这是一篇来自已证抗体库的有关人类 PRKAA1的综述,是根据276篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合PRKAA1 抗体。
PRKAA1 同义词: AMPK; AMPKa1

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, 131357)被用于被用于免疫印迹在人类样本上 (图 4a). Front Oncol (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 1:500; 图 4h
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab92701)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4h). Theranostics (2021) ncbi
小鼠 单克隆(2B7)
  • 免疫印迹; 小鼠; 1:600; 图 4h
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab110036)被用于被用于免疫印迹在小鼠样本上浓度为1:600 (图 4h). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2f
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab23875)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2f
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab131512)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 1e
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, 3759)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1e). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(34.2)
  • 免疫印迹; 人类; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab80039)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(Y365)
  • 免疫印迹; 小鼠; 1:500-1:2000; 图 3c
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab32047)被用于被用于免疫印迹在小鼠样本上浓度为1:500-1:2000 (图 3c). Redox Biol (2021) ncbi
domestic rabbit 单克隆(Y365)
  • 免疫印迹; 人类; 1:1000; 图 5h
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab32047)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5h). J Gene Med (2021) ncbi
小鼠 单克隆(34.2)
  • 免疫印迹; 小鼠; 1:1000; 图 10a
  • 免疫印迹; 人类; 1:1000; 图 10a
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab80039)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 10a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 10a). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 10a
  • 免疫印迹; 小鼠; 1:1000; 图 10a
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab23875)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 10a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 10a). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(2B7)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab110036)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 2b). Front Cell Dev Biol (2020) ncbi
domestic rabbit 单克隆(Y365)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6a
  • 免疫印迹; 小鼠; 1:1000; 图 6c
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab32047)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(2B7)
  • 免疫印迹; 小鼠; 图 6c
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab110036)被用于被用于免疫印迹在小鼠样本上 (图 6c). Front Physiol (2020) ncbi
小鼠 单克隆(34.2)
  • 免疫印迹; 大鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab80039)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4d). Cell Stem Cell (2019) ncbi
domestic rabbit 单克隆(Y365)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, 32047)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2017) ncbi
domestic rabbit 单克隆(Y365)
  • 免疫印迹; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab32047)被用于被用于免疫印迹在小鼠样本上 (图 7a). Cell Death Dis (2016) ncbi
小鼠 单克隆(2B7)
  • 免疫印迹; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab110036)被用于被用于免疫印迹在小鼠样本上 (图 3a). Nature (2016) ncbi
domestic rabbit 单克隆(Y365)
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab32047)被用于被用于免疫印迹在小鼠样本上 (图 1). Aging Cell (2016) ncbi
domestic rabbit 单克隆(Y365)
  • 免疫沉淀; 小鼠; 1:50; 图 1b
  • 免疫印迹; 小鼠; 1:1000; 图 2a
  • 免疫沉淀; 人类; 1:100; 图 4a
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab32047)被用于被用于免疫沉淀在小鼠样本上浓度为1:50 (图 1b), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a), 被用于免疫沉淀在人类样本上浓度为1:100 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Nat Commun (2015) ncbi
小鼠 单克隆(2B7)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab110036)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Nat Commun (2015) ncbi
domestic rabbit 单克隆(Y365)
  • 免疫沉淀; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab32047)被用于被用于免疫沉淀在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 3). elife (2015) ncbi
domestic rabbit 单克隆(Y365)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab32047)被用于被用于免疫印迹在人类样本上 (图 3). Cell Rep (2015) ncbi
domestic rabbit 单克隆(Y365)
  • 免疫组化-石蜡切片; 大鼠; 图 7
  • 免疫细胞化学; 大鼠; 图 7
  • 免疫印迹; 大鼠; 1:2000; 图 6
艾博抗(上海)贸易有限公司 PRKAA1抗体(Santa Cruz, ab32047)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 7), 被用于免疫细胞化学在大鼠样本上 (图 7) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(Y365)
  • 免疫印迹; 人类; 1:500; 图 4
艾博抗(上海)贸易有限公司 PRKAA1抗体(Abcam, ab32047)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Biochem Biophys Res Commun (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-6)
  • 免疫印迹; 小鼠; 1:500; 图 6e
圣克鲁斯生物技术 PRKAA1抗体(Santa Cruz, sc-74461)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6e). Mol Med Rep (2022) ncbi
小鼠 单克隆(D-6)
  • 免疫印迹; pigs ; 图 5c
圣克鲁斯生物技术 PRKAA1抗体(Santa Cruz Biotechnology, sc-74461)被用于被用于免疫印迹在pigs 样本上 (图 5c). Br J Nutr (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5d
圣克鲁斯生物技术 PRKAA1抗体(Santa Cruz, sc-398861)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5d). Mol Med Rep (2016) ncbi
小鼠 单克隆(D-6)
  • 免疫印迹; 大鼠; 图 2a
圣克鲁斯生物技术 PRKAA1抗体(Santa cruz, sc-74461)被用于被用于免疫印迹在大鼠样本上 (图 2a). PLoS ONE (2016) ncbi
小鼠 单克隆(71.54)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 PRKAA1抗体(Santa Cruz, sc-130394)被用于被用于免疫印迹在小鼠样本上. Biol Pharm Bull (2015) ncbi
小鼠 单克隆(D-6)
  • 免疫细胞化学; 人类; 1:200; 图 1
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 PRKAA1抗体(Santa Cruz, sc-74461)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 5). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(D-6)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 PRKAA1抗体(Santa Cruz Biotechnology, sc-74461)被用于被用于免疫印迹在人类样本上浓度为1:1000. Autophagy (2013) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6g
赛默飞世尔 PRKAA1抗体(ThermoFisher, 44-1150G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). NPJ Breast Cancer (2021) ncbi
小鼠 单克隆(2B7)
  • 免疫印迹; 人类; 1:1000; 图 6g
赛默飞世尔 PRKAA1抗体(ThermoFisher, MA5-15815)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). NPJ Breast Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛默飞世尔 PRKAA1抗体(Thermo Fisher, PA5-17398)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Int J Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛默飞世尔 PRKAA1抗体(Thermo Fisher, PA5-17831)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Int J Mol Med (2020) ncbi
小鼠 单克隆(9Q34)
  • 免疫印迹; 人类; 1:500-1:1000; 图 3f
赛默飞世尔 PRKAA1抗体(ThermoFisher, AHO1332)被用于被用于免疫印迹在人类样本上浓度为1:500-1:1000 (图 3f). J Biol Chem (2019) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 4e, 4f
赛默飞世尔 PRKAA1抗体(Thermo Fisher Scientific, 44-C1150G)被用于被用于流式细胞仪在人类样本上 (图 4e, 4f). Nat Immunol (2019) ncbi
小鼠 单克隆(2B7)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 PRKAA1抗体(Thermo, MA5-15815)被用于被用于免疫印迹在小鼠样本上 (图 4). FEBS Lett (2015) ncbi
Novus Biologicals
小鼠 单克隆(2B7)
  • 免疫印迹; 人类; 1:1000; 图 5f
Novus Biologicals PRKAA1抗体(Novus, NBP2-22127)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). PLoS ONE (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 大鼠; 图 6
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 5831)被用于被用于免疫印迹在大鼠样本上 (图 6). Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 大鼠; 1:1000; 图 s4a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 5832)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s4a). Exp Mol Med (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). Front Nutr (2022) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 1:1000; 图 4e
  • 免疫印迹; 大鼠; 1:1000; 图 2c, 2h
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5831)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2c, 2h). Sci Rep (2022) ncbi
domestic rabbit 单克隆(D79.5E)
  • 免疫印迹; 人类; 1:1000; 图 6c
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 4188)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). Front Immunol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6b
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Front Immunol (2022) ncbi
  • 其他; 小鼠; 图 6f, 7f
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 8208)被用于被用于其他在小鼠样本上 (图 6f, 7f). Autophagy (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4f). J Cachexia Sarcopenia Muscle (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532S)被用于被用于免疫印迹在人类样本上 (图 5a). Aging (Albany NY) (2022) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 小鼠; 1:1000; 图 s3a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5832)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3a). J Neurochem (2022) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 大鼠; 图 5a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signalling, 5831)被用于被用于免疫印迹在大鼠样本上 (图 5a). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 拟南芥; 图 5c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在拟南芥样本上 (图 5c). Arthritis Res Ther (2021) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 拟南芥; 图 5c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 50081)被用于被用于免疫印迹在拟南芥样本上 (图 5c). Arthritis Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 2532S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Front Cardiovasc Med (2021) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 大鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Singling Technology, 5832S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1a). Front Pharmacol (2021) ncbi
  • 免疫印迹; 大鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Singling Technology, 8208S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1b
  • 免疫印迹; 小鼠; 1:200; 图 1a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 2532)被用于被用于免疫组化在小鼠样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 1a). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 5831)被用于被用于免疫印迹在人类样本上 (图 6d). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 50081)被用于被用于免疫印迹在人类样本上 (图 6d). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). Sci Adv (2021) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 50081)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 5831S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2a). Neurobiol Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b). Mol Med Rep (2021) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 大鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 50081)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b). Mol Med Rep (2021) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 1:1000; 图 s1b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 5831)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1b). Redox Biol (2021) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 人类; 图 s7b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2793)被用于被用于免疫印迹在人类样本上 (图 s7b). iScience (2021) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 人类; 图 4a
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5832)被用于被用于免疫印迹在人类样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 3a). Protein Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D79.5E)
  • 免疫印迹; 人类; 1 ug/ml; 图 s1a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 4188)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 s1a). Acta Neuropathol (2021) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 人类; 1 ug/ml; 图 s1a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 2793)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 s1a). Acta Neuropathol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5j
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 5j). Mol Metab (2021) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 小鼠; 1:1000; 图 7i
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5832)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7i). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 1:2000; 图 7a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 5831)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7a). J Nanobiotechnology (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a, 6c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 2532)被用于被用于免疫印迹在小鼠样本上 (图 6a, 6c). J Nutr Biochem (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 4184)被用于被用于免疫印迹在小鼠样本上 (图 6a). J Nutr Biochem (2021) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 人类; 图 5r
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 5832)被用于被用于免疫印迹在人类样本上 (图 5r). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s6a
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 PRKAA1抗体(cst, 2532S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). Redox Biol (2021) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, D4D6D)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncol Rep (2021) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, D63G4)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncol Rep (2021) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5831)被用于被用于免疫印迹在小鼠样本上 (图 5c). Front Physiol (2021) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 50081)被用于被用于免疫印迹在小鼠样本上 (图 5c). Front Physiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 2532)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4c). Dis Model Mech (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1500; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2532S)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4a). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 5832)被用于被用于免疫印迹在大鼠样本上 (图 4a). Front Cell Dev Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; African green monkey; 1:1000; 图 s10
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532S)被用于被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 s10). Commun Biol (2021) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5831)被用于被用于免疫印迹在小鼠样本上 (图 3b). Nutrients (2021) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 图 7a, 7d
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5831)被用于被用于免疫印迹在小鼠样本上 (图 7a, 7d). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1 ug/ml; 图 8h
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1 ug/ml (图 8h). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signalling, 5831)被用于被用于免疫印迹在小鼠样本上 (图 6b). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3i). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2532S)被用于被用于免疫印迹在pigs 样本上 (图 4a). Animals (Basel) (2020) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 5831)被用于被用于免疫印迹在人类样本上 (图 5a). Aging Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4j
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在人类样本上 (图 4j). Front Oncol (2020) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signalling, 5831)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). elife (2020) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 1:1000; 图 s7b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 5831)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 5831T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Front Pharmacol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2795)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Biol Chem (2020) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫组化; 小鼠; 1:100; 图 5b
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 50081)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5b) 和 被用于免疫印迹在小鼠样本上 (图 5a). J Cell Mol Med (2020) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 5832)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). J Cell Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 1:200; 图 3g
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 5831)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3g). Theranostics (2020) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5832)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Tissue Res (2020) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 1:1000; 图 8e
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, D5A2)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8e). J Virol (2020) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 5831)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6b, 7a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signalling technology, 2532)被用于被用于免疫印迹在小鼠样本上 (图 6b, 7a). Pharmacol Res (2020) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 大鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 5832)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2a). Oxid Med Cell Longev (2020) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 图 4j
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5831)被用于被用于免疫印迹在小鼠样本上 (图 4j). Cell (2020) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 5831)被用于被用于免疫印迹在小鼠样本上 (图 6a). Oxid Med Cell Longev (2019) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 图 s6b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signalling, D5A2)被用于被用于免疫印迹在人类样本上 (图 s6b). Science (2019) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 5831S)被用于被用于免疫印迹在小鼠样本上 (图 4c). Science (2019) ncbi
小鼠 单克隆(F6)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 6s2a
  • 免疫印迹; 小鼠; 1:1000; 图 6s2a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2793)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 6s2a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6s2a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4h
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 4h). Science (2019) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 图 6c
  • 免疫印迹; 小鼠; 图 3e, 5e
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5831)被用于被用于免疫印迹在人类样本上 (图 6c) 和 被用于免疫印迹在小鼠样本上 (图 3e, 5e). Redox Biol (2020) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 1:1000; 图 3s2b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 5831)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3s2b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Biomolecules (2019) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 大鼠; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, D4D6D)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5a). Biomolecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:3000; 图 5a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在大鼠样本上浓度为1:3000 (图 5a). Biomolecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Cell (2019) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, D5A2)被用于被用于免疫印迹在人类样本上 (图 5e). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, D4D6D)被用于被用于免疫印迹在人类样本上 (图 5e). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technologies, 5831)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Mol Ther Oncolytics (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在小鼠样本上 (图 6e). Cell Metab (2019) ncbi
domestic rabbit 单克隆(45F5)
  • 免疫印迹; 人类; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2537)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Exp Ther Med (2019) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 人类; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5832)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Exp Ther Med (2019) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 小鼠; 1:1000; 图 4s2b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2793)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4s2b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6a). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 1:1000; 图 1s2c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 5831)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1s2c). elife (2019) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 5831)被用于被用于免疫印迹在人类样本上 (图 3f). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 大鼠; 1:2000; 图 6a, 6d
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 5831)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 6a, 6d). J Cell Physiol (2019) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 大鼠; 1:1000; 图 6a, 6d
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 50081)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a, 6d). J Cell Physiol (2019) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 50081)被用于被用于免疫印迹在小鼠样本上 (图 4b). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5831)被用于被用于免疫印迹在小鼠样本上 (图 4b). Biomed Res Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Nature (2019) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 5832)被用于被用于免疫印迹在人类样本上 (图 6b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 2d). Cell Signal (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2795)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在小鼠样本上 (图 3c). Cell Rep (2018) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 大鼠; 1:1000; 图 3b, 4f, 5f
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5831)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b, 4f, 5f). Br J Pharmacol (2019) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 大鼠; 图 8b
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 50081)被用于被用于免疫印迹在大鼠样本上 (图 8b) 和 被用于免疫印迹在小鼠样本上 (图 4a). Redox Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
  • 免疫印迹; 大鼠; 图 8b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 4a) 和 被用于免疫印迹在大鼠样本上 (图 8b). Redox Biol (2019) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2603)被用于被用于免疫印迹在大鼠样本上 (图 4a). J Mol Med (Berl) (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(cst, 2532)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 s4a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 s4a). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s6a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在人类样本上 (图 s6a). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫沉淀; 人类; 1:200; 图 2b
  • 免疫印迹; 人类; 1:2000; 图 1h
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 5831S)被用于被用于免疫沉淀在人类样本上浓度为1:200 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1h). Mol Cell (2018) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 1:2000; 图 8b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5831)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 8b). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫沉淀; 小鼠; 图 7g
  • 免疫印迹; 小鼠; 1:1000; 图 7g, 7a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5831)被用于被用于免疫沉淀在小鼠样本上 (图 7g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7g, 7a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1n
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1n). Nat Cell Biol (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2g
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 2g). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1f
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1f). Nat Commun (2018) ncbi
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 9957)被用于被用于免疫印迹在人类样本上 (图 3a). Theranostics (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3a
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology., 2795)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 5d). Oncogene (2018) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5832)被用于被用于免疫印迹在人类样本上 (图 4d). Cancer Lett (2018) ncbi
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 8208)被用于被用于免疫印迹在人类样本上 (图 4d). Cancer Lett (2018) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(cell signaling technology, 2603)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Oncotarget (2017) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2793)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). J Lipid Res (2018) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 小鼠; 1:1000; 图 s3a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 5832)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3a). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3e
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3e). Diabetes (2018) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 人类; 图 2a
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2603)被用于被用于免疫印迹在人类样本上 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 2b). Sci Transl Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7g
赛信通(上海)生物试剂有限公司 PRKAA1抗体(cell signalling, 2532)被用于被用于免疫印迹在人类样本上 (图 7g). Genes Dev (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signal, 2532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Environ Toxicol Pharmacol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s9c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上 (图 s9c). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 2532S)被用于被用于免疫印迹在人类样本上 (图 5). Tumour Biol (2017) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5832)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Autophagy (2017) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 2793)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). EMBO J (2017) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 5831)被用于被用于免疫印迹在人类样本上 (图 1b). Mol Cell (2017) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2793S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Mol Cell (2017) ncbi
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 9957)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2017) ncbi
domestic rabbit 单克隆(D79.5E)
  • 免疫印迹; 小鼠; 图 s10
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 4188)被用于被用于免疫印迹在小鼠样本上 (图 s10). Science (2017) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2793)被用于被用于免疫印迹在小鼠样本上 (图 2b). Cell Metab (2017) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2793)被用于被用于免疫印迹在人类样本上 (图 4c). J Pathol (2017) ncbi
domestic rabbit 单克隆(D79.5E)
  • 免疫印迹; 人类; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 4188)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8b). Toxicol Appl Pharmacol (2017) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 人类; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5832)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8b). Toxicol Appl Pharmacol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 表 2
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 2). Endocrinology (2017) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 人类; 1:2000; 图 3d
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2793)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3d). Neoplasia (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上 (图 5d). Mol Cell (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 2532)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上 (图 1b). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 PRKAA1抗体(cell signalling, 2603S)被用于被用于免疫印迹在小鼠样本上 (图 2d). Sci Rep (2017) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 2793S)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 图 2b2
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5831)被用于被用于免疫印迹在小鼠样本上 (图 2b2). Redox Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1e
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫组化在小鼠样本上 (图 1e) 和 被用于免疫印迹在小鼠样本上 (图 1c). PLoS Pathog (2017) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2603)被用于被用于免疫印迹在小鼠样本上 (图 1b). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signalling, 5,831)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5832)被用于被用于免疫印迹在人类样本上 (图 4a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 4185)被用于被用于免疫印迹在小鼠样本上 (图 7c). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 6a). Autophagy (2017) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2603)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). Mol Metab (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上 (图 3). Acta Physiol (Oxf) (2018) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 图 s4a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(CST, 5831P)被用于被用于免疫印迹在人类样本上 (图 s4a). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上 (图 8a). Biochim Biophys Acta Mol Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 1a). Autophagy (2017) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 1:1000; 图 s5d
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 5831)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5d). PLoS Genet (2017) ncbi
小鼠 单克隆(F6)
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 2793S)被用于. Sci Rep (2016) ncbi
domestic rabbit 单克隆(D79.5E)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, D79.5E)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Diabetes Obes Metab (2017) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 23A3)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Diabetes Obes Metab (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a, 1b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2532S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a, 1b). Int J Oncol (2017) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5831)被用于被用于免疫印迹在人类样本上 (图 s2). Neuroendocrinology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 2532)被用于被用于免疫印迹在人类样本上 (图 2d). Nat Med (2017) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2603)被用于被用于免疫印迹在小鼠样本上 (图 5c). Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(D79.5E)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 4188)被用于被用于免疫印迹在小鼠样本上 (图 5c). Mol Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 4b). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5832)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Mol Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532S)被用于被用于免疫印迹在小鼠样本上 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 2603)被用于被用于免疫印迹在小鼠样本上 (图 8a). Diabetes (2016) ncbi
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 9957)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Exp Med (2016) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 图 s20
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5831)被用于被用于免疫印迹在小鼠样本上 (图 s20). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 1a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 人类; 1:1000; 图 6f
赛信通(上海)生物试剂有限公司 PRKAA1抗体(cell signalling, 2603)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6f). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 1a). Am J Physiol Endocrinol Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在人类样本上 (图 1a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 4185)被用于被用于免疫印迹在人类样本上 (图 6). Biosci Rep (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 牛; 图 2
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2603)被用于被用于免疫印迹在牛样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5831)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). EMBO Mol Med (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signalling, 2603)被用于被用于免疫印迹在小鼠样本上 (图 1b). Circ Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 s2
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, CST2532)被用于被用于免疫印迹在小鼠样本上 (图 3e). Hepatology (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signalling, 2603)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2603)被用于被用于免疫印迹在小鼠样本上 (图 4). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Tech, 2603)被用于被用于免疫印迹在大鼠样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3b). Nature (2016) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 人类; 图 s8
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5832)被用于被用于免疫印迹在人类样本上 (图 s8). Autophagy (2016) ncbi
小鼠 单克隆(F6)
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 2793)被用于. J Exp Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5h
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 5h). Diabetes (2016) ncbi
domestic rabbit 单克隆(D79.5E)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 4188)被用于被用于免疫印迹在小鼠样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5832)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 5831)被用于被用于免疫印迹在小鼠样本上 (图 s2). Autophagy (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2603)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signalling, 2603)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Neuropharmacology (2016) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫细胞化学; 人类; 1:100; 图 3
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 5831)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). ACS Chem Biol (2016) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2793S)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Endocrinol Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2603)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Int J Obes (Lond) (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 1:3000; 图 4
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 2603)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2603)被用于被用于免疫印迹在人类样本上 (图 3e). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(D79.5E)
  • 免疫印迹; 小鼠; 1:750; 图 5
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Tech, 4188)被用于被用于免疫印迹在小鼠样本上浓度为1:750 (图 5). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Tech, 5831s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Int J Mol Med (2016) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2793)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5832S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Nat Cell Biol (2016) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2793S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Autophagy (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2603)被用于被用于免疫印迹在人类样本上 (图 3). Breast Cancer Res Treat (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2603)被用于被用于免疫印迹在小鼠样本上 (图 5). Mol Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s10d
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10d). Nat Commun (2016) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Tech, 2793S)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 1c
  • 免疫印迹; 小鼠; 图 3d, 3f,
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1c) 和 被用于免疫印迹在小鼠样本上 (图 3d, 3f,). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在人类样本上 (图 1). Cell Rep (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2603)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, cs-2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, D5A2)被用于被用于免疫印迹在人类样本上 (图 2a). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 人类; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2603)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). Biochem Pharmacol (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 2603)被用于被用于免疫印迹在人类样本上 (图 1). Biochem Biophys Res Commun (2015) ncbi
domestic rabbit 单克隆(D79.5E)
  • 免疫印迹; 大鼠; 1:1000; 图 5
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 4188)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Endocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2795)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Endocrinology (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 2603)被用于被用于免疫印迹在人类样本上 (图 4). BMC Cancer (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1j
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在小鼠样本上 (图 1j). Diabetes (2016) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2793S)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer Res (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2603)被用于被用于免疫印迹在人类样本上 (图 3c). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2603)被用于被用于免疫印迹在小鼠样本上 (图 4a). Int J Obes (Lond) (2016) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2793)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2603)被用于被用于免疫印迹在大鼠样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology;, 2793)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2015) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2603)被用于被用于免疫印迹在人类样本上. Nature (2015) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signalling Technology, 23A3)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2015) ncbi
domestic rabbit 单克隆(45F5)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2537)被用于被用于免疫印迹在人类样本上 (图 6). Am J Physiol Regul Integr Comp Physiol (2015) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2603)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 5G
  • 免疫印迹; African green monkey; 1:1000; 图 S1L
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 23A3)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 5G) 和 被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 S1L). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D79.5E)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 4188)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Rep (2015) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2793)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2603P)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
domestic rabbit 单克隆(45F5)
  • 免疫印迹; 牛; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2537S)被用于被用于免疫印迹在牛样本上浓度为1:1000 (图 2). Biol Reprod (2015) ncbi
domestic rabbit 单克隆(D79.5E)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 4188)被用于被用于免疫印迹在人类样本上 (图 s1). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 5832)被用于被用于免疫印迹在小鼠样本上. Muscle Nerve (2016) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2603S)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; pigs ; 图 10
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 5831S)被用于被用于免疫印迹在pigs 样本上 (图 10). Am J Physiol Heart Circ Physiol (2015) ncbi
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 9957)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2532s)被用于被用于免疫印迹在人类样本上. J Diabetes (2016) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 5832)被用于被用于免疫印迹在人类样本上 (图 7). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D79.5E)
  • 免疫印迹基因敲除验证; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 4188)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 6a). Oncotarget (2015) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 PRKAA1抗体(cell signalling, 2793)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). J Appl Physiol (1985) (2015) ncbi
domestic rabbit 单克隆(D79.5E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 4188)被用于被用于免疫印迹在人类样本上 (图 6). Nat Neurosci (2015) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 5831)被用于被用于免疫印迹在人类样本上 (图 6). Nat Neurosci (2015) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2603)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2793)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在大鼠样本上. J Lipid Res (2015) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 小鼠; 图 s6a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2793S)被用于被用于免疫印迹在小鼠样本上 (图 s6a). J Hepatol (2015) ncbi
domestic rabbit 单克隆(D79.5E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 4188S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 23A3)被用于被用于免疫印迹在小鼠样本上 (图 s3). Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2603)被用于被用于免疫印迹在小鼠样本上. Mol Metab (2014) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 图 1b
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signalling, 2603)被用于被用于免疫印迹在小鼠样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1a). Am J Cancer Res (2014) ncbi
domestic rabbit 单克隆(D79.5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 4188s)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 人类; 图 6a
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 2603)被用于被用于免疫印迹在人类样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上 (图 1c). FASEB J (2014) ncbi
domestic rabbit 单克隆(D79.5E)
  • 免疫印迹; 大鼠; 1:5000
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 4188)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. Exp Gerontol (2014) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2603)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Cell Biol (2014) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2793 S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Surg Obes Relat Dis (2014) ncbi
domestic rabbit 单克隆(D63G4)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 5832s)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2793)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell signaling, 2793)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(23A3)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling, 23A3)被用于被用于免疫印迹在大鼠样本上. Biochem Biophys Res Commun (2013) ncbi
小鼠 单克隆(F6)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 2793s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Food Chem (2013) ncbi
domestic rabbit 单克隆(D5A2)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 PRKAA1抗体(Cell Signaling Technology, 5831)被用于被用于免疫印迹在大鼠样本上. Apoptosis (2013) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4c
西格玛奥德里奇 PRKAA1抗体(Sigma, SAB4502329)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4c). Front Cell Dev Biol (2021) ncbi
文章列表
  1. Wen S, Unuma K, Funakoshi T, Aki T, Uemura K. Contraction Band Necrosis with Dephosphorylated Connexin 43 in Rat Myocardium after Daily Cocaine Administration. Int J Mol Sci. 2022;23: pubmed 出版商
  2. Zhou W, Shi Y, Wang H, Chen L, Yu C, Zhang X, et al. Exercise-induced FNDC5/irisin protects nucleus pulposus cells against senescence and apoptosis by activating autophagy. Exp Mol Med. 2022;54:1038-1048 pubmed 出版商
  3. Sumi K, Hatanaka Y, Takahashi R, Wada N, Ono C, Sakamoto Y, et al. Citrate Synthase Insufficiency Leads to Specific Metabolic Adaptations in the Heart and Skeletal Muscles Upon Low-Carbohydrate Diet Feeding in Mice. Front Nutr. 2022;9:925908 pubmed 出版商
  4. Formigari G, D xe1 tilo M, Vareda B, Bonfante I, Cavaglieri C, Lopes de Faria J, et al. Renal protection induced by physical exercise may be mediated by the irisin/AMPK axis in diabetic nephropathy. Sci Rep. 2022;12:9062 pubmed 出版商
  5. Liu J, Qian B, Zhou L, Shen G, Tan Y, Liu S, et al. IL25 Enhanced Colitis-Associated Tumorigenesis in Mice by Upregulating Transcription Factor GLI1. Front Immunol. 2022;13:837262 pubmed 出版商
  6. Vessey K, Jobling A, Tran M, Wang A, Greferath U, Fletcher E. Treatments targeting autophagy ameliorate the age-related macular degeneration phenotype in mice lacking APOE (apolipoprotein E). Autophagy. 2022;18:2368-2384 pubmed 出版商
  7. Luan Y, Zhang Y, Yu S, You M, Xu P, Chung S, et al. Development of ovarian tumour causes significant loss of muscle and adipose tissue: a novel mouse model for cancer cachexia study. J Cachexia Sarcopenia Muscle. 2022;13:1289-1301 pubmed 出版商
  8. Sohn J, Kwak H, Rhim J, Yeo E. AMP-activated protein kinase-dependent nuclear localization of glyceraldehyde 3-phosphate dehydrogenase in senescent human diploid fibroblasts. Aging (Albany NY). 2022;14:4-27 pubmed 出版商
  9. Kasica N, Zhou X, Yang Q, Wang X, Yang W, Zimmermann H, et al. Antagonists targeting eEF2 kinase rescue multiple aspects of pathophysiology in Alzheimer's disease model mice. J Neurochem. 2022;160:524-539 pubmed 出版商
  10. Yeh C, Liu H, Lee M, Leu Y, Chiang W, Chang H, et al. Phytochemical‑rich herbal formula ATG‑125 protects against sucrose‑induced gastrocnemius muscle atrophy by rescuing Akt signaling and improving mitochondrial dysfunction in young adult mice. Mol Med Rep. 2022;25: pubmed 出版商
  11. Lu Y, Xin D, Guan L, Xu M, Yang Y, Chen Y, et al. Metformin Downregulates PD-L1 Expression in Esophageal Squamous Cell Catrcinoma by Inhibiting IL-6 Signaling Pathway. Front Oncol. 2021;11:762523 pubmed 出版商
  12. Zhang Y, Qian Z, Jiang D, Sun Y, Gao S, Jiang X, et al. Neuromedin B receptor stimulation of Cav3.2 T-type Ca2+ channels in primary sensory neurons mediates peripheral pain hypersensitivity. Theranostics. 2021;11:9342-9357 pubmed 出版商
  13. Agostino M, Rooney J, Herat L, Matthews J, Simonds A, Northfield S, et al. TNFSF14-Derived Molecules as a Novel Treatment for Obesity and Type 2 Diabetes. Int J Mol Sci. 2021;22: pubmed 出版商
  14. Minton D, Elliehausen C, Javors M, Santangello K, Konopka A. Rapamycin-induced hyperglycemia is associated with exacerbated age-related osteoarthritis. Arthritis Res Ther. 2021;23:253 pubmed 出版商
  15. Huang X, Yan Y, Zheng W, Ma Y, Wang X, Gong W, et al. Secreted Frizzled-Related Protein 5 Protects Against Cardiac Rupture and Improves Cardiac Function Through Inhibiting Mitochondrial Dysfunction. Front Cardiovasc Med. 2021;8:682409 pubmed 出版商
  16. Wu J, Xue X, Fan G, Gu Y, Zhou F, Zheng Q, et al. Ferulic Acid Ameliorates Hepatic Inflammation and Fibrotic Liver Injury by Inhibiting PTP1B Activity and Subsequent Promoting AMPK Phosphorylation. Front Pharmacol. 2021;12:754976 pubmed 出版商
  17. Gyamfi J, Yeo J, Kwon D, Min B, Cha Y, Koo J, et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer. 2021;7:129 pubmed 出版商
  18. Kong L, Zhang H, Lu C, Shi K, Huang H, Zheng Y, et al. AICAR, an AMP-Activated Protein Kinase Activator, Ameliorates Acute Pancreatitis-Associated Liver Injury Partially Through Nrf2-Mediated Antioxidant Effects and Inhibition of NLRP3 Inflammasome Activation. Front Pharmacol. 2021;12:724514 pubmed 出版商
  19. Drake J, Wilson R, Laker R, Guan Y, Spaulding H, Nichenko A, et al. Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  20. Zhang S, Liang S, Wu D, Guo H, Ma K, Liu L. LncRNA coordinates Hippo and mTORC1 pathway activation in cancer. Cell Death Dis. 2021;12:822 pubmed 出版商
  21. Chafe S, Vizeacoumar F, Venkateswaran G, Nemirovsky O, Awrey S, Brown W, et al. Genome-wide synthetic lethal screen unveils novel CAIX-NFS1/xCT axis as a targetable vulnerability in hypoxic solid tumors. Sci Adv. 2021;7: pubmed 出版商
  22. Tang X, Li G, Shi L, Su F, Qian M, Liu Z, et al. Combined intermittent fasting and ERK inhibition enhance the anti-tumor effects of chemotherapy via the GSK3β-SIRT7 axis. Nat Commun. 2021;12:5058 pubmed 出版商
  23. Albanese F, Mercatelli D, Finetti L, Lamonaca G, Pizzi S, Shimshek D, et al. Constitutive silencing of LRRK2 kinase activity leads to early glucocerebrosidase deregulation and late impairment of autophagy in vivo. Neurobiol Dis. 2021;159:105487 pubmed 出版商
  24. Chiang S, Braidy N, Maleki S, Lal S, Richardson D, Huang M. Mechanisms of impaired mitochondrial homeostasis and NAD+ metabolism in a model of mitochondrial heart disease exhibiting redox active iron accumulation. Redox Biol. 2021;46:102038 pubmed 出版商
  25. Shi Y, Hou S. Protective effects of metformin against myocardial ischemia‑reperfusion injury via AMPK‑dependent suppression of NOX4. Mol Med Rep. 2021;24: pubmed 出版商
  26. Chen C, Wang S, Yu L, Mueller J, Fortunato F, Rausch V, et al. H2O2-mediated autophagy during ethanol metabolism. Redox Biol. 2021;46:102081 pubmed 出版商
  27. Mygland L, Brinch S, Strand M, Olsen P, Aizenshtadt A, Lund K, et al. Identification of response signatures for tankyrase inhibitor treatment in tumor cell lines. iScience. 2021;24:102807 pubmed 出版商
  28. Xu X, Sun Y, Cen X, Shan B, Zhao Q, Xie T, et al. Metformin activates chaperone-mediated autophagy and improves disease pathologies in an Alzheimer disease mouse model. Protein Cell. 2021;: pubmed 出版商
  29. Amegandjin C, Choudhury M, Jadhav V, Carriço J, Quintal A, Berryer M, et al. Sensitive period for rescuing parvalbumin interneurons connectivity and social behavior deficits caused by TSC1 loss. Nat Commun. 2021;12:3653 pubmed 出版商
  30. Fan Y, Nirujogi R, Garrido A, Ruiz Martinez J, Bergareche Yarza A, Mondragón Rezola E, et al. R1441G but not G2019S mutation enhances LRRK2 mediated Rab10 phosphorylation in human peripheral blood neutrophils. Acta Neuropathol. 2021;142:475-494 pubmed 出版商
  31. Stagg D, Gillingham J, Nelson A, Lengfeld J, d Avignon D, Puchalska P, et al. Diminished ketone interconversion, hepatic TCA cycle flux, and glucose production in D-β-hydroxybutyrate dehydrogenase hepatocyte-deficient mice. Mol Metab. 2021;53:101269 pubmed 出版商
  32. López Gambero A, Rosell Valle C, Medina Vera D, Navarro J, Vargas A, Rivera P, et al. A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci. 2021;22: pubmed 出版商
  33. Xiao J, Tu B, Zhou X, Jiang X, Xu G, Zhang J, et al. Autophagy deficiency exacerbates acute lung injury induced by copper oxide nanoparticles. J Nanobiotechnology. 2021;19:162 pubmed 出版商
  34. Chen W, Huang F, Huang J, Li Y, Peng J, Zhuang Y, et al. SLC45A4 promotes glycolysis and prevents AMPK/ULK1-induced autophagy in TP53 mutant pancreatic ductal adenocarcinoma. J Gene Med. 2021;23:e3364 pubmed 出版商
  35. Zhao Z, Wang Z, Zhou D, Han Y, Ma F, Hu Z, et al. Sodium Butyrate Supplementation Inhibits Hepatic Steatosis by Stimulating Liver Kinase B1 and Insulin-Induced Gene. Cell Mol Gastroenterol Hepatol. 2021;12:857-871 pubmed 出版商
  36. Zhang G, Li R, Li W, Yang S, Sun Q, Yin H, et al. Toll-like receptor 3 ablation prevented high-fat diet-induced obesity and metabolic disorder. J Nutr Biochem. 2021;95:108761 pubmed 出版商
  37. Pettinato A, Yoo D, VanOudenhove J, Chen Y, Cohn R, Ladha F, et al. Sarcomere function activates a p53-dependent DNA damage response that promotes polyploidization and limits in vivo cell engraftment. Cell Rep. 2021;35:109088 pubmed 出版商
  38. Pramanick A, Chakraborti S, Mahata T, Basak M, Das K, Verma S, et al. G protein β5-ATM complexes drive acetaminophen-induced hepatotoxicity. Redox Biol. 2021;43:101965 pubmed 出版商
  39. Shi X, Wen Z, Wang Y, Liu Y, Shi K, Jiu Y. Feedback-Driven Mechanisms Between Phosphorylated Caveolin-1 and Contractile Actin Assemblies Instruct Persistent Cell Migration. Front Cell Dev Biol. 2021;9:665919 pubmed 出版商
  40. Wang X, Lu Y, Tuo Z, Zhou H, Zhang Y, Cao Z, et al. Role of SIRT1/AMPK signaling in the proliferation, migration and invasion of renal cell carcinoma cells. Oncol Rep. 2021;45: pubmed 出版商
  41. Dong W, Zhang H, Zhao C, Luo Y, Chen Y. Silencing of miR-150-5p Ameliorates Diabetic Nephropathy by Targeting SIRT1/p53/AMPK Pathway. Front Physiol. 2021;12:624989 pubmed 出版商
  42. Li Q, Xu Q, Tan J, Hu L, Ge C, Xu M. Carminic acid supplementation protects against fructose-induced kidney injury mainly through suppressing inflammation and oxidative stress via improving Nrf-2 signaling. Aging (Albany NY). 2021;13:10326-10353 pubmed 出版商
  43. Wallace M, Aguirre N, Marcotte G, Marshall A, Baehr L, Hughes D, et al. The ketogenic diet preserves skeletal muscle with aging in mice. Aging Cell. 2021;20:e13322 pubmed 出版商
  44. Wu M, Ma Y, Chen X, Liang N, Qu S, Chen H. Hyperuricemia causes kidney damage by promoting autophagy and NLRP3-mediated inflammation in rats with urate oxidase deficiency. Dis Model Mech. 2021;14: pubmed 出版商
  45. Yu L, Shi Q, Jin Y, Liu Z, Li J, Sun W. Blockage of AMPK-ULK1 pathway mediated autophagy promotes cell apoptosis to increase doxorubicin sensitivity in breast cancer (BC) cells: an in vitro study. BMC Cancer. 2021;21:195 pubmed 出版商
  46. Li T, Yin Y, Mu N, Wang Y, Liu M, Chen M, et al. Metformin-Enhanced Cardiac AMP-Activated Protein Kinase/Atrogin-1 Pathways Inhibit Charged Multivesicular Body Protein 2B Accumulation in Ischemia-Reperfusion Injury. Front Cell Dev Biol. 2020;8:621509 pubmed 出版商
  47. Liu M, Li N, Qu C, Gao Y, Wu L, Hu L. Amylin deposition activates HIF1α and 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) signaling in failing hearts of non-human primates. Commun Biol. 2021;4:188 pubmed 出版商
  48. Akashi S, Morita A, Mochizuki Y, Shibuya F, Kamei Y, Miura S. Citrus hassaku Extract Powder Increases Mitochondrial Content and Oxidative Muscle Fibers by Upregulation of PGC-1α in Skeletal Muscle. Nutrients. 2021;13: pubmed 出版商
  49. Alcedo K, Rouse M, Jung G, Fu D, Minor M, Willcockson H, et al. CD73 Maintains Hepatocyte Metabolic Integrity and Mouse Liver Homeostasis in a Sex-Dependent Manner. Cell Mol Gastroenterol Hepatol. 2021;12:141-157 pubmed 出版商
  50. Sünderhauf A, Hicken M, Schlichting H, Skibbe K, Ragab M, Raschdorf A, et al. Loss of Mucosal p32/gC1qR/HABP1 Triggers Energy Deficiency and Impairs Goblet Cell Differentiation in Ulcerative Colitis. Cell Mol Gastroenterol Hepatol. 2021;12:229-250 pubmed 出版商
  51. Yang Q, Ma Q, Xu J, Liu Z, Zou J, Shen J, et al. Prkaa1 Metabolically Regulates Monocyte/Macrophage Recruitment and Viability in Diet-Induced Murine Metabolic Disorders. Front Cell Dev Biol. 2020;8:611354 pubmed 出版商
  52. Nasiri Ansari N, Nikolopoulou C, Papoutsi K, Kyrou I, Mantzoros C, Kyriakopoulos G, et al. Empagliflozin Attenuates Non-Alcoholic Fatty Liver Disease (NAFLD) in High Fat Diet Fed ApoE(-/-) Mice by Activating Autophagy and Reducing ER Stress and Apoptosis. Int J Mol Sci. 2021;22: pubmed 出版商
  53. Stojakovic A, Trushin S, Sheu A, Khalili L, Chang S, Li X, et al. Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition in APP/PS1 female mice. Commun Biol. 2021;4:61 pubmed 出版商
  54. Tian M, Chen J, Wu Z, Song H, Yang F, Cui C, et al. Fat Encapsulation Reduces Diarrhea in Piglets Partially by Repairing the Intestinal Barrier and Improving Fatty Acid Transport. Animals (Basel). 2020;11: pubmed 出版商
  55. Okur M, Fang E, Fivenson E, Tiwari V, Croteau D, Bohr V. Cockayne syndrome proteins CSA and CSB maintain mitochondrial homeostasis through NAD+ signaling. Aging Cell. 2020;19:e13268 pubmed 出版商
  56. Sünderhauf A, Raschdorf A, Hicken M, Schlichting H, Fetzer F, Brethack A, et al. GC1qR Cleavage by Caspase-1 Drives Aerobic Glycolysis in Tumor Cells. Front Oncol. 2020;10:575854 pubmed 出版商
  57. Kumar A, Xie L, Ta C, Hinton A, Gunasekar S, Minerath R, et al. SWELL1 regulates skeletal muscle cell size, intracellular signaling, adiposity and glucose metabolism. elife. 2020;9: pubmed 出版商
  58. Silva M, Nandi G, Tentarelli S, Gurrell I, Jamier T, Lucente D, et al. Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nat Commun. 2020;11:3258 pubmed 出版商
  59. Shen S, Li B, Dai J, Wu Z, He Y, Wen L, et al. BRD4 Inhibition Protects Against Acute Pancreatitis Through Restoring Impaired Autophagic Flux. Front Pharmacol. 2020;11:618 pubmed 出版商
  60. Collins M, Stransky L, Forgac M. AKT Ser/Thr kinase increases V-ATPase-dependent lysosomal acidification in response to amino acid starvation in mammalian cells. J Biol Chem. 2020;295:9433-9444 pubmed 出版商
  61. Li M, Li C, Ye Z, Huang J, Li Y, Lai W, et al. Sirt3 modulates fatty acid oxidation and attenuates cisplatin-induced AKI in mice. J Cell Mol Med. 2020;24:5109-5121 pubmed 出版商
  62. Zhao J, Li G, Zhao X, Lin X, Gao Y, Raimundo N, et al. Down-regulation of AMPK signaling pathway rescues hearing loss in TFB1 transgenic mice and delays age-related hearing loss. Aging (Albany NY). 2020;12:5590-5611 pubmed 出版商
  63. Chu J, Niu X, Chang J, Shao M, Peng L, Xi Y, et al. Metabolic remodeling by TIGAR overexpression is a therapeutic target in esophageal squamous-cell carcinoma. Theranostics. 2020;10:3488-3502 pubmed 出版商
  64. Schley G, Grampp S, Goppelt Struebe M. Inhibition of oxygen-sensing prolyl hydroxylases increases lipid accumulation in human primary tubular epithelial cells without inducing ER stress. Cell Tissue Res. 2020;381:125-140 pubmed 出版商
  65. Li X, Zhu Q, Zheng R, Yan J, Wei M, Fan Y, et al. Puerarin Attenuates Diabetic Nephropathy by Promoting Autophagy in Podocytes. Front Physiol. 2020;11:73 pubmed 出版商
  66. Asha K, Balfe N, Sharma Walia N. Concurrent Control of the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle through Chromatin Modulation and Host Hedgehog Signaling: a New Prospect for the Therapeutic Potential of Lipoxin A4. J Virol. 2020;94: pubmed 出版商
  67. Li R, Li D, Wu C, Ye L, Wu Y, Yuan Y, et al. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics. 2020;10:1649-1677 pubmed 出版商
  68. Yang S, Ma C, Wu H, Zhang H, Yuan F, Yang G, et al. Tectorigenin attenuates diabetic nephropathy by improving vascular endothelium dysfunction through activating AdipoR1/2 pathway. Pharmacol Res. 2020;153:104678 pubmed 出版商
  69. Yu J, Wang W, Matei N, Li X, Pang J, Mo J, et al. Ezetimibe Attenuates Oxidative Stress and Neuroinflammation via the AMPK/Nrf2/TXNIP Pathway after MCAO in Rats. Oxid Med Cell Longev. 2020;2020:4717258 pubmed 出版商
  70. Cader M, de Almeida Rodrigues R, West J, Sewell G, Md Ibrahim M, Reikine S, et al. FAMIN Is a Multifunctional Purine Enzyme Enabling the Purine Nucleotide Cycle. Cell. 2020;180:278-295.e23 pubmed 出版商
  71. Mlyczynska E, Kurowska P, Drwal E, Opydo Chanek M, Tworzydło W, Kotula Balak M, et al. Apelin and apelin receptor in human placenta: Expression, signalling pathway and regulation of trophoblast JEG‑3 and BeWo cells proliferation and cell cycle. Int J Mol Med. 2020;45:691-702 pubmed 出版商
  72. Zuo Z, Ji M, Zhao K, Su Z, Li P, Hou D, et al. CD47 Deficiency Attenuates Isoproterenol-Induced Cardiac Remodeling in Mice. Oxid Med Cell Longev. 2019;2019:7121763 pubmed 出版商
  73. Yoon I, Nam M, Kim H, Moon H, Kim S, Jang J, et al. Glucose-dependent control of leucine metabolism by leucyl-tRNA synthetase 1. Science. 2019;: pubmed 出版商
  74. Moya I, Castaldo S, Van den Mooter L, Soheily S, Sansores Garcia L, Jacobs J, et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science. 2019;366:1029-1034 pubmed 出版商
  75. Currais A, Huang L, Goldberg J, Petrascheck M, Ates G, Pinto Duarte A, et al. Elevating acetyl-CoA levels reduces aspects of brain aging. elife. 2019;8: pubmed 出版商
  76. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  77. Gao J, Yuan J, Wang Q, Lei T, Shen X, Cui B, et al. Metformin protects against PM2.5-induced lung injury and cardiac dysfunction independent of AMP-activated protein kinase α2. Redox Biol. 2020;28:101345 pubmed 出版商
  78. Berndsen K, Lis P, Yeshaw W, Wawro P, Nirujogi R, Wightman M, et al. PPM1H phosphatase counteracts LRRK2 signaling by selectively dephosphorylating Rab proteins. elife. 2019;8: pubmed 出版商
  79. Zhou L, Wang Q, Zhang H, Li Y, Xie S, Xu M. YAP Inhibition by Nuciferine via AMPK-Mediated Downregulation of HMGCR Sensitizes Pancreatic Cancer Cells to Gemcitabine. Biomolecules. 2019;9: pubmed 出版商
  80. Garc a Arroyo F, Monroy S nchez F, Mu oz Jim nez I, Gonzaga G, Andr s Hernando A, Zazueta C, et al. Allopurinol Prevents the Lipogenic Response Induced by an Acute Oral Fructose Challenge in Short-Term Fructose Fed Rats. Biomolecules. 2019;9: pubmed 出版商
  81. Gao X, Zhao L, Liu S, Li Y, Xia S, Chen D, et al. γ-6-Phosphogluconolactone, a Byproduct of the Oxidative Pentose Phosphate Pathway, Contributes to AMPK Activation through Inhibition of PP2A. Mol Cell. 2019;76:857-871.e9 pubmed 出版商
  82. Neumann B, Baror R, Zhao C, SEGEL M, Dietmann S, Rawji K, et al. Metformin Restores CNS Remyelination Capacity by Rejuvenating Aged Stem Cells. Cell Stem Cell. 2019;25:473-485.e8 pubmed 出版商
  83. Chollat Namy M, Ben Safta Saadoun T, Haferssas D, Meurice G, Chouaib S, Thiery J. The pharmalogical reactivation of p53 function improves breast tumor cell lysis by granzyme B and NK cells through induction of autophagy. Cell Death Dis. 2019;10:695 pubmed 出版商
  84. Zhao H, Wu S, Li H, Duan Q, Zhang Z, Shen Q, et al. ROS/KRAS/AMPK Signaling Contributes to Gemcitabine-Induced Stem-like Cell Properties in Pancreatic Cancer. Mol Ther Oncolytics. 2019;14:299-312 pubmed 出版商
  85. Choi W, Kim H, Kim M, Cinar R, Yi H, Eun H, et al. Glutamate Signaling in Hepatic Stellate Cells Drives Alcoholic Steatosis. Cell Metab. 2019;30:877-889.e7 pubmed 出版商
  86. Guan J, Lin H, Xie M, Huang M, Zhang D, Ma S, et al. Higenamine exerts an antispasmodic effect on cold-induced vasoconstriction by regulating the PI3K/Akt, ROS/α2C-AR and PTK9 pathways independently of the AMPK/eNOS/NO axis. Exp Ther Med. 2019;18:1299-1308 pubmed 出版商
  87. Sharma A, Oonthonpan L, Sheldon R, Rauckhorst A, Zhu Z, Tompkins S, et al. Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness. elife. 2019;8: pubmed 出版商
  88. Shan C, Lu Z, Li Z, Sheng H, Fan J, Qi Q, et al. 4-hydroxyphenylpyruvate dioxygenase promotes lung cancer growth via pentose phosphate pathway (PPP) flux mediated by LKB1-AMPK/HDAC10/G6PD axis. Cell Death Dis. 2019;10:525 pubmed 出版商
  89. Wilson M, Jessen H, Saiardi A. The inositol hexakisphosphate kinases IP6K1 and -2 regulate human cellular phosphate homeostasis, including XPR1-mediated phosphate export. J Biol Chem. 2019;: pubmed 出版商
  90. Jewell J, Fu V, Hong A, Yu F, Meng D, Melick C, et al. GPCR signaling inhibits mTORC1 via PKA phosphorylation of Raptor. elife. 2019;8: pubmed 出版商
  91. Xu D, Li X, Shao F, Lv G, Lv H, Lee J, et al. The protein kinase activity of fructokinase A specifies the antioxidant responses of tumor cells by phosphorylating p62. Sci Adv. 2019;5:eaav4570 pubmed 出版商
  92. Liu M, Yin L, Li W, Hu J, Wang H, Ye B, et al. C1q/TNF-related protein-9 promotes macrophage polarization and improves cardiac dysfunction after myocardial infarction. J Cell Physiol. 2019;234:18731-18747 pubmed 出版商
  93. Shao J, Miao C, Geng Z, Gu M, Wu Y, Li Q. Effect of eNOS on Ischemic Postconditioning-Induced Autophagy against Ischemia/Reperfusion Injury in Mice. Biomed Res Int. 2019;2019:5201014 pubmed 出版商
  94. Shi Y, Lim S, Liang Q, Iyer S, Wang H, Wang Z, et al. Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. Nature. 2019;567:341-346 pubmed 出版商
  95. Yambire K, Fernández Mosquera L, Steinfeld R, Mühle C, Ikonen E, Milosevic I, et al. Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases. elife. 2019;8: pubmed 出版商
  96. Ducommun S, Deak M, Zeigerer A, Göransson O, Seitz S, Collodet C, et al. Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates. Cell Signal. 2019;57:45-57 pubmed 出版商
  97. Wen Z, Jin K, Shen Y, Yang Z, Li Y, Wu B, et al. N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nat Immunol. 2019;20:313-325 pubmed 出版商
  98. Tuo L, Xiang J, Pan X, Hu J, Tang H, Liang L, et al. PCK1 negatively regulates cell cycle progression and hepatoma cell proliferation via the AMPK/p27Kip1 axis. J Exp Clin Cancer Res. 2019;38:50 pubmed 出版商
  99. Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, et al. Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep. 2018;25:3059-3073.e10 pubmed 出版商
  100. Zhou X, Zhang R, Zou Z, Shen X, Xie T, Xu C, et al. Hypoglycaemic effects of glimepiride in sulfonylurea receptor 1 deficient rat. Br J Pharmacol. 2019;176:478-490 pubmed 出版商
  101. Chen C, Zou L, Lin Q, Yan X, Bi H, Xie X, et al. Resveratrol as a new inhibitor of immunoproteasome prevents PTEN degradation and attenuates cardiac hypertrophy after pressure overload. Redox Biol. 2019;20:390-401 pubmed 出版商
  102. Zhang N, Wei W, Liao H, Yang Z, Hu C, Wang S, et al. AdipoRon, an adiponectin receptor agonist, attenuates cardiac remodeling induced by pressure overload. J Mol Med (Berl). 2018;96:1345-1357 pubmed 出版商
  103. Cheruiyot A, Li S, Nickless A, Roth R, Fitzpatrick J, You Z. Compound C inhibits nonsense-mediated RNA decay independently of AMPK. PLoS ONE. 2018;13:e0204978 pubmed 出版商
  104. Hinchy E, Gruszczyk A, Willows R, Navaratnam N, Hall A, Bates G, et al. Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. J Biol Chem. 2018;293:17208-17217 pubmed 出版商
  105. Song K, Kim J, Lee Y, Bae H, Lee H, Woo S, et al. Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance. J Clin Invest. 2018;128:4098-4114 pubmed 出版商
  106. Cha J, Yang W, Xia W, Wei Y, Chan L, Lim S, et al. Metformin Promotes Antitumor Immunity via Endoplasmic-Reticulum-Associated Degradation of PD-L1. Mol Cell. 2018;71:606-620.e7 pubmed 出版商
  107. Piragyte I, Clapes T, Polyzou A, Klein Geltink R, Lefkopoulos S, Yin N, et al. A metabolic interplay coordinated by HLX regulates myeloid differentiation and AML through partly overlapping pathways. Nat Commun. 2018;9:3090 pubmed 出版商
  108. Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed 出版商
  109. Chhipa R, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, et al. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol. 2018;20:823-835 pubmed 出版商
  110. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  111. Zhao P, Wong K, Sun X, Reilly S, Uhm M, Liao Z, et al. TBK1 at the Crossroads of Inflammation and Energy Homeostasis in Adipose Tissue. Cell. 2018;172:731-743.e12 pubmed 出版商
  112. Li F, Liu J, Bao R, Yan G, Feng X, Xu Y, et al. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat Commun. 2018;9:508 pubmed 出版商
  113. Zeng J, Liu W, Fan Y, He D, Li L. PrLZ increases prostate cancer docetaxel resistance by inhibiting LKB1/AMPK-mediated autophagy. Theranostics. 2018;8:109-123 pubmed 出版商
  114. Tanaka N, Zhao M, Tang L, Patel A, Xi Q, Van H, et al. Gain-of-function mutant p53 promotes the oncogenic potential of head and neck squamous cell carcinoma cells by targeting the transcription factors FOXO3a and FOXM1. Oncogene. 2018;37:1279-1292 pubmed 出版商
  115. Liu S, Li X, Lin Z, Su L, Yan S, Zhao B, et al. SEC-induced activation of ANXA7 GTPase suppresses prostate cancer metastasis. Cancer Lett. 2018;416:11-23 pubmed 出版商
  116. Chung E, Efstathiou N, Konstantinou E, Maidana D, Miller J, Young L, et al. AICAR suppresses TNF-α-induced complement factor B in RPE cells. Sci Rep. 2017;7:17651 pubmed 出版商
  117. Yang L, Shen L, Gao P, Li G, He Y, Wang M, et al. Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms. Oncotarget. 2017;8:92827-92840 pubmed 出版商
  118. Sun H, Krauss R, Chang J, Teng B. PCSK9 deficiency reduces atherosclerosis, apolipoprotein B secretion, and endothelial dysfunction. J Lipid Res. 2018;59:207-223 pubmed 出版商
  119. Bansal M, Moharir S, Sailasree S, Sirohi K, Sudhakar C, Sarathi D, et al. Optineurin promotes autophagosome formation by recruiting the autophagy-related Atg12-5-16L1 complex to phagophores containing the Wipi2 protein. J Biol Chem. 2018;293:132-147 pubmed 出版商
  120. Meng Z, Tao W, Sun J, Wang Q, Mi L, Lin J. Uncoupling Exercise Bioenergetics From Systemic Metabolic Homeostasis by Conditional Inactivation of Baf60 in Skeletal Muscle. Diabetes. 2018;67:85-97 pubmed 出版商
  121. Hwangbo C, Wu J, Papangeli I, Adachi T, Sharma B, Park S, et al. Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects. Sci Transl Med. 2017;9: pubmed 出版商
  122. Ruan H, Ma Y, Torres S, Zhang B, Feriod C, Heck R, et al. Calcium-dependent O-GlcNAc signaling drives liver autophagy in adaptation to starvation. Genes Dev. 2017;31:1655-1665 pubmed 出版商
  123. Bai J, Wang P, Liu Y, Zhang Y, Li Y, He Z, et al. Formaldehyde alters triglyceride synthesis and very low-density lipoprotein secretion in a time-dependent manner. Environ Toxicol Pharmacol. 2017;56:15-20 pubmed 出版商
  124. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  125. Li Z, Li D, Choi E, Lapidus R, Zhang L, Huang S, et al. Silencing of solute carrier family 13 member 5 disrupts energy homeostasis and inhibits proliferation of human hepatocarcinoma cells. J Biol Chem. 2017;292:13890-13901 pubmed 出版商
  126. Fan Q, Long B, Yan G, Wang Z, Shi M, Bao X, et al. Dietary leucine supplementation alters energy metabolism and induces slow-to-fast transitions in longissimus dorsi muscle of weanling piglets. Br J Nutr. 2017;117:1222-1234 pubmed 出版商
  127. Zhou Y, Huang N, Wu J, Zhen N, Li N, Li Y, et al. Silencing of NRAGE induces autophagy via AMPK/Ulk1/Atg13 signaling pathway in NSCLC cells. Tumour Biol. 2017;39:1010428317709676 pubmed 出版商
  128. Dai S, Dulcey A, Hu X, Wassif C, Porter F, Austin C, et al. Methyl-β-cyclodextrin restores impaired autophagy flux in Niemann-Pick C1-deficient cells through activation of AMPK. Autophagy. 2017;13:1435-1451 pubmed 出版商
  129. Pereira R, Tadinada S, Zasadny F, Oliveira K, Pires K, Olvera A, et al. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J. 2017;36:2126-2145 pubmed 出版商
  130. Li X, Yu W, Qian X, Xia Y, Zheng Y, Lee J, et al. Nucleus-Translocated ACSS2 Promotes Gene Transcription for Lysosomal Biogenesis and Autophagy. Mol Cell. 2017;66:684-697.e9 pubmed 出版商
  131. Sakamaki J, Wilkinson S, Hahn M, Tasdemir N, O Prey J, Clark W, et al. Bromodomain Protein BRD4 Is a Transcriptional Repressor of Autophagy and Lysosomal Function. Mol Cell. 2017;66:517-532.e9 pubmed 出版商
  132. Choi E, Jung B, Lee S, Yoo H, Shin E, Ko H, et al. A clinical drug library screen identifies clobetasol propionate as an NRF2 inhibitor with potential therapeutic efficacy in KEAP1 mutant lung cancer. Oncogene. 2017;36:5285-5295 pubmed 出版商
  133. Ip W, Hoshi N, Shouval D, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356:513-519 pubmed 出版商
  134. Koh J, Hancock C, Terada S, Higashida K, Holloszy J, Han D. PPARβ Is Essential for Maintaining Normal Levels of PGC-1α and Mitochondria and for the Increase in Muscle Mitochondria Induced by Exercise. Cell Metab. 2017;25:1176-1185.e5 pubmed 出版商
  135. He M, Tan B, Vasan K, Yuan H, Cheng F, Ramos da Silva S, et al. SIRT1 and AMPK pathways are essential for the proliferation and survival of primary effusion lymphoma cells. J Pathol. 2017;242:309-321 pubmed 出版商
  136. Bai X, Hong W, Cai P, Chen Y, Xu C, Cao D, et al. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis. Toxicol Appl Pharmacol. 2017;324:12-25 pubmed 出版商
  137. Singh R, Braga M, Reddy S, Lee S, Parveen M, Grijalva V, et al. Follistatin Targets Distinct Pathways To Promote Brown Adipocyte Characteristics in Brown and White Adipose Tissues. Endocrinology. 2017;158:1217-1230 pubmed 出版商
  138. Azzalin A, Nato G, Parmigiani E, Garello F, Buffo A, Magrassi L. Inhibitors of GLUT/SLC2A Enhance the Action of BCNU and Temozolomide against High-Grade Gliomas. Neoplasia. 2017;19:364-373 pubmed 出版商
  139. Gupta A, Anjomani Virmouni S, Koundouros N, Dimitriadi M, Choo Wing R, Valle A, et al. PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation. Mol Cell. 2017;65:999-1013.e7 pubmed 出版商
  140. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  141. Georgiadou M, Lilja J, Jacquemet G, Guzmán C, Rafaeva M, Alibert C, et al. AMPK negatively regulates tensin-dependent integrin activity. J Cell Biol. 2017;216:1107-1121 pubmed 出版商
  142. Vienken H, Mabrouki N, Grabau K, Claas R, Rudowski A, Schömel N, et al. Characterization of cholesterol homeostasis in sphingosine-1-phosphate lyase-deficient fibroblasts reveals a Niemann-Pick disease type C-like phenotype with enhanced lysosomal Ca2+ storage. Sci Rep. 2017;7:43575 pubmed 出版商
  143. O Brien M, Oakhill J, Ling N, Langendorf C, Hoque A, Dite T, et al. Impact of Genetic Variation on Human CaMKK2 Regulation by Ca2+-Calmodulin and Multisite Phosphorylation. Sci Rep. 2017;7:43264 pubmed 出版商
  144. Prasad S, Sajja R, Kaisar M, Park J, Villalba H, Liles T, et al. Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol. 2017;12:58-69 pubmed 出版商
  145. Ganesan R, Hos N, Gutierrez S, Fischer J, Stepek J, Daglidu E, et al. Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS Pathog. 2017;13:e1006227 pubmed 出版商
  146. Qiao A, Jin X, Pang J, Moskophidis D, Mivechi N. The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis. J Cell Biol. 2017;216:723-741 pubmed 出版商
  147. Hogarth M, Houweling P, Thomas K, Gordish Dressman H, Bello L, Pegoraro E, et al. Evidence for ACTN3 as a genetic modifier of Duchenne muscular dystrophy. Nat Commun. 2017;8:14143 pubmed 出版商
  148. Yang H, Ju F, Guo X, Ma S, Wang L, Cheng B, et al. RNA-binding protein RBM3 prevents NO-induced apoptosis in human neuroblastoma cells by modulating p38 signaling and miR-143. Sci Rep. 2017;7:41738 pubmed 出版商
  149. Liu J, Wang H, Gu J, Deng T, Yuan Z, Hu B, et al. BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy. 2017;13:739-753 pubmed 出版商
  150. Cederquist C, Lentucci C, Martinez Calejman C, Hayashi V, Orofino J, GUERTIN D, et al. Systemic insulin sensitivity is regulated by GPS2 inhibition of AKT ubiquitination and activation in adipose tissue. Mol Metab. 2017;6:125-137 pubmed 出版商
  151. Brocherie F, Millet G, D Hulst G, Van Thienen R, Deldicque L, Girard O. Repeated maximal-intensity hypoxic exercise superimposed to hypoxic residence boosts skeletal muscle transcriptional responses in elite team-sport athletes. Acta Physiol (Oxf). 2018;222: pubmed 出版商
  152. Dey P, Baddour J, Muller F, Wu C, Wang H, Liao W, et al. Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature. 2017;542:119-123 pubmed 出版商
  153. Zhang L, Dai F, Cui L, Zhou B, Guo Y. Up-regulation of the active form of small GTPase Rab13 promotes macroautophagy in vascular endothelial cells. Biochim Biophys Acta Mol Cell Res. 2017;1864:613-624 pubmed 出版商
  154. Wang Q, Wu S, Zhu H, Ding Y, Dai X, Ouyang C, et al. Deletion of PRKAA triggers mitochondrial fission by inhibiting the autophagy-dependent degradation of DNM1L. Autophagy. 2017;13:404-422 pubmed 出版商
  155. Calamita P, Miluzio A, Russo A, Pesce E, Ricciardi S, Khanim F, et al. SBDS-Deficient Cells Have an Altered Homeostatic Equilibrium due to Translational Inefficiency Which Explains their Reduced Fitness and Provides a Logical Framework for Intervention. PLoS Genet. 2017;13:e1006552 pubmed 出版商
  156. Falfushynska H, Phan T, Sokolova I. Long-Term Acclimation to Different Thermal Regimes Affects Molecular Responses to Heat Stress in a Freshwater Clam Corbicula Fluminea. Sci Rep. 2016;6:39476 pubmed 出版商
  157. Möllmann J, Kahles F, Lebherz C, Kappel B, Baeck C, Tacke F, et al. The PDE4 inhibitor roflumilast reduces weight gain by increasing energy expenditure and leads to improved glucose metabolism. Diabetes Obes Metab. 2017;19:496-508 pubmed 出版商
  158. Liu Z, Gan L, Wu T, Feng F, Luo D, Gu H, et al. Adiponectin reduces ER stress-induced apoptosis through PPARα transcriptional regulation of ATF2 in mouse adipose. Cell Death Dis. 2016;7:e2487 pubmed 出版商
  159. Morishita M, Kawamoto T, Hara H, Onishi Y, Ueha T, Minoda M, et al. AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway. Int J Oncol. 2017;50:23-30 pubmed 出版商
  160. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  161. Cramer S, Saha A, Liu J, Tadi S, Tiziani S, Yan W, et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med. 2017;23:120-127 pubmed 出版商
  162. Park J, Kim S, Yoo J, Jang J, Lee A, Oh J, et al. Novel Neuroprotective Effects of Melanin-Concentrating Hormone in Parkinson's Disease. Mol Neurobiol. 2017;54:7706-7721 pubmed 出版商
  163. Kong Q, Zhang H, Zhao T, Zhang W, Yan M, Dong X, et al. Tangshen formula attenuates hepatic steatosis by inhibiting hepatic lipogenesis and augmenting fatty acid oxidation in db/db mice. Int J Mol Med. 2016;38:1715-1726 pubmed 出版商
  164. Chruvattil R, Banerjee S, Nath S, Machhi J, Kharkwal G, Yadav M, et al. Dexamethasone Alters the Appetite Regulation via Induction of Hypothalamic Insulin Resistance in Rat Brain. Mol Neurobiol. 2017;54:7483-7496 pubmed 出版商
  165. Hinds T, Burns K, Hosick P, McBeth L, Nestor Kalinoski A, Drummond H, et al. Biliverdin Reductase A Attenuates Hepatic Steatosis by Inhibition of Glycogen Synthase Kinase (GSK) 3? Phosphorylation of Serine 73 of Peroxisome Proliferator-activated Receptor (PPAR) ?. J Biol Chem. 2016;291:25179-25191 pubmed
  166. Xiao Y, Kwong M, Daemen A, Belvin M, Liang X, Hatzivassiliou G, et al. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable. PLoS ONE. 2016;11:e0164166 pubmed 出版商
  167. Gurley J, Ilkayeva O, Jackson R, Griesel B, White P, Matsuzaki S, et al. Enhanced GLUT4-Dependent Glucose Transport Relieves Nutrient Stress in Obese Mice Through Changes in Lipid and Amino Acid Metabolism. Diabetes. 2016;65:3585-3597 pubmed
  168. Liu Y, Wang T, Zhang R, Fu W, Wang X, Wang F, et al. Calorie restriction protects against experimental abdominal aortic aneurysms in mice. J Exp Med. 2016;213:2473-2488 pubmed
  169. Conlon D, Thomas T, Fedotova T, Hernandez Ono A, Di Paolo G, Chan R, et al. Inhibition of apolipoprotein B synthesis stimulates endoplasmic reticulum autophagy that prevents steatosis. J Clin Invest. 2016;126:3852-3867 pubmed 出版商
  170. Ziros P, Zagoriti Z, Lagoumintzis G, Kyriazopoulou V, Iskrenova R, Habeos E, et al. Hepatic Fgf21 Expression Is Repressed after Simvastatin Treatment in Mice. PLoS ONE. 2016;11:e0162024 pubmed 出版商
  171. Zhong W, Yi Q, Xu B, Li S, Wang T, Liu F, et al. ORP4L is essential for T-cell acute lymphoblastic leukemia cell survival. Nat Commun. 2016;7:12702 pubmed 出版商
  172. Bultot L, Jensen T, Lai Y, Madsen A, Collodet C, Kviklyte S, et al. Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. Am J Physiol Endocrinol Metab. 2016;311:E706-E719 pubmed 出版商
  173. Boß M, Newbatt Y, Gupta S, Collins I, Brüne B, Namgaladze D. AMPK-independent inhibition of human macrophage ER stress response by AICAR. Sci Rep. 2016;6:32111 pubmed 出版商
  174. Weikel K, Cacicedo J, Ruderman N, Ido Y. Knockdown of GSK3β increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Biosci Rep. 2016;36: pubmed 出版商
  175. Koch F, Lamp O, Eslamizad M, Weitzel J, Kuhla B. Metabolic Response to Heat Stress in Late-Pregnant and Early Lactation Dairy Cows: Implications to Liver-Muscle Crosstalk. PLoS ONE. 2016;11:e0160912 pubmed 出版商
  176. Kim C, Chung K, Cheon S, Lee K, Ham I, Choi H, et al. Hypolipidemic effects of HVC1 in a high cholesterol diet?induced rat model of hyperlipidemia. Mol Med Rep. 2016;14:3152-8 pubmed 出版商
  177. Liu J, Liang X, Zhou D, Lai L, Xiao L, Liu L, et al. Coupling of mitochondrial function and skeletal muscle fiber type by a miR-499/Fnip1/AMPK circuit. EMBO Mol Med. 2016;8:1212-1228 pubmed 出版商
  178. Cameron A, Morrison V, Levin D, Mohan M, Forteath C, Beall C, et al. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circ Res. 2016;119:652-65 pubmed 出版商
  179. Deblois G, Smith H, Tam I, Gravel S, Caron M, Savage P, et al. ERR? mediates metabolic adaptations driving lapatinib resistance in breast cancer. Nat Commun. 2016;7:12156 pubmed 出版商
  180. Porat Shliom N, Tietgens A, Van Itallie C, Vitale Cross L, Jarnik M, Harding O, et al. Liver kinase B1 regulates hepatocellular tight junction distribution and function in vivo. Hepatology. 2016;64:1317-29 pubmed 出版商
  181. Zhou Y, Wu Y, Qin Y, Liu L, Wan J, Zou L, et al. Ampelopsin Improves Insulin Resistance by Activating PPAR? and Subsequently Up-Regulating FGF21-AMPK Signaling Pathway. PLoS ONE. 2016;11:e0159191 pubmed 出版商
  182. Oliveira A, Gomes Marcondes M. Metformin treatment modulates the tumour-induced wasting effects in muscle protein metabolism minimising the cachexia in tumour-bearing rats. BMC Cancer. 2016;16:418 pubmed 出版商
  183. Shinohara S, Gu Y, Yang Y, Furuta Y, Tanaka M, Yue X, et al. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes. Int J Mol Med. 2016;38:574-84 pubmed 出版商
  184. Kim J, Hong S, Park C, Park J, Choi S, Woo S, et al. Intramyocardial Adipose-Derived Stem Cell Transplantation Increases Pericardial Fat with Recovery of Myocardial Function after Acute Myocardial Infarction. PLoS ONE. 2016;11:e0158067 pubmed 出版商
  185. Shin H, Kim H, Oh S, Lee J, Kee M, Ko H, et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature. 2016;534:553-7 pubmed 出版商
  186. Xie N, Yuan K, Zhou L, Wang K, Chen H, Lei Y, et al. PRKAA/AMPK restricts HBV replication through promotion of autophagic degradation. Autophagy. 2016;12:1507-20 pubmed 出版商
  187. Ivanina A, Nesmelova I, Leamy L, Sokolov E, Sokolova I. Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs. J Exp Biol. 2016;219:1659-74 pubmed 出版商
  188. Sundararaman A, Amirtham U, Rangarajan A. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation. J Biol Chem. 2016;291:14410-29 pubmed 出版商
  189. Elimam H, Papillon J, Kaufman D, Guillemette J, Aoudjit L, Gross R, et al. Genetic Ablation of Calcium-independent Phospholipase A2? Induces Glomerular Injury in Mice. J Biol Chem. 2016;291:14468-82 pubmed 出版商
  190. Zhang W, Wu M, Kim T, Jariwala R, Garvey W, Luo N, et al. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet-Induced Insulin Resistance. Diabetes. 2016;65:2380-91 pubmed 出版商
  191. Rao E, Zhang Y, Li Q, Hao J, Egilmez N, Suttles J, et al. AMPK-dependent and independent effects of AICAR and compound C on T-cell responses. Oncotarget. 2016;7:33783-95 pubmed 出版商
  192. Liu L, Wang C, Lin Y, Xi Y, Li H, Shi S, et al. Suppression of calcium?sensing receptor ameliorates cardiac hypertrophy through inhibition of autophagy. Mol Med Rep. 2016;14:111-20 pubmed 出版商
  193. Song J, Sun Y, Peluso I, Zeng Y, Yu X, Lu J, et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy. 2016;12:1372-89 pubmed 出版商
  194. Taniguchi T, Iizumi Y, Watanabe M, Masuda M, Morita M, Aono Y, et al. Resveratrol directly targets DDX5 resulting in suppression of the mTORC1 pathway in prostate cancer. Cell Death Dis. 2016;7:e2211 pubmed 出版商
  195. Walter C, Clemens L, Müller A, Fallier Becker P, Proikas Cezanne T, Riess O, et al. Activation of AMPK-induced autophagy ameliorates Huntington disease pathology in vitro. Neuropharmacology. 2016;108:24-38 pubmed 出版商
  196. Schmitt D, Cheng Y, Park J, An S. Sequestration-Mediated Downregulation of de Novo Purine Biosynthesis by AMPK. ACS Chem Biol. 2016;11:1917-24 pubmed 出版商
  197. Stephenson E, Ragauskas A, Jaligama S, Redd J, Parvathareddy J, Peloquin M, et al. Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice. Am J Physiol Endocrinol Metab. 2016;310:E1003-15 pubmed 出版商
  198. Thomas A, Belaidi E, Aron Wisnewsky J, van der Zon G, Levy P, Clement K, et al. Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice. Sci Rep. 2016;6:24618 pubmed 出版商
  199. Dokas J, Chadt A, Joost H, Al Hasani H. Tbc1d1 deletion suppresses obesity in leptin-deficient mice. Int J Obes (Lond). 2016;40:1242-9 pubmed 出版商
  200. Dinger K, Kasper P, Hucklenbruch Rother E, Vohlen C, Jobst E, Janoschek R, et al. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice. Sci Rep. 2016;6:24168 pubmed 出版商
  201. Su K, Cao J, Tang Z, Dai S, He Y, Sampson S, et al. HSF1 critically attunes proteotoxic stress sensing by mTORC1 to combat stress and promote growth. Nat Cell Biol. 2016;18:527-39 pubmed 出版商
  202. Cui J, Zhang F, Wang Y, Liu J, Ming X, Hou J, et al. Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways. Int J Mol Med. 2016;37:1299-309 pubmed 出版商
  203. Lin T, Chang Y, Lee S, Campbell M, Wang T, Shen S, et al. REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling. Oncotarget. 2016;7:26137-51 pubmed 出版商
  204. Liu X, Xiao Z, Han L, Zhang J, Lee S, Wang W, et al. LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nat Cell Biol. 2016;18:431-42 pubmed 出版商
  205. Son S, Cha M, Choi H, Kang S, Choi H, Lee M, et al. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy. 2016;12:784-800 pubmed 出版商
  206. Pandiri I, Chen Y, Joe Y, Kim H, Park J, Chung H, et al. Tristetraprolin mediates the anti-proliferative effects of metformin in breast cancer cells. Breast Cancer Res Treat. 2016;156:57-64 pubmed 出版商
  207. Scotton C, Bovolenta M, Schwartz E, Falzarano M, Martoni E, Passarelli C, et al. Deep RNA profiling identified CLOCK and molecular clock genes as pathophysiological signatures in collagen VI myopathy. J Cell Sci. 2016;129:1671-84 pubmed 出版商
  208. Ost M, Coleman V, Voigt A, van Schothorst E, Keipert S, van der Stelt I, et al. Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action. Mol Metab. 2016;5:79-90 pubmed 出版商
  209. Han X, Tai H, Wang X, Wang Z, Zhou J, Wei X, et al. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation. Aging Cell. 2016;15:416-27 pubmed 出版商
  210. Perumal D, Kuo P, Leshchenko V, Jiang Z, Divakar S, Cho H, et al. Dual Targeting of CDK4 and ARK5 Using a Novel Kinase Inhibitor ON123300 Exerts Potent Anticancer Activity against Multiple Myeloma. Cancer Res. 2016;76:1225-36 pubmed 出版商
  211. Demetriades C, Plescher M, Teleman A. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun. 2016;7:10662 pubmed 出版商
  212. Liu C, Rajapakse A, Riedo E, Fellay B, Bernhard M, Montani J, et al. Targeting arginase-II protects mice from high-fat-diet-induced hepatic steatosis through suppression of macrophage inflammation. Sci Rep. 2016;6:20405 pubmed 出版商
  213. Toyama E, Herzig S, Courchet J, Lewis T, Losón O, Hellberg K, et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science. 2016;351:275-281 pubmed 出版商
  214. Audet Walsh Ã, Papadopoli D, Gravel S, Yee T, Bridon G, Caron M, et al. The PGC-1α/ERRα Axis Represses One-Carbon Metabolism and Promotes Sensitivity to Anti-folate Therapy in Breast Cancer. Cell Rep. 2016;14:920-931 pubmed 出版商
  215. Ruiz A, Rockfield S, Taran N, Haller E, Engelman R, Flores I, et al. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis. Cell Death Dis. 2016;7:e2059 pubmed 出版商
  216. Albert V, Svensson K, Shimobayashi M, Colombi M, Munoz S, Jimenez V, et al. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol Med. 2016;8:232-46 pubmed 出版商
  217. Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich M, Lim R, et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature. 2016;529:216-20 pubmed 出版商
  218. Lee K, Hsieh Y, Yang Y, Chan C, Huang Y, Lin H. Aliskiren Reduces Hepatic steatosis and Epididymal Fat Mass and Increases Skeletal Muscle Insulin Sensitivity in High-Fat Diet-Fed Mice. Sci Rep. 2016;6:18899 pubmed 出版商
  219. Douglas D, Pu C, Lewis J, Bhat R, Anwar Mohamed A, Logan M, et al. Oxidative Stress Attenuates Lipid Synthesis and Increases Mitochondrial Fatty Acid Oxidation in Hepatoma Cells Infected with Hepatitis C Virus. J Biol Chem. 2016;291:1974-90 pubmed 出版商
  220. Yan Y, Ollila S, Wong I, Vallenius T, Palvimo J, Vaahtomeri K, et al. SUMOylation of AMPKα1 by PIAS4 specifically regulates mTORC1 signalling. Nat Commun. 2015;6:8979 pubmed 出版商
  221. E L, Swerdlow R. Lactate's effect on human neuroblastoma cell bioenergetic fluxes. Biochem Pharmacol. 2016;99:88-100 pubmed 出版商
  222. Murata Y, Uehara Y, Hosoi Y. Activation of mTORC1 under nutrient starvation conditions increases cellular radiosensitivity in human liver cancer cell lines, HepG2 and HuH6. Biochem Biophys Res Commun. 2015;468:684-90 pubmed 出版商
  223. Lesmana R, Sinha R, Singh B, Zhou J, Ohba K, Wu Y, et al. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle. Endocrinology. 2016;157:23-38 pubmed 出版商
  224. Zucal C, D Agostino V, Casini A, Mantelli B, Thongon N, Soncini D, et al. EIF2A-dependent translational arrest protects leukemia cells from the energetic stress induced by NAMPT inhibition. BMC Cancer. 2015;15:855 pubmed 出版商
  225. Funai K, Lodhi I, Spears L, Yin L, Song H, Klein S, et al. Skeletal Muscle Phospholipid Metabolism Regulates Insulin Sensitivity and Contractile Function. Diabetes. 2016;65:358-70 pubmed 出版商
  226. Ramiscal R, Parish I, Lee Young R, Babon J, Blagih J, Pratama A, et al. Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation. elife. 2015;4: pubmed 出版商
  227. Agarwal S, Bell C, Taylor S, Moran R. p53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb. Mol Cancer Res. 2016;14:66-77 pubmed 出版商
  228. Jeon J, Kim S, Park K, Yun M. The bifunctional autophagic flux by 2-deoxyglucose to control survival or growth of prostate cancer cells. BMC Cancer. 2015;15:623 pubmed 出版商
  229. Lee Y, Yun M, Kim H, Jeon B, Park B, Lee B, et al. Exogenous administration of DLK1 ameliorates hepatic steatosis and regulates gluconeogenesis via activation of AMPK. Int J Obes (Lond). 2016;40:356-65 pubmed 出版商
  230. Gurt I, Artsi H, Cohen Kfir E, Hamdani G, Ben Shalom G, Feinstein B, et al. The Sirt1 Activators SRT2183 and SRT3025 Inhibit RANKL-Induced Osteoclastogenesis in Bone Marrow-Derived Macrophages and Down-Regulate Sirt3 in Sirt1 Null Cells. PLoS ONE. 2015;10:e0134391 pubmed 出版商
  231. Bejaoui M, Pantazi E, De Luca V, Panisello A, Folch Puy E, Hotter G, et al. Carbonic Anhydrase Protects Fatty Liver Grafts against Ischemic Reperfusion Damage. PLoS ONE. 2015;10:e0134499 pubmed 出版商
  232. Ritho J, Arold S, Yeh E. A Critical SUMO1 Modification of LKB1 Regulates AMPK Activity during Energy Stress. Cell Rep. 2015;12:734-42 pubmed 出版商
  233. Drießen S, Berleth N, Friesen O, Löffler A, Böhler P, Hieke N, et al. Deubiquitinase inhibition by WP1130 leads to ULK1 aggregation and blockade of autophagy. Autophagy. 2015;11:1458-70 pubmed 出版商
  234. Perera R, Stoykova S, Nicolay B, Ross K, Fitamant J, Boukhali M, et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature. 2015;524:361-5 pubmed 出版商
  235. Shi S, Lu S, Sivasubramaniyam T, Revelo X, Cai E, Luk C, et al. DJ-1 links muscle ROS production with metabolic reprogramming and systemic energy homeostasis in mice. Nat Commun. 2015;6:7415 pubmed 出版商
  236. Albers P, Bojsen Møller K, Dirksen C, Serup A, Kristensen D, Frystyk J, et al. Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol. 2015;309:R510-24 pubmed 出版商
  237. Wang K, Sun Y, Lin P, Song J, Zhao R, Li W, et al. Liraglutide Activates AMPK Signaling and Partially Restores Normal Circadian Rhythm and Insulin Secretion in Pancreatic Islets in Diabetic Mice. Biol Pharm Bull. 2015;38:1142-9 pubmed 出版商
  238. Yen C, Chiang W, Liu S, Lin C, Liao K, Lin C, et al. Impacts of autophagy-inducing ingredient of areca nut on tumor cells. PLoS ONE. 2015;10:e0128011 pubmed 出版商
  239. Herms A, Bosch M, Reddy B, Schieber N, Fajardo A, Rupérez C, et al. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nat Commun. 2015;6:7176 pubmed 出版商
  240. Sujobert P, Poulain L, Paubelle E, Zylbersztejn F, Grenier A, Lambert M, et al. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia. Cell Rep. 2015;11:1446-57 pubmed 出版商
  241. Chan K, Pillon N, Sivaloganathan D, Costford S, Liu Z, Théret M, et al. Palmitoleate Reverses High Fat-induced Proinflammatory Macrophage Polarization via AMP-activated Protein Kinase (AMPK). J Biol Chem. 2015;290:16979-88 pubmed 出版商
  242. Tian W, Li W, Chen Y, Yan Z, Huang X, Zhuang H, et al. Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy. FEBS Lett. 2015;589:1847-54 pubmed 出版商
  243. De Zio D, Molinari F, Rizza S, Gatta L, Ciotti M, Salvatore A, et al. Apaf1-deficient cortical neurons exhibit defects in axonal outgrowth. Cell Mol Life Sci. 2015;72:4173-91 pubmed 出版商
  244. Bowdridge E, Goravanahally M, Inskeep E, Flores J. Activation of Adenosine Monophosphate-Activated Protein Kinase Is an Additional Mechanism That Participates in Mediating Inhibitory Actions of Prostaglandin F2Alpha in Mature, but Not Developing, Bovine Corpora Lutea. Biol Reprod. 2015;93:7 pubmed 出版商
  245. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  246. Dungan C, Li Z, Wright D, Williamson D. Hyperactive mTORC1 signaling is unaffected by metformin treatment in aged skeletal muscle. Muscle Nerve. 2016;53:107-17 pubmed 出版商
  247. Mendonsa A, Chalfant M, Gorden L, VanSaun M. Modulation of the leptin receptor mediates tumor growth and migration of pancreatic cancer cells. PLoS ONE. 2015;10:e0126686 pubmed 出版商
  248. Zou D, Liu P, Chen K, Xie Q, Liang X, Bai Q, et al. Protective effects of myricetin on acute hypoxia-induced exercise intolerance and mitochondrial impairments in rats. PLoS ONE. 2015;10:e0124727 pubmed 出版商
  249. Ledee D, Kajimoto M, O Kelly Priddy C, Olson A, Isern N, Robillard Frayne I, et al. Pyruvate modifies metabolic flux and nutrient sensing during extracorporeal membrane oxygenation in an immature swine model. Am J Physiol Heart Circ Physiol. 2015;309:H137-46 pubmed 出版商
  250. Pant M, Sopariwala D, Bal N, Lowe J, Delfín D, RAFAEL FORTNEY J, et al. Metabolic dysfunction and altered mitochondrial dynamics in the utrophin-dystrophin deficient mouse model of duchenne muscular dystrophy. PLoS ONE. 2015;10:e0123875 pubmed 出版商
  251. Liu Z, Jiang C, Zhang J, Liu B, Du Q. Resveratrol inhibits inflammation and ameliorates insulin resistant endothelial dysfunction via regulation of AMP-activated protein kinase and sirtuin 1 activities. J Diabetes. 2016;8:324-35 pubmed 出版商
  252. Mahboubi H, Barisé R, Stochaj U. 5'-AMP-activated protein kinase alpha regulates stress granule biogenesis. Biochim Biophys Acta. 2015;1853:1725-37 pubmed 出版商
  253. Kemp M, Lindsey Boltz L, Sancar A. UV Light Potentiates STING (Stimulator of Interferon Genes)-dependent Innate Immune Signaling through Deregulation of ULK1 (Unc51-like Kinase 1). J Biol Chem. 2015;290:12184-94 pubmed 出版商
  254. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  255. Hong Y, Frugier T, Zhang X, Murphy R, Lynch G, Betik A, et al. Glucose uptake during contraction in isolated skeletal muscles from neuronal nitric oxide synthase μ knockout mice. J Appl Physiol (1985). 2015;118:1113-21 pubmed 出版商
  256. Xie Q, Wu Q, Horbinski C, Flavahan W, Yang K, Zhou W, et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci. 2015;18:501-10 pubmed 出版商
  257. Yan Y, Tsukamoto O, Nakano A, Kato H, Kioka H, Ito N, et al. Augmented AMPK activity inhibits cell migration by phosphorylating the novel substrate Pdlim5. Nat Commun. 2015;6:6137 pubmed 出版商
  258. Jaishy B, Zhang Q, Chung H, Riehle C, Soto J, Jenkins S, et al. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity. J Lipid Res. 2015;56:546-61 pubmed 出版商
  259. Healy M, Chow J, Byrne F, Breen D, Leitinger N, Li C, et al. Dietary effects on liver tumor burden in mice treated with the hepatocellular carcinogen diethylnitrosamine. J Hepatol. 2015;62:599-606 pubmed 出版商
  260. Kwon Y, Song P, Yoon J, Ghim J, Kim D, Kang B, et al. Xanthene derivatives increase glucose utilization through activation of LKB1-dependent AMP-activated protein kinase. PLoS ONE. 2014;9:e108771 pubmed 出版商
  261. Knake C, Stamp L, Bahn A. Molecular mechanism of an adverse drug-drug interaction of allopurinol and furosemide in gout treatment. Biochem Biophys Res Commun. 2014;452:157-62 pubmed 出版商
  262. Xu R, Hu Q, Ma Q, Liu C, Wang G. The protease Omi regulates mitochondrial biogenesis through the GSK3β/PGC-1α pathway. Cell Death Dis. 2014;5:e1373 pubmed 出版商
  263. Abdul Wahed A, Gautier Stein A, Casteras S, Soty M, Roussel D, Romestaing C, et al. A link between hepatic glucose production and peripheral energy metabolism via hepatokines. Mol Metab. 2014;3:531-43 pubmed 出版商
  264. Lau A, Liu P, Inuzuka H, Gao D. SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation. Am J Cancer Res. 2014;4:245-55 pubmed
  265. Li S, Zhou T, Li C, Dai Z, Che D, Yao Y, et al. High metastaticgastric and breast cancer cells consume oleic acid in an AMPK dependent manner. PLoS ONE. 2014;9:e97330 pubmed 出版商
  266. Cicerchi C, Li N, Kratzer J, Garcia G, Roncal Jimenez C, Tanabe K, et al. Uric acid-dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: evolutionary implications of the uricase loss in hominids. FASEB J. 2014;28:3339-50 pubmed 出版商
  267. Hardman S, Hall D, Cabrera A, Hancock C, Thomson D. The effects of age and muscle contraction on AMPK activity and heterotrimer composition. Exp Gerontol. 2014;55:120-8 pubmed 出版商
  268. Bejarano E, Yuste A, Patel B, Stout R, Spray D, Cuervo A. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401-14 pubmed 出版商
  269. Pezeshki A, Chelikani P. Effects of Roux-en-Y gastric bypass and ileal transposition surgeries on glucose and lipid metabolism in skeletal muscle and liver. Surg Obes Relat Dis. 2014;10:217-28 pubmed 出版商
  270. Carrier B, Wen S, Zigouras S, Browne R, Li Z, Patel M, et al. Alpha-lipoic acid reduces LDL-particle number and PCSK9 concentrations in high-fat fed obese Zucker rats. PLoS ONE. 2014;9:e90863 pubmed 出版商
  271. Perera N, Sheean R, Scott J, Kemp B, Horne M, Turner B. Mutant TDP-43 deregulates AMPK activation by PP2A in ALS models. PLoS ONE. 2014;9:e90449 pubmed 出版商
  272. Chang P, Wang T, Chang Y, Chu C, Lee C, Hsu H, et al. Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells. PLoS ONE. 2014;9:e88556 pubmed 出版商
  273. Chen M, Yi L, Jin X, Liang X, Zhou Y, Zhang T, et al. Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway. Autophagy. 2013;9:2033-45 pubmed 出版商
  274. Yi X, Pashaj A, Xia M, Moreau R. Reversal of obesity-induced hypertriglyceridemia by (R)-?-lipoic acid in ZDF (fa/fa) rats. Biochem Biophys Res Commun. 2013;439:390-5 pubmed 出版商
  275. Zhang Y, Liu X, Han L, Gao X, Liu E, Wang T. Regulation of lipid and glucose homeostasis by mango tree leaf extract is mediated by AMPK and PI3K/AKT signaling pathways. Food Chem. 2013;141:2896-905 pubmed 出版商
  276. Zhuo X, Wu Y, Ni Y, Liu J, Gong M, Wang X, et al. Isoproterenol instigates cardiomyocyte apoptosis and heart failure via AMPK inactivation-mediated endoplasmic reticulum stress. Apoptosis. 2013;18:800-10 pubmed 出版商