这是一篇来自已证抗体库的有关人类 PERK的综述,是根据115篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合PERK 抗体。
PERK 同义词: PEK; PERK; WRS

圣克鲁斯生物技术
小鼠 单克隆(B-5)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 PERK抗体(Santa Cruz, sc-377400)被用于被用于免疫印迹在人类样本上 (图 3e). J Exp Clin Cancer Res (2022) ncbi
小鼠 单克隆(B-5)
  • 免疫组化; 人类; 图 4e
圣克鲁斯生物技术 PERK抗体(Santa Cruz, sc-377400)被用于被用于免疫组化在人类样本上 (图 4e). Oncogene (2017) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 PERK抗体(Santa Cruz, sc-377400)被用于被用于免疫印迹在小鼠样本上 (图 3a). Int J Mol Sci (2016) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 小鼠; 1:200; 图 3
圣克鲁斯生物技术 PERK抗体(Santa Cruz, sc-377400)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3). Exp Ther Med (2016) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 PERK抗体(Santa Cruz Biotechnology, sc-377400)被用于被用于免疫印迹在人类样本上 (图 6b). Oncotarget (2016) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 人类; 1:200; 图 7A
圣克鲁斯生物技术 PERK抗体(Santa Cruz, sc-377400)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 7A). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 PERK抗体(santa Cruz, sc-377400)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 PERK抗体(santa Cruz, sc-377400)被用于被用于免疫印迹在人类样本上 (图 5). Sci Signal (2016) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5d
艾博抗(上海)贸易有限公司 PERK抗体(Abcam, ab192591)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5d). elife (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f
艾博抗(上海)贸易有限公司 PERK抗体(Abcam, ab192591)被用于被用于免疫印迹在人类样本上 (图 2f). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:80; 图 2b
艾博抗(上海)贸易有限公司 PERK抗体(Abcam, ab192591)被用于被用于免疫组化在小鼠样本上浓度为1:80 (图 2b). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 PERK抗体(Abcam, ab192591)被用于被用于免疫组化在小鼠样本上 (图 4a). Exp Ther Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 PERK抗体(Abcam, ab79483)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 PERK抗体(Abcam, ab192591)被用于被用于免疫印迹在小鼠样本上 (图 7a). Int J Biol Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s4e
艾博抗(上海)贸易有限公司 PERK抗体(Abcam, ab217322)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s4e). Cell (2019) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 PERK抗体(Abcam, ab192591)被用于. EMBO Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4a
艾博抗(上海)贸易有限公司 PERK抗体(Abcam, ab65142)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Exp Ther Med (2016) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 4a
赛默飞世尔 PERK抗体(Thermo Fisher, PA5- 37773)被用于被用于免疫细胞化学在大鼠样本上 (图 4a). Anal Cell Pathol (Amst) (2021) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 s8e
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在小鼠样本上 (图 s8e). Leukemia (2022) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 9a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, C33E10)被用于被用于免疫印迹在小鼠样本上 (图 9a). Glia (2022) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 人类; 1:1000; 图 3m, e3e, e3f, e3g
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 5683)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3m, e3e, e3f, e3g). Nat Cancer (2022) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 1:1000; 图 4k
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4k). Nat Cell Biol (2022) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 人类; 图 5i
赛信通(上海)生物试剂有限公司 PERK抗体(CST, 5683)被用于被用于免疫印迹在人类样本上 (图 5i). Cell Rep (2022) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 2a, 6b
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在小鼠样本上 (图 2a, 6b). Theranostics (2022) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类; 图 7b
  • 免疫印迹; 小鼠; 图 s5j
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在人类样本上 (图 7b) 和 被用于免疫印迹在小鼠样本上 (图 s5j). J Exp Med (2022) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 PERK抗体(Cell signaling, 3192)被用于被用于免疫印迹在小鼠样本上 (图 4c). iScience (2021) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 6f
赛信通(上海)生物试剂有限公司 PERK抗体(CST, 3192)被用于被用于免疫印迹在小鼠样本上 (图 6f). Cell Rep (2021) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 PERK抗体(CST, 3192)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 PERK抗体(CST, 5683)被用于被用于免疫印迹在人类样本上 (图 2f). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类; 1:1000; 图 6h
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 PERK抗体(CST, 3192S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6h) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). J Genet Genomics (2021) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类; 1:500; 图 3d
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3d). Nucleic Acids Res (2021) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell signaling, 3192)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). iScience (2021) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 7c
赛信通(上海)生物试剂有限公司 PERK抗体(Cell SignalingTechnology, 3192)被用于被用于免疫印迹在小鼠样本上 (图 7c). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling Technology, 3192)被用于被用于免疫印迹在小鼠样本上 (图 1a). Mol Brain (2021) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类; 图 5a
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 PERK抗体(CST, 3192S)被用于被用于免疫印迹在人类样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 6d). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling Technology, 3,192)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹基因敲除验证; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2b). PLoS Biol (2021) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 1:1000; 图 s8a, s9a, s9b, s9c
赛信通(上海)生物试剂有限公司 PERK抗体(CST, 3192)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s8a, s9a, s9b, s9c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在人类样本上 (图 6a). Biomolecules (2021) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 PERK抗体(Cell signalling, 3192)被用于被用于免疫印迹在人类样本上 (图 3d). BMC Biol (2020) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 1f, s4a
  • 免疫印迹; 人类; 1:1000; 图 1c, 2a, s4a
赛信通(上海)生物试剂有限公司 PERK抗体(CST, 5683)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 1f, s4a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1c, 2a, s4a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在小鼠样本上 (图 s2a). Neuron (2020) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 人类; 图 1a, 5b
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 5683)被用于被用于免疫印迹在人类样本上 (图 1a, 5b). PLoS Pathog (2019) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 1:1000; 图 s4c
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling Technology, 3192)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4c). Science (2019) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在小鼠样本上 (图 5f). Cell (2019) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 PERK抗体(CST, 3192)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cell (2019) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 1:10,000; 图 5a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling Technology, 3192S)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5a). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 人类; 1:200; 图 s2a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 5683S)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 s2a). Sci Adv (2019) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在小鼠样本上 (图 2b). Nature (2019) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling Technology, 3192)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5f). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling Technology, 5683)被用于被用于免疫印迹在小鼠样本上 (图 1h). Cancer Cell (2019) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在小鼠样本上 (图 6d). Cell Discov (2019) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 5683)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 3h
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling Technology, 3192)被用于被用于免疫印迹在小鼠样本上 (图 3h). FASEB J (2019) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹基因敲除验证; 人类; 图 3
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 5683)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 2a). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 人类; 图 s4c
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 5683)被用于被用于免疫印迹在人类样本上 (图 s4c). Oncogene (2018) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 PERK抗体(CST, 3192S)被用于被用于免疫印迹在人类样本上 (图 3b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在小鼠样本上 (图 2d). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5d
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 5683)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5d). J Bone Miner Res (2017) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 人类; 1:3000; 图 5a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 5683)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5a). Exp Ther Med (2017) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹基因敲除验证; 小鼠; 1:500; 图 6d
赛信通(上海)生物试剂有限公司 PERK抗体(Cell signaling, 3192)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:500 (图 6d). elife (2017) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Front Pharmacol (2017) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 5683P)被用于被用于免疫印迹在人类样本上 (图 3d). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 小鼠; 图 s5e
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 5683)被用于被用于免疫印迹在小鼠样本上 (图 s5e). Nature (2017) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 5683)被用于被用于免疫印迹在人类样本上 (图 2a). Mediators Inflamm (2016) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
  • 免疫印迹; 小鼠; 1:500; 图 1b
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). Mol Reprod Dev (2017) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫组化; 小鼠; 1:100; 图 7c
赛信通(上海)生物试剂有限公司 PERK抗体(CST, 3192)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7c). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 人类; 图 s2e
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 5683)被用于被用于免疫印迹在人类样本上 (图 s2e). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 人类; 图 8a
  • 免疫印迹; 大鼠; 图 4a
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 5683)被用于被用于免疫印迹在人类样本上 (图 8a), 被用于免疫印迹在大鼠样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 3b). J Neurosci (2016) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在小鼠样本上 (图 3a). Am J Pathol (2016) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, C33E10)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C33E10)
  • 其他; 小鼠; 1:500; 图 1
  • 免疫印迹; 小鼠; 1:500; 图 1
赛信通(上海)生物试剂有限公司 PERK抗体(cell signaling, 3192)被用于被用于其他在小鼠样本上浓度为1:500 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 大鼠; 图 3a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling Technology, 3192)被用于被用于免疫印迹在大鼠样本上 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 PERK抗体(CST, 3192)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Biomed Res Int (2016) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 1:500; 图 1a
  • 免疫印迹; 人类; 1:500; 图 1a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1a). Cell Signal (2016) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类; 1:500; 图 3
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, C33E10)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). elife (2016) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 PERK抗体(Cell signaling, 3192)被用于被用于免疫印迹在小鼠样本上 (图 4). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling Technology, 3192)被用于被用于免疫印迹在人类样本上 (图 1a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫组化; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, C33E10)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Ann Clin Transl Neurol (2016) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 PERK抗体(Cell signaling, 5683)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Diabetologia (2016) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 PERK抗体(Cell signalling, C33E10)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192S)被用于被用于免疫印迹在小鼠样本上 (图 s3). Cell Rep (2016) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling Technologies, 5683)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 s5g
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在小鼠样本上 (图 s5g). Cell (2016) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹基因敲除验证; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 PERK抗体(Cell signaling, 3192)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 5683S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 PERK抗体(Cell signaling, 5683)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 PERK抗体(Cell signaling, 5683)被用于被用于免疫印迹在大鼠样本上 (图 3). Cell Stress Chaperones (2016) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 PERK抗体(Cell signaling, C33E10)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在小鼠样本上 (图 1). elife (2015) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 PERK抗体(Cell signaling, 3192)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫细胞化学; 人类; 1:500; 表 4
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (表 4). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling Technology, 5683)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Breast Cancer Res Treat (2015) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在人类样本上 (图 6). Autophagy (2015) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling Technology, 3192)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类; 图 4,8
  • 免疫印迹; 小鼠; 图 4,8
赛信通(上海)生物试剂有限公司 PERK抗体(cell signaling, 3192)被用于被用于免疫印迹在人类样本上 (图 4,8) 和 被用于免疫印迹在小鼠样本上 (图 4,8). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫沉淀; 人类; 图 4
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signalling, 3192)被用于被用于免疫沉淀在人类样本上 (图 4). elife (2015) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192S)被用于被用于免疫印迹在人类样本上 (图 2). EMBO Mol Med (2015) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 大鼠; 1:500; 图 1
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 5683)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling Technology, 3192)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PERK抗体(CST, 3192)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2015) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在人类样本上浓度为1:1000. FEBS Lett (2014) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在小鼠样本上. Cancer Biol Ther (2014) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling Technology, 5683)被用于被用于免疫印迹在人类样本上浓度为1:1000. Head Neck (2015) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling Technology, 5683)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Methods Enzymol (2014) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling Technology, 3192)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
domestic rabbit 单克隆(D11A8)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 5683)被用于被用于免疫印迹在人类样本上浓度为1:500. Autophagy (2013) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹基因敲除验证; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 5). Nat Neurosci (2013) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling Technology, 3192)被用于被用于免疫印迹在小鼠样本上. Am J Pathol (2013) ncbi
domestic rabbit 单克隆(C33E10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 PERK抗体(Cell Signaling, 3192)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Transl Psychiatry (2013) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
西格玛奥德里奇 PERK抗体(Sigma, P0074)被用于被用于免疫印迹在小鼠样本上 (图 2a). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 9e
西格玛奥德里奇 PERK抗体(Sigma-Aldrich, P0074)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9e). Nat Commun (2017) ncbi
文章列表
  1. Lee A, Pingali S, Pinilla Ibarz J, Atchison M, Koumenis C, Argon Y, et al. Loss of AID exacerbates the malignant progression of CLL. Leukemia. 2022;36:2430-2442 pubmed 出版商
  2. Yoshioka N, Kurose M, Yano M, Tran D, Okuda S, Mori Ochiai Y, et al. Isoform-specific mutation in Dystonin-b gene causes late-onset protein aggregate myopathy and cardiomyopathy. elife. 2022;11: pubmed 出版商
  3. Bradford B, McGuire L, Hume D, Pridans C, Mabbott N. Microglia deficiency accelerates prion disease but does not enhance prion accumulation in the brain. Glia. 2022;70:2169-2187 pubmed 出版商
  4. Liu X, Viswanadhapalli S, Kumar S, Lee T, Moore A, Ma S, et al. Targeting LIPA independent of its lipase activity is a therapeutic strategy in solid tumors via induction of endoplasmic reticulum stress. Nat Cancer. 2022;: pubmed 出版商
  5. Verginadis I, Avgousti H, Monslow J, Skoufos G, Chinga F, Kim K, et al. A stromal Integrated Stress Response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression. Nat Cell Biol. 2022;24:940-953 pubmed 出版商
  6. Pillai S, Mahmud I, Mahar R, Griffith C, Langsen M, Nguyen J, et al. Lipogenesis mediated by OGR1 regulates metabolic adaptation to acid stress in cancer cells via autophagy. Cell Rep. 2022;39:110796 pubmed 出版商
  7. Liu C, Chen Q, Shang Y, Chen L, Myers J, Awadallah A, et al. Endothelial PERK-ATF4-JAG1 axis activated by T-ALL remodels bone marrow vascular niche. Theranostics. 2022;12:2894-2907 pubmed 出版商
  8. Liu M, Wu C, Luo S, Hua Q, Chen H, Weng Y, et al. PERK reprograms hematopoietic progenitor cells to direct tumor-promoting myelopoiesis in the spleen. J Exp Med. 2022;219: pubmed 出版商
  9. Salaroglio I, Belisario D, Bironzo P, Ananthanarayanan P, Ricci L, Digiovanni S, et al. SKP2 drives the sensitivity to neddylation inhibitors and cisplatin in malignant pleural mesothelioma. J Exp Clin Cancer Res. 2022;41:75 pubmed 出版商
  10. Sugiyama T, Murao N, Kadowaki H, Takao K, Miyakawa T, Matsushita Y, et al. ERAD components Derlin-1 and Derlin-2 are essential for postnatal brain development and motor function. iScience. 2021;24:102758 pubmed 出版商
  11. Wani A, Zhu J, ULRICH J, Eteleeb A, Sauerbeck A, Reitz S, et al. Neuronal VCP loss of function recapitulates FTLD-TDP pathology. Cell Rep. 2021;36:109399 pubmed 出版商
  12. Cho J, Lee J, Kim H, Lee H, Fang Z, Kwon H, et al. Ethyl Acetate Fraction of Amomum villosum var. xanthioides Attenuates Hepatic Endoplasmic Reticulum Stress-Induced Non-Alcoholic Steatohepatitis via Improvement of Antioxidant Capacities. Antioxidants (Basel). 2021;10: pubmed 出版商
  13. Ko P, Choi J, Song S, Keum S, Jeong J, Hwang Y, et al. Microtubule Acetylation Controls MDA-MB-231 Breast Cancer Cell Invasion through the Modulation of Endoplasmic Reticulum Stress. Int J Mol Sci. 2021;22: pubmed 出版商
  14. Zhou Y, Ye X, Zhang C, Wang J, Guan Z, Yan J, et al. Ufl1 deficiency causes kidney atrophy associated with disruption of endoplasmic reticulum homeostasis. J Genet Genomics. 2021;48:403-410 pubmed 出版商
  15. Torres A, Rodríguez Escribà M, Marcet Houben M, Santos Vieira H, Camacho N, Catena H, et al. Human tRNAs with inosine 34 are essential to efficiently translate eukarya-specific low-complexity proteins. Nucleic Acids Res. 2021;49:7011-7034 pubmed 出版商
  16. Li Y, Chen L, Li L, Sottas C, Petrillo S, Lazaris A, et al. Cholesterol-binding translocator protein TSPO regulates steatosis and bile acid synthesis in nonalcoholic fatty liver disease. iScience. 2021;24:102457 pubmed 出版商
  17. Cao X, Shu Y, Chen Y, Xu Q, Guo G, Wu Z, et al. Mettl14-Mediated m6A Modification Facilitates Liver Regeneration by Maintaining Endoplasmic Reticulum Homeostasis. Cell Mol Gastroenterol Hepatol. 2021;12:633-651 pubmed 出版商
  18. Lim Y, Kim S, Kim E. Palmitate reduces starvation-induced ER stress by inhibiting ER-phagy in hypothalamic cells. Mol Brain. 2021;14:65 pubmed 出版商
  19. Chen Y, Hu W, Li Q, Zhao S, Zhao D, Zhang S, et al. NGBR is required to ameliorate type 2 diabetes in mice by enhancing insulin sensitivity. J Biol Chem. 2021;296:100624 pubmed 出版商
  20. Kakehashi A, Chariyakornkul A, Suzuki S, Khuanphram N, Tatsumi K, Yamano S, et al. Cache Domain Containing 1 Is a Novel Marker of Non-Alcoholic Steatohepatitis-Associated Hepatocarcinogenesis. Cancers (Basel). 2021;13: pubmed 出版商
  21. Yin S, Li L, Tao Y, Yu J, Wei S, Liu M, et al. The Inhibitory Effect of Artesunate on Excessive Endoplasmic Reticulum Stress Alleviates Experimental Colitis in Mice. Front Pharmacol. 2021;12:629798 pubmed 出版商
  22. Lu Y, Kavianpour S, Zhang T, Zhang X, Nguyen D, Thombre R, et al. MARK2 phosphorylates eIF2α in response to proteotoxic stress. PLoS Biol. 2021;19:e3001096 pubmed 出版商
  23. Yi S, Shi W, Zuo M, Wang S, Ma R, Bi H, et al. Endoplasmic Reticulum Stress Is Involved in Glucocorticoid-Induced Apoptosis in PC12 Cells. Anal Cell Pathol (Amst). 2021;2021:5565671 pubmed 出版商
  24. Persaud A, Nair S, Rahman M, Raj R, Weadick B, Nayak D, et al. Facilitative lysosomal transport of bile acids alleviates ER stress in mouse hematopoietic precursors. Nat Commun. 2021;12:1248 pubmed 出版商
  25. Obert D, Wolpert A, Grimm N, Korff S. ER stress preconditioning ameliorates liver damage after hemorrhagic shock and reperfusion. Exp Ther Med. 2021;21:248 pubmed 出版商
  26. Wanschel A, Guizoni D, Lorza Gil E, Salerno A, Paiva A, Dorighello G, et al. The Presence of Cholesteryl Ester Transfer Protein (CETP) in Endothelial Cells Generates Vascular Oxidative Stress and Endothelial Dysfunction. Biomolecules. 2021;11: pubmed 出版商
  27. Clementi E, Inglin L, Beebe E, Gsell C, Garajova Z, Markkanen E. Persistent DNA damage triggers activation of the integrated stress response to promote cell survival under nutrient restriction. BMC Biol. 2020;18:36 pubmed 出版商
  28. Mahameed M, Boukeileh S, Obiedat A, Darawshi O, Dipta P, Rimon A, et al. Pharmacological induction of selective endoplasmic reticulum retention as a strategy for cancer therapy. Nat Commun. 2020;11:1304 pubmed 出版商
  29. Smith H, Freeman O, Butcher A, Holmqvist S, Humoud I, Schätzl T, et al. Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration. Neuron. 2020;: pubmed 出版商
  30. Johnston B, Pringle E, McCormick C. KSHV activates unfolded protein response sensors but suppresses downstream transcriptional responses to support lytic replication. PLoS Pathog. 2019;15:e1008185 pubmed 出版商
  31. Zhu P, Khatiwada S, Cui Y, Reineke L, Dooling S, Kim J, et al. Activation of the ISR mediates the behavioral and neurophysiological abnormalities in Down syndrome. Science. 2019;366:843-849 pubmed 出版商
  32. Wang Y, Chiang I, Ohara T, Fujii S, Cheng J, Muegge B, et al. Long-Term Culture Captures Injury-Repair Cycles of Colonic Stem Cells. Cell. 2019;179:1144-1159.e15 pubmed 出版商
  33. Li J, Liu Z, Wang L, Xu H, Wang Y. Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep. 2019;39: pubmed 出版商
  34. Hernández Alvarez M, Sebastian D, Vives S, Ivanova S, Bartoccioni P, Kakimoto P, et al. Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease. Cell. 2019;177:881-895.e17 pubmed 出版商
  35. Mogilenko D, Haas J, L homme L, Fleury S, Quemener S, Levavasseur M, et al. Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. Cell. 2019;177:1201-1216.e19 pubmed 出版商
  36. Brody M, Vanhoutte D, Bakshi C, Liu R, Correll R, Sargent M, et al. Disruption of valosin-containing protein activity causes cardiomyopathy and reveals pleiotropic functions in cardiac homeostasis. J Biol Chem. 2019;294:8918-8929 pubmed 出版商
  37. Simic M, Moehle E, Schinzel R, Lorbeer F, Halloran J, Heydari K, et al. Transient activation of the UPRER is an essential step in the acquisition of pluripotency during reprogramming. Sci Adv. 2019;5:eaaw0025 pubmed 出版商
  38. Schiattarella G, Altamirano F, Tong D, French K, Villalobos E, Kim S, et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature. 2019;568:351-356 pubmed 出版商
  39. Cao Y, Trillo Tinoco J, Sierra R, Anadon C, Dai W, Mohamed E, et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat Commun. 2019;10:1280 pubmed 出版商
  40. Zhu H, Bhatt B, Sivaprakasam S, Cai Y, Liu S, Kodeboyina S, et al. Ufbp1 promotes plasma cell development and ER expansion by modulating distinct branches of UPR. Nat Commun. 2019;10:1084 pubmed 出版商
  41. Carugo A, Minelli R, Sapio L, Soeung M, Carbone F, Robinson F, et al. p53 Is a Master Regulator of Proteostasis in SMARCB1-Deficient Malignant Rhabdoid Tumors. Cancer Cell. 2019;35:204-220.e9 pubmed 出版商
  42. Liu J, Zhu G, Jia N, Wang W, Wang Y, Yin M, et al. CD9 regulates keratinocyte migration by negatively modulating the sheddase activity of ADAM17. Int J Biol Sci. 2019;15:493-506 pubmed 出版商
  43. Cai Y, Zhu G, Liu S, Pan Z, Quintero M, Poole C, et al. Indispensable role of the Ubiquitin-fold modifier 1-specific E3 ligase in maintaining intestinal homeostasis and controlling gut inflammation. Cell Discov. 2019;5:7 pubmed 出版商
  44. Wheeler M, Jaronen M, Covacu R, Zandee S, Scalisi G, Rothhammer V, et al. Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation. Cell. 2019;176:581-596.e18 pubmed 出版商
  45. Westergard T, McAvoy K, Russell K, Wen X, Pang Y, Morris B, et al. Repeat-associated non-AUG translation in C9orf72-ALS/FTD is driven by neuronal excitation and stress. EMBO Mol Med. 2019;11: pubmed 出版商
  46. Jeon Y, Kim T, Park D, Nuovo G, Rhee S, Joshi P, et al. miRNA-mediated TUSC3 deficiency enhances UPR and ERAD to promote metastatic potential of NSCLC. Nat Commun. 2018;9:5110 pubmed 出版商
  47. Gallot Y, Bohnert K, Straughn A, Xiong G, Hindi S, Kumar A. PERK regulates skeletal muscle mass and contractile function in adult mice. FASEB J. 2019;33:1946-1962 pubmed 出版商
  48. Makhov P, Naito S, Haifler M, Kutikov A, Boumber Y, Uzzo R, et al. The convergent roles of NF-κB and ER stress in sunitinib-mediated expression of pro-tumorigenic cytokines and refractory phenotype in renal cell carcinoma. Cell Death Dis. 2018;9:374 pubmed 出版商
  49. Liang H, Xiao J, Zhou Z, Wu J, Ge F, Li Z, et al. Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis. Oncogene. 2018;37:1961-1975 pubmed 出版商
  50. Green K, Glineburg M, Kearse M, Flores B, Linsalata A, Fedak S, et al. RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nat Commun. 2017;8:2005 pubmed 出版商
  51. Ersoy B, Maner Smith K, Li Y, Alpertunga I, Cohen D. Thioesterase-mediated control of cellular calcium homeostasis enables hepatic ER stress. J Clin Invest. 2018;128:141-156 pubmed 出版商
  52. Lüningschrör P, Binotti B, Dombert B, Heimann P, Pérez Lara A, Slotta C, et al. Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun. 2017;8:678 pubmed 出版商
  53. Feigenson M, Shull L, Taylor E, Camilleri E, Riester S, Van Wijnen A, et al. Histone Deacetylase 3 Deletion in Mesenchymal Progenitor Cells Hinders Long Bone Development. J Bone Miner Res. 2017;32:2453-2465 pubmed 出版商
  54. Xu X, Cui Y, Cao L, Zhang Y, Yin Y, Hu X. PCSK9 regulates apoptosis in human lung adenocarcinoma A549 cells via endoplasmic reticulum stress and mitochondrial signaling pathways. Exp Ther Med. 2017;13:1993-1999 pubmed 出版商
  55. Xiong G, Hindi S, Mann A, Gallot Y, Bohnert K, Cavener D, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. elife. 2017;6: pubmed 出版商
  56. Xiao N, Yang L, Yang Y, Liu L, Li J, Liu B, et al. Ginsenoside Rg5 Inhibits Succinate-Associated Lipolysis in Adipose Tissue and Prevents Muscle Insulin Resistance. Front Pharmacol. 2017;8:43 pubmed 出版商
  57. Li J, Yakushi T, Parlati F, MacKinnon A, Pérez C, Ma Y, et al. Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nat Chem Biol. 2017;13:486-493 pubmed 出版商
  58. Genovese G, Carugo A, TEPPER J, Robinson F, Li L, Svelto M, et al. Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature. 2017;542:362-366 pubmed 出版商
  59. Liu J, Wang Y, Song L, Zeng L, Yi W, Liu T, et al. A critical role of DDRGK1 in endoplasmic reticulum homoeostasis via regulation of IRE1α stability. Nat Commun. 2017;8:14186 pubmed 出版商
  60. Feng L, Xue D, Chen E, Zhang W, Gao X, Yu J, et al. HMGB1 promotes the secretion of multiple cytokines and potentiates the osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Exp Ther Med. 2016;12:3941-3947 pubmed 出版商
  61. Geraghty P, Baumlin N, SALATHE M, Foronjy R, D Armiento J. Glutathione Peroxidase-1 Suppresses the Unfolded Protein Response upon Cigarette Smoke Exposure. Mediators Inflamm. 2016;2016:9461289 pubmed 出版商
  62. Yoon J, Park K, Hwang D, Rhee K. Importance of eIF2α phosphorylation as a protective mechanism against heat stress in mouse male germ cells. Mol Reprod Dev. 2017;84:265-274 pubmed 出版商
  63. Chao M, Guo J, Cheng W, Zhu X, She Z, Huang Z, et al. Loss of Caspase-Activated DNase Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed 出版商
  64. Torgersen M, Klokk T, Kavaliauskiene S, Klose C, Simons K, Skotland T, et al. The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget. 2016;7:86871-86888 pubmed 出版商
  65. Sareddy G, Viswanadhapalli S, Surapaneni P, Suzuki T, Brenner A, Vadlamudi R. Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene. 2017;36:2423-2434 pubmed 出版商
  66. Li S, Yang B, Teguh D, Zhou L, Xu J, Rong L. Amyloid ? Peptide Enhances RANKL-Induced Osteoclast Activation through NF-?B, ERK, and Calcium Oscillation Signaling. Int J Mol Sci. 2016;17: pubmed
  67. Beauvais G, Bode N, Watson J, Wen H, Glenn K, Kawano H, et al. Disruption of Protein Processing in the Endoplasmic Reticulum of DYT1 Knock-in Mice Implicates Novel Pathways in Dystonia Pathogenesis. J Neurosci. 2016;36:10245-10256 pubmed
  68. Yang Z, Tsuchiya H, Zhang Y, Lee S, Liu C, Huang Y, et al. REV-ERB? Activates C/EBP Homologous Protein to Control Small Heterodimer Partner-Mediated Oscillation of Alcoholic Fatty Liver. Am J Pathol. 2016;186:2909-2920 pubmed 出版商
  69. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  70. Taniuchi S, Miyake M, Tsugawa K, Oyadomari M, Oyadomari S. Integrated stress response of vertebrates is regulated by four eIF2? kinases. Sci Rep. 2016;6:32886 pubmed 出版商
  71. Zhu S, Henninger K, McGrath B, Cavener D. PERK Regulates Working Memory and Protein Synthesis-Dependent Memory Flexibility. PLoS ONE. 2016;11:e0162766 pubmed 出版商
  72. Krawczyk K, Ekman M, Rippe C, Grossi M, Nilsson B, Albinsson S, et al. Assessing the contribution of thrombospondin-4 induction and ATF6? activation to endoplasmic reticulum expansion and phenotypic modulation in bladder outlet obstruction. Sci Rep. 2016;6:32449 pubmed 出版商
  73. Liu J, Ma Y, Sun C, Li S, Wang J. High Mobility Group Box1 Protein Is Involved in Endoplasmic Reticulum Stress Induced by Clostridium difficile Toxin A. Biomed Res Int. 2016;2016:4130834 pubmed 出版商
  74. Marwarha G, Claycombe K, Schommer J, Collins D, Ghribi O. Palmitate-induced Endoplasmic Reticulum stress and subsequent C/EBP? Homologous Protein activation attenuates leptin and Insulin-like growth factor 1 expression in the brain. Cell Signal. 2016;28:1789-805 pubmed 出版商
  75. Wang J, Li H, Li B, Gong Q, Chen X, Wang Q. Co-culture of bone marrow stem cells and macrophages indicates intermediate mechanism between local inflammation and innate immune system in diabetic periodontitis. Exp Ther Med. 2016;12:567-572 pubmed
  76. Gallagher C, Garri C, Cain E, Ang K, Wilson C, Chen S, et al. Ceapins are a new class of unfolded protein response inhibitors, selectively targeting the ATF6α branch. elife. 2016;5: pubmed 出版商
  77. Madureira P, Bharadwaj A, Bydoun M, Garant K, O Connell P, Lee P, et al. Cell surface protease activation during RAS transformation: Critical role of the plasminogen receptor, S100A10. Oncotarget. 2016;7:47720-47737 pubmed 出版商
  78. Hamlin A, Basford J, Jaeschke A, Hui D. LRP1 Protein Deficiency Exacerbates Palmitate-induced Steatosis and Toxicity in Hepatocytes. J Biol Chem. 2016;291:16610-9 pubmed 出版商
  79. Zhou X, Wei Y, Qiu S, Xu Y, Zhang T, Zhang S. Propofol Decreases Endoplasmic Reticulum Stress-Mediated Apoptosis in Retinal Pigment Epithelial Cells. PLoS ONE. 2016;11:e0157590 pubmed 出版商
  80. Chaveroux C, Sarcinelli C, Barbet V, Belfeki S, Barthelaix A, Ferraro Peyret C, et al. Nutrient shortage triggers the hexosamine biosynthetic pathway via the GCN2-ATF4 signalling pathway. Sci Rep. 2016;6:27278 pubmed 出版商
  81. Genç B, Jara J, Schultz M, Manuel M, Stanford M, Gautam M, et al. Absence of UCHL 1 function leads to selective motor neuropathy. Ann Clin Transl Neurol. 2016;3:331-45 pubmed 出版商
  82. PluciÅ„ska K, Dekeryte R, Koss D, Shearer K, Mody N, Whitfield P, et al. Neuronal human BACE1 knockin induces systemic diabetes in mice. Diabetologia. 2016;59:1513-1523 pubmed 出版商
  83. Gupta A, Hossain M, Miller N, Kerin M, Callagy G, Gupta S. NCOA3 coactivator is a transcriptional target of XBP1 and regulates PERK-eIF2α-ATF4 signalling in breast cancer. Oncogene. 2016;35:5860-5871 pubmed 出版商
  84. Aaes T, Kaczmarek A, Delvaeye T, De Craene B, De Koker S, Heyndrickx L, et al. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity. Cell Rep. 2016;15:274-87 pubmed 出版商
  85. Gandin V, Masvidal L, Cargnello M, Gyenis L, McLaughlan S, Cai Y, et al. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nat Commun. 2016;7:11127 pubmed 出版商
  86. Llambi F, Wang Y, Victor B, Yang M, Schneider D, Gingras S, et al. BOK Is a Non-canonical BCL-2 Family Effector of Apoptosis Regulated by ER-Associated Degradation. Cell. 2016;165:421-33 pubmed 出版商
  87. Saveljeva S, Cleary P, Mnich K, Ayo A, Pakos Zebrucka K, Patterson J, et al. Endoplasmic reticulum stress-mediated induction of SESTRIN 2 potentiates cell survival. Oncotarget. 2016;7:12254-66 pubmed 出版商
  88. Tibullo D, Barbagallo I, Giallongo C, Vanella L, Conticello C, Romano A, et al. Heme oxygenase-1 nuclear translocation regulates bortezomibinduced cytotoxicity and mediates genomic instability in myeloma cells. Oncotarget. 2016;7:28868-80 pubmed 出版商
  89. Chusri P, Kumthip K, Hong J, Zhu C, Duan X, Jilg N, et al. HCV induces transforming growth factor β1 through activation of endoplasmic reticulum stress and the unfolded protein response. Sci Rep. 2016;6:22487 pubmed 出版商
  90. Colangelo T, Polcaro G, Ziccardi P, Muccillo L, Galgani M, Pucci B, et al. The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells. Cell Death Dis. 2016;7:e2108 pubmed 出版商
  91. Kline C, van den Heuvel A, Allen J, Prabhu V, Dicker D, El Deiry W. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases. Sci Signal. 2016;9:ra18 pubmed 出版商
  92. Hong M, Nam K, Kim K, Kim S, Kim I. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha. Cell Stress Chaperones. 2016;21:485-97 pubmed 出版商
  93. Gupta A, Hossain M, Read D, Hetz C, Samali A, Gupta S. PERK regulated miR-424(322)-503 cluster fine-tunes activation of IRE1 and ATF6 during Unfolded Protein Response. Sci Rep. 2015;5:18304 pubmed 出版商
  94. Gao X, Krokowski D, Guan B, Bederman I, Majumder M, Parisien M, et al. Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response. elife. 2015;4:e10067 pubmed 出版商
  95. Sun S, Shi G, Sha H, Ji Y, Han X, Shu X, et al. IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation. Nat Cell Biol. 2015;17:1546-55 pubmed 出版商
  96. Patel M, Jacobson B, Ji Y, Drees J, Tang S, Xiong K, et al. Vesicular stomatitis virus expressing interferon-β is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer. Oncotarget. 2015;6:33165-77 pubmed 出版商
  97. Nath A, Li I, Roberts L, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2015;5:14752 pubmed 出版商
  98. Sakabe I, Hu R, Jin L, Clarke R, Kasid U. TMEM33: a new stress-inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling. Breast Cancer Res Treat. 2015;153:285-97 pubmed 出版商
  99. Artero Castro A, Perez Alea M, Feliciano A, Leal J, Genestar M, Castellvi J, et al. Disruption of the ribosomal P complex leads to stress-induced autophagy. Autophagy. 2015;11:1499-519 pubmed 出版商
  100. D Osualdo A, Anania V, Yu K, Lill J, Kaufman R, Matsuzawa S, et al. Transcription Factor ATF4 Induces NLRP1 Inflammasome Expression during Endoplasmic Reticulum Stress. PLoS ONE. 2015;10:e0130635 pubmed 出版商
  101. So J, Cho S, Min S, Kimball S, Lee A. IRE1α-Dependent Decay of CReP/Ppp1r15b mRNA Increases Eukaryotic Initiation Factor 2α Phosphorylation and Suppresses Protein Synthesis. Mol Cell Biol. 2015;35:2761-70 pubmed 出版商
  102. Plumb R, Zhang Z, Appathurai S, Mariappan M. A functional link between the co-translational protein translocation pathway and the UPR. elife. 2015;4: pubmed 出版商
  103. Sheng X, Arnoldussen Y, Storm M, Tesikova M, Nenseth H, Zhao S, et al. Divergent androgen regulation of unfolded protein response pathways drives prostate cancer. EMBO Mol Med. 2015;7:788-801 pubmed 出版商
  104. Wong M, Nicholson C, Holloway A, Hardy D. Maternal nicotine exposure leads to impaired disulfide bond formation and augmented endoplasmic reticulum stress in the rat placenta. PLoS ONE. 2015;10:e0122295 pubmed 出版商
  105. Dametto P, Lakkaraju A, Bridel C, Villiger L, O CONNOR T, Herrmann U, et al. Neurodegeneration and unfolded-protein response in mice expressing a membrane-tethered flexible tail of PrP. PLoS ONE. 2015;10:e0117412 pubmed 出版商
  106. Deegan S, Koryga I, Glynn S, Gupta S, Gorman A, Samali A. A close connection between the PERK and IRE arms of the UPR and the transcriptional regulation of autophagy. Biochem Biophys Res Commun. 2015;456:305-11 pubmed 出版商
  107. Le Pape S, Dimitrova E, Hannaert P, Konovalov A, Volmer R, Ron D, et al. Polynomial algebra reveals diverging roles of the unfolded protein response in endothelial cells during ischemia-reperfusion injury. FEBS Lett. 2014;588:3062-7 pubmed 出版商
  108. Maas N, Singh N, Diehl J. Generation and characterization of an analog-sensitive PERK allele. Cancer Biol Ther. 2014;15:1106-11 pubmed 出版商
  109. Nagelkerke A, Sweep F, Stegeman H, Grenman R, Kaanders J, Bussink J, et al. Hypoxic regulation of the PERK/ATF4/LAMP3-arm of the unfolded protein response in head and neck squamous cell carcinoma. Head Neck. 2015;37:896-905 pubmed 出版商
  110. Han J, Kaufman R. Measurement of the unfolded protein response to investigate its role in adipogenesis and obesity. Methods Enzymol. 2014;538:135-50 pubmed 出版商
  111. Sisinni L, Maddalena F, Lettini G, Condelli V, Matassa D, Esposito F, et al. TRAP1 role in endoplasmic reticulum stress protection favors resistance to anthracyclins in breast carcinoma cells. Int J Oncol. 2014;44:573-82 pubmed 出版商
  112. Peng Y, Shi Y, Ding Z, Ke A, Gu C, Hui B, et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy. 2013;9:2056-68 pubmed 出版商
  113. Ma T, Trinh M, Wexler A, Bourbon C, Gatti E, Pierre P, et al. Suppression of eIF2? kinases alleviates Alzheimer's disease-related plasticity and memory deficits. Nat Neurosci. 2013;16:1299-305 pubmed 出版商
  114. Huang M, Sivagurunathan S, Ting S, Jansson P, Austin C, Kelly M, et al. Molecular and functional alterations in a mouse cardiac model of Friedreich ataxia: activation of the integrated stress response, eIF2? phosphorylation, and the induction of downstream targets. Am J Pathol. 2013;183:745-57 pubmed 出版商
  115. Devi L, Ohno M. Mechanisms that lessen benefits of ?-secretase reduction in a mouse model of Alzheimer's disease. Transl Psychiatry. 2013;3:e284 pubmed 出版商