这是一篇来自已证抗体库的有关人类 PDCD6IP的综述,是根据50篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合PDCD6IP 抗体。
PDCD6IP 同义词: AIP1; ALIX; DRIP4; HP95

圣克鲁斯生物技术
小鼠 单克隆(1A12)
  • 免疫印迹; 人类; 1:400; 图 2i, 6e
圣克鲁斯生物技术 PDCD6IP抗体(Santa Cruz, sc53540)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 2i, 6e). Adv Sci (Weinh) (2020) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 人类; 1:500; 图 1d, s1c
圣克鲁斯生物技术 PDCD6IP抗体(Santa Cruz, SC-53538)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1d, s1c). Sci Adv (2019) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
圣克鲁斯生物技术 PDCD6IP抗体(Santa Cruz, sc53538)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Cell Rep (2019) ncbi
小鼠 单克隆(1A12)
  • 免疫印迹; 人类; 1:1000; 图 1b
  • 免疫印迹; 小鼠; 1:1000; 图 4b
圣克鲁斯生物技术 PDCD6IP抗体(Santa Cruz, sc-53540)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Oncogene (2019) ncbi
小鼠 单克隆(1A12)
  • 免疫细胞化学; 人类; 1:500; 图 s8a
圣克鲁斯生物技术 PDCD6IP抗体(Santa, sc-53540)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s8a). Nat Commun (2018) ncbi
小鼠 单克隆(1A12)
  • 免疫印迹; 人类; 图 9b
圣克鲁斯生物技术 PDCD6IP抗体(Santa Cruz, sc-53540)被用于被用于免疫印迹在人类样本上 (图 9b). Sci Rep (2016) ncbi
小鼠 单克隆(1A12)
  • 免疫印迹; 小鼠; 图 3h
圣克鲁斯生物技术 PDCD6IP抗体(Santa Cruz, 1A12)被用于被用于免疫印迹在小鼠样本上 (图 3h). J Neurosci (2016) ncbi
小鼠 单克隆(1A12)
  • 免疫印迹; 人类; 1:500; 图 5
圣克鲁斯生物技术 PDCD6IP抗体(Santa Cruz, sc-53540)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 小鼠; 图 2f
  • 其他; 人类; 图 3a
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 PDCD6IP抗体(Santa Cruz, 3A9)被用于被用于免疫印迹在小鼠样本上 (图 2f), 被用于其他在人类样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 2b). J Cell Biol (2016) ncbi
小鼠 单克隆(1A12)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 PDCD6IP抗体(Santa Cruz, sc-53540)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 人类; 1:500; 图 2e
圣克鲁斯生物技术 PDCD6IP抗体(Santa Cruz, sc-53538)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2e). Oncotarget (2016) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 人类; 1:100; 图 2
圣克鲁斯生物技术 PDCD6IP抗体(Santa Cruz, sc-53538)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 2). Physiol Rep (2016) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 PDCD6IP抗体(santa Cruz, sc-271975)被用于被用于免疫印迹在人类样本上 (图 5). Int J Mol Med (2016) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 小鼠; 1:500; 图 8
圣克鲁斯生物技术 PDCD6IP抗体(Santa Cruz Biotechnologies, sc-53538)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(1A12)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 PDCD6IP抗体(Santa Cruz, 1A12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Proteomics (2016) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类
圣克鲁斯生物技术 PDCD6IP抗体(SantaCruz, G10)被用于被用于免疫印迹在人类样本上. Free Radic Biol Med (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 PDCD6IP抗体(Santa Cruz, sc-271975)被用于被用于免疫印迹在人类样本上浓度为1:500. J Biol Chem (2015) ncbi
小鼠 单克隆(2H12)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 PDCD6IP抗体(Santa Cruz Biotechnology, clone 2H12)被用于被用于免疫印迹在人类样本上 (图 1). Nat Commun (2014) ncbi
小鼠 单克隆(1A12)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 PDCD6IP抗体(Santa Cruz Biotechnology, sc-53540)被用于被用于免疫印迹在人类样本上 (图 1). J Proteome Res (2014) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(3A9)
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司 PDCD6IP抗体(Abcam, ab117600)被用于被用于免疫印迹在人类样本上 (图 2b). J Extracell Vesicles (2020) ncbi
domestic rabbit 单克隆(EPR15314)
  • 免疫印迹; 人类; 图 3e
艾博抗(上海)贸易有限公司 PDCD6IP抗体(Abcam, ab186429)被用于被用于免疫印迹在人类样本上 (图 3e). Cell (2019) ncbi
domestic rabbit 单克隆(EPR15314)
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 PDCD6IP抗体(Abcam, ab186429)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Theranostics (2018) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 PDCD6IP抗体(Abcam, ab117600)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2017) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 小鼠; 1:250; 图 5b
艾博抗(上海)贸易有限公司 PDCD6IP抗体(Abcam, AB117600)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 5b). Nat Commun (2016) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 小鼠; 1:1000; 图 8c
艾博抗(上海)贸易有限公司 PDCD6IP抗体(Abcam, ab117600)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8c). Hum Mol Genet (2016) ncbi
  • 免疫细胞化学; 人类; 表 4
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 PDCD6IP抗体(Abcam, ab76608)被用于被用于免疫细胞化学在人类样本上 (表 4) 和 被用于免疫印迹在人类样本上 (图 6). J Virol (2016) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 小鼠; 1:1000; 图 1
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司 PDCD6IP抗体(Abcam, ab117600)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 PDCD6IP抗体(Abcam, 3A9)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). J Control Release (2016) ncbi
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 PDCD6IP抗体(Abcam, ab76608)被用于被用于免疫印迹在人类样本上 (图 5). Biochim Biophys Acta (2015) ncbi
赛默飞世尔
小鼠 单克隆(3A9)
  • 免疫细胞化学; 人类; 图 6a, 7a
  • 免疫印迹; 人类; 1:500; 图 4d
赛默飞世尔 PDCD6IP抗体(Thermo-Scientific, MA183977)被用于被用于免疫细胞化学在人类样本上 (图 6a, 7a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 4d). elife (2019) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 PDCD6IP抗体(Themofisher, clone 3A9)被用于被用于免疫印迹在人类样本上 (图 1a). Nanomedicine (2019) ncbi
BioLegend
小鼠 单克隆(3A9)
  • 免疫细胞化学; 人类; 图 1b
BioLegend PDCD6IP抗体(Biolegend, 634502)被用于被用于免疫细胞化学在人类样本上 (图 1b). Science (2018) ncbi
小鼠 单克隆(3A9)
BioLegend PDCD6IP抗体(Biolegend, 634501)被用于. J Immunol Methods (2016) ncbi
小鼠 单克隆(3A9)
  • 其他; 人类; 图 2
BioLegend PDCD6IP抗体(Biolegend, 634501)被用于被用于其他在人类样本上 (图 2). J Extracell Vesicles (2015) ncbi
小鼠 单克隆(3A9)
BioLegend PDCD6IP抗体(BioLegend, 634501)被用于. J Lipid Res (2015) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(3C4)
  • 免疫细胞化学; 人类; 1:200
亚诺法生技股份有限公司 PDCD6IP抗体(Abnova, H00010015-M01)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2013) ncbi
LifeSpan Biosciences
小鼠 单克隆(3A9)
  • 免疫印迹; 人类; 图 1d
LifeSpan Biosciences PDCD6IP抗体(LifeSpan, 3A9)被用于被用于免疫印迹在人类样本上 (图 1d). Biomaterials (2016) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(3A9)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 PDCD6IP抗体(Cell Signaling, 2171)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Alzheimers Res Ther (2020) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 PDCD6IP抗体(Cell Signalling, 2171s)被用于被用于免疫印迹在人类样本上 (图 1a). J Extracell Vesicles (2020) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 PDCD6IP抗体(Cell Signaling Technology, 2171)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Nat Commun (2019) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 人类; 图 2e, 6a
赛信通(上海)生物试剂有限公司 PDCD6IP抗体(Cell Signaling, 2171S)被用于被用于免疫印迹在人类样本上 (图 2e, 6a). Cell (2019) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 PDCD6IP抗体(Cell Signaling, 2171S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). J Hematol Oncol (2019) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 PDCD6IP抗体(Cell Signaling, 2171)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Biol Chem (2018) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 PDCD6IP抗体(Cell Signaling, 2171)被用于被用于免疫印迹在小鼠样本上 (图 1e). Oncotarget (2016) ncbi
小鼠 单克隆(3A9)
  • 免疫沉淀; 小鼠; 图 5b
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 PDCD6IP抗体(Cell Signaling, 2171)被用于被用于免疫沉淀在小鼠样本上 (图 5b) 和 被用于免疫印迹在小鼠样本上 (图 2c). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PDCD6IP抗体(Cell Signaling Tech, 21715)被用于被用于免疫印迹在人类样本上 (图 1). J Extracell Vesicles (2016) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PDCD6IP抗体(Cell signaling, 2171S)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer (2015) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 PDCD6IP抗体(Cell Signaling, 2171)被用于被用于免疫印迹在小鼠样本上 (图 1a). Oncotarget (2015) ncbi
小鼠 单克隆(3A9)
  • 免疫沉淀; 小鼠; 图 4a
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 PDCD6IP抗体(Cell Signaling, 2171)被用于被用于免疫沉淀在小鼠样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Nat Cell Biol (2015) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 PDCD6IP抗体(Cell signaling, 2171)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2014) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 PDCD6IP抗体(Cell Signaling, 2171)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Extracell Vesicles (2014) ncbi
文章列表
  1. Wu A, Sung Y, Chen Y, Chou S, Guo V, Chien J, et al. Multiresolution Imaging Using Bioluminescence Resonance Energy Transfer Identifies Distinct Biodistribution Profiles of Extracellular Vesicles and Exomeres with Redirected Tropism. Adv Sci (Weinh). 2020;7:2001467 pubmed 出版商
  2. Krishn S, Salem I, Quaglia F, Naranjo N, Agarwal E, Liu Q, et al. The αvβ6 integrin in cancer cell-derived small extracellular vesicles enhances angiogenesis. J Extracell Vesicles. 2020;9:1763594 pubmed 出版商
  3. Gallart Palau X, Guo X, Serra A, Sze S. Alzheimer's disease progression characterized by alterations in the molecular profiles and biogenesis of brain extracellular vesicles. Alzheimers Res Ther. 2020;12:54 pubmed 出版商
  4. Cordonnier M, Nardin C, Chanteloup G, Derangère V, Algros M, Arnould L, et al. Tracking the evolution of circulating exosomal-PD-L1 to monitor melanoma patients. J Extracell Vesicles. 2020;9:1710899 pubmed 出版商
  5. Yokoi A, Villar Prados A, Oliphint P, Zhang J, Song X, De Hoff P, et al. Mechanisms of nuclear content loading to exosomes. Sci Adv. 2019;5:eaax8849 pubmed 出版商
  6. Abels E, Maas S, Nieland L, Wei Z, Cheah P, Tai E, et al. Glioblastoma-Associated Microglia Reprogramming Is Mediated by Functional Transfer of Extracellular miR-21. Cell Rep. 2019;28:3105-3119.e7 pubmed 出版商
  7. Geeurickx E, Tulkens J, Dhondt B, Van Deun J, Lippens L, Vergauwen G, et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat Commun. 2019;10:3288 pubmed 出版商
  8. Ajasin D, Rao V, Wu X, Ramasamy S, Pujato M, Ruiz A, et al. CCL2 mobilizes ALIX to facilitate Gag-p6 mediated HIV-1 virion release. elife. 2019;8: pubmed 出版商
  9. Ortega F, Roefs M, De Miguel Pérez D, Kooijmans S, de Jong O, Sluijter J, et al. Interfering with endolysosomal trafficking enhances release of bioactive exosomes. Nanomedicine. 2019;:102014 pubmed 出版商
  10. Jeppesen D, Fenix A, Franklin J, Higginbotham J, Zhang Q, Zimmerman L, et al. Reassessment of Exosome Composition. Cell. 2019;177:428-445.e18 pubmed 出版商
  11. Hwang W, Lan H, Cheng W, Huang S, Yang M. Tumor stem-like cell-derived exosomal RNAs prime neutrophils for facilitating tumorigenesis of colon cancer. J Hematol Oncol. 2019;12:10 pubmed 出版商
  12. Zhang H, Deng T, Ge S, Liu Y, Bai M, Zhu K, et al. Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7. Oncogene. 2019;38:2844-2859 pubmed 出版商
  13. Arii J, Watanabe M, Maeda F, Tokai Nishizumi N, Chihara T, Miura M, et al. ESCRT-III mediates budding across the inner nuclear membrane and regulates its integrity. Nat Commun. 2018;9:3379 pubmed 出版商
  14. Fukushima M, Dasgupta D, Mauer A, Kakazu E, Nakao K, Malhi H. StAR-related lipid transfer domain 11 (STARD11)-mediated ceramide transport mediates extracellular vesicle biogenesis. J Biol Chem. 2018;293:15277-15289 pubmed 出版商
  15. Li H, Liao Y, Gao L, Zhuang T, Huang Z, Zhu H, et al. Coronary Serum Exosomes Derived from Patients with Myocardial Ischemia Regulate Angiogenesis through the miR-939-mediated Nitric Oxide Signaling Pathway. Theranostics. 2018;8:2079-2093 pubmed 出版商
  16. Skowyra M, Schlesinger P, Naismith T, Hanson P. Triggered recruitment of ESCRT machinery promotes endolysosomal repair. Science. 2018;360: pubmed 出版商
  17. Dean I, Dzinic S, Bernardo M, Zou Y, Kimler V, Li X, et al. The secretion and biological function of tumor suppressor maspin as an exosome cargo protein. Oncotarget. 2017;8:8043-8056 pubmed 出版商
  18. Saha S, Aranda E, Hayakawa Y, Bhanja P, Atay S, Brodin N, et al. Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat Commun. 2016;7:13096 pubmed 出版商
  19. Vardaki I, Ceder S, Rutishauser D, Baltatzis G, Foukakis T, Panaretakis T. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget. 2016;7:74966-74978 pubmed 出版商
  20. Gräßel L, Fast L, Scheffer K, Boukhallouk F, Spoden G, Tenzer S, et al. The CD63-Syntenin-1 Complex Controls Post-Endocytic Trafficking of Oncogenic Human Papillomaviruses. Sci Rep. 2016;6:32337 pubmed 出版商
  21. Bæk R, Søndergaard E, Varming K, Jørgensen M. The impact of various preanalytical treatments on the phenotype of small extracellular vesicles in blood analyzed by protein microarray. J Immunol Methods. 2016;438:11-20 pubmed 出版商
  22. Dinkins M, Enasko J, Hernandez C, Wang G, Kong J, Helwa I, et al. Neutral Sphingomyelinase-2 Deficiency Ameliorates Alzheimer's Disease Pathology and Improves Cognition in the 5XFAD Mouse. J Neurosci. 2016;36:8653-67 pubmed 出版商
  23. Watson D, Bayık D, Srivatsan A, Bergamaschi C, Valentin A, Niu G, et al. Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials. 2016;105:195-205 pubmed 出版商
  24. Coenen Stass A, Betts C, Lee Y, Mäger I, Turunen M, El Andaloussi S, et al. Selective release of muscle-specific, extracellular microRNAs during myogenic differentiation. Hum Mol Genet. 2016;25:3960-3974 pubmed 出版商
  25. Song M, Wang Y, Shang Z, Liu X, Xie D, Wang Q, et al. Bystander autophagy mediated by radiation-induced exosomal miR-7-5p in non-targeted human bronchial epithelial cells. Sci Rep. 2016;6:30165 pubmed 出版商
  26. Gong J, Körner R, Gaitanos L, Klein R. Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance. J Cell Biol. 2016;214:35-44 pubmed 出版商
  27. Ortiz D, Glassbrook J, Pellett P. Protein-Protein Interactions Suggest Novel Activities of Human Cytomegalovirus Tegument Protein pUL103. J Virol. 2016;90:7798-810 pubmed 出版商
  28. Diaz Hidalgo L, Altuntas S, Rossin F, D Eletto M, Marsella C, Farrace M, et al. Transglutaminase type 2-dependent selective recruitment of proteins into exosomes under stressful cellular conditions. Biochim Biophys Acta. 2016;1863:2084-92 pubmed 出版商
  29. Kharmate G, Hosseini Beheshti E, Caradec J, Chin M, Tomlinson Guns E. Epidermal Growth Factor Receptor in Prostate Cancer Derived Exosomes. PLoS ONE. 2016;11:e0154967 pubmed 出版商
  30. Kamranvar S, Gupta D, Huang Y, Gupta R, Johansson S. Integrin signaling via FAK-Src controls cytokinetic abscission by decelerating PLK1 degradation and subsequent recruitment of CEP55 at the midbody. Oncotarget. 2016;7:30820-30 pubmed 出版商
  31. Hinrichs G, Hansen L, Nielsen M, Fagerberg C, Dieperink H, Rittig S, et al. A novel mutation affecting the arginine-137 residue of AVPR2 in dizygous twins leads to nephrogenic diabetes insipidus and attenuated urine exosome aquaporin-2. Physiol Rep. 2016;4: pubmed 出版商
  32. Ronquist K, Sanchez C, Dubois L, Chioureas D, Fonseca P, Larsson A, et al. Energy-requiring uptake of prostasomes and PC3 cell-derived exosomes into non-malignant and malignant cells. J Extracell Vesicles. 2016;5:29877 pubmed 出版商
  33. Iavello A, Frech V, Gai C, Deregibus M, Quesenberry P, Camussi G. Role of Alix in miRNA packaging during extracellular vesicle biogenesis. Int J Mol Med. 2016;37:958-66 pubmed 出版商
  34. Willms E, Johansson H, Mäger I, Lee Y, Blomberg K, Sadik M, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep. 2016;6:22519 pubmed 出版商
  35. Barone R, Macaluso F, Sangiorgi C, Campanella C, Marino Gammazza A, Moresi V, et al. Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression. Sci Rep. 2016;6:19781 pubmed 出版商
  36. Kooijmans S, Fliervoet L, van der Meel R, Fens M, Heijnen H, van Bergen En Henegouwen P, et al. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J Control Release. 2016;224:77-85 pubmed 出版商
  37. Clark D, Fondrie W, Yang A, Mao L. Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes. J Proteomics. 2016;133:161-169 pubmed 出版商
  38. Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer. 2015;14:155 pubmed 出版商
  39. Madrigal Matute J, Fernandez García C, Blanco Colio L, Burillo E, Fortuño A, Martinez Pinna R, et al. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis. Free Radic Biol Med. 2015;86:352-61 pubmed 出版商
  40. Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, et al. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget. 2015;6:13772-89 pubmed
  41. Jørgensen M, Bæk R, Varming K. Potentials and capabilities of the Extracellular Vesicle (EV) Array. J Extracell Vesicles. 2015;4:26048 pubmed 出版商
  42. Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol. 2015;17:300-10 pubmed 出版商
  43. Bailey J, Fields A, Cheng K, Lee A, Wagenaar E, Lagrois R, et al. WD repeat-containing protein 5 (WDR5) localizes to the midbody and regulates abscission. J Biol Chem. 2015;290:8987-9001 pubmed 出版商
  44. Sun L, Hartson S, Matts R. Identification of proteins associated with Aha1 in HeLa cells by quantitative proteomics. Biochim Biophys Acta. 2015;1854:365-80 pubmed 出版商
  45. Ertunc M, Sikkeland J, Fenaroli F, Griffiths G, Daniels M, Cao H, et al. Secretion of fatty acid binding protein aP2 from adipocytes through a nonclassical pathway in response to adipocyte lipase activity. J Lipid Res. 2015;56:423-34 pubmed 出版商
  46. Kim H, Xu H, Yao Q, Li W, Huang Q, Outeda P, et al. Ciliary membrane proteins traffic through the Golgi via a Rabep1/GGA1/Arl3-dependent mechanism. Nat Commun. 2014;5:5482 pubmed 出版商
  47. Guo H, Chitiprolu M, Gagnon D, Meng L, Perez Iratxeta C, Lagace D, et al. Autophagy supports genomic stability by degrading retrotransposon RNA. Nat Commun. 2014;5:5276 pubmed 出版商
  48. Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;3: pubmed 出版商
  49. Cypryk W, Ohman T, Eskelinen E, Matikainen S, Nyman T. Quantitative proteomics of extracellular vesicles released from human monocyte-derived macrophages upon ?-glucan stimulation. J Proteome Res. 2014;13:2468-77 pubmed 出版商
  50. Boonyaratanakornkit J, Schomacker H, Collins P, Schmidt A. Alix serves as an adaptor that allows human parainfluenza virus type 1 to interact with the host cell ESCRT system. PLoS ONE. 2013;8:e59462 pubmed 出版商