这是一篇来自已证抗体库的有关人类 PPAR的综述,是根据26篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合PPAR 抗体。
PPAR 同义词: NR1C1; PPAR; PPARalpha; hPPAR

圣克鲁斯生物技术
小鼠 单克隆
  • 免疫印迹; 人类; 1:500; 图 6h
圣克鲁斯生物技术 PPAR抗体(Santa Cruz, Sc-398394)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6h). NPJ Breast Cancer (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:500; 图 s6b
圣克鲁斯生物技术 PPAR抗体(Santa Cruz, sc-398394)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s6b). Mol Metab (2021) ncbi
小鼠 单克隆
  • 免疫组化基因敲除验证; 小鼠; 1:1000; 图 2a, 2b
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 2j
圣克鲁斯生物技术 PPAR抗体(Santa Cruz, sc-398394)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:1000 (图 2a, 2b) 和 被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 2j). Nutrients (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 6b
圣克鲁斯生物技术 PPAR抗体(Santa Cruz, sc-398394)被用于被用于免疫印迹在小鼠样本上 (图 6b). Oxid Med Cell Longev (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 5a
圣克鲁斯生物技术 PPAR抗体(Santa Cruz Biotechnology, sc-398394)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cell Rep (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 3f
圣克鲁斯生物技术 PPAR抗体(Santa Cruz, sc398394)被用于被用于免疫印迹在人类样本上 (图 3f). Br J Pharmacol (2018) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4c
圣克鲁斯生物技术 PPAR抗体(Santa Cruz Biotechnology Inc, sc-398394)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4c). J Biol Chem (2018) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 12c
圣克鲁斯生物技术 PPAR抗体(Santa Cruz, sc-398394)被用于被用于免疫印迹在人类样本上 (图 12c). Mol Cell Endocrinol (2018) ncbi
小鼠 单克隆(467D1a)
  • 免疫印迹; 大鼠; 1:200; 图 4
圣克鲁斯生物技术 PPAR抗体(Santa Cruz, sc-130640)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(467D1a)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 PPAR抗体(santa cruz, sc-130640)被用于被用于免疫印迹在人类样本上 (图 6b). Int J Mol Med (2015) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3s3b
赛默飞世尔 PPAR抗体(ThermoFisher Scientific, PA1-822A)被用于被用于免疫印迹在人类样本上 (图 3s3b). elife (2020) ncbi
小鼠 单克隆(3B6/PPAR)
  • 免疫印迹; 小鼠; 图 2c
赛默飞世尔 PPAR抗体(Thermo Fisher Scientific, MA1-822)被用于被用于免疫印迹在小鼠样本上 (图 2c). Food Funct (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6i
赛默飞世尔 PPAR抗体(Pierce, PA1-822A)被用于被用于免疫印迹在小鼠样本上 (图 6i). Biochim Biophys Acta Mol Cell Biol Lipids (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:250; 图 1
  • 免疫印迹; 人类; 1:400; 图 4
赛默飞世尔 PPAR抗体(Thermo Scientific, PA1-822A)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:400 (图 4). Mol Cell Endocrinol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
  • 免疫组化; 小鼠; 1:200; 图 2
赛默飞世尔 PPAR抗体(Pierce, PA1-822A)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 2). Nat Med (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 PPAR抗体(Pierce, PA1-822A)被用于. Arch Biochem Biophys (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 PPAR抗体(ThermoFisher Scientific, PA1-822A)被用于. Am J Physiol Gastrointest Liver Physiol (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5f
艾博抗(上海)贸易有限公司 PPAR抗体(Abcam, ab3484)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Biomed Res Int (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
艾博抗(上海)贸易有限公司 PPAR抗体(Abcam, ab24509)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 PPAR抗体(Abcam, ab215270)被用于被用于免疫印迹在小鼠样本上 (图 4a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 PPAR抗体(Abcam, ab215270)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 3c). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 PPAR抗体(Abcam, ab24509)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Front Pharmacol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3a
艾博抗(上海)贸易有限公司 PPAR抗体(Abcam, Ab3484)被用于被用于免疫印迹在大鼠样本上 (图 3a). FEBS Open Bio (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 PPAR抗体(Abcam, Ab24509)被用于被用于免疫印迹在小鼠样本上 (图 1b). Gut (2016) ncbi
亚诺法生技股份有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 st3
亚诺法生技股份有限公司 PPAR抗体(Abnova, PAB11321)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 st3). Sci Rep (2017) ncbi
Cayman Chemical
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 5
开曼群岛化学品 PPAR抗体(开曼群岛化学品, 101710)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 5). elife (2016) ncbi
文章列表
  1. Gyamfi J, Yeo J, Kwon D, Min B, Cha Y, Koo J, et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer. 2021;7:129 pubmed 出版商
  2. Lin Y, Wu X, Zheng C, Zhang Q, Zhang G, Chen K, et al. Mechanistic Investigation on the Regulation of FABP1 by the IL-6/miR-603 Signaling in the Pathogenesis of Hepatocellular Carcinoma. Biomed Res Int. 2021;2021:8579658 pubmed 出版商
  3. Li Y, Chen L, Li L, Sottas C, Petrillo S, Lazaris A, et al. Cholesterol-binding translocator protein TSPO regulates steatosis and bile acid synthesis in nonalcoholic fatty liver disease. iScience. 2021;24:102457 pubmed 出版商
  4. Srivastava S, Zhou H, Setia O, Liu B, Kanasaki K, Koya D, et al. Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy. Nat Commun. 2021;12:2368 pubmed 出版商
  5. Malvi P, Janostiak R, Nagarajan A, Zhang X, Wajapeyee N. N-acylsphingosine amidohydrolase 1 promotes melanoma growth and metastasis by suppressing peroxisome biogenesis-induced ROS production. Mol Metab. 2021;48:101217 pubmed 出版商
  6. Antonuccio P, Marini H, Micali A, Romeo C, Granese R, Retto A, et al. The Nutraceutical N-Palmitoylethanolamide (PEA) Reveals Widespread Molecular Effects Unmasking New Therapeutic Targets in Murine Varicocele. Nutrients. 2021;13: pubmed 出版商
  7. Lai C, Yeh K, Lin C, Hsieh Y, Lai H, Chen J, et al. MicroRNA-21 Plays Multiple Oncometabolic Roles in the Process of NAFLD-Related Hepatocellular Carcinoma via PI3K/AKT, TGF-β, and STAT3 Signaling. Cancers (Basel). 2021;13: pubmed 出版商
  8. Tao S, Yang Y, Li J, Wang H, Ma Y. Bixin Attenuates High-Fat Diet-Caused Liver Steatosis and Inflammatory Injury through Nrf2/PPARα Signals. Oxid Med Cell Longev. 2021;2021:6610124 pubmed 出版商
  9. Hu J, Zhu Z, Ying H, Yao J, Ma H, Li L, et al. Oleoylethanolamide Protects Against Acute Liver Injury by Regulating Nrf-2/HO-1 and NLRP3 Pathways in Mice. Front Pharmacol. 2020;11:605065 pubmed 出版商
  10. Contat C, Ancey P, Zangger N, Sabatino S, Pascual J, Escrig S, et al. Combined deletion of Glut1 and Glut3 impairs lung adenocarcinoma growth. elife. 2020;9: pubmed 出版商
  11. Naiman S, Huynh F, Gil R, Glick Y, Shahar Y, Touitou N, et al. SIRT6 Promotes Hepatic Beta-Oxidation via Activation of PPARα. Cell Rep. 2019;29:4127-4143.e8 pubmed 出版商
  12. Zhang C, Deng J, Liu D, Tuo X, Xiao L, Lai B, et al. Nuciferine ameliorates hepatic steatosis in high-fat diet/streptozocin-induced diabetic mice through a PPARα/PPARγ coactivator-1α pathway. Br J Pharmacol. 2018;175:4218-4228 pubmed 出版商
  13. Huang L, Liu J, Zhang X, Sibley K, Najjar S, Lee M, et al. Inhibition of protein arginine methyltransferase 5 enhances hepatic mitochondrial biogenesis. J Biol Chem. 2018;293:10884-10894 pubmed 出版商
  14. Valanejad L, Ghareeb M, Shiffka S, Nadolny C, Chen Y, Guo L, et al. Dysregulation of Δ4-3-oxosteroid 5β-reductase in diabetic patients: Implications and mechanisms. Mol Cell Endocrinol. 2018;470:127-141 pubmed 出版商
  15. Lin Y, Tai S, Chen J, Chou C, Fu S, Chen Y. Ameliorative effects of pepsin-digested chicken liver hydrolysates on development of alcoholic fatty livers in mice. Food Funct. 2017;8:1763-1774 pubmed 出版商
  16. Chen Z, Wang Q. Activation of PPAR? by baicalin attenuates pulmonary hypertension in an infant rat model by suppressing HMGB1/RAGE signaling. FEBS Open Bio. 2017;7:477-484 pubmed 出版商
  17. Dadson K, Hauck L, Hao Z, Grothe D, Rao V, Mak T, et al. The E3 ligase Mule protects the heart against oxidative stress and mitochondrial dysfunction through Myc-dependent inactivation of Pgc-1α and Pink1. Sci Rep. 2017;7:41490 pubmed 出版商
  18. Milligan S, Martin G, Landrock D, McIntosh A, Mackie J, Schroeder F, et al. Impact of dietary phytol on lipid metabolism in SCP2/SCPX/L-FABP null mice. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862:291-304 pubmed 出版商
  19. Rando G, Tan C, Khaled N, Montagner A, Leuenberger N, Bertrand Michel J, et al. Glucocorticoid receptor-PPAR? axis in fetal mouse liver prepares neonates for milk lipid catabolism. elife. 2016;5: pubmed 出版商
  20. Rotondi S, Modarelli A, Oliva M, Rostomyan L, Sanità P, Ventura L, et al. Expression of Peroxisome Proliferator-Activated Receptor alpha (PPARα) in somatotropinomas: Relationship with Aryl hydrocarbon receptor Interacting Protein (AIP) and in vitro effects of fenofibrate in GH3 cells. Mol Cell Endocrinol. 2016;426:61-72 pubmed 出版商
  21. Dickey A, Pineda V, Tsunemi T, Liu P, Miranda H, Gilmore Hall S, et al. PPAR-δ is repressed in Huntington's disease, is required for normal neuronal function and can be targeted therapeutically. Nat Med. 2016;22:37-45 pubmed 出版商
  22. Li P, Luo S, Pan C, Cheng X. Modulation of fatty acid metabolism is involved in the alleviation of isoproterenol-induced rat heart failure by fenofibrate. Mol Med Rep. 2015;12:7899-906 pubmed 出版商
  23. Loyer X, Paradis V, Hénique C, Vion A, Colnot N, Guerin C, et al. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression. Gut. 2016;65:1882-1894 pubmed 出版商
  24. Martin G, Atshaves B, Landrock K, Landrock D, Schroeder F, Kier A. Loss of L-FABP, SCP-2/SCP-x, or both induces hepatic lipid accumulation in female mice. Arch Biochem Biophys. 2015;580:41-9 pubmed 出版商
  25. Klipsic D, Landrock D, Martin G, McIntosh A, Landrock K, Mackie J, et al. Impact of SCP-2/SCP-x gene ablation and dietary cholesterol on hepatic lipid accumulation. Am J Physiol Gastrointest Liver Physiol. 2015;309:G387-99 pubmed 出版商
  26. Kang O, Kim S, Mun S, Seo Y, Hwang H, Lee Y, et al. Puerarin ameliorates hepatic steatosis by activating the PPARα and AMPK signaling pathways in hepatocytes. Int J Mol Med. 2015;35:803-9 pubmed 出版商