)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
亚诺法生技股份有限公司 PARP抗体(Abnova, A6.4.12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1). Breast Cancer Res Treat (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D64E10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s5c, s6e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s5c, s6e). Nat Commun (2022) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在小鼠样本上 (图 2d). Cell Death Dis (2022) ncbi
小鼠 单克隆(7C9)
  • 免疫印迹; 小鼠; 图 4h
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9548)被用于被用于免疫印迹在小鼠样本上 (图 4h). iScience (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4h
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9542)被用于被用于免疫印迹在小鼠样本上 (图 4h). iScience (2022) ncbi
小鼠 单克隆(7C9)
  • 免疫印迹; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9548)被用于被用于免疫印迹在小鼠样本上 (图 7b). Leukemia (2022) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:2000; 图 s6h
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s6h). Cell Mol Life Sci (2022) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 5d, 5e
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d, 5e). iScience (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在小鼠样本上 (图 3a). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Cell Rep (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 3d). Sci Adv (2022) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 2g, 2h
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 2g, 2h). Cell Death Discov (2022) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 5i
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 5i). Clin Transl Med (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4c, 5d
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c, 5d). Cell Death Dis (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在小鼠样本上 (图 6b). J Clin Invest (2022) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Commun Biol (2022) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Cell Rep (2022) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1500; 图 5j
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 5j). Clin Transl Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542T)被用于被用于免疫印迹在小鼠样本上 (图 6c). PLoS Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1b). J Neuroinflammation (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫组化-石蜡切片; 人类; 图 5c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Adv (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 1e, 1h
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e, 1h). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 s2
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在大鼠样本上 (图 s2). Gut Microbes (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9541)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 5625S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Neurooncol Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling technology, 9545)被用于被用于免疫印迹在人类样本上 (图 7e). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling technology, 9542)被用于被用于免疫印迹在人类样本上. Nat Commun (2021) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9532)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Death Discov (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signalling, 9541)被用于被用于免疫印迹在人类样本上 (图 1d). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625S)被用于被用于免疫印迹在人类样本上. Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2f
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9545)被用于被用于免疫印迹在大鼠样本上 (图 2f). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 1c). BMC Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 1c). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 3e, 3f
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 5625 T)被用于被用于免疫印迹在人类样本上 (图 3e, 3f). Cell Death Discov (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). J Biomed Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signalling Technology, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 3c). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上 (图 5d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫组化; 人类; 图 s6g
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625)被用于被用于免疫组化在人类样本上 (图 s6g) 和 被用于免疫印迹在人类样本上 (图 5d). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3g, s4d
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9542S)被用于被用于免疫印迹在人类样本上 (图 3g, s4d). Neoplasia (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3g, s4d
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9541)被用于被用于免疫印迹在人类样本上 (图 3g, s4d). Neoplasia (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625)被用于被用于免疫印迹在人类样本上 (图 7b). Sci Adv (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:2000; 图 2e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, cst5625)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2e). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f, 4e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 3f, 4e). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 3f, 4e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 3f, 4e). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9541)被用于被用于免疫印迹在人类样本上 (图 5b). Biomol Ther (Seoul) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3e). Oncogene (2021) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上 (图 5e). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 1c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1c). Neuro Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1i
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1i). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 1i
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1i). Nat Commun (2021) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 4c, 4e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling technology, 9532)被用于被用于免疫印迹在人类样本上 (图 4c, 4e). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3f). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫组化; 人类; 1:400; 图 s4a
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 5625)被用于被用于免疫组化在人类样本上浓度为1:400 (图 s4a). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9532)被用于被用于免疫印迹在人类样本上 (图 2f). Nat Cell Biol (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 5625)被用于被用于免疫印迹在人类样本上 (图 2f). Nat Cell Biol (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 4g
  • 免疫印迹; 小鼠; 图 4h
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g) 和 被用于免疫印迹在小鼠样本上 (图 4h). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532S)被用于被用于免疫印迹在人类样本上 (图 4a). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 5g
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5g). Oncol Lett (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 图 s4b
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9532)被用于被用于免疫印迹在小鼠样本上 (图 s4b). Mol Oncol (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 小鼠; 图 s4b
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 5625)被用于被用于免疫印迹在小鼠样本上 (图 s4b). Mol Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3j
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 3j). Sci Adv (2021) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 s2a
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9532)被用于被用于免疫印迹在人类样本上 (图 s2a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 s11c, s11d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s11c, s11d). Sci Transl Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 s3a). Mol Biol Cell (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 4e, 5e
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e, 5e). Mol Oncol (2021) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 s4a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Theranostics (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Oncol Rep (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625S)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Rep (2021) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫细胞化学基因敲除验证; 人类; 1:1000; 图 2a
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 s3c
  • 免疫组化-石蜡切片; 人类; 图 4a
  • 免疫细胞化学; 人类; 1:1000; 图 2a
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 46D11)被用于被用于免疫细胞化学基因敲除验证在人类样本上浓度为1:1000 (图 2a), 被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 s3c), 被用于免疫组化-石蜡切片在人类样本上 (图 4a), 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s3c). Molecules (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 s2m
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 s2m). Mol Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9542)被用于被用于免疫印迹在人类样本上 (图 5c). JCI Insight (2021) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 5625S)被用于被用于免疫印迹在人类样本上 (图 5c). JCI Insight (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:400; 图 5d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542S)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 5d). Nat Commun (2020) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Antioxidants (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Asian Pac J Cancer Prev (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Commun Signal (2020) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 6f). Cells (2020) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9542)被用于被用于免疫印迹在小鼠样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 6e). Sci Rep (2020) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Oncol Rep (2020) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在小鼠样本上 (图 6a). Autophagy (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signalling Technology, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). elife (2020) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上 (图 2a). BMC Complement Med Ther (2020) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532S)被用于被用于免疫印迹在人类样本上 (图 5b). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). elife (2020) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532S)被用于被用于免疫印迹在人类样本上 (图 1c). Cancer Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3e, 4e, 5e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, Inc., #9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e, 4e, 5e). Chem Biol Drug Des (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2500; 图 1a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 1a). Oncogene (2020) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, #9532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). EBioMedicine (2020) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, #5625)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). EBioMedicine (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Br J Pharmacol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542S)被用于被用于免疫印迹在人类样本上 (图 5c). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9542)被用于被用于免疫印迹在人类样本上 (图 4b). FASEB Bioadv (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4i
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling Technology, 9542)被用于被用于免疫印迹在人类样本上 (图 4i). Mol Cancer (2020) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Biosci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 1b). Oncogenesis (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s7c
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9544S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s7c). Life Sci Alliance (2020) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Cancer Cell Int (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 3d). J Cancer (2020) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 3d). J Cancer (2020) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 46D11)被用于被用于免疫印迹在人类样本上 (图 4g). EBioMedicine (2020) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625)被用于被用于免疫印迹在人类样本上. Nature (2020) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫组化-石蜡切片; 人类; 图 7h
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7h). Nat Commun (2020) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6e). Genes Cancer (2019) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上 (图 5d). Oncogene (2020) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 s5a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 s5a). J Exp Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1c, s3b, s3c, s3d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c, s3b, s3c, s3d). Oncogene (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s3f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s3f). Oncogene (2019) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 2g
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9541)被用于被用于免疫印迹在人类样本上. Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542S)被用于被用于免疫印迹在人类样本上 (图 5c). Mod Pathol (2020) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 7b). Cell (2019) ncbi
小鼠 单克隆(19F4)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9546)被用于被用于免疫印迹在人类样本上 (图 3e). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 7f). Cancer Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). EMBO Mol Med (2019) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). EMBO Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 6b). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 4f). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在小鼠样本上 (图 s2a). Cell (2019) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫组化; 人类; 图 6a
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫组化在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 6a). elife (2019) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 6a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signalling Technology, 9542)被用于被用于免疫印迹在人类样本上 (图 4d). J Cell Mol Med (2019) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signalling Technology, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). EMBO Mol Med (2019) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signalling Technology, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). EMBO Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s8e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9541)被用于被用于免疫印迹在人类样本上 (图 s8e). Sci Adv (2019) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 图 s2d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在小鼠样本上 (图 s2d). Science (2019) ncbi
小鼠 单克隆(7C9)
  • 免疫印迹; 小鼠; 图 s2d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9548)被用于被用于免疫印迹在小鼠样本上 (图 s2d). Science (2019) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Int J Oncol (2019) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上 (图 4c). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 2e). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9532)被用于被用于免疫印迹在人类样本上 (图 1c). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 e8d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 e8d). Nature (2019) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Biochem Biophys Res Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹在人类样本上 (图 6f). Front Mol Neurosci (2019) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 4c). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 s1a). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 s1a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 s1a). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 8f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 8f). elife (2019) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 4c). Br J Cancer (2019) ncbi
小鼠 单克隆(19F4)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9546S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Cell Death Differ (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹在人类样本上 (图 7a). Exp Cell Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9541)被用于被用于免疫印迹在人类样本上 (图 2c). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 1b). Nature (2019) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在小鼠样本上 (图 5a). Toxicology (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 1d). Genes Dev (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7d). Oncogene (2019) ncbi
小鼠 单克隆(7C9)
  • 免疫印迹; 小鼠; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9548S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). elife (2018) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在小鼠样本上 (图 5f). Oncogene (2019) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 s1a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1s1b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 1s1b). elife (2018) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 3s1c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 3s1c). elife (2018) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上 (图 s1). Methods (2019) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 4a, 4b, 4c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a, 4b, 4c). Oncogene (2019) ncbi
小鼠 单克隆(7C9)
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9548)被用于被用于免疫印迹在小鼠样本上 (图 5e). FASEB J (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4g
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4g). Nat Cell Biol (2018) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在小鼠样本上 (图 4c). Mol Cell Biochem (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9544s)被用于被用于免疫印迹在小鼠样本上 (图 4c). Mol Cell Biochem (2019) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 2g). Oncogene (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8g
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542L)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8g). EMBO J (2018) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 s15a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625S)被用于被用于免疫印迹在人类样本上 (图 s15a). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 s15a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532S)被用于被用于免疫印迹在人类样本上 (图 s15a). J Clin Invest (2018) ncbi
小鼠 单克隆(7C9)
  • 免疫印迹; 人类; 图 s4
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9548)被用于被用于免疫印迹在人类样本上 (图 s4). Oncogene (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s4
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 s4). Oncogene (2019) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 s7b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625P)被用于被用于免疫印迹在人类样本上 (图 s7b). Science (2018) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 图 4e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在小鼠样本上 (图 4e). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹在人类样本上 (图 2c). Nat Med (2018) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 8b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625)被用于被用于免疫印迹在人类样本上 (图 8b). Autophagy (2018) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 1j
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1j). Nat Cell Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹在人类样本上 (图 s3a). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 2c). Front Immunol (2018) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在小鼠样本上 (图 2a). Life Sci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9544)被用于被用于免疫印迹在小鼠样本上 (图 2b). Cell Signal (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542S)被用于被用于免疫印迹在小鼠样本上 (图 1d). Cell Mol Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Nat Med (2018) ncbi
小鼠 单克隆(19F4)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9546)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在小鼠样本上 (图 5a). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 9b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 9b). Int J Biochem Cell Biol (2018) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 2e). Cell (2018) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 2e). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 3b). Cell (2018) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 5h
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 5h). Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1i
  • 免疫印迹; 人类; 图 1i
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹在小鼠样本上 (图 1i) 和 被用于免疫印迹在人类样本上 (图 1i). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542S)被用于被用于免疫印迹在人类样本上 (图 4c). Neoplasia (2018) ncbi
小鼠 单克隆(7C9)
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9548)被用于被用于免疫印迹在小鼠样本上 (图 6d). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s4f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542S)被用于被用于免疫印迹在人类样本上 (图 s4f). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 3a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signalling, 9532)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Mol Biol (2018) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 2b). Tumour Biol (2017) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:500; 图 4c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4c). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 3a). Clin Cancer Res (2018) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 3a). Clin Cancer Res (2018) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 1:1000; 图 1h
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signalling, 9532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1h). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 1b). Oncogene (2017) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Nat Cell Biol (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 s9b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 s9b). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 s9b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 s9b). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 4f). Oncogene (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫细胞化学; 人类; 1:400; 图 s5b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signalling Tech, 5625)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s5b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 9a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 9a). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 4i
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 4i). Leuk Lymphoma (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在小鼠样本上 (图 1d). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625S)被用于被用于免疫印迹在人类样本上 (图 1c). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signal, 9542s)被用于被用于免疫印迹在人类样本上 (图 s1d). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 s5f). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signal, 9542s)被用于被用于免疫印迹在人类样本上 (图 s1d). Nature (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 5d). JCI Insight (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 s5). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 s6a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 s6a). Mol Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 s5b). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 s5b). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Biochem Pharmacol (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Biochem Pharmacol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 11c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 11c). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9541)被用于被用于免疫印迹在人类样本上 (图 6c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signalling, 9542)被用于被用于免疫印迹在人类样本上 (图 s3a). Oncogene (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625)被用于被用于免疫印迹在人类样本上 (图 2d). J Pathol (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫组化; 人类; 1:50; 图 7
赛信通(上海)生物试剂有限公司 PARP抗体(cell signalling, 5625)被用于被用于免疫组化在人类样本上浓度为1:50 (图 7). Neoplasia (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 PARP抗体(cell signalling, 9542)被用于被用于免疫印迹在人类样本上 (图 2). Neoplasia (2017) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 7a). Cancer Immunol Res (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 PARP抗体(cell signalling, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). Int J Oncol (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 小鼠; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 5625P)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹在人类样本上 (图 1c). Sci Rep (2017) ncbi
小鼠 单克隆(19F4)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9546)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2g
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542 S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2g). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3k, 5i, 6f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3k, 5i, 6f). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signalling, 5625)被用于被用于免疫印迹在人类样本上 (图 1f). Cancer Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9542)被用于被用于免疫印迹在人类样本上. Mol Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signalling, 9542)被用于被用于免疫印迹在人类样本上 (图 4d). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Mol Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 7a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling Technology, 9544)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7a). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 1c). Sci Rep (2017) ncbi
小鼠 单克隆(7C9)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9548)被用于被用于免疫印迹在人类样本上 (图 3a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 2a, 2b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a, 2b). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Radiother Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9541)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8b). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 流式细胞仪; 人类; 1:800; 图 s1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625 S)被用于被用于流式细胞仪在人类样本上浓度为1:800 (图 s1). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 8c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8c). J Nutr Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Syst Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1k
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 1k). Nat Med (2017) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Death Differ (2017) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9541S)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 PARP抗体(cell signalling, 5625)被用于被用于免疫印迹在人类样本上 (图 2c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫细胞化学; 人类; 图 s2
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫细胞化学在人类样本上 (图 s2). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 4c). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 7b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在大鼠样本上 (图 7b). Cardiovasc Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542S)被用于被用于免疫印迹在人类样本上 (图 3d). Antioxid Redox Signal (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 1d). Mol Cancer Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7g
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 7g). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Int J Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Int J Oncol (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 3h
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 3h). Exp Hematol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 4d). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Mol Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s5c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 3a). Cancer Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2d). Oncogene (2017) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 3a, 1e
  • 免疫印迹; 小鼠; 图 1d, 3c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 3a, 1e) 和 被用于免疫印迹在小鼠样本上 (图 1d, 3c). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signalling, 9532)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 2d). Eur J Cancer (2016) ncbi
小鼠 单克隆(19F4)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9546)被用于被用于免疫印迹在人类样本上 (图 1e). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625S)被用于被用于免疫印迹在人类样本上 (图 2c). Sci Rep (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532S)被用于被用于免疫印迹在人类样本上 (图 2c). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 PARP抗体(cell signalling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Toxicol Appl Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9542)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Cell Biol (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:800; 图 2a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 5f). Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 PARP抗体(cell signalling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Oncotarget (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7h
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 7h). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3h). Mol Cell Biochem (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 s2i
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2i). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 5b). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 9c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 9c). J Pharmacol Exp Ther (2016) ncbi
小鼠 单克隆(19F4)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9546)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5B
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5B). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 3c). Transl Oncol (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 3c). Transl Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 3f). Oncotarget (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s15
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s15). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 1d). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b,5c,6b,6c,6d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 5b,5c,6b,6c,6d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 46D11)被用于被用于免疫印迹在人类样本上 (图 8a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5F
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5F). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542L)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). J Med Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 3a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Cell Div (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 6a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9544)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6a). Reproduction (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542S)被用于被用于免疫印迹在人类样本上 (图 5d). Oncogene (2017) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 5g
赛信通(上海)生物试剂有限公司 PARP抗体(cell signalling, 9532)被用于被用于免疫印迹在人类样本上 (图 5g). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3d,4b,5e,7b
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9541L)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d,4b,5e,7b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫细胞化学; 人类; 图 4a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 6894)被用于被用于免疫细胞化学在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 46D11)被用于被用于免疫印迹在小鼠样本上 (图 1). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在小鼠样本上 (图 4c). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9544s)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. J Cell Biol (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Tech, 9532 S)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 5e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5e). Mol Cancer Res (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9544S)被用于被用于免疫印迹在小鼠样本上 (图 6). Am J Physiol Heart Circ Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在小鼠样本上 (图 5c). J Transl Med (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
小鼠 单克隆(19F4)
  • 免疫印迹; 人类; 图 s1b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9546)被用于被用于免疫印迹在人类样本上 (图 s1b). J Mol Med (Berl) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9544)被用于被用于免疫印迹在小鼠样本上 (图 7). Hepatology (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 7b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9544)被用于被用于免疫印迹在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 PARP抗体(CST, 9532)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫细胞化学; 人类; 图 1
  • 免疫组化; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫细胞化学在人类样本上 (图 1), 被用于免疫组化在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Mol Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
  • 免疫组化; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫细胞化学在人类样本上 (图 1), 被用于免疫组化在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Mol Cancer (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 46D11)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 1). Int J Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3b
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在小鼠样本上 (图 s3b) 和 被用于免疫印迹在人类样本上 (图 2c). Carcinogenesis (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 46D11)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541S)被用于被用于免疫印迹在人类样本上 (图 3c). Sci Rep (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Ovarian Res (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 46D11)被用于被用于免疫印迹在人类样本上 (图 7). Oncogene (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 大鼠; 图 4e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9532S)被用于被用于免疫印迹在大鼠样本上 (图 4e). Neurochem Res (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, D64E10)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3h
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 3h). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 6). Cancer Cell Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 9
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Tech, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 1). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 2). BMC Complement Altern Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Breast Cancer Res Treat (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹在人类样本上 (图 1). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9541)被用于被用于免疫印迹在人类样本上 (图 s2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Tech, 9541)被用于被用于免疫印迹在人类样本上 (图 4). Cancer Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 3). Onco Targets Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:500; 图 2b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 5625)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9544)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹在人类样本上 (图 s5). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 5e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 5e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 2). Int J Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 7a). Oncol Rep (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(46D11)
  • reverse phase protein lysate microarray; 小鼠; 图 s1.b,c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于reverse phase protein lysate microarray在小鼠样本上 (图 s1.b,c). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 7
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 7
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, D64E10)被用于被用于免疫印迹在人类样本上 (图 2c). Biochem Biophys Res Commun (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 3d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling technology, 9542P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technolog, 9532)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signal, 9541)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 PARP抗体(cell signalling, 9542)被用于被用于免疫印迹在人类样本上 (图 6b). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 3f). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(cell Signaling Tech, 9542 S)被用于被用于免疫印迹在人类样本上 (图 3). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 2d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9544)被用于被用于免疫印迹在小鼠样本上 (图 1a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Tech, 9542S)被用于被用于免疫印迹在人类样本上 (图 3). Sci Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). Int J Biochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). Int J Biochem Cell Biol (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9532)被用于被用于免疫印迹在大鼠样本上 (图 1). Cell Stress Chaperones (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4f). Stem Cells (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, cst-9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 6d). Biochem Pharmacol (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s8
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8). J Allergy Clin Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9541)被用于被用于免疫印迹在人类样本上 (图 6a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在小鼠样本上 (图 s1). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫沉淀; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫沉淀在人类样本上 (图 3). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signalling, 9542)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(7C9)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9548)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫细胞化学; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542S)被用于被用于免疫印迹在人类样本上 (图 2c). Mol Cancer (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Nature (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫沉淀在小鼠样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signalling, 9542)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signalling, 5625)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 2d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 7). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signalling Technology, 9542)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). J Cell Mol Med (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, D64E10)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Biol Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Cancer Res (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 2i
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2i). Nat Commun (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 9e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 46D11)被用于被用于免疫印迹在人类样本上 (图 9e). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). J Cell Biochem (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 PARP抗体(cell signalling, 9532)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 2e). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9545)被用于被用于免疫印迹在大鼠样本上 (图 2). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 其他; 人类; 图 1
  • 免疫细胞化学; 人类; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signalling, 46D11)被用于被用于其他在人类样本上 (图 1) 和 被用于免疫细胞化学在人类样本上 (图 1). Cell Rep (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9541)被用于被用于免疫印迹在人类样本上 (图 2f). Oncogene (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625S)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 5h
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5h). Nat Commun (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 s4f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上 (图 s4f). Nature (2015) ncbi
小鼠 单克隆(19F4)
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9546)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Nat Med (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 1:300; 图 6d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 6d). FEBS Open Bio (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 6b). Neuroendocrinology (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, D64E10)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9545)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1k
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹在人类样本上 (图 1k). Oncogene (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 3). Leukemia (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Tech, 9532)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Mol Oncol (2015) ncbi
小鼠 单克隆(7C9)
  • 免疫印迹; 大鼠; 1:5000; 图 s3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9548)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 s3). Exp Cell Res (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Tech, 9532)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9542)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Am J Physiol Renal Physiol (2015) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, D64E10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:250; 图 4c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 4c). Oncotarget (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 s3). Cell Rep (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Sci Rep (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上 (图 3). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9542)被用于被用于免疫印迹在大鼠样本上 (图 1c). Mol Neurobiol (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫组化-石蜡切片; 人类; 图 4
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 9c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9542)被用于被用于免疫印迹在人类样本上 (图 9c). Autophagy (2016) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 f4
赛信通(上海)生物试剂有限公司 PARP抗体(cell signaling technology, 5625S)被用于被用于免疫印迹在人类样本上 (图 f4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 1f, 2a, 4h
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上 (图 1f, 2a, 4h). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 8c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625)被用于被用于免疫印迹在人类样本上 (图 8c). J Biol Chem (2015) ncbi
小鼠 单克隆(19F4)
  • 免疫组化; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technologies, 19F4)被用于被用于免疫组化在人类样本上 (图 3). Nature (2015) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:1000; 图 3c
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625)被用于被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 5d). Nat Commun (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 s4
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 s4). Nat Neurosci (2015) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, D65E10)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling Technology, 5625)被用于被用于免疫印迹在人类样本上. J Cell Biochem (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532S)被用于被用于免疫印迹在小鼠样本上 (图 2). DNA Repair (Amst) (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 46D11)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Lett (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在小鼠样本上 (图 s3). Cancer Discov (2015) ncbi
小鼠 单克隆(19F4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9546)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532 s)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Exp Clin Cancer Res (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 1). J Cereb Blood Flow Metab (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000; 图 1A
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1A). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 6). Cell Cycle (2014) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 大鼠; 图 1f
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 46D11)被用于被用于免疫印迹在大鼠样本上 (图 1f). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncotarget (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 图 s1
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在小鼠样本上 (图 s1) 和 被用于免疫印迹在大鼠样本上 (图 1). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 46D11)被用于被用于免疫印迹在人类样本上. Cancer Cell (2015) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, D64E10)被用于被用于免疫印迹在人类样本上. Cancer Cell (2015) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Lett (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 4D
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 4D). Oncotarget (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠; 图 10e
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 46D11)被用于被用于免疫印迹在小鼠样本上 (图 10e). Nature (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technologies, 5625)被用于被用于免疫印迹在人类样本上 (图 5). J Med Chem (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫沉淀; 人类; 图 4a
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 46D11)被用于被用于免疫沉淀在人类样本上 (图 4a). Cell Rep (2014) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上 (图 1c). Oncogene (2015) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 46D11)被用于被用于免疫印迹在人类样本上. Gynecol Oncol (2014) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 46D11)被用于被用于免疫印迹在人类样本上 (图 3). Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625S)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 5625)被用于被用于免疫印迹在人类样本上 (图 6). J Pathol (2014) ncbi
小鼠 单克隆(19F4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signalling Technology, 19F4)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, D64E10)被用于被用于免疫印迹在人类样本上 (图 6d). Oncotarget (2014) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 9532)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 46D11)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, 46D11)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, D64E10)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(D64E10)
  • 流式细胞仪; 人类; 图 3
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 8978)被用于被用于流式细胞仪在人类样本上 (图 3). Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling Technology, D64E10)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2014) ncbi
domestic rabbit 单克隆(46D11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9532)被用于被用于免疫印迹在人类样本上 (图 6). Free Radic Biol Med (2014) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9185)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(19F4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9546)被用于被用于免疫印迹在人类样本上. Cancer Res (2013) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 5625)被用于被用于免疫印迹在人类样本上浓度为1:500. Pathol Oncol Res (2013) ncbi
domestic rabbit 单克隆(D64E10)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signalling Technologies, 5625S)被用于被用于免疫印迹在人类样本上 (图 1c). Br J Cancer (2012) ncbi
小鼠 单克隆(19F4)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9546S)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS ONE (2011) ncbi
小鼠 单克隆(19F4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PARP抗体(Cell Signaling, 9546)被用于被用于免疫印迹在人类样本上. Int J Cancer (2011) ncbi
上海普洛麦格生物产品有限公司
多克隆
  • 免疫印迹; 人类; 图 s3d
上海普洛麦格生物产品有限公司 PARP抗体(Promega, G7341)被用于被用于免疫印迹在人类样本上 (图 s3d). J Clin Invest (2017) ncbi
多克隆
  • 免疫印迹; 人类; 1:500; 图 s6a
上海普洛麦格生物产品有限公司 PARP抗体(Promega, G734A)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s6a). Nat Cell Biol (2016) ncbi
多克隆
  • 免疫组化; 大鼠; 1:100; 图 6
  • 免疫印迹; 大鼠; 1:2000; 图 7
上海普洛麦格生物产品有限公司 PARP抗体(Promega, G7341)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 6) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 7). Invest Ophthalmol Vis Sci (2016) ncbi
多克隆
  • 免疫印迹; 人类; 图 1
上海普洛麦格生物产品有限公司 PARP抗体(Promega, G7341)被用于被用于免疫印迹在人类样本上 (图 1). PLoS Genet (2016) ncbi
多克隆
  • 免疫印迹; 小鼠; 图 6
上海普洛麦格生物产品有限公司 PARP抗体(Promega Corporation, G7341)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell Death Differ (2016) ncbi
碧迪BD
小鼠 单克隆(F21-852)
  • 免疫印迹; 小鼠; 1:5000; 图 5e
碧迪BD PARP抗体(BD Pharmingen, BD552596)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5e). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(F21-852)
  • 流式细胞仪; 人类
碧迪BD PARP抗体(Becton Dickinson, F21-852)被用于被用于流式细胞仪在人类样本上. Apoptosis (2020) ncbi
小鼠 单克隆(C2-10)
  • 免疫印迹; 人类; 图 2d
碧迪BD PARP抗体(BD Pharmingen, 556362)被用于被用于免疫印迹在人类样本上 (图 2d). PLoS Pathog (2019) ncbi
小鼠 单克隆(C2-10)
  • 免疫印迹; 人类; 1:1000; 图 3
碧迪BD PARP抗体(BD Pharmingen, 556362)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Sci Rep (2019) ncbi
小鼠 单克隆(C2-10)
  • 免疫印迹; 人类; 图 3c
碧迪BD PARP抗体(BD Biosciences, 556362)被用于被用于免疫印迹在人类样本上 (图 3c). Cell Rep (2018) ncbi
小鼠 单克隆(4C10-5)
  • 免疫印迹; 人类; 图 6e
碧迪BD PARP抗体(BD Biosciences, 556494)被用于被用于免疫印迹在人类样本上 (图 6e). Oncogene (2018) ncbi
小鼠 单克隆(4C10-5)
  • 免疫印迹; 人类; 图 2a
碧迪BD PARP抗体(BD Pharmingen, 556494)被用于被用于免疫印迹在人类样本上 (图 2a). J Clin Invest (2017) ncbi
小鼠 单克隆(C2-10)
  • 免疫印迹; 人类; 图 1f
  • 免疫印迹; 小鼠; 图 1c
碧迪BD PARP抗体(BD Bioscience, 556362)被用于被用于免疫印迹在人类样本上 (图 1f) 和 被用于免疫印迹在小鼠样本上 (图 1c). EMBO J (2017) ncbi
小鼠 单克隆(C2-10)
  • 免疫组化; 小鼠; 1:500; 图 s5a
碧迪BD PARP抗体(BD Pharmingen, 556362)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s5a). Science (2017) ncbi
小鼠 单克隆(C2-10)
  • 免疫印迹; 人类; 图 1a
碧迪BD PARP抗体(BD Biosciences, 556362)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Death Discov (2017) ncbi
小鼠 单克隆(C2-10)
  • 免疫印迹; 人类; 图 1c
碧迪BD PARP抗体(BD biosciences Pharmingen, 556362)被用于被用于免疫印迹在人类样本上 (图 1c). Int J Biochem Cell Biol (2017) ncbi
小鼠 单克隆(F21-852)
  • 流式细胞仪; 人类; 1:200; 图 6a
碧迪BD PARP抗体(BD, 558710)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 6a). Int J Mol Sci (2016) ncbi
小鼠 单克隆(C2-10)
  • 免疫印迹; 人类; 图 1f
碧迪BD PARP抗体(BD Pharmingen, C2-10)被用于被用于免疫印迹在人类样本上 (图 1f). Sci Rep (2016) ncbi
小鼠 单克隆(F21-852)
  • 免疫印迹; 人类
碧迪BD PARP抗体(BD Biosciences, F21-852)被用于被用于免疫印迹在人类样本上. Am J Physiol Gastrointest Liver Physiol (2016) ncbi
小鼠 单克隆(42/PARP)
  • 免疫印迹; 人类; 图 3c
碧迪BD PARP抗体(BD Biosciences, 42/PARP)被用于被用于免疫印迹在人类样本上 (图 3c). J Biol Chem (2016) ncbi
小鼠 单克隆(4C10-5)
  • 免疫印迹; 人类; 1:1000; 图 st2
碧迪BD PARP抗体(BD, 556494)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st2). Transl Res (2016) ncbi
小鼠 单克隆(F21-852)
  • 免疫印迹; 人类; 1:1000; 图 3
碧迪BD PARP抗体(BD Pharmingen, 552597)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(C2-10)
  • 免疫印迹; 小鼠; 图 6
碧迪BD PARP抗体(BD Biosciences, C2-10)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(C2-10)
  • 免疫细胞化学; 人类; 1:500; 图 4c
碧迪BD PARP抗体(BD Pharmingen, 556362)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4c). Mol Oncol (2016) ncbi
小鼠 单克隆(4C10-5)
  • 其他; 人类; 图 st1
碧迪BD PARP抗体(BD, 4C10-5)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(F21-852)
  • 其他; 人类; 图 st1
碧迪BD PARP抗体(BD, F21-852)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(7D3-6)
  • 免疫印迹; 人类; 图 4
碧迪BD PARP抗体(BD Biosciences, 7D3-6)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(4C10-5)
  • 免疫印迹; 人类; 图 3
碧迪BD PARP抗体(BD Biosciences, 556494)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(C2-10)
  • 免疫印迹; 人类; 图 5
碧迪BD PARP抗体(BD Biosciences, C2-10)被用于被用于免疫印迹在人类样本上 (图 5). Blood Cancer J (2015) ncbi
小鼠 单克隆(F21-852)
  • 流式细胞仪; 小鼠; 图 1
  • 流式细胞仪; 人类; 图 1
碧迪BD PARP抗体(BD Biosciences, 558576)被用于被用于流式细胞仪在小鼠样本上 (图 1) 和 被用于流式细胞仪在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(C2-10)
  • 免疫印迹; 人类; 图 2
碧迪BD PARP抗体(BD Pharmingen, 556362)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(4C10-5)
  • 免疫印迹; 人类; 图 2
碧迪BD PARP抗体(BD Biosciences, 556494)被用于被用于免疫印迹在人类样本上 (图 2). Genetics (2015) ncbi
小鼠 单克隆(4C10-5)
  • 免疫印迹; 人类; 图 3
碧迪BD PARP抗体(BD, 556494)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Biol (2015) ncbi
小鼠 单克隆(7D3-6)
  • 免疫印迹; 人类; 图 9
碧迪BD PARP抗体(BD Pharmingen, 551025)被用于被用于免疫印迹在人类样本上 (图 9). BMC Cancer (2015) ncbi
小鼠 单克隆(42/PARP)
  • 免疫印迹; 人类
碧迪BD PARP抗体(BD Bioscience, 611038)被用于被用于免疫印迹在人类样本上. J Vis Exp (2015) ncbi
小鼠 单克隆(F21-852)
  • 免疫印迹; 人类; 图 4i
碧迪BD PARP抗体(BD, 552596)被用于被用于免疫印迹在人类样本上 (图 4i). Mol Cancer (2015) ncbi
小鼠 单克隆(4C10-5)
  • 免疫印迹; 人类; 1:1000
碧迪BD PARP抗体(BD Pharmingen, 556494)被用于被用于免疫印迹在人类样本上浓度为1:1000. Carcinogenesis (2015) ncbi
小鼠 单克隆(F21-852)
  • 免疫印迹; 人类; 1:5000; 图 3
碧迪BD PARP抗体(BD Pharmingen, 552596)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Eur J Cancer (2015) ncbi
小鼠 单克隆(7D3-6)
  • 免疫印迹; 人类; 1:1000
碧迪BD PARP抗体(BD Biosciences, 551024)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(7D3-6)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
碧迪BD PARP抗体(BD Pharmingen, 7D3-6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(F21-852)
  • 免疫印迹; 人类; 图 4
碧迪BD PARP抗体(BD Pharmingen, 552596)被用于被用于免疫印迹在人类样本上 (图 4). Br J Cancer (2015) ncbi
小鼠 单克隆(4C10-5)
  • 免疫印迹; 人类; 1:1000
碧迪BD PARP抗体(Becton Dickinson, 556494)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Extracell Vesicles (2014) ncbi
小鼠 单克隆(4C10-5)
  • 免疫印迹; 人类
碧迪BD PARP抗体(BD Biosciences, 556494)被用于被用于免疫印迹在人类样本上. F1000Res (2014) ncbi
小鼠 单克隆(4C10-5)
  • 免疫印迹; 人类
碧迪BD PARP抗体(BD Biosciences, 556494)被用于被用于免疫印迹在人类样本上. Int J Cancer (2015) ncbi
小鼠 单克隆(C2-10)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类
碧迪BD PARP抗体(BD PharMingen, 556362)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(4C10-5)
  • 免疫印迹; 人类; 1:1000
碧迪BD PARP抗体(BD, 556494)被用于被用于免疫印迹在人类样本上浓度为1:1000. Front Endocrinol (Lausanne) (2014) ncbi
小鼠 单克隆(C2-10)
  • 免疫印迹; 人类
碧迪BD PARP抗体(BD Biosciences, C2-10)被用于被用于免疫印迹在人类样本上. Mol Pharmacol (2014) ncbi
小鼠 单克隆(42/PARP)
  • 免疫印迹; 人类
碧迪BD PARP抗体(BD Biosciences, 611038)被用于被用于免疫印迹在人类样本上. Biol Pharm Bull (2014) ncbi
小鼠 单克隆(42/PARP)
  • 免疫印迹; 人类
碧迪BD PARP抗体(BD, 611038)被用于被用于免疫印迹在人类样本上. Cell (2014) ncbi
小鼠 单克隆(F21-852)
  • 免疫印迹; 人类; 图 3
碧迪BD PARP抗体(BD Pharmingen, F21-852)被用于被用于免疫印迹在人类样本上 (图 3). Mol Carcinog (2015) ncbi
小鼠 单克隆(F21-852)
  • 流式细胞仪; 人类; 图 10d
碧迪BD PARP抗体(BD Biosciences, 552933)被用于被用于流式细胞仪在人类样本上 (图 10d). PLoS ONE (2011) ncbi
小鼠 单克隆(C2-10)
  • 免疫印迹; 人类; 图 5
碧迪BD PARP抗体(BD Pharmingen, 556362)被用于被用于免疫印迹在人类样本上 (图 5). Nat Immunol (2011) ncbi
小鼠 单克隆(4C10-5)
  • 免疫印迹; 人类
碧迪BD PARP抗体(BD Bioscience, 4C10-5)被用于被用于免疫印迹在人类样本上. Neuro Oncol (2011) ncbi
小鼠 单克隆(4C10-5)
  • 免疫印迹; 人类
碧迪BD PARP抗体(BD Pharmingen, 4C10-5)被用于被用于免疫印迹在人类样本上. EMBO J (2010) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
  • 免疫印迹; 人类; 图 1f
西格玛奥德里奇 PARP抗体(Sigma, AV33754)被用于被用于免疫印迹在小鼠样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1f). Redox Biol (2021) ncbi
文章列表
  1. Chen C, Zhang Z, Liu C, Wang B, Liu P, Fang S, et al. ATF4-dependent fructolysis fuels growth of glioblastoma multiforme. Nat Commun. 2022;13:6108 pubmed 出版商
  2. Chen Y, Lian N, Chen S, Xiao T, Ke Y, Zhang Y, et al. GSDME deficiency leads to the aggravation of UVB-induced skin inflammation through enhancing recruitment and activation of neutrophils. Cell Death Dis. 2022;13:841 pubmed 出版商
  3. Zang N, Cui C, Guo X, Song J, Hu H, Yang M, et al. cGAS-STING activation contributes to podocyte injury in diabetic kidney disease. iScience. 2022;25:105145 pubmed 出版商
  4. Lee A, Pingali S, Pinilla Ibarz J, Atchison M, Koumenis C, Argon Y, et al. Loss of AID exacerbates the malignant progression of CLL. Leukemia. 2022;36:2430-2442 pubmed 出版商
  5. Huebner K, Erlenbach Wuensch K, Prochazka J, Sheraj I, Hampel C, Mrazkova B, et al. ATF2 loss promotes tumor invasion in colorectal cancer cells via upregulation of cancer driver TROP2. Cell Mol Life Sci. 2022;79:423 pubmed 出版商
  6. Narayan S, Raza A, Mahmud I, Koo N, Garrett T, LAW M, et al. Sensitization of FOLFOX-resistant colorectal cancer cells via the modulation of a novel pathway involving protein phosphatase 2A. iScience. 2022;25:104518 pubmed 出版商
  7. Jin Y, Liu Y, Xu L, Xu J, Xiong Y, Peng Y, et al. Novel role for caspase 1 inhibitor VX765 in suppressing NLRP3 inflammasome assembly and atherosclerosis via promoting mitophagy and efferocytosis. Cell Death Dis. 2022;13:512 pubmed 出版商
  8. Taniguchi H, Caeser R, Chavan S, Zhan Y, Chow A, Manoj P, et al. WEE1 inhibition enhances the antitumor immune response to PD-L1 blockade by the concomitant activation of STING and STAT1 pathways in SCLC. Cell Rep. 2022;39:110814 pubmed 出版商
  9. Tanton H, Sewastianik T, Seo H, Remillard D, Pierre R, Bala P, et al. A novel β-catenin/BCL9 complex inhibitor blocks oncogenic Wnt signaling and disrupts cholesterol homeostasis in colorectal cancer. Sci Adv. 2022;8:eabm3108 pubmed 出版商
  10. Deshmukh D, Xu J, Yang X, Shimelis H, Fang S, Qiu Y. Regulation of p27 (Kip1) by Ubiquitin E3 Ligase RNF6. Pharmaceutics. 2022;14: pubmed 出版商
  11. Luo H, Song Y, Zhang J, Liu Y, Chen F, Wang Z, et al. MAT2A facilitates PDCD6 methylation and promotes cell growth under glucose deprivation in cervical cancer. Cell Death Discov. 2022;8:176 pubmed 出版商
  12. Jiang H, Wang Y, Wang J, Wang Y, Wang S, He E, et al. Posttranslational modification of Aurora A-NSD2 loop contributes to drug resistance in t(4;14) multiple myeloma. Clin Transl Med. 2022;12:e744 pubmed 出版商
  13. Ma N, Li G, Fu X. Protective role of activating transcription factor 3 against neuronal damage in rats with cerebral ischemia. Brain Behav. 2022;12:e2522 pubmed 出版商
  14. Zhong L, Yang B, Zhang Z, Wang J, Wang X, Guo Y, et al. Targeting autophagy peptidase ATG4B with a novel natural product inhibitor Azalomycin F4a for advanced gastric cancer. Cell Death Dis. 2022;13:161 pubmed 出版商
  15. Rusu I, Mennillo E, Bain J, Li Z, Sun X, Ly K, et al. Microbial signals, MyD88, and lymphotoxin drive TNF-independent intestinal epithelial tissue damage. J Clin Invest. 2022;132: pubmed 出版商
  16. Wang S, Luke C, Pak S, Shi V, Chen L, Moore J, et al. SERPINB3 (SCCA1) inhibits cathepsin L and lysoptosis, protecting cervical cancer cells from chemoradiation. Commun Biol. 2022;5:46 pubmed 出版商
  17. Abt E, Le T, Dann A, Capri J, Poddar S, Lok V, et al. Reprogramming of nucleotide metabolism by interferon confers dependence on the replication stress response pathway in pancreatic cancer cells. Cell Rep. 2022;38:110236 pubmed 出版商
  18. Xia R, Liu T, Li W, Xu X. RNA-binding protein RBM24 represses colorectal tumourigenesis by stabilising PTEN mRNA. Clin Transl Med. 2021;11:e383 pubmed 出版商
  19. Carroll P, Freie B, Cheng P, Kasinathan S, Gu H, Hedrich T, et al. The glucose-sensing transcription factor MLX balances metabolism and stress to suppress apoptosis and maintain spermatogenesis. PLoS Biol. 2021;19:e3001085 pubmed 出版商
  20. Yadav A, Huang T, Chen S, Ramasamy T, Hsueh Y, Lin S, et al. Sodium phenylbutyrate inhibits Schwann cell inflammation via HDAC and NFκB to promote axonal regeneration and remyelination. J Neuroinflammation. 2021;18:238 pubmed 出版商
  21. Zhang Z, Li X, Yang F, Chen C, Liu P, Ren Y, et al. DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat Commun. 2021;12:5872 pubmed 出版商
  22. Zhu X, Peng S, Wang L, Chen X, Feng C, Liu Y, et al. Identification of phosphoenolpyruvate carboxykinase 1 as a potential therapeutic target for pancreatic cancer. Cell Death Dis. 2021;12:918 pubmed 出版商
  23. Gao C, Deng J, Zhang H, Li X, Gu S, Zheng M, et al. HSPA13 facilitates NF-κB-mediated transcription and attenuates cell death responses in TNFα signaling. Sci Adv. 2021;7:eabh1756 pubmed 出版商
  24. Zhao H, Tang J, Chen H, Gu W, Geng H, Wang L, et al. 14,15-EET Reduced Brain Injury from Cerebral Ischemia and Reperfusion via Suppressing Neuronal Parthanatos. Int J Mol Sci. 2021;22: pubmed 出版商
  25. Chiang C, Hong Y. In situ delivery of biobutyrate by probiotic Escherichia coli for cancer therapy. Sci Rep. 2021;11:18172 pubmed 出版商
  26. Xue Y, Morris J, Yang K, Fu Z, Zhu X, Johnson F, et al. SMARCA4/2 loss inhibits chemotherapy-induced apoptosis by restricting IP3R3-mediated Ca2+ flux to mitochondria. Nat Commun. 2021;12:5404 pubmed 出版商
  27. Chen Y, Li J, Menon R, Jayaraman A, Lee K, Huang Y, et al. Dietary spinach reshapes the gut microbiome in an Apc-mutant genetic background: mechanistic insights from integrated multi-omics. Gut Microbes. 2021;13:1972756 pubmed 出版商
  28. Goel S, Bhatia V, Kundu S, Biswas T, Carskadon S, Gupta N, et al. Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat Commun. 2021;12:5325 pubmed 出版商
  29. Lin J, Liu H, Fukumoto T, Zundell J, Yan Q, Tang C, et al. Targeting the IRE1α/XBP1s pathway suppresses CARM1-expressing ovarian cancer. Nat Commun. 2021;12:5321 pubmed 出版商
  30. Keane L, Cheray M, Saidi D, Kirby C, Friess L, González Rodríguez P, et al. Inhibition of microglial EZH2 leads to anti-tumoral effects in pediatric diffuse midline gliomas. Neurooncol Adv. 2021;3:vdab096 pubmed 出版商
  31. Kalogirou C, Linxweiler J, Schmucker P, Snaebjornsson M, Schmitz W, Wach S, et al. MiR-205-driven downregulation of cholesterol biosynthesis through SQLE-inhibition identifies therapeutic vulnerability in aggressive prostate cancer. Nat Commun. 2021;12:5066 pubmed 出版商
  32. Sánchez Fdez A, Re Louhau M, Rodríguez Núñez P, Ludeña D, Matilla Almazán S, Pandiella A, et al. Clinical, genetic and pharmacological data support targeting the MEK5/ERK5 module in lung cancer. NPJ Precis Oncol. 2021;5:78 pubmed 出版商
  33. Yuan T, Annamalai K, Naik S, Lupse B, Geravandi S, Pal A, et al. The Hippo kinase LATS2 impairs pancreatic β-cell survival in diabetes through the mTORC1-autophagy axis. Nat Commun. 2021;12:4928 pubmed 出版商
  34. Yan D, Li X, Yang Q, Huang Q, Yao L, Zhang P, et al. Regulation of Bax-dependent apoptosis by mitochondrial deubiquitinase USP30. Cell Death Discov. 2021;7:211 pubmed 出版商
  35. Wang Z, Guo M, Cui Q, Yuan H, Shan Ji Fu -, Liu B, et al. PARP1 deficiency protects against hyperglycemia-induced neointimal hyperplasia by upregulating TFPI2 activity in diabetic mice. Redox Biol. 2021;46:102084 pubmed 出版商
  36. Proctor M, Gonzalez Cruz J, Daignault Mill S, Veitch M, Zeng B, Ehmann A, et al. Targeting Replication Stress Using CHK1 Inhibitor Promotes Innate and NKT Cell Immune Responses and Tumour Regression. Cancers (Basel). 2021;13: pubmed 出版商
  37. Kanellis D, Espinoza J, Zisi A, Sakkas E, Bartkova J, Katsori A, et al. The exon-junction complex helicase eIF4A3 controls cell fate via coordinated regulation of ribosome biogenesis and translational output. Sci Adv. 2021;7: pubmed 出版商
  38. Ye Z, Xu S, Shi Y, Bacolla A, Syed A, Moiani D, et al. GRB2 enforces homology-directed repair initiation by MRE11. Sci Adv. 2021;7: pubmed 出版商
  39. Lupse B, Annamalai K, Ibrahim H, Kaur S, Geravandi S, Sarma B, et al. Inhibition of PHLPP1/2 phosphatases rescues pancreatic β-cells in diabetes. Cell Rep. 2021;36:109490 pubmed 出版商
  40. Oiwa K, Hosono N, Nishi R, Scotto L, O Connor O, Yamauchi T. Characterization of newly established Pralatrexate-resistant cell lines and the mechanisms of resistance. BMC Cancer. 2021;21:879 pubmed 出版商
  41. Zhang Y, Ma Y, Wu G, Xie M, Luo C, Huang X, et al. SENP1 promotes MCL pathogenesis through regulating JAK-STAT5 pathway and SOCS2 expression. Cell Death Discov. 2021;7:192 pubmed 出版商
  42. Shen C, Hsieh C, Jiang K, Lin C, Chiang N, Li T, et al. AUY922 induces retinal toxicity through attenuating TRPM1. J Biomed Sci. 2021;28:55 pubmed 出版商
  43. Prekovic S, Schuurman K, Mayayo Peralta I, Manjón A, Buijs M, Yavuz S, et al. Glucocorticoid receptor triggers a reversible drug-tolerant dormancy state with acquired therapeutic vulnerabilities in lung cancer. Nat Commun. 2021;12:4360 pubmed 出版商
  44. Lee S, Jung J, Lee Y, Kim S, Kim J, Kim B, et al. Targeting HSF1 as a Therapeutic Strategy for Multiple Mechanisms of EGFR Inhibitor Resistance in EGFR Mutant Non-Small-Cell Lung Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  45. Kim Y, Lee J, Kim H, Jang J, Choung Y. Gap Junction-Mediated Intercellular Communication of cAMP Prevents CDDP-Induced Ototoxicity via cAMP/PKA/CREB Pathway. Int J Mol Sci. 2021;22: pubmed 出版商
  46. Hu F, Song D, Yan Y, Huang C, Shen C, Lan J, et al. IL-6 regulates autophagy and chemotherapy resistance by promoting BECN1 phosphorylation. Nat Commun. 2021;12:3651 pubmed 出版商
  47. Yi J, Sias Garcia O, Nasholm N, Hu X, Iniguez A, Hall M, et al. The synergy of BET inhibitors with aurora A kinase inhibitors in MYCN-amplified neuroblastoma is heightened with functional TP53. Neoplasia. 2021;23:624-633 pubmed 出版商
  48. Liu J, Hideshima T, Xing L, Wang S, Zhou W, Samur M, et al. ERK signaling mediates resistance to immunomodulatory drugs in the bone marrow microenvironment. Sci Adv. 2021;7: pubmed 出版商
  49. Ray U, Roy D, Jin L, Thirusangu P, Staub J, Xiao Y, et al. Group III phospholipase A2 downregulation attenuated survival and metastasis in ovarian cancer and promotes chemo-sensitization. J Exp Clin Cancer Res. 2021;40:182 pubmed 出版商
  50. Williams H, Wadey K, Frankow A, Blythe H, Forbes T, Johnson J, et al. Aneurysm severity is suppressed by deletion of CCN4. J Cell Commun Signal. 2021;15:421-432 pubmed 出版商
  51. Ma X, Zhao T, Yan H, Guo K, Liu Z, Wei L, et al. Fatostatin reverses progesterone resistance by inhibiting the SREBP1-NF-κB pathway in endometrial carcinoma. Cell Death Dis. 2021;12:544 pubmed 出版商
  52. Lee J, Hsu Y, Li Y, Cheng S. Galectin-3 Inhibitors Suppress Anoikis Resistance and Invasive Capacity in Thyroid Cancer Cells. Int J Endocrinol. 2021;2021:5583491 pubmed 出版商
  53. Lin C, Tsai M, Chen Y, Liu W, Lin C, Hsu K, et al. Platelet-Derived Growth Factor Receptor-α Subunit Targeting Suppresses Metastasis in Advanced Thyroid Cancer In Vitro and In Vivo. Biomol Ther (Seoul). 2021;29:551-561 pubmed 出版商
  54. Prokakis E, Dyas A, Grün R, Fritzsche S, Bedi U, Kazerouni Z, et al. USP22 promotes HER2-driven mammary carcinoma aggressiveness by suppressing the unfolded protein response. Oncogene. 2021;40:4004-4018 pubmed 出版商
  55. Ma Y, Shi B, Lu H, Xie P, Xin R, Wu Z, et al. MicroRNA-499 serves as a sensitizer for lung cancer cells to radiotherapy by inhibition of CK2α-mediated phosphorylation of p65. Mol Ther Oncolytics. 2021;21:171-182 pubmed 出版商
  56. Bi Y, Chen X, Wei B, Wang L, Gong L, Li H, et al. DEPTOR stabilizes ErbB2 to promote the proliferation and survival of ErbB2-positive breast cancer cells. Theranostics. 2021;11:6355-6369 pubmed 出版商
  57. Gusyatiner O, Bady P, Pham M, Lei Y, Park J, Daniel R, et al. BET inhibitors repress expression of interferon-stimulated genes and synergize with HDAC inhibitors in glioblastoma. Neuro Oncol. 2021;23:1680-1692 pubmed 出版商
  58. Cheng J, Duan X, Fu X, Jiang Y, Yang P, Cao C, et al. RIP1 Perturbation Induces Chondrocyte Necroptosis and Promotes Osteoarthritis Pathogenesis via Targeting BMP7. Front Cell Dev Biol. 2021;9:638382 pubmed 出版商
  59. Supper E, Rudat S, Iyer V, Droop A, Wong K, Spinella J, et al. Cut-like homeobox 1 (CUX1) tumor suppressor gene haploinsufficiency induces apoptosis evasion to sustain myeloid leukemia. Nat Commun. 2021;12:2482 pubmed 出版商
  60. Chen X, Ma W, Yao Y, Zhang Q, Li J, Wu X, et al. Serum deprivation-response protein induces apoptosis in hepatocellular carcinoma through ASK1-JNK/p38 MAPK pathways. Cell Death Dis. 2021;12:425 pubmed 出版商
  61. Blomberg Jensen M, Andreassen C, Jørgensen A, Nielsen J, Juel Mortensen L, Boisen I, et al. RANKL regulates male reproductive function. Nat Commun. 2021;12:2450 pubmed 出版商
  62. Xue Y, Wang S, Rana P, West E, Hong C, Feng H, et al. AAV-Txnip prolongs cone survival and vision in mouse models of retinitis pigmentosa. elife. 2021;10: pubmed 出版商
  63. Zhu X, Chen L, Huang B, Li X, Yang L, Hu X, et al. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. J Exp Clin Cancer Res. 2021;40:122 pubmed 出版商
  64. Andrade J, Shi C, Costa A, Choi J, Kim J, Doddaballapur A, et al. Control of endothelial quiescence by FOXO-regulated metabolites. Nat Cell Biol. 2021;23:413-423 pubmed 出版商
  65. Nishad R, Mukhi D, Singh A, Motrapu M, Chintala K, Tammineni P, et al. Growth hormone induces mitotic catastrophe of glomerular podocytes and contributes to proteinuria. Cell Death Dis. 2021;12:342 pubmed 出版商
  66. Ditano J, Donahue K, Tafe L, McCleery C, Eastman A. Sensitivity of cells to ATR and CHK1 inhibitors requires hyperactivation of CDK2 rather than endogenous replication stress or ATM dysfunction. Sci Rep. 2021;11:7077 pubmed 出版商
  67. Wei Y, Jiang Z, Lu J. USP22 promotes melanoma and BRAF inhibitor resistance via YAP stabilization. Oncol Lett. 2021;21:394 pubmed 出版商
  68. Yuan W, Lu L, Rao M, Huang Y, Liu C, Liu S, et al. GFAP hyperpalmitoylation exacerbates astrogliosis and neurodegenerative pathology in PPT1-deficient mice. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  69. Shao N, Cheng J, Huang H, Gong X, Lu Y, Idris M, et al. GASC1 promotes hepatocellular carcinoma progression by inhibiting the degradation of ROCK2. Cell Death Dis. 2021;12:253 pubmed 出版商
  70. Parveen S, Siddharth S, Cheung L, Kumar A, Shen J, Murphy J, et al. Therapeutic targeting with DABIL-4 depletes myeloid suppressor cells in 4T1 triple-negative breast cancer model. Mol Oncol. 2021;15:1330-1344 pubmed 出版商
  71. Kitamura Y, Kanaya N, Moleirinho S, Du W, Reinshagen C, Attia N, et al. Anti-EGFR VHH-armed death receptor ligand-engineered allogeneic stem cells have therapeutic efficacy in diverse brain metastatic breast cancers. Sci Adv. 2021;7: pubmed 出版商
  72. Cheng Y, Liu M, Tang H, Chen B, Yang G, Zhao W, et al. iTRAQ-Based Quantitative Proteomics Indicated Nrf2/OPTN-Mediated Mitophagy Inhibits NLRP3 Inflammasome Activation after Intracerebral Hemorrhage. Oxid Med Cell Longev. 2021;2021:6630281 pubmed 出版商
  73. Shen X, Wang H, Weng C, Jiang H, Chen J. Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity. Cell Death Dis. 2021;12:186 pubmed 出版商
  74. Gajdzis M, Theocharis S, Klijanienko J, Cassoux N, Gardrat S, Donizy P, et al. The Prognostic Values of PARP-1 Expression in Uveal Melanoma. Cells. 2021;10: pubmed 出版商
  75. Kamata T, Yang C, Melhuish T, Frierson H, Wotton D, Paschal B. Post-Transcriptional Regulation of PARP7 Protein Stability Is Controlled by Androgen Signaling. Cells. 2021;10: pubmed 出版商
  76. Li Y, Sun Y, Kulke M, Hechler T, Van der Jeught K, Dong T, et al. Targeted immunotherapy for HER2-low breast cancer with 17p loss. Sci Transl Med. 2021;13: pubmed 出版商
  77. Decotret L, Wadsworth B, Li L, Lim C, Bennewith K, Pallen C. Receptor-type protein tyrosine phosphatase alpha (PTPα) mediates MMP14 localization and facilitates triple-negative breast cancer cell invasion. Mol Biol Cell. 2021;32:567-578 pubmed 出版商
  78. Shields C, Potlapalli S, Cuya Smith S, Chappell S, Chen D, Martinez D, et al. Epigenetic regulator BMI1 promotes alveolar rhabdomyosarcoma proliferation and constitutes a novel therapeutic target. Mol Oncol. 2021;: pubmed 出版商
  79. Vaughan C, Singh S, Subler M, Windle J, Inoue K, Fry E, et al. The oncogenicity of tumor-derived mutant p53 is enhanced by the recruitment of PLK3. Nat Commun. 2021;12:704 pubmed 出版商
  80. Ghonim M, Ibba S, Tarhuni A, Errami Y, Luu H, Dean M, et al. Targeting PARP-1 with metronomic therapy modulates MDSC suppressive function and enhances anti-PD-1 immunotherapy in colon cancer. J Immunother Cancer. 2021;9: pubmed 出版商
  81. Jing C, Duan Y, Zhou M, Yue K, Zhuo S, Li X, et al. Blockade of deubiquitinating enzyme PSMD14 overcomes chemoresistance in head and neck squamous cell carcinoma by antagonizing E2F1/Akt/SOX2-mediated stemness. Theranostics. 2021;11:2655-2669 pubmed 出版商
  82. Zhang K, Wang D, Cai H, Cao M, Zhang Y, Zhuang P, et al. IL‑6 plays a crucial role in epithelial‑mesenchymal transition and pro‑metastasis induced by sorafenib in liver cancer. Oncol Rep. 2021;45:1105-1117 pubmed 出版商
  83. Guo S, Chen Y, Yang Y, Zhang X, Ma L, Xue X, et al. TRIB2 modulates proteasome function to reduce ubiquitin stability and protect liver cancer cells against oxidative stress. Cell Death Dis. 2021;12:42 pubmed 出版商
  84. Xiong M, Wu M, Dan Peng -, Huang W, Chen Z, Ke H, et al. LncRNA DANCR represses Doxorubicin-induced apoptosis through stabilizing MALAT1 expression in colorectal cancer cells. Cell Death Dis. 2021;12:24 pubmed 出版商
  85. Huang H, Yu X, Han X, Hao J, Zhao J, Bebek G, et al. Piwil1 Regulates Glioma Stem Cell Maintenance and Glioblastoma Progression. Cell Rep. 2021;34:108522 pubmed 出版商
  86. He S, Ma X, Zheng N, Wang G, Wang M, Xia W, et al. PRDM14 mediates chemosensitivity and glycolysis in drug‑resistant A549/cisplatin cells and their progenitor A549 human lung adenocarcinoma cells. Mol Med Rep. 2021;23: pubmed 出版商
  87. Riad A, Gitto S, Lee H, Winters H, Martorano P, Hsieh C, et al. PARP Theranostic Auger Emitters Are Cytotoxic in BRCA Mutant Ovarian Cancer and Viable Tumors from Ovarian Cancer Patients Enable Ex-Vivo Screening of Tumor Response. Molecules. 2020;25: pubmed 出版商
  88. Hewitt G, Borel V, Segura Bayona S, Takaki T, Ruis P, Bellelli R, et al. Defective ALC1 nucleosome remodeling confers PARPi sensitization and synthetic lethality with HRD. Mol Cell. 2020;: pubmed 出版商
  89. Ye S, Sharipova D, Kozinova M, Klug L, D Souza J, Belinsky M, et al. Identification of Wee1 as a target in combination with avapritinib for gastrointestinal stromal tumor treatment. JCI Insight. 2021;6: pubmed 出版商
  90. Song M, YEKU O, Rafiq S, Purdon T, Dong X, Zhu L, et al. Tumor derived UBR5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nat Commun. 2020;11:6298 pubmed 出版商
  91. Carullo G, Mazzotta S, Koch A, Hartmann K, Friedrich O, Gilbert D, et al. New Oleoyl Hybrids of Natural Antioxidants: Synthesis and In Vitro Evaluation as Inducers of Apoptosis in Colorectal Cancer Cells. Antioxidants (Basel). 2020;9: pubmed 出版商
  92. Omairi I, Kobeissy F, Nasreddine S. Anti-Oxidant, Anti-Hemolytic Effects of Crataegus aronia Leaves and Its Anti- Proliferative Effect Enhance Cisplatin Cytotoxicity in A549 Human Lung Cancer Cell Line. Asian Pac J Cancer Prev. 2020;21:2993-3003 pubmed 出版商
  93. Lomphithak T, Choksi S, Mutirangura A, Tohtong R, Tencomnao T, Usubuchi H, et al. Receptor-interacting protein kinase 1 is a key mediator in TLR3 ligand and Smac mimetic-induced cell death and suppresses TLR3 ligand-promoted invasion in cholangiocarcinoma. Cell Commun Signal. 2020;18:161 pubmed 出版商
  94. Moses N, Zhang M, Wu J, Hu C, Xiang S, Geng X, et al. HDAC6 Regulates Radiosensitivity of Non-Small Cell Lung Cancer by Promoting Degradation of Chk1. Cells. 2020;9: pubmed 出版商
  95. Zhang Y, Zhang L, Lu S, Xiang Y, Zeng C, He T, et al. Long Non-coding RNA CASC15 Promotes Intrahepatic Cholangiocarcinoma Possibly through Inducing PRDX2/PI3K/AKT Axis. Cancer Res Treat. 2021;53:184-198 pubmed 出版商
  96. Cheng C, Wooten J, Gibbs Z, McGlynn K, Mishra P, Whitehurst A. Sperm-specific COX6B2 enhances oxidative phosphorylation, proliferation, and survival in human lung adenocarcinoma. elife. 2020;9: pubmed 出版商
  97. Tan Y, Sementino E, Liu Z, Cai K, Testa J. Wnt signaling mediates oncogenic synergy between Akt and Dlx5 in T-cell lymphomagenesis by enhancing cholesterol synthesis. Sci Rep. 2020;10:15837 pubmed 出版商
  98. He S, Fang X, Xia X, Hou T, Zhang T. Targeting CDK9: A novel biomarker in the treatment of endometrial cancer. Oncol Rep. 2020;44:1929-1938 pubmed 出版商
  99. González Rodríguez P, Cheray M, Füllgrabe J, Salli M, Engskog Vlachos P, Keane L, et al. The DNA methyltransferase DNMT3A contributes to autophagy long-term memory. Autophagy. 2020;:1-19 pubmed 出版商
  100. Lim C, Or Y, Ong Z, Chung H, Hayashi H, Shrestha S, et al. Estrogen exacerbates mammary involution through neutrophil-dependent and -independent mechanism. elife. 2020;9: pubmed 出版商
  101. Nassar Z, Mah C, Dehairs J, Burvenich I, Irani S, Centenera M, et al. Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. elife. 2020;9: pubmed 出版商
  102. Gu J, Zhang Y, Wang X, Xiang J, Deng S, Wu D, et al. Matrine inhibits the growth of natural killer/T-cell lymphoma cells by modulating CaMKIIγ-c-Myc signaling pathway. BMC Complement Med Ther. 2020;20:214 pubmed 出版商
  103. Zhang H, Qi L, Du Y, Huang L, Braun F, Kogiso M, et al. Patient-Derived Orthotopic Xenograft (PDOX) Mouse Models of Primary and Recurrent Meningioma. Cancers (Basel). 2020;12: pubmed 出版商
  104. Warnes G. Flow cytometric detection of hyper-polarized mitochondria in regulated and accidental cell death processes. Apoptosis. 2020;25:548-557 pubmed 出版商
  105. Arai S, Varkaris A, Nouri M, Chen S, Xie L, Balk S. MARCH5 mediates NOXA-dependent MCL1 degradation driven by kinase inhibitors and integrated stress response activation. elife. 2020;9: pubmed 出版商
  106. Feng Y, Mischler W, Gurung A, Kavanagh T, Androsov G, Sadow P, et al. Therapeutic Targeting of the Secreted Lysophospholipase D Autotaxin Suppresses Tuberous Sclerosis Complex-Associated Tumorigenesis. Cancer Res. 2020;80:2751-2763 pubmed 出版商
  107. Xu W, Wu H, Chen S, Wang X, Tanaka S, Sugiyama K, et al. Cytotoxic effects of vitamins K1, K2 and K3 against human T lymphoblastoid leukemia cells through apoptosis induction and cell cycle arrest. Chem Biol Drug Des. 2020;: pubmed 出版商
  108. Wu P, Hong S, Starenki D, Oshima K, Shao H, Gestwicki J, et al. Mortalin/HSPA9 targeting selectively induces KRAS tumor cell death by perturbing mitochondrial membrane permeability. Oncogene. 2020;39:4257-4270 pubmed 出版商
  109. Han B, Meng X, Wu P, Li Z, Li S, Zhang Y, et al. ATRX/EZH2 complex epigenetically regulates FADD/PARP1 axis, contributing to TMZ resistance in glioma. Theranostics. 2020;10:3351-3365 pubmed 出版商
  110. Zhang J, Huang J, Zhang Y, Zhang X, Zhao L, Li C, et al. Microtubule associated protein 9 inhibits liver tumorigenesis by suppressing ERCC3. EBioMedicine. 2020;53:102701 pubmed 出版商
  111. Gallo S, Spilinga M, Albano R, Ferrauto G, Di Gregorio E, Casanova E, et al. Activation of the MET receptor attenuates doxorubicin-induced cardiotoxicity in vivo and in vitro. Br J Pharmacol. 2020;177:3107-3122 pubmed 出版商
  112. Reynders M, Matsuura B, Bérouti M, Simoneschi D, Marzio A, Pagano M, et al. PHOTACs enable optical control of protein degradation. Sci Adv. 2020;6:eaay5064 pubmed 出版商
  113. Howell M, Green R, Khalil R, Foran E, Quarni W, Nair R, et al. Lung cancer cells survive epidermal growth factor receptor tyrosine kinase inhibitor exposure through upregulation of cholesterol synthesis. FASEB Bioadv. 2020;2:90-105 pubmed 出版商
  114. Pothuraju R, Rachagani S, Krishn S, Chaudhary S, Nimmakayala R, Siddiqui J, et al. Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Mol Cancer. 2020;19:37 pubmed 出版商
  115. Wan G, An Y, Tao J, Wang Y, Zhou Q, Yang R, et al. MicroRNA-129-5p alleviates spinal cord injury in mice via suppressing the apoptosis and inflammatory response through HMGB1/TLR4/NF-κB pathway. Biosci Rep. 2020;40: pubmed 出版商
  116. Chandrasekaran B, Dahiya N, Tyagi A, Kolluru V, Saran U, Baby B, et al. Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis. 2020;9:23 pubmed 出版商
  117. McNicoll F, Kühnel A, Biswas U, Hempel K, Whelan G, Eichele G, et al. Meiotic sex chromosome cohesion and autosomal synapsis are supported by Esco2. Life Sci Alliance. 2020;3: pubmed 出版商
  118. Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19:28 pubmed 出版商
  119. Li K, Zhao S, Long J, Su J, Wu L, Tao J, et al. A novel chalcone derivative has antitumor activity in melanoma by inducing DNA damage through the upregulation of ROS products. Cancer Cell Int. 2020;20:36 pubmed 出版商
  120. Jiang L, Xu K, Li J, Zhou X, Xu L, Wu Z, et al. Nesfatin-1 suppresses interleukin-1β-induced inflammation, apoptosis, and cartilage matrix destruction in chondrocytes and ameliorates osteoarthritis in rats. Aging (Albany NY). 2020;12:1760-1777 pubmed 出版商
  121. Li T, Li K, Zhang S, Wang Y, Xu Y, Cronin S, et al. Overexpression of apoptosis inducing factor aggravates hypoxic-ischemic brain injury in neonatal mice. Cell Death Dis. 2020;11:77 pubmed 出版商
  122. Qiao H, Tan X, Lv D, Xing R, Shu F, Zhong C, et al. Phosphoribosyl pyrophosphate synthetases 2 knockdown inhibits prostate cancer progression by suppressing cell cycle and inducing cell apoptosis. J Cancer. 2020;11:1027-1037 pubmed 出版商
  123. Aldaz P, Otaegi Ugartemendia M, Sáenz Antoñanzas A, Garcia Puga M, Moreno Valladares M, Flores J, et al. SOX9 promotes tumor progression through the axis BMI1-p21CIP. Sci Rep. 2020;10:357 pubmed 出版商
  124. Liu Q, Borcherding N, Shao P, Maina P, Zhang W, Qi H. Contribution of synergism between PHF8 and HER2 signalling to breast cancer development and drug resistance. EBioMedicine. 2020;51:102612 pubmed 出版商
  125. Xue J, Zhao Y, Aronowitz J, Mai T, Vides A, Qeriqi B, et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature. 2020;577:421-425 pubmed 出版商
  126. Almstedt E, Elgendy R, Hekmati N, Rosén E, Wärn C, Olsen T, et al. Integrative discovery of treatments for high-risk neuroblastoma. Nat Commun. 2020;11:71 pubmed 出版商
  127. Ding L, Zhu Q, Zhou F, Tan H, Xu W, Pan C, et al. Identification of viral SIM-SUMO2-interaction inhibitors for treating primary effusion lymphoma. PLoS Pathog. 2019;15:e1008174 pubmed 出版商
  128. Santos Barriopedro I, Li Y, Bahl S, Seto E. HDAC8 affects MGMT levels in glioblastoma cell lines via interaction with the proteasome receptor ADRM1. Genes Cancer. 2019;10:119-133 pubmed 出版商
  129. Liu X, Huang J, Xie Y, Zhou Y, Wang R, Lou J. Napabucasin Attenuates Resistance of Breast Cancer Cells to Tamoxifen by Reducing Stem Cell-Like Properties. Med Sci Monit. 2019;25:8905-8912 pubmed 出版商
  130. Moya I, Castaldo S, Van den Mooter L, Soheily S, Sansores Garcia L, Jacobs J, et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science. 2019;366:1029-1034 pubmed 出版商
  131. Chen X, Xiong X, Cui D, Yang F, Wei D, Li H, et al. DEPTOR is an in vivo tumor suppressor that inhibits prostate tumorigenesis via the inactivation of mTORC1/2 signals. Oncogene. 2020;39:1557-1571 pubmed 出版商
  132. Yukawa M, Jagannathan S, Vallabh S, Kartashov A, Chen X, Weirauch M, et al. AP-1 activity induced by co-stimulation is required for chromatin opening during T cell activation. J Exp Med. 2020;217: pubmed 出版商
  133. Jung J, Lee H, Cao B, Liao P, Zeng S, Lu H. RNA-binding motif protein 10 induces apoptosis and suppresses proliferation by activating p53. Oncogene. 2019;: pubmed 出版商
  134. Matsumoto S, Yamamichi T, Shinzawa K, Kasahara Y, Nojima S, Kodama T, et al. GREB1 induced by Wnt signaling promotes development of hepatoblastoma by suppressing TGFβ signaling. Nat Commun. 2019;10:3882 pubmed 出版商
  135. Thangaraj K, Balasubramanian B, Park S, Natesan K, Liu W, Manju V. Orientin Induces G0/G1 Cell Cycle Arrest and Mitochondria Mediated Intrinsic Apoptosis in Human Colorectal Carcinoma HT29 Cells. Biomolecules. 2019;9: pubmed 出版商
  136. Han Y, Wang Z, Sun S, Zhang Z, Liu J, Jin X, et al. Decreased DHRS2 expression is associated with HDACi resistance and poor prognosis in ovarian cancer. Epigenetics. 2019;:1-12 pubmed 出版商
  137. Debruyne D, Dries R, Sengupta S, Seruggia D, Gao Y, Sharma B, et al. BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells. Nature. 2019;572:676-680 pubmed 出版商
  138. Basturk O, Weigelt B, Adsay V, Benhamida J, Askan G, Wang L, et al. Sclerosing epithelioid mesenchymal neoplasm of the pancreas - a proposed new entity. Mod Pathol. 2020;33:456-467 pubmed 出版商
  139. Joyce M, Berry Wynne K, Dos Santos T, Addison W, McFarlane N, Hobman T, et al. HCV and flaviviruses hijack cellular mechanisms for nuclear STAT2 degradation: Up-regulation of PDLIM2 suppresses the innate immune response. PLoS Pathog. 2019;15:e1007949 pubmed 出版商
  140. Guan J, Zhou W, Hafner M, Blake R, Chalouni C, Chen I, et al. Therapeutic Ligands Antagonize Estrogen Receptor Function by Impairing Its Mobility. Cell. 2019;178:949-963.e18 pubmed 出版商
  141. Kabir S, Cidado J, Andersen C, Dick C, Lin P, Mitros T, et al. The CUL5 ubiquitin ligase complex mediates resistance to CDK9 and MCL1 inhibitors in lung cancer cells. elife. 2019;8: pubmed 出版商
  142. Sin Chan P, Mumal I, Suwal T, Ho B, Fan X, Singh I, et al. A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor. Cancer Cell. 2019;36:51-67.e7 pubmed 出版商
  143. Tacconi E, Badie S, De Gregoriis G, Reisländer T, Lai X, Porru M, et al. Chlorambucil targets BRCA1/2-deficient tumours and counteracts PARP inhibitor resistance. EMBO Mol Med. 2019;11:e9982 pubmed 出版商
  144. Kaur S, Nag A, Gangenahalli G, Sharma K. Peroxisome Proliferator Activated Receptor Gamma Sensitizes Non-small Cell Lung Carcinoma to Gamma Irradiation Induced Apoptosis. Front Genet. 2019;10:554 pubmed 出版商
  145. Wang R, Geng J, Sheng W, Liu X, Jiang M, Zhen Y. The ionophore antibiotic gramicidin A inhibits pancreatic cancer stem cells associated with CD47 down-regulation. Cancer Cell Int. 2019;19:145 pubmed 出版商
  146. Pietila M, Sahgal P, Peuhu E, Jäntti N, Paatero I, Närvä E, et al. SORLA regulates endosomal trafficking and oncogenic fitness of HER2. Nat Commun. 2019;10:2340 pubmed 出版商
  147. Das R, Schwintzer L, Vinopal S, Roca E, Sylvester M, Oprişoreanu A, et al. New roles for the de-ubiquitylating enzyme OTUD4 in an RNA-protein network and RNA granules. J Cell Sci. 2019;: pubmed 出版商
  148. Tepper S, Mortusewicz O, Członka E, Bello A, Schmidt A, Jeschke J, et al. Restriction of AID activity and somatic hypermutation by PARP-1. Nucleic Acids Res. 2019;47:7418-7429 pubmed 出版商
  149. Fang D, Wang H, Li M, Wei W. α-bisabolol enhances radiotherapy-induced apoptosis in endometrial cancer cells by reducing the effect of XIAP on inhibiting caspase-3. Biosci Rep. 2019;39: pubmed 出版商
  150. Bentz G, Lowrey A, Horne D, Nguyen V, Satterfield A, Ross T, et al. Using glycyrrhizic acid to target sumoylation processes during Epstein-Barr virus latency. PLoS ONE. 2019;14:e0217578 pubmed 出版商
  151. Frischknecht L, Britschgi C, Galliker P, Christinat Y, Vichalkovski A, Gstaiger M, et al. BRAF inhibition sensitizes melanoma cells to α-amanitin via decreased RNA polymerase II assembly. Sci Rep. 2019;9:7779 pubmed 出版商
  152. Wu K, Zou J, Lin C, Jie Z. MicroRNA-140-5p inhibits cell proliferation, migration and promotes cell apoptosis in gastric cancer through the negative regulation of THY1-mediated Notch signaling. Biosci Rep. 2019;: pubmed 出版商
  153. Pan C, Jin L, Wang X, Li Y, Chun J, Boese A, et al. Inositol-triphosphate 3-kinase B confers cisplatin resistance by regulating NOX4-dependent redox balance. J Clin Invest. 2019;129:2431-2445 pubmed 出版商
  154. Liu X, Zhao P, Wang X, Wang L, Zhu Y, Song Y, et al. Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells. J Exp Clin Cancer Res. 2019;38:184 pubmed 出版商
  155. Hernández Alvarez M, Sebastian D, Vives S, Ivanova S, Bartoccioni P, Kakimoto P, et al. Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease. Cell. 2019;177:881-895.e17 pubmed 出版商
  156. Shi K, Yin X, Cai M, Yan Y, Jia C, Ma P, et al. PAX8 regulon in human ovarian cancer links lineage dependency with epigenetic vulnerability to HDAC inhibitors. elife. 2019;8: pubmed 出版商
  157. Chung H, Zou X, Bajar B, Brand V, Huo Y, Alcudia J, et al. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science. 2019;364: pubmed 出版商
  158. Song T, Spillmann D. Transcriptomic analysis reveals cell apoptotic signature modified by heparanase in melanoma cells. J Cell Mol Med. 2019;23:4559-4568 pubmed 出版商
  159. Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, et al. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol Med. 2019;: pubmed 出版商
  160. Xu D, Li X, Shao F, Lv G, Lv H, Lee J, et al. The protein kinase activity of fructokinase A specifies the antioxidant responses of tumor cells by phosphorylating p62. Sci Adv. 2019;5:eaav4570 pubmed 出版商
  161. He M, Chaurushiya M, Webster J, Kummerfeld S, Reja R, Chaudhuri S, et al. Intrinsic apoptosis shapes the tumor spectrum linked to inactivation of the deubiquitinase BAP1. Science. 2019;364:283-285 pubmed 出版商
  162. Liu X, Chen H, Hou Y, Ma X, Ye M, Huang R, et al. Adaptive EGF expression sensitizes pancreatic cancer cells to ionizing radiation through activation of the cyclin D1/P53/PARP pathway. Int J Oncol. 2019;54:1466-1480 pubmed 出版商
  163. Chen M, Du Y, Sun L, Hsu J, Wang Y, Gao Y, et al. H2O2 induces nuclear transport of the receptor tyrosine kinase c-MET in breast cancer cells via a membrane-bound retrograde trafficking mechanism. J Biol Chem. 2019;294:8516-8528 pubmed 出版商
  164. Luo H, Jing B, Xia Y, Zhang Y, Hu M, Cai H, et al. WP1130 reveals USP24 as a novel target in T-cell acute lymphoblastic leukemia. Cancer Cell Int. 2019;19:56 pubmed 出版商
  165. Gennaro V, Wedegaertner H, McMahon S. Interaction between the BAG1S isoform and HSP70 mediates the stability of anti-apoptotic proteins and the survival of osteosarcoma cells expressing oncogenic MYC. BMC Cancer. 2019;19:258 pubmed 出版商
  166. Liu Z, Mar K, Hanners N, Perelman S, Kanchwala M, Xing C, et al. A NIK-SIX signalling axis controls inflammation by targeted silencing of non-canonical NF-κB. Nature. 2019;: pubmed 出版商
  167. Poondla N, Chandrasekaran A, Heese K, Kim K, Ramakrishna S. CRISPR-mediated upregulation of DR5 and downregulation of cFLIP synergistically sensitize HeLa cells to TRAIL-mediated apoptosis. Biochem Biophys Res Commun. 2019;: pubmed 出版商
  168. Park H, Chung K, An H, Gim J, Hong J, Woo H, et al. Parkin Promotes Mitophagic Cell Death in Adult Hippocampal Neural Stem Cells Following Insulin Withdrawal. Front Mol Neurosci. 2019;12:46 pubmed 出版商
  169. Fang G, Qi J, Huang L, Zhao X. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension. Biosci Rep. 2019;: pubmed 出版商
  170. Yan M, Wang J, Ren Y, Li L, He W, Zhang Y, et al. Over-expression of FSIP1 promotes breast cancer progression and confers resistance to docetaxel via MRP1 stabilization. Cell Death Dis. 2019;10:204 pubmed 出版商
  171. Greer Y, Gilbert S, Gril B, Narwal R, Peacock Brooks D, Tice D, et al. MEDI3039, a novel highly potent tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 2 agonist, causes regression of orthotopic tumors and inhibits outgrowth of metastatic triple-negative breast cancer. Breast Cancer Res. 2019;21:27 pubmed 出版商
  172. Yambire K, Fernández Mosquera L, Steinfeld R, Mühle C, Ikonen E, Milosevic I, et al. Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases. elife. 2019;8: pubmed 出版商
  173. Dufour F, Silina L, Neyret Kahn H, Moreno Vega A, Krucker C, Karboul N, et al. TYRO3 as a molecular target for growth inhibition and apoptosis induction in bladder cancer. Br J Cancer. 2019;120:555-564 pubmed 出版商
  174. Frank T, Tuppi M, Hugle M, Dötsch V, van Wijk S, Fulda S. Cell cycle arrest in mitosis promotes interferon-induced necroptosis. Cell Death Differ. 2019;: pubmed 出版商
  175. Guan H, Li N, Wang X, Shan X, Li Z, Lin Z. Role of Paip1 on angiogenesis and invasion in pancreatic cancer. Exp Cell Res. 2019;376:198-209 pubmed 出版商
  176. Göbel A, Breining D, Rauner M, Hofbauer L, Rachner T. Induction of 3-hydroxy-3-methylglutaryl-CoA reductase mediates statin resistance in breast cancer cells. Cell Death Dis. 2019;10:91 pubmed 出版商
  177. Nassour J, Radford R, Correia A, Fusté J, Schoell B, Jauch A, et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature. 2019;565:659-663 pubmed 出版商
  178. Yuan Z, Zhang H, Hasnat M, Ding J, Chen X, Liang P, et al. A new perspective of triptolide-associated hepatotoxicity: Liver hypersensitivity upon LPS stimulation. Toxicology. 2019;414:45-56 pubmed 出版商
  179. Park B, Chang S, Lee G, Kang B, Kim J, Park H. Wnt3a disrupts GR-TEAD4-PPARγ2 positive circuits and cytoskeletal rearrangement in a β-catenin-dependent manner during early adipogenesis. Cell Death Dis. 2019;10:16 pubmed 出版商
  180. Chen L, Yang G, Dong H. Everolimus Reverses Palbociclib Resistance in ER+ Human Breast Cancer Cells by Inhibiting Phosphatidylinositol 3-Kinase(PI3K)/Akt/Mammalian Target of Rapamycin (mTOR) Pathway. Med Sci Monit. 2019;25:77-86 pubmed 出版商
  181. Zhao Z, Wang L, Volk A, Birch N, Stoltz K, Bartom E, et al. Regulation of MLL/COMPASS stability through its proteolytic cleavage by taspase1 as a possible approach for clinical therapy of leukemia. Genes Dev. 2019;33:61-74 pubmed 出版商
  182. Xie Y, Fan H, Lu W, Yang Q, Nurkesh A, Yeleussizov T, et al. Nuclear MET requires ARF and is inhibited by carbon nanodots through binding to phospho-tyrosine in prostate cancer. Oncogene. 2019;38:2967-2983 pubmed 出版商
  183. LeBlanc L, Lee B, Yu A, Kim M, Kambhampati A, Dupont S, et al. Yap1 safeguards mouse embryonic stem cells from excessive apoptosis during differentiation. elife. 2018;7: pubmed 出版商
  184. Pan W, Moroishi T, Koo J, Guan K. Cell type-dependent function of LATS1/2 in cancer cell growth. Oncogene. 2019;38:2595-2610 pubmed 出版商
  185. Wu R, Li A, Sun B, Sun J, Zhang J, Zhang T, et al. A novel m6A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res. 2019;29:23-41 pubmed 出版商
  186. Jeon Y, Kim T, Park D, Nuovo G, Rhee S, Joshi P, et al. miRNA-mediated TUSC3 deficiency enhances UPR and ERAD to promote metastatic potential of NSCLC. Nat Commun. 2018;9:5110 pubmed 出版商
  187. Unni A, Harbourne B, Oh M, Wild S, Ferrarone J, Lockwood W, et al. Hyperactivation of ERK by multiple mechanisms is toxic to RTK-RAS mutation-driven lung adenocarcinoma cells. elife. 2018;7: pubmed 出版商
  188. Barreta A, Sarian L, Ferracini A, Costa L, Mazzola P, de Angelo Andrade L, et al. Immunohistochemistry expression of targeted therapies biomarkers in ovarian clear cell and endometrioid carcinomas (type I) and endometriosis. Hum Pathol. 2019;85:72-81 pubmed 出版商
  189. Liang C, Ma Y, Yong L, Yang C, Wang P, Liu X, et al. Y-box binding protein-1 promotes tumorigenesis and progression via the epidermal growth factor receptor/AKT pathway in spinal chordoma. Cancer Sci. 2019;110:166-179 pubmed 出版商
  190. Serebryannyy L, Misteli T. HiPLA: High-throughput imaging proximity ligation assay. Methods. 2019;157:80-87 pubmed 出版商
  191. Asnaghi L, White D, Key N, Choi J, Mahale A, Alkatan H, et al. ACVR1C/SMAD2 signaling promotes invasion and growth in retinoblastoma. Oncogene. 2019;38:2056-2075 pubmed 出版商
  192. Lafita Navarro M, Kim M, Borenstein Auerbach N, Venkateswaran N, Hao Y, Ray R, et al. The aryl hydrocarbon receptor regulates nucleolar activity and protein synthesis in MYC-expressing cells. Genes Dev. 2018;32:1303-1308 pubmed 出版商
  193. Gallot Y, Bohnert K, Straughn A, Xiong G, Hindi S, Kumar A. PERK regulates skeletal muscle mass and contractile function in adult mice. FASEB J. 2019;33:1946-1962 pubmed 出版商
  194. Zhang Y, Shi J, Liu X, Feng L, Gong Z, Koppula P, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol. 2018;20:1181-1192 pubmed 出版商
  195. Killackey S, Rahman M, Soares F, Zhang A, Abdel Nour M, Philpott D, et al. The mitochondrial Nod-like receptor NLRX1 modifies apoptosis through SARM1. Mol Cell Biochem. 2019;453:187-196 pubmed 出版商
  196. Lee E, Ouzounova M, Piranlioglu R, Ma M, Guzel M, Marasco D, et al. The pleiotropic effects of TNFα in breast cancer subtypes is regulated by TNFAIP3/A20. Oncogene. 2019;38:469-482 pubmed 出版商
  197. Greenhough A, Bagley C, Heesom K, Gurevich D, Gay D, Bond M, et al. Cancer cell adaptation to hypoxia involves a HIF-GPRC5A-YAP axis. EMBO Mol Med. 2018;10: pubmed 出版商
  198. Jena K, Kolapalli S, Mehto S, Nath P, Das B, Sahoo P, et al. TRIM16 controls assembly and degradation of protein aggregates by modulating the p62-NRF2 axis and autophagy. EMBO J. 2018;37: pubmed 出版商
  199. Tay L, Krishnan V, Sankar H, Chong Y, Chuang L, Tan T, et al. RUNX Poly(ADP-Ribosyl)ation and BLM Interaction Facilitate the Fanconi Anemia Pathway of DNA Repair. Cell Rep. 2018;24:1747-1755 pubmed 出版商
  200. Zhao D, Kim Y, Jeong S, Greenson J, Chaudhry M, Hoepting M, et al. Survival signal REG3α prevents crypt apoptosis to control acute gastrointestinal graft-versus-host disease. J Clin Invest. 2018;128:4970-4979 pubmed 出版商
  201. Lai C, Liu H, Tin K, Huang Y, Yeh K, Peng H, et al. Identification of UAP1L1 as a critical factor for protein O-GlcNAcylation and cell proliferation in human hepatoma cells. Oncogene. 2019;38:317-331 pubmed 出版商
  202. Leslie P, Franklin D, Liu Y, Zhang Y. p53 Regulates the Expression of LRP1 and Apoptosis through a Stress Intensity-Dependent MicroRNA Feedback Loop. Cell Rep. 2018;24:1484-1495 pubmed 出版商
  203. Zhang J, Wu T, Simon J, Takada M, Saito R, Fan C, et al. VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma. Science. 2018;361:290-295 pubmed 出版商
  204. Lin X, Cui M, Xu D, Hong D, Xia Y, Xu C, et al. Liver-specific deletion of Eva1a/Tmem166 aggravates acute liver injury by impairing autophagy. Cell Death Dis. 2018;9:768 pubmed 出版商
  205. Johnson D, Taabazuing C, Okondo M, Chui A, Rao S, Brown F, et al. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat Med. 2018;24:1151-1156 pubmed 出版商
  206. Wang W, Xia Z, Farre J, Subramani S. TRIM37 deficiency induces autophagy through deregulating the MTORC1-TFEB axis. Autophagy. 2018;14:1574-1585 pubmed 出版商
  207. Chhipa R, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, et al. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol. 2018;20:823-835 pubmed 出版商
  208. Lau A, Chung H, Komada T, Platnich J, Sandall C, Choudhury S, et al. Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury. J Clin Invest. 2018;128:2894-2913 pubmed 出版商
  209. Roders N, Herr F, Ambroise G, Thaunat O, Portier A, Vazquez A, et al. SYK Inhibition Induces Apoptosis in Germinal Center-Like B Cells by Modulating the Antiapoptotic Protein Myeloid Cell Leukemia-1, Affecting B-Cell Activation and Antibody Production. Front Immunol. 2018;9:787 pubmed 出版商
  210. Zhang X, Zhuang R, Wu H, Chen J, Wang F, Li G, et al. A novel role of endocan in alleviating LPS-induced acute lung injury. Life Sci. 2018;202:89-97 pubmed 出版商
  211. Wang S, Liu A, Wu G, Ding H, Huang S, Nahman S, et al. The CPLANE protein Intu protects kidneys from ischemia-reperfusion injury by targeting STAT1 for degradation. Nat Commun. 2018;9:1234 pubmed 出版商
  212. Lee C, Hsieh T. Wuho/WDR4 deficiency inhibits cell proliferation and induces apoptosis via DNA damage in mouse embryonic fibroblasts. Cell Signal. 2018;47:16-26 pubmed 出版商
  213. Qiang L, Wang J, Zhang Y, Ge P, Chai Q, Li B, et al. Mycobacterium tuberculosis Mce2E suppresses the macrophage innate immune response and promotes epithelial cell proliferation. Cell Mol Immunol. 2018;: pubmed 出版商
  214. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed 出版商
  215. Zhang B, Nguyen L, Li L, Zhao D, Kumar B, Wu H, et al. Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nat Med. 2018;24:450-462 pubmed 出版商
  216. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920-926 pubmed 出版商
  217. Fu X, Zhang C, Meng H, Zhang K, Shi L, Cao C, et al. Oncoprotein Tudor-SN is a key determinant providing survival advantage under DNA damaging stress. Cell Death Differ. 2018;25:1625-1637 pubmed 出版商
  218. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau D, Zavala E, et al. NAD+ supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A. 2018;115:E1876-E1885 pubmed 出版商
  219. Yin R, Guo L, Gu J, Li C, Zhang W. Over expressing miR-19b-1 suppress breast cancer growth by inhibiting tumor microenvironment induced angiogenesis. Int J Biochem Cell Biol. 2018;97:43-51 pubmed 出版商
  220. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10+GPR77+ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell. 2018;172:841-856.e16 pubmed 出版商
  221. Chung H, Calis J, Wu X, Sun T, Yu Y, Sarbanes S, et al. Human ADAR1 Prevents Endogenous RNA from Triggering Translational Shutdown. Cell. 2018;172:811-824.e14 pubmed 出版商
  222. Janes M, Zhang J, Li L, Hansen R, Peters U, Guo X, et al. Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor. Cell. 2018;172:578-589.e17 pubmed 出版商
  223. Viswanath P, Radoul M, Izquierdo Garcia J, Ong W, Luchman H, Cairncross J, et al. 2-Hydroxyglutarate-Mediated Autophagy of the Endoplasmic Reticulum Leads to an Unusual Downregulation of Phospholipid Biosynthesis in Mutant IDH1 Gliomas. Cancer Res. 2018;78:2290-2304 pubmed 出版商
  224. Tan X, Banerjee P, Liu X, Yu J, Gibbons D, Wu P, et al. The epithelial-to-mesenchymal transition activator ZEB1 initiates a prometastatic competing endogenous RNA network. J Clin Invest. 2018;128:1267-1282 pubmed 出版商
  225. Margalef P, Kotsantis P, Borel V, Bellelli R, Panier S, Boulton S. Stabilization of Reversed Replication Forks by Telomerase Drives Telomere Catastrophe. Cell. 2018;172:439-453.e14 pubmed 出版商
  226. Cao B, Luo L, Feng L, Ma S, Chen T, Ren Y, et al. A network-based predictive gene-expression signature for adjuvant chemotherapy benefit in stage II colorectal cancer. BMC Cancer. 2017;17:844 pubmed 出版商
  227. Cho M, Lee J, Shin M, Kim H, Choi Y, Rho S, et al. TSC-22 inhibits CSF-1R function and induces apoptosis in cervical cancer. Oncotarget. 2017;8:97990-98003 pubmed 出版商
  228. Kline C, Ralff M, Lulla A, Wagner J, Abbosh P, Dicker D, et al. Role of Dopamine Receptors in the Anticancer Activity of ONC201. Neoplasia. 2018;20:80-91 pubmed 出版商
  229. Kim M, Morales L, Baek M, Slaga T, DiGiovanni J, Kim D. UVB-induced nuclear translocation of TC-PTP by AKT/14-3-3? axis inhibits keratinocyte survival and proliferation. Oncotarget. 2017;8:90674-90692 pubmed 出版商
  230. Shuang W, Hou L, Zhu Y, Li Q, Hu W. Mcl-1 stabilization confers resistance to taxol in human gastric cancer. Oncotarget. 2017;8:82981-82990 pubmed 出版商
  231. Tracz Gaszewska Z, Klimczak M, Biecek P, Herok M, Kosiński M, Olszewski M, et al. Molecular chaperones in the acquisition of cancer cell chemoresistance with mutated TP53 and MDM2 up-regulation. Oncotarget. 2017;8:82123-82143 pubmed 出版商
  232. Sorokina I, Denisenko T, Imreh G, Tyurin Kuzmin P, Kaminskyy V, Gogvadze V, et al. Involvement of autophagy in the outcome of mitotic catastrophe. Sci Rep. 2017;7:14571 pubmed 出版商
  233. Sagulenko V, Vitak N, Vajjhala P, Vince J, Stacey K. Caspase-1 Is an Apical Caspase Leading to Caspase-3 Cleavage in the AIM2 Inflammasome Response, Independent of Caspase-8. J Mol Biol. 2018;430:238-247 pubmed 出版商
  234. Thaler S, Schmidt M, Roβwag S, Thiede G, Schad A, Sleeman J. Proteasome inhibitors prevent bi-directional HER2/estrogen-receptor cross-talk leading to cell death in endocrine and lapatinib-resistant HER2+/ER+ breast cancer cells. Oncotarget. 2017;8:72281-72301 pubmed 出版商
  235. Paculova H, Kramara J, Simečková S, Fedr R, Soucek K, Hylse O, et al. BRCA1 or CDK12 loss sensitizes cells to CHK1 inhibitors. Tumour Biol. 2017;39:1010428317727479 pubmed 出版商
  236. Miles M, Hawkins C. Executioner caspases and CAD are essential for mutagenesis induced by TRAIL or vincristine. Cell Death Dis. 2017;8:e3062 pubmed 出版商
  237. Zhao Z, Jia Q, Wu M, Xie X, Wang Y, Song G, et al. Degalactotigonin, a Natural Compound from Solanum nigrum L., Inhibits Growth and Metastasis of Osteosarcoma through GSK3β Inactivation-Mediated Repression of the Hedgehog/Gli1 Pathway. Clin Cancer Res. 2018;24:130-144 pubmed 出版商
  238. Zhang F, Virshup D, Cheong J. Oncogenic RAS-induced CK1α drives nuclear FOXO proteolysis. Oncogene. 2018;37:363-376 pubmed 出版商
  239. Xu Y, Wang Y, Yao A, Xu Z, Dou H, Shen S, et al. Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway. Sci Rep. 2017;7:11776 pubmed 出版商
  240. Jiang X, Bao Y, Liu H, Kou X, Zhang Z, Sun F, et al. VPS34 stimulation of p62 phosphorylation for cancer progression. Oncogene. 2017;36:6850-6862 pubmed 出版商
  241. Giampazolias E, Zunino B, Dhayade S, Bock F, Cloix C, Cao K, et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol. 2017;19:1116-1129 pubmed 出版商
  242. Chong I, Aronson L, Bryant H, Gulati A, Campbell J, Elliott R, et al. Mapping genetic vulnerabilities reveals BTK as a novel therapeutic target in oesophageal cancer. Gut. 2018;67:1780-1792 pubmed 出版商
  243. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  244. Zhou Y, Huang T, Zhang J, Wong C, Zhang B, Dong Y, et al. TEAD1/4 exerts oncogenic role and is negatively regulated by miR-4269 in gastric tumorigenesis. Oncogene. 2017;36:6518-6530 pubmed 出版商
  245. Takaki T, Montagner M, Serres M, Le Berre M, Russell M, Collinson L, et al. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability. Nat Commun. 2017;8:16013 pubmed 出版商
  246. Wang W, Xia Z, Farré J, Subramani S. TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import. J Cell Biol. 2017;216:2843-2858 pubmed 出版商
  247. Xu L, Zhang M, Li H, Guan W, Liu B, Liu F, et al. SH3BGRL as a novel prognostic biomarker is down-regulated in acute myeloid leukemia. Leuk Lymphoma. 2018;59:918-930 pubmed 出版商
  248. Van T, Polykratis A, Straub B, Kondylis V, Papadopoulou N, Pasparakis M. Kinase-independent functions of RIPK1 regulate hepatocyte survival and liver carcinogenesis. J Clin Invest. 2017;127:2662-2677 pubmed 出版商
  249. Xu P, Tao X, Zhao C, Huang Q, Chang H, Ban N, et al. DTX3L is upregulated in glioma and is associated with glioma progression. Int J Mol Med. 2017;40:491-498 pubmed 出版商
  250. Kuchay S, Giorgi C, Simoneschi D, Pagan J, Missiroli S, Saraf A, et al. PTEN counteracts FBXL2 to promote IP3R3- and Ca2+-mediated apoptosis limiting tumour growth. Nature. 2017;546:554-558 pubmed 出版商
  251. Shaffer S, Dunagin M, Torborg S, Torre E, Emert B, Krepler C, et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature. 2017;546:431-435 pubmed 出版商
  252. Sinha S, Thomas D, Chan S, Gao Y, Brunen D, Torabi D, et al. Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data. Nat Commun. 2017;8:15580 pubmed 出版商
  253. Sykora P, Kanno S, Akbari M, Kulikowicz T, Baptiste B, Leandro G, et al. DNA Polymerase Beta Participates in Mitochondrial DNA Repair. Mol Cell Biol. 2017;37: pubmed 出版商
  254. Kim J, Hu Z, Cai L, Li K, Choi E, Faubert B, et al. CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature. 2017;546:168-172 pubmed 出版商
  255. Ramírez Peinado S, Ignashkova T, van Raam B, Baumann J, Sennott E, Gendarme M, et al. TRAPPC13 modulates autophagy and the response to Golgi stress. J Cell Sci. 2017;130:2251-2265 pubmed 出版商
  256. Jung J, Kim L, Wang X, Wu Q, Sanvoranart T, Hubert C, et al. Nicotinamide metabolism regulates glioblastoma stem cell maintenance. JCI Insight. 2017;2: pubmed 出版商
  257. Shin C, Lee M, Han J, Jeong S, Ryu B, Chi S. Identification of XAF1-MT2A mutual antagonism as a molecular switch in cell-fate decisions under stressful conditions. Proc Natl Acad Sci U S A. 2017;114:5683-5688 pubmed 出版商
  258. White M, Lin C, Rajapakshe K, Dong J, Shi Y, Tsouko E, et al. Glutamine Transporters Are Targets of Multiple Oncogenic Signaling Pathways in Prostate Cancer. Mol Cancer Res. 2017;15:1017-1028 pubmed 出版商
  259. Sangodkar J, Perl A, Tohme R, Kiselar J, Kastrinsky D, Zaware N, et al. Activation of tumor suppressor protein PP2A inhibits KRAS-driven tumor growth. J Clin Invest. 2017;127:2081-2090 pubmed 出版商
  260. Nayar U, Sadek J, Reichel J, Hernandez Hopkins D, Akar G, Barelli P, et al. Identification of a nucleoside analog active against adenosine kinase-expressing plasma cell malignancies. J Clin Invest. 2017;127:2066-2080 pubmed 出版商
  261. Chen X, Wu Q, Depeille P, Chen P, Thornton S, Kalirai H, et al. RasGRP3 Mediates MAPK Pathway Activation in GNAQ Mutant Uveal Melanoma. Cancer Cell. 2017;31:685-696.e6 pubmed 出版商
  262. Yue X, Zuo Y, Ke H, Luo J, Lou L, Qin W, et al. Identification of 4-arylidene curcumin analogues as novel proteasome inhibitors for potential anticancer agents targeting 19S regulatory particle associated deubiquitinase. Biochem Pharmacol. 2017;137:29-50 pubmed 出版商
  263. Liu Y, Chen X, Li J. Resveratrol protects against oxidized low‑density lipoprotein‑induced human umbilical vein endothelial cell apoptosis via inhibition of mitochondrial‑derived oxidative stress. Mol Med Rep. 2017;15:2457-2464 pubmed 出版商
  264. Vivo M, Fontana R, Ranieri M, Capasso G, Angrisano T, Pollice A, et al. p14ARF interacts with the focal adhesion kinase and protects cells from anoikis. Oncogene. 2017;36:4913-4928 pubmed 出版商
  265. Kitazawa S, Ebara S, Ando A, Baba Y, Satomi Y, Soga T, et al. Succinate dehydrogenase B-deficient cancer cells are highly sensitive to bromodomain and extra-terminal inhibitors. Oncotarget. 2017;8:28922-28938 pubmed 出版商
  266. Zhao H, Zhang L, Zhang Y, Zhao L, Wan Q, Wang B, et al. Calmodulin promotes matrix metalloproteinase 9 production and cell migration by inhibiting the ubiquitination and degradation of TBC1D3 oncoprotein in human breast cancer cells. Oncotarget. 2017;8:36383-36398 pubmed 出版商
  267. Yurugi H, Marini F, Weber C, David K, Zhao Q, Binder H, et al. Targeting prohibitins with chemical ligands inhibits KRAS-mediated lung tumours. Oncogene. 2017;36:4778-4789 pubmed 出版商
  268. He M, Tan B, Vasan K, Yuan H, Cheng F, Ramos da Silva S, et al. SIRT1 and AMPK pathways are essential for the proliferation and survival of primary effusion lymphoma cells. J Pathol. 2017;242:309-321 pubmed 出版商
  269. Xiao Z, Gaertner S, Morresi Hauf A, Genzel R, Duell T, Ullrich A, et al. Metformin Triggers Autophagy to Attenuate Drug-Induced Apoptosis in NSCLC Cells, with Minor Effects on Tumors of Diabetic Patients. Neoplasia. 2017;19:385-395 pubmed 出版商
  270. Zhang X, Fan J, Wang S, Li Y, Wang Y, Li S, et al. Targeting CD47 and Autophagy Elicited Enhanced Antitumor Effects in Non-Small Cell Lung Cancer. Cancer Immunol Res. 2017;5:363-375 pubmed 出版商
  271. Yokoyama T, Kohn E, Brill E, Lee J. Apoptosis is augmented in high-grade serous ovarian cancer by the combined inhibition of Bcl-2/Bcl-xL and PARP. Int J Oncol. 2017;: pubmed 出版商
  272. Mehta N, Lyon J, Patil K, Mokarram N, Kim C, Bellamkonda R. Bacterial Carriers for Glioblastoma Therapy. Mol Ther Oncolytics. 2017;4:1-17 pubmed 出版商
  273. Bhattacharya S, Srinivasan K, Abdisalaam S, Su F, Raj P, Dozmorov I, et al. RAD51 interconnects between DNA replication, DNA repair and immunity. Nucleic Acids Res. 2017;45:4590-4605 pubmed 出版商
  274. Xiong G, Hindi S, Mann A, Gallot Y, Bohnert K, Cavener D, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. elife. 2017;6: pubmed 出版商
  275. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  276. Zhao L, Zhang B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci Rep. 2017;7:44735 pubmed 出版商
  277. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  278. Coni S, Mancuso A, Di Magno L, Sdruscia G, Manni S, Serrao S, et al. Selective targeting of HDAC1/2 elicits anticancer effects through Gli1 acetylation in preclinical models of SHH Medulloblastoma. Sci Rep. 2017;7:44079 pubmed 出版商
  279. Cho H, Um J, Lee J, Kim W, Kang W, Kim S, et al. ENOblock, a unique small molecule inhibitor of the non-glycolytic functions of enolase, alleviates the symptoms of type 2 diabetes. Sci Rep. 2017;7:44186 pubmed 出版商
  280. Li K, Mo C, Gong D, Chen Y, Huang Z, Li Y, et al. DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of β-catenin. Cancer Lett. 2017;400:194-202 pubmed 出版商
  281. Lafont E, Kantari Mimoun C, Dráber P, De Miguel D, Hartwig T, Reichert M, et al. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J. 2017;36:1147-1166 pubmed 出版商
  282. Kong P, Zhu X, Geng Q, Xia L, Sun X, Chen Y, et al. The microRNA-423-3p-Bim Axis Promotes Cancer Progression and Activates Oncogenic Autophagy in Gastric Cancer. Mol Ther. 2017;25:1027-1037 pubmed 出版商
  283. Voráčová K, Hajek J, Mares J, Urajová P, Kuzma M, Cheel J, et al. The cyanobacterial metabolite nocuolin a is a natural oxadiazine that triggers apoptosis in human cancer cells. PLoS ONE. 2017;12:e0172850 pubmed 出版商
  284. Iurlaro R, Püschel F, León Annicchiarico C, O Connor H, Martin S, Palou Gramón D, et al. Glucose Deprivation Induces ATF4-Mediated Apoptosis through TRAIL Death Receptors. Mol Cell Biol. 2017;37: pubmed 出版商
  285. Xu H, Di Antonio M, McKinney S, Mathew V, Ho B, O Neil N, et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat Commun. 2017;8:14432 pubmed 出版商
  286. Williams P, Harder J, Foxworth N, Cochran K, Philip V, Porciatti V, et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017;355:756-760 pubmed 出版商
  287. Toots M, Männik A, Mumm K, Tämm K, Tamm T, Ustav E, et al. Identification of several high-risk HPV inhibitors and drug targets with a novel high-throughput screening assay. PLoS Pathog. 2017;13:e1006168 pubmed 出版商
  288. Duclos C, Champagne A, Carrier J, Saucier C, Lavoie C, Denault J. Caspase-mediated proteolysis of the sorting nexin 2 disrupts retromer assembly and potentiates Met/hepatocyte growth factor receptor signaling. Cell Death Discov. 2017;3:16100 pubmed 出版商
  289. Li G, Ji T, Chen J, Fu Y, Hou L, Feng Y, et al. CRL4DCAF8 Ubiquitin Ligase Targets Histone H3K79 and Promotes H3K9 Methylation in the Liver. Cell Rep. 2017;18:1499-1511 pubmed 出版商
  290. Yang H, Ju F, Guo X, Ma S, Wang L, Cheng B, et al. RNA-binding protein RBM3 prevents NO-induced apoptosis in human neuroblastoma cells by modulating p38 signaling and miR-143. Sci Rep. 2017;7:41738 pubmed 出版商
  291. Pergola C, Schubert K, Pace S, Ziereisen J, Nikels F, Scherer O, et al. Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy. Sci Rep. 2017;7:41434 pubmed 出版商
  292. Liu J, Wang Y, Song L, Zeng L, Yi W, Liu T, et al. A critical role of DDRGK1 in endoplasmic reticulum homoeostasis via regulation of IRE1α stability. Nat Commun. 2017;8:14186 pubmed 出版商
  293. Cabukusta B, Kol M, Kneller L, Hilderink A, Bickert A, Mina J, et al. ER residency of the ceramide phosphoethanolamine synthase SMSr relies on homotypic oligomerization mediated by its SAM domain. Sci Rep. 2017;7:41290 pubmed 出版商
  294. Villar V, Nguyen T, Delcroix V, Terés S, Bouchecareilh M, Salin B, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124 pubmed 出版商
  295. Xu S, Yang Z, Fan Y, Guan B, Jia J, Gao Y, et al. Curcumin enhances temsirolimus-induced apoptosis in human renal carcinoma cells through upregulation of YAP/p53. Oncol Lett. 2016;12:4999-5006 pubmed 出版商
  296. Chang V, Tsai Y, Tsai Y, Peng S, Chen S, Chang T, et al. Krüpple-like factor 10 regulates radio-sensitivity of pancreatic cancer via UV radiation resistance-associated gene. Radiother Oncol. 2017;122:476-484 pubmed 出版商
  297. Tagal V, Wei S, Zhang W, Brekken R, Posner B, Peyton M, et al. SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. Nat Commun. 2017;8:14098 pubmed 出版商
  298. Aksoy P, Meneses P. The Role of DCT in HPV16 Infection of HaCaTs. PLoS ONE. 2017;12:e0170158 pubmed 出版商
  299. Sizdahkhani S, Feldman M, Piazza M, Ksendzovsky A, Edwards N, Ray Chaudhury A, et al. Somatostatin receptor expression on von Hippel-Lindau-associated hemangioblastomas offers novel therapeutic target. Sci Rep. 2017;7:40822 pubmed 出版商
  300. Granato M, Rizzello C, Gilardini Montani M, Cuomo L, Vitillo M, Santarelli R, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem. 2017;41:124-136 pubmed 出版商
  301. Scott N, Rogers L, Prudova A, Brown N, Fortelny N, Overall C, et al. Interactome disassembly during apoptosis occurs independent of caspase cleavage. Mol Syst Biol. 2017;13:906 pubmed 出版商
  302. Herold N, Rudd S, Ljungblad L, Sanjiv K, Myrberg I, Paulin C, et al. Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies. Nat Med. 2017;23:256-263 pubmed 出版商
  303. Li G, Fu R, Shen H, Zhou J, Hu X, Liu Y, et al. Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels. Oncotarget. 2017;8:10359-10374 pubmed 出版商
  304. Brasacchio D, Alsop A, Noori T, Lufti M, Iyer S, Simpson K, et al. Epigenetic control of mitochondrial cell death through PACS1-mediated regulation of BAX/BAK oligomerization. Cell Death Differ. 2017;24:961-970 pubmed 出版商
  305. Guicciardi M, Krishnan A, Bronk S, Hirsova P, Griffith T, Gores G. Biliary tract instillation of a SMAC mimetic induces TRAIL-dependent acute sclerosing cholangitis-like injury in mice. Cell Death Dis. 2017;8:e2535 pubmed 出版商
  306. Jostes S, Nettersheim D, Fellermeyer M, Schneider S, Hafezi F, Honecker F, et al. The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo. J Cell Mol Med. 2017;21:1300-1314 pubmed 出版商
  307. Chao T, Zhou X, Cao B, Liao P, Liu H, Chen Y, et al. Pleckstrin homology domain-containing protein PHLDB3 supports cancer growth via a negative feedback loop involving p53. Nat Commun. 2016;7:13755 pubmed 出版商
  308. Sha J, Xue W, Dong B, Pan J, Wu X, Li D, et al. PRKAR2B plays an oncogenic role in the castration-resistant prostate cancer. Oncotarget. 2017;8:6114-6129 pubmed 出版商
  309. Damas N, Marcatti M, Come C, Christensen L, Nielsen M, Baumgartner R, et al. SNHG5 promotes colorectal cancer cell survival by counteracting STAU1-mediated mRNA destabilization. Nat Commun. 2016;7:13875 pubmed 出版商
  310. Hoch N, Hanzlikova H, Rulten S, Tetreault M, Komulainen E, Ju L, et al. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature. 2017;541:87-91 pubmed 出版商
  311. Vakana E, Pratt S, Blosser W, Dowless M, Simpson N, Yuan X, et al. LY3009120, a panRAF inhibitor, has significant anti-tumor activity in BRAF and KRAS mutant preclinical models of colorectal cancer. Oncotarget. 2017;8:9251-9266 pubmed 出版商
  312. Dawar S, Lim Y, Puccini J, White M, Thomas P, Bouchier Hayes L, et al. Caspase-2-mediated cell death is required for deleting aneuploid cells. Oncogene. 2017;36:2704-2714 pubmed 出版商
  313. Wang F, Jia J, Lal N, Zhang D, Chiu A, Wan A, et al. High glucose facilitated endothelial heparanase transfer to the cardiomyocyte modifies its cell death signature. Cardiovasc Res. 2016;112:656-668 pubmed
  314. Hanzlikova H, Gittens W, Krejcikova K, Zeng Z, Caldecott K. Overlapping roles for PARP1 and PARP2 in the recruitment of endogenous XRCC1 and PNKP into oxidized chromatin. Nucleic Acids Res. 2017;45:2546-2557 pubmed 出版商
  315. Nuzzo A, Giuffrida D, Masturzo B, Mele P, Piccoli E, Eva C, et al. Altered expression of G1/S phase cell cycle regulators in placental mesenchymal stromal cells derived from preeclamptic pregnancies with fetal-placental compromise. Cell Cycle. 2017;16:200-212 pubmed 出版商
  316. Chhabra A, Mukherji B, Batra D. Activation induced cell death (AICD) of human melanoma antigen-specific TCR engineered CD8 T cells involves JNK, Bim and p53. Expert Opin Ther Targets. 2017;21:117-129 pubmed 出版商
  317. Seo B, Min K, Woo S, Choe M, Choi K, Lee Y, et al. Inhibition of Cathepsin S Induces Mitochondrial ROS That Sensitizes TRAIL-Mediated Apoptosis Through p53-Mediated Downregulation of Bcl-2 and c-FLIP. Antioxid Redox Signal. 2017;27:215-233 pubmed 出版商
  318. Park S, Jwa E, Shin S, Ju E, Park I, Pak J, et al. Ibulocydine sensitizes human hepatocellular carcinoma cells to TRAIL-induced apoptosis via calpain-mediated Bax cleavage. Int J Biochem Cell Biol. 2017;83:47-55 pubmed 出版商
  319. Ishikawa Y, Gamo K, Yabuki M, Takagi S, Toyoshima K, Nakayama K, et al. A Novel LSD1 Inhibitor T-3775440 Disrupts GFI1B-Containing Complex Leading to Transdifferentiation and Impaired Growth of AML Cells. Mol Cancer Ther. 2017;16:273-284 pubmed 出版商
  320. McKenzie C, D Avino P. Investigating cytokinesis failure as a strategy in cancer therapy. Oncotarget. 2016;7:87323-87341 pubmed 出版商
  321. Morishita M, Kawamoto T, Hara H, Onishi Y, Ueha T, Minoda M, et al. AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway. Int J Oncol. 2017;50:23-30 pubmed 出版商
  322. Godfrey L, Kerry J, Thorne R, Repapi E, Davies J, Tapia M, et al. MLL-AF4 binds directly to a BCL-2 specific enhancer and modulates H3K27 acetylation. Exp Hematol. 2017;47:64-75 pubmed 出版商
  323. Martínez Castillo M, Bonilla Moreno R, Alemán Lazarini L, Meraz Rios M, Orozco L, Cedillo Barron L, et al. A Subpopulation of the K562 Cells Are Killed by Curcumin Treatment after G2/M Arrest and Mitotic Catastrophe. PLoS ONE. 2016;11:e0165971 pubmed 出版商
  324. Park J, Lee C, Kim H, Kim D, Son J, Ko E, et al. Suppression of the metastatic spread of breast cancer by DN10764 (AZD7762)-mediated inhibition of AXL signaling. Oncotarget. 2016;7:83308-83318 pubmed 出版商
  325. Huang Z, Her L. The Ubiquitin Receptor ADRM1 Modulates HAP40-Induced Proteasome Activity. Mol Neurobiol. 2017;54:7382-7400 pubmed 出版商
  326. Liu X, Lu D, Bowser R, Liu J. Expression of Carbonic Anhydrase I in Motor Neurons and Alterations in ALS. Int J Mol Sci. 2016;17: pubmed
  327. Schlierf A, Altmann E, Quancard J, Jefferson A, Assenberg R, Renatus M, et al. Targeted inhibition of the COP9 signalosome for treatment of cancer. Nat Commun. 2016;7:13166 pubmed 出版商
  328. Dey K, Bharti R, Dey G, Pal I, Rajesh Y, Chavan S, et al. S100A7 has an oncogenic role in oral squamous cell carcinoma by activating p38/MAPK and RAB2A signaling pathway. Cancer Gene Ther. 2016;23:382-391 pubmed 出版商
  329. Fang Y, Kong Y, Xi J, Zhu M, Zhu T, Jiang T, et al. Preclinical activity of MBM-5 in gastrointestinal cancer by inhibiting NEK2 kinase activity. Oncotarget. 2016;7:79327-79341 pubmed 出版商
  330. Zhao X, Li L, Wang X, Fu R, Lv Y, Jin W, et al. Inhibition of Snail Family Transcriptional Repressor 2 (SNAI2) Enhances Multidrug Resistance of Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0164752 pubmed 出版商
  331. Shao X, Lai D, Zhang L, Xu H. Induction of Autophagy and Apoptosis via PI3K/AKT/TOR Pathways by Azadirachtin A in Spodoptera litura Cells. Sci Rep. 2016;6:35482 pubmed 出版商
  332. Qi D, Cobrinik D. MDM2 but not MDM4 promotes retinoblastoma cell proliferation through p53-independent regulation of MYCN translation. Oncogene. 2017;36:1760-1769 pubmed 出版商
  333. Choi Y, Shembade N, Parvatiyar K, Balachandran S, Harhaj E. TAX1BP1 Restrains Virus-Induced Apoptosis by Facilitating Itch-Mediated Degradation of the Mitochondrial Adaptor MAVS. Mol Cell Biol. 2017;37: pubmed 出版商
  334. Alexander Savino C, Hayden M, Richardson C, Zhao J, Poligone B. Doxycycline is an NF-κB inhibitor that induces apoptotic cell death in malignant T-cells. Oncotarget. 2016;7:75954-75967 pubmed 出版商
  335. Guan S, Zhao Y, Lu J, Yu Y, Sun W, Mao X, et al. Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis. Oncotarget. 2016;7:75914-75925 pubmed 出版商
  336. Zhao Y, Fan D, Ru B, Cheng K, Hu S, Zhang J, et al. 6-C-(E-phenylethenyl)naringenin induces cell growth inhibition and cytoprotective autophagy in colon cancer cells. Eur J Cancer. 2016;68:38-50 pubmed 出版商
  337. Figueroa González G, García Castillo V, Coronel Hernández J, López Urrutia E, León Cabrera S, Arias Romero L, et al. Anti-inflammatory and Antitumor Activity of a Triple Therapy for a Colitis-Related Colorectal Cancer. J Cancer. 2016;7:1632-1644 pubmed
  338. Chaabane W, Appell M. Interconnections between apoptotic and autophagic pathways during thiopurine-induced toxicity in cancer cells: the role of reactive oxygen species. Oncotarget. 2016;7:75616-75634 pubmed 出版商
  339. Wang C, Zhang F, Cao Y, Zhang M, Wang A, Xu M, et al. Etoposide Induces Apoptosis in Activated Human Hepatic Stellate Cells via ER Stress. Sci Rep. 2016;6:34330 pubmed 出版商
  340. Wei R, Lin S, Wu W, Chen L, Li C, Chen H, et al. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells. Toxicol Appl Pharmacol. 2016;311:88-98 pubmed 出版商
  341. Joo D, Tang Y, Blonska M, Jin J, Zhao X, Lin X. Regulation of Linear Ubiquitin Chain Assembly Complex by Caspase-Mediated Cleavage of RNF31. Mol Cell Biol. 2016;36:3010-3018 pubmed
  342. Asnaghi L, Tripathy A, Yang Q, Kaur H, Hanaford A, Yu W, et al. Targeting Notch signaling as a novel therapy for retinoblastoma. Oncotarget. 2016;7:70028-70044 pubmed 出版商
  343. Ghorai A, Sarma A, Chowdhury P, Ghosh U. PARP-1 depletion in combination with carbon ion exposure significantly reduces MMPs activity and overall increases TIMPs expression in cultured HeLa cells. Radiat Oncol. 2016;11:126 pubmed
  344. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  345. Horn T, Ferretti S, Ebel N, Tam A, Ho S, Harbinski F, et al. High-Order Drug Combinations Are Required to Effectively Kill Colorectal Cancer Cells. Cancer Res. 2016;76:6950-6963 pubmed
  346. Krepler C, Xiao M, Samanta M, Vultur A, Chen H, Brafford P, et al. Targeting Notch enhances the efficacy of ERK inhibitors in BRAF-V600E melanoma. Oncotarget. 2016;7:71211-71222 pubmed 出版商
  347. Shi Y, Yu Y, Wang Z, Wang H, Bieerkehazhi S, Zhao Y, et al. Second-generation proteasome inhibitor carfilzomib enhances doxorubicin-induced cytotoxicity and apoptosis in breast cancer cells. Oncotarget. 2016;7:73697-73710 pubmed 出版商
  348. Bahr J, Robey R, Luchenko V, Basseville A, Chakraborty A, Kozlowski H, et al. Blocking downstream signaling pathways in the context of HDAC inhibition promotes apoptosis preferentially in cells harboring mutant Ras. Oncotarget. 2016;7:69804-69815 pubmed 出版商
  349. Zhang Q, Jin R, Zhang X, Sheng J, Yu F, Tan R, et al. The putative oncotarget CSN5 controls a transcription-uncorrelated p53-mediated autophagy implicated in cancer cell survival under curcumin treatment. Oncotarget. 2016;7:69688-69702 pubmed 出版商
  350. Carbonneau M, M Gagné L, Lalonde M, Germain M, Motorina A, Guiot M, et al. The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Nat Commun. 2016;7:12700 pubmed 出版商
  351. Ranjan K, Pathak C. Expression of FADD and cFLIPL balances mitochondrial integrity and redox signaling to substantiate apoptotic cell death. Mol Cell Biochem. 2016;422:135-150 pubmed
  352. Tavana O, Li D, Dai C, Lopez G, Banerjee D, Kon N, et al. HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat Med. 2016;22:1180-1186 pubmed 出版商
  353. Liu T, Xiong J, Yi S, Zhang H, Zhou S, Gu L, et al. FKBP12 enhances sensitivity to chemotherapy-induced cancer cell apoptosis by inhibiting MDM2. Oncogene. 2017;36:1678-1686 pubmed 出版商
  354. Klingbeil O, Lesche R, Gelato K, Haendler B, Lejeune P. Inhibition of BET bromodomain-dependent XIAP and FLIP expression sensitizes KRAS-mutated NSCLC to pro-apoptotic agents. Cell Death Dis. 2016;7:e2365 pubmed 出版商
  355. Olianas M, Dedoni S, Onali P. LPA1 Mediates Antidepressant-Induced ERK1/2 Signaling and Protection from Oxidative Stress in Glial Cells. J Pharmacol Exp Ther. 2016;359:340-353 pubmed
  356. Heulot M, Chevalier N, Puyal J, Margue C, Michel S, Kreis S, et al. The TAT-RasGAP317-326 anti-cancer peptide can kill in a caspase-, apoptosis-, and necroptosis-independent manner. Oncotarget. 2016;7:64342-64359 pubmed 出版商
  357. Lee J, Jung H, Han Y, Yoon Y, Yun C, Sun H, et al. Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells. Mol Med Rep. 2016;14:3777-84 pubmed 出版商
  358. Edinger N, Lebendiker M, Klein S, Zigler M, Langut Y, Levitzki A. Targeting polyIC to EGFR over-expressing cells using a dsRNA binding protein domain tethered to EGF. PLoS ONE. 2016;11:e0162321 pubmed 出版商
  359. Twardziok M, Kleinsimon S, Rolff J, Jäger S, Eggert A, Seifert G, et al. Multiple Active Compounds from Viscum album L. Synergistically Converge to Promote Apoptosis in Ewing Sarcoma. PLoS ONE. 2016;11:e0159749 pubmed 出版商
  360. Jiao Z, Wu J, Liu C, Wen B, Zhao W, Du X. Nicotinic ?7 receptor inhibits the acylation stimulating protein?induced production of monocyte chemoattractant protein?1 and keratinocyte?derived chemokine in adipocytes by modulating the p38 kinase and nuclear factor??B signaling pathways. Mol Med Rep. 2016;14:2959-66 pubmed 出版商
  361. Waters A, Stafman L, Garner E, Mruthyunjayappa S, Stewart J, Mroczek Musulman E, et al. Targeting Focal Adhesion Kinase Suppresses the Malignant Phenotype in Rhabdomyosarcoma Cells. Transl Oncol. 2016;9:263-73 pubmed 出版商
  362. Cunningham C, Li S, Vizeacoumar F, Bhanumathy K, Lee J, Parameswaran S, et al. Therapeutic relevance of the protein phosphatase 2A in cancer. Oncotarget. 2016;7:61544-61561 pubmed 出版商
  363. Oza J, Ganguly B, Kulkarni A, Ginjala V, Yao M, Ganesan S. A Novel Role of Chromodomain Protein CBX8 in DNA Damage Response. J Biol Chem. 2016;291:22881-22893 pubmed
  364. Nakazawa S, Oikawa D, Ishii R, Ayaki T, Takahashi H, Takeda H, et al. Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nat Commun. 2016;7:12547 pubmed 出版商
  365. Nagano T, Nakano M, Nakashima A, Onishi K, Yamao S, Enari M, et al. Identification of cellular senescence-specific genes by comparative transcriptomics. Sci Rep. 2016;6:31758 pubmed 出版商
  366. Pomares H, Palmeri C, Iglesias Serret D, Moncunill Massaguer C, Saura Esteller J, Núñez Vázquez S, et al. Targeting prohibitins induces apoptosis in acute myeloid leukemia cells. Oncotarget. 2016;7:64987-65000 pubmed 出版商
  367. Timucin A, Basaga H. SIRT6 Is a Positive Regulator of Aldose Reductase Expression in U937 and HeLa cells under Osmotic Stress: In Vitro and In Silico Insights. PLoS ONE. 2016;11:e0161494 pubmed 出版商
  368. Cao L, Zhang L, Zhao X, Zhang Y. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0161025 pubmed 出版商
  369. Kang M, Park K, Yang J, Lee C, Oh S, Yun J, et al. miR-6734 Up-Regulates p21 Gene Expression and Induces Cell Cycle Arrest and Apoptosis in Colon Cancer Cells. PLoS ONE. 2016;11:e0160961 pubmed 出版商
  370. Duan H, Lee J, Moon S, Arora D, Li Y, Lim H, et al. Discovery, Synthesis, and Evaluation of 2,4-Diaminoquinazolines as a Novel Class of Pancreatic ?-Cell-Protective Agents against Endoplasmic Reticulum (ER) Stress. J Med Chem. 2016;59:7783-800 pubmed 出版商
  371. Ronaghan N, Shang J, Iablokov V, Zaheer R, Colarusso P, Dion S, et al. The serine protease-mediated increase in intestinal epithelial barrier function is dependent on occludin and requires an intact tight junction. Am J Physiol Gastrointest Liver Physiol. 2016;311:G466-79 pubmed 出版商
  372. El Jamal S, Taylor E, Abd Elmageed Z, Alamodi A, Selimovic D, Alkhateeb A, et al. Interferon gamma-induced apoptosis of head and neck squamous cell carcinoma is connected to indoleamine-2,3-dioxygenase via mitochondrial and ER stress-associated pathways. Cell Div. 2016;11:11 pubmed 出版商
  373. Busada J, Velte E, Serra N, Cook K, Niedenberger B, Willis W, et al. Rhox13 is required for a quantitatively normal first wave of spermatogenesis in mice. Reproduction. 2016;152:379-88 pubmed 出版商
  374. Liu H, Li W, Yu X, Gao F, Duan Z, Ma X, et al. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis. Oncotarget. 2016;7:56338-56354 pubmed 出版商
  375. Anta B, Pérez Rodríguez A, Castro J, García Domínguez C, Ibiza S, Martínez N, et al. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes. Cell Death Dis. 2016;7:e2311 pubmed 出版商
  376. Liu M, Feng L, Sun P, Liu W, Wu W, Jiang B, et al. A Novel Bufalin Derivative Exhibited Stronger Apoptosis-Inducing Effect than Bufalin in A549 Lung Cancer Cells and Lower Acute Toxicity in Mice. PLoS ONE. 2016;11:e0159789 pubmed 出版商
  377. Rada M, Vasileva E, Lezina L, Marouco D, Antonov A, Macip S, et al. Human EHMT2/G9a activates p53 through methylation-independent mechanism. Oncogene. 2017;36:922-932 pubmed 出版商
  378. Wu J, Lei H, Zhang J, Chen X, Tang C, Wang W, et al. Momordin Ic, a new natural SENP1 inhibitor, inhibits prostate cancer cell proliferation. Oncotarget. 2016;7:58995-59005 pubmed 出版商
  379. Grinshtein N, Rioseco C, Marcellus R, UEHLING D, Aman A, Lun X, et al. Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. Oncotarget. 2016;7:59360-59376 pubmed 出版商
  380. Cheng Y, Huang C, Lee Y, Tien L, Ku W, Chien R, et al. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep. 2016;6:30314 pubmed 出版商
  381. Saisana M, Griffin S, May F. Importance of the type I insulin-like growth factor receptor in HER2, FGFR2 and MET-unamplified gastric cancer with and without Ras pathway activation. Oncotarget. 2016;7:54445-54462 pubmed 出版商
  382. Yan Y, Xie M, Zhang L, Zhou X, Xie H, Zhou L, et al. Ras-related associated with diabetes gene acts as a suppressor and inhibits Warburg effect in hepatocellular carcinoma. Onco Targets Ther. 2016;9:3925-37 pubmed 出版商
  383. Jin H, Won M, Park S, Lee S, Park M, Bae J. FOXL2 Is an Essential Activator of SF-1-Induced Transcriptional Regulation of Anti-Müllerian Hormone in Human Granulosa Cells. PLoS ONE. 2016;11:e0159112 pubmed 出版商
  384. Hogg S, Newbold A, Vervoort S, Cluse L, Martin B, Gregory G, et al. BET Inhibition Induces Apoptosis in Aggressive B-Cell Lymphoma via Epigenetic Regulation of BCL-2 Family Members. Mol Cancer Ther. 2016;15:2030-41 pubmed 出版商
  385. Jacobsen R, Mazloumi Gavgani F, Mellgren G, Lewis A. DNA Topoisomerase II? contributes to the early steps of adipogenesis in 3T3-L1 cells. Cell Signal. 2016;28:1593-603 pubmed 出版商
  386. Cantú A, Altshuler Keylin S, Laird D. Discrete somatic niches coordinate proliferation and migration of primordial germ cells via Wnt signaling. J Cell Biol. 2016;214:215-29 pubmed 出版商
  387. Chen Z, Wang Z, Pang J, Yu Y, Bieerkehazhi S, Lu J, et al. Multiple CDK inhibitor dinaciclib suppresses neuroblastoma growth via inhibiting CDK2 and CDK9 activity. Sci Rep. 2016;6:29090 pubmed 出版商
  388. Peng H, Cheng Y, Hsu Y, Wu G, Kuo C, Liou J, et al. MPT0B098, a Microtubule Inhibitor, Suppresses JAK2/STAT3 Signaling Pathway through Modulation of SOCS3 Stability in Oral Squamous Cell Carcinoma. PLoS ONE. 2016;11:e0158440 pubmed 出版商
  389. Jiang P, Wang P, Sun X, Yuan Z, Zhan R, Ma X, et al. Knockdown of long noncoding RNA H19 sensitizes human glioma cells to temozolomide therapy. Onco Targets Ther. 2016;9:3501-9 pubmed 出版商
  390. Heckler M, Zeleke T, Divekar S, Fernandez A, Tiek D, Woodrick J, et al. Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget. 2016;7:47201-47220 pubmed 出版商
  391. Medler T, Craig J, Fiorillo A, Feeney Y, Harrell J, Clevenger C. HDAC6 Deacetylates HMGN2 to Regulate Stat5a Activity and Breast Cancer Growth. Mol Cancer Res. 2016;14:994-1008 pubmed
  392. Walerych D, Lisek K, Sommaggio R, Piazza S, Ciani Y, Dalla E, et al. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nat Cell Biol. 2016;18:897-909 pubmed 出版商
  393. Li Q, Guo Y, Chen F, Liu J, Jin P. Stromal cell-derived factor-1 promotes human adipose tissue-derived stem cell survival and chronic wound healing. Exp Ther Med. 2016;12:45-50 pubmed
  394. Itahana Y, Zhang J, Göke J, Vardy L, Han R, Iwamoto K, et al. Histone modifications and p53 binding poise the p21 promoter for activation in human embryonic stem cells. Sci Rep. 2016;6:28112 pubmed 出版商
  395. Inoue T, Ikeda M, Ide T, Fujino T, Matsuo Y, Arai S, et al. Twinkle overexpression prevents cardiac rupture after myocardial infarction by alleviating impaired mitochondrial biogenesis. Am J Physiol Heart Circ Physiol. 2016;311:H509-19 pubmed 出版商
  396. Shen J, Li Z, Li L, Lu L, Xiao Z, Wu W, et al. Vascular-targeted TNF? and IFN? inhibits orthotopic colorectal tumor growth. J Transl Med. 2016;14:187 pubmed 出版商
  397. Ono H, Basson M, Ito H. P300 inhibition enhances gemcitabine-induced apoptosis of pancreatic cancer. Oncotarget. 2016;7:51301-51310 pubmed 出版商
  398. Nasri I, Bonnet D, Zwarycz B, d Aldebert E, Khou S, Mezghani Jarraya R, et al. PAR2-dependent activation of GSK3? regulates the survival of colon stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol. 2016;311:G221-36 pubmed 出版商
  399. Esmaeili M, Pungsrinont T, Schaefer A, Baniahmad A. A novel crosstalk between the tumor suppressors ING1 and ING2 regulates androgen receptor signaling. J Mol Med (Berl). 2016;94:1167-1179 pubmed
  400. Akabane S, Matsuzaki K, Yamashita S, Arai K, Okatsu K, Kanki T, et al. Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy. J Biol Chem. 2016;291:16162-74 pubmed 出版商
  401. Roychowdhury S, McCullough R, Sanz Garcia C, Saikia P, Alkhouri N, Matloob A, et al. Receptor interacting protein 3 protects mice from high-fat diet-induced liver injury. Hepatology. 2016;64:1518-1533 pubmed 出版商
  402. Cheng M, Liu L, Lao Y, Liao W, Liao M, Luo X, et al. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis. Oncotarget. 2016;7:42274-42287 pubmed 出版商
  403. Raina K, Lu J, Qian Y, Altieri M, Gordon D, Rossi A, et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A. 2016;113:7124-9 pubmed 出版商
  404. Tejada T, Tan L, Torres R, Calvert J, Lambert J, Zaidi M, et al. IGF-1 degradation by mouse mast cell protease 4 promotes cell death and adverse cardiac remodeling days after a myocardial infarction. Proc Natl Acad Sci U S A. 2016;113:6949-54 pubmed 出版商
  405. Liu Z, Lam N, Wang E, Virden R, Pawel B, Attiyeh E, et al. Identification of CASZ1 NES reveals potential mechanisms for loss of CASZ1 tumor suppressor activity in neuroblastoma. Oncogene. 2017;36:97-109 pubmed 出版商
  406. Andersen A, Flinck M, Oernbo E, Pedersen N, Viuff B, Pedersen S. Roles of acid-extruding ion transporters in regulation of breast cancer cell growth in a 3-dimensional microenvironment. Mol Cancer. 2016;15:45 pubmed 出版商
  407. Gilmore J, Sardiu M, Groppe B, Thornton J, Liu X, Dayebgadoh G, et al. WDR76 Co-Localizes with Heterochromatin Related Proteins and Rapidly Responds to DNA Damage. PLoS ONE. 2016;11:e0155492 pubmed 出版商
  408. Huang Y, Yang X, Xu T, Kong Q, Zhang Y, Shen Y, et al. Overcoming resistance to TRAIL-induced apoptosis in solid tumor cells by simultaneously targeting death receptors, c-FLIP and IAPs. Int J Oncol. 2016;49:153-63 pubmed 出版商
  409. Sun F, Zhang Z, Tan E, Lim Z, Li Y, Wang X, et al. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice. Carcinogenesis. 2016;37:701-711 pubmed 出版商
  410. Yalon M, Tuval Kochen L, Castel D, Moshe I, Mazal I, Cohen O, et al. Overcoming Resistance of Cancer Cells to PARP-1 Inhibitors with Three Different Drug Combinations. PLoS ONE. 2016;11:e0155711 pubmed 出版商
  411. Ranjan A, Srivastava S. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis. Sci Rep. 2016;6:26165 pubmed 出版商
  412. Ribeiro J, Schorl C, Yano N, Romano N, Kim K, Singh R, et al. HE4 promotes collateral resistance to cisplatin and paclitaxel in ovarian cancer cells. J Ovarian Res. 2016;9:28 pubmed 出版商
  413. Hein A, Post C, Sheinin Y, Lakshmanan I, Natarajan A, Enke C, et al. RAC1 GTPase promotes the survival of breast cancer cells in response to hyper-fractionated radiation treatment. Oncogene. 2016;35:6319-6329 pubmed 出版商
  414. Deng H, Mi M. Resveratrol Attenuates A?25-35 Caused Neurotoxicity by Inducing Autophagy Through the TyrRS-PARP1-SIRT1 Signaling Pathway. Neurochem Res. 2016;41:2367-79 pubmed 出版商
  415. Fabbri R, Macciocca M, Vicenti R, Paradisi R, Klinger F, Pasquinelli G, et al. Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol. 2016;12:1699-711 pubmed 出版商
  416. Nakajima W, Sharma K, Lee J, Maxim N, Hicks M, Vu T, et al. DNA damaging agent-induced apoptosis is regulated by MCL-1 phosphorylation and degradation mediated by the Noxa/MCL-1/CDK2 complex. Oncotarget. 2016;7:36353-36365 pubmed 出版商
  417. Zhao J, Niu X, Li X, Edwards H, Wang G, Wang Y, et al. Inhibition of CHK1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Oncotarget. 2016;7:34785-99 pubmed 出版商
  418. Xue H, Yuan G, Guo X, Liu Q, Zhang J, Gao X, et al. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy. 2016;12:1129-52 pubmed 出版商
  419. Stepanenko A, Andreieva S, Korets K, Mykytenko D, Baklaushev V, Huleyuk N, et al. Temozolomide promotes genomic and phenotypic changes in glioblastoma cells. Cancer Cell Int. 2016;16:36 pubmed 出版商
  420. Dai Y, Hung L, Chen R, Lai C, Chang K. ON 01910.Na inhibits growth of diffuse large B-cell lymphoma by cytoplasmic sequestration of sumoylated C-MYB/TRAF6 complex. Transl Res. 2016;175:129-143.e13 pubmed 出版商
  421. O Santos A, Parrini M, Camonis J. RalGPS2 Is Essential for Survival and Cell Cycle Progression of Lung Cancer Cells Independently of Its Established Substrates Ral GTPases. PLoS ONE. 2016;11:e0154840 pubmed 出版商
  422. Rosiak K, Smolarz M, Stec W, Peciak J, Grzela D, Winiecka Klimek M, et al. IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis. PLoS ONE. 2016;11:e0154726 pubmed 出版商
  423. Watanabe Y, Papoutsoglou P, Maturi V, Tsubakihara Y, Hottiger M, Heldin C, et al. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation. J Biol Chem. 2016;291:12706-23 pubmed 出版商
  424. Strappazzon F, Di Rita A, Cianfanelli V, D Orazio M, Nazio F, Fimia G, et al. Prosurvival AMBRA1 turns into a proapoptotic BH3-like protein during mitochondrial apoptosis. Autophagy. 2016;12:963-75 pubmed 出版商
  425. Choi H, Kim M, Choi Y, Shin Y, Cho S, Ko S. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern Med. 2016;16:122 pubmed 出版商
  426. Du R, Liu Z, Hou X, Fu G, An N, Wang L. Trichostatin A potentiates genistein-induced apoptosis and reverses EMT in HEp2 cells. Mol Med Rep. 2016;13:5045-52 pubmed 出版商
  427. Thakkar A, Wang B, Picon Ruiz M, Buchwald P, Ince T. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat. 2016;157:77-90 pubmed 出版商
  428. Zhang Y, He Q, Hu Z, Feng Y, Fan L, Tang Z, et al. Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat Struct Mol Biol. 2016;23:522-30 pubmed 出版商
  429. Song J, Wang Y, Teng M, Zhang S, Yin M, Lu J, et al. Cordyceps militaris induces tumor cell death via the caspase?dependent mitochondrial pathway in HepG2 and MCF?7 cells. Mol Med Rep. 2016;13:5132-40 pubmed 出版商
  430. Rebolleda N, Losada Fernandez I, Perez Chacon G, Castejon R, Rosado S, Morado M, et al. Synergistic Activity of Deguelin and Fludarabine in Cells from Chronic Lymphocytic Leukemia Patients and in the New Zealand Black Murine Model. PLoS ONE. 2016;11:e0154159 pubmed 出版商
  431. Chowdhury B, Porter E, Stewart J, Ferreira C, Schipma M, Dykhuizen E. PBRM1 Regulates the Expression of Genes Involved in Metabolism and Cell Adhesion in Renal Clear Cell Carcinoma. PLoS ONE. 2016;11:e0153718 pubmed 出版商
  432. Choh V, Gurdita A, Tan B, Prasad R, Bizheva K, Joos K. Short-Term Moderately Elevated Intraocular Pressure Is Associated With Elevated Scotopic Electroretinogram Responses. Invest Ophthalmol Vis Sci. 2016;57:2140-51 pubmed 出版商
  433. Itsumi M, Shiota M, Takeuchi A, Kashiwagi E, Inokuchi J, Tatsugami K, et al. Equol inhibits prostate cancer growth through degradation of androgen receptor by S-phase kinase-associated protein 2. Cancer Sci. 2016;107:1022-8 pubmed 出版商
  434. Zeng W, Liu Q, Chen Z, Wu X, Zhong Y, Wu J. Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-?B Pathway. J Cancer. 2016;7:746-57 pubmed 出版商
  435. Jeong J, Noh M, Choi J, Lee H, Kim S. Neuroprotective and antioxidant activities of bamboo salt soy sauce against H2O2-induced oxidative stress in rat cortical neurons. Exp Ther Med. 2016;11:1201-1210 pubmed
  436. Xiao L, Shi X, Zhang Y, Zhu Y, Zhu L, Tian W, et al. YAP induces cisplatin resistance through activation of autophagy in human ovarian carcinoma cells. Onco Targets Ther. 2016;9:1105-14 pubmed 出版商
  437. Matsushita R, Yoshino H, Enokida H, Goto Y, Miyamoto K, Yonemori M, et al. Regulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): Inhibition of bladder cancer cell aggressiveness. Oncotarget. 2016;7:28460-87 pubmed 出版商
  438. Hall A, Lu W, Godfrey J, Antonov A, Paicu C, Moxon S, et al. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration. Cell Death Dis. 2016;7:e2184 pubmed 出版商
  439. Aaes T, Kaczmarek A, Delvaeye T, De Craene B, De Koker S, Heyndrickx L, et al. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity. Cell Rep. 2016;15:274-87 pubmed 出版商
  440. Dey A, Mustafi S, Saha S, Kumar Dhar Dwivedi S, Mukherjee P, Bhattacharya R. Inhibition of BMI1 induces autophagy-mediated necroptosis. Autophagy. 2016;12:659-70 pubmed 出版商
  441. Yosef R, Pilpel N, Tokarsky Amiel R, Biran A, Ovadya Y, Cohen S, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun. 2016;7:11190 pubmed 出版商
  442. Kwon S, Grisan V, Jang B, Herbert J, Badenhorst P. Genome-Wide Mapping Targets of the Metazoan Chromatin Remodeling Factor NURF Reveals Nucleosome Remodeling at Enhancers, Core Promoters and Gene Insulators. PLoS Genet. 2016;12:e1005969 pubmed 出版商
  443. Slørdahl T, Abdollahi P, Vandsemb E, Rampa C, Misund K, Baranowska K, et al. The phosphatase of regenerating liver-3 (PRL-3) is important for IL-6-mediated survival of myeloma cells. Oncotarget. 2016;7:27295-306 pubmed 出版商
  444. Li C, Jung S, Yang Y, Kim K, Lim J, Cheon C, et al. Inhibitory role of TRIP-Br1 oncoprotein in hypoxia-induced apoptosis in breast cancer cell lines. Int J Oncol. 2016;48:2639-46 pubmed 出版商
  445. Sumiyoshi H, Matsushita A, Nakamura Y, Matsuda Y, Ishiwata T, Naito Z, et al. Suppression of STAT5b in pancreatic cancer cells leads to attenuated gemcitabine chemoresistance, adhesion and invasion. Oncol Rep. 2016;35:3216-26 pubmed 出版商
  446. Lian Y, Yuan J, Cui Q, Feng Q, Xu M, Bei J, et al. Upregulation of KLHDC4 Predicts a Poor Prognosis in Human Nasopharyngeal Carcinoma. PLoS ONE. 2016;11:e0152820 pubmed 出版商
  447. Garcia C, Videla Richardson G, Dimopoulos N, Fernandez Espinosa D, Miriuka S, Sevlever G, et al. Human Pluripotent Stem Cells and Derived Neuroprogenitors Display Differential Degrees of Susceptibility to BH3 Mimetics ABT-263, WEHI-539 and ABT-199. PLoS ONE. 2016;11:e0152607 pubmed 出版商
  448. Viringipurampeer I, Metcalfe A, Bashar A, Sivak O, Yanai A, Mohammadi Z, et al. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration. Hum Mol Genet. 2016;25:1501-16 pubmed 出版商
  449. Gruosso T, Mieulet V, Cardon M, Bourachot B, Kieffer Y, Devun F, et al. Chronic oxidative stress promotes H2AX protein degradation and enhances chemosensitivity in breast cancer patients. EMBO Mol Med. 2016;8:527-49 pubmed 出版商
  450. Liu X, Xiao Z, Han L, Zhang J, Lee S, Wang W, et al. LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nat Cell Biol. 2016;18:431-42 pubmed 出版商
  451. Matsumoto M, Nakajima W, Seike M, Gemma A, Tanaka N. Cisplatin-induced apoptosis in non-small-cell lung cancer cells is dependent on Bax- and Bak-induction pathway and synergistically activated by BH3-mimetic ABT-263 in p53 wild-type and mutant cells. Biochem Biophys Res Commun. 2016;473:490-6 pubmed 出版商
  452. Leus N, van der Wouden P, van den Bosch T, Hooghiemstra W, Ourailidou M, Kistemaker L, et al. HDAC 3-selective inhibitor RGFP966 demonstrates anti-inflammatory properties in RAW 264.7 macrophages and mouse precision-cut lung slices by attenuating NF-κB p65 transcriptional activity. Biochem Pharmacol. 2016;108:58-74 pubmed 出版商
  453. Lee J, Kim H, Rho S, Lee S. eIF3f reduces tumor growth by directly interrupting clusterin with anti-apoptotic property in cancer cells. Oncotarget. 2016;7:18541-57 pubmed 出版商
  454. Ranjan K, Pathak C. FADD regulates NF-κB activation and promotes ubiquitination of cFLIPL to induce apoptosis. Sci Rep. 2016;6:22787 pubmed 出版商
  455. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  456. Antony A, Paillard M, Moffat C, Juskeviciute E, Correnti J, Bolon B, et al. MICU1 regulation of mitochondrial Ca(2+) uptake dictates survival and tissue regeneration. Nat Commun. 2016;7:10955 pubmed 出版商
  457. Myers S, Peddada S, Chatterjee N, Friedrich T, Tomoda K, Krings G, et al. SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells. elife. 2016;5:e10647 pubmed 出版商
  458. Barroso González J, Auclair S, Luan S, Thomas L, Atkins K, Aslan J, et al. PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ. 2016;23:1448-57 pubmed 出版商
  459. Du Z, Li L, Huang X, Jin J, Huang S, Zhang Q, et al. The epigenetic modifier CHD5 functions as a novel tumor suppressor for renal cell carcinoma and is predominantly inactivated by promoter CpG methylation. Oncotarget. 2016;7:21618-30 pubmed 出版商
  460. Rai R, Chen Y, Lei M, Chang S. TRF2-RAP1 is required to protect telomeres from engaging in homologous recombination-mediated deletions and fusions. Nat Commun. 2016;7:10881 pubmed 出版商
  461. Kemp M, Sancar A. ATR Kinase Inhibition Protects Non-cycling Cells from the Lethal Effects of DNA Damage and Transcription Stress. J Biol Chem. 2016;291:9330-42 pubmed 出版商
  462. Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, et al. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. Mol Cancer Ther. 2016;15:628-39 pubmed 出版商
  463. Singh A, Joshi S, Zulcic M, Alcaraz M, GARLICH J, Morales G, et al. PI-3K Inhibitors Preferentially Target CD15+ Cancer Stem Cell Population in SHH Driven Medulloblastoma. PLoS ONE. 2016;11:e0150836 pubmed 出版商
  464. Shin M, He Y, Marrogi E, Piperdi S, Ren L, Khanna C, et al. A RUNX2-Mediated Epigenetic Regulation of the Survival of p53 Defective Cancer Cells. PLoS Genet. 2016;12:e1005884 pubmed 出版商
  465. Tepper S, Jeschke J, Böttcher K, Schmidt A, Davari K, Müller P, et al. PARP activation promotes nuclear AID accumulation in lymphoma cells. Oncotarget. 2016;7:13197-208 pubmed 出版商
  466. Nakayama R, Zhang Y, Czaplinski J, Anatone A, Sicinska E, Fletcher J, et al. Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma. Oncotarget. 2016;7:16581-92 pubmed 出版商
  467. Colangelo T, Polcaro G, Ziccardi P, Muccillo L, Galgani M, Pucci B, et al. The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells. Cell Death Dis. 2016;7:e2108 pubmed 出版商
  468. Gari H, Gearheart C, Fosmire S, Degala G, Fan Z, Torkko K, et al. Genome-wide functional genetic screen with the anticancer agent AMPI-109 identifies PRL-3 as an oncogenic driver in triple-negative breast cancers. Oncotarget. 2016;7:15757-71 pubmed 出版商
  469. Yufune S, Satoh Y, Akai R, Yoshinaga Y, Kobayashi Y, Endo S, et al. Suppression of ERK phosphorylation through oxidative stress is involved in the mechanism underlying sevoflurane-induced toxicity in the developing brain. Sci Rep. 2016;6:21859 pubmed 出版商
  470. Gao S, Chen X, Jin H, Ren S, Liu Z, Fang X, et al. Overexpression of ErbB2 renders breast cancer cells susceptible to 3-BrPA through the increased dissociation of hexokinase II from mitochondrial outer membrane. Oncol Lett. 2016;11:1567-1573 pubmed
  471. Kline C, van den Heuvel A, Allen J, Prabhu V, Dicker D, El Deiry W. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases. Sci Signal. 2016;9:ra18 pubmed 出版商
  472. Zhang W, Shi H, Zhang M, Liu B, Mao S, Li L, et al. Poly C binding protein 1 represses autophagy through downregulation of LC3B to promote tumor cell apoptosis in starvation. Int J Biochem Cell Biol. 2016;73:127-136 pubmed 出版商
  473. Hung M, Chen Y, Chu P, Shih C, Yu H, Tai W, et al. Upregulation of the oncoprotein SET determines poor clinical outcomes in hepatocellular carcinoma and shows therapeutic potential. Oncogene. 2016;35:4891-902 pubmed 出版商
  474. Hong M, Nam K, Kim K, Kim S, Kim I. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha. Cell Stress Chaperones. 2016;21:485-97 pubmed 出版商
  475. Kim N, Kim M, Sung P, Bae Y, Shin E, Yoo J. Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A. Nat Commun. 2016;7:10631 pubmed 出版商
  476. Tang Y, Hong Y, Bai H, Wu Q, Chen C, Lang J, et al. Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1. Stem Cells. 2016;34:1527-40 pubmed 出版商
  477. Ding M, Bruick R, Yu Y. Secreted IGFBP5 mediates mTORC1-dependent feedback inhibition of IGF-1 signalling. Nat Cell Biol. 2016;18:319-27 pubmed 出版商
  478. Preet R, Siddharth S, Satapathy S, Das S, Nayak A, Das D, et al. Chk1 inhibitor synergizes quinacrine mediated apoptosis in breast cancer cells by compromising the base excision repair cascade. Biochem Pharmacol. 2016;105:23-33 pubmed 出版商
  479. Lopez J, Bessou M, Riley J, Giampazolias E, Todt F, Rochegüe T, et al. Mito-priming as a method to engineer Bcl-2 addiction. Nat Commun. 2016;7:10538 pubmed 出版商
  480. Ware M, Colbert K, Keshishian V, Ho J, Corr S, Curley S, et al. Generation of Homogenous Three-Dimensional Pancreatic Cancer Cell Spheroids Using an Improved Hanging Drop Technique. Tissue Eng Part C Methods. 2016;22:312-21 pubmed 出版商
  481. Podmirseg S, Jäkel H, Ranches G, Kullmann M, Sohm B, Villunger A, et al. Caspases uncouple p27(Kip1) from cell cycle regulated degradation and abolish its ability to stimulate cell migration and invasion. Oncogene. 2016;35:4580-90 pubmed 出版商
  482. Soriano A, París Coderch L, Jubierre L, Martínez A, Zhou X, Piskareva O, et al. MicroRNA-497 impairs the growth of chemoresistant neuroblastoma cells by targeting cell cycle, survival and vascular permeability genes. Oncotarget. 2016;7:9271-87 pubmed 出版商
  483. Yan Y, Tan K, Li C, Tran T, Chao S, Sugrue R, et al. Human nasal epithelial cells derived from multiple subjects exhibit differential responses to H3N2 influenza virus infection in vitro. J Allergy Clin Immunol. 2016;138:276-281.e15 pubmed 出版商
  484. Luey B, May F. Insulin-like growth factors are essential to prevent anoikis in oestrogen-responsive breast cancer cells: importance of the type I IGF receptor and PI3-kinase/Akt pathway. Mol Cancer. 2016;15:8 pubmed 出版商
  485. Rasmussen R, Gajjar M, Jensen K, Hamerlik P. Enhanced efficacy of combined HDAC and PARP targeting in glioblastoma. Mol Oncol. 2016;10:751-63 pubmed 出版商
  486. Yoshida T, Song L, Bai Y, Kinose F, Li J, Ohaegbulam K, et al. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS ONE. 2016;11:e0147344 pubmed 出版商
  487. Moriwaki K, Chan F. Regulation of RIPK3- and RHIM-dependent Necroptosis by the Proteasome. J Biol Chem. 2016;291:5948-59 pubmed 出版商
  488. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  489. Korwitz A, Merkwirth C, Richter Dennerlein R, Tröder S, Sprenger H, Quirós P, et al. Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria. J Cell Biol. 2016;212:157-66 pubmed 出版商
  490. Du Y, Yamaguchi H, Wei Y, Hsu J, Wang H, Hsu Y, et al. Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nat Med. 2016;22:194-201 pubmed 出版商
  491. Cousin F, Jouan Lanhouet S, Théret N, Brenner C, Jouan E, Le Moigne Muller G, et al. The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer. Oncotarget. 2016;7:7161-78 pubmed 出版商
  492. Pivonello C, Negri M, De Martino M, Napolitano M, De Angelis C, Provvisiero D, et al. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma. Oncotarget. 2016;7:9718-31 pubmed 出版商
  493. Chhibber Goel J, Coleman Vaughan C, Agrawal V, Sawhney N, Hickey E, Powell J, et al. γ-Secretase Activity Is Required for Regulated Intramembrane Proteolysis of Tumor Necrosis Factor (TNF) Receptor 1 and TNF-mediated Pro-apoptotic Signaling. J Biol Chem. 2016;291:5971-85 pubmed 出版商
  494. Chen N, Uddin B, Voit R, Schiebel E. Human phosphatase CDC14A is recruited to the cell leading edge to regulate cell migration and adhesion. Proc Natl Acad Sci U S A. 2016;113:990-5 pubmed 出版商
  495. Amato K, Wang S, Tan L, Hastings A, Song W, Lovly C, et al. EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer. Cancer Res. 2016;76:305-18 pubmed 出版商
  496. Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, et al. PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Mol Cancer. 2016;15:3 pubmed 出版商
  497. Terranova Barberio M, Roca M, Zotti A, Leone A, Bruzzese F, Vitagliano C, et al. Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression. Oncotarget. 2016;7:7715-31 pubmed 出版商
  498. Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich M, Lim R, et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature. 2016;529:216-20 pubmed 出版商
  499. Han M, Lee D, Woo S, Seo B, Min K, Kim S, et al. Galangin sensitizes TRAIL-induced apoptosis through down-regulation of anti-apoptotic proteins in renal carcinoma Caki cells. Sci Rep. 2016;6:18642 pubmed 出版商
  500. Lub S, Maes A, Maes K, De Veirman K, De Bruyne E, Menu E, et al. Inhibiting the anaphase promoting complex/cyclosome induces a metaphase arrest and cell death in multiple myeloma cells. Oncotarget. 2016;7:4062-76 pubmed 出版商
  501. Mir R, Bele A, Mirza S, Srivastava S, Olou A, Ammons S, et al. A Novel Interaction of Ecdysoneless (ECD) Protein with R2TP Complex Component RUVBL1 Is Required for the Functional Role of ECD in Cell Cycle Progression. Mol Cell Biol. 2015;36:886-99 pubmed 出版商
  502. Wang F, Feng Y, Li P, Wang K, Feng L, Liu Y, et al. RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma. Oncotarget. 2016;7:4279-97 pubmed 出版商
  503. Borriello A, Naviglio S, Bencivenga D, Caldarelli I, Tramontano A, Speranza M, et al. Histone Deacetylase Inhibitors Increase p27(Kip1) by Affecting Its Ubiquitin-Dependent Degradation through Skp2 Downregulation. Oxid Med Cell Longev. 2016;2016:2481865 pubmed 出版商
  504. Yuniati L, van der Meer L, Tijchon E, van Ingen Schenau D, van Emst L, Levers M, et al. Tumor suppressor BTG1 promotes PRMT1-mediated ATF4 function in response to cellular stress. Oncotarget. 2016;7:3128-43 pubmed 出版商
  505. Obermeier K, Sachsenweger J, Friedl T, Pospiech H, Winqvist R, Wiesmüller L. Heterozygous PALB2 c.1592delT mutation channels DNA double-strand break repair into error-prone pathways in breast cancer patients. Oncogene. 2016;35:3796-806 pubmed 出版商
  506. Trzeciecka A, Klossowski S, Bajor M, Zagozdzon R, Gaj P, Muchowicz A, et al. Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma. Oncotarget. 2016;7:1717-31 pubmed 出版商
  507. Cataldo A, Cheung D, Balsari A, Tagliabue E, Coppola V, Iorio M, et al. miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response. Oncotarget. 2016;7:786-97 pubmed 出版商
  508. Song H, Tao L, Chen C, Pan L, Hao J, Ni Y, et al. USP17-mediated deubiquitination and stabilization of HDAC2 in cigarette smoke extract-induced inflammation. Int J Clin Exp Pathol. 2015;8:10707-15 pubmed
  509. Ni Y, Tao L, Chen C, Song H, Li Z, Gao Y, et al. The Deubiquitinase USP17 Regulates the Stability and Nuclear Function of IL-33. Int J Mol Sci. 2015;16:27956-66 pubmed 出版商
  510. Chen J, Chen Y, Yen C, Chen W, Huang W. HBx sensitizes hepatocellular carcinoma cells to lapatinib by up-regulating ErbB3. Oncotarget. 2016;7:473-89 pubmed 出版商
  511. Cristini A, Park J, Capranico G, Legube G, Favre G, Sordet O. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Res. 2016;44:1161-78 pubmed 出版商
  512. El Khattouti A, Selimovic D, Hannig M, Taylor E, Abd Elmageed Z, Hassan S, et al. Imiquimod-induced apoptosis of melanoma cells is mediated by ER stress-dependent Noxa induction and enhanced by NF-κB inhibition. J Cell Mol Med. 2016;20:266-86 pubmed 出版商
  513. Nakajima W, Sharma K, Hicks M, Le N, Brown R, Krystal G, et al. Combination with vorinostat overcomes ABT-263 (navitoclax) resistance of small cell lung cancer. Cancer Biol Ther. 2016;17:27-35 pubmed 出版商
  514. Alsafadi S, Tourpin S, Bessoltane N, Salomé Desnoulez S, Vassal G, André F, et al. Nuclear localization of the caspase-3-cleaved form of p73 in anoikis. Oncotarget. 2016;7:12331-43 pubmed 出版商
  515. Momcilovic M, McMickle R, Abt E, Seki A, Simko S, Magyar C, et al. Heightening Energetic Stress Selectively Targets LKB1-Deficient Non-Small Cell Lung Cancers. Cancer Res. 2015;75:4910-22 pubmed 出版商
  516. Maxfield K, Taus P, Corcoran K, Wooten J, Macion J, Zhou Y, et al. Comprehensive functional characterization of cancer-testis antigens defines obligate participation in multiple hallmarks of cancer. Nat Commun. 2015;6:8840 pubmed 出版商
  517. Phillips D, Xiao Y, Lam L, Litvinovich E, Roberts Rapp L, Souers A, et al. Loss in MCL-1 function sensitizes non-Hodgkin's lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199). Blood Cancer J. 2015;5:e368 pubmed 出版商
  518. Holmberg Olausson K, Elsir T, Moazemi Goudarzi K, Nistér M, Lindström M. NPM1 histone chaperone is upregulated in glioblastoma to promote cell survival and maintain nucleolar shape. Sci Rep. 2015;5:16495 pubmed 出版商
  519. Draganov D, Gopalakrishna Pillai S, Chen Y, Zuckerman N, Moeller S, Wang C, et al. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep. 2015;5:16222 pubmed 出版商
  520. Alayev A, Salamon R, Berger S, Schwartz N, Cuesta R, Snyder R, et al. mTORC1 directly phosphorylates and activates ERα upon estrogen stimulation. Oncogene. 2016;35:3535-43 pubmed 出版商
  521. Ko T, Chin H, Chuah C, Huang J, Ng K, Khaw S, et al. The BIM deletion polymorphism: A paradigm of a permissive interaction between germline and acquired TKI resistance factors in chronic myeloid leukemia. Oncotarget. 2016;7:2721-33 pubmed 出版商
  522. Hwang K, Choi Y. Modulation of Mitochondrial Antiviral Signaling by Human Herpesvirus 8 Interferon Regulatory Factor 1. J Virol. 2016;90:506-20 pubmed 出版商
  523. Hassan M, El Khattouti A, Ejaeidi A, Ma T, Day W, Espinoza I, et al. Elevated Expression of Hepatoma Up-Regulated Protein Inhibits γ-Irradiation-Induced Apoptosis of Prostate Cancer Cells. J Cell Biochem. 2016;117:1308-18 pubmed 出版商
  524. Xu S, Huang J, Chen M, Zeng M, Zou F, Chen D, et al. Amplification of ACK1 promotes gastric tumorigenesis via ECD-dependent p53 ubiquitination degradation. Oncotarget. 2017;8:12705-12716 pubmed 出版商
  525. Li K, Gao B, Li J, Chen H, Li Y, Wei Y, et al. ZNF32 protects against oxidative stress-induced apoptosis by modulating C1QBP transcription. Oncotarget. 2015;6:38107-26 pubmed 出版商
  526. Gao L, Tang H, He H, Liu J, Mao J, Ji H, et al. Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats. Front Pharmacol. 2015;6:215 pubmed 出版商
  527. Campo Verde Arboccó F, Sasso C, Actis E, Carón R, Hapon M, Jahn G. Hypothyroidism advances mammary involution in lactating rats through inhibition of PRL signaling and induction of LIF/STAT3 mRNAs. Mol Cell Endocrinol. 2016;419:18-28 pubmed 出版商
  528. Mazzacurati L, Lambert Q, Pradhan A, Griner L, Huszar D, Reuther G. The PIM inhibitor AZD1208 synergizes with ruxolitinib to induce apoptosis of ruxolitinib sensitive and resistant JAK2-V617F-driven cells and inhibit colony formation of primary MPN cells. Oncotarget. 2015;6:40141-57 pubmed 出版商
  529. Sabirzhanov B, Stoica B, Zhao Z, Loane D, Wu J, Dorsey S, et al. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ. 2016;23:654-68 pubmed 出版商
  530. Montes M, Coiras M, Becerra S, Moreno Castro C, Mateos E, Majuelos J, et al. Functional Consequences for Apoptosis by Transcription Elongation Regulator 1 (TCERG1)-Mediated Bcl-x and Fas/CD95 Alternative Splicing. PLoS ONE. 2015;10:e0139812 pubmed 出版商
  531. Young L, Marzio A, Pérez Durán P, Reid D, Meredith D, Roberti D, et al. TIMELESS Forms a Complex with PARP1 Distinct from Its Complex with TIPIN and Plays a Role in the DNA Damage Response. Cell Rep. 2015;13:451-459 pubmed 出版商
  532. van Geldermalsen M, Wang Q, Nagarajah R, Marshall A, Thoeng A, Gao D, et al. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene. 2016;35:3201-8 pubmed 出版商
  533. Hwang J, Sung W, Tu H, Hsieh K, Yeh C, Chen C, et al. The Overexpression of FEN1 and RAD54B May Act as Independent Prognostic Factors of Lung Adenocarcinoma. PLoS ONE. 2015;10:e0139435 pubmed 出版商
  534. Ambroise G, Portier A, Roders N, Arnoult D, Vazquez A. Subcellular localization of PUMA regulates its pro-apoptotic activity in Burkitt's lymphoma B cells. Oncotarget. 2015;6:38181-94 pubmed 出版商
  535. Voets E, Marsman J, Demmers J, Beijersbergen R, Wolthuis R. The lethal response to Cdk1 inhibition depends on sister chromatid alignment errors generated by KIF4 and isoform 1 of PRC1. Sci Rep. 2015;5:14798 pubmed 出版商
  536. Hu D, Gur M, Zhou Z, Gamper A, Hung M, Fujita N, et al. Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nat Commun. 2015;6:8419 pubmed 出版商
  537. Pelish H, Liau B, Nitulescu I, Tangpeerachaikul A, Poss Z, Da Silva D, et al. Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature. 2015;526:273-276 pubmed 出版商
  538. Mazur P, Herner A, Mello S, Wirth M, Hausmann S, Sánchez Rivera F, et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21:1163-71 pubmed 出版商
  539. Hilton B, Li Z, Musich P, Wang H, Cartwright B, SERRANO M, et al. ATR Plays a Direct Antiapoptotic Role at Mitochondria, which Is Regulated by Prolyl Isomerase Pin1. Mol Cell. 2015;60:35-46 pubmed 出版商
  540. Skrzypek K, Kusienicka A, Szewczyk B, Adamus T, Lukasiewicz E, Miekus K, et al. Constitutive activation of MET signaling impairs myogenic differentiation of rhabdomyosarcoma and promotes its development and progression. Oncotarget. 2015;6:31378-98 pubmed 出版商
  541. Anderson K, Russell A, Foletta V. NDRG2 promotes myoblast proliferation and caspase 3/7 activities during differentiation, and attenuates hydrogen peroxide - But not palmitate-induced toxicity. FEBS Open Bio. 2015;5:668-81 pubmed 出版商
  542. Machado Neto J, de Melo Campos P, Favaro P, Lazarini M, da Silva Santos Duarte A, Lorand Metze I, et al. Stathmin 1 inhibition amplifies ruxolitinib-induced apoptosis in JAK2V617F cells. Oncotarget. 2015;6:29573-84 pubmed 出版商
  543. Bailey M, Singh T, Mero P, Moffat J, Hieter P. Dependence of Human Colorectal Cells Lacking the FBW7 Tumor Suppressor on the Spindle Assembly Checkpoint. Genetics. 2015;201:885-95 pubmed 出版商
  544. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  545. Weaver A, Cooper T, Rodriguez M, Trummell H, Bonner J, Rosenthal E, et al. DNA double strand break repair defect and sensitivity to poly ADP-ribose polymerase (PARP) inhibition in human papillomavirus 16-positive head and neck squamous cell carcinoma. Oncotarget. 2015;6:26995-7007 pubmed 出版商
  546. Xia H, Najafov A, Geng J, Galan Acosta L, Han X, Guo Y, et al. Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. J Cell Biol. 2015;210:705-16 pubmed 出版商
  547. Inaguma S, Ito H, Riku M, Ikeda H, Kasai K. Addiction of pancreatic cancer cells to zinc-finger transcription factor ZIC2. Oncotarget. 2015;6:28257-68 pubmed 出版商
  548. Tiffen J, Gunatilake D, Gallagher S, Gowrishankar K, Heinemann A, Cullinane C, et al. Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget. 2015;6:27023-36 pubmed 出版商
  549. Li X, Liang Q, Liu W, Zhang N, Xu L, Zhang X, et al. Ras association domain family member 10 suppresses gastric cancer growth by cooperating with GSTP1 to regulate JNK/c-Jun/AP-1 pathway. Oncogene. 2016;35:2453-64 pubmed 出版商
  550. Fan L, Peng G, Sahgal N, Fazli L, Gleave M, Zhang Y, et al. Regulation of c-Myc expression by the histone demethylase JMJD1A is essential for prostate cancer cell growth and survival. Oncogene. 2016;35:2441-52 pubmed 出版商
  551. Sakabe I, Hu R, Jin L, Clarke R, Kasid U. TMEM33: a new stress-inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling. Breast Cancer Res Treat. 2015;153:285-97 pubmed 出版商
  552. Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 2015;15:577 pubmed 出版商
  553. Hermanova I, Arruabarrena Aristorena A, Valis K, Nůsková H, Alberich Jorda M, Fiser K, et al. Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia. 2016;30:209-18 pubmed 出版商
  554. Zhang X, Wang X, Wu T, Li B, Liu T, Wang R, et al. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep. 2015;5:12579 pubmed 出版商
  555. Dahlhoff M, Schäfer M, Muzumdar S, Rose C, Schneider M. ERBB3 is required for tumor promotion in a mouse model of skin carcinogenesis. Mol Oncol. 2015;9:1825-33 pubmed 出版商
  556. Zhang L, Dai F, Sheng P, Chen Z, Xu Q, Guo Y. Resveratrol analogue 3,4,4'-trihydroxy-trans-stilbene induces apoptosis and autophagy in human non-small-cell lung cancer cells in vitro. Acta Pharmacol Sin. 2015;36:1256-65 pubmed 出版商
  557. Geletu M, Guy S, Greer S, Raptis L. Differential effects of polyoma virus middle tumor antigen mutants upon gap junctional, intercellular communication. Exp Cell Res. 2015;336:223-31 pubmed 出版商
  558. Sarojini S, Pecora A, Milinovikj N, Barbiere J, Gupta S, Hussain Z, et al. A combination of high dose rate (10X FFF/2400 MU/min/10 MV X-rays) and total low dose (0.5 Gy) induces a higher rate of apoptosis in melanoma cells in vitro and superior preservation of normal melanocytes. Melanoma Res. 2015;25:376-89 pubmed 出版商
  559. Berens C, Bisle S, Klingenbeck L, Lührmann A. Applying an Inducible Expression System to Study Interference of Bacterial Virulence Factors with Intracellular Signaling. J Vis Exp. 2015;:e52903 pubmed 出版商
  560. Patergnani S, Giorgi C, Maniero S, Missiroli S, Maniscalco P, Bononi I, et al. The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition. Oncotarget. 2015;6:23427-44 pubmed
  561. Hamacher Brady A, Brady N. Bax/Bak-dependent, Drp1-independent Targeting of X-linked Inhibitor of Apoptosis Protein (XIAP) into Inner Mitochondrial Compartments Counteracts Smac/DIABLO-dependent Effector Caspase Activation. J Biol Chem. 2015;290:22005-18 pubmed 出版商
  562. Sun Q, Jin C, Zhu L, Liang M, Li C, Cardona C, et al. Host Responses and Regulation by NFκB Signaling in the Liver and Liver Epithelial Cells Infected with A Novel Tick-borne Bunyavirus. Sci Rep. 2015;5:11816 pubmed 出版商
  563. Breslin C, Hornyak P, Ridley A, Rulten S, Hanzlikova H, Oliver A, et al. The XRCC1 phosphate-binding pocket binds poly (ADP-ribose) and is required for XRCC1 function. Nucleic Acids Res. 2015;43:6934-44 pubmed 出版商
  564. Ciamporcero E, Shen H, Ramakrishnan S, Yu Ku S, Chintala S, Shen L, et al. YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene. 2016;35:1541-53 pubmed 出版商
  565. Liu K, Chuang S, Long C, Lee Y, Wang C, Lu M, et al. Ketamine-induced ulcerative cystitis and bladder apoptosis involve oxidative stress mediated by mitochondria and the endoplasmic reticulum. Am J Physiol Renal Physiol. 2015;309:F318-31 pubmed 出版商
  566. Heinemann A, Cullinane C, De Paoli Iseppi R, Wilmott J, Gunatilake D, Madore J, et al. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling. Oncotarget. 2015;6:21507-21 pubmed
  567. Dettmer U, Newman A, Soldner F, Luth E, Kim N, von Saucken V, et al. Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nat Commun. 2015;6:7314 pubmed 出版商
  568. Petroni M, Sardina F, Heil C, Sahún Roncero M, Colicchia V, Veschi V, et al. The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress. Cell Death Differ. 2016;23:197-206 pubmed 出版商
  569. Bock F, Tanzer M, Haschka M, Krumschnabel G, Sohm B, Goetsch K, et al. The p53 binding protein PDCD5 is not rate-limiting in DNA damage induced cell death. Sci Rep. 2015;5:11268 pubmed 出版商
  570. Amente S, Milazzo G, Sorrentino M, Ambrosio S, Di Palo G, Lania L, et al. Lysine-specific demethylase (LSD1/KDM1A) and MYCN cooperatively repress tumor suppressor genes in neuroblastoma. Oncotarget. 2015;6:14572-83 pubmed
  571. Min H, Yun H, Lee J, Lee H, Cho J, Jang H, et al. Targeting the insulin-like growth factor receptor and Src signaling network for the treatment of non-small cell lung cancer. Mol Cancer. 2015;14:113 pubmed 出版商
  572. Krossa S, Schmitt A, Hattermann K, Fritsch J, Scheidig A, Mehdorn H, et al. Down regulation of Akirin-2 increases chemosensitivity in human glioblastomas more efficiently than Twist-1. Oncotarget. 2015;6:21029-45 pubmed
  573. Izhar L, Adamson B, Ciccia A, Lewis J, Pontano Vaites L, Leng Y, et al. A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors. Cell Rep. 2015;11:1486-500 pubmed 出版商
  574. Yang K, Kohler R, Landon M, Giedt R, Weissleder R. Single cell resolution in vivo imaging of DNA damage following PARP inhibition. Sci Rep. 2015;5:10129 pubmed 出版商
  575. Hao W, Yuan X, Yu L, Gao C, Sun X, Wang D, et al. Licochalcone A-induced human gastric cancer BGC-823 cells apoptosis by regulating ROS-mediated MAPKs and PI3K/AKT signaling pathways. Sci Rep. 2015;5:10336 pubmed 出版商
  576. Adhikary G, Grun D, Balasubramanian S, Kerr C, Huang J, Eckert R. Survival of skin cancer stem cells requires the Ezh2 polycomb group protein. Carcinogenesis. 2015;36:800-10 pubmed 出版商
  577. Kumar S, Ingle H, Mishra S, Mahla R, Kumar A, Kawai T, et al. IPS-1 differentially induces TRAIL, BCL2, BIRC3 and PRKCE in type I interferons-dependent and -independent anticancer activity. Cell Death Dis. 2015;6:e1758 pubmed 出版商
  578. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  579. Huang C, Chao C, Lee Y, Lu M, Cheng J, Yang Y, et al. Paraquat Induces Cell Death Through Impairing Mitochondrial Membrane Permeability. Mol Neurobiol. 2016;53:2169-88 pubmed 出版商
  580. Qiu J, Zhang Y, Li Y, Zhao J, Zhang W, Jiang Q, et al. Trametinib modulates cancer multidrug resistance by targeting ABCB1 transporter. Oncotarget. 2015;6:15494-509 pubmed
  581. Luo T, Fu J, Xu A, Su B, Ren Y, Li N, et al. PSMD10/gankyrin induces autophagy to promote tumor progression through cytoplasmic interaction with ATG7 and nuclear transactivation of ATG7 expression. Autophagy. 2016;12:1355-71 pubmed 出版商
  582. Zhang P, Yang X, Ma X, Ingram D, Lazar A, Torres K, et al. Antitumor effects of pharmacological EZH2 inhibition on malignant peripheral nerve sheath tumor through the miR-30a and KPNB1 pathway. Mol Cancer. 2015;14:55 pubmed 出版商
  583. Yang L, Zhang S, George S, Teng R, You X, Xu M, et al. Targeting Notch1 and proteasome as an effective strategy to suppress T-cell lymphoproliferative neoplasms. Oncotarget. 2015;6:14953-69 pubmed
  584. Ferreira R, Law M, Jahn S, Davis B, Heldermon C, Reinhard M, et al. Novel agents that downregulate EGFR, HER2, and HER3 in parallel. Oncotarget. 2015;6:10445-59 pubmed
  585. Wang W, Huang X, Xin H, Fu M, Xue A, Wu Z. TRAF Family Member-associated NF-κB Activator (TANK) Inhibits Genotoxic Nuclear Factor κB Activation by Facilitating Deubiquitinase USP10-dependent Deubiquitination of TRAF6 Ligase. J Biol Chem. 2015;290:13372-85 pubmed 出版商
  586. Zhang D, Zhu L, Li C, Mu J, Fu Y, Zhu Q, et al. Sialyltransferase7A, a Klf4-responsive gene, promotes cardiomyocyte apoptosis during myocardial infarction. Basic Res Cardiol. 2015;110:28 pubmed 出版商
  587. Kim D, Fiske B, Birsoy K, Freinkman E, Kami K, Possemato R, et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature. 2015;520:363-7 pubmed 出版商
  588. Neira Peña T, Rojas Mancilla E, Munoz Vio V, Perez R, Gutierrez Hernandez M, Bustamante D, et al. Perinatal asphyxia leads to PARP-1 overactivity, p65 translocation, IL-1β and TNF-α overexpression, and apoptotic-like cell death in mesencephalon of neonatal rats: prevention by systemic neonatal nicotinamide administration. Neurotox Res. 2015;27:453-65 pubmed 出版商
  589. Popp M, Maquat L. Attenuation of nonsense-mediated mRNA decay facilitates the response to chemotherapeutics. Nat Commun. 2015;6:6632 pubmed 出版商
  590. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  591. Sonnemann J, Grauel D, Blümel L, Hentschel J, Marx C, Blumrich A, et al. RETRA exerts anticancer activity in Ewing's sarcoma cells independent of their TP53 status. Eur J Cancer. 2015;51:841-51 pubmed 出版商
  592. Leclere L, Fransolet M, Côté F, Cambier P, Arnould T, Van Cutsem P, et al. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells. PLoS ONE. 2015;10:e0115831 pubmed 出版商
  593. Ma W, Na M, Tang C, Wang H, Lin Z. Overexpression of N-myc downstream-regulated gene 1 inhibits human glioma proliferation and invasion via phosphoinositide 3-kinase/AKT pathways. Mol Med Rep. 2015;12:1050-8 pubmed 出版商
  594. Wang Y, Han A, Chen E, Singh R, Chichester C, Moore R, et al. The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells. Int J Oncol. 2015;46:1924-34 pubmed 出版商
  595. Zub K, Sousa M, Sarno A, Sharma A, Demirovic A, Rao S, et al. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells. PLoS ONE. 2015;10:e0119857 pubmed 出版商
  596. Hodgson A, Wier E, Fu K, Sun X, Yu H, Zheng W, et al. Metalloprotease NleC suppresses host NF-κB/inflammatory responses by cleaving p65 and interfering with the p65/RPS3 interaction. PLoS Pathog. 2015;11:e1004705 pubmed 出版商
  597. Wu Z, Wang C, Bai M, Li X, Mei Q, Li X, et al. An LRP16-containing preassembly complex contributes to NF-κB activation induced by DNA double-strand breaks. Nucleic Acids Res. 2015;43:3167-79 pubmed 出版商
  598. Grabner B, Schramek D, Mueller K, Moll H, Svinka J, Hoffmann T, et al. Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat Commun. 2015;6:6285 pubmed 出版商
  599. Xie Q, Wu Q, Horbinski C, Flavahan W, Yang K, Zhou W, et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci. 2015;18:501-10 pubmed 出版商
  600. Morlé A, Garrido C, Micheau O. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion. Cell Death Dis. 2015;6:e1633 pubmed 出版商
  601. Jeong H, Gil N, Lee H, Cho S, Kim K, Chun K, et al. Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 is Necessary for Normal Mitotic Progression. J Cell Biochem. 2015;116:1602-12 pubmed 出版商
  602. Suganya R, Chakraborty A, Miriyala S, Hazra T, Izumi T. Suppression of oxidative phosphorylation in mouse embryonic fibroblast cells deficient in apurinic/apyrimidinic endonuclease. DNA Repair (Amst). 2015;27:40-8 pubmed 出版商
  603. Lu K, Fang X, Feng L, Jiang Y, Zhou X, Liu X, et al. The STAT3 inhibitor WP1066 reverses the resistance of chronic lymphocytic leukemia cells to histone deacetylase inhibitors induced by interleukin-6. Cancer Lett. 2015;359:250-8 pubmed 出版商
  604. Guarnerio J, Riccardi L, Taulli R, Maeda T, Wang G, Hobbs R, et al. A genetic platform to model sarcomagenesis from primary adult mesenchymal stem cells. Cancer Discov. 2015;5:396-409 pubmed 出版商
  605. Wang S, Chen X, Hu J, Jiang J, Li Y, Chan Salis K, et al. ATF4 Gene Network Mediates Cellular Response to the Anticancer PAD Inhibitor YW3-56 in Triple-Negative Breast Cancer Cells. Mol Cancer Ther. 2015;14:877-88 pubmed 出版商
  606. Tao Y, Xu L, Lu J, Hu S, Fang F, Cao L, et al. Early B-cell factor 3 (EBF3) is a novel tumor suppressor gene with promoter hypermethylation in pediatric acute myeloid leukemia. J Exp Clin Cancer Res. 2015;34:4 pubmed 出版商
  607. Li G, Zhou J, Budhraja A, Hu X, Chen Y, Cheng Q, et al. Mitochondrial translocation and interaction of cofilin and Drp1 are required for erucin-induced mitochondrial fission and apoptosis. Oncotarget. 2015;6:1834-49 pubmed
  608. Jackson T, Du L, Janesko Feldman K, Vagni V, Dezfulian C, Poloyac S, et al. The nuclear splicing factor RNA binding motif 5 promotes caspase activation in human neuronal cells, and increases after traumatic brain injury in mice. J Cereb Blood Flow Metab. 2015;35:655-66 pubmed 出版商
  609. Xia J, Chen S, Lv Y, Lu L, Hu W, Zhou Y. ZGDHu-1 induces Gâ‚‚/M phase arrest and apoptosis in Kasumi-1 cells. Mol Med Rep. 2015;11:3398-404 pubmed 出版商
  610. Newman E, Lu F, Bashllari D, Wang L, Opipari A, Castle V. Alternative NHEJ Pathway Components Are Therapeutic Targets in High-Risk Neuroblastoma. Mol Cancer Res. 2015;13:470-82 pubmed 出版商
  611. Mudie S, Bandarra D, Batie M, Biddlestone J, Moniz S, Ortmann B, et al. PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia. Cell Cycle. 2014;13:3878-91 pubmed 出版商
  612. Mir S, George N, Zahoor L, Harms R, Guinn Z, SARVETNICK N. Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death. J Biol Chem. 2015;290:6071-85 pubmed 出版商
  613. Zanotto Filho A, Braganhol E, Klafke K, Figueiró F, Terra S, Paludo F, et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 2015;358:220-31 pubmed 出版商
  614. Papanikolaou V, Stefanou N, Dubos S, Papathanasiou I, Palianopoulou M, Valiakou V, et al. Synergy of leptin/STAT3 with HER2 receptor induces tamoxifen resistance in breast cancer cells through regulation of apoptosis-related genes. Cell Oncol (Dordr). 2015;38:155-64 pubmed 出版商
  615. Zhang X, Cheng S, Bian K, Wang L, Zhang X, Yan B, et al. MicroRNA-26a promotes anoikis in human hepatocellular carcinoma cells by targeting alpha5 integrin. Oncotarget. 2015;6:2277-89 pubmed
  616. Kumar S, Das S, Rachagani S, Kaur S, Joshi S, Johansson S, et al. NCOA3-mediated upregulation of mucin expression via transcriptional and post-translational changes during the development of pancreatic cancer. Oncogene. 2015;34:4879-89 pubmed 出版商
  617. Green A, Caracappa D, Benhasouna A, Alshareeda A, Nolan C, Macmillan R, et al. Biological and clinical significance of PARP1 protein expression in breast cancer. Breast Cancer Res Treat. 2015;149:353-62 pubmed 出版商
  618. Wang S, Park S, Kodali V, Han J, Yip T, Chen Z, et al. Identification of protein disulfide isomerase 1 as a key isomerase for disulfide bond formation in apolipoprotein B100. Mol Biol Cell. 2015;26:594-604 pubmed 出版商
  619. Hennig D, Müller S, Wichmann C, Drube S, Pietschmann K, Pelzl L, et al. Antagonism between granulocytic maturation and deacetylase inhibitor-induced apoptosis in acute promyelocytic leukaemia cells. Br J Cancer. 2015;112:329-37 pubmed 出版商
  620. Girotti M, Lopes F, Preece N, Niculescu Duvaz D, Zambon A, Davies L, et al. Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell. 2015;27:85-96 pubmed 出版商
  621. Chen Y, Wei M, Wang C, Lee H, Pan S, Gao M, et al. Dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor is an effective radiosensitizer for colorectal cancer. Cancer Lett. 2015;357:582-90 pubmed 出版商
  622. Ma H, Yue X, Gao L, Liang X, Yan W, Zhang Z, et al. ZHX2 enhances the cytotoxicity of chemotherapeutic drugs in liver tumor cells by repressing MDR1 via interfering with NF-YA. Oncotarget. 2015;6:1049-63 pubmed
  623. Rutz S, Kayagaki N, Phung Q, Eidenschenk C, Noubade R, Wang X, et al. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature. 2015;518:417-21 pubmed 出版商
  624. Riggi N, Knoechel B, Gillespie S, Rheinbay E, Boulay G, Suvà M, et al. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell. 2014;26:668-681 pubmed 出版商
  625. Ohoka N, Nagai K, Hattori T, Okuhira K, Shibata N, Cho N, et al. Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin-proteasome pathway. Cell Death Dis. 2014;5:e1513 pubmed 出版商
  626. Qin J, Rajaratnam R, Feng L, Salami J, Barber Rotenberg J, Domsic J, et al. Development of organometallic S6K1 inhibitors. J Med Chem. 2015;58:305-14 pubmed 出版商
  627. Gao S, Andreeva K, Cooper N. Ischemia-reperfusion injury of the retina is linked to necroptosis via the ERK1/2-RIP3 pathway. Mol Vis. 2014;20:1374-87 pubmed
  628. Alayev A, Berger S, Kramer M, Schwartz N, Holz M. The combination of rapamycin and resveratrol blocks autophagy and induces apoptosis in breast cancer cells. J Cell Biochem. 2015;116:450-7 pubmed 出版商
  629. Holland W, Chinn D, Lara P, Gandara D, Mack P. Effects of AKT inhibition on HGF-mediated erlotinib resistance in non-small cell lung cancer cell lines. J Cancer Res Clin Oncol. 2015;141:615-26 pubmed 出版商
  630. Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;3: pubmed 出版商
  631. Wang Y, Kuramitsu Y, Tokuda K, Baron B, Kitagawa T, Akada J, et al. Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer. PLoS ONE. 2014;9:e109076 pubmed 出版商
  632. Steffensen M, Fenger C, Christensen J, Jørgensen C, Bassi M, Christensen J, et al. Suppressors of cytokine signaling 1 and 3 are upregulated in brain resident cells in response to virus-induced inflammation of the central nervous system via at least two distinctive pathways. J Virol. 2014;88:14090-104 pubmed 出版商
  633. Krukenberg K, Jiang R, Steen J, Mitchison T. Basal activity of a PARP1-NuA4 complex varies dramatically across cancer cell lines. Cell Rep. 2014;8:1808-1818 pubmed 出版商
  634. Tao L, Chen C, Song H, Piccioni M, Shi G, Li B. Deubiquitination and stabilization of IL-33 by USP21. Int J Clin Exp Pathol. 2014;7:4930-7 pubmed
  635. Yang C, Chung A, Ku C, Brill L, Williams R, Wolf D. Systems analysis of the prostate tumor suppressor NKX3.1 supports roles in DNA repair and luminal cell differentiation. F1000Res. 2014;3:115 pubmed 出版商
  636. Kolosenko I, Fryknäs M, Forsberg S, Johnsson P, Cheon H, Holvey Bates E, et al. Cell crowding induces interferon regulatory factor 9, which confers resistance to chemotherapeutic drugs. Int J Cancer. 2015;136:E51-61 pubmed 出版商
  637. Yang C, Matsuura K, Huang N, Robeson A, Huang B, Zhang L, et al. Fatty acid synthase inhibition engages a novel caspase-2 regulatory mechanism to induce ovarian cancer cell death. Oncogene. 2015;34:3264-72 pubmed 出版商
  638. Casella C, Miller D, Lynch K, Brodsky A. Oxysterols synergize with statins by inhibiting SREBP-2 in ovarian cancer cells. Gynecol Oncol. 2014;135:333-41 pubmed 出版商
  639. Kemp M, Gaddameedhi S, Choi J, Hu J, Sancar A. DNA repair synthesis and ligation affect the processing of excised oligonucleotides generated by human nucleotide excision repair. J Biol Chem. 2014;289:26574-83 pubmed 出版商
  640. Allen K, Gourov A, HARTE C, Gao P, Lee C, Sylvain D, et al. Nucleolar integrity is required for the maintenance of long-term synaptic plasticity. PLoS ONE. 2014;9:e104364 pubmed 出版商
  641. Senturk S, Yao Z, Camiolo M, Stiles B, Rathod T, Walsh A, et al. p53? is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state. Proc Natl Acad Sci U S A. 2014;111:E3287-96 pubmed 出版商
  642. Smith C, Matheson T, Trombly D, Sun X, Campeau E, Han X, et al. A separable domain of the p150 subunit of human chromatin assembly factor-1 promotes protein and chromosome associations with nucleoli. Mol Biol Cell. 2014;25:2866-81 pubmed 出版商
  643. Roper S, Chrysanthou S, Senner C, Sienerth A, Gnan S, Murray A, et al. ADP-ribosyltransferases Parp1 and Parp7 safeguard pluripotency of ES cells. Nucleic Acids Res. 2014;42:8914-27 pubmed 出版商
  644. George S, Vishwamitra D, Manshouri R, Shi P, Amin H. The ALK inhibitor ASP3026 eradicates NPM-ALK? T-cell anaplastic large-cell lymphoma in vitro and in a systemic xenograft lymphoma model. Oncotarget. 2014;5:5750-63 pubmed
  645. Chihara T, Kitabayashi A, Morimoto M, Takeuchi K, Masuyama K, Tonoki A, et al. Caspase inhibition in select olfactory neurons restores innate attraction behavior in aged Drosophila. PLoS Genet. 2014;10:e1004437 pubmed 出版商
  646. Otani K, Dong Y, Li X, Lu J, Zhang N, Xu L, et al. Odd-skipped related 1 is a novel tumour suppressor gene and a potential prognostic biomarker in gastric cancer. J Pathol. 2014;234:302-15 pubmed 出版商
  647. FitzGerald J, Murillo L, O Brien G, O Connell E, O Connor A, Wu K, et al. A high through-put screen for small molecules modulating MCM2 phosphorylation identifies Ryuvidine as an inducer of the DNA damage response. PLoS ONE. 2014;9:e98891 pubmed 出版商
  648. Zeng L, Holly J, Perks C. Effects of physiological levels of the green tea extract epigallocatechin-3-gallate on breast cancer cells. Front Endocrinol (Lausanne). 2014;5:61 pubmed 出版商
  649. Raimondi L, Amodio N, Di Martino M, Altomare E, Leotta M, Caracciolo D, et al. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget. 2014;5:3039-54 pubmed
  650. Cazanave S, Wang X, Zhou H, Rahmani M, Grant S, Durrant D, et al. Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ. 2014;21:1303-12 pubmed 出版商
  651. Hegde V, Vogel R, Feany M. Glia are critical for the neuropathology of complex I deficiency in Drosophila. Hum Mol Genet. 2014;23:4686-92 pubmed 出版商
  652. Wang X, Stafford W, Mazurkiewicz M, Fryknäs M, Brjnic S, Zhang X, et al. The 19S Deubiquitinase inhibitor b-AP15 is enriched in cells and elicits rapid commitment to cell death. Mol Pharmacol. 2014;85:932-45 pubmed 出版商
  653. Chou C, Huang N, Jhuang S, Pan H, Peng N, Cheng J, et al. Ubiquitin-conjugating enzyme UBE2C is highly expressed in breast microcalcification lesions. PLoS ONE. 2014;9:e93934 pubmed 出版商
  654. Matsumoto T, Tabata K, Suzuki T. The GANT61, a GLI inhibitor, induces caspase-independent apoptosis of SK-N-LO cells. Biol Pharm Bull. 2014;37:633-41 pubmed
  655. Bhattacharyya S, Ghosh S, Sil P. Amelioration of aspirin induced oxidative impairment and apoptotic cell death by a novel antioxidant protein molecule isolated from the herb Phyllanthus niruri. PLoS ONE. 2014;9:e89026 pubmed 出版商
  656. Brubaker S, Gauthier A, Mills E, Ingolia N, Kagan J. A bicistronic MAVS transcript highlights a class of truncated variants in antiviral immunity. Cell. 2014;156:800-11 pubmed 出版商
  657. Nakajima W, Hicks M, Tanaka N, Krystal G, Harada H. Noxa determines localization and stability of MCL-1 and consequently ABT-737 sensitivity in small cell lung cancer. Cell Death Dis. 2014;5:e1052 pubmed 出版商
  658. Pavet V, Shlyakhtina Y, He T, Ceschin D, Kohonen P, Perala M, et al. Plasminogen activator urokinase expression reveals TRAIL responsiveness and supports fractional survival of cancer cells. Cell Death Dis. 2014;5:e1043 pubmed 出版商
  659. Cheng Y, Holloway M, Nguyen K, McCauley D, Landesman Y, Kauffman M, et al. XPO1 (CRM1) inhibition represses STAT3 activation to drive a survivin-dependent oncogenic switch in triple-negative breast cancer. Mol Cancer Ther. 2014;13:675-86 pubmed 出版商
  660. Colin Cassin C, Yao X, Cerella C, Chbicheb S, Kuntz S, Mazerbourg S, et al. PPAR?-inactive ?2-troglitazone independently triggers ER stress and apoptosis in breast cancer cells. Mol Carcinog. 2015;54:393-404 pubmed 出版商
  661. Rubio N, Verrax J, Dewaele M, Verfaillie T, Johansen T, Piette J, et al. p38(MAPK)-regulated induction of p62 and NBR1 after photodynamic therapy promotes autophagic clearance of ubiquitin aggregates and reduces reactive oxygen species levels by supporting Nrf2-antioxidant signaling. Free Radic Biol Med. 2014;67:292-303 pubmed 出版商
  662. Wang J, Chen J, Miller D, Li W. Synergistic combination of novel tubulin inhibitor ABI-274 and vemurafenib overcome vemurafenib acquired resistance in BRAFV600E melanoma. Mol Cancer Ther. 2014;13:16-26 pubmed 出版商
  663. Shats I, Gatza M, Liu B, Angus S, You L, Nevins J. FOXO transcription factors control E2F1 transcriptional specificity and apoptotic function. Cancer Res. 2013;73:6056-67 pubmed 出版商
  664. Tesoriere L, Attanzio A, Allegra M, Gentile C, Livrea M. Indicaxanthin inhibits NADPH oxidase (NOX)-1 activation and NF-?B-dependent release of inflammatory mediators and prevents the increase of epithelial permeability in IL-1?-exposed Caco-2 cells. Br J Nutr. 2014;111:415-23 pubmed 出版商
  665. Snyder A, Dulin Smith A, Houston R, Durban A, Brisbin B, Oostra T, et al. Expression pattern of id proteins in medulloblastoma. Pathol Oncol Res. 2013;19:437-46 pubmed 出版商
  666. Lonskaya I, Hebron M, Algarzae N, Desforges N, Moussa C. Decreased parkin solubility is associated with impairment of autophagy in the nigrostriatum of sporadic Parkinson's disease. Neuroscience. 2013;232:90-105 pubmed 出版商
  667. Lin Y, Richards F, Krippendorff B, Bramhall J, Harrington J, Bapiro T, et al. Paclitaxel and CYC3, an aurora kinase A inhibitor, synergise in pancreatic cancer cells but not bone marrow precursor cells. Br J Cancer. 2012;107:1692-701 pubmed 出版商
  668. Wu X, Ellmann S, Rubin E, Gil M, Jin K, Han L, et al. ADP ribosylation by PARP-1 suppresses HOXB7 transcriptional activity. PLoS ONE. 2012;7:e40644 pubmed 出版商
  669. Krajewska M, You Z, Rong J, Kress C, Huang X, Yang J, et al. Neuronal deletion of caspase 8 protects against brain injury in mouse models of controlled cortical impact and kainic acid-induced excitotoxicity. PLoS ONE. 2011;6:e24341 pubmed 出版商
  670. Sar P, Peter R, Rath B, Das Mohapatra A, Mishra S. 3, 3'5 Triiodo L thyronine induces apoptosis in human breast cancer MCF-7 cells, repressing SMP30 expression through negative thyroid response elements. PLoS ONE. 2011;6:e20861 pubmed 出版商
  671. Benatti P, Dolfini D, Vigano A, Ravo M, Weisz A, Imbriano C. Specific inhibition of NF-Y subunits triggers different cell proliferation defects. Nucleic Acids Res. 2011;39:5356-68 pubmed 出版商
  672. Wan F, Weaver A, Gao X, Bern M, Hardwidge P, Lenardo M. IKK? phosphorylation regulates RPS3 nuclear translocation and NF-?B function during infection with Escherichia coli strain O157:H7. Nat Immunol. 2011;12:335-43 pubmed 出版商
  673. Eisele G, Roth P, Hasenbach K, Aulwurm S, Wolpert F, Tabatabai G, et al. APO010, a synthetic hexameric CD95 ligand, induces human glioma cell death in vitro and in vivo. Neuro Oncol. 2011;13:155-64 pubmed 出版商
  674. Hirata H, Hinoda Y, Nakajima K, Kawamoto K, Kikuno N, Ueno K, et al. Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma. Int J Cancer. 2011;128:1793-803 pubmed 出版商
  675. Bombarde O, Boby C, Gomez D, Frit P, Giraud Panis M, Gilson E, et al. TRF2/RAP1 and DNA-PK mediate a double protection against joining at telomeric ends. EMBO J. 2010;29:1573-84 pubmed 出版商
  676. Yung T, Narita T, Komori T, Yamaguchi Y, Handa H. Cellular dynamics of the negative transcription elongation factor NELF. Exp Cell Res. 2009;315:1693-705 pubmed 出版商
  677. Zhu C, Wang X, Huang Z, Qiu L, Xu F, Vahsen N, et al. Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia. Cell Death Differ. 2007;14:775-84 pubmed
  678. Duensing A, Medeiros F, McConarty B, Joseph N, Panigrahy D, Singer S, et al. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene. 2004;23:3999-4006 pubmed