这是一篇来自已证抗体库的有关人类 PAX7的综述,是根据68篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合PAX7 抗体。
PAX7 同义词: HUP1; MYOSCO; PAX7B; RMS2

圣克鲁斯生物技术
小鼠 单克隆(PAX7)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术 PAX7抗体(Santa Cruz, sc-81648)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Int J Mol Sci (2022) ncbi
小鼠 单克隆(PAX7)
  • 免疫细胞化学; 小鼠; 1:200; 图 4a, 6d
圣克鲁斯生物技术 PAX7抗体(Santa Cruz, sc-81648)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4a, 6d). J Cell Mol Med (2021) ncbi
小鼠 单克隆(PAX7)
  • 免疫细胞化学; 小鼠; 1:1000; 图 4a
圣克鲁斯生物技术 PAX7抗体(Santa Cruz, sc-81648)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4a). Sci Adv (2021) ncbi
小鼠 单克隆(PAX7)
  • 免疫细胞化学; 小鼠; 1:200; 图 1a
圣克鲁斯生物技术 PAX7抗体(Santa Cruz, sc-81648)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1a). Nat Commun (2021) ncbi
小鼠 单克隆(PAX7)
  • 免疫细胞化学; 小鼠; 图 3d
圣克鲁斯生物技术 PAX7抗体(Santa Cruz, sc-81648)被用于被用于免疫细胞化学在小鼠样本上 (图 3d). Cell Rep (2021) ncbi
小鼠 单克隆(B-5)
  • 免疫细胞化学; 人类; 1:50; 图 1b
圣克鲁斯生物技术 PAX7抗体(Santa Cruz, sc-365843)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1b). J Neural Transm (Vienna) (2021) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化; 小鼠; 图 2a
圣克鲁斯生物技术 PAX7抗体(Santa Cruz, sc-81648)被用于被用于免疫组化在小鼠样本上 (图 2a). Stem Cells (2018) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; 小鼠; 图 1g
  • 免疫细胞化学; 小鼠; 图 1a, 1b
圣克鲁斯生物技术 PAX7抗体(Santa Cruz, sc-81648)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1g) 和 被用于免疫细胞化学在小鼠样本上 (图 1a, 1b). J Biol Chem (2017) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化; 小鼠; 1:50; 图 2b
圣克鲁斯生物技术 PAX7抗体(Santa Cruz, sc-81648)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(PAX7)
  • 免疫细胞化学; 小鼠; 1:100; 图 1a
圣克鲁斯生物技术 PAX7抗体(SantaCruz, sc-81648)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1a). Cell Discov (2016) ncbi
小鼠 单克隆(EE-8)
  • 免疫印迹; 小鼠; 1:500; 图 s6b
圣克鲁斯生物技术 PAX7抗体(Santa Cruz, sc-81975)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s6b). Nat Cell Biol (2016) ncbi
小鼠 单克隆(PAX7)
  • 免疫细胞化学; 小鼠; 图 1e
圣克鲁斯生物技术 PAX7抗体(Santa Cruz, sc-81648)被用于被用于免疫细胞化学在小鼠样本上 (图 1e). Methods Mol Biol (2016) ncbi
小鼠 单克隆(PAX7)
  • 免疫细胞化学; 小鼠; 图 4e
圣克鲁斯生物技术 PAX7抗体(Santa Cruz, sc- 81648)被用于被用于免疫细胞化学在小鼠样本上 (图 4e). Hum Mol Genet (2016) ncbi
小鼠 单克隆(PAX7)
  • 流式细胞仪; 小鼠; 1:50
圣克鲁斯生物技术 PAX7抗体(Santa, sc81648)被用于被用于流式细胞仪在小鼠样本上浓度为1:50. Nat Med (2014) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:20; 图 s9b
  • 免疫细胞化学; 小鼠; 1:20; 图 s1b
赛默飞世尔 PAX7抗体(Thermo, PA1-117)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20 (图 s9b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:20 (图 s1b). Nat Med (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 PAX7抗体(Thermo Scientific;, PA1?C117)被用于. Endocrinology (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4
艾博抗(上海)贸易有限公司 PAX7抗体(Abcam, ab187339)被用于被用于免疫细胞化学在人类样本上 (图 4). Int J Mol Med (2016) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(PAX7)
  • 免疫组化-石蜡切片; 斑马鱼; 图 s5a
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, PAX7)被用于被用于免疫组化-石蜡切片在斑马鱼样本上 (图 s5a). Cell Rep (2022) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化基因敲除验证; 小鼠; 1:50; 图 3a
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 3a
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, Pax7)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:50 (图 3a) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 3a). Nat Commun (2021) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; 小鼠; 1:10; 图 s3a
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, Pax7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10 (图 s3a). Skelet Muscle (2021) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s1b
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, Pax7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s1b). Nat Commun (2021) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3a
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, PAX7-c)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3a). Nat Commun (2021) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; 小鼠; 图 3a
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, PAX7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). J Clin Invest (2021) ncbi
小鼠 单克隆(PAX7)
  • 免疫细胞化学; 小鼠; 图 1g
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, pax7-c)被用于被用于免疫细胞化学在小鼠样本上 (图 1g). Cell Res (2020) ncbi
小鼠 单克隆(PAX7)
  • 免疫细胞化学; 人类; 1:10; 图 2b
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, PAX7)被用于被用于免疫细胞化学在人类样本上浓度为1:10 (图 2b). elife (2020) ncbi
小鼠 单克隆(PAX7)
  • 免疫细胞化学; 人类; 1:1000; 图 1b
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, pax7)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1b). elife (2020) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; 小鼠; 1:10; 图 s4a
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, Pax7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10 (图 s4a). Science (2019) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; 小鼠; 1:10; 图 4e
Developmental Studies Hybridoma Bank PAX7抗体(Developmental Studies Hybridoma Bank, pax7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10 (图 4e). elife (2019) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; 小鼠; 1:10; 图 s11c
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, PAX7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10 (图 s11c). Science (2019) ncbi
小鼠 单克隆(PAX7)
  • 免疫细胞化学; 小鼠; 1:40; 图 2f
Developmental Studies Hybridoma Bank PAX7抗体(DHSB, AB_528428)被用于被用于免疫细胞化学在小鼠样本上浓度为1:40 (图 2f). Cell Stem Cell (2018) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; degu; 1:1000; 图 11
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, Pax7)被用于被用于免疫组化-冰冻切片在degu样本上浓度为1:1000 (图 11). J Comp Neurol (2019) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; 小鼠; 1:5-1:10; 图 5a
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, PAX7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5-1:10 (图 5a). Hum Mol Genet (2018) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; 小鼠; 1:20; 图 1c
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, PAX7-c)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20 (图 1c). elife (2018) ncbi
小鼠 单克隆(PAX7)
  • 免疫印迹; 小鼠; 图 1b
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, pax7)被用于被用于免疫印迹在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, AB_528428)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). J Biol Chem (2017) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; 人类; 图 1
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, Pax7)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1). J Physiol (2017) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; 小鼠; 1:10; 图 4a
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, pax7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10 (图 4a). elife (2017) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; 小鼠; 图 12B
Developmental Studies Hybridoma Bank PAX7抗体(Developmental Studies Hybridoma Bank, pax7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 12B). EBioMedicine (2017) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化; 小鼠; 图 2A
  • 免疫印迹; 小鼠; 图 4B; 5D
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, Palmd)被用于被用于免疫组化在小鼠样本上 (图 2A) 和 被用于免疫印迹在小鼠样本上 (图 4B; 5D). Sci Rep (2017) ncbi
小鼠 单克隆(PAX7)
  • 免疫细胞化学; 小鼠; 1:10; 图 1a
  • 免疫印迹; 小鼠; 1:50; 图 1c
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, PAX7)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:50 (图 1c). Nat Commun (2017) ncbi
小鼠 单克隆(PAX7)
  • 免疫细胞化学; 小鼠; 图 1c
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, Pax7)被用于被用于免疫细胞化学在小鼠样本上 (图 1c). Skelet Muscle (2016) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化; 人类; 1:100; 图 2b
Developmental Studies Hybridoma Bank PAX7抗体(Developmental Studies Hybridoma Bank, Pax7-C)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2b). Front Physiol (2016) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化; 小鼠
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, AB 528428)被用于被用于免疫组化在小鼠样本上. J Cell Physiol (2017) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化; 小鼠; 图 3a
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, AB528428)被用于被用于免疫组化在小鼠样本上 (图 3a). J Cell Sci (2016) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化; 小鼠; 图 2
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, Pax7)被用于被用于免疫组化在小鼠样本上 (图 2). elife (2016) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化; 人类; 1:100
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, PAX7)被用于被用于免疫组化在人类样本上浓度为1:100. Physiol Rep (2016) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化; 小鼠; 1:25; 图 2e
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, PAX7)被用于被用于免疫组化在小鼠样本上浓度为1:25 (图 2e). J Clin Invest (2016) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-自由浮动切片; 非洲爪蛙; 1:500; 表 2
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, PAX7)被用于被用于免疫组化-自由浮动切片在非洲爪蛙样本上浓度为1:500 (表 2). J Comp Neurol (2017) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; 小鼠; 1:5; 图 1a
Developmental Studies Hybridoma Bank PAX7抗体(Developmental Studies Hybridoma Study Bank, AB 528428)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5 (图 1a). Development (2016) ncbi
小鼠 单克隆(PAX7)
  • 免疫细胞化学; 小鼠; 1:20; 图 s1b
  • 免疫组化; 小鼠; 1:20; 图 s9b
Developmental Studies Hybridoma Bank PAX7抗体(Developmental Studies Hybridoma Bank, PAX7)被用于被用于免疫细胞化学在小鼠样本上浓度为1:20 (图 s1b) 和 被用于免疫组化在小鼠样本上浓度为1:20 (图 s9b). Nat Med (2016) ncbi
小鼠 单克隆(PAX7)
  • 免疫印迹; 大鼠; 1:500; 图 1
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, PAX7)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 1). Cell Signal (2016) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化; 小鼠; 1:100; 图 2
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, Pax7)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(PAX7)
  • 免疫细胞化学; 人类; 1:250; 图 s1
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, PAX7-c)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 s1). Nat Neurosci (2016) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; Japanese common newt; 1:200; 图 1g
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, PAX7-c)被用于被用于免疫组化-冰冻切片在Japanese common newt样本上浓度为1:200 (图 1g). Nat Commun (2016) ncbi
小鼠 单克隆(PAX7)
  • 免疫细胞化学; 小鼠; 图 s11
Developmental Studies Hybridoma Bank PAX7抗体(Developmental Studies Hybridoma Bank, PAX7)被用于被用于免疫细胞化学在小鼠样本上 (图 s11). Nat Commun (2016) ncbi
小鼠 单克隆(PAX7)
  • 免疫印迹; 人类; 1:500; 图 4
Developmental Studies Hybridoma Bank PAX7抗体(Developmental Studies Hybridoma Bank, AB 528428)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Development (2016) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; 小鼠; 1:10; 图 3
  • 免疫细胞化学; 小鼠; 1:10; 图 5
  • 免疫印迹; 小鼠; 1:1000; 图 5
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, Pax7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10 (图 3), 被用于免疫细胞化学在小鼠样本上浓度为1:10 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化; 人类; 1:50; 图 1
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, PAX7)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化; 鸡; 1:20; 图 s3i
Developmental Studies Hybridoma Bank PAX7抗体(Developmental Studies Hybridoma Bank, -)被用于被用于免疫组化在鸡样本上浓度为1:20 (图 s3i). Dis Model Mech (2015) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化; 斑马鱼; 1:100; 图 3
Developmental Studies Hybridoma Bank PAX7抗体(Developmental Studies Hybridoma Bank, pax7)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化; 小鼠; 1:50
Developmental Studies Hybridoma Bank PAX7抗体(Developmental Studies Hybridoma Bank, Pax7)被用于被用于免疫组化在小鼠样本上浓度为1:50. PLoS ONE (2015) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; 小鼠
Developmental Studies Hybridoma Bank PAX7抗体(Developmental Studies Hybridoma Bank, PAX7)被用于被用于免疫组化-冰冻切片在小鼠样本上. FASEB J (2014) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-自由浮动切片; Spanish newt; 1:500
Developmental Studies Hybridoma Bank PAX7抗体(Developmental Studies Hybridoma Bank, PAX7)被用于被用于免疫组化-自由浮动切片在Spanish newt样本上浓度为1:500. J Comp Neurol (2013) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化; 大鼠
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, PAX7)被用于被用于免疫组化在大鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-石蜡切片; 鸡; 1:100
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, PAX7)被用于被用于免疫组化-石蜡切片在鸡样本上浓度为1:100. J Comp Neurol (2013) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-自由浮动切片; Spanish newt; 1:500
  • 免疫印迹; Spanish newt
  • 免疫印迹; 大鼠
Developmental Studies Hybridoma Bank PAX7抗体(Developmental Studies Hybridoma Bank, PAX7)被用于被用于免疫组化-自由浮动切片在Spanish newt样本上浓度为1:500, 被用于免疫印迹在Spanish newt样本上 和 被用于免疫印迹在大鼠样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-石蜡切片; 小鼠; 1:100
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, Pax7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Biomaterials (2013) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化; dime-store turtle; 1:500
Developmental Studies Hybridoma Bank PAX7抗体(Developmental Studies Hybridoma Bank, PAX7)被用于被用于免疫组化在dime-store turtle样本上浓度为1:500. J Comp Neurol (2012) ncbi
小鼠 单克隆(PAX7)
  • 免疫组化-冰冻切片; 小鼠; 1:10
Developmental Studies Hybridoma Bank PAX7抗体(DSHB, PAX7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10. J Comp Neurol (2007) ncbi
文章列表
  1. Capitanio D, Moriggi M, Barbacini P, Torretta E, Moroni I, Blasevich F, et al. Molecular Fingerprint of BMD Patients Lacking a Portion in the Rod Domain of Dystrophin. Int J Mol Sci. 2022;23: pubmed 出版商
  2. Hsu J, Danis E, Nance S, O Brien J, Gustafson A, Wessells V, et al. SIX1 reprograms myogenic transcription factors to maintain the rhabdomyosarcoma undifferentiated state. Cell Rep. 2022;38:110323 pubmed 出版商
  3. Chen X, Yuan J, Xue G, Campanario S, Wang D, Wang W, et al. Translational control by DHX36 binding to 5'UTR G-quadruplex is essential for muscle stem-cell regenerative functions. Nat Commun. 2021;12:5043 pubmed 出版商
  4. Song R, Zhao S, Xu Y, Hu J, Ke S, Li F, et al. MRTF-A regulates myoblast commitment to differentiation by targeting PAX7 during muscle regeneration. J Cell Mol Med. 2021;25:8645-8661 pubmed 出版商
  5. Yoshioka K, Nagahisa H, Miura F, Araki H, Kamei Y, Kitajima Y, et al. Hoxa10 mediates positional memory to govern stem cell function in adult skeletal muscle. Sci Adv. 2021;7: pubmed 出版商
  6. Esteves de Lima J, Bou Akar R, Machado L, Li Y, Drayton Libotte B, Dilworth F, et al. HIRA stabilizes skeletal muscle lineage identity. Nat Commun. 2021;12:3450 pubmed 出版商
  7. Kurosaka M, Ogura Y, Sato S, Kohda K, Funabashi T. Transcription factor signal transducer and activator of transcription 6 (STAT6) is an inhibitory factor for adult myogenesis. Skelet Muscle. 2021;11:14 pubmed 出版商
  8. Tichy E, Ma N, Sidibe D, Loro E, Kocan J, Chen D, et al. Persistent NF-κB activation in muscle stem cells induces proliferation-independent telomere shortening. Cell Rep. 2021;35:109098 pubmed 出版商
  9. Seo J, Kang J, Kim Y, Jo Y, Kim J, Hann S, et al. Maintenance of type 2 glycolytic myofibers with age by Mib1-Actn3 axis. Nat Commun. 2021;12:1294 pubmed 出版商
  10. Jansch C, Ziegler G, Forero A, Gredy S, W xe4 ldchen S, Vitale M, et al. Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly. J Neural Transm (Vienna). 2021;128:225-241 pubmed 出版商
  11. Ramirez Martinez A, Zhang Y, Chen K, Kim J, Cenik B, McAnally J, et al. The nuclear envelope protein Net39 is essential for muscle nuclear integrity and chromatin organization. Nat Commun. 2021;12:690 pubmed 出版商
  12. Uezumi A, Ikemoto Uezumi M, Zhou H, Kurosawa T, Yoshimoto Y, Nakatani M, et al. Mesenchymal Bmp3b expression maintains skeletal muscle integrity and decreases in age-related sarcopenia. J Clin Invest. 2021;131: pubmed 出版商
  13. Zhou S, Zhang W, Cai G, Ding Y, Wei C, Li S, et al. Myofiber necroptosis promotes muscle stem cell proliferation via releasing Tenascin-C during regeneration. Cell Res. 2020;30:1063-1077 pubmed 出版商
  14. Barruet E, Garcia S, Striedinger K, Wu J, Lee S, Byrnes L, et al. Functionally heterogeneous human satellite cells identified by single cell RNA sequencing. elife. 2020;9: pubmed 出版商
  15. Choi I, Lim H, Cho H, Oh Y, Chou B, Bai H, et al. Transcriptional landscape of myogenesis from human pluripotent stem cells reveals a key role of TWIST1 in maintenance of skeletal muscle progenitors. elife. 2020;9: pubmed 出版商
  16. de Morrée A, Klein J, Gan Q, Farup J, Urtasun A, Kanugovi A, et al. Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function. Science. 2019;366:734-738 pubmed 出版商
  17. Jia Z, Nie Y, Yue F, Kong Y, Gu L, Gavin T, et al. A requirement of Polo-like kinase 1 in murine embryonic myogenesis and adult muscle regeneration. elife. 2019;8: pubmed 出版商
  18. Soldatov R, Kaucka M, Kastriti M, Petersen J, Chontorotzea T, Englmaier L, et al. Spatiotemporal structure of cell fate decisions in murine neural crest. Science. 2019;364: pubmed 出版商
  19. Baghdadi M, Firmino J, Soni K, Evano B, Di Girolamo D, Mourikis P, et al. Notch-Induced miR-708 Antagonizes Satellite Cell Migration and Maintains Quiescence. Cell Stem Cell. 2018;23:859-868.e5 pubmed 出版商
  20. Deichler A, Carrasco D, González Cabrera C, Letelier J, Mar n G, Mpodozis J. The nucleus pretectalis principalis: A pretectal structure hidden in the mammalian thalamus. J Comp Neurol. 2019;527:372-391 pubmed 出版商
  21. Gallot Y, Straughn A, Bohnert K, Xiong G, Hindi S, Kumar A. MyD88 is required for satellite cell-mediated myofiber regeneration in dystrophin-deficient mdx mice. Hum Mol Genet. 2018;27:3449-3463 pubmed 出版商
  22. Alonso Martin S, Aurade F, Mademtzoglou D, Rochat A, Zammit P, Relaix F. SOXF factors regulate murine satellite cell self-renewal and function through inhibition of β-catenin activity. elife. 2018;7: pubmed 出版商
  23. Fujimaki S, Seko D, Kitajima Y, Yoshioka K, Tsuchiya Y, Masuda S, et al. Notch1 and Notch2 Coordinately Regulate Stem Cell Function in the Quiescent and Activated States of Muscle Satellite Cells. Stem Cells. 2018;36:278-285 pubmed 出版商
  24. de Morrée A, van Velthoven C, Gan Q, Salvi J, Klein J, Akimenko I, et al. Staufen1 inhibits MyoD translation to actively maintain muscle stem cell quiescence. Proc Natl Acad Sci U S A. 2017;114:E8996-E9005 pubmed 出版商
  25. Kokabu S, Nakatomi C, Matsubara T, Ono Y, Addison W, Lowery J, et al. The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor. J Biol Chem. 2017;292:12885-12894 pubmed 出版商
  26. Ho A, Palla A, Blake M, Yucel N, Wang Y, Magnusson K, et al. Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength. Proc Natl Acad Sci U S A. 2017;114:6675-6684 pubmed 出版商
  27. Zhu X, Yuan X, Wang M, Fang Y, Liu Y, Zhang X, et al. A Wnt/Notch/Pax7 signaling network supports tissue integrity in tongue development. J Biol Chem. 2017;292:9409-9419 pubmed 出版商
  28. Mackey A, Magnan M, Chazaud B, Kjaer M. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration. J Physiol. 2017;595:5115-5127 pubmed 出版商
  29. Xiong G, Hindi S, Mann A, Gallot Y, Bohnert K, Cavener D, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. elife. 2017;6: pubmed 出版商
  30. Shen C, Zhou J, Wang X, Yu X, Liang C, Liu B, et al. Angiotensin-II-induced Muscle Wasting is Mediated by 25-Hydroxycholesterol via GSK3? Signaling Pathway. EBioMedicine. 2017;16:238-250 pubmed 出版商
  31. Nie Y, Chen H, Guo C, Yuan Z, Zhou X, Zhang Y, et al. Palmdelphin promotes myoblast differentiation and muscle regeneration. Sci Rep. 2017;7:41608 pubmed 出版商
  32. Yue F, Bi P, Wang C, Shan T, Nie Y, Ratliff T, et al. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat Commun. 2017;8:14328 pubmed 出版商
  33. Lala Tabbert N, AlSudais H, Marchildon F, Fu D, Wiper Bergeron N. CCAAT/enhancer binding protein β is required for satellite cell self-renewal. Skelet Muscle. 2016;6:40 pubmed
  34. McKenzie A, D Lugos A, Saunders M, Gworek K, Luden N. Fiber Type-Specific Satellite Cell Content in Cyclists Following Heavy Training with Carbohydrate and Carbohydrate-Protein Supplementation. Front Physiol. 2016;7:550 pubmed
  35. Ross J, Pearson A, Levy Y, Cardel B, Handschin C, Ochala J. Exploring the Role of PGC-1? in Defining Nuclear Organisation in Skeletal Muscle Fibres. J Cell Physiol. 2017;232:1270-1274 pubmed 出版商
  36. Beyer S, Pontis J, Schirwis E, Battisti V, Rudolf A, Le Grand F, et al. Canonical Wnt signalling regulates nuclear export of Setdb1 during skeletal muscle terminal differentiation. Cell Discov. 2016;2:16037 pubmed
  37. Strikoudis A, Lazaris C, Trimarchi T, Galvao Neto A, Yang Y, Ntziachristos P, et al. Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a. Nat Cell Biol. 2016;18:1127-1138 pubmed 出版商
  38. Knopp P, Krom Y, Banerji C, Panamarova M, Moyle L, den Hamer B, et al. DUX4 induces a transcriptome more characteristic of a less-differentiated cell state and inhibits myogenesis. J Cell Sci. 2016;129:3816-3831 pubmed
  39. Southard S, Kim J, Low S, Tsika R, Lepper C. Myofiber-specific TEAD1 overexpression drives satellite cell hyperplasia and counters pathological effects of dystrophin deficiency. elife. 2016;5: pubmed 出版商
  40. Murach K, Walton R, Fry C, Michaelis S, Groshong J, Finlin B, et al. Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise. Physiol Rep. 2016;4: pubmed 出版商
  41. Xie X, Tsai S, Tsai M. COUP-TFII regulates satellite cell function and muscular dystrophy. J Clin Invest. 2016;126:3929-3941 pubmed 出版商
  42. Morona R, Ferran J, Puelles L, González A. Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis. J Comp Neurol. 2017;525:715-752 pubmed 出版商
  43. Egner I, Bruusgaard J, Gundersen K. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle. Development. 2016;143:2898-906 pubmed 出版商
  44. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed 出版商
  45. Puchert M, Adams V, Linke A, Engele J. Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise. Cell Signal. 2016;28:1205-15 pubmed 出版商
  46. Yao Y, Norris E, Mason C, Strickland S. Laminin regulates PDGFR?(+) cell stemness and muscle development. Nat Commun. 2016;7:11415 pubmed 出版商
  47. Xue Y, Qian H, Hu J, Zhou B, Zhou Y, Hu X, et al. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nat Neurosci. 2016;19:807-15 pubmed 出版商
  48. Kitajima Y, Ogawa S, Ono Y. Visualizing the Functional Heterogeneity of Muscle Stem Cells. Methods Mol Biol. 2016;1516:183-193 pubmed 出版商
  49. Park S, Choi Y, Jung N, Yu Y, Ryu K, Kim H, et al. Myogenic differentiation potential of human tonsil-derived mesenchymal stem cells and their potential for use to promote skeletal muscle regeneration. Int J Mol Med. 2016;37:1209-20 pubmed 出版商
  50. Tanaka H, Ng N, Yang Yu Z, Casco Robles M, Maruo F, Tsonis P, et al. A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts. Nat Commun. 2016;7:11069 pubmed 出版商
  51. Davignon L, Chauveau C, Julien C, Dill C, Duband Goulet I, Cabet E, et al. The transcription coactivator ASC-1 is a regulator of skeletal myogenesis, and its deficiency causes a novel form of congenital muscle disease. Hum Mol Genet. 2016;25:1559-73 pubmed 出版商
  52. Park S, Yun Y, Lim J, Kim M, Kim S, Kim J, et al. Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration. Nat Commun. 2016;7:10871 pubmed 出版商
  53. Farini A, Sitzia C, Cassinelli L, Colleoni F, Parolini D, Giovanella U, et al. Inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling mediates delayed myogenesis in Duchenne muscular dystrophy fetal muscle. Development. 2016;143:658-69 pubmed 出版商
  54. Ogura Y, Hindi S, Sato S, Xiong G, Akira S, Kumar A. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun. 2015;6:10123 pubmed 出版商
  55. Dubois V, Simitsidellis I, Laurent M, Jardí F, Saunders P, Vanderschueren D, et al. Enobosarm (GTx-024) Modulates Adult Skeletal Muscle Mass Independently of the Androgen Receptor in the Satellite Cell Lineage. Endocrinology. 2015;156:4522-33 pubmed 出版商
  56. Hoeber J, Trolle C, König N, Du Z, Gallo A, Hermans E, et al. Human Embryonic Stem Cell-Derived Progenitors Assist Functional Sensory Axon Regeneration after Dorsal Root Avulsion Injury. Sci Rep. 2015;5:10666 pubmed 出版商
  57. Schock E, Chang C, Struve J, Chang Y, Chang J, Delany M, et al. Using the avian mutant talpid2 as a disease model for understanding the oral-facial phenotypes of oral-facial-digital syndrome. Dis Model Mech. 2015;8:855-66 pubmed 出版商
  58. Solchenberger B, Russell C, Kremmer E, Haass C, Schmid B. Granulin knock out zebrafish lack frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis pathology. PLoS ONE. 2015;10:e0118956 pubmed 出版商
  59. Feeney S, McGrath M, Sriratana A, Gehrig S, Lynch G, D Arcy C, et al. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1). PLoS ONE. 2015;10:e0117665 pubmed 出版商
  60. Cosgrove B, Gilbert P, Porpiglia E, Mourkioti F, Lee S, Corbel S, et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med. 2014;20:255-64 pubmed 出版商
  61. Labarge S, McDonald M, Smith Powell L, Auwerx J, Huss J. Estrogen-related receptor-? (ERR?) deficiency in skeletal muscle impairs regeneration in response to injury. FASEB J. 2014;28:1082-97 pubmed 出版商
  62. Joven A, Morona R, González A, Moreno N. Spatiotemporal patterns of Pax3, Pax6, and Pax7 expression in the developing brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol. 2013;521:3913-53 pubmed 出版商
  63. Przewoźniak M, Czaplicka I, Czerwinska A, Markowska Zagrajek A, Moraczewski J, Stremińska W, et al. Adhesion proteins--an impact on skeletal myoblast differentiation. PLoS ONE. 2013;8:e61760 pubmed 出版商
  64. Kobayashi N, Homma S, Okada T, Masuda T, Sato N, Nishiyama K, et al. Elucidation of target muscle and detailed development of dorsal motor neurons in chick embryo spinal cord. J Comp Neurol. 2013;521:2987-3002 pubmed 出版商
  65. Joven A, Morona R, González A, Moreno N. Expression patterns of Pax6 and Pax7 in the adult brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol. 2013;521:2088-124 pubmed 出版商
  66. Criswell T, Corona B, Wang Z, Zhou Y, Niu G, Xu Y, et al. The role of endothelial cells in myofiber differentiation and the vascularization and innervation of bioengineered muscle tissue in vivo. Biomaterials. 2013;34:140-9 pubmed 出版商
  67. Moreno N, Dominguez L, Morona R, González A. Subdivisions of the turtle Pseudemys scripta hypothalamus based on the expression of regulatory genes and neuronal markers. J Comp Neurol. 2012;520:453-78 pubmed 出版商
  68. Vue T, Aaker J, Taniguchi A, Kazemzadeh C, Skidmore J, Martin D, et al. Characterization of progenitor domains in the developing mouse thalamus. J Comp Neurol. 2007;505:73-91 pubmed