这是一篇来自已证抗体库的有关人类 PRKAA2的综述,是根据113篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合PRKAA2 抗体。
PRKAA2 同义词: AMPK; AMPK2; AMPKa2; PRKAA

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 6d
艾博抗(上海)贸易有限公司 PRKAA2抗体(Abcam, ab3760)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 6d). Eur J Med Res (2022) ncbi
domestic rabbit 单克隆(EPR3052)
  • 免疫印迹; 大鼠; 图 7f
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 PRKAA2抗体(Abcam, ab109402)被用于被用于免疫印迹在大鼠样本上 (图 7f) 和 被用于免疫印迹在小鼠样本上 (图 4a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 7f
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 PRKAA2抗体(Abcam, ab3760)被用于被用于免疫印迹在大鼠样本上 (图 7f) 和 被用于免疫印迹在小鼠样本上 (图 4a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(EPR5683)
  • 免疫印迹; 人类; 图 4a, 5f, s14a
  • 免疫组化-石蜡切片; 小鼠; 图 5e
  • 免疫印迹; 小鼠; 图 5d
艾博抗(上海)贸易有限公司 PRKAA2抗体(Abcam, ab133448)被用于被用于免疫印迹在人类样本上 (图 4a, 5f, s14a), 被用于免疫组化-石蜡切片在小鼠样本上 (图 5e) 和 被用于免疫印迹在小鼠样本上 (图 5d). Hepatology (2018) ncbi
domestic rabbit 单克隆(EPMDAR6)
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司 PRKAA2抗体(Abcam, ab129081)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 PRKAA2抗体(Abcam, 3760)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2017) ncbi
domestic rabbit 单克隆(EPR5683)
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 PRKAA2抗体(Abcam, ab133448)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(EPR5683)
  • 流式细胞仪; 小鼠; 图 s5
艾博抗(上海)贸易有限公司 PRKAA2抗体(Abcam, EPR5683)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(EPR5683)
  • 免疫印迹; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 PRKAA2抗体(Abcam, ab133448)被用于被用于免疫印迹在小鼠样本上 (图 7a). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(EPR5683)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 PRKAA2抗体(Abcam, ab133448)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). J Diabetes Res (2016) ncbi
domestic rabbit 单克隆(EPR5683)
  • 流式细胞仪; 人类; 图 3
艾博抗(上海)贸易有限公司 PRKAA2抗体(Abcam, ab133448)被用于被用于流式细胞仪在人类样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 PRKAA2抗体(Abcam, ab3760)被用于被用于免疫印迹在小鼠样本上 (图 3a). Nature (2016) ncbi
domestic rabbit 单克隆(EPR5683)
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 PRKAA2抗体(Abcam, ab133448)被用于被用于免疫印迹在小鼠样本上 (图 1). Aging Cell (2016) ncbi
domestic rabbit 单克隆(EPR5683)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 PRKAA2抗体(Abcam, Ab133448)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-6)
  • 免疫印迹; 小鼠; 1:500; 图 6e
圣克鲁斯生物技术 PRKAA2抗体(Santa Cruz, sc-74461)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6e). Mol Med Rep (2022) ncbi
小鼠 单克隆(D-6)
  • 免疫印迹; pigs ; 图 5c
圣克鲁斯生物技术 PRKAA2抗体(Santa Cruz Biotechnology, sc-74461)被用于被用于免疫印迹在pigs 样本上 (图 5c). Br J Nutr (2017) ncbi
小鼠 单克隆(D-6)
  • 免疫印迹; 大鼠; 图 2a
圣克鲁斯生物技术 PRKAA2抗体(Santa cruz, sc-74461)被用于被用于免疫印迹在大鼠样本上 (图 2a). PLoS ONE (2016) ncbi
小鼠 单克隆(D-6)
  • 免疫细胞化学; 人类; 1:200; 图 1
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 PRKAA2抗体(Santa Cruz, sc-74461)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 5). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(D-6)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 PRKAA2抗体(Santa Cruz Biotechnology, sc-74461)被用于被用于免疫印迹在人类样本上浓度为1:1000. Autophagy (2013) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6g
赛默飞世尔 PRKAA2抗体(ThermoFisher, 44-1150G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). NPJ Breast Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1d, 1e, 1f
赛默飞世尔 PRKAA2抗体(Thermo Fischer, PA521494)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d, 1e, 1f). Basic Res Cardiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛默飞世尔 PRKAA2抗体(Thermo Fisher, PA5-17831)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Int J Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 4e, 4f
赛默飞世尔 PRKAA2抗体(Thermo Fisher Scientific, 44-C1150G)被用于被用于流式细胞仪在人类样本上 (图 4e, 4f). Nat Immunol (2019) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4g
  • 免疫印迹; 小鼠; 1:1000; 图 4e
安迪生物R&D PRKAA2抗体(R&D Systems, AF2850)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Int J Mol Sci (2021) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). Front Nutr (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6c
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). Front Immunol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4f). J Cachexia Sarcopenia Muscle (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532S)被用于被用于免疫印迹在人类样本上 (图 5a). Aging (Albany NY) (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 拟南芥; 图 5c
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在拟南芥样本上 (图 5c). Arthritis Res Ther (2021) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 拟南芥; 图 5c
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 50081)被用于被用于免疫印迹在拟南芥样本上 (图 5c). Arthritis Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(CST, 2532S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Front Cardiovasc Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1b
  • 免疫印迹; 小鼠; 1:200; 图 1a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(CST, 2532)被用于被用于免疫组化在小鼠样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 1a). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 50081)被用于被用于免疫印迹在人类样本上 (图 6d). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). Sci Adv (2021) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 PRKAA2抗体(CST, 50081)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 大鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 50081)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b). Mol Med Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b). Mol Med Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5j
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 5j). Mol Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a, 6c
赛信通(上海)生物试剂有限公司 PRKAA2抗体(CST, 2532)被用于被用于免疫印迹在小鼠样本上 (图 6a, 6c). J Nutr Biochem (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5e
  • 免疫印迹; 人类; 1:1000; 图 s6a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(cst, 2532S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s6a). Redox Biol (2021) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, D4D6D)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncol Rep (2021) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 50081)被用于被用于免疫印迹在小鼠样本上 (图 5c). Front Physiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 PRKAA2抗体(CST, 2532)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4c). Dis Model Mech (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1500; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 2532S)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4a). BMC Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; African green monkey; 1:1000; 图 s10
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532S)被用于被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 s10). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1 ug/ml; 图 8h
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1 ug/ml (图 8h). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3i). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 2532S)被用于被用于免疫印迹在pigs 样本上 (图 4a). Animals (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4j
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在人类样本上 (图 4j). Front Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2757)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Biol Chem (2020) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫组化; 小鼠; 1:100; 图 5b
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(CST, 50081)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5b) 和 被用于免疫印迹在小鼠样本上 (图 5a). J Cell Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6b, 7a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell signalling technology, 2532)被用于被用于免疫印迹在小鼠样本上 (图 6b, 7a). Pharmacol Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4h
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 4h). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Biomolecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:3000; 图 5a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在大鼠样本上浓度为1:3000 (图 5a). Biomolecules (2019) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 大鼠; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, D4D6D)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5a). Biomolecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Cell (2019) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, D4D6D)被用于被用于免疫印迹在人类样本上 (图 5e). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在小鼠样本上 (图 6e). Cell Metab (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6a). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 大鼠; 1:1000; 图 6a, 6d
赛信通(上海)生物试剂有限公司 PRKAA2抗体(CST, 50081)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a, 6d). J Cell Physiol (2019) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 50081)被用于被用于免疫印迹在小鼠样本上 (图 4b). Biomed Res Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 2d). Cell Signal (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在小鼠样本上 (图 3c). Cell Rep (2018) ncbi
domestic rabbit 单克隆(D4D6D)
  • 免疫印迹; 大鼠; 图 8b
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 50081)被用于被用于免疫印迹在大鼠样本上 (图 8b) 和 被用于免疫印迹在小鼠样本上 (图 4a). Redox Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 8b
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在大鼠样本上 (图 8b) 和 被用于免疫印迹在小鼠样本上 (图 4a). Redox Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(cst, 2532)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 s4a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 s4a). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s6a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在人类样本上 (图 s6a). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1n
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1n). Nat Cell Biol (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2g
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 2g). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1f
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1f). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3e
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3e). Diabetes (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7g
赛信通(上海)生物试剂有限公司 PRKAA2抗体(cell signalling, 2532)被用于被用于免疫印迹在人类样本上 (图 7g). Genes Dev (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signal, 2532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Environ Toxicol Pharmacol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s9c
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上 (图 s9c). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell signaling, 2532S)被用于被用于免疫印迹在人类样本上 (图 5). Tumour Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s4
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 2757)被用于被用于免疫印迹在人类样本上 (图 s4). J Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 表 2
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 2). Endocrinology (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上 (图 5d). Mol Cell (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 PRKAA2抗体(CST, 2532)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上 (图 1b). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1e
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫组化在小鼠样本上 (图 1e) 和 被用于免疫印迹在小鼠样本上 (图 1c). PLoS Pathog (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7c
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 4185)被用于被用于免疫印迹在小鼠样本上 (图 7c). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 6a). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上 (图 3). Acta Physiol (Oxf) (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上 (图 8a). Biochim Biophys Acta Mol Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 1a). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a, 1b
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 2532S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a, 1b). Int J Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell signaling, 2532)被用于被用于免疫印迹在人类样本上 (图 2d). Nat Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 4b). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532S)被用于被用于免疫印迹在小鼠样本上 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 1a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 1a). Am J Physiol Endocrinol Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在人类样本上 (图 1a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 4185)被用于被用于免疫印迹在人类样本上 (图 6). Biosci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 s2
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, CST2532)被用于被用于免疫印迹在小鼠样本上 (图 3e). Hepatology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3b). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5h
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上 (图 5h). Diabetes (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s10d
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10d). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 1c
  • 免疫印迹; 小鼠; 图 3d, 3f,
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1c) 和 被用于免疫印迹在小鼠样本上 (图 3d, 3f,). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在人类样本上 (图 1). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, cs-2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1j
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling Technology, 2532)被用于被用于免疫印迹在小鼠样本上 (图 1j). Diabetes (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PRKAA2抗体(Cell Signaling, 2532s)被用于被用于免疫印迹在人类样本上. J Diabetes (2016) ncbi
文章列表
  1. Yang C, Su H, An N, Wu H, Guo X, Li Z, et al. AMP-activated protein kinase α2 contributes to acute and chronic hyperuricemic nephropathy via renal urate deposition in a mouse model. Eur J Med Res. 2022;27:176 pubmed 出版商
  2. Sumi K, Hatanaka Y, Takahashi R, Wada N, Ono C, Sakamoto Y, et al. Citrate Synthase Insufficiency Leads to Specific Metabolic Adaptations in the Heart and Skeletal Muscles Upon Low-Carbohydrate Diet Feeding in Mice. Front Nutr. 2022;9:925908 pubmed 出版商
  3. Liu J, Qian B, Zhou L, Shen G, Tan Y, Liu S, et al. IL25 Enhanced Colitis-Associated Tumorigenesis in Mice by Upregulating Transcription Factor GLI1. Front Immunol. 2022;13:837262 pubmed 出版商
  4. Luan Y, Zhang Y, Yu S, You M, Xu P, Chung S, et al. Development of ovarian tumour causes significant loss of muscle and adipose tissue: a novel mouse model for cancer cachexia study. J Cachexia Sarcopenia Muscle. 2022;13:1289-1301 pubmed 出版商
  5. Sohn J, Kwak H, Rhim J, Yeo E. AMP-activated protein kinase-dependent nuclear localization of glyceraldehyde 3-phosphate dehydrogenase in senescent human diploid fibroblasts. Aging (Albany NY). 2022;14:4-27 pubmed 出版商
  6. Yeh C, Liu H, Lee M, Leu Y, Chiang W, Chang H, et al. Phytochemical‑rich herbal formula ATG‑125 protects against sucrose‑induced gastrocnemius muscle atrophy by rescuing Akt signaling and improving mitochondrial dysfunction in young adult mice. Mol Med Rep. 2022;25: pubmed 出版商
  7. Minton D, Elliehausen C, Javors M, Santangello K, Konopka A. Rapamycin-induced hyperglycemia is associated with exacerbated age-related osteoarthritis. Arthritis Res Ther. 2021;23:253 pubmed 出版商
  8. Huang X, Yan Y, Zheng W, Ma Y, Wang X, Gong W, et al. Secreted Frizzled-Related Protein 5 Protects Against Cardiac Rupture and Improves Cardiac Function Through Inhibiting Mitochondrial Dysfunction. Front Cardiovasc Med. 2021;8:682409 pubmed 出版商
  9. Gyamfi J, Yeo J, Kwon D, Min B, Cha Y, Koo J, et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer. 2021;7:129 pubmed 出版商
  10. Drake J, Wilson R, Laker R, Guan Y, Spaulding H, Nichenko A, et al. Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  11. Zhang S, Liang S, Wu D, Guo H, Ma K, Liu L. LncRNA coordinates Hippo and mTORC1 pathway activation in cancer. Cell Death Dis. 2021;12:822 pubmed 出版商
  12. Chafe S, Vizeacoumar F, Venkateswaran G, Nemirovsky O, Awrey S, Brown W, et al. Genome-wide synthetic lethal screen unveils novel CAIX-NFS1/xCT axis as a targetable vulnerability in hypoxic solid tumors. Sci Adv. 2021;7: pubmed 出版商
  13. Tang X, Li G, Shi L, Su F, Qian M, Liu Z, et al. Combined intermittent fasting and ERK inhibition enhance the anti-tumor effects of chemotherapy via the GSK3β-SIRT7 axis. Nat Commun. 2021;12:5058 pubmed 出版商
  14. Shi Y, Hou S. Protective effects of metformin against myocardial ischemia‑reperfusion injury via AMPK‑dependent suppression of NOX4. Mol Med Rep. 2021;24: pubmed 出版商
  15. Amegandjin C, Choudhury M, Jadhav V, Carriço J, Quintal A, Berryer M, et al. Sensitive period for rescuing parvalbumin interneurons connectivity and social behavior deficits caused by TSC1 loss. Nat Commun. 2021;12:3653 pubmed 出版商
  16. Stagg D, Gillingham J, Nelson A, Lengfeld J, d Avignon D, Puchalska P, et al. Diminished ketone interconversion, hepatic TCA cycle flux, and glucose production in D-β-hydroxybutyrate dehydrogenase hepatocyte-deficient mice. Mol Metab. 2021;53:101269 pubmed 出版商
  17. Mou S, Zhou Z, Feng H, Zhang N, Lin Z, Aiyasiding X, et al. Liquiritin Attenuates Lipopolysaccharides-Induced Cardiomyocyte Injury via an AMP-Activated Protein Kinase-Dependent Signaling Pathway. Front Pharmacol. 2021;12:648688 pubmed 出版商
  18. Zhao Z, Wang Z, Zhou D, Han Y, Ma F, Hu Z, et al. Sodium Butyrate Supplementation Inhibits Hepatic Steatosis by Stimulating Liver Kinase B1 and Insulin-Induced Gene. Cell Mol Gastroenterol Hepatol. 2021;12:857-871 pubmed 出版商
  19. Zhang G, Li R, Li W, Yang S, Sun Q, Yin H, et al. Toll-like receptor 3 ablation prevented high-fat diet-induced obesity and metabolic disorder. J Nutr Biochem. 2021;95:108761 pubmed 出版商
  20. Pramanick A, Chakraborti S, Mahata T, Basak M, Das K, Verma S, et al. G protein β5-ATM complexes drive acetaminophen-induced hepatotoxicity. Redox Biol. 2021;43:101965 pubmed 出版商
  21. Wang X, Lu Y, Tuo Z, Zhou H, Zhang Y, Cao Z, et al. Role of SIRT1/AMPK signaling in the proliferation, migration and invasion of renal cell carcinoma cells. Oncol Rep. 2021;45: pubmed 出版商
  22. Dong W, Zhang H, Zhao C, Luo Y, Chen Y. Silencing of miR-150-5p Ameliorates Diabetic Nephropathy by Targeting SIRT1/p53/AMPK Pathway. Front Physiol. 2021;12:624989 pubmed 出版商
  23. Wallace M, Aguirre N, Marcotte G, Marshall A, Baehr L, Hughes D, et al. The ketogenic diet preserves skeletal muscle with aging in mice. Aging Cell. 2021;20:e13322 pubmed 出版商
  24. Wu M, Ma Y, Chen X, Liang N, Qu S, Chen H. Hyperuricemia causes kidney damage by promoting autophagy and NLRP3-mediated inflammation in rats with urate oxidase deficiency. Dis Model Mech. 2021;14: pubmed 出版商
  25. Yu L, Shi Q, Jin Y, Liu Z, Li J, Sun W. Blockage of AMPK-ULK1 pathway mediated autophagy promotes cell apoptosis to increase doxorubicin sensitivity in breast cancer (BC) cells: an in vitro study. BMC Cancer. 2021;21:195 pubmed 出版商
  26. Liu M, Li N, Qu C, Gao Y, Wu L, Hu L. Amylin deposition activates HIF1α and 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) signaling in failing hearts of non-human primates. Commun Biol. 2021;4:188 pubmed 出版商
  27. Dufeys C, Daskalopoulos E, Castanares Zapatero D, Conway S, Ginion A, Bouzin C, et al. AMPKα1 deletion in myofibroblasts exacerbates post-myocardial infarction fibrosis by a connexin 43 mechanism. Basic Res Cardiol. 2021;116:10 pubmed 出版商
  28. Sünderhauf A, Hicken M, Schlichting H, Skibbe K, Ragab M, Raschdorf A, et al. Loss of Mucosal p32/gC1qR/HABP1 Triggers Energy Deficiency and Impairs Goblet Cell Differentiation in Ulcerative Colitis. Cell Mol Gastroenterol Hepatol. 2021;12:229-250 pubmed 出版商
  29. Chan C, Wu S, Bao B, Li H, Lu T. MST3 Involvement in Na+ and K+ Homeostasis with Increasing Dietary Potassium Intake. Int J Mol Sci. 2021;22: pubmed 出版商
  30. Stojakovic A, Trushin S, Sheu A, Khalili L, Chang S, Li X, et al. Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition in APP/PS1 female mice. Commun Biol. 2021;4:61 pubmed 出版商
  31. Tian M, Chen J, Wu Z, Song H, Yang F, Cui C, et al. Fat Encapsulation Reduces Diarrhea in Piglets Partially by Repairing the Intestinal Barrier and Improving Fatty Acid Transport. Animals (Basel). 2020;11: pubmed 出版商
  32. Sünderhauf A, Raschdorf A, Hicken M, Schlichting H, Fetzer F, Brethack A, et al. GC1qR Cleavage by Caspase-1 Drives Aerobic Glycolysis in Tumor Cells. Front Oncol. 2020;10:575854 pubmed 出版商
  33. Collins M, Stransky L, Forgac M. AKT Ser/Thr kinase increases V-ATPase-dependent lysosomal acidification in response to amino acid starvation in mammalian cells. J Biol Chem. 2020;295:9433-9444 pubmed 出版商
  34. Li M, Li C, Ye Z, Huang J, Li Y, Lai W, et al. Sirt3 modulates fatty acid oxidation and attenuates cisplatin-induced AKI in mice. J Cell Mol Med. 2020;24:5109-5121 pubmed 出版商
  35. Zhao J, Li G, Zhao X, Lin X, Gao Y, Raimundo N, et al. Down-regulation of AMPK signaling pathway rescues hearing loss in TFB1 transgenic mice and delays age-related hearing loss. Aging (Albany NY). 2020;12:5590-5611 pubmed 出版商
  36. Yang S, Ma C, Wu H, Zhang H, Yuan F, Yang G, et al. Tectorigenin attenuates diabetic nephropathy by improving vascular endothelium dysfunction through activating AdipoR1/2 pathway. Pharmacol Res. 2020;153:104678 pubmed 出版商
  37. Mlyczynska E, Kurowska P, Drwal E, Opydo Chanek M, Tworzydło W, Kotula Balak M, et al. Apelin and apelin receptor in human placenta: Expression, signalling pathway and regulation of trophoblast JEG‑3 and BeWo cells proliferation and cell cycle. Int J Mol Med. 2020;45:691-702 pubmed 出版商
  38. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  39. Zhou L, Wang Q, Zhang H, Li Y, Xie S, Xu M. YAP Inhibition by Nuciferine via AMPK-Mediated Downregulation of HMGCR Sensitizes Pancreatic Cancer Cells to Gemcitabine. Biomolecules. 2019;9: pubmed 出版商
  40. Garc a Arroyo F, Monroy S nchez F, Mu oz Jim nez I, Gonzaga G, Andr s Hernando A, Zazueta C, et al. Allopurinol Prevents the Lipogenic Response Induced by an Acute Oral Fructose Challenge in Short-Term Fructose Fed Rats. Biomolecules. 2019;9: pubmed 出版商
  41. Gao X, Zhao L, Liu S, Li Y, Xia S, Chen D, et al. γ-6-Phosphogluconolactone, a Byproduct of the Oxidative Pentose Phosphate Pathway, Contributes to AMPK Activation through Inhibition of PP2A. Mol Cell. 2019;76:857-871.e9 pubmed 出版商
  42. Chollat Namy M, Ben Safta Saadoun T, Haferssas D, Meurice G, Chouaib S, Thiery J. The pharmalogical reactivation of p53 function improves breast tumor cell lysis by granzyme B and NK cells through induction of autophagy. Cell Death Dis. 2019;10:695 pubmed 出版商
  43. Choi W, Kim H, Kim M, Cinar R, Yi H, Eun H, et al. Glutamate Signaling in Hepatic Stellate Cells Drives Alcoholic Steatosis. Cell Metab. 2019;30:877-889.e7 pubmed 出版商
  44. Shan C, Lu Z, Li Z, Sheng H, Fan J, Qi Q, et al. 4-hydroxyphenylpyruvate dioxygenase promotes lung cancer growth via pentose phosphate pathway (PPP) flux mediated by LKB1-AMPK/HDAC10/G6PD axis. Cell Death Dis. 2019;10:525 pubmed 出版商
  45. Liu M, Yin L, Li W, Hu J, Wang H, Ye B, et al. C1q/TNF-related protein-9 promotes macrophage polarization and improves cardiac dysfunction after myocardial infarction. J Cell Physiol. 2019;234:18731-18747 pubmed 出版商
  46. Shao J, Miao C, Geng Z, Gu M, Wu Y, Li Q. Effect of eNOS on Ischemic Postconditioning-Induced Autophagy against Ischemia/Reperfusion Injury in Mice. Biomed Res Int. 2019;2019:5201014 pubmed 出版商
  47. Shi Y, Lim S, Liang Q, Iyer S, Wang H, Wang Z, et al. Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. Nature. 2019;567:341-346 pubmed 出版商
  48. Ducommun S, Deak M, Zeigerer A, Göransson O, Seitz S, Collodet C, et al. Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates. Cell Signal. 2019;57:45-57 pubmed 出版商
  49. Wen Z, Jin K, Shen Y, Yang Z, Li Y, Wu B, et al. N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nat Immunol. 2019;20:313-325 pubmed 出版商
  50. Wang Y, Du L, Liang X, Meng P, Bi L, Wang Y, et al. Sirtuin 4 Depletion Promotes Hepatocellular Carcinoma Tumorigenesis Through Regulating Adenosine-Monophosphate-Activated Protein Kinase Alpha/Mammalian Target of Rapamycin Axis in Mice. Hepatology. 2018;: pubmed 出版商
  51. Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, et al. Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep. 2018;25:3059-3073.e10 pubmed 出版商
  52. Chen C, Zou L, Lin Q, Yan X, Bi H, Xie X, et al. Resveratrol as a new inhibitor of immunoproteasome prevents PTEN degradation and attenuates cardiac hypertrophy after pressure overload. Redox Biol. 2019;20:390-401 pubmed 出版商
  53. Cheruiyot A, Li S, Nickless A, Roth R, Fitzpatrick J, You Z. Compound C inhibits nonsense-mediated RNA decay independently of AMPK. PLoS ONE. 2018;13:e0204978 pubmed 出版商
  54. Hinchy E, Gruszczyk A, Willows R, Navaratnam N, Hall A, Bates G, et al. Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. J Biol Chem. 2018;293:17208-17217 pubmed 出版商
  55. Song K, Kim J, Lee Y, Bae H, Lee H, Woo S, et al. Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance. J Clin Invest. 2018;128:4098-4114 pubmed 出版商
  56. Chhipa R, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, et al. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol. 2018;20:823-835 pubmed 出版商
  57. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  58. Zhao P, Wong K, Sun X, Reilly S, Uhm M, Liao Z, et al. TBK1 at the Crossroads of Inflammation and Energy Homeostasis in Adipose Tissue. Cell. 2018;172:731-743.e12 pubmed 出版商
  59. Li F, Liu J, Bao R, Yan G, Feng X, Xu Y, et al. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat Commun. 2018;9:508 pubmed 出版商
  60. Chung E, Efstathiou N, Konstantinou E, Maidana D, Miller J, Young L, et al. AICAR suppresses TNF-α-induced complement factor B in RPE cells. Sci Rep. 2017;7:17651 pubmed 出版商
  61. Meng Z, Tao W, Sun J, Wang Q, Mi L, Lin J. Uncoupling Exercise Bioenergetics From Systemic Metabolic Homeostasis by Conditional Inactivation of Baf60 in Skeletal Muscle. Diabetes. 2018;67:85-97 pubmed 出版商
  62. Ruan H, Ma Y, Torres S, Zhang B, Feriod C, Heck R, et al. Calcium-dependent O-GlcNAc signaling drives liver autophagy in adaptation to starvation. Genes Dev. 2017;31:1655-1665 pubmed 出版商
  63. Bai J, Wang P, Liu Y, Zhang Y, Li Y, He Z, et al. Formaldehyde alters triglyceride synthesis and very low-density lipoprotein secretion in a time-dependent manner. Environ Toxicol Pharmacol. 2017;56:15-20 pubmed 出版商
  64. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  65. Li Z, Li D, Choi E, Lapidus R, Zhang L, Huang S, et al. Silencing of solute carrier family 13 member 5 disrupts energy homeostasis and inhibits proliferation of human hepatocarcinoma cells. J Biol Chem. 2017;292:13890-13901 pubmed 出版商
  66. Fan Q, Long B, Yan G, Wang Z, Shi M, Bao X, et al. Dietary leucine supplementation alters energy metabolism and induces slow-to-fast transitions in longissimus dorsi muscle of weanling piglets. Br J Nutr. 2017;117:1222-1234 pubmed 出版商
  67. Zhou Y, Huang N, Wu J, Zhen N, Li N, Li Y, et al. Silencing of NRAGE induces autophagy via AMPK/Ulk1/Atg13 signaling pathway in NSCLC cells. Tumour Biol. 2017;39:1010428317709676 pubmed 出版商
  68. He M, Tan B, Vasan K, Yuan H, Cheng F, Ramos da Silva S, et al. SIRT1 and AMPK pathways are essential for the proliferation and survival of primary effusion lymphoma cells. J Pathol. 2017;242:309-321 pubmed 出版商
  69. Singh R, Braga M, Reddy S, Lee S, Parveen M, Grijalva V, et al. Follistatin Targets Distinct Pathways To Promote Brown Adipocyte Characteristics in Brown and White Adipose Tissues. Endocrinology. 2017;158:1217-1230 pubmed 出版商
  70. Gupta A, Anjomani Virmouni S, Koundouros N, Dimitriadi M, Choo Wing R, Valle A, et al. PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation. Mol Cell. 2017;65:999-1013.e7 pubmed 出版商
  71. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  72. Georgiadou M, Lilja J, Jacquemet G, Guzmán C, Rafaeva M, Alibert C, et al. AMPK negatively regulates tensin-dependent integrin activity. J Cell Biol. 2017;216:1107-1121 pubmed 出版商
  73. Fu S, Xu H, Gu M, Liu C, Wang Q, Wan X, et al. Adiponectin deficiency contributes to the development and progression of benign prostatic hyperplasia in obesity. Sci Rep. 2017;7:43771 pubmed 出版商
  74. Ganesan R, Hos N, Gutierrez S, Fischer J, Stepek J, Daglidu E, et al. Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS Pathog. 2017;13:e1006227 pubmed 出版商
  75. Liu J, Wang H, Gu J, Deng T, Yuan Z, Hu B, et al. BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy. 2017;13:739-753 pubmed 出版商
  76. Brocherie F, Millet G, D Hulst G, Van Thienen R, Deldicque L, Girard O. Repeated maximal-intensity hypoxic exercise superimposed to hypoxic residence boosts skeletal muscle transcriptional responses in elite team-sport athletes. Acta Physiol (Oxf). 2018;222: pubmed 出版商
  77. Chamoto K, Chowdhury P, Kumar A, Sonomura K, Matsuda F, Fagarasan S, et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci U S A. 2017;114:E761-E770 pubmed 出版商
  78. Zhang L, Dai F, Cui L, Zhou B, Guo Y. Up-regulation of the active form of small GTPase Rab13 promotes macroautophagy in vascular endothelial cells. Biochim Biophys Acta Mol Cell Res. 2017;1864:613-624 pubmed 出版商
  79. Wang Q, Wu S, Zhu H, Ding Y, Dai X, Ouyang C, et al. Deletion of PRKAA triggers mitochondrial fission by inhibiting the autophagy-dependent degradation of DNM1L. Autophagy. 2017;13:404-422 pubmed 出版商
  80. Liu Z, Gan L, Wu T, Feng F, Luo D, Gu H, et al. Adiponectin reduces ER stress-induced apoptosis through PPARα transcriptional regulation of ATF2 in mouse adipose. Cell Death Dis. 2016;7:e2487 pubmed 出版商
  81. Morishita M, Kawamoto T, Hara H, Onishi Y, Ueha T, Minoda M, et al. AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway. Int J Oncol. 2017;50:23-30 pubmed 出版商
  82. Cramer S, Saha A, Liu J, Tadi S, Tiziani S, Yan W, et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med. 2017;23:120-127 pubmed 出版商
  83. Kong Q, Zhang H, Zhao T, Zhang W, Yan M, Dong X, et al. Tangshen formula attenuates hepatic steatosis by inhibiting hepatic lipogenesis and augmenting fatty acid oxidation in db/db mice. Int J Mol Med. 2016;38:1715-1726 pubmed 出版商
  84. Zhou Z, Tang Y, Jin X, Chen C, Lu Y, Liu L, et al. Metformin Inhibits Advanced Glycation End Products-Induced Inflammatory Response in Murine Macrophages Partly through AMPK Activation and RAGE/NF?B Pathway Suppression. J Diabetes Res. 2016;2016:4847812 pubmed
  85. Hinds T, Burns K, Hosick P, McBeth L, Nestor Kalinoski A, Drummond H, et al. Biliverdin Reductase A Attenuates Hepatic Steatosis by Inhibition of Glycogen Synthase Kinase (GSK) 3? Phosphorylation of Serine 73 of Peroxisome Proliferator-activated Receptor (PPAR) ?. J Biol Chem. 2016;291:25179-25191 pubmed
  86. Ziros P, Zagoriti Z, Lagoumintzis G, Kyriazopoulou V, Iskrenova R, Habeos E, et al. Hepatic Fgf21 Expression Is Repressed after Simvastatin Treatment in Mice. PLoS ONE. 2016;11:e0162024 pubmed 出版商
  87. Bultot L, Jensen T, Lai Y, Madsen A, Collodet C, Kviklyte S, et al. Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. Am J Physiol Endocrinol Metab. 2016;311:E706-E719 pubmed 出版商
  88. Boß M, Newbatt Y, Gupta S, Collins I, Brüne B, Namgaladze D. AMPK-independent inhibition of human macrophage ER stress response by AICAR. Sci Rep. 2016;6:32111 pubmed 出版商
  89. Weikel K, Cacicedo J, Ruderman N, Ido Y. Knockdown of GSK3β increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Biosci Rep. 2016;36: pubmed 出版商
  90. Mölzer C, Wallner M, Kern C, Tosevska A, Schwarz U, Zadnikar R, et al. Features of an altered AMPK metabolic pathway in Gilbert's Syndrome, and its role in metabolic health. Sci Rep. 2016;6:30051 pubmed 出版商
  91. Deblois G, Smith H, Tam I, Gravel S, Caron M, Savage P, et al. ERR? mediates metabolic adaptations driving lapatinib resistance in breast cancer. Nat Commun. 2016;7:12156 pubmed 出版商
  92. Porat Shliom N, Tietgens A, Van Itallie C, Vitale Cross L, Jarnik M, Harding O, et al. Liver kinase B1 regulates hepatocellular tight junction distribution and function in vivo. Hepatology. 2016;64:1317-29 pubmed 出版商
  93. Zhou Y, Wu Y, Qin Y, Liu L, Wan J, Zou L, et al. Ampelopsin Improves Insulin Resistance by Activating PPAR? and Subsequently Up-Regulating FGF21-AMPK Signaling Pathway. PLoS ONE. 2016;11:e0159191 pubmed 出版商
  94. Shin H, Kim H, Oh S, Lee J, Kee M, Ko H, et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature. 2016;534:553-7 pubmed 出版商
  95. Sundararaman A, Amirtham U, Rangarajan A. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation. J Biol Chem. 2016;291:14410-29 pubmed 出版商
  96. Elimam H, Papillon J, Kaufman D, Guillemette J, Aoudjit L, Gross R, et al. Genetic Ablation of Calcium-independent Phospholipase A2? Induces Glomerular Injury in Mice. J Biol Chem. 2016;291:14468-82 pubmed 出版商
  97. Zhang W, Wu M, Kim T, Jariwala R, Garvey W, Luo N, et al. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet-Induced Insulin Resistance. Diabetes. 2016;65:2380-91 pubmed 出版商
  98. Thomas A, Belaidi E, Aron Wisnewsky J, van der Zon G, Levy P, Clement K, et al. Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice. Sci Rep. 2016;6:24618 pubmed 出版商
  99. Son S, Cha M, Choi H, Kang S, Choi H, Lee M, et al. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy. 2016;12:784-800 pubmed 出版商
  100. Scotton C, Bovolenta M, Schwartz E, Falzarano M, Martoni E, Passarelli C, et al. Deep RNA profiling identified CLOCK and molecular clock genes as pathophysiological signatures in collagen VI myopathy. J Cell Sci. 2016;129:1671-84 pubmed 出版商
  101. Han X, Tai H, Wang X, Wang Z, Zhou J, Wei X, et al. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation. Aging Cell. 2016;15:416-27 pubmed 出版商
  102. Perumal D, Kuo P, Leshchenko V, Jiang Z, Divakar S, Cho H, et al. Dual Targeting of CDK4 and ARK5 Using a Novel Kinase Inhibitor ON123300 Exerts Potent Anticancer Activity against Multiple Myeloma. Cancer Res. 2016;76:1225-36 pubmed 出版商
  103. Demetriades C, Plescher M, Teleman A. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun. 2016;7:10662 pubmed 出版商
  104. Toyama E, Herzig S, Courchet J, Lewis T, Losón O, Hellberg K, et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science. 2016;351:275-281 pubmed 出版商
  105. Audet Walsh Ã, Papadopoli D, Gravel S, Yee T, Bridon G, Caron M, et al. The PGC-1α/ERRα Axis Represses One-Carbon Metabolism and Promotes Sensitivity to Anti-folate Therapy in Breast Cancer. Cell Rep. 2016;14:920-931 pubmed 出版商
  106. Albert V, Svensson K, Shimobayashi M, Colombi M, Munoz S, Jimenez V, et al. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol Med. 2016;8:232-46 pubmed 出版商
  107. Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich M, Lim R, et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature. 2016;529:216-20 pubmed 出版商
  108. Lee K, Hsieh Y, Yang Y, Chan C, Huang Y, Lin H. Aliskiren Reduces Hepatic steatosis and Epididymal Fat Mass and Increases Skeletal Muscle Insulin Sensitivity in High-Fat Diet-Fed Mice. Sci Rep. 2016;6:18899 pubmed 出版商
  109. Funai K, Lodhi I, Spears L, Yin L, Song H, Klein S, et al. Skeletal Muscle Phospholipid Metabolism Regulates Insulin Sensitivity and Contractile Function. Diabetes. 2016;65:358-70 pubmed 出版商
  110. Mendonsa A, Chalfant M, Gorden L, VanSaun M. Modulation of the leptin receptor mediates tumor growth and migration of pancreatic cancer cells. PLoS ONE. 2015;10:e0126686 pubmed 出版商
  111. Liu Z, Jiang C, Zhang J, Liu B, Du Q. Resveratrol inhibits inflammation and ameliorates insulin resistant endothelial dysfunction via regulation of AMP-activated protein kinase and sirtuin 1 activities. J Diabetes. 2016;8:324-35 pubmed 出版商
  112. Mahboubi H, Barisé R, Stochaj U. 5'-AMP-activated protein kinase alpha regulates stress granule biogenesis. Biochim Biophys Acta. 2015;1853:1725-37 pubmed 出版商
  113. Chen M, Yi L, Jin X, Liang X, Zhou Y, Zhang T, et al. Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway. Autophagy. 2013;9:2033-45 pubmed 出版商