这是一篇来自已证抗体库的有关人类 PINK1的综述,是根据50篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合PINK1 抗体。
PINK1 同义词: BRPK; PARK6

Novus Biologicals
domestic rabbit 多克隆(6C5cc)
  • 免疫印迹; 小鼠; 1:500-1:2000; 图 5c
Novus Biologicals PINK1抗体(Novus, NB100-493)被用于被用于免疫印迹在小鼠样本上浓度为1:500-1:2000 (图 5c). Redox Biol (2021) ncbi
domestic rabbit 多克隆(HH1/1784R)
  • 免疫印迹; 小鼠; 1:1000; 图 5c
  • 免疫印迹; 人类; 1:1000; 图 6f
Novus Biologicals PINK1抗体(Novus, BC100-494)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6f). JCI Insight (2021) ncbi
domestic rabbit 多克隆(HH1/1784R)
  • 免疫印迹; 人类; 1:3000; 图 3c
Novus Biologicals PINK1抗体(Novus Biologicals, BC100-494)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3c). Nat Commun (2021) ncbi
domestic rabbit 多克隆(HH1/1784R)
  • 免疫印迹; 大鼠; 1:50; 图 3a
Novus Biologicals PINK1抗体(Novus Biologicals, BC100-494SS)被用于被用于免疫印迹在大鼠样本上浓度为1:50 (图 3a). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆(HH1/1784R)
  • 免疫印迹; 小鼠; 图 4, 7
Novus Biologicals PINK1抗体(Novus, CO,USA, BC100-494)被用于被用于免疫印迹在小鼠样本上 (图 4, 7). FASEB J (2020) ncbi
domestic rabbit 多克隆(HH1/1784R)
  • 免疫印迹; 小鼠; 1:1000; 图 s2b
Novus Biologicals PINK1抗体(NOVUS Biologicals, BC100-494)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2b). Sci Rep (2018) ncbi
domestic rabbit 多克隆(HH1/1784R)
  • 免疫印迹; 人类; 图 1a
Novus Biologicals PINK1抗体(Novus Biologicals, BC100-494)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Death Differ (2018) ncbi
domestic rabbit 多克隆(HH1/1784R)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
Novus Biologicals PINK1抗体(Novusbio, BC100-494)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Endocrinology (2018) ncbi
domestic rabbit 多克隆(HH1/1784R)
  • 免疫印迹; 人类; 1:1000; 图 3e
Novus Biologicals PINK1抗体(Novus Biologicals, BC100-494)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). J Biol Chem (2017) ncbi
domestic rabbit 多克隆(HH1/1784R)
  • 免疫印迹; 人类; 1:1000; 图 4
Novus Biologicals PINK1抗体(Novus, BC100-494)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Hum Mol Genet (2017) ncbi
domestic rabbit 多克隆(HH1/1784R)
  • 免疫沉淀; 人类; 图 3g
  • 免疫细胞化学; 人类; 图 3h
  • 免疫印迹; 人类; 图 4a
Novus Biologicals PINK1抗体(Novus, BC100-494)被用于被用于免疫沉淀在人类样本上 (图 3g), 被用于免疫细胞化学在人类样本上 (图 3h) 和 被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2017) ncbi
domestic rabbit 多克隆(HH1/1784R)
  • 免疫印迹基因敲除验证; 人类; 图 s20c
Novus Biologicals PINK1抗体(Novus, BC-100-494)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 s20c). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆(HH1/1784R)
  • 免疫印迹; 人类; 图 4a
Novus Biologicals PINK1抗体(Novus, BC100-494)被用于被用于免疫印迹在人类样本上 (图 4a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆(HH1/1784R)
  • proximity ligation assay; 人类; 图 2
  • 免疫印迹; 人类; 图 1
Novus Biologicals PINK1抗体(Novus, BC100-494)被用于被用于proximity ligation assay在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Mol Carcinog (2017) ncbi
domestic rabbit 多克隆(HH1/1784R)
  • 免疫印迹; 人类; 图 3a
Novus Biologicals PINK1抗体(Novus Biologicals, BC100-494)被用于被用于免疫印迹在人类样本上 (图 3a). J Neurochem (2016) ncbi
domestic rabbit 多克隆(HH1/1784R)
Novus Biologicals PINK1抗体(Novus Biologicals, BC100-494)被用于. Cell Signal (2015) ncbi
domestic rabbit 多克隆(HH1/1784R)
Novus Biologicals PINK1抗体(Novus Biologicals, BC100-494)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆(HH1/1784R)
Novus Biologicals PINK1抗体(Santa Cruz Biotechnology, PN BC100-494)被用于. J Cell Biol (2015) ncbi
domestic rabbit 多克隆(HH1/1784R)
Novus Biologicals PINK1抗体(Novus, BC100-494)被用于. EMBO Mol Med (2015) ncbi
domestic rabbit 多克隆(HH1/1784R)
Novus Biologicals PINK1抗体(Novus Biological, BC100-494)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆(HH1/1784R)
Novus Biologicals PINK1抗体(Novus Biologicals, BC100-494)被用于. Hum Mol Genet (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2500; 图 1a
艾博抗(上海)贸易有限公司 PINK1抗体(Abcam, ab23707)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 1a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3h
艾博抗(上海)贸易有限公司 PINK1抗体(Abcam, ab23707)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 7f
艾博抗(上海)贸易有限公司 PINK1抗体(Abcam, ab23707)被用于被用于免疫印迹在大鼠样本上 (图 7f). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6d
艾博抗(上海)贸易有限公司 PINK1抗体(Abcam, ab23707)被用于被用于免疫印迹在小鼠样本上 (图 6d). Oxid Med Cell Longev (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 PINK1抗体(Abcam, ab23707)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Antioxidants (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5f
艾博抗(上海)贸易有限公司 PINK1抗体(Abcam, ab23707)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5f). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:100-1:200; 图 s5f
  • 流式细胞仪; 小鼠; 1:100-1:200; 图 s5e
艾博抗(上海)贸易有限公司 PINK1抗体(Abcam, ab23707)被用于被用于流式细胞仪在人类样本上浓度为1:100-1:200 (图 s5f) 和 被用于流式细胞仪在小鼠样本上浓度为1:100-1:200 (图 s5e). Cell Stem Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
艾博抗(上海)贸易有限公司 PINK1抗体(Abcam, ab23707)被用于被用于免疫印迹在人类样本上 (图 1e). Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 PINK1抗体(Abcam, 23707)被用于被用于免疫组化在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 5
  • 免疫印迹; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司 PINK1抗体(Abcam, ab23707)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
圣克鲁斯生物技术
单克隆(C-3)
  • 免疫印迹; 小鼠; 1:200; 图 5f
圣克鲁斯生物技术 PINK1抗体(Santa Cruz, sc-518052)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 5f). Cardiovasc Res (2018) ncbi
北京傲锐东源
小鼠 单克隆(38CT20.8.5)
  • 免疫印迹; 小鼠; 图 1e
北京傲锐东源 PINK1抗体(OriGene, TA324354)被用于被用于免疫印迹在小鼠样本上 (图 1e). Proc Natl Acad Sci U S A (2019) ncbi
Rockland Immunochemicals
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 2g
Rockland Immunochemicals PINK1抗体(Rockland, 600-401-GU5)被用于被用于流式细胞仪在人类样本上 (图 2g). Sci Adv (2022) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D8G3)
  • 免疫印迹; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司 PINK1抗体(CST, 6946)被用于被用于免疫印迹在小鼠样本上 (图 7b). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 单克隆(D8G3)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 PINK1抗体(Cell Signaling Technology, 6946)被用于被用于免疫印迹在人类样本上 (图 4a). Stem Cell Reports (2021) ncbi
domestic rabbit 单克隆(D8G3)
  • 免疫印迹基因敲除验证; 人类; 图 1h
赛信通(上海)生物试剂有限公司 PINK1抗体(Cell Signaling Technology, 6946)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1h). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D8G3)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 PINK1抗体(Cell Signaling Technology, 6946)被用于被用于免疫印迹在人类样本上 (图 2c). Sci Adv (2021) ncbi
domestic rabbit 单克隆(D8G3)
  • 免疫印迹; 小鼠; 1:1000; 图 8c
赛信通(上海)生物试剂有限公司 PINK1抗体(Cell Signaling, 6946)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8c). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 单克隆(D8G3)
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 PINK1抗体(Cell Signalling Technology, D8G3, 6946S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Life Sci Alliance (2020) ncbi
domestic rabbit 单克隆(D8G3)
  • 免疫沉淀; 人类; 图 1e
  • 免疫细胞化学; 人类; 图 2d
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 PINK1抗体(Cell Signaling, 6946)被用于被用于免疫沉淀在人类样本上 (图 1e), 被用于免疫细胞化学在人类样本上 (图 2d) 和 被用于免疫印迹在人类样本上 (图 1d). Front Cell Neurosci (2020) ncbi
domestic rabbit 单克隆(D8G3)
  • 免疫印迹; 人类; 1:500-1:2000; 图 s2f
赛信通(上海)生物试剂有限公司 PINK1抗体(Cell Signaling, 6946)被用于被用于免疫印迹在人类样本上浓度为1:500-1:2000 (图 s2f). Cell Rep (2019) ncbi
domestic rabbit 单克隆(D8G3)
  • 免疫印迹; 人类; 1:1000; 图 4c
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 PINK1抗体(Cell Signaling, 6946S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Aging Cell (2019) ncbi
domestic rabbit 单克隆(D8G3)
  • 免疫印迹; 小鼠; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 PINK1抗体(Cell Signaling, 6946)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2a). Sci Rep (2018) ncbi
domestic rabbit 单克隆(D8G3)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 PINK1抗体(Cell Signaling, 6946S)被用于被用于免疫印迹在人类样本上 (图 5b). Cell Chem Biol (2017) ncbi
domestic rabbit 单克隆(D8G3)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 PINK1抗体(Cell Signaling, D8G3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Hum Mol Genet (2017) ncbi
domestic rabbit 单克隆(D8G3)
  • 免疫印迹; African green monkey; 图 3b
赛信通(上海)生物试剂有限公司 PINK1抗体(Cell signaling, 6946)被用于被用于免疫印迹在African green monkey样本上 (图 3b). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(D8G3)
  • 免疫组化; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 PINK1抗体(Cell Signaling, 6946)被用于被用于免疫组化在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). J Immunol (2016) ncbi
domestic rabbit 单克隆(D8G3)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 PINK1抗体(Cell Signaling, 6946)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D8G3)
  • 免疫细胞化学; 人类; 图 1e
赛信通(上海)生物试剂有限公司 PINK1抗体(Cell Signaling, 6946)被用于被用于免疫细胞化学在人类样本上 (图 1e). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(D8G3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PINK1抗体(Cell Signaling Technology, 6946)被用于被用于免疫印迹在人类样本上 (图 3). Autophagy (2016) ncbi
Neuromab
小鼠 单克隆(N357/6)
  • 免疫印迹; 小鼠; 1:3
Neuromab PINK1抗体(NeuroMab, N357/6)被用于被用于免疫印迹在小鼠样本上浓度为1:3. EMBO J (2021) ncbi
文章列表
  1. Chen P, Katsuyama E, Satyam A, Li H, Rubio J, Jung S, et al. CD38 reduces mitochondrial fitness and cytotoxic T cell response against viral infection in lupus patients by suppressing mitophagy. Sci Adv. 2022;8:eabo4271 pubmed 出版商
  2. Chiang S, Braidy N, Maleki S, Lal S, Richardson D, Huang M. Mechanisms of impaired mitochondrial homeostasis and NAD+ metabolism in a model of mitochondrial heart disease exhibiting redox active iron accumulation. Redox Biol. 2021;46:102038 pubmed 出版商
  3. López Doménech G, Howden J, Covill Cooke C, Morfill C, Patel J, Bürli R, et al. Loss of neuronal Miro1 disrupts mitophagy and induces hyperactivation of the integrated stress response. EMBO J. 2021;40:e100715 pubmed 出版商
  4. Gan L, Liu D, Liu J, Chen E, Chen C, Liu L, et al. CD38 deficiency alleviates Ang II-induced vascular remodeling by inhibiting small extracellular vesicle-mediated vascular smooth muscle cell senescence in mice. Signal Transduct Target Ther. 2021;6:223 pubmed 出版商
  5. Matsui H, Ito J, Matsui N, Uechi T, Onodera O, Kakita A. Cytosolic dsDNA of mitochondrial origin induces cytotoxicity and neurodegeneration in cellular and zebrafish models of Parkinson's disease. Nat Commun. 2021;12:3101 pubmed 出版商
  6. Xu L, Humphries F, Delagic N, Wang B, Holland A, Edgar K, et al. ECSIT is a critical limiting factor for cardiac function. JCI Insight. 2021;6: pubmed 出版商
  7. Poon A, Saini H, Sethi S, O Sullivan G, Plun Favreau H, Wray S, et al. The role of SQSTM1 (p62) in mitochondrial function and clearance in human cortical neurons. Stem Cell Reports. 2021;16:1276-1289 pubmed 出版商
  8. Miyahara K, Takano N, Yamada Y, Kazama H, Tokuhisa M, Hino H, et al. BRCA1 degradation in response to mitochondrial damage in breast cancer cells. Sci Rep. 2021;11:8735 pubmed 出版商
  9. Tian F, Zhang Y. Overexpression of SERCA2a Alleviates Cardiac Microvascular Ischemic Injury by Suppressing Mfn2-Mediated ER/Mitochondrial Calcium Tethering. Front Cell Dev Biol. 2021;9:636553 pubmed 出版商
  10. Hung C, Lombardo P, Malik N, Brun S, Hellberg K, Van Nostrand J, et al. AMPK/ULK1-mediated phosphorylation of Parkin ACT domain mediates an early step in mitophagy. Sci Adv. 2021;7: pubmed 出版商
  11. Huo S, Shi W, Ma H, Yan D, Luo P, Guo J, et al. Alleviation of Inflammation and Oxidative Stress in Pressure Overload-Induced Cardiac Remodeling and Heart Failure via IL-6/STAT3 Inhibition by Raloxifene. Oxid Med Cell Longev. 2021;2021:6699054 pubmed 出版商
  12. Cheng Y, Liu M, Tang H, Chen B, Yang G, Zhao W, et al. iTRAQ-Based Quantitative Proteomics Indicated Nrf2/OPTN-Mediated Mitophagy Inhibits NLRP3 Inflammasome Activation after Intracerebral Hemorrhage. Oxid Med Cell Longev. 2021;2021:6630281 pubmed 出版商
  13. Choi G, Lee H, Chae C, Cho J, Jung Y, Kim J, et al. BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects. Nat Commun. 2021;12:487 pubmed 出版商
  14. Xu Y, Zhi F, Mao J, Peng Y, Shao N, Balboni G, et al. δ-opioid receptor activation protects against Parkinson's disease-related mitochondrial dysfunction by enhancing PINK1/Parkin-dependent mitophagy. Aging (Albany NY). 2020;12:25035-25059 pubmed 出版商
  15. Sun Q, Chen J, Xu L, Kang J, Wu X, Ren Y, et al. MUTYH Deficiency Is Associated with Attenuated Pulmonary Fibrosis in a Bleomycin-Induced Model. Oxid Med Cell Longev. 2020;2020:4828256 pubmed 出版商
  16. Rusilowicz Jones E, Jardine J, Kallinos A, Pinto Fernandez A, Guenther F, Giurrandino M, et al. USP30 sets a trigger threshold for PINK1-PARKIN amplification of mitochondrial ubiquitylation. Life Sci Alliance. 2020;3: pubmed 出版商
  17. Meza Torres C, Hernández Camacho J, Cortés Rodríguez A, Fang L, Bui Thanh T, Rodríguez Bies E, et al. Resveratrol Regulates the Expression of Genes Involved in CoQ Synthesis in Liver in Mice Fed with High Fat Diet. Antioxidants (Basel). 2020;9: pubmed 出版商
  18. Huang Z, Zhao J, Wang W, Zhou J, Zhang J. Depletion of LncRNA NEAT1 Rescues Mitochondrial Dysfunction Through NEDD4L-Dependent PINK1 Degradation in Animal Models of Alzheimer's Disease. Front Cell Neurosci. 2020;14:28 pubmed 出版商
  19. Zhang S, Hu L, Jiang J, Li H, Wu Q, Ooi K, et al. HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. J Neuroinflammation. 2020;17:15 pubmed 出版商
  20. Huang Y, Gu C, Wang Q, Xu L, Chen J, Zhou W, et al. The protective effort of GPCR kinase 2-interacting protein-1 in neurons via promoting Beclin1-Parkin induced mitophagy at the early stage of spinal cord ischemia-reperfusion injury. FASEB J. 2020;34:2055-2074 pubmed 出版商
  21. Wall C, Rose C, Adrian M, Zeng Y, Kirkpatrick D, Bingol B. PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Rep. 2019;29:3280-3292.e7 pubmed 出版商
  22. Song C, Zhang J, Qi S, Liu Z, Zhang X, Zheng Y, et al. Cardiolipin remodeling by ALCAT1 links mitochondrial dysfunction to Parkinson's diseases. Aging Cell. 2019;18:e12941 pubmed 出版商
  23. Zhang J, Sheng J, Dong L, Xu Y, Yu L, Liu Y, et al. Cardiomyocyte-specific loss of RMP causes myocardial dysfunction and heart failure. Cardiovasc Res. 2018;: pubmed 出版商
  24. Baranov S, Baranova O, Yablonska S, Suofu Y, Vazquez A, Kozai T, et al. Mitochondria modulate programmed neuritic retraction. Proc Natl Acad Sci U S A. 2019;116:650-659 pubmed 出版商
  25. Walsh T, van den Bosch M, Lewis K, Williams C, Poole A. Loss of the mitochondrial kinase PINK1 does not alter platelet function. Sci Rep. 2018;8:14377 pubmed 出版商
  26. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  27. Goiran T, Duplan E, Rouland L, El Manaa W, Lauritzen I, Dunys J, et al. Nuclear p53-mediated repression of autophagy involves PINK1 transcriptional down-regulation. Cell Death Differ. 2018;25:873-884 pubmed 出版商
  28. Malty R, Aoki H, Kumar A, Phanse S, Amin S, Zhang Q, et al. A Map of Human Mitochondrial Protein Interactions Linked to Neurodegeneration Reveals New Mechanisms of Redox Homeostasis and NF-κB Signaling. Cell Syst. 2017;5:564-577.e12 pubmed 出版商
  29. Viana Huete V, Guillen C, García G, Fernandez S, García Aguilar A, Kahn C, et al. Male Brown Fat-Specific Double Knockout of IGFIR/IR: Atrophy, Mitochondrial Fission Failure, Impaired Thermogenesis, and Obesity. Endocrinology. 2018;159:323-340 pubmed 出版商
  30. Xiao B, Goh J, Xiao L, Xian H, Lim K, Liou Y. Reactive oxygen species trigger Parkin/PINK1 pathway-dependent mitophagy by inducing mitochondrial recruitment of Parkin. J Biol Chem. 2017;292:16697-16708 pubmed 出版商
  31. Shiba Fukushima K, Ishikawa K, Inoshita T, Izawa N, Takanashi M, Sato S, et al. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease. Hum Mol Genet. 2017;26:3172-3185 pubmed 出版商
  32. Zhang Y, Nguyen D, Olzomer E, Poon G, Cole N, Puvanendran A, et al. Rescue of Pink1 Deficiency by Stress-Dependent Activation of Autophagy. Cell Chem Biol. 2017;24:471-480.e4 pubmed 出版商
  33. Borgia D, Malena A, Spinazzi M, Desbats M, Salviati L, Russell A, et al. Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients. Hum Mol Genet. 2017;26:1087-1103 pubmed 出版商
  34. Li G, Fu R, Shen H, Zhou J, Hu X, Liu Y, et al. Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels. Oncotarget. 2017;8:10359-10374 pubmed 出版商
  35. Wettengel J, Reautschnig P, Geisler S, Kahle P, Stafforst T. Harnessing human ADAR2 for RNA repair - Recoding a PINK1 mutation rescues mitophagy. Nucleic Acids Res. 2017;45:2797-2808 pubmed 出版商
  36. McLelland G, Lee S, McBride H, Fon E. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J Cell Biol. 2016;214:275-91 pubmed 出版商
  37. Akabane S, Matsuzaki K, Yamashita S, Arai K, Okatsu K, Kanki T, et al. Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy. J Biol Chem. 2016;291:16162-74 pubmed 出版商
  38. Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, et al. Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis. J Immunol. 2016;197:504-16 pubmed 出版商
  39. Scott T, Wicker C, Suganya R, Dhar B, Pittman T, Horbinski C, et al. Polyubiquitination of apurinic/apyrimidinic endonuclease 1 by Parkin. Mol Carcinog. 2017;56:325-336 pubmed 出版商
  40. Swiader A, Nahapetyan H, Faccini J, D Angelo R, Mucher E, Elbaz M, et al. Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids. Oncotarget. 2016;7:28821-35 pubmed 出版商
  41. Pryde K, Smith H, Chau K, Schapira A. PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. J Cell Biol. 2016;213:163-71 pubmed 出版商
  42. Qi Y, Qiu Q, Gu X, Tian Y, Zhang Y. ATM mediates spermidine-induced mitophagy via PINK1 and Parkin regulation in human fibroblasts. Sci Rep. 2016;6:24700 pubmed 出版商
  43. Dey A, Mustafi S, Saha S, Kumar Dhar Dwivedi S, Mukherjee P, Bhattacharya R. Inhibition of BMI1 induces autophagy-mediated necroptosis. Autophagy. 2016;12:659-70 pubmed 出版商
  44. Ivankovic D, Chau K, Schapira A, Gegg M. Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy. J Neurochem. 2016;136:388-402 pubmed 出版商
  45. Park S, Choi S, Yoo S, Nah J, Jeong E, Kim H, et al. Pyruvate stimulates mitophagy via PINK1 stabilization. Cell Signal. 2015;27:1824-30 pubmed 出版商
  46. Lim G, Chua D, Basil A, Chan H, Chai C, Arumugam T, et al. Cytosolic PTEN-induced Putative Kinase 1 Is Stabilized by the NF-κB Pathway and Promotes Non-selective Mitophagy. J Biol Chem. 2015;290:16882-93 pubmed 出版商
  47. Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol. 2015;209:111-28 pubmed 出版商
  48. Seillier M, Pouyet L, N Guessan P, Nollet M, Capo F, Guillaumond F, et al. Defects in mitophagy promote redox-driven metabolic syndrome in the absence of TP53INP1. EMBO Mol Med. 2015;7:802-18 pubmed 出版商
  49. Jabir M, Hopkins L, Ritchie N, Ullah I, Bayes H, Li D, et al. Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy. Autophagy. 2015;11:166-82 pubmed 出版商
  50. Choi H, Choi Y, Kang H, Lim E, Park S, Lee H, et al. PINK1 positively regulates HDAC3 to suppress dopaminergic neuronal cell death. Hum Mol Genet. 2015;24:1127-41 pubmed 出版商