这是一篇来自已证抗体库的有关人类 血小板-内皮细胞粘附分子1 (PECAM 1) 的综述,是根据471篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合血小板-内皮细胞粘附分子1 抗体。
血小板-内皮细胞粘附分子1 同义词: CD31; CD31/EndoCAM; GPIIA'; PECA1; PECAM-1; endoCAM

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2d
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2d). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 3d
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3d). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:500; 图 2c
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, AB32457)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 2c). Stem Cell Res Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; pigs ; 1:100; 图 6b
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:100 (图 6b). Biores Open Access (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1c
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1c). Stem Cell Res Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 4h
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化在大鼠样本上 (图 4h). Cell Commun Signal (2020) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化; 小鼠; 1:500; 图 2h
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab24590)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2h). Fluids Barriers CNS (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5b). Sci Rep (2020) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 1g
  • 免疫细胞化学; 大鼠; 1:1000; 图 s1f
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab24590)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 1g) 和 被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s1f). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1b
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1b). Oncotarget (2020) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-石蜡切片; 人类; 1:500
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab24590)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Chin Med J (Engl) (2020) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于. Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:2000; 图 1d
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab32457)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 1d). Cancers (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s7e
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s7e). Nature (2020) ncbi
小鼠 单克隆(HEC7)
  • 免疫细胞化学; 大鼠; 1:400; 图 3c
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab119339)被用于被用于免疫细胞化学在大鼠样本上浓度为1:400 (图 3c). J Inflamm (Lond) (2020) ncbi
domestic rabbit 单克隆
  • 免疫组化-冰冻切片; 人类; 1:100; 图 5
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab180175)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 5). Cancer Cell Int (2020) ncbi
小鼠 单克隆(HEC7)
  • 免疫组化-冰冻切片; 人类; 图 1d
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab119339)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1d). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1e
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4d). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4a). Cancers (Basel) (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:250; 图 s1a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 s1a). Sci Rep (2019) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 s3d
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab182981)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 s3d). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1e
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1e). J Clin Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 4c
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab32457)被用于被用于免疫组化在人类样本上 (图 4c). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:100; 图 1a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab32457)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 1a). J Physiol Biochem (2019) ncbi
小鼠 单克隆(P2B1)
  • 免疫印迹; 大鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab24590)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(EPR3094)
  • 免疫细胞化学; 人类; 图 1b
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab76533)被用于被用于免疫细胞化学在人类样本上 (图 1b). Cell Stem Cell (2019) ncbi
小鼠 单克隆(P2B1)
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(abcam, ab24590)被用于. Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5b
  • 免疫印迹; 小鼠; 图 5d
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Cell Signaling, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b) 和 被用于免疫印迹在小鼠样本上 (图 5d). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 5s1a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5s1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s2a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s2a). Breast Cancer Res (2019) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 s2a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab24590)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 s2a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s5a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s5a). Atherosclerosis (2019) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5c
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab24590)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5c). Atherosclerosis (2019) ncbi
小鼠 单克隆(C31.3)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 1b
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab187377)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 1b). Arthritis Res Ther (2019) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 2e
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab24590)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 2e). J Am Heart Assoc (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 5b
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, 28364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5b). Nat Commun (2019) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 5a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab182981)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 5a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1f
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1f). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; black ferret; 1:15; 图 8a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化在black ferret样本上浓度为1:15 (图 8a). J Comp Neurol (2019) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化; 人类; 1:100; 图 6f
  • 免疫组化; 小鼠; 1:100; 图 1k
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab24590)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6f) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 1k). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 4a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 4a). Mol Med Rep (2019) ncbi
小鼠 单克隆(P2B1)
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab24590)被用于被用于免疫印迹在人类样本上 (图 1d). J Cell Physiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1e
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 1e). Neuroscience (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s2a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(ABCAM, AB28364)被用于被用于免疫组化在小鼠样本上 (图 s2a). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3c
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3c). Nat Chem Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4e
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 4e). Oncogene (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 7c
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, Ab38364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 7c). Oncotarget (2017) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; domestic rabbit; 图 7e
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab9498)被用于被用于免疫组化在domestic rabbit样本上 (图 7e). Stem Cell Res Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5a). Development (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s2
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s2). PLoS Genet (2017) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 人类; 1:100; 图 s1b
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab9498)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s1b). Sci Transl Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 11a
  • 免疫组化; 人类; 1:50; 图 11a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 11a) 和 被用于免疫组化在人类样本上浓度为1:50 (图 11a). PLoS Pathog (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 5c
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 5c). Cardiovasc Diabetol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1a
  • 免疫印迹; 小鼠; 1:5000; 图 1d
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1d). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). J Cell Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s3a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, 28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s3a). Arterioscler Thromb Vasc Biol (2017) ncbi
小鼠 单克隆(C31.3 + JC/70A)
  • 免疫组化; domestic rabbit; 图 4
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab199012)被用于被用于免疫组化在domestic rabbit样本上 (图 4). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 56
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 56). J Toxicol Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1c
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, 28364)被用于被用于免疫组化在小鼠样本上 (图 1c). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 s1a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 s1a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 1b
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 1b). Sci Rep (2017) ncbi
小鼠 单克隆(JC/70A)
  • 免疫细胞化学; 小鼠; 图 s3a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab9498)被用于被用于免疫细胞化学在小鼠样本上 (图 s3a). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; pigs ; 图 2a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在pigs 样本上 (图 2a). J Cell Physiol (2017) ncbi
domestic rabbit 单克隆(EPR3094)
  • 免疫组化-石蜡切片; 人类; 图 1a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab76533)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Stem Cell Rev (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 e3
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 e3). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:30; 图 7b
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, 28364)被用于被用于免疫细胞化学在人类样本上浓度为1:30 (图 7b). Nat Protoc (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化在人类样本上. Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 s9d
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s9d). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 3). Mol Cell Endocrinol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR3094)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, EPR3094)被用于被用于免疫印迹在人类样本上 (图 3). J Ethnopharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3e
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3e). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:100; 图 s3b
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1f
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 s3b) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1f). Nat Med (2016) ncbi
小鼠 单克隆(HEC7)
  • 免疫组化; 大鼠; 图 4
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab119339)被用于被用于免疫组化在大鼠样本上 (图 4). Front Pharmacol (2016) ncbi
domestic rabbit 单克隆(EPR3094)
  • 免疫细胞化学; 人类; 1:200; 图 1c
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab76533)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1c) 和 被用于免疫印迹在人类样本上 (图 1b). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 3a
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4c
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab9498)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 3a) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4c). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4C
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 8A
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4C) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 8A). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s2
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, 28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(HEC7)
  • 免疫组化; 大鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab119339)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 1b). Brain Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3g
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, Ab28364)被用于被用于免疫组化在小鼠样本上 (图 3g). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 2
  • 免疫细胞化学; 大鼠; 1:50; 图 4
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 2) 和 被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 4). Physiol Rep (2016) ncbi
小鼠 单克隆(C31.3 + JC/70A)
  • 免疫组化-石蜡切片; domestic rabbit; 图 3
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab199012)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5c
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5c). Oncogene (2017) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s14
  • 免疫细胞化学; 人类; 1:50; 图 4
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab9498)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s14), 被用于免疫细胞化学在人类样本上浓度为1:50 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2d
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 2d). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 酶联免疫吸附测定; 小鼠; 1:250; 图 4
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(abcam, ab28364)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:250 (图 4). Front Neurosci (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫细胞化学; 小鼠; 图 5
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab9498)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Adv Healthc Mater (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化; 小鼠; 图 s2
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab24590)被用于被用于免疫组化在小鼠样本上 (图 s2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s3n
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3n). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1b). Stem Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(abcam, ab28364)被用于被用于免疫组化在人类样本上 (图 2). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 1g
  • 免疫组化; 小鼠; 1:50; 图 1i
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 1g) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 1i). Nat Commun (2016) ncbi
小鼠 单克隆(JC/70A)
  • 流式细胞仪; domestic rabbit; 图 s1
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab9498)被用于被用于流式细胞仪在domestic rabbit样本上 (图 s1). J Biomed Mater Res B Appl Biomater (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 1
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; pigs ; 1:100; 图 3C
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:100 (图 3C). Biores Open Access (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:40
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. Oncol Lett (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫细胞化学; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab9498)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; pigs ; 1:50; 图 7
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:50 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2). Springerplus (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上. Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 st1
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 st1). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s1
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 5
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Mol Ther (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 图 8
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab9498)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(EPR3094)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, EPR3094)被用于被用于免疫组化在人类样本上. Arthritis Res Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:20; 图 s3
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在大鼠样本上浓度为1:20 (图 s3). Tissue Eng Part C Methods (2016) ncbi
domestic rabbit 单克隆(EPR3094)
  • 免疫细胞化学; 小鼠; 1:200; 表 1
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Epitomics, 2540-1)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (表 1). Eur J Pharm Sci (2016) ncbi
domestic rabbit 单克隆(EPR3094)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, EPR3094)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:600; 图 s1
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(abcam, ab28364)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:600 (图 s1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:50; 图 7
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化在人类样本上浓度为1:50 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 人类; 图 4
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, Ab9498)被用于被用于免疫组化在人类样本上 (图 4). J Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 s1c
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 s1c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 s3e
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s3e). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 图 5a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, JC70/A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a). Stem Cells Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 6). Biomaterials (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 5
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 5). Cancer Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4g
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4g). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(EPR3094)
  • 免疫组化; 人类; 图 6d
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab76533)被用于被用于免疫组化在人类样本上 (图 6d). Cancer Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 7
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 7). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, Ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). J Am Soc Nephrol (2016) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化; 人类; 图 5
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab24590)被用于被用于免疫组化在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(JC/70A)
  • 免疫细胞化学; 小鼠; 1:200; 表 2
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, Ab9498)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (表 2). J Cell Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:150
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:150. Cell Mol Immunol (2017) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化; 大鼠; 1:50; 图 4
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(abcam, ab24590)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; domestic rabbit; 1:100; 图 4
  • 流式细胞仪; 人类; 图 1
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab9498-500)被用于被用于免疫组化在domestic rabbit样本上浓度为1:100 (图 4) 和 被用于流式细胞仪在人类样本上 (图 1). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(EPR3094)
  • 免疫组化; 人类; 表 2
  • 免疫印迹; 人类; 表 2
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(abcam, ab76533)被用于被用于免疫组化在人类样本上 (表 2) 和 被用于免疫印迹在人类样本上 (表 2). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(AbCam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 3d
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab9498)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 3d). BMC Neurosci (2015) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 人类; 图 6a
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab9498)被用于被用于免疫组化在人类样本上 (图 6a). BMC Cancer (2015) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 人类; 图 3
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, JC70/A)被用于被用于免疫组化在人类样本上 (图 3). Cytotherapy (2015) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 4
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab24590)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-冰冻切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(abcam, ab9498)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). J Cereb Blood Flow Metab (2015) ncbi
小鼠 单克隆(HEC7)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab119339)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-石蜡切片; 小鼠; 1:100
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab24590)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 和 被用于免疫组化在小鼠样本上浓度为1:100. J Neurosci (2014) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 图 3b
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab9498)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). J Thromb Haemost (2014) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab28364)被用于. Mol Ther (2014) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab24590)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Stem Cells Dev (2014) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-自由浮动切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab9498)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; domestic rabbit; 1:200
艾博抗(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Abcam, ab9498)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:200. PLoS ONE (2013) ncbi
赛默飞世尔
小鼠 单克隆(HEC7)
  • 免疫细胞化学; 人类; 1:100; 图 4i
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Thermo Fisher, MA3100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4i). Nature (2019) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
赛默飞世尔血小板-内皮细胞粘附分子1抗体(ThermoFisher, MA3105)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Cell Rep (2019) ncbi
小鼠 单克隆(WM59)
  • 免疫组化; 小鼠; 图 3d
赛默飞世尔血小板-内皮细胞粘附分子1抗体(eBioscience, WM-59)被用于被用于免疫组化在小鼠样本上 (图 3d). J Exp Med (2018) ncbi
小鼠 单克隆(WM-59 (WM59))
  • 流式细胞仪; 人类; 图 s4g
赛默飞世尔血小板-内皮细胞粘附分子1抗体(eBioscience, 17-0319-42)被用于被用于流式细胞仪在人类样本上 (图 s4g). Cell Death Differ (2019) ncbi
小鼠 单克隆(WM-59 (WM59))
  • 流式细胞仪; 人类; 图 s1d
赛默飞世尔血小板-内皮细胞粘附分子1抗体(eBiosciences, 17-0319)被用于被用于流式细胞仪在人类样本上 (图 s1d). Cell (2018) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化; 小鼠; 1:500; 图 6h
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Thermo Fisher Scientific, 2H8)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6h). Nat Commun (2018) ncbi
小鼠 单克隆(WM-59 (WM59))
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔血小板-内皮细胞粘附分子1抗体(eBiosciences, 25-0319)被用于被用于流式细胞仪在人类样本上 (图 1b). J Clin Invest (2017) ncbi
小鼠 单克隆(WM-59 (WM59))
  • 流式细胞仪; 人类; 表 s1
赛默飞世尔血小板-内皮细胞粘附分子1抗体(eBioscience, 17-0319-42)被用于被用于流式细胞仪在人类样本上 (表 s1). J Transl Med (2017) ncbi
小鼠 单克隆(HEC7)
  • 免疫组化; 小鼠; 图 2f
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Thermo, MA3100)被用于被用于免疫组化在小鼠样本上 (图 2f). J Clin Invest (2017) ncbi
小鼠 单克隆(WM-59 (WM59))
  • 流式细胞仪; 人类
赛默飞世尔血小板-内皮细胞粘附分子1抗体(eBioscience, 17-0319-42)被用于被用于流式细胞仪在人类样本上. elife (2017) ncbi
小鼠 单克隆(MEM-05)
  • 免疫细胞化学; 人类; 图 5c
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Pierce, MA1-19587)被用于被用于免疫细胞化学在人类样本上 (图 5c). Acta Histochem (2017) ncbi
小鼠 单克隆(MBC78.2)
  • 流式细胞仪; 人类; 图 s2b
赛默飞世尔血小板-内皮细胞粘附分子1抗体(ThermoFisher Scientific, MHCD3101)被用于被用于流式细胞仪在人类样本上 (图 s2b). Sci Rep (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Invitrogen, WM59)被用于被用于流式细胞仪在人类样本上 (表 1). PLoS ONE (2016) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化-石蜡切片; 小鼠; 图 s1e
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Thermo Fisher Scientific, MA3105)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1e). Kidney Int (2016) ncbi
小鼠 单克隆(MEM-05)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Thermo Fisher, 37-0700)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Oncotarget (2016) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化; 小鼠; 1:500; 图 2a
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Thermo Scientific, MA3105)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a). J Clin Invest (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 s5
赛默飞世尔血小板-内皮细胞粘附分子1抗体(ThermoScientific, JC/70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 s5). Nature (2016) ncbi
小鼠 单克隆(MEM-05)
  • 免疫细胞化学; 人类; 图 2c
赛默飞世尔血小板-内皮细胞粘附分子1抗体(生活技术, 37-0700)被用于被用于免疫细胞化学在人类样本上 (图 2c). Biomaterials (2016) ncbi
小鼠 单克隆(WM-59 (WM59))
  • 流式细胞仪; 人类
赛默飞世尔血小板-内皮细胞粘附分子1抗体(eBioscience, 46-0319-42)被用于被用于流式细胞仪在人类样本上. F1000Res (2015) ncbi
小鼠 单克隆(MEM-05)
  • 免疫印迹; 大鼠; 图 4
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Invitrogen, MEM-05)被用于被用于免疫印迹在大鼠样本上 (图 4). Am J Respir Crit Care Med (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 人类; 1:100; 图 1
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Thermo Fisher, MA5-13188)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). Vasc Med (2016) ncbi
小鼠 单克隆(MEM-05)
  • 免疫组化; 人类; 1:25; 图 3
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Invitrogen, 37-0700)被用于被用于免疫组化在人类样本上浓度为1:25 (图 3). Clin Oral Investig (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Neomarkers, RB-10333-P)被用于被用于免疫组化在小鼠样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(2F7B2)
  • 免疫组化-石蜡切片; 人类; 图 s5
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Thermo Fisher Scientific, MA5-15336)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5). J Am Soc Nephrol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:25; 图 2
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Thermo Scientific, RB-10333)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 2). Methods (2016) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Thermo Scientific, #MA3105)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Clin Exp Metastasis (2015) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 人类; 1:50; 图 3
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Thermo Scientific, JC/70A)被用于被用于免疫组化在人类样本上浓度为1:50 (图 3). Tumour Biol (2016) ncbi
小鼠 单克隆(WM-59 (WM59))
  • 流式细胞仪; 人类; 图 2
赛默飞世尔血小板-内皮细胞粘附分子1抗体(eBioscience , #17?C0319-42)被用于被用于流式细胞仪在人类样本上 (图 2). Int J Cancer (2016) ncbi
小鼠 单克隆(JC/70A)
  • 流式细胞仪; 大鼠; 1:1000; 图 6
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Invitrogen, MA5-13188)被用于被用于流式细胞仪在大鼠样本上浓度为1:1000 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(WM-59 (WM59))
  • 流式细胞仪; 人类; 1:150; 图 s5
赛默飞世尔血小板-内皮细胞粘附分子1抗体(eBioscience, 17-0319-42)被用于被用于流式细胞仪在人类样本上浓度为1:150 (图 s5). Nat Biotechnol (2015) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化; 小鼠; 1:100; 图 6
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Thermo Scientific, MA3105)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6). Oncoimmunology (2015) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 图 1f
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Thermo Scientific, JC/70A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1f). Oncotarget (2015) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化-冰冻切片; 小鼠; 图 1f
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Thermo Fisher Scientific, MA3105)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1f). J Am Soc Nephrol (2016) ncbi
小鼠 单克隆(MBC78.2)
  • 流式细胞仪; 人类
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Invitrogen, MBC78.2)被用于被用于流式细胞仪在人类样本上. Rev Bras Hematol Hemoter (2015) ncbi
小鼠 单克隆(WM-59 (WM59))
  • 流式细胞仪; 人类
赛默飞世尔血小板-内皮细胞粘附分子1抗体(eBioscience, 12-0319-41)被用于被用于流式细胞仪在人类样本上. J Clin Invest (2015) ncbi
小鼠 单克隆(WM-59 (WM59))
  • 流式细胞仪; 人类; 图 3
赛默飞世尔血小板-内皮细胞粘附分子1抗体(eBiosciences, WM-59)被用于被用于流式细胞仪在人类样本上 (图 3). Cytotherapy (2015) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 1:25
赛默飞世尔血小板-内皮细胞粘附分子1抗体(LabVisio, JC/70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. APMIS (2015) ncbi
小鼠 单克隆(WM-59 (WM59))
  • 流式细胞仪; 人类; 图 1
赛默飞世尔血小板-内皮细胞粘附分子1抗体(eBioscience, WM59)被用于被用于流式细胞仪在人类样本上 (图 1). J Lipid Res (2015) ncbi
小鼠 单克隆(WM-59 (WM59))
  • 流式细胞仪; 人类
赛默飞世尔血小板-内皮细胞粘附分子1抗体(eBioscience, WM-59)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2015) ncbi
小鼠 单克隆(WM-59 (WM59))
  • 流式细胞仪; 人类
赛默飞世尔血小板-内皮细胞粘附分子1抗体(eBioscience, 46-0319-41)被用于被用于流式细胞仪在人类样本上. Am J Pathol (2015) ncbi
小鼠 单克隆(MBC78.2)
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Invitrogen, MHCD3101)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Development (2014) ncbi
小鼠 单克隆(WM-59 (WM59))
  • 流式细胞仪; 人类
赛默飞世尔血小板-内皮细胞粘附分子1抗体(eBioscience, WM59)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化; 小鼠
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Thermo/Fisher, MA3105)被用于被用于免疫组化在小鼠样本上. Am J Pathol (2014) ncbi
小鼠 单克隆(WM-59 (WM59))
  • 流式细胞仪; 人类; 1:100
赛默飞世尔血小板-内皮细胞粘附分子1抗体(eBioscience, WM59)被用于被用于流式细胞仪在人类样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Zymed, JC70)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Virchows Arch (2014) ncbi
小鼠 单克隆(MBC78.2)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Invitrogen, MBC78.2; PECAM1.2)被用于被用于流式细胞仪在人类样本上 (表 1). Int J Med Sci (2013) ncbi
小鼠 单克隆(MEM-05)
  • 免疫组化; 人类; 图 4
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Invitrogen, MEM-05)被用于被用于免疫组化在人类样本上 (图 4). J Acoust Soc Am (2013) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 1:40
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Thermo, MS-353-S1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. Med Glas (Zenica) (2013) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Invitrogen, WM59)被用于被用于流式细胞仪在人类样本上 (表 2). BMC Cancer (2013) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 1:250
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Neomarkers, MS-353)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250. Brain (2013) ncbi
小鼠 单克隆(MEM-05)
  • 免疫细胞化学; 人类; 图 6
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Invitrogen, 37-0700)被用于被用于免疫细胞化学在人类样本上 (图 6). Ann Biomed Eng (2013) ncbi
小鼠 单克隆(MEM-05)
  • 免疫细胞化学; 人类; 图 7
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Invitrogen, MEM-05)被用于被用于免疫细胞化学在人类样本上 (图 7). Ultrasound Med Biol (2011) ncbi
小鼠 单克隆(MBC78.2)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Invitrogen, MBC 78.2)被用于被用于流式细胞仪在人类样本上 (图 3). J Biomed Biotechnol (2010) ncbi
小鼠 单克隆(MEM-05)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Zymed, 37-0700)被用于被用于免疫细胞化学在人类样本上 (图 1). Curr Protoc Stem Cell Biol (2010) ncbi
小鼠 单克隆(MEM-05)
  • 流式细胞仪; 小鼠
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Zymed, 37-0700)被用于被用于流式细胞仪在小鼠样本上. Am J Physiol Heart Circ Physiol (2009) ncbi
小鼠 单克隆(MEM-05)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Zymed Laboratories, MEM-05)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Int J Gynecol Cancer (2008) ncbi
小鼠 单克隆(MEM-05)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Zymed, 37-0700)被用于被用于流式细胞仪在小鼠样本上 (图 1). Am J Physiol Heart Circ Physiol (2007) ncbi
小鼠 单克隆(MBC78.2)
  • 流式细胞仪; 人类
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Caltag, MHCD3101)被用于被用于流式细胞仪在人类样本上. Kidney Int (2007) ncbi
小鼠 单克隆(MBC78.2)
  • 流式细胞仪; 人类
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Caltag, MHCD3101)被用于被用于流式细胞仪在人类样本上. Circ Res (2007) ncbi
小鼠 单克隆(JC/70A)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Caltag, JC/70A)被用于被用于流式细胞仪在人类样本上 (表 1). Atherosclerosis (2004) ncbi
小鼠 单克隆(MBC78.2)
  • 流式细胞仪; 人类
赛默飞世尔血小板-内皮细胞粘附分子1抗体(Caltag, MHCD3101)被用于被用于流式细胞仪在人类样本上. Br J Haematol (1999) ncbi
BioLegend
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 1:25; 图 s2
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend, 303103)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 s2). Stem Cell Res Ther (2020) ncbi
小鼠 单克隆(WM59)
  • 免疫组化; 人类; 1:200; 图 6i
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend, 303126)被用于被用于免疫组化在人类样本上浓度为1:200 (图 6i). Nat Metab (2019) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 2b, 2f
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend, 303104)被用于被用于流式细胞仪在人类样本上 (图 2b, 2f). Sci Rep (2019) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 3c
BioLegend血小板-内皮细胞粘附分子1抗体(BioLegend, 303106)被用于被用于流式细胞仪在人类样本上 (图 3c). J Exp Med (2019) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 s1a
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend, WM59)被用于被用于流式细胞仪在人类样本上 (图 s1a). Cell Stem Cell (2019) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 s3a
BioLegend血小板-内皮细胞粘附分子1抗体(BioLegend, 303121)被用于被用于流式细胞仪在人类样本上 (图 s3a). Cell (2018) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 1a
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend, 303102)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell (2018) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 1:100; 图 5b
BioLegend血小板-内皮细胞粘附分子1抗体(BioLegend, 303103)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 5b). Nat Commun (2018) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 9b
BioLegend血小板-内皮细胞粘附分子1抗体(BioLegend, WM59)被用于被用于流式细胞仪在人类样本上 (图 9b). J Cell Biol (2018) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 3b
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend, 303103)被用于被用于流式细胞仪在人类样本上 (图 3b). Oncogene (2018) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
BioLegend血小板-内皮细胞粘附分子1抗体(BioLegend, 303,117)被用于被用于流式细胞仪在人类样本上. Immun Ageing (2017) ncbi
小鼠 单克隆(WM59)
  • 免疫细胞化学; 小鼠; 1:200; 图 2e
BioLegend血小板-内皮细胞粘附分子1抗体(BioLegend, 303101)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2e). J Cell Sci (2017) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 1:33; 图 3a
BioLegend血小板-内皮细胞粘附分子1抗体(BioLegend, WM59)被用于被用于流式细胞仪在人类样本上浓度为1:33 (图 3a). Nature (2017) ncbi
小鼠 单克隆(WM59)
  • 免疫细胞化学; 人类; 图 4
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend, 303109)被用于被用于免疫细胞化学在人类样本上 (图 4). Biol Open (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend, 303110)被用于被用于流式细胞仪在人类样本上. Nat Biotechnol (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend, WM59)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(WM59)
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend, 303103)被用于. Sci Rep (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 2a
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend, 303115)被用于被用于流式细胞仪在人类样本上 (图 2a). Biomaterials (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 8
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend, WM59)被用于被用于流式细胞仪在人类样本上 (图 8). Mol Metab (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend, 303104)被用于被用于流式细胞仪在人类样本上. Vascul Pharmacol (2015) ncbi
小鼠 单克隆(WM59)
  • 免疫细胞化学; 人类; 1:200
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend, 303112)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 5
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend, 303110)被用于被用于流式细胞仪在人类样本上 (图 5). J Neuroinflammation (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend Nos, 303109)被用于被用于流式细胞仪在人类样本上. J Vasc Res (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 1:100; 图 2
BioLegend血小板-内皮细胞粘附分子1抗体(BioLegend, 303116)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2). J Vis Exp (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 S5
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend, WM59)被用于被用于流式细胞仪在人类样本上 (图 S5). Retrovirology (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 s1
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend, 303114)被用于被用于流式细胞仪在人类样本上 (图 s1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 4
BioLegend血小板-内皮细胞粘附分子1抗体(BioLegend, WM59)被用于被用于流式细胞仪在人类样本上 (图 4). J Autoimmun (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 2d
BioLegend血小板-内皮细胞粘附分子1抗体(BioLegend, WM59)被用于被用于流式细胞仪在人类样本上 (图 2d). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 1:40
BioLegend血小板-内皮细胞粘附分子1抗体(BioLegend, WM59)被用于被用于流式细胞仪在人类样本上浓度为1:40. Nat Med (2014) ncbi
小鼠 单克隆(WM59)
BioLegend血小板-内皮细胞粘附分子1抗体(BioLegend, WM59)被用于. J Immunol (2014) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
BioLegend血小板-内皮细胞粘附分子1抗体(Biolegend, WM59)被用于被用于流式细胞仪在人类样本上. Cancer Res (2013) ncbi
Dianova
大鼠 单克隆(SZ31)
  • 免疫组化-石蜡切片; 小鼠; 1:600; 图 6a
Dianova血小板-内皮细胞粘附分子1抗体(Clinisciences, DIA 310)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:600 (图 6a). Theranostics (2020) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1a, 7s4b
Dianova血小板-内皮细胞粘附分子1抗体(HistoBiotec, DIA-310)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1a, 7s4b). elife (2020) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化-自由浮动切片; 小鼠; 1:250; 图 6d
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, DIA-310)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250 (图 6d). J Comp Neurol (2019) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6h
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, DIA-310)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6h). elife (2019) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化; 小鼠; 1:100; 图 3s1b
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, DIA-310)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3s1b). elife (2019) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 1f
  • 免疫组化; 小鼠; 1:250; 图 5a
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, 310)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 1f) 和 被用于免疫组化在小鼠样本上浓度为1:250 (图 5a). Nat Commun (2019) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化-石蜡切片; 小鼠; 图 4
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, SZ31)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). J Histochem Cytochem (2018) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化-石蜡切片; 小鼠; 1:20; 图 s5a
Dianova血小板-内皮细胞粘附分子1抗体(Histo Bio Tech, DIA-310)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20 (图 s5a). Nature (2017) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 s3
  • 免疫印迹; 小鼠; 1:2000; 图 3b
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, SZ31)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 s3) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化; 小鼠; 1 ug/ml; 图 S5
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, DIA-310)被用于被用于免疫组化在小鼠样本上浓度为1 ug/ml (图 S5). J Neuroinflammation (2017) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化; 人类; 图 55
  • 免疫组化-石蜡切片; 小鼠; 2 ug/ml
Dianova血小板-内皮细胞粘附分子1抗体(dianova GmbH, DIA 310)被用于被用于免疫组化在人类样本上 (图 55) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为2 ug/ml. J Toxicol Pathol (2017) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化-石蜡切片; 小鼠; 图 5l
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, SZ31)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5l). BMC Nephrol (2017) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s2a
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, DIA-310)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s2a). Arterioscler Thromb Vasc Biol (2017) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化-石蜡切片; 人类; 0.5 ug/ml; 图 4a
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, DIA-310)被用于被用于免疫组化-石蜡切片在人类样本上浓度为0.5 ug/ml (图 4a). Nanoscale (2017) ncbi
大鼠 单克隆(SZ31)
  • 免疫印迹; 小鼠
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, DIA 310)被用于被用于免疫印迹在小鼠样本上. J Cell Biochem (2017) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s10d
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, DIA-310)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s10d). Nat Neurosci (2017) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化; 人类; 1:75; 图 s14
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, DIA310)被用于被用于免疫组化在人类样本上浓度为1:75 (图 s14). Nat Med (2016) ncbi
大鼠 单克隆(SZ31)
  • 免疫细胞化学; 小鼠; 1:200; 图 2
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, DIA-310)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2). Nat Commun (2016) ncbi
大鼠 单克隆(SZ31)
  • 免疫印迹; 小鼠; 图 6
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, DIA-310)被用于被用于免疫印迹在小鼠样本上 (图 6). Am J Physiol Heart Circ Physiol (2016) ncbi
大鼠 单克隆(SZ31)
  • 免疫细胞化学; 小鼠; 1:20; 图 s3
Dianova血小板-内皮细胞粘附分子1抗体(HistoBiotech, DIA-310)被用于被用于免疫细胞化学在小鼠样本上浓度为1:20 (图 s3). Sci Rep (2016) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5d
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, SZ31)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5d). Infect Immun (2016) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化; 小鼠; 1:50; 图 3
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, DIA-310)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3). Dev Cell (2016) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化-石蜡切片; 小鼠; 图 4
Dianova血小板-内皮细胞粘附分子1抗体(DiaNova, DIA-310-M)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). EJNMMI Res (2016) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化-石蜡切片; 小鼠; 图 5
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, DIA-310)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Cancer Discov (2016) ncbi
大鼠 单克隆(SZ31)
  • 免疫细胞化学; 人类; 1:20; 图 2b
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, DIA310)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 2b). Gastric Cancer (2016) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 7
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, Dia310)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 7). Angiogenesis (2016) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化; 小鼠; 1:25; 图 6a
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, DIA310)被用于被用于免疫组化在小鼠样本上浓度为1:25 (图 6a). Am J Pathol (2015) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化-石蜡切片; 小鼠; 图 3
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, DIA 310)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化; 小鼠; 图 3
Dianova血小板-内皮细胞粘附分子1抗体(Dia-Nova, DIA-310)被用于被用于免疫组化在小鼠样本上 (图 3). Sci Rep (2015) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1c
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, DIA-310)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1c). Nat Commun (2015) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化; 人类; 1:50; 图 s3c
  • 免疫组化; 小鼠; 1:50; 图 2a
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, DIA-310)被用于被用于免疫组化在人类样本上浓度为1:50 (图 s3c) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 2a). Nat Commun (2015) ncbi
大鼠 单克隆(SZ31)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 st4
Dianova血小板-内皮细胞粘附分子1抗体(Dianova, SZ31)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 st4). Nat Commun (2015) ncbi
安迪生物R&D
小鼠 单克隆(9G11)
  • 免疫组化; 小鼠; 图 4f
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D, BBA7)被用于被用于免疫组化在小鼠样本上 (图 4f). Curr Biol (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1a, 7s4b
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D, AF3628)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1a, 7s4b). elife (2020) ncbi
大鼠 单克隆(693102)
  • 免疫组化; 小鼠; 1:170; 图 1h
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D Systems, MAB3628)被用于被用于免疫组化在小鼠样本上浓度为1:170 (图 1h). Front Immunol (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 2c
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D Systems, AF3628)被用于被用于免疫组化在小鼠样本上 (图 2c). Nature (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R and D Systems, AF3628)被用于被用于免疫组化在小鼠样本上浓度为1:100. elife (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:20; 图 1g, 1m
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D, AF3628)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20 (图 1g, 1m). Sci Rep (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3e
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D Systems, AF3628)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3e). Nature (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 4e
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D, AF3628)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4e). Nat Commun (2019) ncbi
大鼠 单克隆(377537)
  • 免疫组化; pigs ; 1:200; 图 5a
安迪生物R&D血小板-内皮细胞粘附分子1抗体(RD Systems, MAB33871)被用于被用于免疫组化在pigs 样本上浓度为1:200 (图 5a). Sci Rep (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:400; 图 3c
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D Systems, AF3628)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3c). Breast Cancer Res (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 10n
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D Systems, AF3628)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 10n). Brain Behav Immun (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3a
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D, AF3628)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). Nat Commun (2017) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:25; 图 10c
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D Systems, AF3628)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:25 (图 10c). Am J Physiol Heart Circ Physiol (2018) ncbi
家羊 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5e
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D Systems, AF806)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5e). Nat Protoc (2017) ncbi
家羊 多克隆
  • 免疫组化; 人类; 1:500; 图 1c
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D Systems, AF806)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1c). Toxicol Sci (2017) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 1f
  • 免疫组化; 人类; 1:100; 图 1e
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D system, AF3628)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1f) 和 被用于免疫组化在人类样本上浓度为1:100 (图 1e). J Am Heart Assoc (2016) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D, AF3628)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(693102)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D Systems, MAB3628)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1). Nature (2016) ncbi
小鼠 单克隆(9G11)
  • 免疫组化-石蜡切片; 人类; 图 5b
  • 免疫细胞化学; 人类; 图 5c
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D Systems, 9G11)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5b) 和 被用于免疫细胞化学在人类样本上 (图 5c). BMC Cancer (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 2
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D Systems, AF3628)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 2). Nature (2016) ncbi
domestic goat 多克隆
  • 其他; 小鼠
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D, BAF3628)被用于被用于其他在小鼠样本上. J Biol Chem (2016) ncbi
家羊 多克隆
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D Systems, AF806)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(9G11)
  • 免疫细胞化学; 人类; 1:500
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D Systems, BBA7)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Int J Mol Med (2015) ncbi
domestic goat 多克隆
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D Systems, AF3628)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(9G11)
  • 免疫组化-冰冻切片; 小鼠; 20 ug/ml
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D Systems, 9G11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为20 ug/ml. J Clin Invest (2015) ncbi
小鼠 单克隆(9G11)
  • 免疫印迹; 人类
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D Systems, BBA7)被用于被用于免疫印迹在人类样本上. Mech Ageing Dev (2014) ncbi
小鼠 单克隆(9G11)
安迪生物R&D血小板-内皮细胞粘附分子1抗体(R&D Systems, BBA7)被用于. PLoS ONE (2013) ncbi
圣克鲁斯生物技术
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2b
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa, Sc-18916)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2b). elife (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 3s2o
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz, sc-18916)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 3s2o). elife (2019) ncbi
小鼠 单克隆(H-3)
  • 免疫组化-冰冻切片; 大鼠; 图 6c
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(SantaCruz, sc-376764)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 6c). Oncotarget (2017) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz, sc-376764)被用于被用于免疫印迹在小鼠样本上 (图 2c). Redox Biol (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 5
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz Biotechnology Inc., sc-18916L)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Oncol Lett (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 图 3j
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa cruz, MEC 13.3)被用于被用于免疫细胞化学在小鼠样本上 (图 3j). Stem Cells Int (2016) ncbi
小鼠 单克隆(H-3)
  • 免疫组化; 大鼠; 1:50; 图 4a
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz Biotechnology, sc-376764)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 4a). Mol Med Rep (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3a
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz, sc-18916)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3a). Sci Rep (2016) ncbi
小鼠 单克隆(3H1217)
  • 免疫组化; 大鼠
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz, sc71873)被用于被用于免疫组化在大鼠样本上. Int J Mol Med (2016) ncbi
小鼠 单克隆(3H1217)
  • 免疫组化-石蜡切片; 小鼠; 图 4
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz, sc-71873)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Exp Ther Med (2016) ncbi
小鼠 单克隆(158-2B3)
  • 免疫细胞化学; 人类; 图 s2
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(santa Cruz, sc-65260)被用于被用于免疫细胞化学在人类样本上 (图 s2). Biol Open (2016) ncbi
小鼠 单克隆(JC70)
  • 免疫组化; 人类; 1:200; 图 8
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz, sc-53411)被用于被用于免疫组化在人类样本上浓度为1:200 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(10G9)
  • 免疫细胞化学; 人类; 1:100; 图 2
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz, sc-13537)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Biores Open Access (2015) ncbi
小鼠 单克隆(0.N.100)
  • 免疫组化-石蜡切片; 人类; 1:1500; 图 1
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz Biotechnology, sc-71872)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1500 (图 1). Development (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 s5
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz, MEC 13.3)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s5). Nature (2015) ncbi
小鼠 单克隆(H-3)
  • 免疫组化-石蜡切片; 人类; 图 1
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz Biotechnology, sc-376764)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Tumour Biol (2016) ncbi
小鼠 单克隆(3H1217)
  • 免疫组化-石蜡切片; 人类; 图 7
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz, sc-71873)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7). Mol Med Rep (2015) ncbi
小鼠 单克隆(H-3)
  • 免疫细胞化学; 大鼠; 图 6
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz, sc-376764)被用于被用于免疫细胞化学在大鼠样本上 (图 6). Cell Physiol Biochem (2015) ncbi
小鼠 单克隆(10G9)
  • 免疫细胞化学; 人类; 1:50; 图 2
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(santa Cruz, sc-13537)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 人类; 1:100
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz, sc-133091)被用于被用于免疫印迹在人类样本上浓度为1:100. J Histochem Cytochem (2015) ncbi
小鼠 单克隆(10G9)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz Biotechnology, sc-13537)被用于被用于免疫细胞化学在人类样本上. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(10G9)
  • 免疫组化; 大鼠; 图 3a
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(SantaCruz, sc-13537)被用于被用于免疫组化在大鼠样本上 (图 3a). Braz J Med Biol Res (2014) ncbi
小鼠 单克隆(JC70)
  • 免疫细胞化学; 人类; 1:200; 图 2
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz, sc-53411)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cell Biol Int (2015) ncbi
小鼠 单克隆(H-3)
  • 免疫组化-冰冻切片; 小鼠
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz, sc376764)被用于被用于免疫组化-冰冻切片在小鼠样本上. Dev Biol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz Biotechnology, sc-18916)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Neurosci (2014) ncbi
小鼠 单克隆(P2B1)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz Biotechnology, sc-20071)被用于被用于免疫细胞化学在人类样本上. J Cell Mol Med (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz, sc-18916)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. Kidney Int (2014) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术血小板-内皮细胞粘附分子1抗体(Santa Cruz Biotechnology, sc-376764)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Respir Res (2013) ncbi
Novus Biologicals
domestic rabbit 多克隆(6C5cc)
  • 免疫印迹; 人类; 图 4b
  • 免疫组化; 小鼠; 图 3a
Novus Biologicals血小板-内皮细胞粘附分子1抗体(Novus, NB100-2284)被用于被用于免疫印迹在人类样本上 (图 4b) 和 被用于免疫组化在小鼠样本上 (图 3a). PLoS ONE (2019) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1c
  • 免疫细胞化学; 人类; 1:500; 图 s1a
Novus Biologicals血小板-内皮细胞粘附分子1抗体(Novus, NB600-1475)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1c) 和 被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1a). J Cell Biol (2019) ncbi
domestic rabbit 多克隆(6C5cc)
  • 免疫组化; 大鼠; 1:500; 图 7b
Novus Biologicals血小板-内皮细胞粘附分子1抗体(Novus, NB100-2284)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 7b). Physiol Rep (2017) ncbi
domestic rabbit 多克隆(6C5cc)
  • 免疫组化; 小鼠; 1:100; 图 5
Novus Biologicals血小板-内皮细胞粘附分子1抗体(Novus Biologicals, NB100-2284)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). PLoS ONE (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫细胞化学; 小鼠; 图 1
Novus Biologicals血小板-内皮细胞粘附分子1抗体(Novus Biologicals, MEC13.3)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Sci Rep (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(WM-59)
  • 免疫细胞化学; 小鼠; 图 4b
西格玛奥德里奇血小板-内皮细胞粘附分子1抗体(Sigma-Aldrich, P8590l)被用于被用于免疫细胞化学在小鼠样本上 (图 4b). Mol Ther Nucleic Acids (2019) ncbi
小鼠 单克隆(1D2-1A5)
  • 免疫细胞化学; 人类; 图 s3b
  • 免疫组化; 人类; 图 2b
西格玛奥德里奇血小板-内皮细胞粘附分子1抗体(Sigma, WH0005175M1)被用于被用于免疫细胞化学在人类样本上 (图 s3b) 和 被用于免疫组化在人类样本上 (图 2b). Nat Biotechnol (2016) ncbi
小鼠 单克隆(WM-59)
  • 免疫组化-石蜡切片; 人类; 1:25
西格玛奥德里奇血小板-内皮细胞粘附分子1抗体(Sigma, P8590)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. Tissue Eng Part C Methods (2015) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(WM59)
  • 免疫组化-石蜡切片; 小鼠; 1:20; 图 7
伯乐(Bio-Rad)公司血小板-内皮细胞粘附分子1抗体(AbD Serotec, MCA1738B)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20 (图 7). Int J Mol Sci (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司血小板-内皮细胞粘附分子1抗体(Serotec, MCA1738F)被用于被用于流式细胞仪在人类样本上. F1000Res (2014) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; black ferret
伯乐(Bio-Rad)公司血小板-内皮细胞粘附分子1抗体(Serotec, MCA1738)被用于被用于流式细胞仪在black ferret样本上. J Infect Dis (2013) ncbi
武汉三鹰
小鼠 单克隆(2A1E2)
  • 免疫印迹; 人类; 1:200; 图 5
武汉三鹰血小板-内皮细胞粘附分子1抗体(Proteintech, 66065-1-Ig)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Anticancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
武汉三鹰血小板-内皮细胞粘附分子1抗体(Proteintech, 11265-1-AP)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
武汉三鹰血小板-内皮细胞粘附分子1抗体(Proteintech, 11265-1-AP)被用于. Oncotarget (2015) ncbi
丹科医疗器械技术服务(上海)有限公司
单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 图 3d
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, JC70)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3d). Cell Commun Signal (2019) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 s1c
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 s1c). Aging Cell (2020) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 1:42; 图 6h
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上浓度为1:42 (图 6h). Nature (2019) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 图 4c
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4c). Oncogene (2020) ncbi
单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 图 5h
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, IR610)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5h). J Histochem Cytochem (2019) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 图 1b
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, M082329)被用于被用于免疫细胞化学在人类样本上 (图 1b). Nature (2019) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 图 1g
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上 (图 1g). Fluids Barriers CNS (2018) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 1:100; 图 4
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). J Neurotrauma (2018) ncbi
小鼠 单克隆(JC70A)
  • 其他; 人类; 图 4c
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 1:100; 图 3e
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3e). Nat Commun (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f). Cancer Res (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:200; 图 4a
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4a). Nat Protoc (2017) ncbi
小鼠 单克隆(JC70A)
  • reverse phase protein lysate microarray; 人类; 图 st6
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 1:50; 图 1b
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, M0823)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1b). J Transl Med (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 2 ug/ml; 图 st4
  • 免疫组化-石蜡切片; African green monkey; 2 ug/ml; 图 st4
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为2 ug/ml (图 st4) 和 被用于免疫组化-石蜡切片在African green monkey样本上浓度为2 ug/ml (图 st4). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:20; 图 1d,2d
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化在人类样本上浓度为1:20 (图 1d,2d). PLoS ONE (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 1:100; 图 2b
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2b). Arterioscler Thromb Vasc Biol (2017) ncbi
小鼠 单克隆(JC70A)
  • reverse phase protein lysate microarray; 人类; 图 3a
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:10; 表 2
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC/70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10 (表 2). Am J Dermatopathol (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫印迹; 人类
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5b
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5b). Mol Cell Biol (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4c
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4c). BMC Cancer (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 1:20
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上浓度为1:20. Oncotarget (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4b
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4b). Nat Commun (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; pigs ; 图 3b
  • 流式细胞仪; pigs ; 图 s2
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化-冰冻切片在pigs 样本上 (图 3b) 和 被用于流式细胞仪在pigs 样本上 (图 s2). Tissue Eng Part A (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:30; 图 3e
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化在人类样本上浓度为1:30 (图 3e). Nat Med (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC/70A)被用于被用于免疫组化在人类样本上浓度为1:50. Rare Tumors (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 图 1a
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Anticancer Res (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 图 s1
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1). Am J Pathol (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫印迹; 人类; 图 1d
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M082329-2)被用于被用于免疫印迹在人类样本上 (图 1d). Biol Open (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上 (图 4). Biol Open (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M823)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:40; 表 2
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40 (表 2). Histopathology (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:50; 图 6d
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, M0823)被用于被用于免疫组化在人类样本上浓度为1:50 (图 6d). Diabetes (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 1b
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, M082301)被用于被用于免疫组化在人类样本上 (图 1b). Sci Rep (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s14
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s14). Nat Commun (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 10 ug/ml; 图 1
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上浓度为10 ug/ml (图 1). Microbes Infect (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 4
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 4). EMBO Mol Med (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 2b
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫组化在人类样本上 (图 2b). Mol Vis (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 1:25; 图 1
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:25 (图 1). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1d
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 8b
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1d) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 8b). J Clin Invest (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 1:25; 图 1
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(dako, M0823)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:25 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 图 3
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO/Agilent Technologies, JC70A)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 1:50; 表 1
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (表 1). Wound Repair Regen (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 3a
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC/70A)被用于被用于免疫组化在人类样本上 (图 3a). Pathol Res Pract (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:30; 图 3
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30 (图 3). J Neuroimmune Pharmacol (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:50; 图 2
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, MO823)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2). Brain Tumor Pathol (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 犬; 1:20; 图 1
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:20 (图 1). Vet Comp Oncol (2017) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:200; 图 6
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, JC704)被用于被用于免疫组化在人类样本上浓度为1:200 (图 6). EMBO Mol Med (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 1d
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化在人类样本上 (图 1d). Oncotarget (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 图 1e
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC10A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). Nat Med (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 小鼠; 1:60; 图 s2
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, JC70A)被用于被用于免疫组化在小鼠样本上浓度为1:60 (图 s2). Nat Commun (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化在人类样本上 (图 1). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:25; 图 1 A-i
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫组化在人类样本上浓度为1:25 (图 1 A-i). J Appl Physiol (1985) (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 犬; 1:20
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:20. Anal Cell Pathol (Amst) (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫印迹; 猕猴; 1:250; 图 8
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DakoCytomation, M0823)被用于被用于免疫印迹在猕猴样本上浓度为1:250 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 1:20; 图 3f
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, M0823)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 3f). Nat Biotechnol (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:40; 表 2
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC/70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40 (表 2). Med Mol Morphol (2016) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:80; 表 s4
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, M0823)被用于被用于免疫组化在人类样本上浓度为1:80 (表 s4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化在人类样本上 (表 2). PLoS ONE (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 1
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 1). Head Face Med (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, M0823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:40; 图 6
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, M0823)被用于被用于免疫组化在人类样本上浓度为1:40 (图 6). Lab Invest (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 小鼠; 1:500
  • 免疫印迹; 人类; 1:1000
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M082329)被用于被用于免疫组化在小鼠样本上浓度为1:500 和 被用于免疫印迹在人类样本上浓度为1:1000. Am J Pathol (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 图 S6
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 S6). PLoS ONE (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, clone JC70A)被用于被用于免疫组化在人类样本上. Brain Tumor Pathol (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 小鼠; 1:100
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫组化在小鼠样本上浓度为1:100 和 被用于免疫组化在人类样本上浓度为1:100. J Biomed Mater Res A (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 2j
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫组化在人类样本上 (图 2j). Exp Dermatol (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, M0823)被用于被用于免疫组化在人类样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 衣藻; 1:40
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫细胞化学在衣藻样本上浓度为1:40. Endocrinology (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; pigs ; 1:50
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M 0823)被用于被用于免疫细胞化学在pigs 样本上浓度为1:50. Tissue Eng Part C Methods (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC/70A)被用于被用于免疫组化在人类样本上. Mol Immunol (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 s5a
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(M0823, Dako)被用于被用于免疫组化在人类样本上 (图 s5a). Am J Transplant (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. BMC Dev Biol (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M082301)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Nat Cell Biol (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 小鼠; 图 4
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化在小鼠样本上 (图 4). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 小鼠
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, JC70A)被用于被用于免疫细胞化学在小鼠样本上. J Autoimmun (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫组化在人类样本上浓度为1:100. J Cutan Pathol (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, M0823)被用于被用于免疫组化在人类样本上浓度为1:50. Thromb Res (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:20
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, clone JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20. Pathol Res Pract (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200. J Comp Neurol (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上. Virchows Arch (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 图 s1
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化在人类样本上 (图 s1). Cell (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 图 6
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako Cytomation, JC70A)被用于被用于免疫组化-冰冻切片在人类样本上 (图 6). PLoS ONE (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Pancreas (2015) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 1:30
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫组化在人类样本上浓度为1:30. Br J Cancer (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 小鼠; 1:50
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:30
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30. Pathol Res Pract (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; domestic rabbit; 1:100
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:100. BMC Musculoskelet Disord (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:20
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20. BMC Cancer (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:25; 图 s1
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, M0823)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 s1). PLoS ONE (2013) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DakoCytomation, M0823)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 0.5 ug/ml
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M082301)被用于被用于免疫组化-冰冻切片在人类样本上浓度为0.5 ug/ml. Neuropathol Appl Neurobiol (2014) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Neurobiol Dis (2013) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类; 5 ug/mL
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DAKO, M0823)被用于被用于免疫组化在人类样本上浓度为5 ug/mL. PLoS ONE (2013) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DakoCytomation, M 0823)被用于被用于免疫组化在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(JC70A)
  • 免疫细胞化学; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Biomaterials (2013) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:20
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20. Histopathology (2013) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, M0823)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫细胞化学在人类样本上. Pediatr Dev Pathol (2012) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(DakoCytomation, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. J Am Acad Dermatol (2010) ncbi
小鼠 单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司血小板-内皮细胞粘附分子1抗体(Dako, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上. Mediators Inflamm (2009) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(89C2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(CST, 3528S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4). Oncol Lett (2020) ncbi
小鼠 单克隆(89C2)
  • 免疫细胞化学; 人类; 图 3c
  • 免疫印迹; 人类; 1:1000; 图 1e, 3b, 4d
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell Signaling, 3528)被用于被用于免疫细胞化学在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1e, 3b, 4d). Sci Rep (2020) ncbi
小鼠 单克隆(89C2)
  • 免疫细胞化学; 人类; 1:3000; 图 4e
  • 免疫组化; 人类; 1:250; 图 7f
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell Signaling Technologies, clone 89C2)被用于被用于免疫细胞化学在人类样本上浓度为1:3000 (图 4e) 和 被用于免疫组化在人类样本上浓度为1:250 (图 7f). PLoS Biol (2019) ncbi
小鼠 单克隆(89C2)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3f
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell Signaling, 3528)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3f). Theranostics (2018) ncbi
小鼠 单克隆(89C2)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 3b
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell Signaling, 3528)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 3b). Int J Mol Med (2017) ncbi
小鼠 单克隆(89C2)
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell Signaling, 3528)被用于被用于免疫组化-石蜡切片在人类样本上. J Clin Invest (2016) ncbi
小鼠 单克隆(89C2)
  • 免疫细胞化学; 人类; 1:1000; 表 2
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell signaling, 3528)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (表 2). Lab Chip (2016) ncbi
小鼠 单克隆(89C2)
  • 免疫组化; 人类; 图 1e
  • 免疫印迹; 人类; 图 2h
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell Signaling, 3528)被用于被用于免疫组化在人类样本上 (图 1e), 被用于免疫印迹在人类样本上 (图 2h) 和 被用于免疫印迹在小鼠样本上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(89C2)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell Signaling, 3528)被用于被用于免疫印迹在人类样本上 (图 2b). Ann Thorac Surg (2016) ncbi
小鼠 单克隆(89C2)
  • 免疫组化-石蜡切片; 人类; 1:100
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell Signaling, 89C2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Oncol Lett (2016) ncbi
小鼠 单克隆(89C2)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell signaling, 3528S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 4). Nature (2016) ncbi
小鼠 单克隆(89C2)
  • 免疫印迹; 人类; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell Signaling, 3528)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6). Nat Commun (2016) ncbi
小鼠 单克隆(89C2)
  • 免疫细胞化学; 人类; 1:200; 图 4
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell Signaling, 3528S)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(89C2)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell signaling, 89C2)被用于被用于免疫印迹在人类样本上 (图 6). Fluids Barriers CNS (2015) ncbi
小鼠 单克隆(89C2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell Signaling, 3528)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(89C2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell Signaling Technology, 3528)被用于被用于免疫印迹在人类样本上. Yale J Biol Med (2014) ncbi
小鼠 单克隆(89C2)
  • 免疫组化-石蜡切片; 人类; 1:100
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell Signaling Tech, 89C2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Chem Neuroanat (2014) ncbi
小鼠 单克隆(89C2)
  • 免疫组化-冰冻切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell Signaling Technology, 3528)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Cancer Res (2014) ncbi
小鼠 单克隆(89C2)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell Signaling, 3528)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2014) ncbi
小鼠 单克隆(89C2)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司血小板-内皮细胞粘附分子1抗体(Cell Signaling Technology, 89C2)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Am Soc Nephrol (2014) ncbi
Agilent Technologies
小鼠 单克隆(JC70A)
  • 免疫组化-冰冻切片; 人类; 1:30; 图 2a
Agilent Technologies血小板-内皮细胞粘附分子1抗体(Agilent, JC70A)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:30 (图 2a). PLoS ONE (2020) ncbi
Dbiosys
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 4c
Dbiosys血小板-内皮细胞粘附分子1抗体(DBS, MOB034)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 4c). Am J Hum Genet (2016) ncbi
碧迪BD
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 s2b
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Pharmingen, WM59)被用于被用于流式细胞仪在人类样本上 (图 s2b). Sci Rep (2019) ncbi
小鼠 单克隆(WM59)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 9d
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Pharmigen, WM59)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 9d). J Cell Biol (2019) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 2b
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Biosciences, WM59)被用于被用于流式细胞仪在人类样本上 (图 2b). J Immunol (2019) ncbi
小鼠 单克隆(WM59)
  • 免疫组化-冰冻切片; 人类; 图 3d
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Biosciences, WM59)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3d). J Infect Dis (2018) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 s1b
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Biosciences, WM59)被用于被用于流式细胞仪在人类样本上 (图 s1b). PLoS ONE (2017) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 1c
碧迪BD血小板-内皮细胞粘附分子1抗体(BD, WM59)被用于被用于流式细胞仪在人类样本上 (图 1c). Nature (2017) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 s1c
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Biosciences, WM-59)被用于被用于流式细胞仪在人类样本上 (图 s1c). Immun Ageing (2017) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 1a
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Pharmingen, WM59)被用于被用于流式细胞仪在人类样本上 (图 1a). PLoS Biol (2017) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 2d
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Bioscience, WM59)被用于被用于流式细胞仪在人类样本上 (图 2d). Stem Cells (2017) ncbi
小鼠 单克隆(WM59)
  • 免疫组化; 人类; 图 7
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Biosciences, 550389)被用于被用于免疫组化在人类样本上 (图 7). PLoS ONE (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 2
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Pharmingen, WM59)被用于被用于流式细胞仪在人类样本上 (图 2). Cytotherapy (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 s4
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Biosciences, WM59)被用于被用于流式细胞仪在人类样本上 (图 s4). Oncotarget (2016) ncbi
小鼠 单克隆(WM59)
  • 免疫细胞化学; 大鼠; 1:40; 图 2
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Biosciences, 550389)被用于被用于免疫细胞化学在大鼠样本上浓度为1:40 (图 2). Am J Respir Crit Care Med (2016) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 表 1
碧迪BD血小板-内皮细胞粘附分子1抗体(Becton Dickinson, WM59)被用于被用于流式细胞仪在人类样本上 (表 1). J Transl Med (2015) ncbi
小鼠 单克隆(WM59)
  • 免疫细胞化学; 人类; 1:500; 图 2
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Biosciences, 555444)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(WM59)
  • 免疫细胞化学; 人类; 1:300
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Pharmingen, 555444)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Nature (2015) ncbi
小鼠 单克隆(WM59)
  • 免疫细胞化学; 人类; 1:100; 图 s3
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Pharmingen, 550389)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s3). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 2
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Biosciences, 561653)被用于被用于流式细胞仪在人类样本上 (图 2). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 5
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Bioscience, WM59)被用于被用于流式细胞仪在人类样本上 (图 5). Nat Immunol (2015) ncbi
小鼠 单克隆(WM59)
  • 免疫印迹; 小鼠
碧迪BD血小板-内皮细胞粘附分子1抗体(BD, WM59)被用于被用于免疫印迹在小鼠样本上. Nature (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 4
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Biosciences Pharmingen, WM-59)被用于被用于流式细胞仪在人类样本上 (图 4). Cytotherapy (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 5
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Biosciences, WM59)被用于被用于流式细胞仪在人类样本上 (图 5). J Leukoc Biol (2015) ncbi
小鼠 单克隆(WM59)
  • 免疫细胞化学; 小鼠
碧迪BD血小板-内皮细胞粘附分子1抗体(PharMingen, WM59)被用于被用于免疫细胞化学在小鼠样本上. Hum Pathol (2014) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Biosciences, WM-59)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(WM59)
  • 免疫细胞化学; 人类; 1:200
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Pharmingen, 550389)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(WM59)
  • 免疫组化; 人类
碧迪BD血小板-内皮细胞粘附分子1抗体(BD, WM59)被用于被用于免疫组化在人类样本上. Development (2013) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 图 1
碧迪BD血小板-内皮细胞粘附分子1抗体(BD, WM59)被用于被用于流式细胞仪在人类样本上 (图 1). J Tissue Eng Regen Med (2015) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 1:5
  • 免疫细胞化学; 人类; 1:5
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Pharmingen, WM-59)被用于被用于流式细胞仪在人类样本上浓度为1:5 和 被用于免疫细胞化学在人类样本上浓度为1:5. Microvasc Res (2012) ncbi
小鼠 单克隆(WM59)
  • 免疫组化-石蜡切片; 人类; 1:200
碧迪BD血小板-内皮细胞粘附分子1抗体(BD Biosciences, WM59)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Biomarkers (2012) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆(JC70A)
  • 免疫组化-石蜡切片; 人类; 图 4
徕卡显微系统(上海)贸易有限公司血小板-内皮细胞粘附分子1抗体(Leica Biosystems, JC70A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). J Histochem Cytochem (2018) ncbi
Developmental Studies Hybridoma Bank
仓鼠 单克隆(2H8)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
  • 免疫细胞化学; 小鼠; 图 5a
Developmental Studies Hybridoma Bank血小板-内皮细胞粘附分子1抗体(Developmental Studies Hybridoma Bank, 2H8-C)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a) 和 被用于免疫细胞化学在小鼠样本上 (图 5a). J Exp Med (2016) ncbi
文章列表
  1. Sundararaman A, Fukushima Y, Norman J, Uemura A, Mellor H. RhoJ Regulates α5β1 Integrin Trafficking to Control Fibronectin Remodeling during Angiogenesis. Curr Biol. 2020;30:2146-2155.e5 pubmed 出版商
  2. Facchin C, Pérez Liva M, Garofalakis A, Viel T, Certain A, Balvay D, et al. Concurrent imaging of vascularization and metabolism in a mouse model of paraganglioma under anti-angiogenic treatment. Theranostics. 2020;10:3518-3532 pubmed 出版商
  3. Li X, Wu Y, Zhao J, Wang H, Tan J, Yang M, et al. Distinct cardiac energy metabolism and oxidative stress adaptations between obese and non-obese type 2 diabetes mellitus. Theranostics. 2020;10:2675-2695 pubmed 出版商
  4. Luo L, Chen L, Ke K, Zhao B, Wang L, Zhang C, et al. High expression levels of CLEC4M indicate poor prognosis in patients with hepatocellular carcinoma. Oncol Lett. 2020;19:1711-1720 pubmed 出版商
  5. Singh S, Adam M, Matkar P, Bugyei Twum A, Desjardins J, Chen H, et al. Endothelial-specific Loss of IFT88 Promotes Endothelial-to-Mesenchymal Transition and Exacerbates Bleomycin-induced Pulmonary Fibrosis. Sci Rep. 2020;10:4466 pubmed 出版商
  6. Reventun P, Sanchez Esteban S, Cook A, Cuadrado I, Roza C, Moreno Gómez Toledano R, et al. Bisphenol A induces coronary endothelial cell necroptosis by activating RIP3/CamKII dependent pathway. Sci Rep. 2020;10:4190 pubmed 出版商
  7. Beltran Camacho L, Jimenez Palomares M, Rojas Torres M, Sánchez Gomar I, Rosal Vela A, Eslava Alcon S, et al. Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia. Stem Cell Res Ther. 2020;11:106 pubmed 出版商
  8. Nayakawde N, Methe K, Banerjee D, Berg M, Premaratne G, Olausson M. In Vitro Regeneration of Decellularized Pig Esophagus Using Human Amniotic Stem Cells. Biores Open Access. 2020;9:22-36 pubmed 出版商
  9. Darrigrand J, Valente M, Comai G, Martinez P, Petit M, Nishinakamura R, et al. Dullard-mediated Smad1/5/8 inhibition controls mouse cardiac neural crest cells condensation and outflow tract septation. elife. 2020;9: pubmed 出版商
  10. Engelbrecht E, Lévesque M, He L, Vanlandewijck M, Nitzsche A, Niazi H, et al. Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. elife. 2020;9: pubmed 出版商
  11. Hou M, Han J, Li G, Kwon M, Jiang J, Emani S, et al. Multipotency of mouse trophoblast stem cells. Stem Cell Res Ther. 2020;11:55 pubmed 出版商
  12. Ayanlaja A, Ji G, Wang J, Gao Y, Cheng B, Kanwore K, et al. Doublecortin undergo nucleocytoplasmic transport via the RanGTPase signaling to promote glioma progression. Cell Commun Signal. 2020;18:24 pubmed 出版商
  13. Li Q, Aalling N, Förstera B, Erturk A, Nedergaard M, Møllgård K, et al. Aquaporin 1 and the Na+/K+/2Cl- cotransporter 1 are present in the leptomeningeal vasculature of the adult rodent central nervous system. Fluids Barriers CNS. 2020;17:15 pubmed 出版商
  14. Kang H, Kwon H, Kim I, Ban W, Kim S, Kang H, et al. Intermittent hypoxia exacerbates tumor progression in a mouse model of lung cancer. Sci Rep. 2020;10:1854 pubmed 出版商
  15. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  16. Jaiprasart P, Dogra S, Neelakantan D, Devapatla B, Woo S. Identification of signature genes associated with therapeutic resistance to anti-VEGF therapy. Oncotarget. 2020;11:99-114 pubmed 出版商
  17. Bálint L, Ocskay Z, Deák B, Aradi P, Jakus Z. Lymph Flow Induces the Postnatal Formation of Mature and Functional Meningeal Lymphatic Vessels. Front Immunol. 2019;10:3043 pubmed 出版商
  18. Jin Y, Shi C, Wu Y, Sun J, Gao J, Yang Y. Encapsulated three-dimensional bioprinted structure seeded with urothelial cells: a new construction technique for tissue-engineered urinary tract patch. Chin Med J (Engl). 2020;133:424-434 pubmed 出版商
  19. Gherardini J, Uchida Y, Hardman J, Chéret J, Mace K, Bertolini M, et al. Tissue-resident macrophages can be generated de novo in adult human skin from resident progenitor cells during substance P-mediated neurogenic inflammation ex vivo. PLoS ONE. 2020;15:e0227817 pubmed 出版商
  20. Barbeito Andrés J, Pezzuto P, Higa L, Dias A, Vasconcelos J, Santos T, et al. Congenital Zika syndrome is associated with maternal protein malnutrition. Sci Adv. 2020;6:eaaw6284 pubmed 出版商
  21. Rao L, Giannico D, Leone P, Solimando A, Maiorano E, Caporusso C, et al. HB-EGF-EGFR Signaling in Bone Marrow Endothelial Cells Mediates Angiogenesis Associated with Multiple Myeloma. Cancers (Basel). 2020;12: pubmed 出版商
  22. Gate D, Saligrama N, Leventhal O, Yang A, Unger M, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature. 2020;577:399-404 pubmed 出版商
  23. Wang G, Huang T, Hu Y, Wang K, Shi H, Yin L, et al. Corpus cavernosum smooth muscle cell dysfunction and phenotype transformation are related to erectile dysfunction in prostatitis rats with chronic prostatitis/chronic pelvic pain syndrome. J Inflamm (Lond). 2020;17:2 pubmed 出版商
  24. Zeng W, Tang Z, Li Y, Yin G, Liu Z, Gao J, et al. Patient-derived xenografts of different grade gliomas retain the heterogeneous histological and genetic features of human gliomas. Cancer Cell Int. 2020;20:1 pubmed 出版商
  25. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  26. Zhang K, Yang L, Wang J, Sun T, Guo Y, Nelson R, et al. Ubiquitin-specific protease 22 is critical to in vivo angiogenesis, growth and metastasis of non-small cell lung cancer. Cell Commun Signal. 2019;17:167 pubmed 出版商
  27. Lalaoui N, Boyden S, Oda H, Wood G, Stone D, Chau D, et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature. 2020;577:103-108 pubmed 出版商
  28. Hiepen C, Jatzlau J, Hildebrandt S, Kampfrath B, Goktas M, Murgai A, et al. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biol. 2019;17:e3000557 pubmed 出版商
  29. Jiang X, Xu C, Shi H, Cheng Q. PTH1-34 improves bone healing by promoting angiogenesis and facilitating MSCs migration and differentiation in a stabilized fracture mouse model. PLoS ONE. 2019;14:e0226163 pubmed 出版商
  30. Li W, Zhang X, Wu F, Zhou Y, Bao Z, Li H, et al. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis. 2019;10:918 pubmed 出版商
  31. Luxan G, Stewen J, Díaz N, Kato K, Maney S, Aravamudhan A, et al. Endothelial EphB4 maintains vascular integrity and transport function in adult heart. elife. 2019;8: pubmed 出版商
  32. Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. 2019;10:5421 pubmed 出版商
  33. Foster A, El Chami C, O Neill C, Watson R. Osmolyte transporter expression is reduced in photoaged human skin: Implications for skin hydration in aging. Aging Cell. 2020;19:e13058 pubmed 出版商
  34. Song Y, Lu H, Wang Q, Xiang R. Targeting Angiogenesis by Blocking the ATM-SerRS-VEGFA Pathway for UV-Induced Skin Photodamage and Melanoma Growth. Cancers (Basel). 2019;11: pubmed 出版商
  35. Henning C, Branopolski A, Schuler D, Dimitroulis D, Huelsemann P, Nicolaus C, et al. Requirement of β1 integrin for endothelium-dependent vasodilation and collateral formation in hindlimb ischemia. Sci Rep. 2019;9:16931 pubmed 出版商
  36. Jiao W, Ji J, Xu W, Bu W, Zheng Y, Ma A, et al. Distinct downstream signaling and the roles of VEGF and PlGF in high glucose-mediated injuries of human retinal endothelial cells in culture. Sci Rep. 2019;9:15339 pubmed 出版商
  37. Liu D, Wu L, Wu Y, Wei X, Wang W, Zhang S, et al. Heat shock factor 1-mediated transcription activation of Omi/HtrA2 induces myocardial mitochondrial apoptosis in the aging heart. Aging (Albany NY). 2019;11:8982-8997 pubmed 出版商
  38. Grüneboom A, Hawwari I, Weidner D, Culemann S, Müller S, Henneberg S, et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat Metab. 2019;1:236-250 pubmed 出版商
  39. Ramachandran P, Dobie R, Wilson Kanamori J, Dora E, Henderson B, Luu N, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575:512-518 pubmed 出版商
  40. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  41. Collins L, Brunjes P. The mouse olfactory peduncle 4: Development of synapses, perineuronal nets, and capillaries. J Comp Neurol. 2019;: pubmed 出版商
  42. Darrieutort Laffite C, Arnolfo P, Garraud T, Adrait A, Coute Y, Louarn G, et al. Rotator Cuff Tenocytes Differentiate into Hypertrophic Chondrocyte-Like Cells to Produce Calcium Deposits in an Alkaline Phosphatase-Dependent Manner. J Clin Med. 2019;8: pubmed 出版商
  43. Avril M, Benjamin M, Dols M, Smith J. Interplay of Plasmodium falciparum and thrombin in brain endothelial barrier disruption. Sci Rep. 2019;9:13142 pubmed 出版商
  44. Wei C, Zhu M, Zhang P, Yang X, Wang L, Ying J, et al. Elevated kindlin-2 promotes tumour progression and angiogenesis through the mTOR/VEGFA pathway in melanoma. Aging (Albany NY). 2019;11:6273-6285 pubmed 出版商
  45. Zhao J, Peng W, Ran Y, Ge H, Zhang C, Zou H, et al. Dysregulated expression of ACTN4 contributes to endothelial cell injury via the activation of the p38-MAPK/p53 apoptosis pathway in preeclampsia. J Physiol Biochem. 2019;: pubmed 出版商
  46. Yin Y, Zhang Q, Zhao Q, Ding G, Wei C, Chang L, et al. Tongxinluo Attenuates Myocardiac Fibrosis after Acute Myocardial Infarction in Rats via Inhibition of Endothelial-to-Mesenchymal Transition. Biomed Res Int. 2019;2019:6595437 pubmed 出版商
  47. Low J, Li P, Chew E, Zhou B, Suzuki K, Zhang T, et al. Generation of Human PSC-Derived Kidney Organoids with Patterned Nephron Segments and a De Novo Vascular Network. Cell Stem Cell. 2019;25:373-387.e9 pubmed 出版商
  48. Dulken B, Buckley M, Navarro Negredo P, Saligrama N, Cayrol R, Leeman D, et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature. 2019;571:205-210 pubmed 出版商
  49. Hu Z, Zhou M, Wu Y, Li Z, Liu X, Wu L, et al. ssODN-Mediated In-Frame Deletion with CRISPR/Cas9 Restores FVIII Function in Hemophilia A-Patient-Derived iPSCs and ECs. Mol Ther Nucleic Acids. 2019;17:198-209 pubmed 出版商
  50. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  51. Wang X, Liu R, Zhu W, Chu H, Yu H, Wei P, et al. UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis. Nature. 2019;571:127-131 pubmed 出版商
  52. Schwarz A, Möller Hackbarth K, Ebarasi L, Unnersjö Jess D, Zambrano S, Blom H, et al. Coro2b, a podocyte protein downregulated in human diabetic nephropathy, is involved in the development of protamine sulphate-induced foot process effacement. Sci Rep. 2019;9:8888 pubmed 出版商
  53. Liu F, Fan D, Yang Z, Tang N, Guo Z, Ma S, et al. TLR9 is essential for HMGB1-mediated post-myocardial infarction tissue repair through affecting apoptosis, cardiac healing, and angiogenesis. Cell Death Dis. 2019;10:480 pubmed 出版商
  54. Bayer S, Grither W, Brenot A, Hwang P, Barcus C, Ernst M, et al. DDR2 controls breast tumor stiffness and metastasis by regulating integrin mediated mechanotransduction in CAFs. elife. 2019;8: pubmed 出版商
  55. Sabol R, Bowles A, Côté A, Wise R, O Donnell B, Matossian M, et al. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Res. 2019;21:67 pubmed 出版商
  56. Coulombe P, Paliouras G, Clayton A, Hussainkhel A, Fuller M, Jovanovic V, et al. Endothelial Sash1 Is Required for Lung Maturation through Nitric Oxide Signaling. Cell Rep. 2019;27:1769-1780.e4 pubmed 出版商
  57. Norwood J, Zhang Q, CARD D, Craine A, Ryan T, Drew P. Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate. elife. 2019;8: pubmed 出版商
  58. Bertrand L, Méroth F, Tournebize M, Leda A, Sun E, Toborek M. Targeting the HIV-infected brain to improve ischemic stroke outcome. Nat Commun. 2019;10:2009 pubmed 出版商
  59. Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub Lis K, et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. elife. 2019;8: pubmed 出版商
  60. Basnet H, Tian L, Ganesh K, Huang Y, Macalinao D, Brogi E, et al. Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization. elife. 2019;8: pubmed 出版商
  61. Zhu Y, Zhang Y, Huang X, Xie Y, Qu Y, Long H, et al. Z-Ligustilide protects vascular endothelial cells from oxidative stress and rescues high fat diet-induced atherosclerosis by activating multiple NRF2 downstream genes. Atherosclerosis. 2019;284:110-120 pubmed 出版商
  62. Bergqvist F, Carr A, Wheway K, Watkins B, Oppermann U, Jakobsson P, et al. Divergent roles of prostacyclin and PGE2 in human tendinopathy. Arthritis Res Ther. 2019;21:74 pubmed 出版商
  63. King D, Glynn M, Cindrić S, Kernan D, O Connell T, Hakimjavadi R, et al. Label-Free Multi Parameter Optical Interrogation of Endothelial Activation in Single Cells using a Lab on a Disc Platform. Sci Rep. 2019;9:4157 pubmed 出版商
  64. Liu X, Dong H, Huang B, Miao H, Xu Z, Yuan Y, et al. Native Coronary Collateral Microcirculation Reserve in Rat Hearts. J Am Heart Assoc. 2019;8:e011220 pubmed 出版商
  65. Hess D, Kelly Goss M, Cherepanova O, Nguyen A, Baylis R, Tkachenko S, et al. Perivascular cell-specific knockout of the stem cell pluripotency gene Oct4 inhibits angiogenesis. Nat Commun. 2019;10:967 pubmed 出版商
  66. Kurelac I, Iommarini L, Vatrinet R, Amato L, De Luise M, Leone G, et al. Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses. Nat Commun. 2019;10:903 pubmed 出版商
  67. Rotoli D, Morales M, Maeso M, Avila J, Pérez Rodríguez N, Mobasheri A, et al. IQGAP1, AmotL2, and FKBP51 Scaffoldins in the Glioblastoma Microenvironment. J Histochem Cytochem. 2019;67:481-494 pubmed 出版商
  68. Chen X, He Y, Xu A, Deng Z, Feng J, Lu F, et al. Increase of glandular epithelial cell clusters by an external volume expansion device promotes adipose tissue regeneration by recruiting macrophages. Biosci Rep. 2019;39: pubmed 出版商
  69. Albanna M, Binder K, Murphy S, Kim J, Qasem S, Zhao W, et al. In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds. Sci Rep. 2019;9:1856 pubmed 出版商
  70. Mason D, Collins J, Dawahare J, Nguyen T, Lin Y, Voytik Harbin S, et al. YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. J Cell Biol. 2019;218:1369-1389 pubmed 出版商
  71. Georgouli M, Herraiz C, Crosas Molist E, Fanshawe B, Maiques O, Perdrix A, et al. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell. 2019;176:757-774.e23 pubmed 出版商
  72. Gao Q, Yang Z, Xu S, Li X, Yang X, Jin P, et al. Heterotypic CAF-tumor spheroids promote early peritoneal metastatis of ovarian cancer. J Exp Med. 2019;216:688-703 pubmed 出版商
  73. Hutchinson E, Chatterjee M, Reyes L, Djankpa F, Valiant W, Dardzinski B, et al. The effect of Zika virus infection in the ferret. J Comp Neurol. 2019;527:1706-1719 pubmed 出版商
  74. Montel Hagen A, Seet C, Li S, Chick B, Zhu Y, Chang P, et al. Organoid-Induced Differentiation of Conventional T Cells from Human Pluripotent Stem Cells. Cell Stem Cell. 2019;24:376-389.e8 pubmed 出版商
  75. Wimmer R, Leopoldi A, Aichinger M, Wick N, Hantusch B, Novatchkova M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature. 2019;565:505-510 pubmed 出版商
  76. Li B, He J, Lv H, Liu Y, Lv X, Zhang C, et al. c-Abl regulates YAPY357 phosphorylation to activate endothelial atherogenic responses to disturbed flow. J Clin Invest. 2019;129:1167-1179 pubmed 出版商
  77. Niu F, Liao K, Hu G, Sil S, Callen S, Guo M, et al. Cocaine-induced release of CXCL10 from pericytes regulates monocyte transmigration into the CNS. J Cell Biol. 2019;218:700-721 pubmed 出版商
  78. Kumar A, Lee J, Suknuntha K, D Souza S, Thakur A, Slukvin I. NOTCH Activation at the Hematovascular Mesoderm Stage Facilitates Efficient Generation of T Cells with High Proliferation Potential from Human Pluripotent Stem Cells. J Immunol. 2019;202:770-776 pubmed 出版商
  79. Chen R, Miao Y, Hu Z. Dynamic Nestin expression during hair follicle maturation and the normal hair cycle. Mol Med Rep. 2019;19:549-554 pubmed 出版商
  80. James K, Cosway E, LUCAS B, White A, Parnell S, Carvalho Gaspar M, et al. Endothelial cells act as gatekeepers for LTβR-dependent thymocyte emigration. J Exp Med. 2018;215:2984-2993 pubmed 出版商
  81. Song S, Zhang R, Cao W, Fang G, Yu Y, Wan Y, et al. Foxm1 is a critical driver of TGF-β-induced EndMT in endothelial cells through Smad2/3 and binds to the Snail promoter. J Cell Physiol. 2019;234:9052-9064 pubmed 出版商
  82. Kinchen J, Chen H, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner Corbett D, et al. Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease. Cell. 2018;175:372-386.e17 pubmed 出版商
  83. Patel N, Vukmanovic Stejic M, Suárez Fariñas M, Chambers E, Sandhu D, Fuentes Duculan J, et al. Impact of Zostavax Vaccination on T-Cell Accumulation and Cutaneous Gene Expression in the Skin of Older Humans After Varicella Zoster Virus Antigen-Specific Challenge. J Infect Dis. 2018;218:S88-S98 pubmed 出版商
  84. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  85. Wevers N, Kasi D, Gray T, Wilschut K, Smith B, van Vught R, et al. A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS. 2018;15:23 pubmed 出版商
  86. Olin A, Henckel E, Chen Y, Lakshmikanth T, Pou C, Mikes J, et al. Stereotypic Immune System Development in Newborn Children. Cell. 2018;174:1277-1292.e14 pubmed 出版商
  87. Chute C, Yang X, Meyer K, Yang N, O Neil K, Kasza I, et al. Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Res. 2018;20:66 pubmed 出版商
  88. Murakami T, Kim J, Li Y, Green G, Shikanov A, Ono A. Secondary lymphoid organ fibroblastic reticular cells mediate trans-infection of HIV-1 via CD44-hyaluronan interactions. Nat Commun. 2018;9:2436 pubmed 出版商
  89. Casey A, Sinha A, Singhania R, Livingstone J, Waterhouse P, Tharmapalan P, et al. Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities. J Cell Biol. 2018;217:2951-2974 pubmed 出版商
  90. Castro L, Noelia M, Vidal Jorge M, Sanchez Ortiz D, Gándara D, Martínez Sáez E, et al. Kir6.2, the Pore-Forming Subunit of ATP-Sensitive K+ Channels, Is Overexpressed in Human Posttraumatic Brain Contusions. J Neurotrauma. 2018;: pubmed 出版商
  91. Li H, Liao Y, Gao L, Zhuang T, Huang Z, Zhu H, et al. Coronary Serum Exosomes Derived from Patients with Myocardial Ischemia Regulate Angiogenesis through the miR-939-mediated Nitric Oxide Signaling Pathway. Theranostics. 2018;8:2079-2093 pubmed 出版商
  92. Lv W, Deng B, Duan W, Li Y, Liu Y, Li Z, et al. Schwann Cell Plasticity is Regulated by a Weakened Intrinsic Antioxidant Defense System in Acute Peripheral Nerve Injury. Neuroscience. 2018;382:1-13 pubmed 出版商
  93. Brown M, Assen F, Leithner A, Abe J, Schachner H, Asfour G, et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science. 2018;359:1408-1411 pubmed 出版商
  94. Beazley Long N, Moss C, Ashby W, Bestall S, Almahasneh F, Durrant A, et al. VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis. Brain Behav Immun. 2018;74:49-67 pubmed 出版商
  95. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  96. Gechijian L, Buckley D, Lawlor M, Reyes J, Paulk J, Ott C, et al. Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nat Chem Biol. 2018;14:405-412 pubmed 出版商
  97. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10+GPR77+ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell. 2018;172:841-856.e16 pubmed 出版商
  98. Liang H, Xiao J, Zhou Z, Wu J, Ge F, Li Z, et al. Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis. Oncogene. 2018;37:1961-1975 pubmed 出版商
  99. Low S, Hirakawa J, Hoshino H, Uchimura K, Kawashima H, Kobayashi M. Role of MAdCAM-1-Expressing High Endothelial Venule-Like Vessels in Colitis Induced in Mice Lacking Sulfotransferases Catalyzing L-Selectin Ligand Biosynthesis. J Histochem Cytochem. 2018;66:415-425 pubmed 出版商
  100. Stremmel C, Schuchert R, Wagner F, Thaler R, Weinberger T, Pick R, et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun. 2018;9:75 pubmed 出版商
  101. Fang J, Coon B, Gillis N, Chen Z, Qiu J, Chittenden T, et al. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nat Commun. 2017;8:2149 pubmed 出版商
  102. Qin D, Yan Y, Hu B, Zhang W, Li H, Li X, et al. Wisp2 disruption represses Cxcr4 expression and inhibits BMSCs homing to injured liver. Oncotarget. 2017;8:98823-98836 pubmed 出版商
  103. Yang L, Shen L, Gao P, Li G, He Y, Wang M, et al. Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms. Oncotarget. 2017;8:92827-92840 pubmed 出版商
  104. Li Y, Yang Y, Yang L, Zeng Y, Gao X, Xu H. Poly(ethylene glycol)-modified silk fibroin membrane as a carrier for limbal epithelial stem cell transplantation in a rabbit LSCD model. Stem Cell Res Ther. 2017;8:256 pubmed 出版商
  105. Padilla J, Carpenter A, Das N, Kandikattu H, López Ongil S, Martinez Lemus L, et al. TRAF3IP2 mediates high glucose-induced endothelin-1 production as well as endothelin-1-induced inflammation in endothelial cells. Am J Physiol Heart Circ Physiol. 2018;314:H52-H64 pubmed 出版商
  106. Chen X, Janssen J, Liu J, Maggio I, t Jong A, Mikkers H, et al. In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting. Nat Commun. 2017;8:657 pubmed 出版商
  107. Paikari A, D Belair C, Saw D, Blelloch R. The eutheria-specific miR-290 cluster modulates placental growth and maternal-fetal transport. Development. 2017;144:3731-3743 pubmed 出版商
  108. He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet. 2017;13:e1006992 pubmed 出版商
  109. Krogh Nielsen M, Hector S, Allen K, Subhi Y, Sørensen T. Altered activation state of circulating neutrophils in patients with neovascular age-related macular degeneration. Immun Ageing. 2017;14:18 pubmed 出版商
  110. Chang S, Kohlgruber A, Mizoguchi F, Michelet X, Wolf B, Wei K, et al. Stromal cell cadherin-11 regulates adipose tissue inflammation and diabetes. J Clin Invest. 2017;127:3300-3312 pubmed 出版商
  111. Reinhard J, Lin S, McKee K, Meinen S, Crosson S, Sury M, et al. Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice. Sci Transl Med. 2017;9: pubmed 出版商
  112. de Wolf A, van Aalst S, Ludwig I, Bodinham C, Lewis D, van der Zee R, et al. Regulatory T cell frequencies and phenotypes following anti-viral vaccination. PLoS ONE. 2017;12:e0179942 pubmed 出版商
  113. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  114. Kraus R, Yu X, Cordes B, Sathiamoorthi S, Iempridee T, Nawandar D, et al. Hypoxia-inducible factor-1α plays roles in Epstein-Barr virus's natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter. PLoS Pathog. 2017;13:e1006404 pubmed 出版商
  115. Sugimura R, Jha D, Han A, Soria Valles C, da Rocha E, Lu Y, et al. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature. 2017;545:432-438 pubmed 出版商
  116. Tang A, Choi J, Kotzin J, Yang Y, Hong C, Hobson N, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017;545:305-310 pubmed 出版商
  117. Aroor A, Habibi J, Kandikattu H, Garro Kacher M, Barron B, Chen D, et al. Dipeptidyl peptidase-4 (DPP-4) inhibition with linagliptin reduces western diet-induced myocardial TRAF3IP2 expression, inflammation and fibrosis in female mice. Cardiovasc Diabetol. 2017;16:61 pubmed 出版商
  118. Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, et al. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol. 2017;37:1115-1126 pubmed 出版商
  119. Gibot L, Galbraith T, Bourland J, Rogic A, Skobe M, Auger F. Tissue-engineered 3D human lymphatic microvascular network for in vitro studies of lymphangiogenesis. Nat Protoc. 2017;12:1077-1088 pubmed 出版商
  120. Yanagida K, Liu C, Faraco G, Galvani S, Smith H, Burg N, et al. Size-selective opening of the blood-brain barrier by targeting endothelial sphingosine 1-phosphate receptor 1. Proc Natl Acad Sci U S A. 2017;114:4531-4536 pubmed 出版商
  121. Xiao Y, Yang Z, Wu Q, Jiang X, Yuan Y, Chang W, et al. Cucurbitacin B Protects Against Pressure Overload Induced Cardiac Hypertrophy. J Cell Biochem. 2017;118:3899-3910 pubmed 出版商
  122. Riascos Bernal D, Chinnasamy P, Gross J, Almonte V, Egaña Gorroño L, Parikh D, et al. Inhibition of Smooth Muscle ?-Catenin Hinders Neointima Formation After Vascular Injury. Arterioscler Thromb Vasc Biol. 2017;37:879-888 pubmed 出版商
  123. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  124. Liu J, Hu F, Tang J, Tang S, Xia K, Wu S, et al. Homemade-device-induced negative pressure promotes wound healing more efficiently than VSD-induced positive pressure by regulating inflammation, proliferation and remodeling. Int J Mol Med. 2017;39:879-888 pubmed 出版商
  125. Fonseca M, Chu S, Hernandez M, Fang M, Modarresi L, Selvan P, et al. Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. J Neuroinflammation. 2017;14:48 pubmed 出版商
  126. Zakharova I, Zhiven M, Saaya S, Shevchenko A, Smirnova A, Strunov A, et al. Endothelial and smooth muscle cells derived from human cardiac explants demonstrate angiogenic potential and suitable for design of cell-containing vascular grafts. J Transl Med. 2017;15:54 pubmed 出版商
  127. van der Geest K, Wang Q, Eijsvogels T, Koenen H, Joosten I, Brouwer E, et al. Changes in peripheral immune cell numbers and functions in octogenarian walkers - an acute exercise study. Immun Ageing. 2017;14:5 pubmed 出版商
  128. Meyers M, Rink J, Jiang Q, Kelly M, Vercammen J, Thaxton C, et al. Systemically administered collagen-targeted gold nanoparticles bind to arterial injury following vascular interventions. Physiol Rep. 2017;5: pubmed 出版商
  129. Prasad S, Sajja R, Kaisar M, Park J, Villalba H, Liles T, et al. Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol. 2017;12:58-69 pubmed 出版商
  130. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  131. Grzelak C, Sigglekow N, Tirnitz Parker J, Hamson E, Warren A, Maneck B, et al. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease. PLoS ONE. 2017;12:e0171480 pubmed 出版商
  132. Patschan D, Schwarze K, Tampe B, Zeisberg M, Patschan S, Muller G. Endothelial Colony Forming Cells (ECFCs) in murine AKI - implications for future cell-based therapies. BMC Nephrol. 2017;18:53 pubmed 出版商
  133. Lovric S, Gonçalves S, Gee H, Oskouian B, Srinivas H, Choi W, et al. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J Clin Invest. 2017;127:912-928 pubmed 出版商
  134. Hasanov Z, Ruckdeschel T, König C, Mogler C, Kapel S, Korn C, et al. Endosialin Promotes Atherosclerosis Through Phenotypic Remodeling of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol. 2017;37:495-505 pubmed 出版商
  135. Weeden C, Chen Y, Ma S, Hu Y, Ramm G, Sutherland K, et al. Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway. PLoS Biol. 2017;15:e2000731 pubmed 出版商
  136. Zhu X, Zhou H, Luo J, Cui Y, Li H, Zhang W, et al. Different but synergistic effects of bone marrow-derived VEGFR2+ and VEGFR2-CD45+ cells during hepatocellular carcinoma progression. Oncol Lett. 2017;13:63-68 pubmed 出版商
  137. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  138. Maltabe V, Barka E, Kontonika M, Florou D, Kouvara Pritsouli M, Roumpi M, et al. Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity. Stem Cells Int. 2016;2016:8305624 pubmed 出版商
  139. Yoshitomi Y, Ikeda T, Saito H, Yoshitake Y, Ishigaki Y, Hatta T, et al. JunB regulates angiogenesis and neurovascular parallel alignment in mouse embryonic skin. J Cell Sci. 2017;130:916-926 pubmed 出版商
  140. Pal D, Pertot A, Shirole N, Yao Z, Anaparthy N, Garvin T, et al. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells. elife. 2017;6: pubmed 出版商
  141. Sontag S, Förster M, Qin J, Wanek P, Mitzka S, Schüler H, et al. Modelling IRF8 Deficient Human Hematopoiesis and Dendritic Cell Development with Engineered iPS Cells. Stem Cells. 2017;35:898-908 pubmed 出版商
  142. Wang Q, Wu S, Zhu H, Ding Y, Dai X, Ouyang C, et al. Deletion of PRKAA triggers mitochondrial fission by inhibiting the autophagy-dependent degradation of DNM1L. Autophagy. 2017;13:404-422 pubmed 出版商
  143. Wang D, Wang A, Wu F, Qiu X, Li Y, Chu J, et al. Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization. Sci Rep. 2017;7:40295 pubmed 出版商
  144. Bai H, Lee J, Chen E, Wang M, Xing Y, Fahmy T, et al. Covalent modification of pericardial patches for sustained rapamycin delivery inhibits venous neointimal hyperplasia. Sci Rep. 2017;7:40142 pubmed 出版商
  145. Pointon A, Pilling J, Dorval T, Wang Y, Archer C, Pollard C. From the Cover: High-Throughput Imaging of Cardiac Microtissues for the Assessment of Cardiac Contraction during Drug Discovery. Toxicol Sci. 2017;155:444-457 pubmed 出版商
  146. Britschgi A, Duss S, Kim S, Couto J, Brinkhaus H, Koren S, et al. The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature. 2017;541:541-545 pubmed 出版商
  147. de Jong R, Paulin N, Lemnitzer P, Viola J, Winter C, Ferraro B, et al. Protective Aptitude of Annexin A1 in Arterial Neointima Formation in Atherosclerosis-Prone Mice-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:312-315 pubmed 出版商
  148. Niu X, Pi S, Baral S, Xia Y, He Q, Li Y, et al. P2Y12 Promotes Migration of Vascular Smooth Muscle Cells Through Cofilin Dephosphorylation During Atherogenesis. Arterioscler Thromb Vasc Biol. 2017;37:515-524 pubmed 出版商
  149. Beigi F, Patel M, Morales Garza M, Winebrenner C, Gobin A, Chau E, et al. Optimized method for isolating highly purified and functional porcine aortic endothelial and smooth muscle cells. J Cell Physiol. 2017;232:3139-3145 pubmed 出版商
  150. Gomi K, Tang Y, Arbelaez V, Crystal R, Walters M. Endothelial Cell Mediated Promotion of Ciliated Cell Differentiation of Human Airway Basal Cells via Insulin and Insulin-Like Growth Factor 1 Receptor Mediated Signaling. Stem Cell Rev. 2017;13:309-317 pubmed 出版商
  151. Cullen D, Diaz Recuero J, Cullen R, Rodriguez Peralto J, Kutzner H, Requena L. Superficial Acral Fibromyxoma: Report of 13 Cases With New Immunohistochemical Findings. Am J Dermatopathol. 2017;39:14-22 pubmed 出版商
  152. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  153. Tancharoen W, Aungsuchawan S, Pothacharoen P, Markmee R, Narakornsak S, Kieodee J, et al. Differentiation of mesenchymal stem cells from human amniotic fluid to vascular endothelial cells. Acta Histochem. 2017;119:113-121 pubmed 出版商
  154. Chao M, Guo J, Cheng W, Zhu X, She Z, Huang Z, et al. Loss of Caspase-Activated DNase Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed 出版商
  155. Nonomura K, Woo S, Chang R, Gillich A, Qiu Z, Francisco A, et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature. 2017;541:176-181 pubmed 出版商
  156. Nayak T, Andreou C, Oseledchyk A, Marcus W, Wong H, Massague J, et al. Tissue factor-specific ultra-bright SERRS nanostars for Raman detection of pulmonary micrometastases. Nanoscale. 2017;9:1110-1119 pubmed 出版商
  157. Liu L, Guan H, Li Y, Ying Z, Wu J, Zhu X, et al. Astrocyte Elevated Gene 1 Interacts with Acetyltransferase p300 and c-Jun To Promote Tumor Aggressiveness. Mol Cell Biol. 2017;37: pubmed 出版商
  158. Pieterse E, Jeremic I, Czegley C, Weidner D, Biermann M, Veissi S, et al. Blood-borne phagocytes internalize urate microaggregates and prevent intravascular NETosis by urate crystals. Sci Rep. 2016;6:38229 pubmed 出版商
  159. Zhang H, Zhang P, Gao Y, Li C, Wang H, Chen L, et al. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep. 2017;15:57-64 pubmed 出版商
  160. Wang D, Ding X, Xue W, Zheng J, Tian X, Li Y, et al. A new scaffold containing small intestinal submucosa and mesenchymal stem cells improves pancreatic islet function and survival in vitro and in vivo. Int J Mol Med. 2017;39:167-173 pubmed 出版商
  161. Palpant N, Pabon L, Friedman C, Roberts M, Hadland B, Zaunbrecher R, et al. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat Protoc. 2017;12:15-31 pubmed 出版商
  162. Monsuur H, Weijers E, Niessen F, Gefen A, Koolwijk P, Gibbs S, et al. Extensive Characterization and Comparison of Endothelial Cells Derived from Dermis and Adipose Tissue: Potential Use in Tissue Engineering. PLoS ONE. 2016;11:e0167056 pubmed 出版商
  163. Zhang Y, Yang J, Ding M, Li L, Lu Z, Zhang Q, et al. Tumor-penetration and antitumor efficacy of cetuximab are enhanced by co-administered iRGD in a murine model of human NSCLC. Oncol Lett. 2016;12:3241-3249 pubmed
  164. Takano M, Shimada K, Fujii T, Morita K, Takeda M, Nakajima Y, et al. Keratin 19 as a key molecule in progression of human hepatocellular carcinomas through invasion and angiogenesis. BMC Cancer. 2016;16:903 pubmed
  165. Kühnel E, Kleff V, Stojanovska V, Kaiser S, Waldschütz R, Herse F, et al. Placental-Specific Overexpression of sFlt-1 Alters Trophoblast Differentiation and Nutrient Transporter Expression in an IUGR Mouse Model. J Cell Biochem. 2017;118:1316-1329 pubmed 出版商
  166. Blomme A, Fahmy K, Peulen O, Costanza B, Fontaine M, Struman I, et al. Myoferlin is a novel exosomal protein and functional regulator of cancer-derived exosomes. Oncotarget. 2016;7:83669-83683 pubmed 出版商
  167. Cao L, Riascos Bernal D, Chinnasamy P, Dunaway C, Hou R, Pujato M, et al. Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature. 2016;539:575-578 pubmed 出版商
  168. Williamson S, Metcalf R, Trapani F, Mohan S, Antonello J, Abbott B, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun. 2016;7:13322 pubmed 出版商
  169. Dallavalle C, Albino D, Civenni G, Merulla J, Ostano P, Mello Grand M, et al. MicroRNA-424 impairs ubiquitination to activate STAT3 and promote prostate tumor progression. J Clin Invest. 2016;126:4585-4602 pubmed 出版商
  170. Zamora Pineda J, Kumar A, Suh J, Zhang M, Saba J. Dendritic cell sphingosine-1-phosphate lyase regulates thymic egress. J Exp Med. 2016;213:2773-2791 pubmed
  171. Dahan N, Sarig U, Bronshtein T, Baruch L, Karram T, Hoffman A, et al. Dynamic Autologous Reendothelialization of Small-Caliber Arterial Extracellular Matrix: A Preclinical Large Animal Study. Tissue Eng Part A. 2017;23:69-79 pubmed 出版商
  172. Graus Nunes F, Marinho T, Barbosa da Silva S, Aguila M, Mandarim de Lacerda C, Souza Mello V. Differential effects of angiotensin receptor blockers on pancreatic islet remodelling and glucose homeostasis in diet-induced obese mice. Mol Cell Endocrinol. 2017;439:54-64 pubmed 出版商
  173. Goebbels S, Wieser G, Pieper A, Spitzer S, Weege B, Yan K, et al. A neuronal PI(3,4,5)P3-dependent program of oligodendrocyte precursor recruitment and myelination. Nat Neurosci. 2017;20:10-15 pubmed 出版商
  174. Yu H, Moran C, Trollope A, Woodward L, Kinobe R, Rush C, et al. Angiopoietin-2 attenuates angiotensin II-induced aortic aneurysm and atherosclerosis in apolipoprotein E-deficient mice. Sci Rep. 2016;6:35190 pubmed 出版商
  175. Frentzas S, Simoneau E, Bridgeman V, Vermeulen P, Foo S, Kostaras E, et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med. 2016;22:1294-1302 pubmed 出版商
  176. Chamberland F, Maurina T, Degano Valmary S, Spicarolen T, Chaigneau L. Angiosarcoma: A Case Report of Gingival Disease with Both Palatine Tonsils Localization. Rare Tumors. 2016;8:5907 pubmed
  177. Kilic O, Pamies D, Lavell E, Schiapparelli P, Feng Y, Hartung T, et al. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab Chip. 2016;16:4152-4162 pubmed
  178. Neckel P, Mattheus U, Hirt B, Just L, Mack A. Large-scale tissue clearing (PACT): Technical evaluation and new perspectives in immunofluorescence, histology, and ultrastructure. Sci Rep. 2016;6:34331 pubmed 出版商
  179. Senger D, Hoang M, Kim K, Li C, Cao S. Anti-inflammatory activity of Barleria lupulina: Identification of active compounds that activate the Nrf2 cell defense pathway, organize cortical actin, reduce stress fibers, and improve cell junctions in microvascular endothelial cells. J Ethnopharmacol. 2016;193:397-407 pubmed 出版商
  180. Sun X, Yang L, Yan X, Sun Y, Zhao D, Ji Y, et al. DCE-MRI-Derived Parameters in Evaluating Abraxane-Induced Early Vascular Response and the Effectiveness of Its Synergistic Interaction with Cisplatin. PLoS ONE. 2016;11:e0162601 pubmed 出版商
  181. Jankowska Konsur A, Kobierzycki C, Grzegrzolka J, Piotrowska A, Gomulkiewicz A, Glatzel Plucińska N, et al. Expression of CD31 in Mycosis Fungoides. Anticancer Res. 2016;36:4575-82 pubmed
  182. Yang Y, Zhang Y, Iwamoto H, Hosaka K, Seki T, Andersson P, et al. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism. Nat Commun. 2016;7:12680 pubmed 出版商
  183. Vasilopoulou E, Kolatsi Joannou M, Lindenmeyer M, White K, Robson M, Cohen C, et al. Loss of endogenous thymosin β4 accelerates glomerular disease. Kidney Int. 2016;90:1056-1070 pubmed 出版商
  184. Zhang Y, Hu S, Chen Y, Guo M, Wang S. Hepatocyte growth factor inhibits hypoxia/reoxygenation-induced activation of xanthine oxidase in endothelial cells through the JAK2 signaling pathway. Int J Mol Med. 2016;38:1055-62 pubmed 出版商
  185. Nazari B, Rice L, Stifano G, Barron A, Wang Y, Korndorf T, et al. Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. Am J Pathol. 2016;186:2650-64 pubmed 出版商
  186. Gao Y, Li J, Qiao N, Meng Q, Zhang M, Wang X, et al. Adrenomedullin blockade suppresses sunitinib-resistant renal cell carcinoma growth by targeting the ERK/MAPK pathway. Oncotarget. 2016;7:63374-63387 pubmed 出版商
  187. Jaaks P, D Alessandro V, Grob N, Büel S, Hajdin K, Schafer B, et al. The Proprotein Convertase Furin Contributes to Rhabdomyosarcoma Malignancy by Promoting Vascularization, Migration and Invasion. PLoS ONE. 2016;11:e0161396 pubmed 出版商
  188. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033-1042 pubmed 出版商
  189. Kim M, Allen B, Korhonen E, Nitschké M, Yang H, Baluk P, et al. Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation. J Clin Invest. 2016;126:3511-25 pubmed 出版商
  190. Wilkinson E, Sidaway J, Cross M. Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability. Biol Open. 2016;5:1362-1370 pubmed 出版商
  191. Matkar P, Singh K, Rudenko D, Kim Y, Kuliszewski M, Prud homme G, et al. Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma. Oncotarget. 2016;7:69489-69506 pubmed 出版商
  192. Klose R, Krzywinska E, Castells M, Gotthardt D, Putz E, Kantari Mimoun C, et al. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nat Commun. 2016;7:12528 pubmed 出版商
  193. Antonova L, Sevostyanova V, Kutikhin A, Mironov A, Krivkina E, Shabaev A, et al. Vascular Endothelial Growth Factor Improves Physico-Mechanical Properties and Enhances Endothelialization of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(?-caprolactone) Small-Diameter Vascular Grafts In vivo. Front Pharmacol. 2016;7:230 pubmed 出版商
  194. Zhang P, He D, Chen Z, Pan Q, Du F, Zang X, et al. Chemotherapy enhances tumor vascularization via Notch signaling-mediated formation of tumor-derived endothelium in breast cancer. Biochem Pharmacol. 2016;118:18-30 pubmed 出版商
  195. Navarro Villarán E, Tinoco J, Jiménez G, Pereira S, Wang J, Aliseda S, et al. Differential Antitumoral Properties and Renal-Associated Tissue Damage Induced by Tacrolimus and Mammalian Target of Rapamycin Inhibitors in Hepatocarcinoma: In Vitro and In Vivo Studies. PLoS ONE. 2016;11:e0160979 pubmed 出版商
  196. Riascos Bernal D, Chinnasamy P, Cao L, Dunaway C, Valenta T, Basler K, et al. β-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nat Commun. 2016;7:12389 pubmed 出版商
  197. Cetinkaya A, Xiong J, Vargel I, Kosemehmetoglu K, Canter H, Gerdan Ö, et al. Loss-of-Function Mutations in ELMO2 Cause Intraosseous Vascular Malformation by Impeding RAC1 Signaling. Am J Hum Genet. 2016;99:299-317 pubmed 出版商
  198. Stanly T, Fritzsche M, Banerji S, Garcia E, Bernardino de la Serna J, Jackson D, et al. Critical importance of appropriate fixation conditions for faithful imaging of receptor microclusters. Biol Open. 2016;5:1343-50 pubmed 出版商
  199. Pannier D, Philippin Lauridant G, Baranzelli M, Bertin D, Bogart E, Delprat V, et al. High expression levels of egfl7 correlate with low endothelial cell activation in peritumoral vessels of human breast cancer. Oncol Lett. 2016;12:1422-1428 pubmed
  200. Codinach M, Blanco M, Ortega I, Lloret M, Reales L, Coca M, et al. Design and validation of a consistent and reproducible manufacture process for the production of clinical-grade bone marrow-derived multipotent mesenchymal stromal cells. Cytotherapy. 2016;18:1197-208 pubmed 出版商
  201. Ge X, Huang S, Gao H, Han Z, Chen F, Zhang S, et al. miR-21-5p alleviates leakage of injured brain microvascular endothelial barrier in vitro through suppressing inflammation and apoptosis. Brain Res. 2016;1650:31-40 pubmed 出版商
  202. Cox A, Barrandon O, Cai E, Rios J, Chavez J, Bonnyman C, et al. Resolving Discrepant Findings on ANGPTL8 in ?-Cell Proliferation: A Collaborative Approach to Resolving the Betatrophin Controversy. PLoS ONE. 2016;11:e0159276 pubmed 出版商
  203. Chen H, Wei Z, Sun J, Bhattacharya A, Savage D, Serda R, et al. A recellularized human colon model identifies cancer driver genes. Nat Biotechnol. 2016;34:845-51 pubmed 出版商
  204. Zhang Q, Liu S, Parajuli K, Zhang W, Zhang K, Mo Z, et al. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene. 2017;36:687-699 pubmed 出版商
  205. Peckova K, Michal M, Hadravsky L, Suster S, Damjanov I, Miesbauerova M, et al. Littoral cell angioma of the spleen: a study of 25 cases with confirmation of frequent association with visceral malignancies. Histopathology. 2016;69:762-774 pubmed 出版商
  206. Dirks M, Wall B, van de Valk B, Holloway T, Holloway G, Chabowski A, et al. One Week of Bed Rest Leads to Substantial Muscle Atrophy and Induces Whole-Body Insulin Resistance in the Absence of Skeletal Muscle Lipid Accumulation. Diabetes. 2016;65:2862-75 pubmed 出版商
  207. Seo H, Jeong H, Joo H, Choi S, Park C, Kim J, et al. Intrinsic FGF2 and FGF5 promotes angiogenesis of human aortic endothelial cells in 3D microfluidic angiogenesis system. Sci Rep. 2016;6:28832 pubmed 出版商
  208. Bai H, Wang M, Foster T, Hu H, He H, Hashimoto T, et al. Pericardial patch venoplasty heals via attraction of venous progenitor cells. Physiol Rep. 2016;4: pubmed 出版商
  209. Li Y, Zhang J, Xu Y, Han Y, Jiang B, Huang L, et al. The Histopathological Investigation of Red and Blue Light Emitting Diode on Treating Skin Wounds in Japanese Big-Ear White Rabbit. PLoS ONE. 2016;11:e0157898 pubmed 出版商
  210. Su Q, Zhang B, Zhang L, Dang T, Rowley D, Ittmann M, et al. Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene. 2017;36:618-627 pubmed 出版商
  211. Inoue T, Ikeda M, Ide T, Fujino T, Matsuo Y, Arai S, et al. Twinkle overexpression prevents cardiac rupture after myocardial infarction by alleviating impaired mitochondrial biogenesis. Am J Physiol Heart Circ Physiol. 2016;311:H509-19 pubmed 出版商
  212. Evrard S, Lecce L, Michelis K, Nomura Kitabayashi A, Pandey G, Purushothaman K, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853 pubmed 出版商
  213. Ueno K, Takeuchi Y, Samura M, Tanaka Y, Nakamura T, Nishimoto A, et al. Treatment of refractory cutaneous ulcers with mixed sheets consisting of peripheral blood mononuclear cells and fibroblasts. Sci Rep. 2016;6:28538 pubmed 出版商
  214. Modulevsky D, Cuerrier C, Pelling A. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials. PLoS ONE. 2016;11:e0157894 pubmed 出版商
  215. Booth J, Duggan E, Patel V, Langer M, Wu W, Braun A, et al. Bacillus anthracis spore movement does not require a carrier cell and is not affected by lethal toxin in human lung models. Microbes Infect. 2016;18:615-626 pubmed 出版商
  216. Löffler T, Flunkert S, Temmel M, Hutter Paier B. Decreased Plasma A? in Hyperlipidemic APPSL Transgenic Mice Is Associated with BBB Dysfunction. Front Neurosci. 2016;10:232 pubmed 出版商
  217. Du C, Narayanan K, Leong M, Ibrahim M, Chua Y, Khoo V, et al. Functional Kidney Bioengineering with Pluripotent Stem-Cell-Derived Renal Progenitor Cells and Decellularized Kidney Scaffolds. Adv Healthc Mater. 2016;5:2080-91 pubmed 出版商
  218. Jin P, Li T, Li X, Shen X, Zhao Y. Suppression of oxidative stress in endothelial progenitor cells promotes angiogenesis and improves cardiac function following myocardial infarction in diabetic mice. Exp Ther Med. 2016;11:2163-2170 pubmed
  219. Kotlarczyk M, Billaud M, Green B, Hill J, Shiva S, Kelley E, et al. Regional Disruptions in Endothelial Nitric Oxide Pathway Associated With Bicuspid Aortic Valve. Ann Thorac Surg. 2016;102:1274-81 pubmed 出版商
  220. Bian Q, Jain A, Xu X, Kebaish K, Crane J, Zhang Z, et al. Excessive Activation of TGFβ by Spinal Instability Causes Vertebral Endplate Sclerosis. Sci Rep. 2016;6:27093 pubmed 出版商
  221. Chen I, Caprioli A, Ohnuki H, Kwak H, Porcher C, Tosato G. EphrinB2 regulates the emergence of a hemogenic endothelium from the aorta. Sci Rep. 2016;6:27195 pubmed 出版商
  222. Quarta M, Brett J, DiMarco R, de Morrée A, Boutet S, Chacon R, et al. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol. 2016;34:752-9 pubmed 出版商
  223. Roy A, Femel J, Huijbers E, Spillmann D, Larsson E, Ringvall M, et al. Targeting Serglycin Prevents Metastasis in Murine Mammary Carcinoma. PLoS ONE. 2016;11:e0156151 pubmed 出版商
  224. Torrano V, Valcarcel Jimenez L, Cortazar A, Liu X, Urosevic J, Castillo Martin M, et al. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat Cell Biol. 2016;18:645-656 pubmed 出版商
  225. Chen P, Qin L, Li G, Tellides G, Simons M. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med. 2016;8:712-28 pubmed 出版商
  226. Abu El Asrar A, Siddiquei M, Nawaz M, De Hertogh G, Mohammad G, Alam K, et al. Coexpression of heparanase activity, cathepsin L, tissue factor, tissue factor pathway inhibitor, and MMP-9 in proliferative diabetic retinopathy. Mol Vis. 2016;22:424-35 pubmed
  227. Shi H, Drummond C, Fan X, Haller S, Liu J, Malhotra D, et al. Hiding inside? Intracellular expression of non-glycosylated c-kit protein in cardiac progenitor cells. Stem Cell Res. 2016;16:795-806 pubmed 出版商
  228. Antony N, McDougall A, Mantamadiotis T, Cole T, Bird A. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms. Sci Rep. 2016;6:25569 pubmed 出版商
  229. Villaseñor R, Ozmen L, Messaddeq N, Grüninger F, Loetscher H, Keller A, et al. Trafficking of Endogenous Immunoglobulins by Endothelial Cells at the Blood-Brain Barrier. Sci Rep. 2016;6:25658 pubmed 出版商
  230. Jiménez Valerio G, Martínez Lozano M, Bassani N, Vidal A, Ochoa de Olza M, Suarez C, et al. Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients. Cell Rep. 2016;15:1134-43 pubmed 出版商
  231. Li C, Zhen G, Chai Y, Xie L, Crane J, Farber E, et al. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix. Nat Commun. 2016;7:11455 pubmed 出版商
  232. Wu C, Sheu S, Hsu L, Yang K, Tseng C, Kuo T. Intra-articular Injection of platelet-rich fibrin releasates in combination with bone marrow-derived mesenchymal stem cells in the treatment of articular cartilage defects: An in vivo study in rabbits. J Biomed Mater Res B Appl Biomater. 2017;105:1536-1543 pubmed 出版商
  233. Di Marco M, Grassi E, Vecchiarelli S, Durante S, Macchini M, Biasco G. Retroperitoneal lymphangioma: A report of 2 cases and a review of the literature regarding the differential diagnoses of retroperitoneal cystic masses. Oncol Lett. 2016;11:3161-3166 pubmed
  234. Preuße C, Allenbach Y, Hoffmann O, Goebel H, Pehl D, Radke J, et al. Differential roles of hypoxia and innate immunity in juvenile and adult dermatomyositis. Acta Neuropathol Commun. 2016;4:45 pubmed 出版商
  235. Li Y, Nishikawa T, Kaneda Y. Platelet-cytokine Complex Suppresses Tumour Growth by Exploiting Intratumoural Thrombin-dependent Platelet Aggregation. Sci Rep. 2016;6:25077 pubmed 出版商
  236. Raredon M, Rocco K, Gheorghe C, Sivarapatna A, Ghaedi M, Balestrini J, et al. Biomimetic Culture Reactor for Whole-Lung Engineering. Biores Open Access. 2016;5:72-83 pubmed 出版商
  237. Wang S, Gao X, Shen G, Wang W, Li J, Zhao J, et al. Interleukin-10 deficiency impairs regulatory T cell-derived neuropilin-1 functions and promotes Th1 and Th17 immunity. Sci Rep. 2016;6:24249 pubmed 出版商
  238. Fujiwara M, Kanayama K, Hirokawa Y, Shiraishi T. ASF-4-1 fibroblast-rich culture increases chemoresistance and mTOR expression of pancreatic cancer BxPC-3 cells at the invasive front in vitro, and promotes tumor growth and invasion in vivo. Oncol Lett. 2016;11:2773-2779 pubmed
  239. Ma Z, Shou K, Li Z, Jian C, Qi B, Yu A. Negative pressure wound therapy promotes vessel destabilization and maturation at various stages of wound healing and thus influences wound prognosis. Exp Ther Med. 2016;11:1307-1317 pubmed
  240. Chang C, Petrie T, Clark A, Lin X, Sondergaard C, Griffiths L. Mesenchymal Stem Cell Seeding of Porcine Small Intestinal Submucosal Extracellular Matrix for Cardiovascular Applications. PLoS ONE. 2016;11:e0153412 pubmed 出版商
  241. Jourdan M, Cren M, Schafer P, Robert N, Duperray C, Vincent L, et al. Differential effects of lenalidomide during plasma cell differentiation. Oncotarget. 2016;7:28096-111 pubmed 出版商
  242. Cozzo A, Sundaram S, Zattra O, Qin Y, Freemerman A, Essaid L, et al. cMET inhibitor crizotinib impairs angiogenesis and reduces tumor burden in the C3(1)-Tag model of basal-like breast cancer. Springerplus. 2016;5:348 pubmed 出版商
  243. Fourgeaud L, Traves P, Tufail Y, Leal Bailey H, Lew E, Burrola P, et al. TAM receptors regulate multiple features of microglial physiology. Nature. 2016;532:240-244 pubmed 出版商
  244. Fearnley G, Smith G, Abdul Zani I, Yuldasheva N, Mughal N, Homer Vanniasinkam S, et al. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis. Biol Open. 2016;5:571-83 pubmed 出版商
  245. Huang M, Liu T, Ma P, Mitteer R, Zhang Z, Kim H, et al. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J Clin Invest. 2016;126:1801-14 pubmed 出版商
  246. Kaur A, Webster M, Marchbank K, Behera R, Ndoye A, Kugel C, et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature. 2016;532:250-4 pubmed 出版商
  247. Wu S, Rupaimoole R, Shen F, Pradeep S, Pecot C, Ivan C, et al. A miR-192-EGR1-HOXB9 regulatory network controls the angiogenic switch in cancer. Nat Commun. 2016;7:11169 pubmed 出版商
  248. An X, Zhao Z, Luo Y, Zhang R, Tang X, Hao D, et al. Netrin-1 suppresses the MEK/ERK pathway and ITGB4 in pancreatic cancer. Oncotarget. 2016;7:24719-33 pubmed 出版商
  249. Zhou Z, Tang A, Wong W, Bamezai S, Goddard L, Shenkar R, et al. Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature. 2016;532:122-6 pubmed 出版商
  250. Aikawa H, Hayashi M, Ryu S, Yamashita M, Ohtsuka N, Nishidate M, et al. Visualizing spatial distribution of alectinib in murine brain using quantitative mass spectrometry imaging. Sci Rep. 2016;6:23749 pubmed 出版商
  251. Körbelin J, Sieber T, Michelfelder S, Lunding L, Spies E, Hunger A, et al. Pulmonary Targeting of Adeno-associated Viral Vectors by Next-generation Sequencing-guided Screening of Random Capsid Displayed Peptide Libraries. Mol Ther. 2016;24:1050-1061 pubmed 出版商
  252. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed 出版商
  253. Cordeiro O, Chypre M, Brouard N, Rauber S, Alloush F, Romera Hernandez M, et al. Integrin-Alpha IIb Identifies Murine Lymph Node Lymphatic Endothelial Cells Responsive to RANKL. PLoS ONE. 2016;11:e0151848 pubmed 出版商
  254. del Rey M, Faré R, Usategui A, Cañete J, Bravo B, Galindo M, et al. CD271(+) stromal cells expand in arthritic synovium and exhibit a proinflammatory phenotype. Arthritis Res Ther. 2016;18:66 pubmed 出版商
  255. Osterloh A, Papp S, Moderzynski K, Kuehl S, Richardt U, Fleischer B. Persisting Rickettsia typhi Causes Fatal Central Nervous System Inflammation. Infect Immun. 2016;84:1615-1632 pubmed 出版商
  256. Kraft Sheleg O, Zaffryar Eilot S, Genin O, Yaseen W, Soueid Baumgarten S, Kessler O, et al. Localized LoxL3-Dependent Fibronectin Oxidation Regulates Myofiber Stretch and Integrin-Mediated Adhesion. Dev Cell. 2016;36:550-61 pubmed 出版商
  257. Cárdenas H, Arango D, Nicholas C, Duarte S, Nuovo G, He W, et al. Dietary Apigenin Exerts Immune-Regulatory Activity in Vivo by Reducing NF-κB Activity, Halting Leukocyte Infiltration and Restoring Normal Metabolic Function. Int J Mol Sci. 2016;17:323 pubmed 出版商
  258. Stabler C, Caires L, Mondrinos M, Marcinkiewicz C, Lazarovici P, Wolfson M, et al. Enhanced Re-Endothelialization of Decellularized Rat Lungs. Tissue Eng Part C Methods. 2016;22:439-50 pubmed 出版商
  259. Li M, Corbelli A, Watanabe S, Armelloni S, Ikehata M, Parazzi V, et al. Three-dimensional podocyte-endothelial cell co-cultures: Assembly, validation, and application to drug testing and intercellular signaling studies. Eur J Pharm Sci. 2016;86:1-12 pubmed 出版商
  260. Eriksson J, Le Joncour V, Nummela P, Jahkola T, Virolainen S, Laakkonen P, et al. Gene expression analyses of primary melanomas reveal CTHRC1 as an important player in melanoma progression. Oncotarget. 2016;7:15065-92 pubmed 出版商
  261. Ward S, Weston C, Shepherd E, Hejmadi R, Ismail T, Adams D. Evaluation of serum and tissue levels of VAP-1 in colorectal cancer. BMC Cancer. 2016;16:154 pubmed 出版商
  262. Sarveswaran K, Kurz V, Dong Z, Tanaka T, Penny S, Timp G. Synthetic Capillaries to Control Microscopic Blood Flow. Sci Rep. 2016;6:21885 pubmed 出版商
  263. Senger D, Li D, Jaminet S, Cao S. Activation of the Nrf2 Cell Defense Pathway by Ancient Foods: Disease Prevention by Important Molecules and Microbes Lost from the Modern Western Diet. PLoS ONE. 2016;11:e0148042 pubmed 出版商
  264. Liang H, Li X, Wang B, Chen B, Zhao Y, Sun J, et al. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix. Sci Rep. 2016;6:18205 pubmed 出版商
  265. Liu L, Tong Q, Liu S, Cui J, Zhang Q, Sun W, et al. ZEB1 Upregulates VEGF Expression and Stimulates Angiogenesis in Breast Cancer. PLoS ONE. 2016;11:e0148774 pubmed 出版商
  266. Zhao W, Wang C, Liu R, Wei C, Duan J, Liu K, et al. Effect of TGF-β1 on the Migration and Recruitment of Mesenchymal Stem Cells after Vascular Balloon Injury: Involvement of Matrix Metalloproteinase-14. Sci Rep. 2016;6:21176 pubmed 出版商
  267. Loayza Puch F, Rooijers K, Buil L, Zijlstra J, Oude Vrielink J, Lopes R, et al. Tumour-specific proline vulnerability uncovered by differential ribosome codon reading. Nature. 2016;530:490-4 pubmed 出版商
  268. Ji H, Atchison L, Chen Z, Chakraborty S, Jung Y, Truskey G, et al. Transdifferentiation of human endothelial progenitors into smooth muscle cells. Biomaterials. 2016;85:180-194 pubmed 出版商
  269. Walraven M, Talhout W, Beelen R, van Egmond M, Ulrich M. Healthy human second-trimester fetal skin is deficient in leukocytes and associated homing chemokines. Wound Repair Regen. 2016;24:533-41 pubmed 出版商
  270. Sreekanthreddy P, Gromnicova R, Davies H, Phillips J, Romero I, Male D. A three-dimensional model of the human blood-brain barrier to analyse the transport of nanoparticles and astrocyte/endothelial interactions. F1000Res. 2015;4:1279 pubmed 出版商
  271. Zhang Y, Liu J, Lin J, Zhou L, Song Y, Wei B, et al. The transcription factor GATA1 and the histone methyltransferase SET7 interact to promote VEGF-mediated angiogenesis and tumor growth and predict clinical outcome of breast cancer. Oncotarget. 2016;7:9859-75 pubmed 出版商
  272. Ha D, Carpenter L, Koutakis P, Swanson S, Zhu Z, Hanna M, et al. Transforming growth factor-beta 1 produced by vascular smooth muscle cells predicts fibrosis in the gastrocnemius of patients with peripheral artery disease. J Transl Med. 2016;14:39 pubmed 出版商
  273. Val Bernal J, Mayorga M, Terán Villagrá N. Extracutaneous intravascular histiocytosis of the aortic valve: Report of two cases. Pathol Res Pract. 2016;212:258-63 pubmed 出版商
  274. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  275. Buzhdygan T, Lisinicchia J, Patel V, Johnson K, Neugebauer V, Paessler S, et al. Neuropsychological, Neurovirological and Neuroimmune Aspects of Abnormal GABAergic Transmission in HIV Infection. J Neuroimmune Pharmacol. 2016;11:279-93 pubmed 出版商
  276. Deverman B, Pravdo P, Simpson B, Kumar S, Chan K, Banerjee A, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016;34:204-9 pubmed 出版商
  277. Okamoto S, Nitta M, Maruyama T, Sawada T, Komori T, Okada Y, et al. Bevacizumab changes vascular structure and modulates the expression of angiogenic factors in recurrent malignant gliomas. Brain Tumor Pathol. 2016;33:129-36 pubmed 出版商
  278. Soriano A, París Coderch L, Jubierre L, Martínez A, Zhou X, Piskareva O, et al. MicroRNA-497 impairs the growth of chemoresistant neuroblastoma cells by targeting cell cycle, survival and vascular permeability genes. Oncotarget. 2016;7:9271-87 pubmed 出版商
  279. Solomon I, O Reilly M, Ionescu L, Alphonse R, Rajabali S, Zhong S, et al. Functional Differences Between Placental Micro- and Macrovascular Endothelial Colony-Forming Cells. Stem Cells Transl Med. 2016;5:291-300 pubmed 出版商
  280. Heemskerk N, Schimmel L, Oort C, van Rijssel J, Yin T, Ma B, et al. F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling. Nat Commun. 2016;7:10493 pubmed 出版商
  281. Carvalho M, Pires I, Prada J, Raposo T, Gregório H, Lobo L, et al. High COX-2 expression is associated with increased angiogenesis, proliferation and tumoural inflammatory infiltrate in canine malignant mammary tumours: a multivariate survival study. Vet Comp Oncol. 2017;15:619-631 pubmed 出版商
  282. Crowley C, Klanrit P, Butler C, Varanou A, Platé M, Hynds R, et al. Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold. Biomaterials. 2016;83:283-93 pubmed 出版商
  283. Rusckowski M, Wang Y, Blankenberg F, Levashova Z, Backer M, Backer J. Targeted scVEGF/(177)Lu radiopharmaceutical inhibits growth of metastases and can be effectively combined with chemotherapy. EJNMMI Res. 2016;6:4 pubmed 出版商
  284. Nitta Y, Shimizu S, Shishido Hara Y, Suzuki K, Shiokawa Y, Nagane M. Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo. Cancer Med. 2016;5:486-99 pubmed 出版商
  285. Szulcek R, Happé C, Rol N, Fontijn R, Dickhoff C, Hartemink K, et al. Delayed Microvascular Shear Adaptation in Pulmonary Arterial Hypertension. Role of Platelet Endothelial Cell Adhesion Molecule-1 Cleavage. Am J Respir Crit Care Med. 2016;193:1410-20 pubmed 出版商
  286. Cano E, Carmona R, Ruiz Villalba A, Rojas A, Chau Y, Wagner K, et al. Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio-venous connections. Proc Natl Acad Sci U S A. 2016;113:656-61 pubmed 出版商
  287. Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich M, Lim R, et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature. 2016;529:216-20 pubmed 出版商
  288. Guye P, Ebrahimkhani M, Kipniss N, Velazquez J, Schoenfeld E, Kiani S, et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun. 2016;7:10243 pubmed 出版商
  289. Jud C, Ahmed S, Müller L, Kinnear C, Vanhecke D, Umehara Y, et al. Ultrathin Ceramic Membranes as Scaffolds for Functional Cell Coculture Models on a Biomimetic Scale. Biores Open Access. 2015;4:457-68 pubmed 出版商
  290. Wang W, Long L, Wang L, Tan C, Fei X, Chen L, et al. Knockdown of Cathepsin L promotes radiosensitivity of glioma stem cells both in vivo and in vitro. Cancer Lett. 2016;371:274-84 pubmed 出版商
  291. Wang T, Cunningham A, HOUSTON K, Sharma A, Chen L, Dokun A, et al. Endothelial interleukin-21 receptor up-regulation in peripheral artery disease. Vasc Med. 2016;21:99-104 pubmed 出版商
  292. Eren G, Kantarcı A, Sculean A, Atilla G. Vascularization after treatment of gingival recession defects with platelet-rich fibrin or connective tissue graft. Clin Oral Investig. 2016;20:2045-2053 pubmed
  293. Monaghan M, Linneweh M, Liebscher S, Van Handel B, Layland S, Schenke Layland K. Endocardial-to-mesenchymal transformation and mesenchymal cell colonization at the onset of human cardiac valve development. Development. 2016;143:473-82 pubmed 出版商
  294. Scholz A, Harter P, Cremer S, Yalcin B, Gurnik S, Yamaji M, et al. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol Med. 2016;8:39-57 pubmed 出版商
  295. Poczobutt J, Nguyen T, Hanson D, Li H, Sippel T, Weiser Evans M, et al. Deletion of 5-Lipoxygenase in the Tumor Microenvironment Promotes Lung Cancer Progression and Metastasis through Regulating T Cell Recruitment. J Immunol. 2016;196:891-901 pubmed 出版商
  296. Weijer R, Broekgaarden M, Krekorian M, Alles L, van Wijk A, Mackaaij C, et al. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy. Oncotarget. 2016;7:3341-56 pubmed 出版商
  297. Kaplan J, Marshall M, C McSkimming C, Harmon D, Garmey J, Oldham S, et al. Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue. Mol Metab. 2015;4:779-94 pubmed 出版商
  298. Huang Y, Lan Q, Ponsonnet L, Blanquet M, Christofori G, Zaric J, et al. The matricellular protein CYR61 interferes with normal pancreatic islets architecture and promotes pancreatic neuroendocrine tumor progression. Oncotarget. 2016;7:1663-74 pubmed 出版商
  299. Mistry R, Murray T, Prysyazhna O, Martin D, Burgoyne J, Santos C, et al. Transcriptional Regulation of Cystathionine-γ-Lyase in Endothelial Cells by NADPH Oxidase 4-Dependent Signaling. J Biol Chem. 2016;291:1774-88 pubmed 出版商
  300. Dimitrova N, Gocheva V, Bhutkar A, Resnick R, Jong R, Miller K, et al. Stromal Expression of miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development. Cancer Discov. 2016;6:188-201 pubmed 出版商
  301. Sharmin S, Taguchi A, Kaku Y, Yoshimura Y, Ohmori T, Sakuma T, et al. Human Induced Pluripotent Stem Cell-Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation. J Am Soc Nephrol. 2016;27:1778-91 pubmed 出版商
  302. Laner Plamberger S, Lener T, Schmid D, Streif D, Salzer T, Öller M, et al. Mechanical fibrinogen-depletion supports heparin-free mesenchymal stem cell propagation in human platelet lysate. J Transl Med. 2015;13:354 pubmed 出版商
  303. Rath S, Salinas M, Villegas A, Ramaswamy S. Differentiation and Distribution of Marrow Stem Cells in Flex-Flow Environments Demonstrate Support of the Valvular Phenotype. PLoS ONE. 2015;10:e0141802 pubmed 出版商
  304. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  305. Hoshino A, Costa Silva B, Shen T, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329-35 pubmed 出版商
  306. Stebbins M, Wilson H, Canfield S, Qian T, Palecek S, Shusta E. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods. 2016;101:93-102 pubmed 出版商
  307. Freedman B, Brooks C, Lam A, Fu H, Morizane R, Agrawal V, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015;6:8715 pubmed 出版商
  308. Mikami J, Kurokawa Y, Takahashi T, Miyazaki Y, Yamasaki M, Miyata H, et al. Antitumor effect of antiplatelet agents in gastric cancer cells: an in vivo and in vitro study. Gastric Cancer. 2016;19:817-26 pubmed 出版商
  309. Alam M, Gaida M, Bergmann F, Lasitschka F, Giese T, Giese N, et al. Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nat Med. 2015;21:1337-43 pubmed 出版商
  310. Giampietro C, Deflorian G, Gallo S, di Matteo A, Pradella D, Bonomi S, et al. The alternative splicing factor Nova2 regulates vascular development and lumen formation. Nat Commun. 2015;6:8479 pubmed 出版商
  311. Janssen L, Dupont L, Bekhouche M, Noel A, Leduc C, Voz M, et al. ADAMTS3 activity is mandatory for embryonic lymphangiogenesis and regulates placental angiogenesis. Angiogenesis. 2016;19:53-65 pubmed 出版商
  312. Moen I, Gebre M, Alonso Camino V, Chen D, Epstein D, McDonald D. Anti-metastatic action of FAK inhibitor OXA-11 in combination with VEGFR-2 signaling blockade in pancreatic neuroendocrine tumors. Clin Exp Metastasis. 2015;32:799-817 pubmed 出版商
  313. Takasato M, Er P, Chiu H, Maier B, Baillie G, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526:564-8 pubmed 出版商
  314. El Gendi S, Abdelzaher E, Mostafa M, Sheasha G. FGF18 as a potential biomarker in serous and mucinous ovarian tumors. Tumour Biol. 2016;37:3173-83 pubmed 出版商
  315. Stokum J, Mehta R, Ivanova S, Yu E, Gerzanich V, Simard J. Heterogeneity of aquaporin-4 localization and expression after focal cerebral ischemia underlies differences in white versus grey matter swelling. Acta Neuropathol Commun. 2015;3:61 pubmed 出版商
  316. Izumi D, Ishimoto T, Miyake K, Sugihara H, Eto K, Sawayama H, et al. CXCL12/CXCR4 activation by cancer-associated fibroblasts promotes integrin β1 clustering and invasiveness in gastric cancer. Int J Cancer. 2016;138:1207-19 pubmed 出版商
  317. Farup J, De Lisio M, Rahbek S, Bjerre J, Vendelbo M, Boppart M, et al. Pericyte response to contraction mode-specific resistance exercise training in human skeletal muscle. J Appl Physiol (1985). 2015;119:1053-63 pubmed 出版商
  318. El Sadik A, El Ghamrawy T, Abd El Galil T. The Effect of Mesenchymal Stem Cells and Chitosan Gel on Full Thickness Skin Wound Healing in Albino Rats: Histological, Immunohistochemical and Fluorescent Study. PLoS ONE. 2015;10:e0137544 pubmed 出版商
  319. Yeung H, Lo P, Ng D, Fong W. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model. Cell Mol Immunol. 2017;14:223-234 pubmed 出版商
  320. Mangiavini L, Merceron C, Araldi E, Khatri R, Gerard O Riley R, Wilson T, et al. Fibrosis and hypoxia-inducible factor-1α-dependent tumors of the soft tissue on loss of von Hippel-Lindau in mesenchymal progenitors. Am J Pathol. 2015;185:3090-101 pubmed 出版商
  321. Carvalho M, Pires I, Dias M, Prada J, Gregório H, Lobo L, et al. Intratumoral CD3+ T-lymphocytes immunoexpression and its association with c-Kit, angiogenesis, and overall survival in malignant canine mammary tumors. Anal Cell Pathol (Amst). 2015;2015:920409 pubmed 出版商
  322. Tang D, Gao J, Wang S, Ye N, Chong Y, Huang Y, et al. Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumour Biol. 2016;37:1889-99 pubmed 出版商
  323. Alves C, Dariolli R, Jorge F, Monteiro M, Maximino J, Martins R, et al. Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration. Front Cell Neurosci. 2015;9:289 pubmed 出版商
  324. Wang T, Cheng C, Yang W, Chen W, Chang P. Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma. Mol Med Rep. 2015;12:6435-44 pubmed 出版商
  325. Kang R, Zhou Y, Tan S, Zhou G, Aagaard L, Xie L, et al. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Res Ther. 2015;6:144 pubmed 出版商
  326. Kumar P, Thirkill T, Ji J, Monte L, Douglas G. Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation. PLoS ONE. 2015;10:e0135089 pubmed 出版商
  327. Yin T, He S, Su C, Chen X, Zhang D, Wan Y, et al. Genetically modified human placenta‑derived mesenchymal stem cells with FGF‑2 and PDGF‑BB enhance neovascularization in a model of hindlimb ischemia. Mol Med Rep. 2015;12:5093-9 pubmed 出版商
  328. Chalubinski M, Wojdan K, Luczak E, Gorzelak P, Borowiec M, Gajewski A, et al. IL-33 and IL-4 impair barrier functions of human vascular endothelium via different mechanisms. Vascul Pharmacol. 2015;73:57-63 pubmed 出版商
  329. Prasad S, Sajja R, Park J, Naik P, Kaisar M, Cucullo L. Impact of cigarette smoke extract and hyperglycemic conditions on blood-brain barrier endothelial cells. Fluids Barriers CNS. 2015;12:18 pubmed 出版商
  330. Kim J, Chung M, Kim S, Jo D, Kim J, Jeon N. Engineering of a Biomimetic Pericyte-Covered 3D Microvascular Network. PLoS ONE. 2015;10:e0133880 pubmed 出版商
  331. Birket M, Ribeiro M, Verkerk A, Ward D, Leitoguinho A, Den Hartogh S, et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol. 2015;33:970-9 pubmed 出版商
  332. O Carroll S, Kho D, Wiltshire R, Nelson V, Rotimi O, Johnson R, et al. Pro-inflammatory TNFα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. J Neuroinflammation. 2015;12:131 pubmed 出版商
  333. Yotsumoto F, You W, Cejudo Martin P, Kucharova K, Sakimura K, Stallcup W. NG2 proteoglycan-dependent recruitment of tumor macrophages promotes pericyte-endothelial cell interactions required for brain tumor vascularization. Oncoimmunology. 2015;4:e1001204 pubmed
  334. Tajima S, Takashi Y, Ito N, Fukumoto S, Fukuyama M. ERG and FLI1 are useful immunohistochemical markers in phosphaturic mesenchymal tumors. Med Mol Morphol. 2016;49:203-209 pubmed
  335. Carpenter R, Paw I, Zhu H, Sirkisoon S, Xing F, Watabe K, et al. The gain-of-function GLI1 transcription factor TGLI1 enhances expression of VEGF-C and TEM7 to promote glioblastoma angiogenesis. Oncotarget. 2015;6:22653-65 pubmed
  336. Larsson K, Kock A, Idborg H, Arsenian Henriksson M, Martinsson T, Johnsen J, et al. COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proc Natl Acad Sci U S A. 2015;112:8070-5 pubmed 出版商
  337. Park I, Chung P, Ahn J. Enhancement of Ischemic Wound Healing by Spheroid Grafting of Human Adipose-Derived Stem Cells Treated with Low-Level Light Irradiation. PLoS ONE. 2015;10:e0122776 pubmed 出版商
  338. Minami H, Tashiro K, Okada A, Hirata N, Yamaguchi T, Takayama K, et al. Generation of Brain Microvascular Endothelial-Like Cells from Human Induced Pluripotent Stem Cells by Co-Culture with C6 Glioma Cells. PLoS ONE. 2015;10:e0128890 pubmed 出版商
  339. Anderson E, Mooney D. The Combination of Vascular Endothelial Growth Factor and Stromal Cell-Derived Factor Induces Superior Angiogenic Sprouting by Outgrowth Endothelial Cells. J Vasc Res. 2015;52:62-9 pubmed 出版商
  340. Jung S, Sielker S, Purcz N, Sproll C, Acil Y, Kleinheinz J. Analysis of angiogenic markers in oral squamous cell carcinoma-gene and protein expression. Head Face Med. 2015;11:19 pubmed 出版商
  341. Dmitrieva N, Burg M. Elevated sodium and dehydration stimulate inflammatory signaling in endothelial cells and promote atherosclerosis. PLoS ONE. 2015;10:e0128870 pubmed 出版商
  342. Jäger W, Xue H, Hayashi T, Janssen C, Awrey S, Wyatt A, et al. Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget. 2015;6:21522-32 pubmed
  343. Huang J, Woolf A, Kolatsi Joannou M, Baluk P, Sandford R, Peters D, et al. Vascular Endothelial Growth Factor C for Polycystic Kidney Diseases. J Am Soc Nephrol. 2016;27:69-77 pubmed 出版商
  344. Chen C, Kim K, Lau L. The matricellular protein CCN1 suppresses hepatocarcinogenesis by inhibiting compensatory proliferation. Oncogene. 2016;35:1314-23 pubmed 出版商
  345. Lokmic Z, Ng E, Burton M, Stanley E, Penington A, Elefanty A. Isolation of human lymphatic endothelial cells by multi-parameter fluorescence-activated cell sorting. J Vis Exp. 2015;:e52691 pubmed 出版商
  346. Tsuneki M, Hardee S, Michaud M, Morotti R, Lavik E, Madri J. A hydrogel-endothelial cell implant mimics infantile hemangioma: modulation by survivin and the Hippo pathway. Lab Invest. 2015;95:765-80 pubmed 出版商
  347. Good R, Gilbane A, Trinder S, Denton C, Coghlan G, Abraham D, et al. Endothelial to Mesenchymal Transition Contributes to Endothelial Dysfunction in Pulmonary Arterial Hypertension. Am J Pathol. 2015;185:1850-8 pubmed 出版商
  348. Thiault N, Darrigues J, Adoue V, Gros M, Binet B, Pérals C, et al. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat Immunol. 2015;16:628-34 pubmed 出版商
  349. DaFonseca S, Niessl J, Pouvreau S, Wacleche V, Gosselin A, Cleret Buhot A, et al. Impaired Th17 polarization of phenotypically naive CD4(+) T-cells during chronic HIV-1 infection and potential restoration with early ART. Retrovirology. 2015;12:38 pubmed 出版商
  350. Tate C, Mc Entire J, Pallini R, Vakana E, Wyss L, Blosser W, et al. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology. PLoS ONE. 2015;10:e0125697 pubmed 出版商
  351. Raha Chowdhury R, Raha A, Forostyak S, Zhao J, Stott S, Bomford A. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci. 2015;16:24 pubmed 出版商
  352. Nakada S, Minato H, Takegami T, Kurose N, Ikeda H, Kobayashi M, et al. NAB2-STAT6 fusion gene analysis in two cases of meningeal solitary fibrous tumor/hemangiopericytoma with late distant metastases. Brain Tumor Pathol. 2015;32:268-74 pubmed 出版商
  353. Chen Y, Li X, Guo L, Wu X, He C, Zhang S, et al. Combining radiation with autophagy inhibition enhances suppression of tumor growth and angiogenesis in esophageal cancer. Mol Med Rep. 2015;12:1645-52 pubmed 出版商
  354. Liu L, Yu H, Huang X, Tan H, Li S, Luo Y, et al. A novel engineered VEGF blocker with an excellent pharmacokinetic profile and robust anti-tumor activity. BMC Cancer. 2015;15:170 pubmed 出版商
  355. Matsusaki M, Fujimoto K, Shirakata Y, Hirakawa S, Hashimoto K, Akashi M. Development of full-thickness human skin equivalents with blood and lymph-like capillary networks by cell coating technology. J Biomed Mater Res A. 2015;103:3386-96 pubmed 出版商
  356. Brunner P, Glitzner E, Reininger B, Klein I, Stary G, Mildner M, et al. CCL7 contributes to the TNF-alpha-dependent inflammation of lesional psoriatic skin. Exp Dermatol. 2015;24:522-8 pubmed 出版商
  357. Yarilin D, Xu K, Turkekul M, Fan N, Romin Y, Fijisawa S, et al. Machine-based method for multiplex in situ molecular characterization of tissues by immunofluorescence detection. Sci Rep. 2015;5:9534 pubmed 出版商
  358. Lechuga T, Zhang H, Sheibani L, Karim M, Jia J, Magness R, et al. Estrogen Replacement Therapy in Ovariectomized Nonpregnant Ewes Stimulates Uterine Artery Hydrogen Sulfide Biosynthesis by Selectively Up-Regulating Cystathionine β-Synthase Expression. Endocrinology. 2015;156:2288-98 pubmed 出版商
  359. Cheah M, Chen J, Sahoo D, Contreras Trujillo H, Volkmer A, Scheeren F, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A. 2015;112:4725-30 pubmed 出版商
  360. Zhang Z, Zhang T, Zhou Y, Wei X, Zhu J, Zhang J, et al. Activated phosphatidylinositol 3-kinase/Akt inhibits the transition of endothelial progenitor cells to mesenchymal cells by regulating the forkhead box subgroup O-3a signaling. Cell Physiol Biochem. 2015;35:1643-53 pubmed 出版商
  361. Flores Nascimento M, Aléssio A, de Andrade Orsi F, Annichino Bizzacchi J. CD144, CD146 and VEGFR-2 properly identify circulating endothelial cell. Rev Bras Hematol Hemoter. 2015;37:98-102 pubmed 出版商
  362. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  363. Chen Z, Shojaee S, Buchner M, Geng H, Lee J, Klemm L, et al. Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia. Nature. 2015;521:357-61 pubmed 出版商
  364. Melo E, Kasper J, Unger R, Farré R, Kirkpatrick C. Development of a Bronchial Wall Model: Triple Culture on a Decellularized Porcine Trachea. Tissue Eng Part C Methods. 2015;21:909-21 pubmed 出版商
  365. Ishikawa T, Takizawa T, Iwaki J, Mishima T, Ui Tei K, Takeshita T, et al. Fc gamma receptor IIb participates in maternal IgG trafficking of human placental endothelial cells. Int J Mol Med. 2015;35:1273-89 pubmed 出版商
  366. Chen K, Yu G, Gumireddy K, Li A, Yao W, Gao L, et al. ZBRK1, a novel tumor suppressor, activates VHL gene transcription through formation of a complex with VHL and p300 in renal cancer. Oncotarget. 2015;6:6959-76 pubmed
  367. Grabner B, Schramek D, Mueller K, Moll H, Svinka J, Hoffmann T, et al. Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat Commun. 2015;6:6285 pubmed 出版商
  368. Sei Y, Mizuno M, Suzuki Y, Imai M, Higashide K, Harris C, et al. Expression of membrane complement regulators, CD46, CD55 and CD59, in mesothelial cells of patients on peritoneal dialysis therapy. Mol Immunol. 2015;65:302-9 pubmed 出版商
  369. Shi X, Zirbes K, Rasmussen T, Ferdous A, Garry M, Koyano Nakagawa N, et al. The transcription factor Mesp1 interacts with cAMP-responsive element binding protein 1 (Creb1) and coactivates Ets variant 2 (Etv2) gene expression. J Biol Chem. 2015;290:9614-25 pubmed 出版商
  370. Chen Y, Terajima M, Yang Y, Sun L, Ahn Y, Panková D, et al. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma. J Clin Invest. 2015;125:1147-62 pubmed 出版商
  371. Chang N, Gu J, Gu S, Osorio R, Concepcion W, Gu E. Arterial flow regulator enables transplantation and growth of human fetal kidneys in rats. Am J Transplant. 2015;15:1692-700 pubmed 出版商
  372. Rissiek A, Baumann I, Cuapio A, Mautner A, Kolster M, Arck P, et al. The expression of CD39 on regulatory T cells is genetically driven and further upregulated at sites of inflammation. J Autoimmun. 2015;58:12-20 pubmed 出版商
  373. Horváth L, Umehara Y, Jud C, Blank F, Petri Fink A, Rothen Rutishauser B. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep. 2015;5:7974 pubmed 出版商
  374. Heeren A, van Iperen L, Klootwijk D, De Melo Bernardo A, Roost M, Gomes Fernandes M, et al. Development of the follicular basement membrane during human gametogenesis and early folliculogenesis. BMC Dev Biol. 2015;15:4 pubmed 出版商
  375. Zhou W, Ke S, Huang Z, Flavahan W, Fang X, Paul J, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol. 2015;17:170-82 pubmed 出版商
  376. Goossens S, Radaelli E, Blanchet O, Durinck K, Van der Meulen J, Peirs S, et al. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nat Commun. 2015;6:5794 pubmed 出版商
  377. Weston C, Shepherd E, Claridge L, Rantakari P, Curbishley S, Tomlinson J, et al. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest. 2015;125:501-20 pubmed 出版商
  378. Kim H, Huang L, Critser P, Yang Z, Chan R, Wang L, et al. Notch ligand Delta-like 1 promotes in vivo vasculogenesis in human cord blood-derived endothelial colony forming cells. Cytotherapy. 2015;17:579-92 pubmed 出版商
  379. Gurzu S, Kádár Z, Sugimura H, Bara T, Hălmaciu I, Jung I. Gastric cancer in young vs old Romanian patients: immunoprofile with emphasis on maspin and mena protein reactivity. APMIS. 2015;123:223-33 pubmed 出版商
  380. Singh K, Lovren F, Pan Y, Quan A, Ramadan A, Matkar P, et al. The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition. J Biol Chem. 2015;290:2547-59 pubmed 出版商
  381. Tsiantoulas D, Perkmann T, Afonyushkin T, Mangold A, Prohaska T, Papac Milicevic N, et al. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. J Lipid Res. 2015;56:440-8 pubmed 出版商
  382. Yuan L, Liu X. Platelets are associated with xenograft tumor growth and the clinical malignancy of ovarian cancer through an angiogenesis-dependent mechanism. Mol Med Rep. 2015;11:2449-58 pubmed 出版商
  383. Van Eyck L, Hershfield M, Pombal D, Kelly S, Ganson N, Moens L, et al. Hematopoietic stem cell transplantation rescues the immunologic phenotype and prevents vasculopathy in patients with adenosine deaminase 2 deficiency. J Allergy Clin Immunol. 2015;135:283-7.e5 pubmed 出版商
  384. Yuan K, Orcholski M, Panaroni C, Shuffle E, Huang N, Jiang X, et al. Activation of the Wnt/planar cell polarity pathway is required for pericyte recruitment during pulmonary angiogenesis. Am J Pathol. 2015;185:69-84 pubmed 出版商
  385. Williams D, Anastos K, Morgello S, Berman J. JAM-A and ALCAM are therapeutic targets to inhibit diapedesis across the BBB of CD14+CD16+ monocytes in HIV-infected individuals. J Leukoc Biol. 2015;97:401-12 pubmed 出版商
  386. Moreira R, Velz T, Alves N, Gesche V, Malischewski A, Schmitz Rode T, et al. Tissue-engineered heart valve with a tubular leaflet design for minimally invasive transcatheter implantation. Tissue Eng Part C Methods. 2015;21:530-40 pubmed 出版商
  387. Meisen W, Dubin S, Sizemore S, Mathsyaraja H, Thies K, Lehman N, et al. Changes in BAI1 and nestin expression are prognostic indicators for survival and metastases in breast cancer and provide opportunities for dual targeted therapies. Mol Cancer Ther. 2015;14:307-14 pubmed 出版商
  388. Li Y, Zhao Y, Zou Q, Zhang K, Wu Y, Zhou C, et al. Preeclampsia does not alter vascular growth and expression of CD31 and vascular endothelial cadherin in human placentas. J Histochem Cytochem. 2015;63:22-31 pubmed 出版商
  389. Santoro S, Kim S, Motz G, Alatzoglou D, Li C, Irving M, et al. T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression. Cancer Immunol Res. 2015;3:68-84 pubmed 出版商
  390. Pelton J, Wright C, Leitges M, Bautch V. Multiple endothelial cells constitute the tip of developing blood vessels and polarize to promote lumen formation. Development. 2014;141:4121-6 pubmed 出版商
  391. Guerrero J, Oliveira H, Catros S, Siadous R, Derkaoui S, Bareille R, et al. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis. Tissue Eng Part A. 2015;21:861-74 pubmed 出版商
  392. Schuhmann M, Kraft P, Stoll G, Lorenz K, Meuth S, Wiendl H, et al. CD28 superagonist-mediated boost of regulatory T cells increases thrombo-inflammation and ischemic neurodegeneration during the acute phase of experimental stroke. J Cereb Blood Flow Metab. 2015;35:6-10 pubmed 出版商
  393. Clement M, Fornasa G, Loyau S, Morvan M, Andreata F, Guedj K, et al. Upholding the T cell immune-regulatory function of CD31 inhibits the formation of T/B immunological synapses in vitro and attenuates the development of experimental autoimmune arthritis in vivo. J Autoimmun. 2015;56:23-33 pubmed 出版商
  394. Wang L, Gao T, Wang G. Verrucous hemangioma: a clinicopathological and immunohistochemical analysis of 74 cases. J Cutan Pathol. 2014;41:823-30 pubmed 出版商
  395. Kostić J, Orlić D, Borović M, Beleslin B, MilaÅ¡inović D, Dobrić M, et al. Coronary thrombi neovascularization in patients with ST-elevation myocardial infarction - clinical and angiographic implications. Thromb Res. 2014;134:1038-45 pubmed 出版商
  396. Gibbons D, Fleming P, Virasami A, Michel M, Sebire N, Costeloe K, et al. Interleukin-8 (CXCL8) production is a signatory T cell effector function of human newborn infants. Nat Med. 2014;20:1206-10 pubmed 出版商
  397. Brandau S, Jakob M, Bruderek K, Bootz F, Giebel B, Radtke S, et al. Mesenchymal stem cells augment the anti-bacterial activity of neutrophil granulocytes. PLoS ONE. 2014;9:e106903 pubmed 出版商
  398. Kouroupis D, Churchman S, McGonagle D, Jones E. The assessment of CD146-based cell sorting and telomere length analysis for establishing the identity of mesenchymal stem cells in human umbilical cord. F1000Res. 2014;3:126 pubmed 出版商
  399. StrzÄ™pek A, Kaczmarczyk K, BiaÅ‚as M, Szpor J, Dyduch G, SzopiÅ„ski T, et al. ERG positive prostatic cancer may show a more angiogenetic phenotype. Pathol Res Pract. 2014;210:897-900 pubmed 出版商
  400. Yu J, Zuo Z, Zhang W, Yang Q, Zhang Y, Tang Y, et al. Identification of immunophenotypic subtypes with different prognoses in extranodal natural killer/T-cell lymphoma, nasal type. Hum Pathol. 2014;45:2255-62 pubmed 出版商
  401. Model L, Hall M, Wong D, Muto A, Kondo Y, Ziegler K, et al. Arterial shear stress reduces eph-b4 expression in adult human veins. Yale J Biol Med. 2014;87:359-71 pubmed
  402. Chou C, Sinden J, Couraud P, Modo M. In vitro modeling of the neurovascular environment by coculturing adult human brain endothelial cells with human neural stem cells. PLoS ONE. 2014;9:e106346 pubmed 出版商
  403. Davey M, Morgan M, Liuzzi A, Tyler C, Khan M, Szakmany T, et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol. 2014;193:3704-3716 pubmed 出版商
  404. Niu F, Yao H, Zhang W, Sutliff R, Buch S. Tat 101-mediated enhancement of brain pericyte migration involves platelet-derived growth factor subunit B homodimer: implications for human immunodeficiency virus-associated neurocognitive disorders. J Neurosci. 2014;34:11812-25 pubmed 出版商
  405. Lowe M, Faull R, Christie D, Waldvogel H. Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity. J Comp Neurol. 2015;523:699-725 pubmed 出版商
  406. Jeon Y, Moon K, Park S, Chung D. Primary pulmonary myxoid sarcomas with EWSR1-CREB1 translocation might originate from primitive peribronchial mesenchymal cells undergoing (myo)fibroblastic differentiation. Virchows Arch. 2014;465:453-61 pubmed 出版商
  407. Zhang J, Zheng G, Wu L, Ou Yang L, Li W. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats. Braz J Med Biol Res. 2014;47:886-94 pubmed
  408. Scherz Shouval R, Santagata S, Mendillo M, Sholl L, Ben Aharon I, Beck A, et al. The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell. 2014;158:564-78 pubmed 出版商
  409. Dogan A, Demirci S, Sahin F. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells. Cell Biol Int. 2015;39:94-103 pubmed 出版商
  410. Calabro S, Maczurek A, Morgan A, Tu T, Wen V, Yee C, et al. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis. PLoS ONE. 2014;9:e90571 pubmed 出版商
  411. Lytras D, Leontara V, Kefala M, Foukas P, Giannakou N, Pouliakis A, et al. Microvessel Landscape Assessment in Pancreatic Ductal Adenocarcinoma: Unclear Value of Targeting Endoglin (CD105) as Prognostic Factor of Clinical Outcome. Pancreas. 2015;44:87-92 pubmed 出版商
  412. Kurz D, Payeli S, Greutert H, Briand Schumacher S, Luscher T, Tanner F. Epigenetic regulation of tissue factor inducibility in endothelial cell senescence. Mech Ageing Dev. 2014;140:1-9 pubmed 出版商
  413. Yuan S, Guo Y, Zhou X, Shen W, Chen H. PDGFR-? (+) perivascular cells from infantile hemangioma display the features of mesenchymal stem cells and show stronger adipogenic potential in vitro and in vivo. Int J Clin Exp Pathol. 2014;7:2861-70 pubmed
  414. Styring E, Seinen J, Dominguez Valentin M, Domanski H, Jonsson M, von Steyern F, et al. Key roles for MYC, KIT and RET signaling in secondary angiosarcomas. Br J Cancer. 2014;111:407-12 pubmed 出版商
  415. Dowie M, Grimsey N, Hoffman T, Faull R, Glass M. Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington's disease brain. J Chem Neuroanat. 2014;59-60:62-71 pubmed 出版商
  416. Jeon H, Kim S, Jin X, Park J, Kim S, Joshi K, et al. Crosstalk between glioma-initiating cells and endothelial cells drives tumor progression. Cancer Res. 2014;74:4482-92 pubmed 出版商
  417. Hellesøy M, Blois A, Tiron C, Mannelqvist M, Akslen L, Lorens J. Akt1 activity regulates vessel maturation in a tissue engineering model of angiogenesis. Tissue Eng Part A. 2014;20:2590-603 pubmed 出版商
  418. Changchien Y, Bocskai P, Kovacs I, Hargitai Z, Kollár S, Torok M. Pleomorphic hyalinizing angiectatic tumor of soft parts: case report with unusual ganglion-like cells and review of the literature. Pathol Res Pract. 2014;210:1146-51 pubmed 出版商
  419. Hebel K, Weinert S, Kuropka B, Knolle J, Kosak B, Jorch G, et al. CD4+ T cells from human neonates and infants are poised spontaneously to run a nonclassical IL-4 program. J Immunol. 2014;192:5160-70 pubmed 出版商
  420. Xu J, Nie X, Cai X, Cai C, Xu P. Tbx18 is essential for normal development of vasculature network and glomerular mesangium in the mammalian kidney. Dev Biol. 2014;391:17-31 pubmed 出版商
  421. Baluk P, Phillips K, Yao L, Adams A, Nitschké M, McDonald D. Neutrophil dependence of vascular remodeling after Mycoplasma infection of mouse airways. Am J Pathol. 2014;184:1877-89 pubmed 出版商
  422. Song Y, Stål P, Yu J, Lorentzon R, Backman C, Forsgren S. Inhibitors of endopeptidase and angiotensin-converting enzyme lead to an amplification of the morphological changes and an upregulation of the substance P system in a muscle overuse model. BMC Musculoskelet Disord. 2014;15:126 pubmed 出版商
  423. Pryzhkova M, Aria I, Cheng Q, Harris G, Zan X, Gharib M, et al. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate. Biomaterials. 2014;35:5098-109 pubmed 出版商
  424. Savchenko A, Martinod K, Seidman M, Wong S, Borissoff J, Piazza G, et al. Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J Thromb Haemost. 2014;12:860-70 pubmed 出版商
  425. Liu X, McMurphy T, Xiao R, Slater A, Huang W, Cao L. Hypothalamic gene transfer of BDNF inhibits breast cancer progression and metastasis in middle age obese mice. Mol Ther. 2014;22:1275-1284 pubmed 出版商
  426. Stofas A, Levidou G, Piperi C, Adamopoulos C, Dalagiorgou G, Bamias A, et al. The role of CXC-chemokine receptor CXCR2 and suppressor of cytokine signaling-3 (SOCS-3) in renal cell carcinoma. BMC Cancer. 2014;14:149 pubmed 出版商
  427. Bareja A, Holt J, Luo G, Chang C, Lin J, Hinken A, et al. Human and mouse skeletal muscle stem cells: convergent and divergent mechanisms of myogenesis. PLoS ONE. 2014;9:e90398 pubmed 出版商
  428. Haba R, Shintani N, Onaka Y, Kanoh T, Wang H, Takenaga R, et al. Central CRTH2, a second prostaglandin D2 receptor, mediates emotional impairment in the lipopolysaccharide and tumor-induced sickness behavior model. J Neurosci. 2014;34:2514-23 pubmed 出版商
  429. Byron A, Randles M, Humphries J, Mironov A, Hamidi H, Harris S, et al. Glomerular cell cross-talk influences composition and assembly of extracellular matrix. J Am Soc Nephrol. 2014;25:953-66 pubmed 出版商
  430. Boyer Di Ponio J, El Ayoubi F, Glacial F, Ganeshamoorthy K, Driancourt C, Godet M, et al. Instruction of circulating endothelial progenitors in vitro towards specialized blood-brain barrier and arterial phenotypes. PLoS ONE. 2014;9:e84179 pubmed 出版商
  431. Ribeiro V, Garcia M, Oliveira R, Gomes P, Colaço B, Fernandes M. Bisphosphonates induce the osteogenic gene expression in co-cultured human endothelial and mesenchymal stem cells. J Cell Mol Med. 2014;18:27-37 pubmed 出版商
  432. Ding H, Gao Y, Wang Y, Hu C, Sun Y, Zhang C. Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential. Stem Cells Dev. 2014;23:990-1000 pubmed 出版商
  433. Raha A, VAISHNAV R, FRIEDLAND R, Bomford A, Raha Chowdhury R. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer's disease. Acta Neuropathol Commun. 2013;1:55 pubmed 出版商
  434. Luo W, Yao K. Cancer stem cell characteristics, ALDH1 expression in the invasive front of nasopharyngeal carcinoma. Virchows Arch. 2014;464:35-43 pubmed 出版商
  435. Fretz J, Nelson T, Velazquez H, Xi Y, Moeckel G, Horowitz M. Early B-cell factor 1 is an essential transcription factor for postnatal glomerular maturation. Kidney Int. 2014;85:1091-102 pubmed 出版商
  436. Alessio A, Beltrame M, Nascimento M, Vicente C, de Godoy J, Silva J, et al. Circulating progenitor and mature endothelial cells in deep vein thrombosis. Int J Med Sci. 2013;10:1746-54 pubmed 出版商
  437. Winden D, Ferguson N, Bukey B, Geyer A, Wright A, Jergensen Z, et al. Conditional over-expression of RAGE by embryonic alveolar epithelium compromises the respiratory membrane and impairs endothelial cell differentiation. Respir Res. 2013;14:108 pubmed 出版商
  438. Jelen S, Parm Ulhøi B, Larsen A, Frøkiær J, Nielsen S, Rutzler M. AQP9 expression in glioblastoma multiforme tumors is limited to a small population of astrocytic cells and CD15(+)/CalB(+) leukocytes. PLoS ONE. 2013;8:e75764 pubmed 出版商
  439. Garvin K, Dalecki D, Yousefhussien M, Helguera M, Hocking D. Spatial patterning of endothelial cells and vascular network formation using ultrasound standing wave fields. J Acoust Soc Am. 2013;134:1483-90 pubmed 出版商
  440. Orecchioni S, Gregato G, Martin Padura I, Reggiani F, Braidotti P, Mancuso P, et al. Complementary populations of human adipose CD34+ progenitor cells promote growth, angiogenesis, and metastasis of breast cancer. Cancer Res. 2013;73:5880-91 pubmed 出版商
  441. Erdem H, Kayikci M, Oktay M, Uzunlar A, Tekin A, Sener E, et al. Mast cells numbers and peritumoral microvessel density of the prostatic adenocarcinomas and correlation with prognostic parameters. Med Glas (Zenica). 2013;10:293-7 pubmed
  442. Berger S, Turner L, Wang C, Petersen J, Kraft M, Lusingu J, et al. Plasmodium falciparum expressing domain cassette 5 type PfEMP1 (DC5-PfEMP1) bind PECAM1. PLoS ONE. 2013;8:e69117 pubmed 出版商
  443. Ghebeh H, Sleiman G, Manogaran P, Al Mazrou A, Barhoush E, Al Mohanna F, et al. Profiling of normal and malignant breast tissue show CD44high/CD24low phenotype as a predominant stem/progenitor marker when used in combination with Ep-CAM/CD49f markers. BMC Cancer. 2013;13:289 pubmed 出版商
  444. Fischer M, Wimmer I, Hoftberger R, Gerlach S, Haider L, Zrzavy T, et al. Disease-specific molecular events in cortical multiple sclerosis lesions. Brain. 2013;136:1799-815 pubmed 出版商
  445. Ding H, Gao Y, Hu C, Wang Y, Wang C, Yin J, et al. HIF-1? transgenic bone marrow cells can promote tissue repair in cases of corticosteroid-induced osteonecrosis of the femoral head in rabbits. PLoS ONE. 2013;8:e63628 pubmed 出版商
  446. Cheng X, Zengel J, Suguitan A, Xu Q, Wang W, Lin J, et al. Evaluation of the humoral and cellular immune responses elicited by the live attenuated and inactivated influenza vaccines and their roles in heterologous protection in ferrets. J Infect Dis. 2013;208:594-602 pubmed 出版商
  447. Kang S, Carlon T, Jantzen A, Lin F, Ley M, Allen J, et al. Isolation of functional human endothelial cells from small volumes of umbilical cord blood. Ann Biomed Eng. 2013;41:2181-92 pubmed 出版商
  448. Sigurdsson V, Ingthorsson S, Hilmarsdottir B, Gustafsdottir S, Franzdóttir S, Arason A, et al. Expression and functional role of sprouty-2 in breast morphogenesis. PLoS ONE. 2013;8:e60798 pubmed 出版商
  449. Farley A, Morris L, Vroegindeweij E, Depreter M, Vaidya H, Stenhouse F, et al. Dynamics of thymus organogenesis and colonization in early human development. Development. 2013;140:2015-26 pubmed 出版商
  450. Brana C, Frossard M, Pescini Gobert R, Martinier N, Boschert U, Seabrook T. Immunohistochemical detection of sphingosine-1-phosphate receptor 1 and 5 in human multiple sclerosis lesions. Neuropathol Appl Neurobiol. 2014;40:564-78 pubmed 出版商
  451. Iori V, Maroso M, Rizzi M, Iyer A, Vertemara R, Carli M, et al. Receptor for Advanced Glycation Endproducts is upregulated in temporal lobe epilepsy and contributes to experimental seizures. Neurobiol Dis. 2013;58:102-14 pubmed 出版商
  452. Brereton M, Wareing M, Jones R, Greenwood S. Characterisation of K+ channels in human fetoplacental vascular smooth muscle cells. PLoS ONE. 2013;8:e57451 pubmed 出版商
  453. Denecke B, Horsch L, Radtke S, Fischer J, Horn P, Giebel B. Human endothelial colony-forming cells expanded with an improved protocol are a useful endothelial cell source for scaffold-based tissue engineering. J Tissue Eng Regen Med. 2015;9:E84-97 pubmed 出版商
  454. Suetta C, Frandsen U, Jensen L, Jensen M, Jespersen J, Hvid L, et al. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy. PLoS ONE. 2012;7:e51238 pubmed 出版商
  455. Criswell T, Corona B, Wang Z, Zhou Y, Niu G, Xu Y, et al. The role of endothelial cells in myofiber differentiation and the vascularization and innervation of bioengineered muscle tissue in vivo. Biomaterials. 2013;34:140-9 pubmed 出版商
  456. Büttner M, Kufer V, Brunner K, Hartmann A, Amann K, Agaimy A. Benign mesenchymal tumours and tumour-like lesions in end-stage renal disease. Histopathology. 2013;62:229-36 pubmed 出版商
  457. Sölder E, Böckle B, Nguyen V, Fürhapter C, Obexer P, Erdel M, et al. Isolation and characterization of CD133+CD34+VEGFR-2+CD45- fetal endothelial cells from human term placenta. Microvasc Res. 2012;84:65-73 pubmed 出版商
  458. Lee C, Hwang I, Park C, Lee H, Park D, Kang S, et al. Innate immunity markers in culprit plaques of acute myocardial infarction or stable angina. Biomarkers. 2012;17:209-15 pubmed 出版商
  459. Garvin K, Dalecki D, Hocking D. Vascularization of three-dimensional collagen hydrogels using ultrasound standing wave fields. Ultrasound Med Biol. 2011;37:1853-64 pubmed 出版商
  460. Yuan S, Chen R, Shen W, Chen H, Zhou X. Mesenchymal stem cells in infantile hemangioma reside in the perivascular region. Pediatr Dev Pathol. 2012;15:5-12 pubmed 出版商
  461. Mokry J, Soukup T, Micuda S, Karbanova J, Visek B, Brcakova E, et al. Telomere attrition occurs during ex vivo expansion of human dental pulp stem cells. J Biomed Biotechnol. 2010;2010:673513 pubmed 出版商
  462. Lindquist J, Cheresh D, Snyder E. Derivation of vasculature from embryonic stem cells. Curr Protoc Stem Cell Biol. 2010;Chapter 1:Unit 1F.9 pubmed 出版商
  463. Sellheyer K, Krahl D. Spatiotemporal expression pattern of neuroepithelial stem cell marker nestin suggests a role in dermal homeostasis, neovasculogenesis, and tumor stroma development: a study on embryonic and adult human skin. J Am Acad Dermatol. 2010;63:93-113 pubmed 出版商
  464. Shirasaki H, Kanaizumi E, Himi T. Immunohistochemical localization of the bradykinin B1 and B2 receptors in human nasal mucosa. Mediators Inflamm. 2009;2009:102406 pubmed 出版商
  465. Banerjee I, Fuseler J, Intwala A, Baudino T. IL-6 loss causes ventricular dysfunction, fibrosis, reduced capillary density, and dramatically alters the cell populations of the developing and adult heart. Am J Physiol Heart Circ Physiol. 2009;296:H1694-704 pubmed 出版商
  466. Wei F, Cao S, Ren X, Liu H, Yu J, Li H, et al. Efficient antiproliferative and antiangiogenic effects on human ovarian cancer growth by gene transfer of attenuated mutants of Shiga-like toxin I. Int J Gynecol Cancer. 2008;18:677-91 pubmed
  467. Banerjee I, Fuseler J, Price R, Borg T, Baudino T. Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol. 2007;293:H1883-91 pubmed
  468. Ramirez R, Carracedo J, Merino A, Nogueras S, Alvarez Lara M, Rodriguez M, et al. Microinflammation induces endothelial damage in hemodialysis patients: the role of convective transport. Kidney Int. 2007;72:108-13 pubmed
  469. Hristov M, Zernecke A, Bidzhekov K, Liehn E, Shagdarsuren E, Ludwig A, et al. Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ Res. 2007;100:590-7 pubmed
  470. Tan P, Chan C, Xue S, Dong R, Ananthesayanan B, Manunta M, et al. Phenotypic and functional differences between human saphenous vein (HSVEC) and umbilical vein (HUVEC) endothelial cells. Atherosclerosis. 2004;173:171-83 pubmed
  471. Vallario A, Chilosi M, Adami F, Montagna L, Deaglio S, Malavasi F, et al. Human myeloma cells express the CD38 ligand CD31. Br J Haematol. 1999;105:441-4 pubmed