这是一篇来自已证抗体库的有关人类 PKC甲 (PKC alpha) 的综述,是根据72篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合PKC甲 抗体。
PKC甲 同义词: AAG6; PKC-alpha; PKCA; PKCI+/-; PKCalpha; PRKACA

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(Y124)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4k
艾博抗(上海)贸易有限公司PKC甲抗体(Abcam, AB32376)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4k). Int J Ophthalmol (2021) ncbi
domestic rabbit 单克隆(Y124)
  • 免疫印迹; 小鼠; 图 2a
艾博抗(上海)贸易有限公司PKC甲抗体(Abcam, ab32376)被用于被用于免疫印迹在小鼠样本上 (图 2a). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4j, 6a
艾博抗(上海)贸易有限公司PKC甲抗体(Abcam, ab59411)被用于被用于免疫印迹在大鼠样本上 (图 4j, 6a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(Y124)
  • 免疫印迹; 人类; 图 4f
艾博抗(上海)贸易有限公司PKC甲抗体(Abcam, ab32376)被用于被用于免疫印迹在人类样本上 (图 4f). Theranostics (2021) ncbi
domestic rabbit 单克隆(EP2608Y)
  • 免疫印迹; 小鼠; 图 6e
艾博抗(上海)贸易有限公司PKC甲抗体(Abcam, ab76016)被用于被用于免疫印迹在小鼠样本上 (图 6e). Biomolecules (2021) ncbi
domestic rabbit 单克隆(Y124)
  • 免疫印迹; 小鼠; 图 6e
艾博抗(上海)贸易有限公司PKC甲抗体(Abcam, ab32376)被用于被用于免疫印迹在小鼠样本上 (图 6e). Biomolecules (2021) ncbi
domestic rabbit 单克隆(Y124)
  • 免疫组化; 小鼠; 1:2000; 图 s1-1i
艾博抗(上海)贸易有限公司PKC甲抗体(Abcam, ab32376)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 s1-1i). elife (2020) ncbi
domestic rabbit 单克隆(Y124)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司PKC甲抗体(Abcam, ab32376)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4a). elife (2018) ncbi
domestic rabbit 单克隆(Y124)
  • 免疫印迹; 人类; 图 5e
艾博抗(上海)贸易有限公司PKC甲抗体(Abcam, ab32376)被用于被用于免疫印迹在人类样本上 (图 5e). J Physiol (2017) ncbi
domestic rabbit 单克隆(E195)
  • 免疫印迹; 小鼠; 图 8a
艾博抗(上海)贸易有限公司PKC甲抗体(Abcam, ab32502)被用于被用于免疫印迹在小鼠样本上 (图 8a). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(EP2608Y)
  • 免疫印迹; 人类; 1:500; 图 s3
艾博抗(上海)贸易有限公司PKC甲抗体(Abcam, ab76016)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(Y124)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s1a
艾博抗(上海)贸易有限公司PKC甲抗体(Abcam, AB32376)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s1a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(Y124)
  • 免疫印迹; pigs ; 1:5000; 图 6a
艾博抗(上海)贸易有限公司PKC甲抗体(Abcam, ab32376)被用于被用于免疫印迹在pigs 样本上浓度为1:5000 (图 6a). Vet Res (2016) ncbi
domestic rabbit 单克隆(Y124)
  • 免疫组化-石蜡切片; 金鱼; 1:200; 图 4
艾博抗(上海)贸易有限公司PKC甲抗体(Abcam, ab32376)被用于被用于免疫组化-石蜡切片在金鱼样本上浓度为1:200 (图 4). J Gen Physiol (2015) ncbi
domestic rabbit 单克隆(Y124)
  • 免疫印迹; 小鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司PKC甲抗体(Abcam, AB32376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Cell Stress Chaperones (2015) ncbi
domestic rabbit 单克隆(EP2608Y)
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司PKC甲抗体(Abcam, AB76016)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Stress Chaperones (2015) ncbi
domestic rabbit 单克隆(Y124)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 1a
艾博抗(上海)贸易有限公司PKC甲抗体(Abcam, ab32376)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 1a). Brain Struct Funct (2016) ncbi
domestic rabbit 单克隆(Y124)
  • 免疫印迹; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司PKC甲抗体(Abcam, ab32376)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Neuroreport (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(H-7)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2b
圣克鲁斯生物技术PKC甲抗体(Santa Cruz, sc-8393)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2b). Front Neurosci (2021) ncbi
小鼠 单克隆(H-7)
  • 免疫组化; 小鼠; 1:50; 图 2f
圣克鲁斯生物技术PKC甲抗体(Santa, sc-8393)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2f). elife (2020) ncbi
小鼠 单克隆(MC5)
  • 免疫印迹; 小鼠; 图 6b
圣克鲁斯生物技术PKC甲抗体(SantaCruz, MC5)被用于被用于免疫印迹在小鼠样本上 (图 6b). Biopharm Drug Dispos (2018) ncbi
小鼠 单克隆(H-7)
  • 免疫组化; Shaw's jird; 1:200; 表 1
圣克鲁斯生物技术PKC甲抗体(Santa Cruz, SC-8393)被用于被用于免疫组化在Shaw's jird样本上浓度为1:200 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(H-7)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术PKC甲抗体(Santa Cruz, sc-8393)被用于被用于免疫印迹在人类样本上 (图 4a). Sci Rep (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
圣克鲁斯生物技术PKC甲抗体(santa Cruz, sc-17769)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). Mol Vis (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 小鼠; 1:200; 图 2
圣克鲁斯生物技术PKC甲抗体(Santa Cruz, sc-17769)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2). J Pathol (2016) ncbi
小鼠 单克隆(H-7)
  • 免疫印迹; 小鼠; 图 5a
圣克鲁斯生物技术PKC甲抗体(Santa Cruz, sc-8393)被用于被用于免疫印迹在小鼠样本上 (图 5a). Sci Rep (2016) ncbi
小鼠 单克隆(H-7)
  • 免疫组化; 小鼠; 1:500; 图 3
  • 免疫组化; African green monkey; 1:500; 图 3
圣克鲁斯生物技术PKC甲抗体(Santa Cruz, sc-8393)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3) 和 被用于免疫组化在African green monkey样本上浓度为1:500 (图 3). Neural Plast (2016) ncbi
小鼠 单克隆(H-7)
  • 免疫组化; 小鼠; 1:500; 图 3e
圣克鲁斯生物技术PKC甲抗体(Santa Cruz, SC8393)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3e). Am J Pathol (2016) ncbi
小鼠 单克隆(H-7)
  • 免疫组化-自由浮动切片; 小鼠; 表 2
圣克鲁斯生物技术PKC甲抗体(Santa Cruz, sc-8393)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (表 2). J Comp Neurol (2016) ncbi
小鼠 单克隆(H-7)
  • 免疫组化; 小鼠; 1:500; 图 8
圣克鲁斯生物技术PKC甲抗体(Santa Cruz,, sc-8393)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 8). Channels (Austin) (2015) ncbi
小鼠 单克隆(H-7)
  • 免疫细胞化学; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术PKC甲抗体(Santa Cruz, sc-8393)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2). PLoS Biol (2015) ncbi
小鼠 单克隆(H-7)
  • 免疫印迹; 人类; 1:250; 图 1,2,3,4,5,6,7
圣克鲁斯生物技术PKC甲抗体(Santa Cruz, sc-8393)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1,2,3,4,5,6,7). EMBO J (2015) ncbi
小鼠 单克隆(H-7)
  • 免疫印迹; 人类; 图 1e
圣克鲁斯生物技术PKC甲抗体(Santa Cruz, sc-8393)被用于被用于免疫印迹在人类样本上 (图 1e). J Cell Mol Med (2015) ncbi
小鼠 单克隆(MC5)
  • 免疫组化; 小鼠; 1:100; 图 6H
  • 免疫组化; 大鼠; 1:100; 图 5H
圣克鲁斯生物技术PKC甲抗体(Santa Cruz, sc-80)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6H) 和 被用于免疫组化在大鼠样本上浓度为1:100 (图 5H). J Comp Neurol (2015) ncbi
小鼠 单克隆(H-7)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术PKC甲抗体(Santa Cruz, sc-8393)被用于被用于免疫印迹在大鼠样本上. Int J Mol Sci (2015) ncbi
小鼠 单克隆(H-7)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术PKC甲抗体(Santa Cruz Biotechnology, sc-8393)被用于被用于免疫印迹在小鼠样本上. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(H-7)
  • 免疫组化; 大鼠; 1:250
圣克鲁斯生物技术PKC甲抗体(Santa Cruz Biotech, H7)被用于被用于免疫组化在大鼠样本上浓度为1:250. Exp Eye Res (2014) ncbi
小鼠 单克隆(H-7)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术PKC甲抗体(Santa Cruz Biotechnology, sc-8393)被用于被用于免疫印迹在小鼠样本上. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(A-3)
  • 免疫组化; 大鼠; 1:200
圣克鲁斯生物技术PKC甲抗体(Santa Cruz Biotechnology, sc-17769)被用于被用于免疫组化在大鼠样本上浓度为1:200. Eur J Pain (2015) ncbi
小鼠 单克隆(H-7)
  • 免疫组化-石蜡切片; 人类; 1:50
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术PKC甲抗体(Santa Cruz, sc-8393)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:1000. Int J Cancer (2014) ncbi
小鼠 单克隆(H-7)
  • 免疫组化-冰冻切片; 大鼠; 1:500
圣克鲁斯生物技术PKC甲抗体(Santa Cruz Biotechnology, Sc-8393)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Comp Neurol (2011) ncbi
小鼠 单克隆(MC5)
  • 免疫组化-冰冻切片; African green monkey; 1:100
圣克鲁斯生物技术PKC甲抗体(Santa Cruz Biotechnology, sc-80)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:100. J Comp Neurol (2008) ncbi
Novus Biologicals
小鼠 单克隆(MC5)
  • 免疫组化; 小鼠; 图 1g, 3a
Novus BiologicalsPKC甲抗体(NOVUS, NB600-201)被用于被用于免疫组化在小鼠样本上 (图 1g, 3a). iScience (2021) ncbi
小鼠 单克隆(MC5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
Novus BiologicalsPKC甲抗体(Novus, NB600-201)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2007) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 10d
赛默飞世尔PKC甲抗体(Invitrogen, PA5-17,551)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 10d). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(MC5)
  • 免疫组化; 仓鼠; 1:100; 图 2
  • 免疫组化; 犬; 1:100; 图 2
  • 免疫组化; 小鼠; 1:100; 图 2
  • 免疫组化; domestic rabbit; 1:100; 图 2
赛默飞世尔PKC甲抗体(Thermo Fisher, MA1-157)被用于被用于免疫组化在仓鼠样本上浓度为1:100 (图 2), 被用于免疫组化在犬样本上浓度为1:100 (图 2), 被用于免疫组化在小鼠样本上浓度为1:100 (图 2) 和 被用于免疫组化在domestic rabbit样本上浓度为1:100 (图 2). Acta Histochem Cytochem (2015) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(133)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 表 2
伯乐(Bio-Rad)公司PKC甲抗体(AbD Serotec, MCA1572)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (表 2). Mol Vis (2016) ncbi
BioLegend
小鼠 单克隆(PKC0103)
  • 免疫印迹; 人类; 1:200; 图 4
BioLegendPKC甲抗体(Biolegend, 624302)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). Exp Cell Res (2017) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(2F11)
  • 其他; 人类; 图 st1
亚诺法生技股份有限公司PKC甲抗体(Abnova, 2F11)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2a
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 2056)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 2056)被用于被用于免疫印迹在人类样本上 (图 6b). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3c
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 9375)被用于被用于免疫印迹在人类样本上 (图 s3c). J Exp Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling Technology, 2056)被用于被用于免疫印迹在人类样本上 (图 3e). Cell Metab (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling Technology, 9375)被用于被用于免疫印迹在人类样本上 (图 3e). Cell Metab (2019) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 2056)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 2056)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 2056)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Exp Neurol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 2056)被用于被用于免疫印迹在人类样本上 (图 1b). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling Technology, 2056)被用于被用于免疫印迹在人类样本上. Neoplasia (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
  • 免疫印迹基因敲除验证; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 2056)被用于被用于免疫印迹在人类样本上 (图 2a) 和 被用于免疫印迹基因敲除验证在小鼠样本上 (图 6a). PLoS Pathog (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s9b
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 9375)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s9b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 2056)被用于被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 9375)被用于被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 s3
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 2056 S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 9375)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 2056)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Neoplasia (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 2
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell signaling, 9375)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 7c
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 9375)被用于被用于流式细胞仪在小鼠样本上 (图 7c) 和 被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 2056)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 9375)被用于被用于免疫印迹在小鼠样本上 (图 5e). Peptides (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 2056)被用于被用于免疫印迹在小鼠样本上 (图 5e). Peptides (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling Technology, 9375)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 st2
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell signaling, 2056)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 st2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling Technology, 9375)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling Technology, 2056)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s15
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling Tech, 2056P)被用于被用于免疫印迹在人类样本上 (图 s15). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 6
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, 2056)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 6). Am J Physiol Renal Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling Technology, 9375)被用于被用于免疫印迹在人类样本上 (图 2). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, cs-2056)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司PKC甲抗体(Cell Signaling, cs-9375)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). EMBO Mol Med (2016) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 s10a
西格玛奥德里奇PKC甲抗体(Sigma, SAB4502356)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s10a). Nat Commun (2021) ncbi
文章列表
  1. Peng W, Liao M, Huang W, Liu P, Levi S, Tseng Y, et al. Conditional Deletion of Activating Rearranged During Transfection Receptor Tyrosine Kinase Leads to Impairment of Photoreceptor Ribbon Synapses and Disrupted Visual Function in Mice. Front Neurosci. 2021;15:728905 pubmed 出版商
  2. Xiao Y, Liang J, Gao M, Sun J, Liu Y, Chen J, et al. Deletion of prominin-1 in mice results in disrupted photoreceptor outer segment protein homeostasis. Int J Ophthalmol. 2021;14:1334-1344 pubmed 出版商
  3. Matsuyama T, Tu H, Sun J, Hashiguchi T, Akiba R, Sho J, et al. Genetically engineered stem cell-derived retinal grafts for improved retinal reconstruction after transplantation. iScience. 2021;24:102866 pubmed 出版商
  4. Zhou Y, Ji H, Xu Q, Zhang X, Cao X, Chen Y, et al. Congenital biliary atresia is correlated with disrupted cell junctions and polarity caused by Cdc42 insufficiency in the liver. Theranostics. 2021;11:7262-7275 pubmed 出版商
  5. Li S, Lei Z, Zhao M, Hou Y, Wang D, Xu X, et al. Propofol Inhibits Ischemia/Reperfusion-Induced Cardiotoxicity Through the Protein Kinase C/Nuclear Factor Erythroid 2-Related Factor Pathway. Front Pharmacol. 2021;12:655726 pubmed 出版商
  6. Zhang X, Yu K, Ma L, Qian Z, Tian X, Miao Y, et al. Endogenous glutamate determines ferroptosis sensitivity via ADCY10-dependent YAP suppression in lung adenocarcinoma. Theranostics. 2021;11:5650-5674 pubmed 出版商
  7. Tirronen A, Downes N, Huusko J, Laakkonen J, Tuomainen T, Tavi P, et al. The Ablation of VEGFR-1 Signaling Promotes Pressure Overload-Induced Cardiac Dysfunction and Sudden Death. Biomolecules. 2021;11: pubmed 出版商
  8. Striebel J, Race B, Leung J, Schwartz C, Chesebro B. Prion-induced photoreceptor degeneration begins with misfolded prion protein accumulation in cones at two distinct sites: cilia and ribbon synapses. Acta Neuropathol Commun. 2021;9:17 pubmed 出版商
  9. Deshpande D, Agarwal N, Fleming T, Gaveriaux Ruff C, Klose C, Tappe Theodor A, et al. Loss of POMC-mediated antinociception contributes to painful diabetic neuropathy. Nat Commun. 2021;12:426 pubmed 出版商
  10. Leinonen H, Pham N, Boyd T, Santoso J, Palczewski K, Vinberg F. Homeostatic plasticity in the retina is associated with maintenance of night vision during retinal degenerative disease. elife. 2020;9: pubmed 出版商
  11. Agosto M, Wensel T. LRRTM4 is a member of the transsynaptic complex between rod photoreceptors and bipolar cells. J Comp Neurol. 2020;: pubmed 出版商
  12. Li H, Lian L, Liu B, Chen Y, Yang J, Jian S, et al. KIT ligand protects against both light-induced and genetic photoreceptor degeneration. elife. 2020;9: pubmed 出版商
  13. Nakanishi M, Mitchell R, Benoit Y, Orlando L, Reid J, Shimada K, et al. Human Pluripotency Is Initiated and Preserved by a Unique Subset of Founder Cells. Cell. 2019;177:910-924.e22 pubmed 出版商
  14. Ren D, Dai Y, Yang Q, Zhang X, Guo W, Ye L, et al. Wnt5a induces and maintains prostate cancer cells dormancy in bone. J Exp Med. 2019;216:428-449 pubmed 出版商
  15. Son S, Park S, Lee H, Siddiqi F, Lee J, Menzies F, et al. Leucine Signals to mTORC1 via Its Metabolite Acetyl-Coenzyme A. Cell Metab. 2019;29:192-201.e7 pubmed 出版商
  16. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  17. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  18. Jung Y, Cackowski F, Yumoto K, Decker A, Wang J, Kim J, et al. CXCL12γ Promotes Metastatic Castration-Resistant Prostate Cancer by Inducing Cancer Stem Cell and Neuroendocrine Phenotypes. Cancer Res. 2018;78:2026-2039 pubmed 出版商
  19. Quach H, Noh K, Hoi S, Bruinsma A, Groothuis G, Li A, et al. Alterations in gene expression in vitamin D-deficiency: Down-regulation of liver Cyp7a1 and renal Oat3 in mice. Biopharm Drug Dispos. 2018;39:99-115 pubmed 出版商
  20. Lu F, Shao G, Wang Y, Guan S, Burlingame A, Liu X, et al. Hypoxia-ischemia modifies postsynaptic GluN2B-containing NMDA receptor complexes in the neonatal mouse brain. Exp Neurol. 2018;299:65-74 pubmed 出版商
  21. Hammoum I, Benlarbi M, Dellaa A, Szabó K, Dékány B, Csaba D, et al. Study of retinal neurodegeneration and maculopathy in diabetic Meriones shawi: A particular animal model with human-like macula. J Comp Neurol. 2017;525:2890-2914 pubmed 出版商
  22. Chen X, Wu Q, Depeille P, Chen P, Thornton S, Kalirai H, et al. RasGRP3 Mediates MAPK Pathway Activation in GNAQ Mutant Uveal Melanoma. Cancer Cell. 2017;31:685-696.e6 pubmed 出版商
  23. Zaidman N, Panoskaltsis Mortari A, O Grady S. Large-conductance Ca2+ -activated K+ channel activation by apical P2Y receptor agonists requires hydrocortisone in differentiated airway epithelium. J Physiol. 2017;595:4631-4645 pubmed 出版商
  24. Zhai S, Liu C, Zhang L, Zhu J, Guo J, Zhang J, et al. PLCE1 Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional Activity of Snail. Neoplasia. 2017;19:154-164 pubmed 出版商
  25. Koh H, Kim Y, Kim J, Yun J, Jang K, Yang C. Toxoplasma gondii GRA7-Targeted ASC and PLD1 Promote Antibacterial Host Defense via PKCα. PLoS Pathog. 2017;13:e1006126 pubmed 出版商
  26. Chen C, Huang J, Wang C, Tahara S, Zhou L, Kondo Y, et al. Hepatitis C virus has a genetically determined lymphotropism through co-receptor B7.2. Nat Commun. 2017;8:13882 pubmed 出版商
  27. Chaney S, Mukherjee S, Giddabasappa A, Rueda E, Hamilton W, Johnson J, et al. Increased proliferation of late-born retinal progenitor cells by gestational lead exposure delays rod and bipolar cell differentiation. Mol Vis. 2016;22:1468-1489 pubmed
  28. Torres Martínez A, Gallardo Vera J, Lara Holguin A, Montano L, Rendón Huerta E. Claudin-6 enhances cell invasiveness through claudin-1 in AGS human adenocarcinoma gastric cancer cells. Exp Cell Res. 2017;350:226-235 pubmed 出版商
  29. Tsai C, Lin Y, Huang C, Shih C, Tsai Y, Tsao N, et al. Thrombomodulin regulates monocye differentiation via PKC? and ERK1/2 pathway in vitro and in atherosclerotic artery. Sci Rep. 2016;6:38421 pubmed 出版商
  30. Liu Z, Gan L, Wu T, Feng F, Luo D, Gu H, et al. Adiponectin reduces ER stress-induced apoptosis through PPARα transcriptional regulation of ATF2 in mouse adipose. Cell Death Dis. 2016;7:e2487 pubmed 出版商
  31. Sakre N, Wildey G, Behtaj M, Kresak A, Yang M, Fu P, et al. RICTOR amplification identifies a subgroup in small cell lung cancer and predicts response to drugs targeting mTOR. Oncotarget. 2017;8:5992-6002 pubmed 出版商
  32. Tseng H, Vong C, Kwan Y, Lee S, Hoi M. TRPM2 regulates TXNIP-mediated NLRP3 inflammasome activation via interaction with p47 phox under high glucose in human monocytic cells. Sci Rep. 2016;6:35016 pubmed 出版商
  33. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  34. Lee E, Wang J, Yumoto K, Jung Y, Cackowski F, Decker A, et al. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis. Neoplasia. 2016;18:553-66 pubmed 出版商
  35. Kim Y, Yadava R, Mandal M, Mahadevan K, Yu Q, Leitges M, et al. Disease Phenotypes in a Mouse Model of RNA Toxicity Are Independent of Protein Kinase Cα and Protein Kinase Cβ. PLoS ONE. 2016;11:e0163325 pubmed 出版商
  36. Wu Y, Ren D, Chen G. Siglec-E Negatively Regulates the Activation of TLR4 by Controlling Its Endocytosis. J Immunol. 2016;197:3336-3347 pubmed
  37. Girola N, Matsuo A, Figueiredo C, Massaoka M, Farias C, Arruda D, et al. The Ig VH complementarity-determining region 3-containing Rb9 peptide, inhibits melanoma cells migration and invasion by interactions with Hsp90 and an adhesion G-protein coupled receptor. Peptides. 2016;85:1-15 pubmed 出版商
  38. Sanges D, Simonte G, Di Vicino U, Romo N, Pinilla I, Nicolas M, et al. Reprogramming Müller glia via in vivo cell fusion regenerates murine photoreceptors. J Clin Invest. 2016;126:3104-16 pubmed 出版商
  39. Yang G, Zhu Y, Zhang W, Zhou D, Zhai C, Wang J. Influence of orally fed a select mixture of Bacillus probiotics on intestinal T-cell migration in weaned MUC4 resistant pigs following Escherichia coli challenge. Vet Res. 2016;47:71 pubmed 出版商
  40. Simmons A, Bloomsburg S, Billingslea S, Merrill M, Li S, Thomas M, et al. Pou4f2 knock-in Cre mouse: A multifaceted genetic tool for vision researchers. Mol Vis. 2016;22:705-17 pubmed
  41. Shen J, Wang R, He Z, Huang H, He X, Zhou J, et al. NMDA receptors participate in the progression of diabetic kidney disease by decreasing Cdc42-GTP activation in podocytes. J Pathol. 2016;240:149-60 pubmed 出版商
  42. Puchert M, Adams V, Linke A, Engele J. Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise. Cell Signal. 2016;28:1205-15 pubmed 出版商
  43. Gharib M, Tao H, Fungwe T, Hajri T. Cluster Differentiating 36 (CD36) Deficiency Attenuates Obesity-Associated Oxidative Stress in the Heart. PLoS ONE. 2016;11:e0155611 pubmed 出版商
  44. Najibi M, Labed S, Visvikis O, IRAZOQUI J. An Evolutionarily Conserved PLC-PKD-TFEB Pathway for Host Defense. Cell Rep. 2016;15:1728-42 pubmed 出版商
  45. Yu H, Yang T, Gao P, Wei X, Zhang H, Xiong S, et al. Caffeine intake antagonizes salt sensitive hypertension through improvement of renal sodium handling. Sci Rep. 2016;6:25746 pubmed 出版商
  46. Bouskila J, Javadi P, Elkrief L, Casanova C, Bouchard J, Ptito M. A Comparative Analysis of the Endocannabinoid System in the Retina of Mice, Tree Shrews, and Monkeys. Neural Plast. 2016;2016:3127658 pubmed 出版商
  47. Weigel C, Veldwijk M, Oakes C, Seibold P, Slynko A, Liesenfeld D, et al. Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis. Nat Commun. 2016;7:10893 pubmed 出版商
  48. Sugar T, Wassenhove McCarthy D, Orr A, Green J, van Kuppevelt T, McCarthy K. N-sulfation of heparan sulfate is critical for syndecan-4-mediated podocyte cell-matrix interactions. Am J Physiol Renal Physiol. 2016;310:F1123-35 pubmed 出版商
  49. Thomassen M, Gunnarsson T, Christensen P, Pavlovic D, Shattock M, Bangsbo J. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes. Am J Physiol Regul Integr Comp Physiol. 2016;310:R659-69 pubmed 出版商
  50. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  51. Albert V, Svensson K, Shimobayashi M, Colombi M, Munoz S, Jimenez V, et al. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol Med. 2016;8:232-46 pubmed 出版商
  52. Grishchuk Y, Stember K, Matsunaga A, Olivares A, CRUZ N, King V, et al. Retinal Dystrophy and Optic Nerve Pathology in the Mouse Model of Mucolipidosis IV. Am J Pathol. 2016;186:199-209 pubmed 出版商
  53. Farshi P, Fyk Kolodziej B, Krolewski D, Walker P, Ichinose T. Dopamine D1 receptor expression is bipolar cell type-specific in the mouse retina. J Comp Neurol. 2016;524:2059-79 pubmed 出版商
  54. Knoflach D, Schicker K, Glösmann M, Koschak A. Gain-of-function nature of Cav1.4 L-type calcium channels alters firing properties of mouse retinal ganglion cells. Channels (Austin). 2015;9:298-306 pubmed 出版商
  55. Graffe M, Zenisek D, Taraska J. A marginal band of microtubules transports and organizes mitochondria in retinal bipolar synaptic terminals. J Gen Physiol. 2015;146:109-17 pubmed 出版商
  56. Huh Y, Choi J, Jeon C. Localization of Rod Bipolar Cells in the Mammalian Retina Using an Antibody Against the α1c L-type Ca(2+) Channel. Acta Histochem Cytochem. 2015;48:47-52 pubmed 出版商
  57. van Wyk M, Pielecka Fortuna J, Löwel S, Kleinlogel S. Restoring the ON Switch in Blind Retinas: Opto-mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool. PLoS Biol. 2015;13:e1002143 pubmed 出版商
  58. Desantis A, Bruno T, Catena V, De Nicola F, Goeman F, Iezzi S, et al. Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy. EMBO J. 2015;34:1214-30 pubmed 出版商
  59. Jiang Z, Kong C, Zhang Z, Zhu Y, Zhang Y, Chen X. Reduction of protein kinase C α (PKC-α) promote apoptosis via down-regulation of Dicer in bladder cancer. J Cell Mol Med. 2015;19:1085-93 pubmed 出版商
  60. Heiserman J, Chen L, Kim B, Kim S, Tran A, Siebenborn N, et al. TLR4 mutation and HSP60-induced cell death in adult mouse cardiac myocytes. Cell Stress Chaperones. 2015;20:527-35 pubmed 出版商
  61. Pérez de Sevilla Müller L, Sargoy A, Fernández Sánchez L, Rodriguez A, Liu J, Cuenca N, et al. Expression and cellular localization of the voltage-gated calcium channel α2δ3 in the rodent retina. J Comp Neurol. 2015;523:1443-60 pubmed 出版商
  62. Domínguez Alonso A, Valdés Tovar M, Solís Chagoyán H, Benítez King G. Melatonin stimulates dendrite formation and complexity in the hilar zone of the rat hippocampus: participation of the Ca++/Calmodulin complex. Int J Mol Sci. 2015;16:1907-27 pubmed 出版商
  63. Kapodistria K, Tsilibary E, Politis P, Moustardas P, Charonis A, Kitsiou P. Nephrin, a transmembrane protein, is involved in pancreatic beta-cell survival signaling. Mol Cell Endocrinol. 2015;400:112-28 pubmed 出版商
  64. Wang X, Wu Y, Yang X, Miao Y, Zhang C, Dong L, et al. Cannabinoid CB1 receptor signaling dichotomously modulates inhibitory and excitatory synaptic transmission in rat inner retina. Brain Struct Funct. 2016;221:301-16 pubmed 出版商
  65. Gaillard F, Kuny S, Sauve Y. Retinal distribution of Disabled-1 in a diurnal murine rodent, the Nile grass rat Arvicanthis niloticus. Exp Eye Res. 2014;125:236-43 pubmed 出版商
  66. Kong J, Liu B, Wu S, Wang Y, Jiang Q, Guo E. Enhancement of interaction of BSEP and HAX-1 on the canalicular membrane of hepatocytes in a mouse model of cholesterol cholelithiasis. Int J Clin Exp Pathol. 2014;7:1644-50 pubmed
  67. An K, Zhen C, Liu Z, Zhao Q, Liu H, Zhong X, et al. Spinal protein kinase M? contributes to the maintenance of peripheral inflammation-primed persistent nociceptive sensitization after plantar incision. Eur J Pain. 2015;19:39-47 pubmed 出版商
  68. Zhang Y, Chen L, Shen G, Zhao Q, Shangguan L, He M. GRK5 dysfunction accelerates tau hyperphosphorylation in APP (swe) mice through impaired cholinergic activity. Neuroreport. 2014;25:542-7 pubmed 出版商
  69. Shishido S, Delahaye A, Beck A, Nguyen T. The anticancer effect of PQ1 in the MMTV-PyVT mouse model. Int J Cancer. 2014;134:1474-83 pubmed 出版商
  70. Zabouri N, Bouchard J, Casanova C. Cannabinoid receptor type 1 expression during postnatal development of the rat retina. J Comp Neurol. 2011;519:1258-80 pubmed 出版商
  71. Martínez Navarrete G, Angulo A, Martín Nieto J, Cuenca N. Gradual morphogenesis of retinal neurons in the peripheral retinal margin of adult monkeys and humans. J Comp Neurol. 2008;511:557-80 pubmed 出版商
  72. Bayley P, Morgans C. Rod bipolar cells and horizontal cells form displaced synaptic contacts with rods in the outer nuclear layer of the nob2 retina. J Comp Neurol. 2007;500:286-98 pubmed