这是一篇来自已证抗体库的有关人类 PDGFR甲 (PDGFR alpha) 的综述,是根据84篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合PDGFR甲 抗体。
PDGFR甲 同义词: CD140A; PDGFR-2; PDGFR2

BioLegend
小鼠 单克隆(16A1)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendPDGFR甲抗体(BioLegend, 323508)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Sci Adv (2022) ncbi
小鼠 单克隆(16A1)
  • 其他; 人类; 1:50
BioLegendPDGFR甲抗体(Biolegend, 16A1)被用于被用于其他在人类样本上浓度为1:50. elife (2020) ncbi
小鼠 单克隆(16A1)
  • 流式细胞仪; 人类; 3:50; 图 1c
BioLegendPDGFR甲抗体(Biolegend, 16A1)被用于被用于流式细胞仪在人类样本上浓度为3:50 (图 1c). Science (2020) ncbi
小鼠 单克隆(16A1)
  • 流式细胞仪; 人类; 图 2a
BioLegendPDGFR甲抗体(BioLegend, 323506)被用于被用于流式细胞仪在人类样本上 (图 2a). Stem Cells Int (2019) ncbi
小鼠 单克隆(16A1)
  • 流式细胞仪; 人类
BioLegendPDGFR甲抗体(BioLegend, 16A-1)被用于被用于流式细胞仪在人类样本上. Nat Med (2016) ncbi
小鼠 单克隆(16A1)
  • 流式细胞仪; 人类; 图 2
BioLegendPDGFR甲抗体(Biolegend, 16A1)被用于被用于流式细胞仪在人类样本上 (图 2). Nature (2016) ncbi
小鼠 单克隆(16A1)
  • 流式细胞仪; 人类
BioLegendPDGFR甲抗体(Biolegend, 323505)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
赛默飞世尔
小鼠 单克隆(16A1)
  • 流式细胞仪; 人类; 1:50; 图 3h
赛默飞世尔PDGFR甲抗体(Invitrogen, MA5-28585)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3h). Bone Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1a
赛默飞世尔PDGFR甲抗体(ThermoFisher, PA5-16571)被用于被用于免疫组化在人类样本上 (图 1a). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 3d
赛默飞世尔PDGFR甲抗体(ThermoFisher, PA5-16742)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 3d). Acta Neuropathol (2020) ncbi
小鼠 单克隆(16A1)
  • 流式细胞仪; 人类; 1:50; 图 3a, 3b
赛默飞世尔PDGFR甲抗体(Thermo, MA1-10097)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3a, 3b). Stem Cells (2019) ncbi
domestic rabbit 单克隆(7HCLC)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 6g
赛默飞世尔PDGFR甲抗体(Thermo Fisher, 710169)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 6g). Dev Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 7a
赛默飞世尔PDGFR甲抗体(Thermo Fisher, PA5-32545)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 7a). Clin Cosmet Investig Dermatol (2016) ncbi
domestic rabbit 单克隆(7HCLC)
  • 免疫组化; 人类; 图 2d
赛默飞世尔PDGFR甲抗体(Thermo Scientific, 7HCLC)被用于被用于免疫组化在人类样本上 (图 2d). Ann Oncol (2017) ncbi
domestic rabbit 重组(7H13L1)
  • 免疫细胞化学; 人类; 3 ug/ml; 图 2d
赛默飞世尔PDGFR甲抗体(生活技术, 701142)被用于被用于免疫细胞化学在人类样本上浓度为3 ug/ml (图 2d). Cell Mol Bioeng (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 免疫组化; 小鼠; 1:200; 图 2a
圣克鲁斯生物技术PDGFR甲抗体(Santa Cruz Bio, sc-398206)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). elife (2021) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 3a
圣克鲁斯生物技术PDGFR甲抗体(Santa Cruz Biotechnology, sc-398206)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 3a). BMC Neurosci (2019) ncbi
小鼠 单克隆(16A1)
  • 免疫组化; 人类; 1:250; 表 s4
圣克鲁斯生物技术PDGFR甲抗体(Santa Cruz, sc-21789)被用于被用于免疫组化在人类样本上浓度为1:250 (表 s4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(16A1)
  • 流式细胞仪; 人类; 图 s4
圣克鲁斯生物技术PDGFR甲抗体(Santa Cruz Biotechnology, sc-21789)被用于被用于流式细胞仪在人类样本上 (图 s4). Stem Cell Reports (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3b
艾博抗(上海)贸易有限公司PDGFR甲抗体(Abcam, ab134123)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3b). Front Cell Dev Biol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 2c
艾博抗(上海)贸易有限公司PDGFR甲抗体(Abcam, ab5460)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2c). J Cardiovasc Dev Dis (2021) ncbi
小鼠 单克隆(16A1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5c
艾博抗(上海)贸易有限公司PDGFR甲抗体(Abcam, ab96569)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5c). (2020) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 图 1b
艾博抗(上海)贸易有限公司PDGFR甲抗体(Abcam, ab134068)被用于被用于免疫印迹在小鼠样本上 (图 1b). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 7
  • 免疫印迹; 人类; 图 7
  • 免疫组化-石蜡切片; 小鼠; 图 8
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司PDGFR甲抗体(Abcam, 5460)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7), 被用于免疫印迹在人类样本上 (图 7), 被用于免疫组化-石蜡切片在小鼠样本上 (图 8) 和 被用于免疫印迹在小鼠样本上 (图 8). J Immunol (2016) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(35248 (57/20))
  • 免疫组化-石蜡切片; 人类; 1:50; 图 6a
伯乐(Bio-Rad)公司PDGFR甲抗体(AbD Serotec, 0100-0220)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 6a). J Clin Invest (2017) ncbi
北京义翘神州
小鼠 单克隆(5A10H9)
  • 抑制或激活实验; 人类; 图 2a
北京义翘神州PDGFR甲抗体(Sino biological, 5A10H9)被用于被用于抑制或激活实验在人类样本上 (图 2a). Nat Microbiol (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D1E1E)
  • 免疫组化; 小鼠; 1:50; 图 s2-2hk
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3174)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s2-2hk). elife (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 8c
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell signaling, 3164)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 8c). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司PDGFR甲抗体(CST, 3174)被用于被用于免疫细胞化学在小鼠样本上. Signal Transduct Target Ther (2022) ncbi
domestic rabbit 单克隆(23B2)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4g
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 2992)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4g). elife (2022) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s3f
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3174)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s3f). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2a
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3164)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2a). Mol Neurobiol (2022) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3174)被用于被用于免疫印迹在小鼠样本上 (图 4c). iScience (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化; 小鼠; 图 6h
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3174)被用于被用于免疫组化在小鼠样本上 (图 6h). Cell Rep Methods (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫细胞化学; 小鼠; 1:500; 图 2k
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signalling Technology, 3174S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2k). J Extracell Vesicles (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2i
赛信通(上海)生物试剂有限公司PDGFR甲抗体(CST, 3164)被用于被用于免疫组化在人类样本上 (图 2i). Cell Rep (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司PDGFR甲抗体(CST, 3174)被用于被用于免疫印迹在人类样本上 (图 2a). Circulation (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling Technology, 3174)被用于被用于免疫组化在小鼠样本上 (图 7d). Front Immunol (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹基因敲除验证; 人类; 图 3a
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling Technology, 3174)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 3a). Biomol Ther (Seoul) (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 小鼠; 图 s1a
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling Technology, 3174)被用于被用于免疫印迹在小鼠样本上 (图 s1a). Cell (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3174)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Cell Stem Cell (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 人类; 图 5f, s3b
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司PDGFR甲抗体(CST, 3174)被用于被用于免疫印迹在人类样本上 (图 5f, s3b) 和 被用于免疫印迹在小鼠样本上 (图 4a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 5a
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3174)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 5a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 1:200; 图 1b
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3164)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:200 (图 1b). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(C43E9)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司PDGFR甲抗体(CST, 3170S)被用于被用于免疫印迹在人类样本上 (图 5c). JCI Insight (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司PDGFR甲抗体(CST, 3174)被用于被用于免疫印迹在人类样本上 (图 5c). JCI Insight (2021) ncbi
domestic rabbit 单克隆(23B2)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3h
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 2992)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3h). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 3g
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3164)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 3g). elife (2020) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling Technology, 3174S)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 6a). J Biomed Sci (2020) ncbi
domestic rabbit 单克隆(D13C6)
  • 免疫组化; 人类; 1:200
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell signalling technology, D13C6)被用于被用于免疫组化在人类样本上浓度为1:200. Sci Rep (2020) ncbi
domestic rabbit 单克隆(D13C6)
  • 免疫组化-石蜡切片; 人类; 表 1
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 5241)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Neurol Med Chir (Tokyo) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 4547)被用于被用于免疫印迹在人类样本上 (图 7a). J Clin Med (2020) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5h
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3174)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5h). Sci Adv (2020) ncbi
domestic rabbit 单克隆(D1E1E)
  • 流式细胞仪; 小鼠; 1:500; 图 e10b
  • 免疫组化; 小鼠; 1:500; 图 4e
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signalling, 3174)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 e10b) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 4e). Nature (2019) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 3f
  • 免疫细胞化学; 小鼠; 1:500; 图 3e
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3174)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 3f) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3e). FASEB J (2019) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1s1a
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell signaling, 3174)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1s1a). elife (2019) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling Technology, 3174)被用于被用于免疫印迹在小鼠样本上 (图 1b). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-冰冻切片; 小鼠; 1:600; 图 5d
赛信通(上海)生物试剂有限公司PDGFR甲抗体(CST, 3174)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:600 (图 5d). elife (2019) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s7c
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling Technology, 3174S)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s7c). Neuron (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s2
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3164)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s2). Neurogastroenterol Motil (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 s3d
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3164)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 s3d). Science (2018) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling Technology, D1E1E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3c). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(C43E9)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3170)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 1
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3164)被用于被用于免疫沉淀在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 3c). Cancer Sci (2017) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-冰冻切片; 小鼠; 1:10; 图 3f
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3174S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10 (图 3f). Dev Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 e1
赛信通(上海)生物试剂有限公司PDGFR甲抗体(cell signalling, 4547)被用于被用于免疫印迹在小鼠样本上 (图 e1). Nature (2016) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 小鼠; 1:1000; 图 e5
赛信通(上海)生物试剂有限公司PDGFR甲抗体(cell signalling, 3174)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 e5). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3164S)被用于被用于免疫组化在小鼠样本上 (图 7a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(23B2)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signal, 2992)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(23B2)
  • 免疫组化-石蜡切片; 人类; 图 7
  • 免疫印迹; 人类; 图 7
  • 免疫组化-石蜡切片; 小鼠; 图 8
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 2992)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7), 被用于免疫印迹在人类样本上 (图 7), 被用于免疫组化-石蜡切片在小鼠样本上 (图 8) 和 被用于免疫印迹在小鼠样本上 (图 8). J Immunol (2016) ncbi
domestic rabbit 单克隆(D13C6)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, D13C6)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell signaling, 3164)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). elife (2016) ncbi
domestic rabbit 单克隆(D13C6)
  • 免疫细胞化学; 人类; 1:200; 图 4
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling Technology, 5241P)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫细胞化学; 人类; 图 6
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling Technology, D1E1E)被用于被用于免疫细胞化学在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 s6). J Clin Invest (2015) ncbi
domestic rabbit 单克隆(D13C6)
  • 免疫细胞化学; 人类; 1:500; 表 4
赛信通(上海)生物试剂有限公司PDGFR甲抗体(New England BioLabs, 5241)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (表 4). J Vis Exp (2015) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3174)被用于被用于免疫印迹在人类样本上. Clin Cancer Res (2014) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3174)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Mol Endocrinol (2014) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化; 人类; 1:150
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3174)被用于被用于免疫组化在人类样本上浓度为1:150. Pathol Res Pract (2014) ncbi
domestic rabbit 单克隆(D13C6)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 5241)被用于被用于免疫组化在人类样本上. Cancer Res (2013) ncbi
domestic rabbit 单克隆(D13C6)
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 5241)被用于被用于免疫组化在小鼠样本上. Bone (2013) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-石蜡切片; 小鼠; 1:300
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3174)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300. PLoS ONE (2012) ncbi
domestic rabbit 单克隆(23B2)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 2992)被用于被用于免疫印迹在人类样本上浓度为1:2000. Cancer Cell (2011) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化; 人类; 1:200
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司PDGFR甲抗体(Cell Signaling, 3174)被用于被用于免疫组化在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上浓度为1:2000. Cancer Cell (2011) ncbi
碧迪BD
小鼠 单克隆(R1)
  • 流式细胞仪; 人类; 图 S2
碧迪BDPDGFR甲抗体(BD, 556002)被用于被用于流式细胞仪在人类样本上 (图 S2). PLoS ONE (2017) ncbi
小鼠 单克隆(R1)
  • 流式细胞仪; 人类; 图 st1
碧迪BDPDGFR甲抗体(BD Pharmingen, 556002)被用于被用于流式细胞仪在人类样本上 (图 st1). Circ Res (2016) ncbi
小鼠 单克隆(R1)
  • 流式细胞仪; 人类; 图 st1
碧迪BDPDGFR甲抗体(BD, 556002)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(R1)
  • 流式细胞仪; 人类; 1:20; 图 1
碧迪BDPDGFR甲抗体(BD, 556002)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 1). Development (2015) ncbi
小鼠 单克隆(R1)
  • 免疫细胞化学; 人类; 1:200
碧迪BDPDGFR甲抗体(BD Pharmingen, 556001)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Nature (2015) ncbi
小鼠 单克隆(R1)
  • 流式细胞仪; 人类; 1:50; 图 s5
碧迪BDPDGFR甲抗体(BD Bioscience, . 562799)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s5). Nat Biotechnol (2015) ncbi
小鼠 单克隆(R1)
  • 流式细胞仪; 人类
碧迪BDPDGFR甲抗体(BD Biosciences, 556002)被用于被用于流式细胞仪在人类样本上. Stem Cell Reports (2015) ncbi
文章列表
  1. Gao F, Li C, Smith S, Peinado N, Kohbodi G, Tran E, et al. Decoding the IGF1 signaling gene regulatory network behind alveologenesis from a mouse model of bronchopulmonary dysplasia. elife. 2022;11: pubmed 出版商
  2. Lee K, Yeo S, Gong J, Koo O, Sohn I, Lee W, et al. PRRX1 is a master transcription factor of stromal fibroblasts for myofibroblastic lineage progression. Nat Commun. 2022;13:2793 pubmed 出版商
  3. Yu L, Zhang J, Gao A, Wang Z, Yu F, Guo X, et al. An intersegmental single-cell profile reveals aortic heterogeneity and identifies a novel Malat1+ vascular smooth muscle subtype involved in abdominal aortic aneurysm formation. Signal Transduct Target Ther. 2022;7:125 pubmed 出版商
  4. Zhang K, Yao E, Chen B, Chuang E, Wong J, Seed R, et al. Acquisition of cellular properties during alveolar formation requires differential activity and distribution of mitochondria. elife. 2022;11: pubmed 出版商
  5. Yoshitake R, Chang G, Saeki K, Ha D, Wu X, Wang J, et al. Single-Cell Transcriptomics Identifies Heterogeneity of Mouse Mammary Gland Fibroblasts With Distinct Functions, Estrogen Responses, Differentiation Processes, and Crosstalks With Epithelium. Front Cell Dev Biol. 2022;10:850568 pubmed 出版商
  6. Meschkat M, Steyer A, Weil M, Kusch K, Jahn O, Piepkorn L, et al. White matter integrity in mice requires continuous myelin synthesis at the inner tongue. Nat Commun. 2022;13:1163 pubmed 出版商
  7. Kumar B, Adebayo A, Prasad M, Capitano M, Wang R, Bhat Nakshatri P, et al. Tumor collection/processing under physioxia uncovers highly relevant signaling networks and drug sensitivity. Sci Adv. 2022;8:eabh3375 pubmed 出版商
  8. Wang Y, Xu Y, Zhou K, Zhang S, Wang Y, Li T, et al. Autophagy Inhibition Reduces Irradiation-Induced Subcortical White Matter Injury Not by Reducing Inflammation, but by Increasing Mitochondrial Fusion and Inhibiting Mitochondrial Fission. Mol Neurobiol. 2022;59:1199-1213 pubmed 出版商
  9. Li Z, Chiang Y, He M, Worgall T, Zhou H, Jiang X. Liver sphingomyelin synthase 1 deficiency causes steatosis, steatohepatitis, fibrosis, and tumorigenesis: An effect of glucosylceramide accumulation. iScience. 2021;24:103449 pubmed 出版商
  10. Mangold K, Masek J, He J, Lendahl U, Fuchs E, Andersson E. Highly efficient manipulation of nervous system gene expression with NEPTUNE. Cell Rep Methods. 2021;1: pubmed 出版商
  11. Minakawa T, Matoba T, Ishidate F, Fujiwara T, Takehana S, Tabata Y, et al. Extracellular vesicles synchronize cellular phenotypes of differentiating cells. J Extracell Vesicles. 2021;10:e12147 pubmed 出版商
  12. Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, et al. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res. 2021;9:37 pubmed 出版商
  13. Kohnke S, Buller S, Nuzzaci D, Ridley K, Lam B, Pivonkova H, et al. Nutritional regulation of oligodendrocyte differentiation regulates perineuronal net remodeling in the median eminence. Cell Rep. 2021;36:109362 pubmed 出版商
  14. Ostriker A, Xie Y, Chakraborty R, Sizer A, Bai Y, Ding M, et al. TET2 Protects Against Vascular Smooth Muscle Cell Apoptosis and Intimal Thickening in Transplant Vasculopathy. Circulation. 2021;144:455-470 pubmed 出版商
  15. Li J, Sun Z, Luo G, Wang S, Cui H, Yao Z, et al. Quercetin Attenuates Trauma-Induced Heterotopic Ossification by Tuning Immune Cell Infiltration and Related Inflammatory Insult. Front Immunol. 2021;12:649285 pubmed 出版商
  16. Wei Y, Sun H, Gui T, Yao L, Zhong L, Yu W, et al. The critical role of Hedgehog-responsive mesenchymal progenitors in meniscus development and injury repair. elife. 2021;10: pubmed 出版商
  17. Lin C, Tsai M, Chen Y, Liu W, Lin C, Hsu K, et al. Platelet-Derived Growth Factor Receptor-α Subunit Targeting Suppresses Metastasis in Advanced Thyroid Cancer In Vitro and In Vivo. Biomol Ther (Seoul). 2021;29:551-561 pubmed 出版商
  18. Velasco Estevez M, Koch N, Klejbor I, Laurent S, Dev K, Szutowicz A, et al. EBI2 Is Temporarily Upregulated in MO3.13 Oligodendrocytes during Maturation and Regulates Remyelination in the Organotypic Cerebellar Slice Model. Int J Mol Sci. 2021;22: pubmed 出版商
  19. Gangoso E, Southgate B, Bradley L, Rus S, Gálvez Cancino F, McGivern N, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell. 2021;184:2454-2470.e26 pubmed 出版商
  20. Moore K, Fulmer D, Guo L, Koren N, Glover J, Moore R, et al. PDGFRα: Expression and Function during Mitral Valve Morphogenesis. J Cardiovasc Dev Dis. 2021;8: pubmed 出版商
  21. Bressan R, Southgate B, Ferguson K, Blin C, Grant V, Alfazema N, et al. Regional identity of human neural stem cells determines oncogenic responses to histone H3.3 mutants. Cell Stem Cell. 2021;28:877-893.e9 pubmed 出版商
  22. Wan X, Zhou M, Huang F, Zhao N, Chen X, Wu Y, et al. AKT1-CREB stimulation of PDGFRα expression is pivotal for PTEN deficient tumor development. Cell Death Dis. 2021;12:172 pubmed 出版商
  23. Wu Y, Cao Y, Xu K, Zhu Y, Qiao Y, Wu Y, et al. Dynamically remodeled hepatic extracellular matrix predicts prognosis of early-stage cirrhosis. Cell Death Dis. 2021;12:163 pubmed 出版商
  24. Chao F, Zhang Y, Zhang L, Jiang L, Zhou C, Tang J, et al. Fluoxetine Promotes Hippocampal Oligodendrocyte Maturation and Delays Learning and Memory Decline in APP/PS1 Mice. Front Aging Neurosci. 2020;12:627362 pubmed 出版商
  25. Díaz Lezama N, Wolf A, Koch S, Pfaller A, Biber J, Guillonneau X, et al. PDGF Receptor Alpha Signaling Is Key for Müller Cell Homeostasis Functions. Int J Mol Sci. 2021;22: pubmed 出版商
  26. Ye S, Sharipova D, Kozinova M, Klug L, D Souza J, Belinsky M, et al. Identification of Wee1 as a target in combination with avapritinib for gastrointestinal stromal tumor treatment. JCI Insight. 2021;6: pubmed 出版商
  27. Cignarella F, Filipello F, Bollman B, Cantoni C, Locca A, Mikesell R, et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol. 2020;140:513-534 pubmed 出版商
  28. Leelatian N, Sinnaeve J, Mistry A, Barone S, Brockman A, Diggins K, et al. Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells. elife. 2020;9: pubmed 出版商
  29. Zhang K, Yao E, Lin C, Chou Y, Wong J, Li J, et al. A mammalian Wnt5a-Ror2-Vangl2 axis controls the cytoskeleton and confers cellular properties required for alveologenesis. elife. 2020;9: pubmed 出版商
  30. Lai Y, Chao H, Lai A, Lin S, Chang Y, Huang Y. CPEB2-activated PDGFRα mRNA translation contributes to myofibroblast proliferation and pulmonary alveologenesis. J Biomed Sci. 2020;27:52 pubmed 出版商
  31. Park J, Botting R, Domínguez Conde C, Popescu D, Lavaert M, Kunz D, et al. A cell atlas of human thymic development defines T cell repertoire formation. Science. 2020;367: pubmed 出版商
  32. de Gooyer J, Versleijen Jonkers Y, Hillebrandt Roeffen M, Frielink C, Desar I, de Wilt J, et al. Immunohistochemical selection of biomarkers for tumor-targeted image-guided surgery of myxofibrosarcoma. Sci Rep. 2020;10:2915 pubmed 出版商
  33. Suzuki H, Mikuni N, Sugita S, Aoyama T, Yokoyama R, Suzuki Y, et al. Molecular Aberrations Associated with Seizure Control in Diffuse Astrocytic and Oligodendroglial Tumors. Neurol Med Chir (Tokyo). 2020;60:147-155 pubmed 出版商
  34. Lin C, Lin W, Cho R, Yang C, Yeh Y, Hsiao L, et al. Induction of HO-1 by Mevastatin Mediated via a Nox/ROS-Dependent c-Src/PDGFRα/PI3K/Akt/Nrf2/ARE Cascade Suppresses TNF-α-Induced Lung Inflammation. J Clin Med. 2020;9: pubmed 出版商
  35. Chen M, Lu P, Ma Q, Cao Y, Chen N, Li W, et al. CTNNB1/β-catenin dysfunction contributes to adiposity by regulating the cross-talk of mature adipocytes and preadipocytes. Sci Adv. 2020;6:eaax9605 pubmed 出版商
  36. Shin S, Kim E, Lee K, Kim H. TNF-α antagonist attenuates systemic lipopolysaccharide-induced brain white matter injury in neonatal rats. BMC Neurosci. 2019;20:45 pubmed 出版商
  37. SEGEL M, Neumann B, Hill M, Weber I, Viscomi C, Zhao C, et al. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature. 2019;573:130-134 pubmed 出版商
  38. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  39. Garcia Agudo L, Janova H, Sendler L, Arinrad S, Steixner A, Hassouna I, et al. Genetically induced brain inflammation by Cnp deletion transiently benefits from microglia depletion. FASEB J. 2019;33:8634-8647 pubmed 出版商
  40. Dimas P, Montani L, Pereira J, Moreno D, Trötzmüller M, Gerber J, et al. CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. elife. 2019;8: pubmed 出版商
  41. Stivala S, Codilupi T, Brkic S, Baerenwaldt A, Ghosh N, Hao Shen H, et al. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. J Clin Invest. 2019;130:1596-1611 pubmed 出版商
  42. Dmitrieva R, Lelyavina T, Komarova M, Galenko V, Ivanova O, Tikanova P, et al. Skeletal Muscle Resident Progenitor Cells Coexpress Mesenchymal and Myogenic Markers and Are Not Affected by Chronic Heart Failure-Induced Dysregulations. Stem Cells Int. 2019;2019:5690345 pubmed 出版商
  43. Sahara M, Santoro F, Sohlmér J, Zhou C, Witman N, Leung C, et al. Population and Single-Cell Analysis of Human Cardiogenesis Reveals Unique LGR5 Ventricular Progenitors in Embryonic Outflow Tract. Dev Cell. 2019;48:475-490.e7 pubmed 出版商
  44. Gerber D, Ghidinelli M, Tinelli E, Somandin C, Gerber J, Pereira J, et al. Schwann cells, but not Oligodendrocytes, Depend Strictly on Dynamin 2 Function. elife. 2019;8: pubmed 出版商
  45. Li Q, Cheng Z, Zhou L, Darmanis S, Neff N, Okamoto J, et al. Developmental Heterogeneity of Microglia and Brain Myeloid Cells Revealed by Deep Single-Cell RNA Sequencing. Neuron. 2019;101:207-223.e10 pubmed 出版商
  46. HERRING B, Hoggatt A, Gupta A, Wo J. Gastroparesis is associated with decreased FOXF1 and FOXF2 in humans, and loss of FOXF1 and FOXF2 results in gastroparesis in mice. Neurogastroenterol Motil. 2019;31:e13528 pubmed 出版商
  47. Real R, Peter M, Trabalza A, Khan S, Smith M, Dopp J, et al. In vivo modeling of human neuron dynamics and Down syndrome. Science. 2018;362: pubmed 出版商
  48. Hemming M, Lawlor M, Zeid R, Lesluyes T, Fletcher J, Raut C, et al. Gastrointestinal stromal tumor enhancers support a transcription factor network predictive of clinical outcome. Proc Natl Acad Sci U S A. 2018;115:E5746-E5755 pubmed 出版商
  49. Tsutsumi R, Harizanova J, Stockert R, Schröder K, Bastiaens P, Neel B. Assay to visualize specific protein oxidation reveals spatio-temporal regulation of SHP2. Nat Commun. 2017;8:466 pubmed 出版商
  50. Kuroda M, Muramatsu R, Maedera N, Koyama Y, Hamaguchi M, Fujimura H, et al. Peripherally derived FGF21 promotes remyelination in the central nervous system. J Clin Invest. 2017;127:3496-3509 pubmed 出版商
  51. Yamashita T, Miyamoto Y, Bando Y, Ono T, Kobayashi S, Doi A, et al. Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells. PLoS ONE. 2017;12:e0171947 pubmed 出版商
  52. Ibata M, Iwasaki J, Fujioka Y, Nakagawa K, Darmanin S, Onozawa M, et al. Leukemogenic kinase FIP1L1-PDGFRA and a small ubiquitin-like modifier E3 ligase, PIAS1, form a positive cross-talk through their enzymatic activities. Cancer Sci. 2017;108:200-207 pubmed 出版商
  53. Chajra H, Auriol D, Joly F, Pagnon A, Rodrigues M, Allart S, et al. Reactivating the extracellular matrix synthesis of sulfated glycosaminoglycans and proteoglycans to improve the human skin aspect and its mechanical properties. Clin Cosmet Investig Dermatol. 2016;9:461-472 pubmed
  54. Rux D, Song J, Swinehart I, Pineault K, Schlientz A, Trulik K, et al. Regionally Restricted Hox Function in Adult Bone Marrow Multipotent Mesenchymal Stem/Stromal Cells. Dev Cell. 2016;39:653-666 pubmed 出版商
  55. Mueller A, van Velthoven C, Fukumoto K, Cheung T, Rando T. Intronic polyadenylation of PDGFR? in resident stem cells attenuates muscle fibrosis. Nature. 2016;540:276-279 pubmed 出版商
  56. Zeltner N, Fattahi F, Dubois N, Saurat N, Lafaille F, Shang L, et al. Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med. 2016;22:1421-1427 pubmed 出版商
  57. Agulnik M, Costa R, Milhem M, Rademaker A, Prunder B, Daniels D, et al. A phase II study of tivozanib in patients with metastatic and nonresectable soft-tissue sarcomas. Ann Oncol. 2017;28:121-127 pubmed 出版商
  58. Kabanova A, Marcandalli J, Zhou T, Bianchi S, Baxa U, Tsybovsky Y, et al. Platelet-derived growth factor-α receptor is the cellular receptor for human cytomegalovirus gHgLgO trimer. Nat Microbiol. 2016;1:16082 pubmed 出版商
  59. Seki T, Hosaka K, Lim S, Fischer C, Honek J, Yang Y, et al. Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat. Nat Commun. 2016;7:12152 pubmed 出版商
  60. Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, et al. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep. 2016;6:27512 pubmed 出版商
  61. Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, et al. Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis. J Immunol. 2016;197:504-16 pubmed 出版商
  62. Lombardi R, Chen S, Ruggiero A, Gurha P, Czernuszewicz G, Willerson J, et al. Cardiac Fibro-Adipocyte Progenitors Express Desmosome Proteins and Preferentially Differentiate to Adipocytes Upon Deletion of the Desmoplakin Gene. Circ Res. 2016;119:41-54 pubmed 出版商
  63. Okumura F, Uematsu K, Byrne S, Hirano M, Joo Okumura A, Nishikimi A, et al. Parallel Regulation of von Hippel-Lindau Disease by pVHL-Mediated Degradation of B-Myb and Hypoxia-Inducible Factor ?. Mol Cell Biol. 2016;36:1803-17 pubmed 出版商
  64. Morena D, Maestro N, Bersani F, Forni P, Lingua M, Foglizzo V, et al. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. elife. 2016;5: pubmed 出版商
  65. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  66. Guye P, Ebrahimkhani M, Kipniss N, Velazquez J, Schoenfeld E, Kiani S, et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun. 2016;7:10243 pubmed 出版商
  67. Flavahan W, Drier Y, Liau B, Gillespie S, Venteicher A, Stemmer Rachamimov A, et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature. 2016;529:110-4 pubmed 出版商
  68. Rico Varela J, Singh T, McCutcheon S, Vazquez M. EGF as a New Therapeutic Target for Medulloblastoma Metastasis. Cell Mol Bioeng. 2015;8:553-565 pubmed
  69. Holtzinger A, Streeter P, Sarangi F, Hillborn S, Niapour M, Ogawa S, et al. New markers for tracking endoderm induction and hepatocyte differentiation from human pluripotent stem cells. Development. 2015;142:4253-65 pubmed 出版商
  70. Takasato M, Er P, Chiu H, Maier B, Baillie G, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526:564-8 pubmed 出版商
  71. Birket M, Ribeiro M, Verkerk A, Ward D, Leitoguinho A, Den Hartogh S, et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol. 2015;33:970-9 pubmed 出版商
  72. Larsson K, Kock A, Idborg H, Arsenian Henriksson M, Martinsson T, Johnsen J, et al. COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proc Natl Acad Sci U S A. 2015;112:8070-5 pubmed 出版商
  73. James S, Fox J, Afsari F, Lee J, Clough S, Knight C, et al. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes. Stem Cell Reports. 2015;4:1004-15 pubmed 出版商
  74. Westcott J, Prechtl A, Maine E, Dang T, Esparza M, Sun H, et al. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest. 2015;125:1927-43 pubmed 出版商
  75. Narcisi R, Cleary M, Brama P, Hoogduijn M, Tüysüz N, ten Berge D, et al. Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation. Stem Cell Reports. 2015;4:459-72 pubmed 出版商
  76. Agley C, Rowlerson A, Velloso C, Lazarus N, Harridge S. Isolation and quantitative immunocytochemical characterization of primary myogenic cells and fibroblasts from human skeletal muscle. J Vis Exp. 2015;:52049 pubmed 出版商
  77. Roh J, Huang J, Hu W, Yang X, Jennings N, Sehgal V, et al. Biologic effects of platelet-derived growth factor receptor ? blockade in uterine cancer. Clin Cancer Res. 2014;20:2740-50 pubmed 出版商
  78. Gao Y, Bayless K, Li Q. TGFBR1 is required for mouse myometrial development. Mol Endocrinol. 2014;28:380-94 pubmed 出版商
  79. Knösel T, Werner M, Jung A, Kirchner T, Dürr H. Dedifferentiated chondrosarcoma mimicking a giant cell tumor. Is this low grade dedifferentiated chondrosarcoma?. Pathol Res Pract. 2014;210:194-7 pubmed 出版商
  80. Fuentes T, Appleby N, Tsay E, Martinez J, Bailey L, Hasaniya N, et al. Human neonatal cardiovascular progenitors: unlocking the secret to regenerative ability. PLoS ONE. 2013;8:e77464 pubmed 出版商
  81. Paugh B, Zhu X, Qu C, Endersby R, Diaz A, Zhang J, et al. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res. 2013;73:6219-29 pubmed 出版商
  82. Kan L, Peng C, McGuire T, Kessler J. Glast-expressing progenitor cells contribute to heterotopic ossification. Bone. 2013;53:194-203 pubmed 出版商
  83. Helmy K, Halliday J, Fomchenko E, Setty M, Pitter K, Hafemeister C, et al. Identification of global alteration of translational regulation in glioma in vivo. PLoS ONE. 2012;7:e46965 pubmed 出版商
  84. Eckert M, Lwin T, Chang A, Kim J, Danis E, Ohno Machado L, et al. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell. 2011;19:372-86 pubmed 出版商