这是一篇来自已证抗体库的有关人类 PDCD1的综述,是根据208篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合PDCD1 抗体。
PDCD1 同义词: CD279; PD-1; PD1; SLEB2; hPD-1; hPD-l; hSLE1

BioLegend
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 1:50; 图 2h
BioLegend PDCD1抗体(Biolegend, 329904)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2h). Nat Commun (2022) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 1:50
BioLegend PDCD1抗体(BioLegend, 329924)被用于被用于流式细胞仪在人类样本上浓度为1:50. Life Sci Alliance (2022) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 1:100; 图 1e
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1e). Cell Mol Life Sci (2022) ncbi
小鼠 单克隆(NAT105)
  • 流式细胞仪; 人类; 图 s7a
BioLegend PDCD1抗体(BioLegend, 367406)被用于被用于流式细胞仪在人类样本上 (图 s7a). Sci Adv (2022) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 s5b, s9a
BioLegend PDCD1抗体(Biolegend, 329908)被用于被用于流式细胞仪在人类样本上 (图 s5b, s9a). Mol Cancer (2022) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 1b, 1d
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 1b, 1d). Nat Commun (2022) ncbi
小鼠 单克隆(EH12.2H7)
  • mass cytometry; 人类; 图 s4a
BioLegend PDCD1抗体(Biolegend, 329941)被用于被用于mass cytometry在人类样本上 (图 s4a). Biomark Res (2022) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 1:50; 图 2a
BioLegend PDCD1抗体(Biolegend, 329908)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2a). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 1c
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 1c). Front Immunol (2021) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 4b
BioLegend PDCD1抗体(Biolegend, 329923)被用于被用于流式细胞仪在人类样本上 (图 4b). Cell Rep Med (2021) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 3g
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 3g). J Immunother Cancer (2021) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上. Aging Cell (2021) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 2
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 2). Aging Cell (2021) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 s3c, 7a
BioLegend PDCD1抗体(Biolegend, 329927)被用于被用于流式细胞仪在人类样本上 (图 s3c, 7a). Am J Respir Crit Care Med (2021) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 s3g
BioLegend PDCD1抗体(BioLegend, 329908)被用于被用于流式细胞仪在人类样本上 (图 s3g). Cell (2021) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类
BioLegend PDCD1抗体(Biolegend, 329941)被用于被用于流式细胞仪在人类样本上. elife (2020) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化; 人类; 图 1b
BioLegend PDCD1抗体(Biolegend, 367402)被用于被用于免疫组化在人类样本上 (图 1b). elife (2020) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 5a
BioLegend PDCD1抗体(BioLegend, 329920)被用于被用于流式细胞仪在人类样本上 (图 5a). elife (2020) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 2c
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 2c). J Immunother Cancer (2020) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类
BioLegend PDCD1抗体(BioLegend, 329907)被用于被用于流式细胞仪在人类样本上. J Clin Invest (2020) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 1:100
BioLegend PDCD1抗体(Biolegend, 329920)被用于被用于流式细胞仪在人类样本上浓度为1:100. bioRxiv (2020) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 s6d
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 s6d). J Clin Invest (2020) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 2d
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 2d). Arthritis Res Ther (2020) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 5b
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 5b). Sci Adv (2020) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 s12a
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 s12a). Nat Commun (2020) ncbi
小鼠 单克隆(EH12.2H7)
  • 抑制或激活实验; 人类; ; 图 s12a
BioLegend PDCD1抗体(Biolegend, 329946)被用于被用于抑制或激活实验在人类样本上浓度为 (图 s12a). Nat Commun (2019) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 1b
BioLegend PDCD1抗体(Biolegend, 329930)被用于被用于流式细胞仪在人类样本上 (图 1b). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 7d
BioLegend PDCD1抗体(Biolegend, 329906)被用于被用于流式细胞仪在人类样本上 (图 7d). Oncoimmunology (2019) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 s1
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 s1). J Exp Med (2019) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 3b
BioLegend PDCD1抗体(Biolegend, 329920)被用于被用于流式细胞仪在人类样本上 (图 3b). Cell Rep (2019) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 4d
BioLegend PDCD1抗体(Biolegend, 329918)被用于被用于流式细胞仪在人类样本上 (图 4d). Diagn Pathol (2019) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 2b
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 2b). Front Immunol (2019) ncbi
小鼠 单克隆(EH12.2H7)
  • mass cytometry; 人类; 图 2b
BioLegend PDCD1抗体(Biolegend, 329902)被用于被用于mass cytometry在人类样本上 (图 2b). Cell (2019) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 2c
BioLegend PDCD1抗体(Biolegend, 329916)被用于被用于流式细胞仪在人类样本上 (图 2c). Nature (2019) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 9a
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 9a). J Exp Med (2019) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 4a
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 4a). J Virol (2019) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 5d, 5e
BioLegend PDCD1抗体(BioLegend, 329920)被用于被用于流式细胞仪在人类样本上 (图 5d, 5e). Cell (2018) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 猕猴; 图 2a
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在猕猴样本上 (图 2a). J Virol (2019) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 s1d
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 s1d). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 1a
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 1a). J Virol (2019) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 1:100
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上浓度为1:100. Nature (2018) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 猕猴; 图 2b
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在猕猴样本上 (图 2b). J Virol (2019) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 4c
BioLegend PDCD1抗体(Biolegend, 329906)被用于被用于流式细胞仪在人类样本上 (图 4c). J Clin Invest (2018) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 3d
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 3d). Clin Exp Immunol (2018) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 5h, 6k
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 5h, 6k). Cancer Res (2018) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 1b
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 1b). J Clin Invest (2018) ncbi
小鼠 单克隆(EH12.2H7)
  • 免疫组化-冰冻切片; 人类; 图 1a
  • 流式细胞仪; 人类; 图 1b
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1a) 和 被用于流式细胞仪在人类样本上 (图 1b). J Exp Med (2018) ncbi
小鼠 单克隆(NAT105)
  • 流式细胞仪; 人类; 图 5a
BioLegend PDCD1抗体(BioLegend, NKT105)被用于被用于流式细胞仪在人类样本上 (图 5a). Int J Infect Dis (2018) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 仓鼠; 图 s5
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在仓鼠样本上 (图 s5). MAbs (2018) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 s2e
BioLegend PDCD1抗体(BioLegend, 329913)被用于被用于流式细胞仪在人类样本上 (图 s2e). Cell (2018) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 s1a
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Immunol (2018) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 s2k
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 s2k). Nature (2017) ncbi
小鼠 单克隆(EH12.2H7)
  • mass cytometry; 人类; 图 2a
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于mass cytometry在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 st1
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 st1). Nature (2017) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 表 s3
BioLegend PDCD1抗体(biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (表 s3). Cell (2017) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 5b
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 5b). Cancer Res (2017) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; African green monkey; 图 s4
BioLegend PDCD1抗体(biolegend, EH12.2H7)被用于被用于流式细胞仪在African green monkey样本上 (图 s4). Nature (2017) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 s2a
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 s2a). Immun Ageing (2017) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 表 s9
BioLegend PDCD1抗体(BioLegend, 329920)被用于被用于流式细胞仪在人类样本上 (表 s9). Nature (2017) ncbi
小鼠 单克隆(EH12.2H7)
BioLegend PDCD1抗体(Biolegend, 329919)被用于. Oncoimmunology (2017) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 猕猴; 图 s4f
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在猕猴样本上 (图 s4f). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(EH12.2H7)
  • 免疫组化-冰冻切片; 人类; 1:100
  • 流式细胞仪; 人类
BioLegend PDCD1抗体(biolegend, EH12.2H7)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 和 被用于流式细胞仪在人类样本上. Nature (2017) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上. Sci Rep (2017) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Clin Invest (2017) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 s2b
BioLegend PDCD1抗体(biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 s2b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 s8
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 s8). Science (2016) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 猕猴; 图 s11c
BioLegend PDCD1抗体(BioLegend, 329916)被用于被用于流式细胞仪在猕猴样本上 (图 s11c). Science (2016) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 s3a
BioLegend PDCD1抗体(Biolegend, 329908)被用于被用于流式细胞仪在人类样本上 (图 s3a). PLoS Pathog (2016) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 1a
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 1a). J Clin Invest (2016) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 s9b
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 s9b). Nature (2016) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 3b
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 3b). Clin Cancer Res (2017) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 猕猴
BioLegend PDCD1抗体(BioLegend, 329924)被用于被用于流式细胞仪在猕猴样本上. Nat Med (2016) ncbi
小鼠 单克隆(EH12.2H7)
BioLegend PDCD1抗体(BioLegend, 329904)被用于. EMBO Mol Med (2016) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 s3
BioLegend PDCD1抗体(Biolegend, EH12-2HT)被用于被用于流式细胞仪在人类样本上 (图 s3). Nature (2016) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 3
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 3). Am J Transplant (2016) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 3??
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 3??). Science (2016) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 4, 5
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 4, 5). PLoS Pathog (2016) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 1a
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 1a). PLoS ONE (2015) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 猕猴; 图 5a
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在猕猴样本上 (图 5a). PLoS ONE (2015) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 2a
BioLegend PDCD1抗体(BioLegend, EH12.2.H7)被用于被用于流式细胞仪在人类样本上 (图 2a). Eur J Immunol (2016) ncbi
小鼠 单克隆(EH12.2H7)
BioLegend PDCD1抗体(BioLegend, 329908)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 1
BioLegend PDCD1抗体(Biolegend, clone EH12.2H7)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(EH12.2H7)
  • 抑制或激活实验; 人类; 图 8
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于抑制或激活实验在人类样本上 (图 8). PLoS Pathog (2015) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2015) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类
BioLegend PDCD1抗体(Biolegend, EH12.2 H7)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; African green monkey; 图 s4a
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在African green monkey样本上 (图 s4a). PLoS Pathog (2015) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上. Hum Immunol (2015) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上. Int J Oncol (2015) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 猕猴
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(EH12.2H7)
  • 抑制或激活实验; 人类
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于抑制或激活实验在人类样本上. J Hepatol (2015) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 猕猴
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在猕猴样本上. Antimicrob Agents Chemother (2014) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(EH12.2H7)
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于. Clin Cancer Res (2014) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 猕猴; 图 s1c
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在猕猴样本上 (图 s1c). J Immunol (2014) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(EH12.2H7)
  • 免疫细胞化学; 人类
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于免疫细胞化学在人类样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 0.7:100
BioLegend PDCD1抗体(Biolegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上浓度为0.7:100. J Clin Invest (2014) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类; 图 1
BioLegend PDCD1抗体(Biolegend, EH12.1)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Immunother (2014) ncbi
小鼠 单克隆(EH12.2H7)
  • 流式细胞仪; 人类
BioLegend PDCD1抗体(BioLegend, EH12.2H7)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2012) ncbi
赛默飞世尔
小鼠 单克隆(eBioJ105 (J105))
  • 流式细胞仪; 人类; 图 s9b
赛默飞世尔 PDCD1抗体(eBioscience, 25-2799-42)被用于被用于流式细胞仪在人类样本上 (图 s9b). Science (2021) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 4b
赛默飞世尔 PDCD1抗体(eBioscience, MIH4)被用于被用于流式细胞仪在人类样本上 (图 4b). BMC Immunol (2020) ncbi
小鼠 单克隆(eBioJ105 (J105))
  • 流式细胞仪; 人类; 1:25; 图 1f
赛默飞世尔 PDCD1抗体(eBioscience, eBioJ105)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 1f). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛默飞世尔 PDCD1抗体(Thermo Fisher, PA5-20350)被用于被用于免疫印迹在人类样本上 (图 5c). Sci Adv (2020) ncbi
小鼠 单克隆(eBioJ105 (J105))
  • 流式细胞仪; 小鼠; 图 6c
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 PDCD1抗体(eBioscience, eBio J105)被用于被用于流式细胞仪在小鼠样本上 (图 6c) 和 被用于流式细胞仪在人类样本上 (图 1b). Nature (2019) ncbi
小鼠 单克隆(eBioJ105 (J105))
  • 流式细胞仪; 人类; 1:100; 图 1c
赛默飞世尔 PDCD1抗体(eBioscience, 25-2799-42)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1c). Nat Commun (2019) ncbi
小鼠 单克隆(eBioJ105 (J105))
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 PDCD1抗体(eBioscience, 25-2799-42)被用于被用于流式细胞仪在人类样本上 (图 1a). J Exp Med (2019) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 1:100; 图 e8
赛默飞世尔 PDCD1抗体(eBioscience, 17-9969-42)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 e8). Nat Med (2019) ncbi
小鼠 单克隆(eBioJ105 (J105))
  • 流式细胞仪; 人类; 图 1c
赛默飞世尔 PDCD1抗体(eBioscience, eBIOJ105)被用于被用于流式细胞仪在人类样本上 (图 1c). Nat Med (2019) ncbi
小鼠 单克隆(J116)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛默飞世尔 PDCD1抗体(Thermo Fisher, 14-9989-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Nature (2018) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔 PDCD1抗体(eBioscience, MIH4)被用于被用于流式细胞仪在人类样本上 (图 5a). J Exp Med (2018) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 7
赛默飞世尔 PDCD1抗体(eBioscience, MIH4)被用于被用于流式细胞仪在人类样本上 (图 7). J Virol (2018) ncbi
小鼠 单克隆(eBioJ105 (J105))
  • 流式细胞仪; 人类; 图 s10b
赛默飞世尔 PDCD1抗体(eBiosciences, J105)被用于被用于流式细胞仪在人类样本上 (图 s10b). Nature (2017) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 s2k
赛默飞世尔 PDCD1抗体(eBioscience, MIH4)被用于被用于流式细胞仪在人类样本上 (图 s2k). Nature (2017) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔 PDCD1抗体(eBioscience, 12-9969)被用于被用于流式细胞仪在人类样本上 (图 4a). Science (2017) ncbi
小鼠 单克隆(7A11B1)
  • 免疫组化-石蜡切片; 大鼠; 图 4f
  • 免疫沉淀; 大鼠; 图 2b
  • 免疫细胞化学; 大鼠; 图 5b
  • 免疫印迹; 大鼠; 图 3b
赛默飞世尔 PDCD1抗体(Thermo Fisher, MA5-15780)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4f), 被用于免疫沉淀在大鼠样本上 (图 2b), 被用于免疫细胞化学在大鼠样本上 (图 5b) 和 被用于免疫印迹在大鼠样本上 (图 3b). J Neuroinflammation (2017) ncbi
小鼠 单克隆(eBioJ105 (J105))
  • 流式细胞仪; 人类; 图 6a
赛默飞世尔 PDCD1抗体(eBioscience, eBioJ105)被用于被用于流式细胞仪在人类样本上 (图 6a). Blood (2017) ncbi
小鼠 单克隆(eBioJ105 (J105))
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 PDCD1抗体(eBioscience, ebioJ105)被用于被用于流式细胞仪在人类样本上 (图 1a). J Clin Invest (2017) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 6b
赛默飞世尔 PDCD1抗体(eBioscience, 17-9969-42)被用于被用于流式细胞仪在人类样本上 (图 6b). Oncoimmunology (2016) ncbi
小鼠 单克隆(eBioJ105 (J105))
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 PDCD1抗体(eBioscience, eBioJ105)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry A (2017) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 6a
赛默飞世尔 PDCD1抗体(eBioscience, MIH4)被用于被用于流式细胞仪在人类样本上 (图 6a). Oncotarget (2016) ncbi
小鼠 单克隆(J116)
  • 抑制或激活实验; 人类; 10 ug/ml; 图 5
赛默飞世尔 PDCD1抗体(eBioscience, 16-9989)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml (图 5). Oncoimmunology (2016) ncbi
小鼠 单克隆(J116)
  • 免疫组化-石蜡切片; 人类; 1:25; 图 1
赛默飞世尔 PDCD1抗体(eBioscience, 14-9989-82)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(eBioJ105 (J105))
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 PDCD1抗体(eBioscience, J105)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cells Int (2016) ncbi
小鼠 单克隆(eBioJ105 (J105))
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 PDCD1抗体(eBioscience, J105)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(eBioJ105 (J105))
  • 流式细胞仪; African green monkey; 图 1
赛默飞世尔 PDCD1抗体(eBioscience, eBioJ105)被用于被用于流式细胞仪在African green monkey样本上 (图 1). J Immunol (2016) ncbi
小鼠 单克隆(eBioJ105 (J105))
  • 流式细胞仪; 人类; 1:10
赛默飞世尔 PDCD1抗体(eBioscience, eBioJ105)被用于被用于流式细胞仪在人类样本上浓度为1:10. Methods Mol Biol (2015) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 猕猴; 图 2
赛默飞世尔 PDCD1抗体(eBioscience, 17-9969)被用于被用于流式细胞仪在猕猴样本上 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(eBioJ105 (J105))
  • 流式细胞仪; marmosets; 图 4b
赛默飞世尔 PDCD1抗体(Ebiosciences, J105)被用于被用于流式细胞仪在marmosets样本上 (图 4b). J Neuroimmune Pharmacol (2016) ncbi
小鼠 单克隆(MIH4)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 2
赛默飞世尔 PDCD1抗体(eBioscience, MIH4)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 2). F1000Res (2015) ncbi
小鼠 单克隆(J116)
  • 免疫印迹; 人类; 图 2d
赛默飞世尔 PDCD1抗体(eBioscience, J116)被用于被用于免疫印迹在人类样本上 (图 2d). Science (2015) ncbi
小鼠 单克隆(eBioJ105 (J105))
  • 抑制或激活实验; 人类; 图 1
赛默飞世尔 PDCD1抗体(eBioscience, J105)被用于被用于抑制或激活实验在人类样本上 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 小鼠; 1:200; 图 s9
赛默飞世尔 PDCD1抗体(eBioscience, 12-9969-42)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s9). Nat Commun (2015) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 PDCD1抗体(eBioscience, MIH4)被用于被用于流式细胞仪在人类样本上 (图 1). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(J116)
  • 抑制或激活实验; 人类; 10 ug/ml
赛默飞世尔 PDCD1抗体(eBioscience, J116)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml. Int J Oncol (2015) ncbi
小鼠 单克隆(eBioJ105 (J105))
  • 流式细胞仪; 猕猴; 图 2a
赛默飞世尔 PDCD1抗体(eBioscience, J105)被用于被用于流式细胞仪在猕猴样本上 (图 2a). J Virol (2014) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 1.6:100
赛默飞世尔 PDCD1抗体(eBioscience, MIH-4)被用于被用于流式细胞仪在人类样本上浓度为1.6:100. J Clin Invest (2014) ncbi
小鼠 单克隆(eBioJ105 (J105))
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 PDCD1抗体(eBioscience, eBioJ105)被用于被用于流式细胞仪在人类样本上 (图 2a). AIDS Res Hum Retroviruses (2013) ncbi
小鼠 单克隆(eBioJ105 (J105))
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔 PDCD1抗体(eBioscience, eBioJ105)被用于被用于流式细胞仪在人类样本上 (图 3b). J Virol (2011) ncbi
小鼠 单克隆(J116)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 PDCD1抗体(eBioscience, J116)被用于被用于流式细胞仪在人类样本上 (图 1). Arthritis Rheum (2010) ncbi
小鼠 单克隆(MIH4)
  • 免疫组化-冰冻切片; 人类; 图 1
赛默飞世尔 PDCD1抗体(eBioscience, MIH4)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1). Arthritis Rheum (2010) ncbi
小鼠 单克隆(MIH4)
  • 抑制或激活实验; 人类; 图 6
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 PDCD1抗体(eBioscience, MIH4)被用于被用于抑制或激活实验在人类样本上 (图 6) 和 被用于流式细胞仪在人类样本上 (图 4). J Immunol (2009) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s11
艾博抗(上海)贸易有限公司 PDCD1抗体(Abcam, ab201825)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s11). Nat Commun (2022) ncbi
domestic rabbit 单克隆(CAL20)
  • 免疫组化-石蜡切片; 人类; 图 4d
艾博抗(上海)贸易有限公司 PDCD1抗体(Abcam, ab237728)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4d). Cell Mol Life Sci (2022) ncbi
小鼠 单克隆(NAT105)
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司 PDCD1抗体(Abcam, ab52587)被用于被用于免疫印迹在人类样本上 (图 4b). Cell Mol Life Sci (2022) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化; 人类; 1:400; 图 s2a
艾博抗(上海)贸易有限公司 PDCD1抗体(Abcam, NAT105)被用于被用于免疫组化在人类样本上浓度为1:400 (图 s2a). Neuropathol Appl Neurobiol (2021) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 PDCD1抗体(Abcam, ab52587)被用于被用于免疫组化-石蜡切片在人类样本上. elife (2020) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4d
艾博抗(上海)贸易有限公司 PDCD1抗体(Abcam, ab52587)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4d). Front Immunol (2019) ncbi
domestic rabbit 单克隆(EPR4877(2))
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1f
艾博抗(上海)贸易有限公司 PDCD1抗体(Abcam, EPR4877)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1f). BMC Cancer (2020) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类; 图 1b
艾博抗(上海)贸易有限公司 PDCD1抗体(Abcam, NAT105)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b). J Exp Med (2019) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类; 图 2
艾博抗(上海)贸易有限公司 PDCD1抗体(Abcam, AB52587)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Clin Invest (2019) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类; 图 2c
艾博抗(上海)贸易有限公司 PDCD1抗体(Abcam, NAT105)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化; 人类; 图 5a
艾博抗(上海)贸易有限公司 PDCD1抗体(Abcam, NAT105)被用于被用于免疫组化在人类样本上 (图 5a). Oncoimmunology (2017) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4a
艾博抗(上海)贸易有限公司 PDCD1抗体(Abcam, ab52587)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4a). J Immunol Res (2016) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化; 小鼠; 1:2000; 图 5j
艾博抗(上海)贸易有限公司 PDCD1抗体(Abcam, ab52587)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 5j). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EPR4877(2))
  • 免疫组化-石蜡切片; 人类; 1:250; 图 1
艾博抗(上海)贸易有限公司 PDCD1抗体(abcam, ab137132)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司 PDCD1抗体(Abcam, NAT105)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Mod Pathol (2016) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2c
艾博抗(上海)贸易有限公司 PDCD1抗体(AbCam, ab52587)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2c). Oncoimmunology (2015) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1b
艾博抗(上海)贸易有限公司 PDCD1抗体(Abcam, 52587)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1b). PLoS ONE (2015) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类; 1:50
艾博抗(上海)贸易有限公司 PDCD1抗体(Abcam, ab52587)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Blood Cancer J (2015) ncbi
小鼠 单克隆(NAT105)
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司 PDCD1抗体(Abcam, ab52587)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2015) ncbi
美天旎
小鼠 单克隆(PD1.3.1.3)
  • 流式细胞仪; 人类; 图 6b, 6c
美天旎 PDCD1抗体(Miltenyi, PD1.3.1.3)被用于被用于流式细胞仪在人类样本上 (图 6b, 6c). Oncoimmunology (2020) ncbi
小鼠 单克隆(PD1.3.1.3)
  • 流式细胞仪; 人类; 图 2b
美天旎 PDCD1抗体(Miltenyi Biotec, PD1.3.1.3)被用于被用于流式细胞仪在人类样本上 (图 2b). JCI Insight (2017) ncbi
Bio X Cell
小鼠 单克隆(J116)
  • 抑制或激活实验; 人类; 图 4a
Bio X Cell PDCD1抗体(Bio-XCell, J116)被用于被用于抑制或激活实验在人类样本上 (图 4a). Gene Ther (2015) ncbi
Novus Biologicals
domestic rabbit 多克隆(OTI3H5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
Novus Biologicals PDCD1抗体(Novus Biologicals, NBP1-88104)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Breast Cancer Res (2016) ncbi
Cell Marque
  • 免疫组化-石蜡切片; 人类; 图 s1a
Cell Marque PDCD1抗体(Cell Marque, 315M-95)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1a). Blood (2021) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化; 人类; 1:50
Cell Marque PDCD1抗体(Cell Marque, NAT105)被用于被用于免疫组化在人类样本上浓度为1:50. Ann Hematol (2021) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化; 人类; 图 4, 5
Cell Marque PDCD1抗体(Cell Marque, Emergo Europe, The Hague, Netherland, NAT105)被用于被用于免疫组化在人类样本上 (图 4, 5). Microorganisms (2020) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化; 人类
Cell Marque PDCD1抗体(Cell Marque, NAT105)被用于被用于免疫组化在人类样本上. Cell (2019) ncbi
  • 免疫组化-石蜡切片; 人类; 1:300; 图 1
Cell Marque PDCD1抗体(Cell Marque, 315M-95)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 1). Oncotarget (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D4W2J)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 PDCD1抗体(Cell Signaling, 86163S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D4W2J)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 PDCD1抗体(Cell Signaling, 86163)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). EMBO Mol Med (2020) ncbi
domestic rabbit 单克隆(D4W2J)
  • 免疫印迹; 小鼠; 图 1c
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 PDCD1抗体(Cell signaling technology, 86163)被用于被用于免疫印迹在小鼠样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 3e). Cell Rep (2019) ncbi
domestic rabbit 单克隆(D4W2J)
  • 免疫组化; 人类; 图 6f
赛信通(上海)生物试剂有限公司 PDCD1抗体(Cell Signaling Technologies, 86163S)被用于被用于免疫组化在人类样本上 (图 6f). Cell (2019) ncbi
碧迪BD
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 小鼠
碧迪BD PDCD1抗体(BD Biosciences, EH12.1)被用于被用于流式细胞仪在小鼠样本上. Mol Ther Oncolytics (2022) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 8d
碧迪BD PDCD1抗体(BD Biosciences, EH12.1)被用于被用于流式细胞仪在人类样本上 (图 8d). J Clin Invest (2022) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 1:50; 图 s2c
碧迪BD PDCD1抗体(BD Biosciences, EH12.1)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s2c). Nature (2021) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 1:100; 图 e4h
碧迪BD PDCD1抗体(BD Biosciences, 561272)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 e4h). Nat Med (2021) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 6c
碧迪BD PDCD1抗体(BD Bioscience, 557 860)被用于被用于流式细胞仪在人类样本上 (图 6c). Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类
碧迪BD PDCD1抗体(BD Biosciences, 560795)被用于被用于流式细胞仪在人类样本上. elife (2020) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 1:100; 图 1b
碧迪BD PDCD1抗体(BD Biosciences, MIH4)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1b). J Clin Invest (2020) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 2c
碧迪BD PDCD1抗体(BD Biosciences, 562516)被用于被用于流式细胞仪在人类样本上 (图 2c). elife (2020) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 5a
碧迪BD PDCD1抗体(BD Biosciences, MIH1)被用于被用于流式细胞仪在人类样本上 (图 5a). J Immunother Cancer (2020) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 1:250
碧迪BD PDCD1抗体(BD Biosciences, 562516)被用于被用于流式细胞仪在人类样本上浓度为1:250. Nature (2020) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 5a
碧迪BD PDCD1抗体(BD Biosciences, 561272)被用于被用于流式细胞仪在人类样本上 (图 5a). Nat Commun (2019) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 4a
碧迪BD PDCD1抗体(BD Biosciences, EH12.1)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2019) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 s7d
碧迪BD PDCD1抗体(BD Biosciences, 563789)被用于被用于流式细胞仪在人类样本上 (图 s7d). Cell (2019) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 s3
碧迪BD PDCD1抗体(BD Biosciences, EH12.1)被用于被用于流式细胞仪在人类样本上 (图 s3). Eur J Immunol (2019) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 s2
碧迪BD PDCD1抗体(BD Biosciences, 557946)被用于被用于流式细胞仪在人类样本上 (图 s2). Sci Rep (2019) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 1:33; 图 6g
碧迪BD PDCD1抗体(BD Biosciences, EH12.1)被用于被用于流式细胞仪在人类样本上浓度为1:33 (图 6g). Gastroenterology (2019) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 3a
碧迪BD PDCD1抗体(BD Biosciences, EH12.1)被用于被用于流式细胞仪在人类样本上 (图 3a). Cancer (2019) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 2a
碧迪BD PDCD1抗体(BD, EH12.1)被用于被用于流式细胞仪在人类样本上 (图 2a). J Virol (2018) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 2b
碧迪BD PDCD1抗体(BD Biosciences, MIH4)被用于被用于流式细胞仪在人类样本上 (图 2b). Sci Rep (2018) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 2
碧迪BD PDCD1抗体(BD, EH12.1)被用于被用于流式细胞仪在人类样本上 (图 2). Biol Blood Marrow Transplant (2018) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 小鼠; 表 s1
碧迪BD PDCD1抗体(BD horizon, MIH4)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Science (2017) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 7a
碧迪BD PDCD1抗体(BD Biosciences, MIH4)被用于被用于流式细胞仪在人类样本上 (图 7a). Sci Rep (2017) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 1
碧迪BD PDCD1抗体(BD Biosciences, 557946)被用于被用于流式细胞仪在人类样本上 (图 1). Exp Ther Med (2017) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 1c
碧迪BD PDCD1抗体(BD, MIH4)被用于被用于流式细胞仪在人类样本上 (图 1c). Nature (2017) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 小鼠
碧迪BD PDCD1抗体(BD biosciences, 563076)被用于被用于流式细胞仪在小鼠样本上. Nature (2017) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 2b
碧迪BD PDCD1抗体(BD, EH12.1)被用于被用于流式细胞仪在人类样本上 (图 2b). Oncoimmunology (2017) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 s6
碧迪BD PDCD1抗体(BD Biosciences, 557946)被用于被用于流式细胞仪在人类样本上 (图 s6). Oncoimmunology (2016) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 2
碧迪BD PDCD1抗体(BD Pharmingen, 562516)被用于被用于流式细胞仪在人类样本上 (图 2). Mol Med Rep (2017) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 5
碧迪BD PDCD1抗体(BD Biosciences, MIH4)被用于被用于流式细胞仪在人类样本上 (图 5). Cytotherapy (2017) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 5d
碧迪BD PDCD1抗体(BD, 562516)被用于被用于流式细胞仪在人类样本上 (图 5d). Oncoimmunology (2016) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 2a
碧迪BD PDCD1抗体(BD Biosciences, EH12.1)被用于被用于流式细胞仪在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 3
碧迪BD PDCD1抗体(BD Pharmigen, 561272)被用于被用于流式细胞仪在人类样本上 (图 3). Oncoimmunology (2016) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 1
碧迪BD PDCD1抗体(BD, 560838)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS Pathog (2016) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD PDCD1抗体(BD Biosciences, EH12.1)被用于被用于流式细胞仪在人类样本上 (图 s1a). Eur J Immunol (2016) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 st1
碧迪BD PDCD1抗体(BD, 557946)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类
碧迪BD PDCD1抗体(BD Biosciences, 558694)被用于被用于流式细胞仪在人类样本上. Haematologica (2016) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 1
碧迪BD PDCD1抗体(BD Biosciences, EH12)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 4
碧迪BD PDCD1抗体(BD Bioscience, EH12.1)被用于被用于流式细胞仪在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 5a
碧迪BD PDCD1抗体(BD Pharmingen, EH12.1)被用于被用于流式细胞仪在人类样本上 (图 5a). PLoS ONE (2016) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 小鼠
碧迪BD PDCD1抗体(BD Pharmingen, MIH4)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2015) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 7
碧迪BD PDCD1抗体(BD Biosciences, 558694)被用于被用于流式细胞仪在人类样本上 (图 7). Retrovirology (2015) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类; 图 e4a
碧迪BD PDCD1抗体(BD Biosciences, MIH4)被用于被用于流式细胞仪在人类样本上 (图 e4a). J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 图 1f
碧迪BD PDCD1抗体(BD Biosciences, EH12.1)被用于被用于流式细胞仪在人类样本上 (图 1f). PLoS Negl Trop Dis (2015) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类
碧迪BD PDCD1抗体(BD, 558694)被用于被用于流式细胞仪在人类样本上. Circ Res (2015) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类; 表 1
碧迪BD PDCD1抗体(BD Biosciences, EH12.1)被用于被用于流式细胞仪在人类样本上 (表 1). J Gen Virol (2015) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类
碧迪BD PDCD1抗体(BD, MIH4)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(EH12.1)
  • 流式细胞仪; 人类
碧迪BD PDCD1抗体(BD, EH12.1)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
小鼠 单克隆(MIH4)
  • 流式细胞仪; 人类
碧迪BD PDCD1抗体(BD, MIH4)被用于被用于流式细胞仪在人类样本上. J Exp Med (2014) ncbi
文章列表
  1. Ravindranathan S, Passang T, Li J, Wang S, Dhamsania R, Ware M, et al. Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma. Nat Commun. 2022;13:6418 pubmed 出版商
  2. Kemper K, Gielen E, Boross P, Houtkamp M, Plantinga T, de Poot S, et al. Mechanistic and pharmacodynamic studies of DuoBody-CD3x5T4 in preclinical tumor models. Life Sci Alliance. 2022;5: pubmed 出版商
  3. Coy S, Wang S, Stopka S, Lin J, Yapp C, Ritch C, et al. Single cell spatial analysis reveals the topology of immunomodulatory purinergic signaling in glioblastoma. Nat Commun. 2022;13:4814 pubmed 出版商
  4. Jim xe9 nez Fern xe1 ndez M, Rodr xed guez Sinovas C, Ca xf1 es L, Ballester Servera C, Vara A, Requena S, et al. CD69-oxLDL ligand engagement induces Programmed Cell Death 1 (PD-1) expression in human CD4 + T lymphocytes. Cell Mol Life Sci. 2022;79:468 pubmed 出版商
  5. Jin Y, Lorvik K, Jin Y, Beck C, Sike A, Persiconi I, et al. Development of STEAP1 targeting chimeric antigen receptor for adoptive cell therapy against cancer. Mol Ther Oncolytics. 2022;26:189-206 pubmed 出版商
  6. Qin L, Wang L, Zhang J, Zhou H, Yang Z, Wang Y, et al. Therapeutic strategies targeting uPAR potentiate anti-PD-1 efficacy in diffuse-type gastric cancer. Sci Adv. 2022;8:eabn3774 pubmed 出版商
  7. Jung K, Son M, Lee S, Kim J, Ko D, Yoo S, et al. Antibody-mediated delivery of a viral MHC-I epitope into the cytosol of target tumor cells repurposes virus-specific CD8+ T cells for cancer immunotherapy. Mol Cancer. 2022;21:102 pubmed 出版商
  8. Piao W, Li L, Saxena V, Iyyathurai J, Lakhan R, Zhang Y, et al. PD-L1 signaling selectively regulates T cell lymphatic transendothelial migration. Nat Commun. 2022;13:2176 pubmed 出版商
  9. Jiang Z, Qin L, Tang Y, Liao R, Shi J, He B, et al. Human induced-T-to-natural killer cells have potent anti-tumour activities. Biomark Res. 2022;10:13 pubmed 出版商
  10. Besnard M, S xe9 razin C, Ossart J, Moreau A, Vimond N, Flippe L, et al. Anti-CD45RC antibody immunotherapy prevents and treats experimental autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome. J Clin Invest. 2022;132: pubmed 出版商
  11. Zou Y, Gan C, Xin Z, Zhang H, Zhang Q, Lee T, et al. Programmed Cell Death Protein 1 Blockade Reduces Glycogen Synthase Kinase 3β Activity and Tau Hyperphosphorylation in Alzheimer's Disease Mouse Models. Front Cell Dev Biol. 2021;9:769229 pubmed 出版商
  12. Ming S, Yin H, Li X, Gong S, Zhang G, Wu Y. GITR Promotes the Polarization of TFH-Like Cells in Helicobacter pylori-Positive Gastritis. Front Immunol. 2021;12:736269 pubmed 出版商
  13. Fierle J, Brioschi M, de Tiani M, Wetterwald L, Atsaves V, Abram Saliba J, et al. Soluble trivalent engagers redirect cytolytic T cell activity toward tumor endothelial marker 1. Cell Rep Med. 2021;2:100362 pubmed 出版商
  14. Oberhardt V, Luxenburger H, Kemming J, Schulien I, Ciminski K, Giese S, et al. Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine. Nature. 2021;597:268-273 pubmed 出版商
  15. Spiegel J, Patel S, Muffly L, Hossain N, Oak J, Baird J, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med. 2021;27:1419-1431 pubmed 出版商
  16. Kim G, Kim W, Lim S, Lee H, Koo J, Nam K, et al. In Vivo Induction of Regulatory T Cells Via CTLA-4 Signaling Peptide to Control Autoimmune Encephalomyelitis and Prevent Disease Relapse. Adv Sci (Weinh). 2021;8:2004973 pubmed 出版商
  17. Dalla Pietà A, Cappuzzello E, Palmerini P, Ventura A, Visentin A, Astori G, et al. Innovative therapeutic strategy for B-cell malignancies that combines obinutuzumab and cytokine-induced killer cells. J Immunother Cancer. 2021;9: pubmed 出版商
  18. Zimmer T, Broekaart D, Luinenburg M, Mijnsbergen C, Anink J, Sim N, et al. Balloon cells promote immune system activation in focal cortical dysplasia type 2b. Neuropathol Appl Neurobiol. 2021;47:826-839 pubmed 出版商
  19. Martínez Zamudio R, Dewald H, Vasilopoulos T, Gittens Williams L, Fitzgerald Bocarsly P, Herbig U. Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell. 2021;20:e13344 pubmed 出版商
  20. Weber E, Parker K, Sotillo E, Lynn R, Anbunathan H, Lattin J, et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science. 2021;372: pubmed 出版商
  21. Sewastianik T, Straubhaar J, Zhao J, Samur M, Adler K, Tanton H, et al. miR-15a/16-1 deletion in activated B cells promotes plasma cell and mature B-cell neoplasms. Blood. 2021;137:1905-1919 pubmed 出版商
  22. Brune M, Stussi G, Lundberg P, Vela V, Heim D, Manz M, et al. Effects of lenalidomide on the bone marrow microenvironment in acute myeloid leukemia: Translational analysis of the HOVON103 AML/SAKK30/10 Swiss trial cohort. Ann Hematol. 2021;100:1169-1179 pubmed 出版商
  23. Webb L, Fra Bido S, Innocentin S, Matheson L, Attaf N, Bignon A, et al. Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ. Aging Cell. 2021;20:e13295 pubmed 出版商
  24. Snyder M, Sembrat J, Noda K, MYERBURG M, Craig A, Mitash N, et al. Human Lung-Resident Macrophages Colocalize with and Provide Costimulation to PD1hi Tissue-Resident Memory T Cells. Am J Respir Crit Care Med. 2021;203:1230-1244 pubmed 出版商
  25. Rodda L, Netland J, Shehata L, Pruner K, Morawski P, Thouvenel C, et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021;184:169-183.e17 pubmed 出版商
  26. Neidleman J, Luo X, Frouard J, Xie G, Hsiao F, Ma T, et al. Phenotypic analysis of the unstimulated in vivo HIV CD4 T cell reservoir. elife. 2020;9: pubmed 出版商
  27. Cui X, Ma C, Vasudevaraja V, Serrano J, Tong J, Peng Y, et al. Dissecting the immunosuppressive tumor microenvironments in Glioblastoma-on-a-Chip for optimized PD-1 immunotherapy. elife. 2020;9: pubmed 出版商
  28. Bhattacharya P, Ellegård R, Khalid M, Svanberg C, Govender M, Keita A, et al. Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells. elife. 2020;9: pubmed 出版商
  29. Stary V, Wolf B, Unterleuthner D, List J, Talic M, Laengle J, et al. Short-course radiotherapy promotes pro-inflammatory macrophages via extracellular vesicles in human rectal cancer. J Immunother Cancer. 2020;8: pubmed 出版商
  30. Tan E, Hopkins R, Lim C, Jamuar S, Ong C, Thoon K, et al. Dominant-negative NFKBIA mutation promotes IL-1β production causing hepatic disease with severe immunodeficiency. J Clin Invest. 2020;130:5817-5832 pubmed 出版商
  31. Mathew D, Giles J, Baxter A, Greenplate A, Wu J, Alanio C, et al. Deep immune profiling of COVID-19 patients reveals patient heterogeneity and distinct immunotypes with implications for therapeutic interventions. bioRxiv. 2020;: pubmed 出版商
  32. Kuhny M, Forbes L, Çakan E, Vega Loza A, Kostiuk V, Dinesh R, et al. Disease-associated CTNNBL1 mutation impairs somatic hypermutation by decreasing nuclear AID. J Clin Invest. 2020;: pubmed 出版商
  33. Cao W, Fang F, Gould T, Li X, Kim C, Gustafson C, et al. Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation. J Clin Invest. 2020;130:3422-3436 pubmed 出版商
  34. Fan Z, Tian Y, Chen Z, Liu L, Zhou Q, He J, et al. Blocking interaction between SHP2 and PD-1 denotes a novel opportunity for developing PD-1 inhibitors. EMBO Mol Med. 2020;12:e11571 pubmed 出版商
  35. Liu G, Yu Y, Feng F, Zhu P, Zhang H, Zhang D, et al. Human CD8+CD28- T suppressor cells expanded by common gamma chain (γc) cytokines retain steady allospecific suppressive capacity in vivo. BMC Immunol. 2020;21:23 pubmed 出版商
  36. Ryu S, Lee E, Kim D, Kim Y, Chung D, Kim J, et al. Reduction of circulating innate lymphoid cell progenitors results in impaired cytokine production by innate lymphoid cells in patients with lupus nephritis. Arthritis Res Ther. 2020;22:63 pubmed 出版商
  37. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  38. Tezera L, Bielecka M, Ogongo P, Walker N, Ellis M, Garay Baquero D, et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. elife. 2020;9: pubmed 出版商
  39. Marasco M, Berteotti A, Weyershaeuser J, Thorausch N, Sikorska J, Krausze J, et al. Molecular mechanism of SHP2 activation by PD-1 stimulation. Sci Adv. 2020;6:eaay4458 pubmed 出版商
  40. Bell L, Lenhart A, Rosenwald A, Monoranu C, Berberich Siebelt F. Lymphoid Aggregates in the CNS of Progressive Multiple Sclerosis Patients Lack Regulatory T Cells. Front Immunol. 2019;10:3090 pubmed 出版商
  41. Seitz C, Schroeder S, Knopf P, Krahl A, Hau J, Schleicher S, et al. GD2-targeted chimeric antigen receptor T cells prevent metastasis formation by elimination of breast cancer stem-like cells. Oncoimmunology. 2020;9:1683345 pubmed 出版商
  42. Marotte L, Simon S, Vignard V, Dupré E, Gantier M, Cruard J, et al. Increased antitumor efficacy of PD-1-deficient melanoma-specific human lymphocytes. J Immunother Cancer. 2020;8: pubmed 出版商
  43. Noh B, Kwak J, Eom D. Immune classification for the PD-L1 expression and tumour-infiltrating lymphocytes in colorectal adenocarcinoma. BMC Cancer. 2020;20:58 pubmed 出版商
  44. Sellier Y, Marliot F, Bessières B, Stirnemann J, Encha Razavi F, Guilleminot T, et al. Adaptive and Innate Immune Cells in Fetal Human Cytomegalovirus-Infected Brains. Microorganisms. 2020;8: pubmed 出版商
  45. Schafflick D, Xu C, Hartlehnert M, Cole M, Schulte Mecklenbeck A, Lautwein T, et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun. 2020;11:247 pubmed 出版商
  46. Gate D, Saligrama N, Leventhal O, Yang A, Unger M, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature. 2020;577:399-404 pubmed 出版商
  47. Lynn R, Weber E, Sotillo E, Gennert D, Xu P, Good Z, et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 2019;576:293-300 pubmed 出版商
  48. Zou F, Lu L, Liu J, Xia B, Zhang W, Hu Q, et al. Engineered triple inhibitory receptor resistance improves anti-tumor CAR-T cell performance via CD56. Nat Commun. 2019;10:4109 pubmed 出版商
  49. Di Blasi D, Boldanova T, Mori L, Terracciano L, Heim M, De Libero G. Unique T-Cell Populations Define Immune-Inflamed Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol. 2020;9:195-218 pubmed 出版商
  50. Serra Peinado C, Grau Expósito J, Luque Ballesteros L, Astorga Gamaza A, Navarro J, Gallego Rodriguez J, et al. Expression of CD20 after viral reactivation renders HIV-reservoir cells susceptible to Rituximab. Nat Commun. 2019;10:3705 pubmed 出版商
  51. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  52. Leclerc M, Voilin E, Gros G, Corgnac S, de Montpreville V, Validire P, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun. 2019;10:3345 pubmed 出版商
  53. Kim A, Han C, Driver I, Olow A, Sewell A, Zhang Z, et al. LILRB1 Blockade Enhances Bispecific T Cell Engager Antibody-Induced Tumor Cell Killing by Effector CD8+ T Cells. J Immunol. 2019;203:1076-1087 pubmed 出版商
  54. Canete P, Sweet R, Gonzalez Figueroa P, Papa I, Ohkura N, Bolton H, et al. Regulatory roles of IL-10-producing human follicular T cells. J Exp Med. 2019;: pubmed 出版商
  55. Celis Gutierrez J, Blattmann P, Zhai Y, Jarmuzynski N, Ruminski K, Gregoire C, et al. Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy. Cell Rep. 2019;27:3315-3330.e7 pubmed 出版商
  56. Hill D, Pierson W, Bolland D, Mkindi C, Carr E, Wang J, et al. The adjuvant GLA-SE promotes human Tfh cell expansion and emergence of public TCRβ clonotypes. J Exp Med. 2019;: pubmed 出版商
  57. Han L, Hu J, Ma B, Wen D, Zhang T, Lu Z, et al. IL-17A increases MHC class I expression and promotes T cell activation in papillary thyroid cancer patients with coexistent Hashimoto's thyroiditis. Diagn Pathol. 2019;14:52 pubmed 出版商
  58. Lee J, Park S, Park H, Kim S, Lee J, Lee J, et al. Tracing Oncogene Rearrangements in the Mutational History of Lung Adenocarcinoma. Cell. 2019;177:1842-1857.e21 pubmed 出版商
  59. Thauland T, Pellerin L, Ohgami R, Bacchetta R, Butte M. Case Study: Mechanism for Increased Follicular Helper T Cell Development in Activated PI3K Delta Syndrome. Front Immunol. 2019;10:753 pubmed 出版商
  60. Yang W, Lee K, Srivastava R, Kuo F, Krishna C, Chowell D, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med. 2019;25:767-775 pubmed 出版商
  61. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  62. Binnewies M, Mujal A, Pollack J, Combes A, Hardison E, Barry K, et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell. 2019;177:556-571.e16 pubmed 出版商
  63. Remmerswaal E, Hombrink P, Nota B, Pircher H, ten Berge I, van Lier R, et al. Expression of IL-7Rα and KLRG1 defines functionally distinct CD8+ T-cell populations in humans. Eur J Immunol. 2019;49:694-708 pubmed 出版商
  64. de Jonge K, Ebering A, Nassiri S, Maby El Hajjami H, Ouertatani Sakouhi H, Baumgaertner P, et al. Circulating CD56bright NK cells inversely correlate with survival of melanoma patients. Sci Rep. 2019;9:4487 pubmed 出版商
  65. Gong B, Kiyotani K, Sakata S, Nagano S, Kumehara S, Baba S, et al. Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non-small cell lung cancer. J Exp Med. 2019;: pubmed 出版商
  66. Lu E, Wolfreys F, Muppidi J, Xu Y, Cyster J. S-Geranylgeranyl-L-glutathione is a ligand for human B cell-confinement receptor P2RY8. Nature. 2019;: pubmed 出版商
  67. Karimzadeh H, Kiraithe M, Oberhardt V, Salimi Alizei E, Bockmann J, Schulze zur Wiesch J, et al. Mutations in Hepatitis D Virus Allow It to Escape Detection by CD8+ T Cells and Evolve at the Population Level. Gastroenterology. 2019;156:1820-1833 pubmed 出版商
  68. Faliti C, Gualtierotti R, Rottoli E, Gerosa M, Perruzza L, Romagnani A, et al. P2X7 receptor restrains pathogenic Tfh cell generation in systemic lupus erythematosus. J Exp Med. 2019;216:317-336 pubmed 出版商
  69. Amelio P, Portevin D, Hella J, Reither K, Kamwela L, Lweno O, et al. HIV Infection Functionally Impairs Mycobacterium tuberculosis-Specific CD4 and CD8 T-Cell Responses. J Virol. 2019;93: pubmed 出版商
  70. Bouafia A, Lofek S, Bruneau J, Chentout L, Lamrini H, Trinquand A, et al. Loss of ARHGEF1 causes a human primary antibody deficiency. J Clin Invest. 2019;129:1047-1060 pubmed 出版商
  71. Scheper W, Kelderman S, Fanchi L, Linnemann C, Bendle G, de Rooij M, et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat Med. 2019;25:89-94 pubmed 出版商
  72. Andre P, Denis C, Soulas C, Bourbon Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731-1743.e13 pubmed 出版商
  73. Williams P, Basu S, Garcia Manero G, Hourigan C, Oetjen K, Cortes J, et al. The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer. 2019;125:1470-1481 pubmed 出版商
  74. Helmold Hait S, Vargas Inchaustegui D, Musich T, Mohanram V, Tuero I, Venzon D, et al. Early T Follicular Helper Cell Responses and Germinal Center Reactions Are Associated with Viremia Control in Immunized Rhesus Macaques. J Virol. 2019;93: pubmed 出版商
  75. Dias J, Boulouis C, Gorin J, van den Biggelaar R, Lal K, Gibbs A, et al. The CD4-CD8- MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8+ MAIT cell pool. Proc Natl Acad Sci U S A. 2018;115:E11513-E11522 pubmed 出版商
  76. Cai Y, Abdel Mohsen M, Tomescu C, Xue F, Wu G, Howell B, et al. BCL6 Inhibitor-Mediated Downregulation of Phosphorylated SAMHD1 and T Cell Activation Are Associated with Decreased HIV Infection and Reactivation. J Virol. 2019;93: pubmed 出版商
  77. Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature. 2018;562:605-609 pubmed 出版商
  78. Hoang T, Harper J, Pino M, Wang H, Micci L, King C, et al. Bone Marrow-Derived CD4+ T Cells Are Depleted in Simian Immunodeficiency Virus-Infected Macaques and Contribute to the Size of the Replication-Competent Reservoir. J Virol. 2019;93: pubmed 出版商
  79. Burton A, Pallett L, McCoy L, Suveizdyte K, Amin O, Swadling L, et al. Circulating and intrahepatic antiviral B cells are defective in hepatitis B. J Clin Invest. 2018;128:4588-4603 pubmed 出版商
  80. Hartana C, Ahlén Bergman E, Broome A, Berglund S, Johansson M, Alamdari F, et al. Tissue-resident memory T cells are epigenetically cytotoxic with signs of exhaustion in human urinary bladder cancer. Clin Exp Immunol. 2018;194:39-53 pubmed 出版商
  81. Noto A, Procopio F, Banga R, Suffiotti M, Corpataux J, Cavassini M, et al. CD32+ and PD-1+ Lymph Node CD4 T Cells Support Persistent HIV-1 Transcription in Treated Aviremic Individuals. J Virol. 2018;92: pubmed 出版商
  82. Jung I, Kim Y, Yu H, Lee M, Kim S, Lee J. CRISPR/Cas9-Mediated Knockout of DGK Improves Antitumor Activities of Human T Cells. Cancer Res. 2018;78:4692-4703 pubmed 出版商
  83. Moysi E, Pallikkuth S, de Armas L, Gonzalez L, Ambrozak D, George V, et al. Altered immune cell follicular dynamics in HIV infection following influenza vaccination. J Clin Invest. 2018;128:3171-3185 pubmed 出版商
  84. Sayin I, Radtke A, Vella L, Jin W, Wherry E, Buggert M, et al. Spatial distribution and function of T follicular regulatory cells in human lymph nodes. J Exp Med. 2018;215:1531-1542 pubmed 出版商
  85. Zhang C, Peng Y, Hublitz P, Zhang H, Dong T. Genetic abrogation of immune checkpoints in antigen-specific cytotoxic T-lymphocyte as a potential alternative to blockade immunotherapy. Sci Rep. 2018;8:5549 pubmed 出版商
  86. Li M, Zhang W, Liu J, Li M, Zhang Y, Xiong Y, et al. Dynamic changes in the immunological characteristics of T lymphocytes in surviving patients with severe fever with thrombocytopenia syndrome (SFTS). Int J Infect Dis. 2018;70:72-80 pubmed 出版商
  87. Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med. 2018;215:985-997 pubmed 出版商
  88. Adler A, Bedinger D, Adams M, Asensio M, Edgar R, Leong R, et al. A natively paired antibody library yields drug leads with higher sensitivity and specificity than a randomly paired antibody library. MAbs. 2018;10:431-443 pubmed 出版商
  89. Gee M, Han A, Lofgren S, Beausang J, Mendoza J, Birnbaum M, et al. Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell. 2018;172:549-563.e16 pubmed 出版商
  90. Tobin L, Mavinkurve M, Carolan E, Kinlen D, O Brien E, Little M, et al. NK cells in childhood obesity are activated, metabolically stressed, and functionally deficient. JCI Insight. 2017;2: pubmed 出版商
  91. Wang C, Edilova M, Wagar L, Mujib S, Singer M, Bernard N, et al. Effect of IL-7 Therapy on Phospho-Ribosomal Protein S6 and TRAF1 Expression in HIV-Specific CD8 T Cells in Patients Receiving Antiretroviral Therapy. J Immunol. 2018;200:558-564 pubmed 出版商
  92. Hutten T, Norde W, Woestenenk R, Wang R, Maas F, Kester M, et al. Increased Coexpression of PD-1, TIGIT, and KLRG-1 on Tumor-Reactive CD8+ T Cells During Relapse after Allogeneic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2018;24:666-677 pubmed 出版商
  93. Moreno Cubero E, Subira D, Sanz de Villalobos E, Parra Cid T, Madejon A, Miquel J, et al. According to Hepatitis C Virus (HCV) Infection Stage, Interleukin-7 Plus 4-1BB Triggering Alone or Combined with PD-1 Blockade Increases TRAF1low HCV-Specific CD8+ Cell Reactivity. J Virol. 2018;92: pubmed 出版商
  94. Burr M, Sparbier C, Chan Y, Williamson J, Woods K, Beavis P, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017;549:101-105 pubmed 出版商
  95. Sinclair C, Bommakanti G, Gardinassi L, Loebbermann J, Johnson M, Hakimpour P, et al. mTOR regulates metabolic adaptation of APCs in the lung and controls the outcome of allergic inflammation. Science. 2017;357:1014-1021 pubmed 出版商
  96. Liaskou E, Jeffery L, Chanouzas D, Soskic B, Seldin M, Harper L, et al. Genetic variation at the CD28 locus and its impact on expansion of pro-inflammatory CD28 negative T cells in healthy individuals. Sci Rep. 2017;7:7652 pubmed 出版商
  97. Papa I, Saliba D, Ponzoni M, Bustamante S, Canete P, Gonzalez Figueroa P, et al. TFH-derived dopamine accelerates productive synapses in germinal centres. Nature. 2017;547:318-323 pubmed 出版商
  98. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  99. Gordon S, Maute R, Dulken B, Hutter G, George B, McCracken M, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495-499 pubmed 出版商
  100. Chevrier S, Levine J, Zanotelli V, Silina K, Schulz D, Bacac M, et al. An Immune Atlas of Clear Cell Renal Cell Carcinoma. Cell. 2017;169:736-749.e18 pubmed 出版商
  101. Chen C, Sun W, Chen J, Huang J. Dynamic variations of the peripheral blood immune cell subpopulation in patients with critical H7N9 swine-origin influenza A virus infection: A retrospective small-scale study. Exp Ther Med. 2017;13:1490-1494 pubmed 出版商
  102. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Res. 2017;77:3268-3279 pubmed 出版商
  103. Huang A, Postow M, Orlowski R, Mick R, Bengsch B, Manne S, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017;545:60-65 pubmed 出版商
  104. Nishimura Y, Gautam R, Chun T, Sadjadpour R, Foulds K, Shingai M, et al. Early antibody therapy can induce long-lasting immunity to SHIV. Nature. 2017;543:559-563 pubmed 出版商
  105. Hui E, Cheung J, Zhu J, Su X, Taylor M, Wallweber H, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017;355:1428-1433 pubmed 出版商
  106. van der Geest K, Wang Q, Eijsvogels T, Koenen H, Joosten I, Brouwer E, et al. Changes in peripheral immune cell numbers and functions in octogenarian walkers - an acute exercise study. Immun Ageing. 2017;14:5 pubmed 出版商
  107. Eyquem J, Mansilla Soto J, Giavridis T, van der Stegen S, Hamieh M, Cunanan K, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543:113-117 pubmed 出版商
  108. Mordmuller B, Surat G, Lagler H, Chakravarty S, Ishizuka A, Lalremruata A, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature. 2017;542:445-449 pubmed 出版商
  109. Huang R, Francois A, McGray A, Miliotto A, Odunsi K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology. 2017;6:e1249561 pubmed 出版商
  110. Su S, Zou Z, Chen F, Ding N, Du J, Shao J, et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology. 2017;6:e1249558 pubmed 出版商
  111. Wu J, Sun L, Li H, Shen H, Zhai W, Yu Z, et al. Roles of programmed death protein 1/programmed death-ligand 1 in secondary brain injury after intracerebral hemorrhage in rats: selective modulation of microglia polarization to anti-inflammatory phenotype. J Neuroinflammation. 2017;14:36 pubmed 出版商
  112. Watanabe N, Bajgain P, Sukumaran S, Ansari S, Heslop H, Rooney C, et al. Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology. 2016;5:e1253656 pubmed 出版商
  113. Mylvaganam G, Rios D, Abdelaal H, Iyer S, Tharp G, Mavigner M, et al. Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection. Proc Natl Acad Sci U S A. 2017;114:1976-1981 pubmed 出版商
  114. Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 2017;129:2186-2197 pubmed 出版商
  115. Rao D, Gurish M, Marshall J, Slowikowski K, Fonseka C, Liu Y, et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature. 2017;542:110-114 pubmed 出版商
  116. Shan Y, Qi C, Liu Y, Gao H, Zhao D, Jiang Y. Increased frequency of peripheral blood follicular helper T cells and elevated serum IL?21 levels in patients with knee osteoarthritis. Mol Med Rep. 2017;15:1095-1102 pubmed 出版商
  117. Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H, Sonnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354 pubmed 出版商
  118. Cheng L, Ma J, Li J, Li D, Li G, Li F, et al. Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs. J Clin Invest. 2017;127:269-279 pubmed 出版商
  119. Zhen A, Rezek V, Youn C, Lam B, Chang N, Rick J, et al. Targeting type I interferon-mediated activation restores immune function in chronic HIV infection. J Clin Invest. 2017;127:260-268 pubmed 出版商
  120. Ryan P, Sumaria N, Holland C, Bradford C, Izotova N, Grandjean C, et al. Heterogeneous yet stable Vδ2(+) T-cell profiles define distinct cytotoxic effector potentials in healthy human individuals. Proc Natl Acad Sci U S A. 2016;113:14378-14383 pubmed
  121. Oelsner S, Friede M, Zhang C, Wagner J, Badura S, Bader P, et al. Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma. Cytotherapy. 2017;19:235-249 pubmed 出版商
  122. Li J, Shayan G, Avery L, Jie H, Gildener Leapman N, Schmitt N, et al. Tumor-infiltrating Tim-3+ T cells proliferate avidly except when PD-1 is co-expressed: Evidence for intracellular cross talk. Oncoimmunology. 2016;5:e1200778 pubmed
  123. Sumatoh H, Teng K, Cheng Y, Newell E. Optimization of mass cytometry sample cryopreservation after staining. Cytometry A. 2017;91:48-61 pubmed 出版商
  124. Serr I, Fürst R, Ott V, Scherm M, Nikolaev A, Gökmen F, et al. miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6659-E6668 pubmed
  125. Sen D, Kaminski J, Barnitz R, Kurachi M, Gerdemann U, Yates K, et al. The epigenetic landscape of T cell exhaustion. Science. 2016;354:1165-1169 pubmed
  126. Kaewkangsadan V, Verma C, Eremin J, Cowley G, Ilyas M, Eremin O. Crucial Contributions by T Lymphocytes (Effector, Regulatory, and Checkpoint Inhibitor) and Cytokines (TH1, TH2, and TH17) to a Pathological Complete Response Induced by Neoadjuvant Chemotherapy in Women with Breast Cancer. J Immunol Res. 2016;2016:4757405 pubmed
  127. Byrareddy S, Arthos J, Cicala C, Villinger F, Ortiz K, Little D, et al. Sustained virologic control in SIV+ macaques after antiretroviral and α4β7 antibody therapy. Science. 2016;354:197-202 pubmed
  128. Miles B, Miller S, Folkvord J, Levy D, Rakasz E, Skinner P, et al. Follicular Regulatory CD8 T Cells Impair the Germinal Center Response in SIV and Ex Vivo HIV Infection. PLoS Pathog. 2016;12:e1005924 pubmed 出版商
  129. Komdeur F, Wouters M, Workel H, Tijans A, Terwindt A, Brunekreeft K, et al. CD103+ intraepithelial T cells in high-grade serous ovarian cancer are phenotypically diverse TCRαβ+ CD8αβ+ T cells that can be targeted for cancer immunotherapy. Oncotarget. 2016;7:75130-75144 pubmed 出版商
  130. Li C, Lim S, Xia W, Lee H, Chan L, Kuo C, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7:12632 pubmed 出版商
  131. Daud A, Loo K, Pauli M, Sanchez Rodriguez R, Sandoval P, Taravati K, et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J Clin Invest. 2016;126:3447-52 pubmed 出版商
  132. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature. 2016;537:412-428 pubmed 出版商
  133. Shi L, Fu T, Guan B, Chen J, Blando J, Allison J, et al. Interdependent IL-7 and IFN-? signalling in T-cell controls tumour eradication by combined ?-CTLA-4+?-PD-1 therapy. Nat Commun. 2016;7:12335 pubmed 出版商
  134. Franzese O, Palermo B, Di Donna C, Sperduti I, Ferraresi V, Stabile H, et al. Polyfunctional Melan-A-specific tumor-reactive CD8(+) T cells elicited by dacarbazine treatment before peptide-vaccination depends on AKT activation sustained by ICOS. Oncoimmunology. 2016;5:e1114203 pubmed 出版商
  135. Ashizawa T, Iizuka A, Nonomura C, Kondou R, Maeda C, Miyata H, et al. Antitumor Effect of Programmed Death-1 (PD-1) Blockade in Humanized the NOG-MHC Double Knockout Mouse. Clin Cancer Res. 2017;23:149-158 pubmed 出版商
  136. Chen Z, Mei J, Liu L, Wang G, Li Z, Hou J, et al. PD-L1 expression is associated with advanced non-small cell lung cancer. Oncol Lett. 2016;12:921-927 pubmed
  137. Fromentin R, Bakeman W, Lawani M, Khoury G, Hartogensis W, DaFonseca S, et al. CD4+ T Cells Expressing PD-1, TIGIT and LAG-3 Contribute to HIV Persistence during ART. PLoS Pathog. 2016;12:e1005761 pubmed 出版商
  138. Vaccari M, Gordon S, Fourati S, Schifanella L, Liyanage N, Cameron M, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med. 2016;22:762-70 pubmed 出版商
  139. Jin C, Fotaki G, Ramachandran M, Nilsson B, Essand M, Yu D. Safe engineering of CAR T cells for adoptive cell therapy of cancer using long-term episomal gene transfer. EMBO Mol Med. 2016;8:702-11 pubmed 出版商
  140. Ruibal P, Oestereich L, Lüdtke A, Becker Ziaja B, Wozniak D, Kerber R, et al. Unique human immune signature of Ebola virus disease in Guinea. Nature. 2016;533:100-4 pubmed 出版商
  141. Duchnowska R, Pęksa R, Radecka B, Mandat T, Trojanowski T, Jarosz B, et al. Immune response in breast cancer brain metastases and their microenvironment: the role of the PD-1/PD-L axis. Breast Cancer Res. 2016;18:43 pubmed 出版商
  142. Yamashita K, Kawata K, Matsumiya H, Kamekura R, Jitsukawa S, Nagaya T, et al. Bob1 limits cellular frequency of T-follicular helper cells. Eur J Immunol. 2016;46:1361-70 pubmed 出版商
  143. Saito H, Okita K, Fusaki N, Sabel M, Chang A, Ito F. Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells. Stem Cells Int. 2016;2016:8394960 pubmed 出版商
  144. Zwang N, Zhang R, Germana S, Fan M, Hastings W, Cao A, et al. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways. Am J Transplant. 2016;16:2624-38 pubmed 出版商
  145. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  146. Flint S, Gibson A, Lucas G, Nandigam R, Taylor L, Provan D, et al. A distinct plasmablast and naïve B-cell phenotype in primary immune thrombocytopenia. Haematologica. 2016;101:698-706 pubmed 出版商
  147. Friedman K, Brodsky A, Lu S, Wood S, Gill A, Lombardo K, et al. Medullary carcinoma of the colon: a distinct morphology reveals a distinctive immunoregulatory microenvironment. Mod Pathol. 2016;29:528-41 pubmed 出版商
  148. Simon S, Vignard V, Florenceau L, Dreno B, Khammari A, Lang F, et al. PD-1 expression conditions T cell avidity within an antigen-specific repertoire. Oncoimmunology. 2016;5:e1104448 pubmed
  149. McGranahan N, Furness A, Rosenthal R, Ramskov S, Lyngaa R, Saini S, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463-9 pubmed 出版商
  150. Garcia Bates T, Kim E, Concha Benavente F, Trivedi S, Mailliard R, Gambotto A, et al. Enhanced Cytotoxic CD8 T Cell Priming Using Dendritic Cell-Expressing Human Papillomavirus-16 E6/E7-p16INK4 Fusion Protein with Sequenced Anti-Programmed Death-1. J Immunol. 2016;196:2870-8 pubmed 出版商
  151. Su S, Hu B, Shao J, Shen B, Du J, Du Y, et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep. 2016;6:20070 pubmed 出版商
  152. Li L, Jiang Y, Lao S, Yang B, Yu S, Zhang Y, et al. Mycobacterium tuberculosis-Specific IL-21+IFN-γ+CD4+ T Cells Are Regulated by IL-12. PLoS ONE. 2016;11:e0147356 pubmed 出版商
  153. Vargas Inchaustegui D, Demers A, Shaw J, Kang G, Ball D, Tuero I, et al. Vaccine Induction of Lymph Node-Resident Simian Immunodeficiency Virus Env-Specific T Follicular Helper Cells in Rhesus Macaques. J Immunol. 2016;196:1700-10 pubmed 出版商
  154. Yasuma K, Yasunaga J, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, et al. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT). PLoS Pathog. 2016;12:e1005372 pubmed 出版商
  155. Paris R, Petrovas C, Ferrando Martinez S, Moysi E, Boswell K, Archer E, et al. Selective Loss of Early Differentiated, Highly Functional PD1high CD4 T Cells with HIV Progression. PLoS ONE. 2015;10:e0144767 pubmed 出版商
  156. Javed A, Leuchte N, Neumann B, Sopper S, Sauermann U. Noncytolytic CD8+ Cell Mediated Antiviral Response Represents a Strong Element in the Immune Response of Simian Immunodeficiency Virus-Infected Long-Term Non-Progressing Rhesus Macaques. PLoS ONE. 2015;10:e0142086 pubmed 出版商
  157. Leong M, Newell E. Multiplexed Peptide-MHC Tetramer Staining with Mass Cytometry. Methods Mol Biol. 2015;1346:115-31 pubmed 出版商
  158. Kobayashi S, Watanabe T, Suzuki R, Furu M, Ito H, Ito J, et al. TGF-β induces the differentiation of human CXCL13-producing CD4(+) T cells. Eur J Immunol. 2016;46:360-71 pubmed 出版商
  159. Akhmetzyanova I, Drabczyk M, Neff C, Gibbert K, Dietze K, Werner T, et al. PD-L1 Expression on Retrovirus-Infected Cells Mediates Immune Escape from CD8+ T Cell Killing. PLoS Pathog. 2015;11:e1005224 pubmed 出版商
  160. Miles B, Miller S, Folkvord J, Kimball A, Chamanian M, Meditz A, et al. Follicular regulatory T cells impair follicular T helper cells in HIV and SIV infection. Nat Commun. 2015;6:8608 pubmed 出版商
  161. Heigele A, Joas S, Regensburger K, Kirchhoff F. Increased susceptibility of CD4+ T cells from elderly individuals to HIV-1 infection and apoptosis is associated with reduced CD4 and enhanced CXCR4 and FAS surface expression levels. Retrovirology. 2015;12:86 pubmed 出版商
  162. Mitson Salazar A, Yin Y, Wansley D, Young M, Bolan H, Arceo S, et al. Hematopoietic prostaglandin D synthase defines a proeosinophilic pathogenic effector human T(H)2 cell subpopulation with enhanced function. J Allergy Clin Immunol. 2016;137:907-18.e9 pubmed 出版商
  163. Laurent C, Charmpi K, Gravelle P, Tosolini M, Franchet C, Ysebaert L, et al. Several immune escape patterns in non-Hodgkin's lymphomas. Oncoimmunology. 2015;4:e1026530 pubmed
  164. Frederiksen J, Buggert M, Noyan K, Nowak P, Sönnerborg A, Lund O, et al. Multidimensional Clusters of CD4+ T Cell Dysfunction Are Primarily Associated with the CD4/CD8 Ratio in Chronic HIV Infection. PLoS ONE. 2015;10:e0137635 pubmed 出版商
  165. Schmidt L, Kümmel A, Görlich D, Mohr M, Bröckling S, Mikesch J, et al. PD-1 and PD-L1 Expression in NSCLC Indicate a Favorable Prognosis in Defined Subgroups. PLoS ONE. 2015;10:e0136023 pubmed 出版商
  166. Chen X, Li W, Zhang Y, Song X, Xu L, Xu Z, et al. Distribution of Peripheral Memory T Follicular Helper Cells in Patients with Schistosomiasis Japonica. PLoS Negl Trop Dis. 2015;9:e0004015 pubmed 出版商
  167. Dunham J, Lee L, van Driel N, Laman J, Ni I, Zhai W, et al. Blockade of CD127 Exerts a Dichotomous Clinical Effect in Marmoset Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol. 2016;11:73-83 pubmed 出版商
  168. Gulati N, Suárez Fariñas M, Correa Da Rosa J, Krueger J. Psoriasis is characterized by deficient negative immune regulation compared to transient delayed-type hypersensitivity reactions. F1000Res. 2015;4:149 pubmed 出版商
  169. Yoon K, Byun S, Kwon E, Hwang S, Chu K, Hiraki M, et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science. 2015;349:1261669 pubmed 出版商
  170. Rancan C, Schirrmann L, Hüls C, Zeidler R, Moosmann A. Latent Membrane Protein LMP2A Impairs Recognition of EBV-Infected Cells by CD8+ T Cells. PLoS Pathog. 2015;11:e1004906 pubmed 出版商
  171. Lee J, Jeong I, Joh J, Jung Y, Sim S, Choi B, et al. Differential expression of CD57 in antigen-reactive CD4+ T cells between active and latent tuberculosis infection. Clin Immunol. 2015;159:37-46 pubmed 出版商
  172. Pombo C, Wherry E, Gostick E, Price D, Betts M. Elevated Expression of CD160 and 2B4 Defines a Cytolytic HIV-Specific CD8+ T-Cell Population in Elite Controllers. J Infect Dis. 2015;212:1376-86 pubmed 出版商
  173. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell L, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 2015;6:6692 pubmed 出版商
  174. Pratama A, Srivastava M, Williams N, Papa I, Lee S, Dinh X, et al. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat Commun. 2015;6:6436 pubmed 出版商
  175. Severson J, Serracino H, Mateescu V, Raeburn C, McIntyre R, Sams S, et al. PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer. Cancer Immunol Res. 2015;3:620-30 pubmed 出版商
  176. Yang Z, Grote D, Ziesmer S, Xiu B, Novak A, Ansell S. PD-1 expression defines two distinct T-cell sub-populations in follicular lymphoma that differentially impact patient survival. Blood Cancer J. 2015;5:e281 pubmed 出版商
  177. Gideon H, Phuah J, Myers A, Bryson B, Rodgers M, Coleman M, et al. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog. 2015;11:e1004603 pubmed 出版商
  178. Du Z, Abedalthagafi M, Aizer A, McHenry A, Sun H, Bray M, et al. Increased expression of the immune modulatory molecule PD-L1 (CD274) in anaplastic meningioma. Oncotarget. 2015;6:4704-16 pubmed
  179. Rueda C, Wells C, Gisslen T, Jobe A, Kallapur S, Chougnet C. Effect of chorioamnionitis on regulatory T cells in moderate/late preterm neonates. Hum Immunol. 2015;76:65-73 pubmed 出版商
  180. Tsukahara T, Iwase N, Kawakami K, Iwasaki M, Yamamoto C, Ohmine K, et al. The Tol2 transposon system mediates the genetic engineering of T-cells with CD19-specific chimeric antigen receptors for B-cell malignancies. Gene Ther. 2015;22:209-15 pubmed 出版商
  181. Hoffmann J, Shmeleva E, Boag S, Fiser K, Bagnall A, Murali S, et al. Myocardial ischemia and reperfusion leads to transient CD8 immune deficiency and accelerated immunosenescence in CMV-seropositive patients. Circ Res. 2015;116:87-98 pubmed 出版商
  182. Gao F, Wang W. MicroRNA-96 promotes the proliferation of colorectal cancer cells and targets tumor protein p53 inducible nuclear protein 1, forkhead box protein O1 (FOXO1) and FOXO3a. Mol Med Rep. 2015;11:1200-6 pubmed 出版商
  183. Sawada Y, Yoshikawa T, Shimomura M, Iwama T, Endo I, Nakatsura T. Programmed death-1 blockade enhances the antitumor effects of peptide vaccine-induced peptide-specific cytotoxic T lymphocytes. Int J Oncol. 2015;46:28-36 pubmed 出版商
  184. Fujita T, Burwitz B, Chew G, Reed J, Pathak R, Seger E, et al. Expansion of dysfunctional Tim-3-expressing effector memory CD8+ T cells during simian immunodeficiency virus infection in rhesus macaques. J Immunol. 2014;193:5576-83 pubmed 出版商
  185. Gerna G, Lilleri D, Fornara C, Bruno F, Gabanti E, Cane I, et al. Differential kinetics of human cytomegalovirus load and antibody responses in primary infection of the immunocompetent and immunocompromised host. J Gen Virol. 2015;96:360-9 pubmed 出版商
  186. Kudernatsch R, Letsch A, Guerreiro M, Löbel M, Bauer S, Volk H, et al. Human bone marrow contains a subset of quiescent early memory CD8(+) T cells characterized by high CD127 expression and efflux capacity. Eur J Immunol. 2014;44:3532-42 pubmed 出版商
  187. Perreau M, Vigano S, Bellanger F, Pellaton C, Buss G, Comte D, et al. Exhaustion of bacteria-specific CD4 T cells and microbial translocation in common variable immunodeficiency disorders. J Exp Med. 2014;211:2033-45 pubmed 出版商
  188. Kurktschiev P, Raziorrouh B, Schraut W, Backmund M, Wächtler M, Wendtner C, et al. Dysfunctional CD8+ T cells in hepatitis B and C are characterized by a lack of antigen-specific T-bet induction. J Exp Med. 2014;211:2047-59 pubmed 出版商
  189. Langhans B, Alwan A, Krämer B, Glässner A, Lutz P, Strassburg C, et al. Regulatory CD4+ T cells modulate the interaction between NK cells and hepatic stellate cells by acting on either cell type. J Hepatol. 2015;62:398-404 pubmed 出版商
  190. Del Prete G, Shoemaker R, Oswald K, Lara A, Trubey C, Fast R, et al. Effect of suberoylanilide hydroxamic acid (SAHA) administration on the residual virus pool in a model of combination antiretroviral therapy-mediated suppression in SIVmac239-infected indian rhesus macaques. Antimicrob Agents Chemother. 2014;58:6790-806 pubmed 出版商
  191. Herati R, Reuter M, Dolfi D, Mansfield K, Aung H, Badwan O, et al. Circulating CXCR5+PD-1+ response predicts influenza vaccine antibody responses in young adults but not elderly adults. J Immunol. 2014;193:3528-37 pubmed 出版商
  192. Ohue Y, Kurose K, Mizote Y, Matsumoto H, Nishio Y, Isobe M, et al. Prolongation of overall survival in advanced lung adenocarcinoma patients with the XAGE1 (GAGED2a) antibody. Clin Cancer Res. 2014;20:5052-63 pubmed 出版商
  193. Bending D, Pesenacker A, Ursu S, Wu Q, Lom H, Thirugnanabalan B, et al. Hypomethylation at the regulatory T cell-specific demethylated region in CD25hi T cells is decoupled from FOXP3 expression at the inflamed site in childhood arthritis. J Immunol. 2014;193:2699-708 pubmed 出版商
  194. Buggert M, Tauriainen J, Yamamoto T, Frederiksen J, Ivarsson M, Michaelsson J, et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection. PLoS Pathog. 2014;10:e1004251 pubmed 出版商
  195. Kenway Lynch C, Das A, Lackner A, Pahar B. Cytokine/Chemokine responses in activated CD4+ and CD8+ T cells isolated from peripheral blood, bone marrow, and axillary lymph nodes during acute simian immunodeficiency virus infection. J Virol. 2014;88:9442-57 pubmed 出版商
  196. Hong J, Amancha P, Rogers K, Courtney C, Havenar Daughton C, Crotty S, et al. Early lymphoid responses and germinal center formation correlate with lower viral load set points and better prognosis of simian immunodeficiency virus infection. J Immunol. 2014;193:797-806 pubmed 出版商
  197. Jitschin R, Braun M, Büttner M, Dettmer Wilde K, Bricks J, Berger J, et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124:750-60 pubmed 出版商
  198. Gautron A, Dominguez Villar M, de Marcken M, Hafler D. Enhanced suppressor function of TIM-3+ FoxP3+ regulatory T cells. Eur J Immunol. 2014;44:2703-2711 pubmed 出版商
  199. Buggert M, Norstr m M, Salemi M, Hecht F, Karlsson A. Functional avidity and IL-2/perforin production is linked to the emergence of mutations within HLA-B*5701-restricted epitopes and HIV-1 disease progression. J Immunol. 2014;192:4685-96 pubmed 出版商
  200. Gros A, Robbins P, Yao X, Li Y, Turcotte S, Tran E, et al. PD-1 identifies the patient-specific CD8? tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 2014;124:2246-59 pubmed 出版商
  201. Lanteri M, Diamond M, Law J, Chew G, Wu S, Inglis H, et al. Increased frequency of Tim-3 expressing T cells is associated with symptomatic West Nile virus infection. PLoS ONE. 2014;9:e92134 pubmed 出版商
  202. Peguillet I, Milder M, Louis D, Vincent Salomon A, Dorval T, Piperno Neumann S, et al. High numbers of differentiated effector CD4 T cells are found in patients with cancer and correlate with clinical response after neoadjuvant therapy of breast cancer. Cancer Res. 2014;74:2204-16 pubmed 出版商
  203. Chang S, Kohrt H, Maecker H. Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother. 2014;63:713-9 pubmed 出版商
  204. Radvanyi L, Bernatchez C, Zhang M, Fox P, Miller P, Chacon J, et al. Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res. 2012;18:6758-70 pubmed 出版商
  205. Shaw J, Hunt P, Critchfield J, McConnell D, Garcia J, Pollard R, et al. Short communication: HIV+ viremic slow progressors maintain low regulatory T cell numbers in rectal mucosa but exhibit high T cell activation. AIDS Res Hum Retroviruses. 2013;29:172-7 pubmed 出版商
  206. Shaw J, Hunt P, Critchfield J, McConnell D, Garcia J, Pollard R, et al. Increased frequency of regulatory T cells accompanies increased immune activation in rectal mucosae of HIV-positive noncontrollers. J Virol. 2011;85:11422-34 pubmed 出版商
  207. Raptopoulou A, Bertsias G, Makrygiannakis D, Verginis P, Kritikos I, Tzardi M, et al. The programmed death 1/programmed death ligand 1 inhibitory pathway is up-regulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritis. Arthritis Rheum. 2010;62:1870-80 pubmed 出版商
  208. Trabattoni D, Saresella M, Pacei M, Marventano I, Mendozzi L, Rovaris M, et al. Costimulatory pathways in multiple sclerosis: distinctive expression of PD-1 and PD-L1 in patients with different patterns of disease. J Immunol. 2009;183:4984-93 pubmed 出版商