这是一篇来自已证抗体库的有关人类 PLZF的综述,是根据44篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合PLZF 抗体。
PLZF 同义词: PLZF; ZNF145

圣克鲁斯生物技术
小鼠 单克隆(D-9)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4g
圣克鲁斯生物技术 PLZF抗体(Santa Cruz, sc-28319)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4g). Cell Death Discov (2022) ncbi
小鼠 单克隆(D-9)
  • 免疫组化-石蜡切片; 小鼠; 图 2e
圣克鲁斯生物技术 PLZF抗体(Santa Cruz, sc-28319)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). iScience (2020) ncbi
小鼠 单克隆(D-9)
  • 免疫细胞化学; 小鼠; 1:100; 图 3b
圣克鲁斯生物技术 PLZF抗体(Santa Cruz, sc-28319)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3b). Stem Cells Dev (2020) ncbi
小鼠 单克隆(D-9)
  • 免疫组化-冰冻切片; 小鼠; 图 4g
圣克鲁斯生物技术 PLZF抗体(Santa Cruz, SC-28319)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4g). elife (2019) ncbi
小鼠 单克隆(D-9)
  • 免疫组化-石蜡切片; 小鼠; 图 3b
  • 免疫印迹; 小鼠; 1:1000; 图 3d
圣克鲁斯生物技术 PLZF抗体(Santa, sc-28319)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Stem Cell Reports (2019) ncbi
小鼠 单克隆(D-9)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1g
圣克鲁斯生物技术 PLZF抗体(Santa Cruz, sc-28319)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1g). Asian J Androl (2020) ncbi
小鼠 单克隆(D-9)
  • 免疫组化-石蜡切片; 小鼠; 图 7b
圣克鲁斯生物技术 PLZF抗体(SantaCruz, sc-28319)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7b). Histochem Cell Biol (2017) ncbi
小鼠 单克隆(D-9)
  • 流式细胞仪; 小鼠; 图 5g
圣克鲁斯生物技术 PLZF抗体(Santa Cruz Biotechnology, Sc-28319)被用于被用于流式细胞仪在小鼠样本上 (图 5g). Immunity (2017) ncbi
小鼠 单克隆(D-9)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4c,4e
圣克鲁斯生物技术 PLZF抗体(Santa Cruz, sc28319)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4c,4e). Nat Commun (2017) ncbi
小鼠 单克隆(D-9)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1
  • 免疫细胞化学; 小鼠; 1:200; 图 1
圣克鲁斯生物技术 PLZF抗体(Santa Cruz, sc-28319)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1) 和 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(D-9)
  • 免疫细胞化学; 小鼠; 1:100; 图 '9a'
圣克鲁斯生物技术 PLZF抗体(Santa Cruz Biotechnology, sc28319)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 '9a'). Nat Commun (2016) ncbi
小鼠 单克隆(D-9)
  • 免疫组化-石蜡切片; 小鼠; 图 3
圣克鲁斯生物技术 PLZF抗体(Santa Cruz, SC-28319)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). J Biol Chem (2016) ncbi
小鼠 单克隆(D-9)
  • 免疫组化-石蜡切片; 小鼠; 图 4
圣克鲁斯生物技术 PLZF抗体(Santa Cruz Biotechnology, sc-28319)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(D-9)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
  • 免疫印迹; 小鼠; 1:500; 图 1
圣克鲁斯生物技术 PLZF抗体(Santa Cruz Biotechnology, sc-28319)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(D-9)
  • 免疫组化-石蜡切片; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 PLZF抗体(Santa Cruz Biotechnology, 28319)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(D-9)
  • 流式细胞仪; 小鼠; 图 8
圣克鲁斯生物技术 PLZF抗体(Santa Cruz, D-9)被用于被用于流式细胞仪在小鼠样本上 (图 8). J Immunol (2015) ncbi
小鼠 单克隆(D-9)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
圣克鲁斯生物技术 PLZF抗体(Santa Cruz, sc-28319)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(D-9)
  • 染色质免疫沉淀 ; 小鼠
  • 流式细胞仪; 小鼠; 2 ug/ml
圣克鲁斯生物技术 PLZF抗体(Santa, sc-28319)被用于被用于染色质免疫沉淀 在小鼠样本上 和 被用于流式细胞仪在小鼠样本上浓度为2 ug/ml. J Exp Med (2015) ncbi
小鼠 单克隆(D-9)
  • 免疫组化; 小鼠; 1:100
圣克鲁斯生物技术 PLZF抗体(Santa Cruz Biotechnology, SC-28319)被用于被用于免疫组化在小鼠样本上浓度为1:100. Biol Reprod (2015) ncbi
小鼠 单克隆(D-9)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
  • 免疫印迹; 小鼠; 1:200; 图 4
圣克鲁斯生物技术 PLZF抗体(Santa Cruz, sc-28319)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 4). Cell Death Dis (2015) ncbi
小鼠 单克隆(D-9)
  • 免疫组化-石蜡切片; 人类
圣克鲁斯生物技术 PLZF抗体(Santa Cruz Biotechnology, SC-28319)被用于被用于免疫组化-石蜡切片在人类样本上. Andrology (2014) ncbi
小鼠 单克隆(D-9)
  • 免疫组化-石蜡切片; 人类; 1:1000
圣克鲁斯生物技术 PLZF抗体(Santa Cruz, sc-28319)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Reprod Sci (2014) ncbi
小鼠 单克隆(D-9)
  • 免疫组化-石蜡切片; 小鼠; 1:500
圣克鲁斯生物技术 PLZF抗体(Santa Cruz Biotechnology, Sc-28319)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Gen Comp Endocrinol (2014) ncbi
小鼠 单克隆(D-9)
  • 免疫组化; 人类; 1:1000
圣克鲁斯生物技术 PLZF抗体(Santa Cruz Biotechnology, sc-28319)被用于被用于免疫组化在人类样本上浓度为1:1000. Hum Pathol (2013) ncbi
小鼠 单克隆(D-9)
  • 免疫印迹; 小鼠; 1:50
圣克鲁斯生物技术 PLZF抗体(Santa Cruz, sc-28319)被用于被用于免疫印迹在小鼠样本上浓度为1:50. Dev Biol (2013) ncbi
赛默飞世尔
小鼠 单克隆(Mags.21F7)
  • 流式细胞仪; 小鼠; 1:100; 图 3b
赛默飞世尔 PLZF抗体(Thermo Fischer Scientific, 53-9320)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3b). Cells (2021) ncbi
小鼠 单克隆(5B3)
  • 免疫细胞化学; 人类; 1:200; 图 1d
赛默飞世尔 PLZF抗体(ThermoFisher, MA5-15667)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1d). Cell Death Dis (2020) ncbi
小鼠 单克隆(Mags.21F7)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 PLZF抗体(eBioscience, 53-9320-82)被用于被用于流式细胞仪在小鼠样本上 (图 2a). EMBO J (2019) ncbi
小鼠 单克隆(Mags.21F7)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 PLZF抗体(eBioscience, 12-9320-82)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Cell (2019) ncbi
小鼠 单克隆(Mags.21F7)
  • 流式细胞仪; 小鼠; 1:200; 图 1f, 1g
赛默飞世尔 PLZF抗体(eBioscience, Mags.21F7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1f, 1g). Nat Commun (2018) ncbi
小鼠 单克隆(Mags.21F7)
  • 流式细胞仪; 人类; 图 4d
赛默飞世尔 PLZF抗体(Thermo Fisher Scientific, 12-9320-82)被用于被用于流式细胞仪在人类样本上 (图 4d). Front Immunol (2018) ncbi
小鼠 单克隆(Mags.21F7)
  • 流式细胞仪; 小鼠; 图 6d
赛默飞世尔 PLZF抗体(eBioscience, Mags.21F7)被用于被用于流式细胞仪在小鼠样本上 (图 6d). J Exp Med (2018) ncbi
小鼠 单克隆(Mags.21F7)
  • 流式细胞仪; 人类; 图 s1b
赛默飞世尔 PLZF抗体(eBioscience, 12-9320-82)被用于被用于流式细胞仪在人类样本上 (图 s1b). Cell (2017) ncbi
小鼠 单克隆(Mags.21F7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 PLZF抗体(eBioscience, Mags.21F7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Exp Med (2017) ncbi
小鼠 单克隆(Mags.21F7)
  • 流式细胞仪; 小鼠; 1:100; 图 1d
赛默飞世尔 PLZF抗体(eBiosciences, Mags21F7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1d). Nat Commun (2016) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 PLZF抗体(Abcam, ab189849)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Toxicol Lett (2017) ncbi
小鼠 单克隆(5B3)
  • 其他; 人类; 图 2b
艾博抗(上海)贸易有限公司 PLZF抗体(Abcam, Ab104854)被用于被用于其他在人类样本上 (图 2b). Epigenetics Chromatin (2015) ncbi
小鼠 单克隆(5B3)
  • 免疫组化-石蜡切片; marmosets; 1:100
艾博抗(上海)贸易有限公司 PLZF抗体(Abcam, ab104854)被用于被用于免疫组化-石蜡切片在marmosets样本上浓度为1:100. Dev Biol (2015) ncbi
小鼠 单克隆(5B3)
  • 免疫组化-石蜡切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司 PLZF抗体(Abcam, ab104854)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Reproduction (2014) ncbi
小鼠 单克隆(5B3)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 PLZF抗体(Abcam, ab104854)被用于被用于免疫组化在小鼠样本上. Dev Biol (2013) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2k
安迪生物R&D PLZF抗体(R&D, AF2944)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2k). Sci Adv (2022) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7d
安迪生物R&D PLZF抗体(R&D, AF2944)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7d). Cells (2022) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1i
  • 免疫印迹; 小鼠; 1:1000; 图 5b
安迪生物R&D PLZF抗体(R&D, AF2944)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1i) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Front Cell Dev Biol (2021) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100
西格玛奥德里奇 PLZF抗体(Sigma, HPA001499)被用于被用于免疫组化在小鼠样本上浓度为1:100. Cells (2021) ncbi
碧迪BD
小鼠 单克隆(R17-809)
  • 流式细胞仪; 小鼠; 1:50; 图 1b
碧迪BD PLZF抗体(BD Biosciences, 563490)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1b). Nat Commun (2017) ncbi
文章列表
  1. Ma L, Xie D, Luo M, Lin X, Nie H, Chen J, et al. Identification and characterization of BEND2 as a key regulator of meiosis during mouse spermatogenesis. Sci Adv. 2022;8:eabn1606 pubmed 出版商
  2. Smith K, Dinh D, Akison L, Nicholls M, Dunning K, Morimoto A, et al. Intraovarian, Isoform-Specific Transcriptional Roles of Progesterone Receptor in Ovulation. Cells. 2022;11: pubmed 出版商
  3. Qin J, Huang T, Wang J, Xu L, Dang Q, Xu X, et al. RAD51 is essential for spermatogenesis and male fertility in mice. Cell Death Discov. 2022;8:118 pubmed 出版商
  4. Alpaugh W, Voigt A, Dardari R, Su L, Al Khatib I, Shin W, et al. Loss of Ubiquitin Carboxy-Terminal Hydrolase L1 Impairs Long-Term Differentiation Competence and Metabolic Regulation in Murine Spermatogonial Stem Cells. Cells. 2021;10: pubmed 出版商
  5. Dong F, Chen M, Jiang L, Shen Z, Ma L, Han C, et al. PRMT5 Is Involved in Spermatogonial Stem Cells Maintenance by Regulating Plzf Expression via Modulation of Lysine Histone Modifications. Front Cell Dev Biol. 2021;9:673258 pubmed 出版商
  6. Huang G, Liu L, Wang H, Gou M, Gong P, Tian C, et al. Tet1 Deficiency Leads to Premature Reproductive Aging by Reducing Spermatogonia Stem Cells and Germ Cell Differentiation. iScience. 2020;23:100908 pubmed 出版商
  7. Xie Y, Chen H, Luo D, Yang X, Yao J, Zhang C, et al. Inhibiting Necroptosis of Spermatogonial Stem Cell as a Novel Strategy for Male Fertility Preservation. Stem Cells Dev. 2020;29:475-487 pubmed 出版商
  8. Marin Navarro A, Pronk R, van der Geest A, Oliynyk G, Nordgren A, Arsenian Henriksson M, et al. p53 controls genomic stability and temporal differentiation of human neural stem cells and affects neural organization in human brain organoids. Cell Death Dis. 2020;11:52 pubmed 出版商
  9. Varuzhanyan G, Rojansky R, Sweredoski M, Graham R, Hess S, Ladinsky M, et al. Mitochondrial fusion is required for spermatogonial differentiation and meiosis. elife. 2019;8: pubmed 出版商
  10. Gao X, Chen H, Liu J, Shen S, Wang Q, Clement T, et al. The REGγ-Proteasome Regulates Spermatogenesis Partially by P53-PLZF Signaling. Stem Cell Reports. 2019;13:559-571 pubmed 出版商
  11. Clancy Thompson E, Chen G, LaMarche N, Ali L, Jeong H, Crowley S, et al. Transnuclear mice reveal Peyer's patch iNKT cells that regulate B-cell class switching to IgG1. EMBO J. 2019;38:e101260 pubmed 出版商
  12. Cao J, Lin Z, Tong M, Zhang Y, Li Y, Zhou Y. Mechanistic target of rapamycin kinase (Mtor) is required for spermatogonial proliferation and differentiation in mice. Asian J Androl. 2020;22:169-176 pubmed 出版商
  13. Jin C, Lagoudas G, Zhao C, Bullman S, Bhutkar A, Hu B, et al. Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell. 2019;176:998-1013.e16 pubmed 出版商
  14. Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed 出版商
  15. Capuano C, Battella S, Pighi C, Franchitti L, Turriziani O, Morrone S, et al. Tumor-Targeting Anti-CD20 Antibodies Mediate In Vitro Expansion of Memory Natural Killer Cells: Impact of CD16 Affinity Ligation Conditions and In Vivo Priming. Front Immunol. 2018;9:1031 pubmed 出版商
  16. Harly C, Cam M, Kaye J, Bhandoola A. Development and differentiation of early innate lymphoid progenitors. J Exp Med. 2018;215:249-262 pubmed 出版商
  17. Mao A, Ishizuka I, Kasal D, Mandal M, Bendelac A. A shared Runx1-bound Zbtb16 enhancer directs innate and innate-like lymphoid lineage development. Nat Commun. 2017;8:863 pubmed 出版商
  18. Katsumata O, Mori M, Sawane Y, Niimura T, Ito A, Okamoto H, et al. Cellular and subcellular localization of ADP-ribosylation factor 6 in mouse peripheral tissues. Histochem Cell Biol. 2017;148:577-596 pubmed 出版商
  19. Miyazaki M, Miyazaki K, Chen K, Jin Y, Turner J, Moore A, et al. The E-Id Protein Axis Specifies Adaptive Lymphoid Cell Identity and Suppresses Thymic Innate Lymphoid Cell Development. Immunity. 2017;46:818-834.e4 pubmed 出版商
  20. Lim A, Li Y, Lopez Lastra S, Stadhouders R, Paul F, Casrouge A, et al. Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation. Cell. 2017;168:1086-1100.e10 pubmed 出版商
  21. Liu W, Wang F, Xu Q, Shi J, Zhang X, Lu X, et al. BCAS2 is involved in alternative mRNA splicing in spermatogonia and the transition to meiosis. Nat Commun. 2017;8:14182 pubmed 出版商
  22. Chen S, Cai C, Li Z, Liu G, Wang Y, Blonska M, et al. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity. J Exp Med. 2017;214:475-489 pubmed 出版商
  23. Cao X, Shen L, Wu S, Yan C, Zhou Y, Xiong G, et al. Urban fine particulate matter exposure causes male reproductive injury through destroying blood-testis barrier (BTB) integrity. Toxicol Lett. 2017;266:1-12 pubmed 出版商
  24. Georgiev H, Ravens I, Benarafa C, Forster R, Bernhardt G. Distinct gene expression patterns correlate with developmental and functional traits of iNKT subsets. Nat Commun. 2016;7:13116 pubmed 出版商
  25. Bai Y, Feng M, Liu S, Wei H, Li L, Zhang X, et al. Differential gene expression in mouse spermatogonial stem cells and embryonic stem cells. Int J Mol Med. 2016;38:423-32 pubmed 出版商
  26. Suzuki A, Hirasaki M, Hishida T, Wu J, Okamura D, Ueda A, et al. Loss of MAX results in meiotic entry in mouse embryonic and germline stem cells. Nat Commun. 2016;7:11056 pubmed 出版商
  27. Liu Y, Liu C, Chang Z, Wadas B, Brower C, Song Z, et al. Degradation of the Separase-cleaved Rec8, a Meiotic Cohesin Subunit, by the N-end Rule Pathway. J Biol Chem. 2016;291:7426-38 pubmed 出版商
  28. McConnell M, Durand L, Langley E, Coste Sarguet L, Zelent A, Chomienne C, et al. Post transcriptional control of the epigenetic stem cell regulator PLZF by sirtuin and HDAC deacetylases. Epigenetics Chromatin. 2015;8:38 pubmed 出版商
  29. Hu X, Tang Z, Li Y, Liu W, Zhang S, Wang B, et al. Deletion of the tyrosine phosphatase Shp2 in Sertoli cells causes infertility in mice. Sci Rep. 2015;5:12982 pubmed 出版商
  30. Xu J, Wan P, Wang M, Zhang J, Gao X, Hu B, et al. AIP1-mediated actin disassembly is required for postnatal germ cell migration and spermatogonial stem cell niche establishment. Cell Death Dis. 2015;6:e1818 pubmed 出版商
  31. Ferder I, Wang N. Hypermaintenance and hypofunction of aged spermatogonia: insight from age-related increase of Plzf expression. Oncotarget. 2015;6:15891-901 pubmed
  32. Pei B, Zhao M, Miller B, Véla J, Bruinsma M, Virgin H, et al. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation. J Immunol. 2015;194:5872-84 pubmed 出版商
  33. Xiao G, Unger P, Yang Q, Kinoshita Y, Singh K, McMahon L, et al. Loss of PLZF expression in prostate cancer by immunohistochemistry correlates with tumor aggressiveness and metastasis. PLoS ONE. 2015;10:e0121318 pubmed 出版商
  34. Dobenecker M, Kim J, Marcello J, Fang T, Prinjha R, Bosselut R, et al. Coupling of T cell receptor specificity to natural killer T cell development by bivalent histone H3 methylation. J Exp Med. 2015;212:297-306 pubmed 出版商
  35. Jiang X, Ma T, Zhang Y, Zhang H, Yin S, Zheng W, et al. Specific deletion of Cdh2 in Sertoli cells leads to altered meiotic progression and subfertility of mice. Biol Reprod. 2015;92:79 pubmed 出版商
  36. Lin Z, Hirano T, Shibata S, Seki N, Kitajima R, Sedohara A, et al. Gene expression ontogeny of spermatogenesis in the marmoset uncovers primate characteristics during testicular development. Dev Biol. 2015;400:43-58 pubmed 出版商
  37. Gao X, Ma W, Nie J, Zhang C, Zhang J, Yao G, et al. A G-quadruplex DNA structure resolvase, RHAU, is essential for spermatogonia differentiation. Cell Death Dis. 2015;6:e1610 pubmed 出版商
  38. Sachs C, Robinson B, Andres Martin L, Webster T, Gilbert M, Lo H, et al. Evaluation of candidate spermatogonial markers ID4 and GPR125 in testes of adult human cadaveric organ donors. Andrology. 2014;2:607-14 pubmed 出版商
  39. Momeni M, Kalir T, Farag S, Kinoshita Y, Roman T, Chuang L, et al. Immunohistochemical detection of promyelocytic leukemia zinc finger and histone 1.5 in uterine leiomyosarcoma and leiomyoma. Reprod Sci. 2014;21:1171-6 pubmed 出版商
  40. Zhang J, Hatakeyama J, Eto K, Abe S. Reconstruction of a seminiferous tubule-like structure in a 3 dimensional culture system of re-aggregated mouse neonatal testicular cells within a collagen matrix. Gen Comp Endocrinol. 2014;205:121-32 pubmed 出版商
  41. Zheng Q, Wang X, Wen Q, Zhang Y, Chen S, Zhang J, et al. Wt1 deficiency causes undifferentiated spermatogonia accumulation and meiotic progression disruption in neonatal mice. Reproduction. 2014;147:45-52 pubmed 出版商
  42. Hechtman J, Beasley M, Kinoshita Y, Ko H, Hao K, Burstein D. Promyelocytic leukemia zinc finger and histone H1.5 differentially stain low- and high-grade pulmonary neuroendocrine tumors: a pilot immunohistochemical study. Hum Pathol. 2013;44:1400-5 pubmed 出版商
  43. Gallagher S, Kofman A, Huszar J, Dannenberg J, Depinho R, Braun R, et al. Distinct requirements for Sin3a in perinatal male gonocytes and differentiating spermatogonia. Dev Biol. 2013;373:83-94 pubmed 出版商
  44. Schwab K, Smith G, Dressler G. Arrested spermatogenesis and evidence for DNA damage in PTIP mutant testes. Dev Biol. 2013;373:64-71 pubmed 出版商