这是一篇来自已证抗体库的有关人类 PRKACA的综述,是根据78篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合PRKACA 抗体。
PRKACA 同义词: PKACA; PPNAD4

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP2102Y)
  • 免疫印迹; 小鼠; 图 6g
艾博抗(上海)贸易有限公司 PRKACA抗体(Abcam, ab76238)被用于被用于免疫印迹在小鼠样本上 (图 6g). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 PRKACA抗体(Abcam, ab5815)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). J Clin Endocrinol Metab (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:50; 图 5f
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 PRKACA抗体(Abcam, ab26322)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50 (图 5f) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). J Pain (2017) ncbi
小鼠 单克隆(133)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 PRKACA抗体(Abcam, ab11723)被用于被用于免疫印迹在人类样本上. J Proteome Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 PRKACA抗体(Abcam, ab5815)被用于被用于免疫印迹在小鼠样本上 (图 1a). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
小鼠 单克隆(133)
  • 免疫组化-冰冻切片; 小鼠; 图 5
艾博抗(上海)贸易有限公司 PRKACA抗体(Abcam, ab11723)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Mol Neurodegener (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 1
艾博抗(上海)贸易有限公司 PRKACA抗体(Abcam, ab26322)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 PRKACA抗体(Abcam, ab26322)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2b). Nat Commun (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(G-6)
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术 PRKACA抗体(Santa Cruz Biotechnology, sc-390548)被用于被用于免疫印迹在小鼠样本上 (图 2b). EBioMedicine (2016) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 人类; 图 s3a
圣克鲁斯生物技术 PRKACA抗体(Santa Cruz, sc-28316)被用于被用于免疫印迹在人类样本上 (图 s3a). J Cell Biol (2016) ncbi
小鼠 单克隆(G-6)
  • 免疫印迹; 大鼠; 1:500; 表 1
圣克鲁斯生物技术 PRKACA抗体(Santa Crutz, SC-390548)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (表 1). Brain Res Bull (2016) ncbi
小鼠 单克隆(C-7)
  • 免疫印迹; 小鼠; 1:4000
圣克鲁斯生物技术 PRKACA抗体(Santa Cruz Biotechnology, sc-48412)被用于被用于免疫印迹在小鼠样本上浓度为1:4000. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 PRKACA抗体(Santa Cruz, sc-28316)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cell Biol (2015) ncbi
安迪生物R&D
小鼠 单克隆(515741)
  • 免疫沉淀; 小鼠; 图 3f
安迪生物R&D PRKACA抗体(R&D Systems, 515741)被用于被用于免疫沉淀在小鼠样本上 (图 3f). Nature (2018) ncbi
小鼠 单克隆(485013)
  • 免疫印迹; 小鼠
安迪生物R&D PRKACA抗体(R&D systems, MAB4175)被用于被用于免疫印迹在小鼠样本上. Biochem Pharmacol (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5l
赛信通(上海)生物试剂有限公司 PRKACA抗体(CST, 4781)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5l). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5l
赛信通(上海)生物试剂有限公司 PRKACA抗体(CST, 4782)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5l). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling, 4782)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s2a). Aging Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell signaling, 4782)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). elife (2019) ncbi
domestic rabbit 单克隆(D38C6)
  • 免疫组化; 人类; 1:500; 图 1c
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell signaling, 5842)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1c). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling Technology, 9376)被用于被用于免疫印迹在人类样本上 (图 7d). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(190D10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling, 2060)被用于被用于免疫印迹在人类样本上 (图 4a). Oncogene (2019) ncbi
domestic rabbit 单克隆(D7E6E)
  • 免疫印迹; 人类; 图 8b
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling, 59754)被用于被用于免疫印迹在人类样本上 (图 8b). Int J Biochem Cell Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling, 4781)被用于被用于免疫印迹在人类样本上 (图 3a). Brain Behav Immun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:100; 图 2e
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling, 4782)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 2e). Mol Cell Endocrinol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:100; 图 2e
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling, 4781)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 2e). Mol Cell Endocrinol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s6
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling, 4781)被用于被用于免疫印迹在小鼠样本上 (图 s6). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 4b
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling, 4782)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 4b) 和 被用于免疫印迹在小鼠样本上 (图 4b). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling Technology, 4782)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling Technology, 4781)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
domestic rabbit 单克隆(D7E6E)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2a
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell signaling, 59754)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2a). Brain Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling, 4781)被用于被用于免疫组化-石蜡切片在小鼠样本上. Acta Histochem (2017) ncbi
domestic rabbit 单克隆(190D10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PRKACA抗体(CST, 2060)被用于被用于免疫印迹在人类样本上. J Proteome Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling, 4782)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 1:50; 图 6f
  • 免疫印迹; 人类; 1:1000; 图 6f
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell signaling, 4782)被用于被用于免疫沉淀在人类样本上浓度为1:50 (图 6f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6f). Nat Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling Technology, 9376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling, 4782)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D45D3)
  • 免疫印迹; 大鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling, 5661)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1d). J Mol Neurosci (2016) ncbi
domestic rabbit 单克隆(190D10)
  • 免疫印迹; Dictyostelium discoideum; 图 1
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling Technology, 190D10)被用于被用于免疫印迹在Dictyostelium discoideum样本上 (图 1). PLoS Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling Technology, 4781)被用于被用于免疫印迹在小鼠样本上 (图 5). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(D38C6)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling Tech, 5842)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D38C6)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling, 5842)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D45D3)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling, 5661)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D45D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 PRKACA抗体(Cell Signaling Technology, 5661S)被用于被用于免疫印迹在人类样本上. Biotechnol Bioeng (2013) ncbi
碧迪BD
小鼠 单克隆(23/PKC)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3s1a
碧迪BD PRKACA抗体(BD Biosciences, 610175)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3s1a). elife (2019) ncbi
小鼠 单克隆(5B)
  • 免疫印迹; 人类; 1:500; 图 1b
碧迪BD PRKACA抗体(BD Transduction, 610981)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b). elife (2019) ncbi
小鼠 单克隆(21/PKC)
  • 免疫印迹基因敲除验证; 小鼠; 图 s1c
  • 免疫印迹; 小鼠; 图 1a
碧迪BD PRKACA抗体(BD Biosciences, 610085)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 s1c) 和 被用于免疫印迹在小鼠样本上 (图 1a). Cell Rep (2018) ncbi
小鼠 单克隆(36/PKCb)
  • 免疫印迹基因敲除验证; 小鼠; 图 s1a
  • 免疫印迹; 小鼠; 图 1a
碧迪BD PRKACA抗体(BD Biosciences, 610127)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 s1a) 和 被用于免疫印迹在小鼠样本上 (图 1a). Cell Rep (2018) ncbi
小鼠 单克隆(3/PKC)
  • 免疫印迹基因敲除验证; 小鼠; 图 s1a
  • 免疫印迹; 小鼠; 图 1a
碧迪BD PRKACA抗体(BD Biosciences, 610107)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 s1a) 和 被用于免疫印迹在小鼠样本上 (图 1a). Cell Rep (2018) ncbi
小鼠 单克隆(5B)
  • 免疫印迹; 人类; 0.5 ug/ml; 图 1d
碧迪BD PRKACA抗体(BD Biosciences, 610981)被用于被用于免疫印迹在人类样本上浓度为0.5 ug/ml (图 1d). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(5B)
  • 免疫印迹; 人类; 1:1000; 图 3b
碧迪BD PRKACA抗体(BD Biosciences, 5B)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Science (2017) ncbi
小鼠 单克隆(27/PKC)
  • 免疫印迹; 人类; 图 1a
碧迪BD PRKACA抗体(BD Bioscience, 610090)被用于被用于免疫印迹在人类样本上 (图 1a). Cancer Cell (2017) ncbi
小鼠 单克隆(21/PKC)
  • 免疫印迹; 人类; 图 1b
碧迪BD PRKACA抗体(BD Bioscience, 610085)被用于被用于免疫印迹在人类样本上 (图 1b). Cancer Cell (2017) ncbi
小鼠 单克隆(5B)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1a
  • 免疫印迹; 人类; 1:1000; 图 2a
碧迪BD PRKACA抗体(BD, 610980)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(14/PKC delta)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s2
碧迪BD PRKACA抗体(BD Biosciences, 610398)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s2). Nature (2017) ncbi
小鼠 单克隆(41/PKC)
  • 免疫细胞化学; 人类; 1:100; 图 3b
碧迪BD PRKACA抗体(BD Biosciences, 610207)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3b). Nat Commun (2017) ncbi
小鼠 单克隆(5B)
  • 免疫细胞化学; 人类; 1:200; 图 8g
  • 免疫印迹; 人类; 1:1000; 图 4c
  • 免疫细胞化学; 犬; 1:200; 图 4a
碧迪BD PRKACA抗体(BD, 610981)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 8g), 被用于免疫印迹在人类样本上浓度为1:1000 (图 4c) 和 被用于免疫细胞化学在犬样本上浓度为1:200 (图 4a). Nat Commun (2016) ncbi
小鼠 单克隆(5B)
  • 免疫印迹; 小鼠; 1:5000; 图 1j
碧迪BD PRKACA抗体(BD Biosciences, 610981)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1j). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(5B)
  • 免疫印迹; 人类; 图 1
碧迪BD PRKACA抗体(BD Bioscience, 610981)被用于被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(23/PKC)
  • 免疫组化-石蜡切片; 人类; 图 6c
  • 免疫印迹; 人类; 1:1000; 图 2a
碧迪BD PRKACA抗体(BD Transduction Lab, 60175)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Int J Cancer (2016) ncbi
小鼠 单克隆(27/PKC)
  • 免疫印迹; 人类; 1:1000; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 8
碧迪BD PRKACA抗体(BD Pharmingen, 610090)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Nat Commun (2016) ncbi
小鼠 单克隆(5B)
  • 免疫组化; 人类; 图 6
碧迪BD PRKACA抗体(BD Biosciences, 610981)被用于被用于免疫组化在人类样本上 (图 6). Pediatr Res (2016) ncbi
小鼠 单克隆(27/PKC)
  • 免疫组化-石蜡切片; 小鼠; 图 8
  • 免疫印迹; 小鼠; 图 7
碧迪BD PRKACA抗体(BD Biosciences, 610090)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8) 和 被用于免疫印迹在小鼠样本上 (图 7). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(27/PKC)
  • 免疫印迹; 小鼠; 图 s10
碧迪BD PRKACA抗体(BD, 610089)被用于被用于免疫印迹在小鼠样本上 (图 s10). Nat Med (2016) ncbi
小鼠 单克隆(3/PKC)
  • 免疫印迹; 人类; 1:1000; 图 8
  • 免疫印迹; 小鼠; 1:1000; 图 7
碧迪BD PRKACA抗体(BD Biosciences, 610107)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Development (2016) ncbi
小鼠 单克隆(21/PKC)
  • 其他; 人类; 图 st1
  • 免疫印迹; 人类; 图 st4
碧迪BD PRKACA抗体(BD, 21)被用于被用于其他在人类样本上 (图 st1) 和 被用于免疫印迹在人类样本上 (图 st4). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(23/PKC)
  • 其他; 人类; 图 st1
碧迪BD PRKACA抗体(BD, 23)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(36/PKCb)
  • 其他; 人类; 图 st1
碧迪BD PRKACA抗体(BD, 36)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(27/PKC)
  • 其他; 人类; 图 st1
碧迪BD PRKACA抗体(BD, 27)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(5B)
  • 其他; 人类; 图 st1
碧迪BD PRKACA抗体(BD, 5B)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(14/PKC delta)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2
碧迪BD PRKACA抗体(BD Transduction Laboratories, 610398)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2). Mol Psychiatry (2016) ncbi
小鼠 单克隆(14/PKC delta)
  • 免疫印迹; 小鼠; 图 5f
碧迪BD PRKACA抗体(BD Biosciences, 610397)被用于被用于免疫印迹在小鼠样本上 (图 5f). Mol Cell Biol (2016) ncbi
小鼠 单克隆(5B)
  • 免疫印迹; 人类; 图 3
碧迪BD PRKACA抗体(BD Biosciences, 610980)被用于被用于免疫印迹在人类样本上 (图 3). Front Pharmacol (2015) ncbi
小鼠 单克隆(5B)
  • 免疫印迹; 小鼠; 1:1000; 图 4e
碧迪BD PRKACA抗体(BD Transduction Laboratories, 610980)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Mol Metab (2015) ncbi
小鼠 单克隆(41/PKC)
  • 免疫组化; 小鼠; 1:200; 图 4
碧迪BD PRKACA抗体(BD Biosciences, 610208)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4). Development (2015) ncbi
小鼠 单克隆(5B)
  • 免疫印迹; 人类
碧迪BD PRKACA抗体(BD Biosciences, 610981)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(5B)
  • 免疫印迹; 人类; 1:4000
碧迪BD PRKACA抗体(BD Transduction Laboratories, 610980)被用于被用于免疫印迹在人类样本上浓度为1:4000. Nat Commun (2014) ncbi
小鼠 单克隆(3/PKC)
  • 免疫组化-自由浮动切片; 小鼠; 1:250
碧迪BD PRKACA抗体(BD Transduction Lab, 610107)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250. Vision Res (2014) ncbi
小鼠 单克隆(23/PKC)
  • 免疫组化-石蜡切片; 人类; 1:100
碧迪BD PRKACA抗体(BD Biosciences, 610176)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Anticancer Res (2014) ncbi
小鼠 单克隆(3/PKC)
  • 免疫组化-自由浮动切片; 小鼠; 1:250
碧迪BD PRKACA抗体(BD Transduction Lab, 610107)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250. Vision Res (2014) ncbi
小鼠 单克隆(5B)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 3
  • 免疫印迹; 人类; 图 2
碧迪BD PRKACA抗体(BD Transduction Lab, 610980)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在人类样本上 (图 2). Oncogene (2015) ncbi
小鼠 单克隆(23/PKC)
  • 免疫组化; 人类; 1:100
碧迪BD PRKACA抗体(BD Biosciences, 610176)被用于被用于免疫组化在人类样本上浓度为1:100. Anticancer Res (2014) ncbi
小鼠 单克隆(23/PKC)
  • 免疫印迹; 小鼠; 图 2
碧迪BD PRKACA抗体(BD Transduction Laboratories, 610175)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(41/PKC)
  • 免疫印迹; 人类
碧迪BD PRKACA抗体(BD Biosciences, 610208)被用于被用于免疫印迹在人类样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(5B)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠; 图 1
碧迪BD PRKACA抗体(BD Biosciences, 610980)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2012) ncbi
小鼠 单克隆(3/PKC)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
碧迪BD PRKACA抗体(Transduction Laboratories, 610107)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2012) ncbi
小鼠 单克隆(3/PKC)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD PRKACA抗体(BD Transduction Laboratories, 610108)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Comp Neurol (2010) ncbi
小鼠 单克隆(3/PKC)
  • 免疫组化; 大鼠; 1:100
碧迪BD PRKACA抗体(BD Transduction Laboratories, 610107)被用于被用于免疫组化在大鼠样本上浓度为1:100. J Comp Neurol (2010) ncbi
小鼠 单克隆(23/PKC)
  • 免疫组化基因敲除验证; 小鼠; 图 2
碧迪BD PRKACA抗体(TDL, 610175)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 2). Dev Biol (2009) ncbi
小鼠 单克隆(23/PKC)
  • 免疫印迹; 小鼠; 图 1
碧迪BD PRKACA抗体(Becton Dickinson, 610176)被用于被用于免疫印迹在小鼠样本上 (图 1). J Cell Sci (2008) ncbi
小鼠 单克隆(23/PKC)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000
碧迪BD PRKACA抗体(BD, 23)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000. Development (2006) ncbi
文章列表
  1. Qin Y, Chen W, Jiang G, Zhou L, Yang X, Li H, et al. Interfering MSN-NONO complex-activated CREB signaling serves as a therapeutic strategy for triple-negative breast cancer. Sci Adv. 2020;6:eaaw9960 pubmed 出版商
  2. Bendriem R, Singh S, Aleem A, Antonetti D, Ross M. Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex. elife. 2019;8: pubmed 出版商
  3. Ye J, Yin Y, Liu H, Fang L, Tao X, Wei L, et al. Tau inhibits PKA by nuclear proteasome-dependent PKAR2α elevation with suppressed CREB/GluA1 phosphorylation. Aging Cell. 2020;19:e13055 pubmed 出版商
  4. Jewell J, Fu V, Hong A, Yu F, Meng D, Melick C, et al. GPCR signaling inhibits mTORC1 via PKA phosphorylation of Raptor. elife. 2019;8: pubmed 出版商
  5. Turnham R, Smith F, Kenerson H, Omar M, Golkowski M, Garcia I, et al. An acquired scaffolding function of the DNAJ-PKAc fusion contributes to oncogenic signaling in fibrolamellar carcinoma. elife. 2019;8: pubmed 出版商
  6. Wang W, Shen T, Dong B, Creighton C, Meng Y, Zhou W, et al. MAPK4 overexpression promotes tumor progression via noncanonical activation of AKT/mTOR signaling. J Clin Invest. 2019;: pubmed 出版商
  7. Schaffer T, Smith J, Cook E, Phan T, Margolis S. PKCε Inhibits Neuronal Dendritic Spine Development through Dual Phosphorylation of Ephexin5. Cell Rep. 2018;25:2470-2483.e8 pubmed 出版商
  8. Zhang M, Suarez E, Vasquez J, Nathanson L, Peterson L, Rajapakshe K, et al. Inositol polyphosphate 4-phosphatase type II regulation of androgen receptor activity. Oncogene. 2019;38:1121-1135 pubmed 出版商
  9. Du X, Wen J, Wang Y, Karmaus P, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature. 2018;558:141-145 pubmed 出版商
  10. Yin R, Guo L, Gu J, Li C, Zhang W. Over expressing miR-19b-1 suppress breast cancer growth by inhibiting tumor microenvironment induced angiogenesis. Int J Biochem Cell Biol. 2018;97:43-51 pubmed 出版商
  11. Balan I, Warnock K, Puche A, GONDRE LEWIS M, Aurelian L. Innately activated TLR4 signal in the nucleus accumbens is sustained by CRF amplification loop and regulates impulsivity. Brain Behav Immun. 2018;69:139-153 pubmed 出版商
  12. Hoa N, Ge L, Korach K, Levin E. Estrogen receptor beta maintains expression of KLF15 to prevent cardiac myocyte hypertrophy in female rodents. Mol Cell Endocrinol. 2018;470:240-250 pubmed 出版商
  13. Kang H, Kumar D, Liao G, Lichti Kaiser K, Gerrish K, Liao X, et al. GLIS3 is indispensable for TSH/TSHR-dependent thyroid hormone biosynthesis and follicular cell proliferation. J Clin Invest. 2017;127:4326-4337 pubmed 出版商
  14. Zhao L, Liu J, He C, Yan R, Zhou K, Cui Q, et al. Protein kinase A determines platelet life span and survival by regulating apoptosis. J Clin Invest. 2017;127:4338-4351 pubmed 出版商
  15. Walker Gray R, Stengel F, Gold M. Mechanisms for restraining cAMP-dependent protein kinase revealed by subunit quantitation and cross-linking approaches. Proc Natl Acad Sci U S A. 2017;114:10414-10419 pubmed 出版商
  16. Smith F, Esseltine J, Nygren P, Veesler D, Byrne D, Vonderach M, et al. Local protein kinase A action proceeds through intact holoenzymes. Science. 2017;356:1288-1293 pubmed 出版商
  17. Gatliff J, East D, Singh A, Alvarez M, Frison M, Matic I, et al. A role for TSPO in mitochondrial Ca2+ homeostasis and redox stress signaling. Cell Death Dis. 2017;8:e2896 pubmed 出版商
  18. Tsuda T, Takefuji M, Wettschureck N, Kotani K, Morimoto R, Okumura T, et al. Corticotropin releasing hormone receptor 2 exacerbates chronic cardiac dysfunction. J Exp Med. 2017;214:1877-1888 pubmed 出版商
  19. Chen X, Wu Q, Depeille P, Chen P, Thornton S, Kalirai H, et al. RasGRP3 Mediates MAPK Pathway Activation in GNAQ Mutant Uveal Melanoma. Cancer Cell. 2017;31:685-696.e6 pubmed 出版商
  20. Krag T, Ruiz Ruiz C, Vissing J. Glycogen Synthesis in Glycogenin 1-Deficient Patients: A Role for Glycogenin 2 in Muscle. J Clin Endocrinol Metab. 2017;102:2690-2700 pubmed 出版商
  21. Zhou Y, Chen S, Liu D, Manyande A, Zhang W, Yang S, et al. The Role of Spinal GABAB Receptors in Cancer-Induced Bone Pain in Rats. J Pain. 2017;18:933-946 pubmed 出版商
  22. Weigand I, Ronchi C, Rizk Rabin M, Dalmazi G, Wild V, Bathon K, et al. Differential expression of the protein kinase A subunits in normal adrenal glands and adrenocortical adenomas. Sci Rep. 2017;7:49 pubmed 出版商
  23. Fadok J, Krabbe S, Markovic M, Courtin J, Xu C, Massi L, et al. A competitive inhibitory circuit for selection of active and passive fear responses. Nature. 2017;542:96-100 pubmed 出版商
  24. Salomon J, Gaston C, Magescas J, Duvauchelle B, Canioni D, Sengmanivong L, et al. Contractile forces at tricellular contacts modulate epithelial organization and monolayer integrity. Nat Commun. 2017;8:13998 pubmed 出版商
  25. Song L, Yu A, Murray K, Cortopassi G. Bipolar cell reduction precedes retinal ganglion neuron loss in a complex 1 knockout mouse model. Brain Res. 2017;1657:232-244 pubmed 出版商
  26. Jung J, Jung H, Neupane S, Kim K, Kim J, Yamamoto H, et al. Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem. 2017;119:92-98 pubmed 出版商
  27. Richter E, Harms M, Ventz K, Nölker R, Fraunholz M, Mostertz J, et al. Quantitative Proteomics Reveals the Dynamics of Protein Phosphorylation in Human Bronchial Epithelial Cells during Internalization, Phagosomal Escape, and Intracellular Replication of Staphylococcus aureus. J Proteome Res. 2016;15:4369-4386 pubmed
  28. Eccles R, Czajkowski M, Barth C, Müller P, McShane E, Grunwald S, et al. Bimodal antagonism of PKA signalling by ARHGAP36. Nat Commun. 2016;7:12963 pubmed 出版商
  29. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  30. Mortimer L, Moreau F, MacDonald J, Chadee K. NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations. Nat Immunol. 2016;17:1176-86 pubmed 出版商
  31. Whiting J, Ogier L, Forbush K, Bucko P, Gopalan J, Seternes O, et al. AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption. Proc Natl Acad Sci U S A. 2016;113:E4328-37 pubmed 出版商
  32. Bachmann V, Mayrhofer J, Ilouz R, Tschaikner P, Raffeiner P, Röck R, et al. Gpr161 anchoring of PKA consolidates GPCR and cAMP signaling. Proc Natl Acad Sci U S A. 2016;113:7786-91 pubmed 出版商
  33. Emanuele M, Esposito A, Camerini S, Antonucci F, Ferrara S, Seghezza S, et al. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts. EBioMedicine. 2016;7:191-204 pubmed 出版商
  34. Phillips E, Lang V, Bohlen J, Bethke F, Puccio L, Tichy D, et al. Targeting atypical protein kinase C iota reduces viability in glioblastoma stem-like cells via a notch signaling mechanism. Int J Cancer. 2016;139:1776-87 pubmed 出版商
  35. Krag T, Pinós T, Nielsen T, Duran J, García Rocha M, Andreu A, et al. Differential glucose metabolism in mice and humans affected by McArdle disease. Am J Physiol Regul Integr Comp Physiol. 2016;311:R307-14 pubmed 出版商
  36. Najibi M, Labed S, Visvikis O, IRAZOQUI J. An Evolutionarily Conserved PLC-PKD-TFEB Pathway for Host Defense. Cell Rep. 2016;15:1728-42 pubmed 出版商
  37. Frank R, Komiyama N, Ryan T, Zhu F, O Dell T, Grant S. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016;7:11264 pubmed 出版商
  38. Kim B, Silverman S, Liu Y, Wordinger R, Pang I, Clark A. In vitro and in vivo neuroprotective effects of cJun N-terminal kinase inhibitors on retinal ganglion cells. Mol Neurodegener. 2016;11:30 pubmed 出版商
  39. Pryde K, Smith H, Chau K, Schapira A. PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. J Cell Biol. 2016;213:163-71 pubmed 出版商
  40. Blas Rus N, Bustos Morán E, Perez de Castro I, de Carcer G, Borroto A, Camafeita E, et al. Aurora A drives early signalling and vesicle dynamics during T-cell activation. Nat Commun. 2016;7:11389 pubmed 出版商
  41. Hattori K, Naguro I, Okabe K, Funatsu T, Furutani S, Takeda K, et al. ASK1 signalling regulates brown and beige adipocyte function. Nat Commun. 2016;7:11158 pubmed 出版商
  42. Riggle K, Riehle K, Kenerson H, Turnham R, Homma M, Kazami M, et al. Enhanced cAMP-stimulated protein kinase A activity in human fibrolamellar hepatocellular carcinoma. Pediatr Res. 2016;80:110-8 pubmed 出版商
  43. Kamiyama D, Sekine S, Barsi Rhyne B, Hu J, Chen B, Gilbert L, et al. Versatile protein tagging in cells with split fluorescent protein. Nat Commun. 2016;7:11046 pubmed 出版商
  44. Ji X, Liu Y, Hurd R, Wang J, Fitzmaurice B, Nishina P, et al. Retinal Pigment Epithelium Atrophy 1 (rpea1): A New Mouse Model With Retinal Detachment Caused by a Disruption of Protein Kinase C, θ. Invest Ophthalmol Vis Sci. 2016;57:877-88 pubmed 出版商
  45. Fan J, Fan X, Li Y, Guo J, Xia D, Ding L, et al. Blunted inflammation mediated by NF-κB activation in hippocampus alleviates chronic normobaric hypoxia-induced anxiety-like behavior in rats. Brain Res Bull. 2016;122:54-61 pubmed 出版商
  46. Jang C, Oh S, Wada S, Rowe G, Liu L, Chan M, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med. 2016;22:421-6 pubmed 出版商
  47. Pan B, Lian J, Huang X, Deng C. Aripiprazole Increases the PKA Signalling and Expression of the GABAA Receptor and CREB1 in the Nucleus Accumbens of Rats. J Mol Neurosci. 2016;59:36-47 pubmed 出版商
  48. Hoeller O, Toettcher J, Cai H, Sun Y, Huang C, Freyre M, et al. Gβ Regulates Coupling between Actin Oscillators for Cell Polarity and Directional Migration. PLoS Biol. 2016;14:e1002381 pubmed 出版商
  49. Farini A, Sitzia C, Cassinelli L, Colleoni F, Parolini D, Giovanella U, et al. Inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling mediates delayed myogenesis in Duchenne muscular dystrophy fetal muscle. Development. 2016;143:658-69 pubmed 出版商
  50. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  51. De Bundel D, Zussy C, Espallergues J, Gerfen C, Girault J, Valjent E. Dopamine D2 receptors gate generalization of conditioned threat responses through mTORC1 signaling in the extended amygdala. Mol Psychiatry. 2016;21:1545-1553 pubmed 出版商
  52. Ge W, Yuan M, Ceylan A, Wang X, Ren J. Mitochondrial aldehyde dehydrogenase protects against doxorubicin cardiotoxicity through a transient receptor potential channel vanilloid 1-mediated mechanism. Biochim Biophys Acta. 2016;1862:622-634 pubmed 出版商
  53. Hagelkruys A, Mattes K, Moos V, Rennmayr M, Ringbauer M, Sawicka A, et al. Essential Nonredundant Function of the Catalytic Activity of Histone Deacetylase 2 in Mouse Development. Mol Cell Biol. 2016;36:462-74 pubmed 出版商
  54. Gerbaud P, Taskén K, Pidoux G. Spatiotemporal regulation of cAMP signaling controls the human trophoblast fusion. Front Pharmacol. 2015;6:202 pubmed 出版商
  55. Wolter S, Kloth C, Golombek M, Dittmar F, Försterling L, Seifert R. cCMP causes caspase-dependent apoptosis in mouse lymphoma cell lines. Biochem Pharmacol. 2015;98:119-31 pubmed 出版商
  56. Major J, Salih M, Tuana B. Interplay between the E2F pathway and β-adrenergic signaling in the pathological hypertrophic response of myocardium. J Mol Cell Cardiol. 2015;84:179-90 pubmed 出版商
  57. Rajan S, Dickson L, Mathew E, Orr C, Ellenbroek J, Philipson L, et al. Chronic hyperglycemia downregulates GLP-1 receptor signaling in pancreatic β-cells via protein kinase A. Mol Metab. 2015;4:265-76 pubmed 出版商
  58. Li X, Tao J, Cigliano A, Sini M, Calderaro J, Azoulay D, et al. Co-activation of PIK3CA and Yap promotes development of hepatocellular and cholangiocellular tumors in mouse and human liver. Oncotarget. 2015;6:10102-15 pubmed
  59. Grego Bessa J, Hildebrand J, Anderson K. Morphogenesis of the mouse neural plate depends on distinct roles of cofilin 1 in apical and basal epithelial domains. Development. 2015;142:1305-14 pubmed 出版商
  60. Mo X, Yang C, Wang X, Burkhardt B, Li Y, Xia H, et al. F3MB(PANDER) decreases mice hepatic triglyceride and is associated with decreased DGAT1 expression. PLoS ONE. 2015;10:e0117156 pubmed 出版商
  61. Iwano S, Satou A, Matsumura S, Sugiyama N, Ishihama Y, Toyoshima F. PCTK1 regulates integrin-dependent spindle orientation via protein kinase A regulatory subunit KAP0 and myosin X. Mol Cell Biol. 2015;35:1197-208 pubmed 出版商
  62. Ahmad F, Shen W, Vandeput F, Szabo Fresnais N, Krall J, Degerman E, et al. Regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) activity by phosphodiesterase 3A (PDE3A) in human myocardium: phosphorylation-dependent interaction of PDE3A1 with SERCA2. J Biol Chem. 2015;290:6763-76 pubmed 出版商
  63. Calebiro D, Hannawacker A, Lyga S, Bathon K, Zabel U, Ronchi C, et al. PKA catalytic subunit mutations in adrenocortical Cushing's adenoma impair association with the regulatory subunit. Nat Commun. 2014;5:5680 pubmed 出版商
  64. Tse D, Chung I, Wu S. Pharmacological inhibitions of glutamate transporters EAAT1 and EAAT2 compromise glutamate transport in photoreceptor to ON-bipolar cell synapses. Vision Res. 2014;103:49-62 pubmed 出版商
  65. Batsaikhan B, Yoshikawa K, Kurita N, Iwata T, Takasu C, Kashihara H, et al. Expression of Stathmin1 in gastric adenocarcinoma. Anticancer Res. 2014;34:4217-21 pubmed
  66. Tse D, Chung I, Wu S. Possible roles of glutamate transporter EAAT5 in mouse cone depolarizing bipolar cell light responses. Vision Res. 2014;103:63-74 pubmed 出版商
  67. Moody S, Schinzel A, Singh S, Izzo F, Strickland M, Luo L, et al. PRKACA mediates resistance to HER2-targeted therapy in breast cancer cells and restores anti-apoptotic signaling. Oncogene. 2015;34:2061-71 pubmed 出版商
  68. Batsaikhan B, Kurita N, Iwata T, Sato H, Yoshikawa K, Takasu C, et al. The role of activation-induced cytidine deaminase expression in gastric adenocarcinoma. Anticancer Res. 2014;34:995-1000 pubmed
  69. Yamanaka T, Tosaki A, Kurosawa M, Akimoto K, Hirose T, Ohno S, et al. Loss of aPKC? in differentiated neurons disrupts the polarity complex but does not induce obvious neuronal loss or disorientation in mouse brains. PLoS ONE. 2013;8:e84036 pubmed 出版商
  70. Linch M, Sanz Garcia M, Rosse C, Riou P, Peel N, Madsen C, et al. Regulation of polarized morphogenesis by protein kinase C iota in oncogenic epithelial spheroids. Carcinogenesis. 2014;35:396-406 pubmed 出版商
  71. Yang Y, Li J, Pan X, Zhou P, Yu X, Cao H, et al. Co-culture with mesenchymal stem cells enhances metabolic functions of liver cells in bioartificial liver system. Biotechnol Bioeng. 2013;110:958-68 pubmed 出版商
  72. Martin S, Fernandez Rojo M, Stanley A, Bastiani M, Okano S, Nixon S, et al. Caveolin-1 deficiency leads to increased susceptibility to cell death and fibrosis in white adipose tissue: characterization of a lipodystrophic model. PLoS ONE. 2012;7:e46242 pubmed 出版商
  73. Blom J, Giove T, Deshpande M, Eldred W. Characterization of nitric oxide signaling pathways in the mouse retina. J Comp Neurol. 2012;520:4204-17 pubmed 出版商
  74. Phillips M, Otteson D, Sherry D. Progression of neuronal and synaptic remodeling in the rd10 mouse model of retinitis pigmentosa. J Comp Neurol. 2010;518:2071-89 pubmed 出版商
  75. Besalduch N, Tomas M, Santafe M, Garcia N, Tomas J, Lanuza M. Synaptic activity-related classical protein kinase C isoform localization in the adult rat neuromuscular synapse. J Comp Neurol. 2010;518:211-28 pubmed 出版商
  76. Sugiyama Y, Akimoto K, Robinson M, Ohno S, Quinlan R. A cell polarity protein aPKClambda is required for eye lens formation and growth. Dev Biol. 2009;336:246-56 pubmed 出版商
  77. Kishikawa M, Suzuki A, Ohno S. aPKC enables development of zonula adherens by antagonizing centripetal contraction of the circumferential actomyosin cables. J Cell Sci. 2008;121:2481-92 pubmed 出版商
  78. Imai F, Hirai S, Akimoto K, Koyama H, Miyata T, Ogawa M, et al. Inactivation of aPKClambda results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex. Development. 2006;133:1735-44 pubmed