这是一篇来自已证抗体库的有关人类 PPP1R1B的综述,是根据40篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合PPP1R1B 抗体。
PPP1R1B 同义词: DARPP-32; DARPP32

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP720Y)
  • 免疫细胞化学; 人类; 图 1h
艾博抗(上海)贸易有限公司 PPP1R1B抗体(Abcam, ab40801)被用于被用于免疫细胞化学在人类样本上 (图 1h). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EP720Y)
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 s2a
艾博抗(上海)贸易有限公司 PPP1R1B抗体(Abcam, ab40801)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 s2a). Neurobiol Dis (2021) ncbi
domestic rabbit 单克隆(EP720Y)
  • 免疫印迹; 小鼠; 1:5000; 图 2c
艾博抗(上海)贸易有限公司 PPP1R1B抗体(Abcam, ab40801)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2c). Sci Adv (2020) ncbi
domestic rabbit 单克隆(EP720Y)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 6j
  • 免疫印迹; 小鼠; 图 1h
艾博抗(上海)贸易有限公司 PPP1R1B抗体(Abcam, Ab40801)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 6j) 和 被用于免疫印迹在小鼠样本上 (图 1h). Autophagy (2021) ncbi
domestic rabbit 单克隆(EP720Y)
  • 免疫组化-冰冻切片; 住房乌鸦; 1:500; 图 17b
  • 免疫组化; 住房乌鸦; 1:500; 图 18a
  • 免疫印迹; 住房乌鸦; 1:1000; 图 4
艾博抗(上海)贸易有限公司 PPP1R1B抗体(Millipore, ab-40801)被用于被用于免疫组化-冰冻切片在住房乌鸦样本上浓度为1:500 (图 17b), 被用于免疫组化在住房乌鸦样本上浓度为1:500 (图 18a) 和 被用于免疫印迹在住房乌鸦样本上浓度为1:1000 (图 4). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(EP720Y)
  • 免疫组化; 小鼠; 1:500; 图 3a
  • 免疫印迹; 小鼠; 1:5000; 图 3b
艾博抗(上海)贸易有限公司 PPP1R1B抗体(Abcam, ab40801)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3b). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 单克隆(EP720Y)
  • 免疫组化; 小鼠; 1:50,000; 图 1d
  • 免疫印迹; 小鼠; 1:6000; 图 4a
艾博抗(上海)贸易有限公司 PPP1R1B抗体(Abcam, EP720Y)被用于被用于免疫组化在小鼠样本上浓度为1:50,000 (图 1d) 和 被用于免疫印迹在小鼠样本上浓度为1:6000 (图 4a). J Huntingtons Dis (2016) ncbi
domestic rabbit 单克隆(EP720Y)
  • 免疫组化-自由浮动切片; 小鼠; 1:50,000; 图 4a
  • 免疫印迹; 小鼠; 1:3000; 图 5a
艾博抗(上海)贸易有限公司 PPP1R1B抗体(Abcam, EP720Y)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:50,000 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 5a). J Huntingtons Dis (2016) ncbi
domestic rabbit 单克隆(EP720Y)
艾博抗(上海)贸易有限公司 PPP1R1B抗体(Abcam, ab40801)被用于. Physiol Rep (2015) ncbi
domestic rabbit 单克隆(EP720Y)
  • 免疫组化; 小鼠; 1:200; 图 s2
艾博抗(上海)贸易有限公司 PPP1R1B抗体(Abcam, ab40801)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s2). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(EP720Y)
  • 免疫组化-石蜡切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司 PPP1R1B抗体(Abcam, ab40801)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(EP720Y)
  • 免疫组化-石蜡切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司 PPP1R1B抗体(Abcam, 40801)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Mol Cancer (2014) ncbi
domestic rabbit 单克隆(EP720Y)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司 PPP1R1B抗体(Abcam, ab40801)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(EP720Y)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司 PPP1R1B抗体(Epitomics, Q9UD71 (ab40801))被用于被用于免疫细胞化学在人类样本上浓度为1:200. Stem Cell Rev (2013) ncbi
domestic rabbit 单克隆(EP720Y)
  • 免疫组化-石蜡切片; 小鼠; 1:250
  • 免疫印迹; 小鼠; 1:250
艾博抗(上海)贸易有限公司 PPP1R1B抗体(Abcam, ab40801)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 和 被用于免疫印迹在小鼠样本上浓度为1:250. J Huntingtons Dis (2012) ncbi
domestic rabbit 单克隆(EP720Y)
  • 免疫细胞化学; 人类; 1:1000
  • 免疫组化; 人类; 1:1000
艾博抗(上海)贸易有限公司 PPP1R1B抗体(Abcam, ab40801)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 和 被用于免疫组化在人类样本上浓度为1:1000. Gene Ther (2013) ncbi
domestic rabbit 单克隆(EP720Y)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 PPP1R1B抗体(Abcam, 40801)被用于被用于免疫组化在小鼠样本上浓度为1:200. PLoS ONE (2011) ncbi
圣克鲁斯生物技术
小鼠 单克隆(H-3)
  • 免疫组化; 小鼠; 1:250; 图 2a
圣克鲁斯生物技术 PPP1R1B抗体(Santa Cruz Biotechnology, sc-271111)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 2a). elife (2021) ncbi
小鼠 单克隆
  • 免疫组化基因敲除验证; 小鼠; 图 6b
圣克鲁斯生物技术 PPP1R1B抗体(Santa Cruz Biotechnology, sc-398144)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 6b). Oncogene (2019) ncbi
小鼠 单克隆(H-3)
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 PPP1R1B抗体(Santa Cruz, sc271111)被用于被用于免疫沉淀在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
赛默飞世尔
domestic rabbit 单克隆(K.935.4)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
赛默飞世尔 PPP1R1B抗体(Thermo Fisher Scientific, MA5-14968)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). Front Cell Neurosci (2020) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(19A3)
  • 免疫印迹; 小鼠; 1:1500; 图 8a
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell Signaling, 2,306 S)被用于被用于免疫印迹在小鼠样本上浓度为1:1500 (图 8a). elife (2022) ncbi
domestic rabbit 单克隆(D27A4)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell Signaling Technology, 12,438)被用于被用于免疫印迹在小鼠样本上 (图 1c). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D27A4)
  • 免疫组化-自由浮动切片; 大鼠; 1:200; 图 6a
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(CST, 12438)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:200 (图 6a). Br J Pharmacol (2020) ncbi
domestic rabbit 单克隆(19A3)
  • 免疫组化-自由浮动切片; 大鼠; 1:200; 图 s8a
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(CST, 2306)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:200 (图 s8a). Br J Pharmacol (2020) ncbi
domestic rabbit 单克隆(19A3)
  • 免疫印迹; 小鼠; 1:2000; 图 5s1a
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell Signaling Technology, 2306S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5s1a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 e4g
  • 免疫印迹; 小鼠; 图 e4g
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell Signaling, 2302)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 e4g) 和 被用于免疫印迹在小鼠样本上 (图 e4g). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 e4g
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell Signaling, 2301)被用于被用于免疫印迹在小鼠样本上 (图 e4g). Nature (2019) ncbi
domestic rabbit 单克隆(19A3)
  • 免疫组化-自由浮动切片; 人类; 图 1l
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell Signaling Technology, 2306)被用于被用于免疫组化-自由浮动切片在人类样本上 (图 1l). Cell Rep (2019) ncbi
domestic rabbit 单克隆(19A3)
  • 免疫组化-自由浮动切片; 小鼠; 1:250; 图 4d
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell Signaling, 2306)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250 (图 4d). Nat Med (2019) ncbi
domestic rabbit 单克隆(D11A5)
  • 免疫组化; 小鼠; 1:400; 图 4b
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell Signaling Technology, D11A5)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4b). Science (2018) ncbi
domestic rabbit 单克隆(19A3)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell Signaling, 2306)被用于被用于免疫印迹在小鼠样本上 (图 1a). Nucleic Acids Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:800; 图 2p
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(cell signalling, 2302)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 2p). J Comp Neurol (2017) ncbi
domestic rabbit 单克隆(19A3)
  • 免疫组化; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell Signaling, 2306)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Nat Commun (2016) ncbi
domestic rabbit 单克隆(19A3)
  • 免疫组化; 小鼠; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell Signaling, 19A3)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). Neuroscience (2016) ncbi
domestic rabbit 单克隆(19A3)
  • 免疫组化; 小鼠; 1:500; 图 1
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell Signaling Technology, 2306s)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1). J Neurosci (2016) ncbi
domestic rabbit 单克隆(D27A4)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell Signaling, 12438)被用于被用于免疫印迹在人类样本上浓度为1:500. Nature (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 表 1
  • 免疫组化; 小鼠; 1:50; 表 1
  • 免疫印迹; 小鼠; 1:500; 表 1
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell Signaling, 2302)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (表 1), 被用于免疫组化在小鼠样本上浓度为1:50 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (表 1). J Neurosci Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell Signaling, 2302)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Neuropsychopharmacology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell Signaling, 2301s)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Neuropsychopharmacology (2016) ncbi
domestic rabbit 单克隆(19A3)
  • 免疫组化; 人类; 1:1000
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell signaling, 2306)被用于被用于免疫组化在人类样本上浓度为1:1000. Nat Neurosci (2015) ncbi
domestic rabbit 单克隆(D27A4)
  • 免疫印迹; 小鼠; 1:500 to 1:1000
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell Signaling Technology, 12438S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 to 1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(19A3)
  • 免疫组化; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 PPP1R1B抗体(Cell Signaling, 2306)被用于被用于免疫组化在小鼠样本上 (图 2). J Comp Neurol (2014) ncbi
文章列表
  1. Kosillo P, Ahmed K, Aisenberg E, Karalis V, Roberts B, Cragg S, et al. Dopamine neuron morphology and output are differentially controlled by mTORC1 and mTORC2. elife. 2022;11: pubmed 出版商
  2. Cirnaru M, Song S, Tshilenge K, Corwin C, Mleczko J, Galicia Aguirre C, et al. Unbiased identification of novel transcription factors in striatal compartmentation and striosome maturation. elife. 2021;10: pubmed 出版商
  3. Sun R, Tsunekawa T, Hirose T, Yaginuma H, Taki K, Mizoguchi A, et al. GABAB receptor signaling in the caudate putamen is involved in binge-like consumption during a high fat diet in mice. Sci Rep. 2021;11:19296 pubmed 出版商
  4. Hu D, Sun X, Magpusao A, Fedorov Y, Thompson M, Wang B, et al. Small-molecule suppression of calpastatin degradation reduces neuropathology in models of Huntington's disease. Nat Commun. 2021;12:5305 pubmed 出版商
  5. De Miranda B, Castro S, Rocha E, Bodle C, Johnson K, Greenamyre J. The industrial solvent trichloroethylene induces LRRK2 kinase activity and dopaminergic neurodegeneration in a rat model of Parkinson's disease. Neurobiol Dis. 2021;153:105312 pubmed 出版商
  6. Ke Y, Weng M, Chhetri G, Usman M, Li Y, Yu Q, et al. Trappc9 deficiency in mice impairs learning and memory by causing imbalance of dopamine D1 and D2 neurons. Sci Adv. 2020;6: pubmed 出版商
  7. Domi E, Xu L, Pätz M, Nordeman A, Augier G, Holm L, et al. Nicotine increases alcohol self-administration in male rats via a μ-opioid mechanism within the mesolimbic pathway. Br J Pharmacol. 2020;177:4516-4531 pubmed 出版商
  8. Brattås P, Hersbach B, Madsen S, Petri R, Jakobsson J, Pircs K. Impact of differential and time-dependent autophagy activation on therapeutic efficacy in a model of Huntington disease. Autophagy. 2021;17:1316-1329 pubmed 出版商
  9. Sardari M, Dzyubenko E, Schmermund B, Yin D, Qi Y, Kleinschnitz C, et al. Dose-Dependent Microglial and Astrocytic Responses Associated With Post-ischemic Neuroprotection After Lipopolysaccharide-Induced Sepsis-Like State in Mice. Front Cell Neurosci. 2020;14:26 pubmed 出版商
  10. Lieberman O, Frier M, McGuirt A, Griffey C, Rafikian E, Yang M, et al. Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy. elife. 2020;9: pubmed 出版商
  11. Faraco G, Hochrainer K, Segarra S, Schaeffer S, Santisteban M, Menon A, et al. Dietary salt promotes cognitive impairment through tau phosphorylation. Nature. 2019;: pubmed 出版商
  12. Adler A, Cardoso T, Nolbrant S, Mattsson B, Hoban D, Jarl U, et al. hESC-Derived Dopaminergic Transplants Integrate into Basal Ganglia Circuitry in a Preclinical Model of Parkinson's Disease. Cell Rep. 2019;28:3462-3473.e5 pubmed 出版商
  13. Zeitler B, Froelich S, Marlen K, Shivak D, Yu Q, Li D, et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington's disease. Nat Med. 2019;25:1131-1142 pubmed 出版商
  14. Zhu S, Soutto M, Chen Z, Blanca Piazuelo M, Kay Washington M, Belkhiri A, et al. Activation of IGF1R by DARPP-32 promotes STAT3 signaling in gastric cancer cells. Oncogene. 2019;: pubmed 出版商
  15. Sen S, Parishar P, Pundir A, Reiner A, Iyengar S. The expression of tyrosine hydroxylase and DARPP-32 in the house crow (Corvus splendens) brain. J Comp Neurol. 2019;527:1801-1836 pubmed 出版商
  16. Zhao Y, Sun X, Qi X. Inhibition of Drp1 hyperactivation reduces neuropathology and behavioral deficits in zQ175 knock-in mouse model of Huntington's disease. Biochem Biophys Res Commun. 2018;507:319-323 pubmed 出版商
  17. Liu J, Sharma K, Zangrandi L, Chen C, Humphrey S, Chiu Y, et al. In vivo brain GPCR signaling elucidated by phosphoproteomics. Science. 2018;360: pubmed 出版商
  18. Zhu F, Zhu Q, Ye D, Zhang Q, Yang Y, Guo X, et al. Sin3a-Tet1 interaction activates gene transcription and is required for embryonic stem cell pluripotency. Nucleic Acids Res. 2018;46:6026-6040 pubmed 出版商
  19. Vodicka P, Chase K, Iuliano M, Tousley A, Valentine D, Sapp E, et al. Autophagy Activation by Transcription Factor EB (TFEB) in Striatum of HDQ175/Q7 Mice. J Huntingtons Dis. 2016;5:249-260 pubmed
  20. Hagimoto K, Takami S, Murakami F, Tanabe Y. Distinct migratory behaviors of striosome and matrix cells underlying the mosaic formation in the developing striatum. J Comp Neurol. 2017;525:794-817 pubmed 出版商
  21. Vodicka P, Chase K, Iuliano M, Valentine D, Sapp E, Lu B, et al. Effects of Exogenous NUB1 Expression in the Striatum of HDQ175/Q7 Mice. J Huntingtons Dis. 2016;5:163-74 pubmed 出版商
  22. Parsons M, Vanni M, Woodard C, Kang R, Murphy T, Raymond L. Real-time imaging of glutamate clearance reveals normal striatal uptake in Huntington disease mouse models. Nat Commun. 2016;7:11251 pubmed 出版商
  23. Jeon J, Kim W, Jang J, Isacson O, Seo H. Gene therapy by proteasome activator, PA28γ, improves motor coordination and proteasome function in Huntington's disease YAC128 mice. Neuroscience. 2016;324:20-8 pubmed 出版商
  24. Wu J, Ryskamp D, Liang X, Egorova P, Zakharova O, Hung G, et al. Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington's Disease Mouse Model. J Neurosci. 2016;36:125-41 pubmed 出版商
  25. Miller J, Hafzalla G, Burkett Z, Fox C, White S. Reduced vocal variability in a zebra finch model of dopamine depletion: implications for Parkinson disease. Physiol Rep. 2015;3: pubmed 出版商
  26. Werner A, Iwasaki S, McGourty C, Medina Ruiz S, Teerikorpi N, Fedrigo I, et al. Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 2015;525:523-7 pubmed 出版商
  27. Hirata H, Umemori J, Yoshioka H, Koide T, Watanabe K, Shimoda Y. Cell adhesion molecule contactin-associated protein 3 is expressed in the mouse basal ganglia during early postnatal stages. J Neurosci Res. 2016;94:74-89 pubmed 出版商
  28. McKenna W, Ortiz Londono C, Mathew T, Hoang K, Katzman S, Chen B. Mutual regulation between Satb2 and Fezf2 promotes subcerebral projection neuron identity in the developing cerebral cortex. Proc Natl Acad Sci U S A. 2015;112:11702-7 pubmed 出版商
  29. Hryhorczuk C, Florea M, Rodaros D, Poirier I, Daneault C, Des Rosiers C, et al. Dampened Mesolimbic Dopamine Function and Signaling by Saturated but not Monounsaturated Dietary Lipids. Neuropsychopharmacology. 2016;41:811-21 pubmed 出版商
  30. Zhu S, Chen Z, Katsha A, Hong J, Belkhiri A, el Rifai W. Regulation of CD44E by DARPP-32-dependent activation of SRp20 splicing factor in gastric tumorigenesis. Oncogene. 2016;35:1847-56 pubmed 出版商
  31. O Brien R, DeGiacomo F, Holcomb J, Bonner A, Ring K, Zhang N, et al. Integration-independent Transgenic Huntington Disease Fragment Mouse Models Reveal Distinct Phenotypes and Life Span in Vivo. J Biol Chem. 2015;290:19287-306 pubmed 出版商
  32. Feng J, Shao N, Szulwach K, Vialou V, Huynh J, Zhong C, et al. Role of Tet1 and 5-hydroxymethylcytosine in cocaine action. Nat Neurosci. 2015;18:536-44 pubmed 出版商
  33. Christenson J, Kane S. Darpp-32 and t-Darpp are differentially expressed in normal and malignant mouse mammary tissue. Mol Cancer. 2014;13:192 pubmed 出版商
  34. Guibinga G, Barron N, Pandori W. Striatal neurodevelopment is dysregulated in purine metabolism deficiency and impacts DARPP-32, BDNF/TrkB expression and signaling: new insights on the molecular and cellular basis of Lesch-Nyhan Syndrome. PLoS ONE. 2014;9:e96575 pubmed 出版商
  35. West A, Cowell R, Daher J, Moehle M, Hinkle K, Melrose H, et al. Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents. J Comp Neurol. 2014;522:2465-80 pubmed 出版商
  36. Giesert F, Hofmann A, Bürger A, Zerle J, Kloos K, Hafen U, et al. Expression analysis of Lrrk1, Lrrk2 and Lrrk2 splice variants in mice. PLoS ONE. 2013;8:e63778 pubmed 出版商
  37. Delli Carri A, Onorati M, Castiglioni V, Faedo A, Camnasio S, Toselli M, et al. Human pluripotent stem cell differentiation into authentic striatal projection neurons. Stem Cell Rev. 2013;9:461-74 pubmed 出版商
  38. Sarantos M, Papanikolaou T, Ellerby L, Hughes R. Pizotifen Activates ERK and Provides Neuroprotection in vitro and in vivo in Models of Huntington's Disease. J Huntingtons Dis. 2012;1:195-210 pubmed 出版商
  39. Trabalza A, Georgiadis C, Eleftheriadou I, Hislop J, Ellison S, Karavassilis M, et al. Venezuelan equine encephalitis virus glycoprotein pseudotyping confers neurotropism to lentiviral vectors. Gene Ther. 2013;20:723-32 pubmed 出版商
  40. Tønnesen J, Parish C, Sørensen A, Andersson A, Lundberg C, Deisseroth K, et al. Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model. PLoS ONE. 2011;6:e17560 pubmed 出版商