这是一篇来自已证抗体库的有关人类 PPARgamma的综述,是根据151篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合PPARgamma 抗体。
PPARgamma 同义词: CIMT1; GLM1; NR1C3; PPARG1; PPARG2; PPARgamma

圣克鲁斯生物技术
小鼠 单克隆(E-8)
  • ChIP-Seq; 人类; 图 4a
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273X)被用于被用于ChIP-Seq在人类样本上 (图 4a). Curr Res Toxicol (2021) ncbi
小鼠 单克隆(E-8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7a
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 人类; 1:500; 图 s6b
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-271392)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s6b). Mol Metab (2021) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 1:2000
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotechnology, sc-7273)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Nat Commun (2020) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 1:200; 图 3d
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotechnology, sc-7273)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3d). Nature (2019) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Neurobiol Dis (2019) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 图 3d, 4a
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫印迹在小鼠样本上 (图 3d, 4a) 和 被用于免疫印迹在人类样本上 (图 4a). PLoS Biol (2018) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 1:100; 图 3d
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 3d). Mol Neurobiol (2018) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 图 2h
圣克鲁斯生物技术 PPARgamma抗体(SantaCruz, sc-7273)被用于被用于免疫印迹在小鼠样本上 (图 2h). J Mol Cell Biol (2017) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫印迹在小鼠样本上 (图 3a). Sci Rep (2017) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 大鼠; 1:300; 图 5a
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫印迹在大鼠样本上浓度为1:300 (图 5a). Exp Ther Med (2017) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 1:100; 图 3c
圣克鲁斯生物技术 PPARgamma抗体(Santa, sc-7273)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 3c). J Biol Chem (2017) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 图 3b
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, SC-7273)被用于被用于免疫印迹在小鼠样本上 (图 3b). Food Funct (2017) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 图 3d
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫印迹在小鼠样本上 (图 3d). Int J Mol Med (2016) ncbi
小鼠 单克隆(E-9)
  • 免疫印迹; 小鼠; 图 5b
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-390740)被用于被用于免疫印迹在小鼠样本上 (图 5b). J Exp Med (2016) ncbi
小鼠 单克隆(E-8)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 1
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 1). BMC Cancer (2016) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 大鼠; 1:1000; 图 6
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotechnology, sc-7273)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Eur J Nutr (2017) ncbi
小鼠 单克隆(E-8)
  • 免疫细胞化学; 小鼠; 图 2a
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫细胞化学在小鼠样本上 (图 2a). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(8D1H8H4)
  • 免疫细胞化学; 人类; 1:50; 图 2
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-81152)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 1:1000; 图 1
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotechnology, sc-7273)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 1:1000; 图 8
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotechnology, SC 7273)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Nat Commun (2016) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotechnology, sc-7273)被用于被用于免疫印迹在人类样本上 (图 5). Anticancer Drugs (2016) ncbi
小鼠 单克隆(E-8)
  • 免疫组化; 小鼠; 1:100; 图 6a
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6a). Dev Biol (2016) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 人类; 1:200; 图 4
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotechnology, sc-7273)被用于被用于免疫印迹在小鼠样本上. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(E-8)
  • 染色质免疫沉淀 ; 小鼠
  • 免疫沉淀; 小鼠
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于染色质免疫沉淀 在小鼠样本上, 被用于免疫沉淀在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. Cell Death Differ (2016) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 1:300
圣克鲁斯生物技术 PPARgamma抗体(Santa, sc-7273)被用于被用于免疫印迹在小鼠样本上浓度为1:300. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273X)被用于被用于免疫印迹在小鼠样本上 (图 2). Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotechnology, sc-7273)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, SC-7273)被用于被用于免疫印迹在小鼠样本上. J Nutr Biochem (2015) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 图 1b
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫印迹在小鼠样本上 (图 1b). elife (2015) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫印迹在小鼠样本上. Mol Cancer (2015) ncbi
小鼠 单克隆(E-8)
  • 免疫细胞化学; 小鼠; 1:500; 图 3
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3). J Lipid Res (2015) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 1:250; 图 7c
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, 7273)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 7c). EMBO Mol Med (2015) ncbi
小鼠 单克隆(A-1)
  • 免疫印迹; 人类; 0.1 ug/ml
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotech, sc-166731)被用于被用于免疫印迹在人类样本上浓度为0.1 ug/ml. J Bone Miner Metab (2016) ncbi
小鼠 单克隆(E-8)
  • 免疫细胞化学基因敲除验证; 小鼠; 图 3d
  • 免疫印迹基因敲除验证; 小鼠; 图 3c
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotechnology, sc-7273)被用于被用于免疫细胞化学基因敲除验证在小鼠样本上 (图 3d) 和 被用于免疫印迹基因敲除验证在小鼠样本上 (图 3c). Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(E-8)
  • 免疫细胞化学; 人类; 1:20; 表 4
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, Sc-7273)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (表 4). J Vis Exp (2015) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫印迹在人类样本上 (图 3). Mol Oncol (2015) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫印迹在小鼠样本上 (图 6). Int J Mol Sci (2015) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 小鼠; 1:1000; 图 1
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc271392)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotechnology, sc-7273)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. World J Gastroenterol (2014) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotechnology, 7273)被用于被用于免疫印迹在小鼠样本上 (图 2). Nature (2015) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochem Pharmacol (2014) ncbi
小鼠 单克隆(E-8)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1). J Biomed Mater Res B Appl Biomater (2015) ncbi
小鼠 单克隆(E-8)
  • 免疫组化-石蜡切片; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotechnology, sc-7273)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫印迹在小鼠样本上. Atherosclerosis (2014) ncbi
小鼠 单克隆(E-8)
  • 免疫组化; pigs
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, SC-7273)被用于被用于免疫组化在pigs 样本上. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(B-5)
  • 免疫组化-冰冻切片; 人类; 1:350
圣克鲁斯生物技术 PPARgamma抗体(Santa, 271392)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:350. PLoS ONE (2014) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotechnology, sc-7273)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Lipid Res (2014) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotechnology, sc-7273)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Pharm Pharmacol (2014) ncbi
小鼠 单克隆(E-8)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 PPARgamma抗体(Santa, sc-7273X,)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotechnology, sc-7273)被用于被用于免疫印迹在小鼠样本上. J Pineal Res (2014) ncbi
小鼠 单克隆(E-8)
  • 免疫组化-石蜡切片; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 PPARgamma抗体(Santa-Cruz Biotechnology, sc-7273)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 和 被用于免疫印迹在大鼠样本上浓度为1:500. BMC Nephrol (2013) ncbi
小鼠 单克隆(E-8)
  • 免疫细胞化学; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:100
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotechnology, SC-7273)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:100. Cell Tissue Res (2013) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 1:500; 图 1
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1). Int J Cancer (2014) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz, sc-7273)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(E-8)
  • 免疫组化; 人类
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotechnology, SC-7273)被用于被用于免疫组化在人类样本上 和 被用于免疫印迹在人类样本上 (图 4). Stem Cells Dev (2013) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 PPARgamma抗体(Santa Cruz Biotechnology, SC-7273)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Am J Physiol Endocrinol Metab (2013) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 PPARgamma抗体(Santa, sc-7273)被用于被用于免疫印迹在小鼠样本上 (图 3). Endocrinology (2012) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 PPARgamma抗体(Abcam, ab178860)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(A3409A)
  • 免疫印迹; 小鼠; 图 1a, 1c
艾博抗(上海)贸易有限公司 PPARgamma抗体(Abcam, ab41928)被用于被用于免疫印迹在小鼠样本上 (图 1a, 1c). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 1:1000; 图 4h
艾博抗(上海)贸易有限公司 PPARgamma抗体(Abcam, ab178860)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). FEBS Open Bio (2021) ncbi
小鼠 单克隆(A3409A)
  • 染色质免疫沉淀 ; 小鼠; 图 6c, 6e
艾博抗(上海)贸易有限公司 PPARgamma抗体(Abcam, ab41928)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6c, 6e). J Biomed Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 PPARgamma抗体(Abcam, 209350)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:25; 图 1c
  • 免疫印迹; 人类; 1:500; 图 3c
艾博抗(上海)贸易有限公司 PPARgamma抗体(Abcam, ab45036)被用于被用于免疫组化在人类样本上浓度为1:25 (图 1c) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 3c). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 图 3a
艾博抗(上海)贸易有限公司 PPARgamma抗体(Abcam, ab45036)被用于被用于免疫印迹在牛样本上 (图 3a). Biomed Res Int (2019) ncbi
小鼠 单克隆(A3409A)
  • 染色质免疫沉淀 ; 小鼠; 图 6c, 6d
  • 免疫沉淀; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 PPARgamma抗体(Abcam, A3409A)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6c, 6d) 和 被用于免疫沉淀在小鼠样本上 (图 5a). PLoS Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3a
艾博抗(上海)贸易有限公司 PPARgamma抗体(Abcam, Ab45036)被用于被用于免疫印迹在大鼠样本上 (图 3a). FEBS Open Bio (2017) ncbi
  • 免疫印迹; 小鼠; 1:500; 图 s5
艾博抗(上海)贸易有限公司 PPARgamma抗体(Abcam, 59256)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; pigs ; 图 3
艾博抗(上海)贸易有限公司 PPARgamma抗体(Abcam, ab45036)被用于被用于免疫细胞化学在pigs 样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(A3409A)
  • 染色质免疫沉淀 ; 人类; 图 4
艾博抗(上海)贸易有限公司 PPARgamma抗体(Abcam, A3409A)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). PLoS Pathog (2016) ncbi
小鼠 单克隆(A3409A)
  • 染色质免疫沉淀 ; 小鼠; 图 5
  • 免疫沉淀; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司 PPARgamma抗体(Abcam, ab41928)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5), 被用于免疫沉淀在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2016) ncbi
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司 PPARgamma抗体(Abcam, ab59256)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2015) ncbi
小鼠 单克隆(A3409A)
  • 免疫沉淀; 大鼠; 图 3b
  • 免疫印迹; 大鼠; 图 2b
艾博抗(上海)贸易有限公司 PPARgamma抗体(Abcam, ab41928)被用于被用于免疫沉淀在大鼠样本上 (图 3b) 和 被用于免疫印迹在大鼠样本上 (图 2b). Dev Neurobiol (2016) ncbi
小鼠 单克隆(A3409A)
  • 染色质免疫沉淀 ; 小鼠; 图 2
艾博抗(上海)贸易有限公司 PPARgamma抗体(Abcam, ab41928)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
赛默飞世尔
小鼠 单克隆(A3409A)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 3
  • 免疫细胞化学; 大鼠; 图 3
赛默飞世尔 PPARgamma抗体(Invitrogen, 419300)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 3) 和 被用于免疫细胞化学在大鼠样本上 (图 3). Sci Rep (2017) ncbi
domestic rabbit 单克隆(K.242.9)
  • 免疫细胞化学; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 5e
赛默飞世尔 PPARgamma抗体(Sigma, MA5-14889)被用于被用于免疫细胞化学在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 5e). Metabolism (2017) ncbi
domestic rabbit 单克隆(K.242.9)
  • 免疫印迹; 小鼠; 1:1000; 图 7L
赛默飞世尔 PPARgamma抗体(Thermo Scientific, MA5-14889)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7L). Diabetes (2017) ncbi
domestic rabbit 单克隆(K.242.9)
  • 免疫细胞化学; 小鼠; 1:200; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛默飞世尔 PPARgamma抗体(Sigma, MA5-14889)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Cytotechnology (2017) ncbi
domestic rabbit 单克隆(K.242.9)
  • 免疫印迹; 小鼠; 图 1a
赛默飞世尔 PPARgamma抗体(ThermoFisher, MA5-14889)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 1:500; 图 4c
  • 免疫印迹; 人类; 1:500; 图 4c
赛默飞世尔 PPARgamma抗体(Invitrogen, PA1-824)被用于被用于免疫沉淀在人类样本上浓度为1:500 (图 4c) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 4c). Biochem Biophys Res Commun (2016) ncbi
domestic rabbit 单克隆(K.242.9)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 PPARgamma抗体(Pierce, MA5-14889)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Cycle (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 4
赛默飞世尔 PPARgamma抗体(Thermo Scientific, PA3-821A)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Biores Open Access (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 PPARgamma抗体(Pierce, PA3-821A)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Med (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 PPARgamma抗体(Thermo Scientific, PA5-25757)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 PPARgamma抗体(ABR Affinity Bioreagents, PA1-824)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 50 ul/ml; 图 4
赛默飞世尔 PPARgamma抗体(Thermo, PA1-824)被用于被用于免疫细胞化学在人类样本上浓度为50 ul/ml (图 4). J Bone Miner Metab (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 PPARgamma抗体(ThermoFisher Scientific, PA3-821A)被用于. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(K.242.9)
  • 免疫印迹; 小鼠
赛默飞世尔 PPARgamma抗体(Pierce, MA5-14889)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(K.242.9)
  • 免疫印迹; 小鼠
赛默飞世尔 PPARgamma抗体(Pierce, MA5-14889)被用于被用于免疫印迹在小鼠样本上. Cell Cycle (2014) ncbi
domestic rabbit 单克隆(K.242.9)
  • 免疫组化-石蜡切片; 小鼠; 1:500
  • 免疫细胞化学; 小鼠; 1:250
赛默飞世尔 PPARgamma抗体(Thermo Scientific, MA5-14889)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 和 被用于免疫细胞化学在小鼠样本上浓度为1:250. Proc Natl Acad Sci U S A (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell signaling, 2435)被用于被用于免疫印迹在小鼠样本上 (图 4a). Mol Metab (2022) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 人类; 1:500; 图 6h
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signalling, 2435)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6h). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫组化; 小鼠; 图 6c
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling Technology, 2435)被用于被用于免疫组化在小鼠样本上 (图 6c) 和 被用于免疫印迹在小鼠样本上 (图 6a). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 PPARgamma抗体(CST, 2435)被用于被用于免疫印迹在人类样本上 (图 2e). Mol Ther Nucleic Acids (2021) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2443S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫沉淀; 小鼠; 图 1d
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling Technology, 2443)被用于被用于免疫沉淀在小鼠样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 1d). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2443)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell signaling technology, 2435)被用于被用于免疫印迹在人类样本上. Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 小鼠; 图 e7c
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling Technology, 2435)被用于被用于免疫印迹在小鼠样本上 (图 e7c). Nature (2020) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠; 图 1d
  • 免疫组化-石蜡切片; 人类; 图 4d
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2443)被用于被用于免疫印迹在小鼠样本上 (图 1d), 被用于免疫组化-石蜡切片在人类样本上 (图 4d) 和 被用于免疫印迹在人类样本上 (图 6c). Drug Des Devel Ther (2020) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫组化-冰冻切片; 小鼠; 图 4e
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling Technology, 2443)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4e) 和 被用于免疫印迹在小鼠样本上 (图 4d). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling Technology, D69)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Theranostics (2019) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫细胞化学; 人类; 图 6a
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 PPARgamma抗体(cell signaling technologies, 2435)被用于被用于免疫细胞化学在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 1a). Front Genet (2019) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, C26H12)被用于被用于免疫印迹在小鼠样本上 (图 1d). Nucleic Acids Res (2019) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2435)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Sci Total Environ (2019) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling Technology, 2435)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Cell Death Differ (2019) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 小鼠; 图 s2g, s4a
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2435)被用于被用于免疫印迹在小鼠样本上 (图 s2g, s4a). Cell (2018) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠; 图 s15
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling Technology, 2443)被用于被用于免疫印迹在小鼠样本上 (图 s15). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠; 1:1000; 图 s2b
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2443)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2b). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling Technologies, C26H12)被用于被用于免疫印迹在小鼠样本上 (图 1e). Cell Metab (2018) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1f
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1b
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, C26H12)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1f) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1b). Front Immunol (2017) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫细胞化学; 人类; 图 1a
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, C26H12)被用于被用于免疫细胞化学在人类样本上 (图 1a). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2443)被用于被用于免疫印迹在小鼠样本上 (图 6b). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell signaling, 2435)被用于被用于免疫印迹在人类样本上 (图 1e). Front Pharmacol (2017) ncbi
domestic rabbit 单克隆(81B8)
  • 染色质免疫沉淀 ; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2443)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5b). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2443)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). Diabetes (2017) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 PPARgamma抗体(CST, 81B8)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 st13
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling Technology, 2435S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 st13). J Toxicol Pathol (2017) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 PPARgamma抗体(cell signalling, 2443)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2017) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2443)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). J Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signalling, 2430)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2435)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠; 1:2000; 图 3a
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2443)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2443)被用于被用于免疫印迹在小鼠样本上 (图 5a). Am J Physiol Endocrinol Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2430)被用于被用于免疫印迹在小鼠样本上 (图 5a). Am J Physiol Endocrinol Metab (2016) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠; 1:500; 图 1
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell signaling, 2443)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 s1b
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell signaling, 2435)被用于被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 s1b). EBioMedicine (2016) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2443)被用于被用于免疫印迹在小鼠样本上 (图 5f). Stem Cells Int (2016) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6b
  • 免疫印迹; 小鼠; 1:1000; 图 7f
  • 免疫组化-石蜡切片; 人类; 1:500; 图 7g
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2435)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6b), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7f) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 7g). Circ Res (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 8a
  • 免疫印迹; 小鼠; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 PPARgamma抗体(CST, 2430)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 8a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7e). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell signaling, 2443)被用于被用于免疫印迹在人类样本上 (图 1). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2443)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2443)被用于被用于免疫印迹在小鼠样本上 (图 4a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫组化; 小鼠; 1:400; 图 3b
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2435)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 人类; 1:500; 图 6
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling Technology, 2435)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 小鼠; 1:1000; 图 s14
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2435)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s14). Nat Commun (2015) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫细胞化学; 人类; 1:200; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signalling Technology, 81B8)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Hum Mol Genet (2015) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell signaling, 2435)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling Technologies, 2443)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Cardiovasc Diabetol (2015) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling Technology, 2443)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling Technology, 2443)被用于被用于免疫印迹在小鼠样本上. BMC Endocr Disord (2015) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 PPARgamma抗体(CST, C26H12)被用于被用于免疫印迹在人类样本上浓度为1:1000. Anticancer Drugs (2015) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫组化; 人类; 图 4
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell signaling, C26H12)被用于被用于免疫组化在人类样本上 (图 4). BMC Med Genomics (2015) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling Technology, 2435S)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2015) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠; 图 3i
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling Technology, 2443)被用于被用于免疫印迹在小鼠样本上 (图 3i). Autophagy (2015) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2443)被用于被用于免疫印迹在小鼠样本上 (图 3c). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2443)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫组化-冰冻切片; 大鼠
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2435)被用于被用于免疫组化-冰冻切片在大鼠样本上. Int J Dev Neurosci (2014) ncbi
domestic rabbit 单克隆(81B8)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2443)被用于被用于免疫印迹在人类样本上浓度为1:500. PPAR Res (2014) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2435S)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling Technology, 2435S)被用于被用于免疫印迹在人类样本上浓度为1:500. Biochem Biophys Res Commun (2013) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, C26H12)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2013) ncbi
domestic rabbit 单克隆(C26H12)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 PPARgamma抗体(Cell Signaling, 2435)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Environ Health Perspect (2013) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:250; 图 1e
西格玛奥德里奇 PPARgamma抗体(Sigma, SAB4502262)被用于被用于免疫组化在人类样本上浓度为1:250 (图 1e). Thyroid (2016) ncbi
文章列表
  1. Han H, Kim S, Kim Y, Jang S, Kwon Y, Choi D, et al. A novel role of CRTC2 in promoting nonalcoholic fatty liver disease. Mol Metab. 2022;55:101402 pubmed 出版商
  2. Gyamfi J, Yeo J, Kwon D, Min B, Cha Y, Koo J, et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer. 2021;7:129 pubmed 出版商
  3. Cheng C, Xue F, Sui W, Meng L, Xie L, Zhang C, et al. Deletion of natriuretic peptide receptor C alleviates adipose tissue inflammation in hypercholesterolemic Apolipoprotein E knockout mice. J Cell Mol Med. 2021;25:9837-9850 pubmed 出版商
  4. Sun Z, Sun D, Feng Y, Zhang B, Sun P, Zhou B, et al. Exosomal linc-ROR mediates crosstalk between cancer cells and adipocytes to promote tumor growth in pancreatic cancer. Mol Ther Nucleic Acids. 2021;26:253-268 pubmed 出版商
  5. Cheng V, Reddam A, Bhatia A, Hur M, Kirkwood J, Volz D. Utilizing systems biology to reveal cellular responses to peroxisome proliferator-activated receptor γ ligand exposure. Curr Res Toxicol. 2021;2:169-178 pubmed 出版商
  6. Han H, Tian T, Huang G, Li D, Yang S. The lncRNA H19/miR-541-3p/Wnt/β-catenin axis plays a vital role in melatonin-mediated osteogenic differentiation of bone marrow mesenchymal stem cells. Aging (Albany NY). 2021;13:18257-18273 pubmed 出版商
  7. Matsuzawa T, Morita M, Shimane A, Otsuka R, Mei Y, Irie F, et al. Heparan sulfate promotes differentiation of white adipocytes to maintain insulin sensitivity and glucose homeostasis. J Biol Chem. 2021;:101006 pubmed 出版商
  8. Sferra R, Pompili S, Cappariello A, Gaudio E, Latella G, Vetuschi A. Prolonged Chronic Consumption of a High Fat with Sucrose Diet Alters the Morphology of the Small Intestine. Int J Mol Sci. 2021;22: pubmed 出版商
  9. Li C, Li J, Loreno E, Miriyala S, Panchatcharam M, Lu X, et al. Chronic Low-Dose Alcohol Consumption Attenuates Post-Ischemic Inflammation via PPARγ in Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  10. Wang H, Xiong W, Hang S, Wang Y, Zhang S, Liu S. Depletion of SENP1-mediated PPARγ SUMOylation exaggerates intermittent hypoxia-induced cognitive decline by aggravating microglia-mediated neuroinflammation. Aging (Albany NY). 2021;13:15240-15254 pubmed 出版商
  11. Ercolano G, Gomez Cadena A, Dumauthioz N, Vanoni G, Kreutzfeldt M, Wyss T, et al. PPARɣ drives IL-33-dependent ILC2 pro-tumoral functions. Nat Commun. 2021;12:2538 pubmed 出版商
  12. Pan Z, Wang B, Hou D, You R, Wang X, Xie W, et al. METTL3 mediates bone marrow mesenchymal stem cell adipogenesis to promote chemoresistance in acute myeloid leukaemia. FEBS Open Bio. 2021;11:1659-1672 pubmed 出版商
  13. Chen Q, Liu X, Wang D, Zheng J, Chen L, Xie Q, et al. Periodontal Inflammation-Triggered by Periodontal Ligament Stem Cell Pyroptosis Exacerbates Periodontitis. Front Cell Dev Biol. 2021;9:663037 pubmed 出版商
  14. Chen J, Wu Y, Li C, Jheng H, Kao L, Yang C, et al. PPARγ activation improves the microenvironment of perivascular adipose tissue and attenuates aortic stiffening in obesity. J Biomed Sci. 2021;28:22 pubmed 出版商
  15. Malvi P, Janostiak R, Nagarajan A, Zhang X, Wajapeyee N. N-acylsphingosine amidohydrolase 1 promotes melanoma growth and metastasis by suppressing peroxisome biogenesis-induced ROS production. Mol Metab. 2021;48:101217 pubmed 出版商
  16. Musicant A, Parag Sharma K, Gong W, Sengupta M, Chatterjee A, Henry E, et al. CRTC1/MAML2 directs a PGC-1α-IGF-1 circuit that confers vulnerability to PPARγ inhibition. Cell Rep. 2021;34:108768 pubmed 出版商
  17. Huang M, Chen L, Mao X, Liu G, Gao Y, You X, et al. ERRα inhibitor acts as a potential agonist of PPARγ to induce cell apoptosis and inhibit cell proliferation in endometrial cancer. Aging (Albany NY). 2020;12:23029-23046 pubmed 出版商
  18. Yamamuro T, Kawabata T, Fukuhara A, Saita S, Nakamura S, Takeshita H, et al. Age-dependent loss of adipose Rubicon promotes metabolic disorders via excess autophagy. Nat Commun. 2020;11:4150 pubmed 出版商
  19. Lu Z, Zou J, Li S, Topper M, Tao Y, Zhang H, et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature. 2020;579:284-290 pubmed 出版商
  20. Xiang S, Chen K, Xu L, Wang T, Guo C. Bergenin Exerts Hepatoprotective Effects by Inhibiting the Release of Inflammatory Factors, Apoptosis and Autophagy via the PPAR-γ Pathway. Drug Des Devel Ther. 2020;14:129-143 pubmed 出版商
  21. Galmozzi A, Kok B, Kim A, Montenegro Burke J, Lee J, Spreafico R, et al. PGRMC2 is an intracellular haem chaperone critical for adipocyte function. Nature. 2019;576:138-142 pubmed 出版商
  22. Shikama Y, Kurosawa M, Furukawa M, Ishimaru N, Matsushita K. Involvement of adiponectin in age-related increases in tear production in mice. Aging (Albany NY). 2019;11:8329-8346 pubmed 出版商
  23. Trümper V, von Knethen A, Preuß A, Ermilov E, Hackbarth S, Kuchler L, et al. Flow cytometry-based FRET identifies binding intensities in PPARγ1 protein-protein interactions in living cells. Theranostics. 2019;9:5444-5463 pubmed 出版商
  24. Kaur S, Nag A, Gangenahalli G, Sharma K. Peroxisome Proliferator Activated Receptor Gamma Sensitizes Non-small Cell Lung Carcinoma to Gamma Irradiation Induced Apoptosis. Front Genet. 2019;10:554 pubmed 出版商
  25. Guo Z, Zhao K, Feng X, Yan D, Yao R, Chen Y, et al. mTORC2 Regulates Lipogenic Gene Expression through PPARγ to Control Lipid Synthesis in Bovine Mammary Epithelial Cells. Biomed Res Int. 2019;2019:5196028 pubmed 出版商
  26. Song T, Yang Y, Wei H, Xie X, Lu J, Zeng Q, et al. Zfp217 mediates m6A mRNA methylation to orchestrate transcriptional and post-transcriptional regulation to promote adipogenic differentiation. Nucleic Acids Res. 2019;: pubmed 出版商
  27. Chang H, Di T, Wang Y, Zeng X, Li G, Wan Q, et al. Seipin deletion in mice enhances phosphorylation and aggregation of tau protein through reduced neuronal PPARγ and insulin resistance. Neurobiol Dis. 2019;127:350-361 pubmed 出版商
  28. Zuo Z, Liu Z, Gao T, Yin Y, Wang Z, Hou Y, et al. Prolonged inorganic arsenic exposure via drinking water impairs brown adipose tissue function in mice. Sci Total Environ. 2019;668:310-317 pubmed 出版商
  29. Zhang X, Chen X, Qi T, Kong Q, Cheng H, Cao X, et al. HSPA12A is required for adipocyte differentiation and diet-induced obesity through a positive feedback regulation with PPARγ. Cell Death Differ. 2019;: pubmed 出版商
  30. Zhu K, Tang Y, Xu X, Dang H, Tang L, Wang X, et al. Non-proteolytic ubiquitin modification of PPARγ by Smurf1 protects the liver from steatosis. PLoS Biol. 2018;16:e3000091 pubmed 出版商
  31. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  32. Wnuk A, Rzemieniec J, Staroń J, Litwa E, Lasoń W, Bojarski A, et al. Prenatal Exposure to Benzophenone-3 Impairs Autophagy, Disrupts RXRs/PPARγ Signaling, and Alters Epigenetic and Post-Translational Statuses in Brain Neurons. Mol Neurobiol. 2018;: pubmed 出版商
  33. Li C, Xiao Y, Yang M, Su T, Sun X, Guo Q, et al. Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. J Clin Invest. 2018;128:5251-5266 pubmed 出版商
  34. Li T, Song L, Sun Y, Li J, Yi C, Lam S, et al. Tip60-mediated lipin 1 acetylation and ER translocation determine triacylglycerol synthesis rate. Nat Commun. 2018;9:1916 pubmed 出版商
  35. Macdougall C, Wood E, Loschko J, Scagliotti V, Cassidy F, Robinson M, et al. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab. 2018;27:588-601.e4 pubmed 出版商
  36. Ernszt D, Banfai K, Kellermayer Z, Pap A, Lord J, Pongracz J, et al. PPARgamma Deficiency Counteracts Thymic Senescence. Front Immunol. 2017;8:1515 pubmed 出版商
  37. Wang B, Fu X, Zhu M, Du M. Retinoic acid inhibits white adipogenesis by disrupting GADD45A-mediated Zfp423 DNA demethylation. J Mol Cell Biol. 2017;9:338-349 pubmed 出版商
  38. Al Khalaf H, Amir M, Al Mohanna F, Tulbah A, Al Sayed A, Aboussekhra A. Obesity and p16INK4A Downregulation Activate Breast Adipocytes and Promote Their Protumorigenicity. Mol Cell Biol. 2017;37: pubmed 出版商
  39. Matsumoto Y, La Rose J, Lim M, Adissu H, Law N, Mao X, et al. Ubiquitin ligase RNF146 coordinates bone dynamics and energy metabolism. J Clin Invest. 2017;127:2612-2625 pubmed 出版商
  40. Nam M, Akie T, Sanosaka M, Craige S, Kant S, Keaney J, et al. Mitochondrial retrograde signaling connects respiratory capacity to thermogenic gene expression. Sci Rep. 2017;7:2013 pubmed 出版商
  41. Lee R, Reese C, Carmen Lopez G, Perry B, Bonner M, Zemskova M, et al. Deficient Adipogenesis of Scleroderma Patient and Healthy African American Monocytes. Front Pharmacol. 2017;8:174 pubmed 出版商
  42. Chen Z, Wang Q. Activation of PPAR? by baicalin attenuates pulmonary hypertension in an infant rat model by suppressing HMGB1/RAGE signaling. FEBS Open Bio. 2017;7:477-484 pubmed 出版商
  43. Hopkins A, Nelson T, Guschina I, Parsons L, Lewis C, Brown R, et al. Unacylated ghrelin promotes adipogenesis in rodent bone marrow via ghrelin O-acyl transferase and GHS-R1a activity: evidence for target cell-induced acylation. Sci Rep. 2017;7:45541 pubmed 出版商
  44. Sim C, Kim S, Brunmeir R, Zhang Q, Li H, Dharmasegaran D, et al. Regulation of white and brown adipocyte differentiation by RhoGAP DLC1. PLoS ONE. 2017;12:e0174761 pubmed 出版商
  45. Li S, Wang J. Salvianolic acid B prevents steroid-induced osteonecrosis of the femoral head via PPAR? expression in rats. Exp Ther Med. 2017;13:651-656 pubmed 出版商
  46. Song Z, Xiaoli A, Zhang Q, Zhang Y, Yang E, Wang S, et al. Cyclin C regulates adipogenesis by stimulating transcriptional activity of CCAAT/enhancer-binding protein ?. J Biol Chem. 2017;292:8918-8932 pubmed 出版商
  47. Dogan A, Demirci S, Apdik H, Bayrak O, Gulluoglu S, Tuysuz E, et al. A new hope for obesity management: Boron inhibits adipogenesis in progenitor cells through the Wnt/β-catenin pathway. Metabolism. 2017;69:130-142 pubmed 出版商
  48. Patil M, Sharma B, Elattar S, Chang J, Kapil S, Yuan J, et al. Id1 Promotes Obesity by Suppressing Brown Adipose Thermogenesis and White Adipose Browning. Diabetes. 2017;66:1611-1625 pubmed 出版商
  49. Wang J, Rajbhandari P, Damianov A, Han A, Sallam T, Waki H, et al. RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs. J Clin Invest. 2017;127:987-1004 pubmed 出版商
  50. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  51. Chamma C, Bargut T, Mandarim de Lacerda C, Aguila M. A rich medium-chain triacylglycerol diet benefits adiposity but has adverse effects on the markers of hepatic lipogenesis and beta-oxidation. Food Funct. 2017;8:778-787 pubmed 出版商
  52. Wang M, Li G, Yang Z, Wang L, Zhang L, Wang T, et al. Uncoupling protein 2 downregulation by hypoxia through repression of peroxisome proliferator-activated receptor γ promotes chemoresistance of non-small cell lung cancer. Oncotarget. 2017;8:8083-8094 pubmed 出版商
  53. Dogan A, Demirci S, Kıratlı B, Sahin F. Cytoglobin: a potential marker for adipogenic differentiation in preadipocytes in vitro. Cytotechnology. 2017;69:157-165 pubmed 出版商
  54. Zou T, Chen D, Yang Q, Wang B, Zhu M, Nathanielsz P, et al. Resveratrol supplementation of high-fat diet-fed pregnant mice promotes brown and beige adipocyte development and prevents obesity in male offspring. J Physiol. 2017;595:1547-1562 pubmed 出版商
  55. Shen X, Wang M, Bi X, Zhang J, Wen S, Fu G, et al. Resveratrol prevents endothelial progenitor cells from senescence and reduces the oxidative reaction via PPAR??/HO?1 pathways. Mol Med Rep. 2016;14:5528-5534 pubmed 出版商
  56. Chruvattil R, Banerjee S, Nath S, Machhi J, Kharkwal G, Yadav M, et al. Dexamethasone Alters the Appetite Regulation via Induction of Hypothalamic Insulin Resistance in Rat Brain. Mol Neurobiol. 2017;54:7483-7496 pubmed 出版商
  57. Chen G, Han Y, He W, Liang F. Amentoflavone protects against high fat-induced metabolic dysfunction: Possible role of the regulation of adipogenic differentiation. Int J Mol Med. 2016;38:1759-1767 pubmed 出版商
  58. Kimura T, Nada S, Takegahara N, Okuno T, Nojima S, Kang S, et al. Polarization of M2 macrophages requires Lamtor1 that integrates cytokine and amino-acid signals. Nat Commun. 2016;7:13130 pubmed 出版商
  59. Charrier A, Wang L, Stephenson E, Ghanta S, Ko C, Croniger C, et al. Zinc finger protein 407 overexpression upregulates PPAR target gene expression and improves glucose homeostasis in mice. Am J Physiol Endocrinol Metab. 2016;311:E869-E880 pubmed 出版商
  60. Bi P, Yue F, Karki A, Castro B, Wirbisky S, Wang C, et al. Notch activation drives adipocyte dedifferentiation and tumorigenic transformation in mice. J Exp Med. 2016;213:2019-37 pubmed 出版商
  61. Klose R, Krzywinska E, Castells M, Gotthardt D, Putz E, Kantari Mimoun C, et al. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nat Commun. 2016;7:12528 pubmed 出版商
  62. Coppo M, Chinenov Y, Sacta M, Rogatsky I. The transcriptional coregulator GRIP1 controls macrophage polarization and metabolic homeostasis. Nat Commun. 2016;7:12254 pubmed 出版商
  63. Friedrich T, Söhn M, Gutting T, Janssen K, Behrens H, Rocken C, et al. Subcellular compartmentalization of docking protein-1 contributes to progression in colorectal cancer. EBioMedicine. 2016;8:159-172 pubmed 出版商
  64. Jacobsen R, Mazloumi Gavgani F, Mellgren G, Lewis A. DNA Topoisomerase II? contributes to the early steps of adipogenesis in 3T3-L1 cells. Cell Signal. 2016;28:1593-603 pubmed 出版商
  65. Takeuchi A, Yamamoto N, Shirai T, Hayashi K, Miwa S, Munesue S, et al. Clinical relevance of peroxisome proliferator-activated receptor-gamma expression in myxoid liposarcoma. BMC Cancer. 2016;16:442 pubmed 出版商
  66. Qu B, Ma Y, Yan M, Gong K, Liang F, Deng S, et al. Sirtuin1 promotes osteogenic differentiation through downregulation of peroxisome proliferator-activated receptor ? in MC3T3-E1 cells. Biochem Biophys Res Commun. 2016;478:439-445 pubmed 出版商
  67. Wérion A, Joris V, Hepp M, Papasokrati L, Marique L, de Ville de Goyet C, et al. Pioglitazone, a PPARγ Agonist, Upregulates the Expression of Caveolin-1 and Catalase, Essential for Thyroid Cell Homeostasis: A Clue to the Pathogenesis of Hashimoto's Thyroiditis. Thyroid. 2016;26:1320-31 pubmed 出版商
  68. Kovacevic S, Nestorov J, Matić G, Elaković I. Fructose and stress induce opposite effects on lipid metabolism in the visceral adipose tissue of adult female rats through glucocorticoid action. Eur J Nutr. 2017;56:2115-2128 pubmed 出版商
  69. Wang S, Zhang Q, Zhang Y, Shen C, Wang Z, Wu Q, et al. Agrimol B suppresses adipogenesis through modulation of SIRT1-PPAR gamma signal pathway. Biochem Biophys Res Commun. 2016;477:454-60 pubmed 出版商
  70. Liu L, Zheng L, Zou P, Brooke J, Smith C, Long Y, et al. FoxO1 antagonist suppresses autophagy and lipid droplet growth in adipocytes. Cell Cycle. 2016;15:2033-41 pubmed 出版商
  71. Yu P, Ji L, Lee K, Yu M, He C, Ambati S, et al. Subsets of Visceral Adipose Tissue Nuclei with Distinct Levels of 5-Hydroxymethylcytosine. PLoS ONE. 2016;11:e0154949 pubmed 出版商
  72. Zhang C, Weng Y, Shi F, Jin W. The Engrailed-1 Gene Stimulates Brown Adipogenesis. Stem Cells Int. 2016;2016:7369491 pubmed 出版商
  73. Lombardi R, Chen S, Ruggiero A, Gurha P, Czernuszewicz G, Willerson J, et al. Cardiac Fibro-Adipocyte Progenitors Express Desmosome Proteins and Preferentially Differentiate to Adipocytes Upon Deletion of the Desmoplakin Gene. Circ Res. 2016;119:41-54 pubmed 出版商
  74. Rolland M, Li X, Sellier Y, Martin H, Pérez Berezo T, Rauwel B, et al. PPARγ Is Activated during Congenital Cytomegalovirus Infection and Inhibits Neuronogenesis from Human Neural Stem Cells. PLoS Pathog. 2016;12:e1005547 pubmed 出版商
  75. Wang T, Wang Z, Yang P, Xia L, Zhou M, Wang S, et al. PER1 prevents excessive innate immune response during endotoxin-induced liver injury through regulation of macrophage recruitment in mice. Cell Death Dis. 2016;7:e2176 pubmed 出版商
  76. Hernández Bule M, Martinez Botas J, Trillo M, Paíno C, Ubeda A. Antiadipogenic effects of subthermal electric stimulation at 448 kHz on differentiating human mesenchymal stem cells. Mol Med Rep. 2016;13:3895-903 pubmed 出版商
  77. Klepac K, Kilić A, Gnad T, Brown L, Herrmann B, Wilderman A, et al. The Gq signalling pathway inhibits brown and beige adipose tissue. Nat Commun. 2016;7:10895 pubmed 出版商
  78. Liu Z, Gan L, Chen Y, Luo D, Zhang Z, Cao W, et al. Mark4 promotes oxidative stress and inflammation via binding to PPARγ and activating NF-κB pathway in mice adipocytes. Sci Rep. 2016;6:21382 pubmed 出版商
  79. Senol Cosar O, Flach R, DiStefano M, Chawla A, Nicoloro S, Straubhaar J, et al. Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion. Nat Commun. 2016;7:10686 pubmed 出版商
  80. Jung J, Bache Wiig M, Provenzano P, Ogle B. Heterogeneous Differentiation of Human Mesenchymal Stem Cells in 3D Extracellular Matrix Composites. Biores Open Access. 2016;5:37-48 pubmed 出版商
  81. Liu Y, Takahashi Y, Desai N, Zhang J, Serfass J, Shi Y, et al. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci Rep. 2016;6:20453 pubmed 出版商
  82. Lee B, Koo J, Yun Jun J, Gavrilova O, Lee Y, Seo A, et al. A mouse model for a partially inactive obesity-associated human MC3R variant. Nat Commun. 2016;7:10522 pubmed 出版商
  83. Lee K, Hsieh Y, Yang Y, Chan C, Huang Y, Lin H. Aliskiren Reduces Hepatic steatosis and Epididymal Fat Mass and Increases Skeletal Muscle Insulin Sensitivity in High-Fat Diet-Fed Mice. Sci Rep. 2016;6:18899 pubmed 出版商
  84. Dickey A, Pineda V, Tsunemi T, Liu P, Miranda H, Gilmore Hall S, et al. PPAR-δ is repressed in Huntington's disease, is required for normal neuronal function and can be targeted therapeutically. Nat Med. 2016;22:37-45 pubmed 出版商
  85. Biziota E, Briasoulis E, Mavroeidis L, Marselos M, Harris A, Pappas P. Cellular and molecular effects of metronomic vinorelbine and 4-O-deacetylvinorelbine on human umbilical vein endothelial cells. Anticancer Drugs. 2016;27:216-24 pubmed 出版商
  86. Bo Q, Sun X, Liu J, Sui X, Li G. Antitumor action of the peroxisome proliferator-activated receptor-γ agonist rosiglitazone in hepatocellular carcinoma. Oncol Lett. 2015;10:1979-1984 pubmed
  87. Schill E, Lake J, Tusheva O, Nagy N, Bery S, Foster L, et al. Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse. Dev Biol. 2016;409:473-88 pubmed 出版商
  88. Onodera T, Fukuhara A, Jang M, Shin J, Aoi K, Kikuta J, et al. Adipose tissue macrophages induce PPARγ-high FOXP3(+) regulatory T cells. Sci Rep. 2015;5:16801 pubmed 出版商
  89. Langhi L, Andrade L, Shimabukuro M, van Ewijk W, Taub D, Borojevic R, et al. Lipid-Laden Multilocular Cells in the Aging Thymus Are Phenotypically Heterogeneous. PLoS ONE. 2015;10:e0141516 pubmed 出版商
  90. Lauková J, Kozubík A, Hofmanová J, Nekvindová J, Sova P, Moyer M, et al. Loss of PTEN Facilitates Rosiglitazone-Mediated Enhancement of Platinum(IV) Complex LA-12-Induced Apoptosis in Colon Cancer Cells. PLoS ONE. 2015;10:e0141020 pubmed 出版商
  91. Lezana J, Dagan S, Robinson A, Goldstein R, Fainzilber M, Bronfman F, et al. Axonal PPARγ promotes neuronal regeneration after injury. Dev Neurobiol. 2016;76:688-701 pubmed 出版商
  92. Nemazanyy I, Montagnac G, Russell R, Morzyglod L, Burnol A, Guan K, et al. Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nat Commun. 2015;6:8283 pubmed 出版商
  93. Zoppi N, Chiarelli N, Cinquina V, Ritelli M, Colombi M. GLUT10 deficiency leads to oxidative stress and non-canonical αvβ3 integrin-mediated TGFβ signalling associated with extracellular matrix disarray in arterial tortuosity syndrome skin fibroblasts. Hum Mol Genet. 2015;24:6769-87 pubmed 出版商
  94. Okolicsanyi R, Camilleri E, Oikari L, Yu C, Cool S, Van Wijnen A, et al. Human Mesenchymal Stem Cells Retain Multilineage Differentiation Capacity Including Neural Marker Expression after Extended In Vitro Expansion. PLoS ONE. 2015;10:e0137255 pubmed 出版商
  95. Kim J, Sato M, Choi J, Kim H, Yeh B, Larsen J, et al. Nuclear Receptor Expression and Function in Human Lung Cancer Pathogenesis. PLoS ONE. 2015;10:e0134842 pubmed 出版商
  96. He J, Quintana M, Sullivan J, L Parry T, J Grevengoed T, Schisler J, et al. MuRF2 regulates PPARγ1 activity to protect against diabetic cardiomyopathy and enhance weight gain induced by a high fat diet. Cardiovasc Diabetol. 2015;14:97 pubmed 出版商
  97. Lim G, Albrecht T, Piske M, Sarai K, Lee J, Ramshaw H, et al. 14-3-3ζ coordinates adipogenesis of visceral fat. Nat Commun. 2015;6:7671 pubmed 出版商
  98. Quintana M, He J, Sullivan J, Grevengoed T, Schisler J, Han Y, et al. Muscle ring finger-3 protects against diabetic cardiomyopathy induced by a high fat diet. BMC Endocr Disord. 2015;15:36 pubmed 出版商
  99. Hu Y, Belaghzal H, Hsiao W, Qi J, Bradner J, Guertin D, et al. Transcriptional and post-transcriptional control of adipocyte differentiation by Jumonji domain-containing protein 6. Nucleic Acids Res. 2015;43:7790-804 pubmed 出版商
  100. Li Q, Peng H, Fan H, Zou X, Liu Q, Zhang Y, et al. The LIM protein Ajuba promotes adipogenesis by enhancing PPARγ and p300/CBP interaction. Cell Death Differ. 2016;23:158-68 pubmed 出版商
  101. Corbett G, Gonzalez F, Pahan K. Activation of peroxisome proliferator-activated receptor α stimulates ADAM10-mediated proteolysis of APP. Proc Natl Acad Sci U S A. 2015;112:8445-50 pubmed 出版商
  102. Kim J, Jeong M, Lee S, Song J. Camptothecin and topotecan inhibit adipocyte differentiation by inducing degradation of PPARγ. Biochem Biophys Res Commun. 2015;463:1122-8 pubmed 出版商
  103. Zhang H, Jing X, Wu X, Hu J, Zhang X, Wang X, et al. Suppression of multidrug resistance by rosiglitazone treatment in human ovarian cancer cells through downregulation of FZD1 and MDR1 genes. Anticancer Drugs. 2015;26:706-15 pubmed 出版商
  104. Ching J, Amiridis S, Stylli S, Bjorksten A, Kountouri N, Zheng T, et al. The peroxisome proliferator activated receptor gamma agonist pioglitazone increases functional expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in human glioblastoma cells. Oncotarget. 2015;6:21301-14 pubmed
  105. Eriksson P, Aine M, Veerla S, Liedberg F, Sjödahl G, Höglund M. Molecular subtypes of urothelial carcinoma are defined by specific gene regulatory systems. BMC Med Genomics. 2015;8:25 pubmed 出版商
  106. Shi C, Zhang M, Tong M, Yang L, Pang L, Chen L, et al. miR-148a is Associated with Obesity and Modulates Adipocyte Differentiation of Mesenchymal Stem Cells through Wnt Signaling. Sci Rep. 2015;5:9930 pubmed 出版商
  107. Bargut T, Mandarim de Lacerda C, Aguila M. A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice. J Nutr Biochem. 2015;26:960-9 pubmed 出版商
  108. Watanabe M, Takahashi H, Saeki Y, Ozaki T, Itoh S, Suzuki M, et al. The E3 ubiquitin ligase TRIM23 regulates adipocyte differentiation via stabilization of the adipogenic activator PPARγ. elife. 2015;4:e05615 pubmed 出版商
  109. Apostoli A, Roche J, Schneider M, SenGupta S, Di Lena M, Rubino R, et al. Opposing roles for mammary epithelial-specific PPARγ signaling and activation during breast tumour progression. Mol Cancer. 2015;14:85 pubmed 出版商
  110. Ota A, Kovary K, Wu O, Ahrends R, Shen W, Costa M, et al. Using SRM-MS to quantify nuclear protein abundance differences between adipose tissue depots of insulin-resistant mice. J Lipid Res. 2015;56:1068-78 pubmed 出版商
  111. Seillier M, Pouyet L, N Guessan P, Nollet M, Capo F, Guillaumond F, et al. Defects in mitophagy promote redox-driven metabolic syndrome in the absence of TP53INP1. EMBO Mol Med. 2015;7:802-18 pubmed 出版商
  112. Dunn T, Akiyama T, Lee H, Kim J, Knotts T, Smith S, et al. Evaluation of the synuclein-γ (SNCG) gene as a PPARγ target in murine adipocytes, dorsal root ganglia somatosensory neurons, and human adipose tissue. PLoS ONE. 2015;10:e0115830 pubmed 出版商
  113. Bosetti M, Sabbatini M, Calarco A, Borrone A, Peluso G, Cannas M. Effect of retinoic acid and vitamin D3 on osteoblast differentiation and activity in aging. J Bone Miner Metab. 2016;34:65-78 pubmed 出版商
  114. Cao J, Ou G, Yang N, Ding K, Kream B, Hamrick M, et al. Impact of targeted PPARγ disruption on bone remodeling. Mol Cell Endocrinol. 2015;410:27-34 pubmed 出版商
  115. Agley C, Rowlerson A, Velloso C, Lazarus N, Harridge S. Isolation and quantitative immunocytochemical characterization of primary myogenic cells and fibroblasts from human skeletal muscle. J Vis Exp. 2015;:52049 pubmed 出版商
  116. Liu K, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M, et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy. 2015;11:271-84 pubmed 出版商
  117. Liu S, Lee W, Lai D, Wu S, Liu C, Tien H, et al. Honokiol confers immunogenicity by dictating calreticulin exposure, activating ER stress and inhibiting epithelial-to-mesenchymal transition. Mol Oncol. 2015;9:834-49 pubmed 出版商
  118. Veeranki S, Tyagi S. Mechanisms of hyperhomocysteinemia induced skeletal muscle myopathy after ischemia in the CBS-/+ mouse model. Int J Mol Sci. 2015;16:1252-65 pubmed 出版商
  119. Buchner D, Charrier A, Srinivasan E, Wang L, Paulsen M, Ljungman M, et al. Zinc finger protein 407 (ZFP407) regulates insulin-stimulated glucose uptake and glucose transporter 4 (Glut4) mRNA. J Biol Chem. 2015;290:6376-86 pubmed 出版商
  120. Liu Y, AYERS S, Milanesi A, Teng X, Rabi S, Akiba Y, et al. Thyroid hormone receptor sumoylation is required for preadipocyte differentiation and proliferation. J Biol Chem. 2015;290:7402-15 pubmed 出版商
  121. Liu L, Zou P, Zheng L, Linarelli L, Amarell S, Passaro A, et al. Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death Dis. 2015;6:e1586 pubmed 出版商
  122. Zhou L, Park S, Xu L, Xia X, Ye J, Su L, et al. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice. Nat Commun. 2015;6:5949 pubmed 出版商
  123. Loeuillard E, Bertrand J, Herranen A, Melchior C, Guérin C, Coëffier M, et al. 2,4,6-trinitrobenzene sulfonic acid-induced chronic colitis with fibrosis and modulation of TGF-β1 signaling. World J Gastroenterol. 2014;20:18207-15 pubmed 出版商
  124. Zou P, Liu L, Zheng L, Liu L, Stoneman R, Cho A, et al. Targeting FoxO1 with AS1842856 suppresses adipogenesis. Cell Cycle. 2014;13:3759-67 pubmed 出版商
  125. Kim T, Jo S, Choi H, Park J, Kim M, Nojima H, et al. Identification of Creb3l4 as an essential negative regulator of adipogenesis. Cell Death Dis. 2014;5:e1527 pubmed 出版商
  126. Banks A, McAllister F, Camporez J, Zushin P, Jurczak M, Laznik Bogoslavski D, et al. An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ. Nature. 2015;517:391-5 pubmed 出版商
  127. Wang W, Kissig M, Rajakumari S, Huang L, Lim H, Won K, et al. Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc Natl Acad Sci U S A. 2014;111:14466-71 pubmed 出版商
  128. Liu C, Chen S, Wang X, Chen Y, Tang N. 15d-PGJ? decreases PGE? synthesis in HBx-positive liver cells by interfering EGR1 binding to mPGES-1 promoter. Biochem Pharmacol. 2014;91:337-47 pubmed 出版商
  129. Ke X, Xing B, Yu B, Yu X, Majnik A, Cohen S, et al. IUGR disrupts the PPAR?-Setd8-H4K20me(1) and Wnt signaling pathways in the juvenile rat hippocampus. Int J Dev Neurosci. 2014;38:59-67 pubmed 出版商
  130. Bhattarai G, Lee Y, Yi H. Peroxisome proliferator activated receptor gamma loaded dental implant improves osteogenesis of rat mandible. J Biomed Mater Res B Appl Biomater. 2015;103:587-95 pubmed 出版商
  131. James A, Shen J, Khadarian K, Pang S, Chung G, Goyal R, et al. Lentiviral delivery of PPAR? shRNA alters the balance of osteogenesis and adipogenesis, improving bone microarchitecture. Tissue Eng Part A. 2014;20:2699-710 pubmed 出版商
  132. Malaviya A, Sylvester P. Synergistic Antiproliferative Effects of Combined ? -Tocotrienol and PPAR ? Antagonist Treatment Are Mediated through PPAR ? -Independent Mechanisms in Breast Cancer Cells. PPAR Res. 2014;2014:439146 pubmed 出版商
  133. Sharma A, Huard C, Vernochet C, Ziemek D, Knowlton K, Tyminski E, et al. Brown fat determination and development from muscle precursor cells by novel action of bone morphogenetic protein 6. PLoS ONE. 2014;9:e92608 pubmed 出版商
  134. Du R, Qin S, Shi L, Zhou Z, Zhu X, Liu J, et al. Fumigaclavine C activates PPAR? pathway and attenuates atherogenesis in ApoE-deficient mice. Atherosclerosis. 2014;234:120-8 pubmed 出版商
  135. Bullers S, Baker S, Ingham E, Southgate J. The human tissue-biomaterial interface: a role for PPAR?-dependent glucocorticoid receptor activation in regulating the CD163+ M2 macrophage phenotype. Tissue Eng Part A. 2014;20:2390-401 pubmed 出版商
  136. Zhang J, Wang J. Prostaglandin E2 (PGE2) exerts biphasic effects on human tendon stem cells. PLoS ONE. 2014;9:e87706 pubmed 出版商
  137. Braga M, Reddy S, Vergnes L, Pervin S, Grijalva V, Stout D, et al. Follistatin promotes adipocyte differentiation, browning, and energy metabolism. J Lipid Res. 2014;55:375-84 pubmed 出版商
  138. Dannoura A, Giraldo A, Pereira I, Gibbins J, Dash P, Bicknell K, et al. Ibuprofen inhibits migration and proliferation of human coronary artery smooth muscle cells by inducing a differentiated phenotype: role of peroxisome proliferator-activated receptor ?. J Pharm Pharmacol. 2014;66:779-92 pubmed 出版商
  139. Kim J, Park K, Lee E, Jang W, Seo J, Shin S, et al. Suppression of PPAR? through MKRN1-mediated ubiquitination and degradation prevents adipocyte differentiation. Cell Death Differ. 2014;21:594-603 pubmed 出版商
  140. de Luxán Delgado B, Caballero B, Potes Y, Rubio González A, Rodríguez I, Gutiérrez Rodríguez J, et al. Melatonin administration decreases adipogenesis in the liver of ob/ob mice through autophagy modulation. J Pineal Res. 2014;56:126-33 pubmed 出版商
  141. Fedorova L, Tamirisa A, Kennedy D, Haller S, Budnyy G, Shapiro J, et al. Mitochondrial impairment in the five-sixth nephrectomy model of chronic renal failure: proteomic approach. BMC Nephrol. 2013;14:209 pubmed 出版商
  142. Naito M, Mikami Y, Takagi M, Takahashi T. Up-regulation of Axin2 by dexamethasone promotes adipocyte differentiation in ROB-C26 mesenchymal progenitor cells. Cell Tissue Res. 2013;354:761-70 pubmed 出版商
  143. Yoshida G, Saya H, Zouboulis C. Three-dimensional culture of sebaceous gland cells revealing the role of prostaglandin E2-induced activation of canonical Wnt signaling. Biochem Biophys Res Commun. 2013;438:640-6 pubmed 出版商
  144. Apostoli A, Skelhorne Gross G, Rubino R, Peterson N, Di Lena M, Schneider M, et al. Loss of PPAR? expression in mammary secretory epithelial cells creates a pro-breast tumorigenic environment. Int J Cancer. 2014;134:1055-66 pubmed 出版商
  145. Ren G, Beech C, Smas C. The immunoglobulin superfamily protein differentiation of embryonic stem cells 1 (dies1) has a regulatory role in preadipocyte to adipocyte conversion. PLoS ONE. 2013;8:e65531 pubmed 出版商
  146. DiSpirito J, Fang B, Wang F, Lazar M. Pruning of the adipocyte peroxisome proliferator-activated receptor ? cistrome by hematopoietic master regulator PU.1. Mol Cell Biol. 2013;33:3354-64 pubmed 出版商
  147. Rippo M, Babini L, Prattichizzo F, Graciotti L, Fulgenzi G, Tomassoni Ardori F, et al. Low FasL levels promote proliferation of human bone marrow-derived mesenchymal stem cells, higher levels inhibit their differentiation into adipocytes. Cell Death Dis. 2013;4:e594 pubmed 出版商
  148. Choi W, Jeon H, Chung Y, Lim J, Shin D, Kim J, et al. Isolation and characterization of novel, highly proliferative human CD34/CD73-double-positive testis-derived stem cells for cell therapy. Stem Cells Dev. 2013;22:2158-73 pubmed 出版商
  149. Hou Y, Xue P, Woods C, Wang X, Fu J, Yarborough K, et al. Association between arsenic suppression of adipogenesis and induction of CHOP10 via the endoplasmic reticulum stress response. Environ Health Perspect. 2013;121:237-43 pubmed 出版商
  150. Shum M, Pinard S, Guimond M, Labbé S, Roberge C, Baillargeon J, et al. Angiotensin II type 2 receptor promotes adipocyte differentiation and restores adipocyte size in high-fat/high-fructose diet-induced insulin resistance in rats. Am J Physiol Endocrinol Metab. 2013;304:E197-210 pubmed 出版商
  151. Xu F, Burk D, Gao Z, Yin J, Zhang X, Weng J, et al. Angiogenic deficiency and adipose tissue dysfunction are associated with macrophage malfunction in SIRT1-/- mice. Endocrinology. 2012;153:1706-16 pubmed 出版商