这是一篇来自已证抗体库的有关人类 PSD-95 (PSD-95) 的综述,是根据357篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合PSD-95 抗体。
PSD-95 同义词: PSD95; SAP-90; SAP90

赛默飞世尔
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 小鼠; 图 6a
赛默飞世尔PSD-95抗体(Thermo, MA1-046)被用于被用于免疫印迹在小鼠样本上 (图 6a). Int J Mol Sci (2022) ncbi
domestic rabbit 重组(23H23L19)
  • 免疫印迹; 小鼠; 图 8c
赛默飞世尔PSD-95抗体(Thermo Fisher Scientific, 700902)被用于被用于免疫印迹在小鼠样本上 (图 8c). Sci Adv (2022) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫细胞化学; 大鼠; 1:200; 图 1f
  • 免疫印迹; 大鼠; 1:2000; 图 1e, 1s1c
赛默飞世尔PSD-95抗体(Thermo Fischer, MA1-046)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 1f) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 1e, 1s1c). elife (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠
赛默飞世尔PSD-95抗体(Invitrogen, 516900)被用于被用于免疫组化在小鼠样本上. Cell Rep (2021) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 小鼠; 图 s4q
  • 免疫印迹; 小鼠; 图 s3d
赛默飞世尔PSD-95抗体(Thermo Fisher, MA1-045)被用于被用于免疫细胞化学在小鼠样本上 (图 s4q) 和 被用于免疫印迹在小鼠样本上 (图 s3d). Cell Rep (2021) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化; 大鼠; 图 4a
赛默飞世尔PSD-95抗体(Thermo, 6G6-1C9)被用于被用于免疫组化在大鼠样本上 (图 4a). Cell Rep (2021) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化; 小鼠; 1:50; 图 5a
赛默飞世尔PSD-95抗体(Thermo Fisher Scientific, MA1-046)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4d
赛默飞世尔PSD-95抗体(Invitrogen, 51?\6900)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4d). Br J Pharmacol (2021) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛默飞世尔PSD-95抗体(Thermo Fisher, MA1-045)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Front Synaptic Neurosci (2020) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 小鼠; 图 3k
赛默飞世尔PSD-95抗体(Thermo Fischer, MA1-045)被用于被用于免疫印迹在小鼠样本上 (图 3k). iScience (2021) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 6b
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 6b). Sci Rep (2021) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化-冰冻切片; 小鼠; 图 1e
  • 免疫印迹; 小鼠; 图 s3c
赛默飞世尔PSD-95抗体(Thermo, MA1-046)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1e) 和 被用于免疫印迹在小鼠样本上 (图 s3c). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s3c
赛默飞世尔PSD-95抗体(Thermo Fisher, MA1-046)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s3c). Sci Adv (2020) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s4j
赛默飞世尔PSD-95抗体(Invitrogen, MA1-045)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s4j). Sci Adv (2020) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 大鼠; 1:2000; 图 2b
赛默飞世尔PSD-95抗体(Thermo Fisher Scientific, MA1-046)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2b). Amino Acids (2020) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 小鼠; 1:300; 图 1d
赛默飞世尔PSD-95抗体(Invitrogen, 6G6-1C9)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 1d). elife (2020) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化; 小鼠; 1:500; 图 s18a
赛默飞世尔PSD-95抗体(Invitrogen, MA1-046)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s18a). Science (2020) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛默飞世尔PSD-95抗体(Pierce, MA1046)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 小鼠; 1:1000; 图 s15c, s15d
赛默飞世尔PSD-95抗体(Thermo Fisher, MA1-045)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s15c, s15d). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
赛默飞世尔PSD-95抗体(Thermo Fisher Scientific, Waltham, MA, USA, 51-6900)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Front Cell Neurosci (2020) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化; 人类; 1:200; 图 2d
赛默飞世尔PSD-95抗体(生活技术, 6G6-1C9)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2d). Front Cell Neurosci (2020) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3c
赛默飞世尔PSD-95抗体(ThermoFisher, MA1-046)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3c). Nature (2020) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 小鼠; 图 5a
赛默飞世尔PSD-95抗体(Thermo, MA1-045)被用于被用于免疫印迹在小鼠样本上 (图 5a). Mol Neurodegener (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3b
赛默飞世尔PSD-95抗体(Invitrogen, 51-6900)被用于被用于免疫细胞化学在人类样本上 (图 3b). FEBS Open Bio (2020) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫细胞化学; 人类; 图 s1d
赛默飞世尔PSD-95抗体(Thermo, MA1-046)被用于被用于免疫细胞化学在人类样本上 (图 s1d). Cell (2019) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5c
  • 免疫印迹; 小鼠; 1:200; 图 5a
赛默飞世尔PSD-95抗体(TFS, MA1-045)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5c) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 5a). Aging Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:350; 图 3c
赛默飞世尔PSD-95抗体(Thermo, 51-6900)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:350 (图 3c). Nature (2019) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2a
赛默飞世尔PSD-95抗体(Thermo Fisher Scientific, MA1-046)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2a). Cell Rep (2019) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 小鼠; 图 1d
  • 免疫印迹; 小鼠; 图 s1j
赛默飞世尔PSD-95抗体(Thermo Fisher, MA1-045)被用于被用于免疫细胞化学在小鼠样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 s1j). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 1d
赛默飞世尔PSD-95抗体(Invitrogen, 51-6900)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 1d). J Neurosci (2019) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 小鼠; 图 1a
赛默飞世尔PSD-95抗体(Pierce, 7E31B8)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cell Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1f
赛默飞世尔PSD-95抗体(Invitrogen, 51-6900)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1f). J Exp Med (2018) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 大鼠; 图 1a
赛默飞世尔PSD-95抗体(Thermo Fisher Scientific, MA1046)被用于被用于免疫印迹在大鼠样本上 (图 1a). Biosci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 s8a
赛默飞世尔PSD-95抗体(Invitrogen, 51-6900)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 s8a). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3c
赛默飞世尔PSD-95抗体(Invitrogen, 51-6900)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3c). Mol Brain (2017) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 小鼠; 1:500; 图 s2g
赛默飞世尔PSD-95抗体(Thermo Scientific, 6G6-1C9)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s2g). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:250; 图 5c
赛默飞世尔PSD-95抗体(Invitrogen, 51-6900)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250 (图 5c). J Neurosci (2017) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫沉淀; 小鼠; 图 3a
  • 免疫细胞化学; 小鼠; 图 s1a
  • 免疫印迹; 小鼠; 图 1a
  • 免疫印迹; 大鼠; 图 1b
赛默飞世尔PSD-95抗体(Thermo Fisher Scientific, MA1-046)被用于被用于免疫沉淀在小鼠样本上 (图 3a), 被用于免疫细胞化学在小鼠样本上 (图 s1a), 被用于免疫印迹在小鼠样本上 (图 1a) 和 被用于免疫印迹在大鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛默飞世尔PSD-95抗体(ThermoFisher, MA1-045)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 小鼠; 图 1a
赛默飞世尔PSD-95抗体(Thermo Fisher, MA1-045)被用于被用于免疫印迹在小鼠样本上 (图 1a). J Neurochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1a
赛默飞世尔PSD-95抗体(LifeTech, 51-6900)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a). Sci Rep (2017) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 小鼠; 图 2d
赛默飞世尔PSD-95抗体(Affinity BioReagents, 6G6-1C9)被用于被用于免疫印迹在小鼠样本上 (图 2d). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化; 小鼠; 图 5c
  • 免疫印迹; 小鼠; 图 5a
赛默飞世尔PSD-95抗体(Thermo, MA1-045)被用于被用于免疫组化在小鼠样本上 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 5a). Sci Rep (2017) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 大鼠; 1:200; 图 3e
  • 免疫印迹; 大鼠; 1:2000; 图 3b
赛默飞世尔PSD-95抗体(Affinity BioReagents, MA1-045)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 3e) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3b). Int J Mol Sci (2017) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫细胞化学; 大鼠; 1:200; 图 6f
赛默飞世尔PSD-95抗体(Affinity BioReagents, MA1-046)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 6f). Sci Rep (2017) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化; 大鼠; 1:200; 图 1d
赛默飞世尔PSD-95抗体(Thermo fisher, MA1-046)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1d). PLoS ONE (2017) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 小鼠; 1:150; 图 5e
赛默飞世尔PSD-95抗体(Thermo Scientific, AB_325399)被用于被用于免疫细胞化学在小鼠样本上浓度为1:150 (图 5e). elife (2017) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 人类; 图 s3
  • 免疫沉淀; 小鼠; 图 s3
赛默飞世尔PSD-95抗体(Affinity BioReagents, MA1-046)被用于被用于免疫印迹在人类样本上 (图 s3) 和 被用于免疫沉淀在小鼠样本上 (图 s3). Cell Rep (2017) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s1a
赛默飞世尔PSD-95抗体(生活技术, 516900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1a). Sci Rep (2017) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 大鼠; 1:1000; 图 6f
赛默飞世尔PSD-95抗体(Thermo Fisher, MA1-045)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 6f). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 6c
赛默飞世尔PSD-95抗体(Thermo Fisher, 51-6900)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6c). Acta Neuropathol (2017) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 小鼠; 图 s1b
赛默飞世尔PSD-95抗体(ThermoFisher Scientific, MA1-045)被用于被用于免疫印迹在小鼠样本上 (图 s1b). Cell Death Dis (2017) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4a
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛默飞世尔PSD-95抗体(Thermo scientific, MA1-046)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Brain Res (2017) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 小鼠; 图 4b
赛默飞世尔PSD-95抗体(Thermo, 6G6-1C9)被用于被用于免疫印迹在小鼠样本上 (图 4b). Neuropharmacology (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4d
赛默飞世尔PSD-95抗体(Invitrogen, 51-6900)被用于被用于免疫印迹在小鼠样本上 (图 4d). elife (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 大鼠; 1:800; 图 5a
赛默飞世尔PSD-95抗体(ThermoScientific, MA1-045)被用于被用于免疫印迹在大鼠样本上浓度为1:800 (图 5a). Pharmacol Biochem Behav (2017) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
赛默飞世尔PSD-95抗体(Thermo Fisher, MA1-046)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6c). J Clin Invest (2016) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 小鼠; 1:10,000; 图 11
赛默飞世尔PSD-95抗体(ThermoFisher Scientific, MA1-046)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 11). elife (2016) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 小鼠; 1:4000; 图 3a
赛默飞世尔PSD-95抗体(Affinity BioReagents, 7E3-1B8)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 3a). Nat Neurosci (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 人类; 1:500; 图 4a
赛默飞世尔PSD-95抗体(ThermoFisher Scientific, MA1-045)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4a). Neurotoxicology (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 2
赛默飞世尔PSD-95抗体(Invitrogen, 51-6900)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 小鼠; 图 7a
赛默飞世尔PSD-95抗体(ThermoFisher Scientific, 7E3-1B8)被用于被用于免疫印迹在小鼠样本上 (图 7a). Neuropharmacology (2016) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 大鼠; 1:500; 图 1
赛默飞世尔PSD-95抗体(Affinity Bioreagents, MA1-046)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化-冰冻切片; 大鼠; 图 4b
赛默飞世尔PSD-95抗体(Thermo Scientific, 6G6-1C9)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4b). Eneuro (2016) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫细胞化学; 小鼠; 1:200; 图 4a
赛默飞世尔PSD-95抗体(Thermo Scientific, 7E3-1B8)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4a). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 大鼠; 图 3
赛默飞世尔PSD-95抗体(Thermo Fisher, MA1-045)被用于被用于免疫细胞化学在大鼠样本上 (图 3). J Alzheimers Dis (2016) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 小鼠; 1:2000; 图 3
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-046)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). Mol Brain (2016) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫细胞化学; 大鼠; 图 3
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-046)被用于被用于免疫细胞化学在大鼠样本上 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 3). J Neurosci (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化; 大鼠; 1:1000; 图 1a
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 1a). Neuropsychopharmacology (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 大鼠; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 s4
赛默飞世尔PSD-95抗体(Affinity Bioreagents, MA1045)被用于被用于免疫印迹在大鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 小鼠; 1:200; 图 3
赛默飞世尔PSD-95抗体(ThermoFisher Scientific, MA1-045)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3). FASEB J (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 小鼠; 1:50; 图 2
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 2). J Neurochem (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 小鼠; 1:5000; 图 6
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; Mongolian jird; 1:200; 图 1
赛默飞世尔PSD-95抗体(Invitrogen, 51-6900)被用于被用于免疫组化在Mongolian jird样本上浓度为1:200 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化-冰冻切片; 小鼠; 图 4
赛默飞世尔PSD-95抗体(ThermoFisher Scientific, MA1-045)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). J Biol Chem (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3). J Neurophysiol (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 小鼠; 1:3000; 图 7
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 大鼠; 1:1000; 图 4
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 4). Cereb Cortex (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
赛默飞世尔PSD-95抗体(Invitrogen, 51-6900)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔PSD-95抗体(生活技术, 51-6900)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Mol Neurodegener (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 大鼠; 1:2000; 图 5
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000 (图 5). J Histochem Cytochem (2016) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫细胞化学; 小鼠; 1:500; 图 s2
赛默飞世尔PSD-95抗体(Thermo Fisher Scientific, MA1-046)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s2). Transl Psychiatry (2016) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化; 小鼠; 图 1f
赛默飞世尔PSD-95抗体(Thermo, 7E3-1B8)被用于被用于免疫组化在小鼠样本上 (图 1f). Cell Death Dis (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 小鼠; 图 1
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1- 045)被用于被用于免疫细胞化学在小鼠样本上 (图 1). J Neurosci (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫印迹在小鼠样本上 (图 2). elife (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4
赛默飞世尔PSD-95抗体(Pierce, MA1-C045)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔PSD-95抗体(Invitrogen, MA1-046)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). ACS Chem Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200; 图 6
赛默飞世尔PSD-95抗体(Invitrogen, 51-6900)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 6). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 6
赛默飞世尔PSD-95抗体(生活技术, 516900)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 6). Gene Ther (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫沉淀; 人类; 图 5
  • 免疫印迹; 人类; 图 5
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫沉淀在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Neurochem Res (2016) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫沉淀; 人类; 图 5
  • 免疫印迹; 人类; 图 5
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-046)被用于被用于免疫沉淀在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Neurochem Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 s10
赛默飞世尔PSD-95抗体(Invitrogen, 51-6900)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s10). Brain (2016) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化; 小鼠; 1:500; 图 8
赛默飞世尔PSD-95抗体(Affinity Bioreagents, MA1-046)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 8). Mol Vis (2015) ncbi
小鼠 单克隆(6G6-1C9)
赛默飞世尔PSD-95抗体(Pierce/Fishe, 6GG-IC9)被用于. elife (2015) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 小鼠
赛默飞世尔PSD-95抗体(Affinity Bioreagents, MA1-045)被用于被用于免疫印迹在小鼠样本上. Nat Neurosci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔PSD-95抗体(Invitrogen, 51-6900)被用于. J Neurosci (2015) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化; 人类; 图 2
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫组化在人类样本上 (图 2). Mol Neuropsychiatry (2015) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-046)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Commun (2015) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 小鼠; 图 4
赛默飞世尔PSD-95抗体(Affinity BioReagents, MA1-045)被用于被用于免疫细胞化学在小鼠样本上 (图 4). J Neurosci (2015) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 大鼠; 1:2000; 图 5
赛默飞世尔PSD-95抗体(Thermo Fisher Scientific, MAI-045/046)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5). J Cell Biol (2015) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 大鼠; 1:2000; 图 5
赛默飞世尔PSD-95抗体(Thermo Fisher Scientific, MAI-045/046)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5). J Cell Biol (2015) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 大鼠; 图 1
赛默飞世尔PSD-95抗体(Thermo Scientific, 7E3-1B8)被用于被用于免疫印迹在大鼠样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-046)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Neuroscience (2015) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化-石蜡切片; 小鼠; 图 4,5
赛默飞世尔PSD-95抗体(Pierce, MA1-045)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4,5). J Neurosci (2015) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫细胞化学; 大鼠; 1:200; 图 7
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-046)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 7). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫细胞化学; 小鼠; 1:500
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔PSD-95抗体(Affinity Bioreagents, MA 1.046 C7E3-1B8)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 和 被用于免疫印迹在小鼠样本上浓度为1:500. J Neurosci (2015) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化; 大鼠
赛默飞世尔PSD-95抗体(Millipore, MA1-046)被用于被用于免疫组化在大鼠样本上. Cell Rep (2015) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化; 小鼠
赛默飞世尔PSD-95抗体(Thermo Pierce, MA1?C046)被用于被用于免疫组化在小鼠样本上. J Neurosci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔PSD-95抗体(Invitrogen, 51-6900)被用于. Alzheimers Res Ther (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔PSD-95抗体(Invitrogen, 51-6900)被用于. Alcohol Clin Exp Res (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔PSD-95抗体(Invitrogen, 516900)被用于. Eur J Neurosci (2015) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 小鼠
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2015) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 小鼠; 1:2000; 图 1e
赛默飞世尔PSD-95抗体(Pierce, 6G6 1C9)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 1e). Brain Struct Funct (2016) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化; roundworm
赛默飞世尔PSD-95抗体(pierce, ma1-045)被用于被用于免疫组化在roundworm 样本上. Dev Biol (2015) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 人类; 图 9
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-046)被用于被用于免疫印迹在人类样本上 (图 9). J Biol Chem (2015) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 大鼠; 1:2500; 图 2
赛默飞世尔PSD-95抗体(Thermo Scientific, 7E3-1B8)被用于被用于免疫印迹在大鼠样本上浓度为1:2500 (图 2). Front Cell Neurosci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔PSD-95抗体(Invitrogen, 51-6900)被用于. Ann Neurol (2015) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化-冰冻切片; 大鼠; 1:500
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Neurosci (2015) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Neurosci (2015) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛默飞世尔PSD-95抗体(Santa Cruz, MA1-045)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Br J Pharmacol (2015) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔PSD-95抗体(Thermo Scientific Pierce Products, MA1-046)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Biol Chem (2015) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化-冰冻切片; 大鼠
赛默飞世尔PSD-95抗体(thermo, ma1-045)被用于被用于免疫组化-冰冻切片在大鼠样本上. Brain Res (2015) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔PSD-95抗体(Thermo Fisher, MA1-046)被用于被用于免疫印迹在小鼠样本上 (图 5). Mol Psychiatry (2015) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 小鼠; 1:500; 图 3b
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-046)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3b). Nat Med (2015) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 大鼠; 1:500
赛默飞世尔PSD-95抗体(Fisher Thermo Scientific, MA1-045)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. Ann Neurol (2015) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 小鼠; 1:1000
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1045)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Front Cell Neurosci (2014) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫细胞化学; 大鼠; 2 ug/ml; 图 s5
赛默飞世尔PSD-95抗体(Thermo Fisher, MA1-046)被用于被用于免疫细胞化学在大鼠样本上浓度为2 ug/ml (图 s5). EMBO J (2014) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 大鼠; 1:1000; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛默飞世尔PSD-95抗体(Thermo Scientific, 6G6-1C9)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). J Biol Chem (2014) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 人类; 1:7000
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫印迹在人类样本上浓度为1:7000. Neurobiol Aging (2014) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5
赛默飞世尔PSD-95抗体(Thermo Scientific, 6G6-1C9)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 小鼠; 1:5000
赛默飞世尔PSD-95抗体(Affinity Bioreagents, MA1-046)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Neuroscience (2014) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫细胞化学; 人类
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-046)被用于被用于免疫细胞化学在人类样本上. J Neurosci (2014) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔PSD-95抗体(Thermo, MA1046)被用于被用于免疫印迹在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 大鼠; 图 5
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫细胞化学在大鼠样本上 (图 5). Cell Rep (2014) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Hippocampus (2014) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化; 小鼠; 1:500
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-046)被用于被用于免疫组化在小鼠样本上浓度为1:500 和 被用于免疫印迹在小鼠样本上浓度为1:2000. Hippocampus (2014) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔PSD-95抗体(Affinity BioReagents, MA1-045)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Neurochem (2014) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化; 大鼠; 1:1000
赛默飞世尔PSD-95抗体(Thermo Fisher Scientific, MA1-045)被用于被用于免疫组化在大鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 大鼠; 1:1000
赛默飞世尔PSD-95抗体(Thermo Fisher Scientific, 6G6-1C9)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. FEBS J (2014) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化-冰冻切片; 大鼠; 1:500
赛默飞世尔PSD-95抗体(Thermo, MA1-045)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. Nat Commun (2014) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 大鼠
  • 免疫印迹; 大鼠
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫细胞化学在大鼠样本上 和 被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(6G6-1C9)
赛默飞世尔PSD-95抗体(Thermo Fisher Scientific, 1-1054)被用于. J Neurosci (2013) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔PSD-95抗体(Thermo Scientific Pierce, MA1-046)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Physiol (2013) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 人类; 图 1
  • 免疫组化-冰冻切片; 小鼠; 图 1
  • 免疫细胞化学; 大鼠; 图 1
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔PSD-95抗体(Thermo Fisher, MA1-046)被用于被用于免疫印迹在人类样本上 (图 1), 被用于免疫组化-冰冻切片在小鼠样本上 (图 1), 被用于免疫细胞化学在大鼠样本上 (图 1) 和 被用于免疫印迹在大鼠样本上 (图 3). J Cell Biol (2013) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化; 小鼠; 1:800; 图 6
赛默飞世尔PSD-95抗体(ThermoScientific, MA1-045)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 6). Nat Neurosci (2013) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化-自由浮动切片; 大鼠; 1:2,000
  • 免疫组化; 大鼠; 1:2000
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-046)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:2,000 和 被用于免疫组化在大鼠样本上浓度为1:2000. J Comp Neurol (2012) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 小鼠; 1:500
赛默飞世尔PSD-95抗体(Thermo Scientific, 6G6-1C9)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Nat Neurosci (2012) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化-冰冻切片; 大鼠; 1:100
  • 免疫组化; 大鼠; 1:100
赛默飞世尔PSD-95抗体(Thermo Scientific, MA1-045)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 和 被用于免疫组化在大鼠样本上浓度为1:100. J Comp Neurol (2012) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫细胞化学; 大鼠; 1:20
  • 免疫印迹; 大鼠; 1:1000
  • 免疫印迹; 小鼠
赛默飞世尔PSD-95抗体(ABR, MA1-046)被用于被用于免疫细胞化学在大鼠样本上浓度为1:20, 被用于免疫印迹在大鼠样本上浓度为1:1000 和 被用于免疫印迹在小鼠样本上. J Comp Neurol (2010) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化; 小鼠; 1:1000; 图 3
赛默飞世尔PSD-95抗体(Affinity BioReagents, 1-054)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). J Neurosci (2010) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化-冰冻切片; 小鼠; 1:300
  • 免疫细胞化学; 大鼠; 1:300
赛默飞世尔PSD-95抗体(Affinity Bioreagents, MA1-046)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 和 被用于免疫细胞化学在大鼠样本上浓度为1:300. J Comp Neurol (2010) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫印迹; 小鼠; 图 s2
赛默飞世尔PSD-95抗体(Affinity BioReagents, 6G6-1C9)被用于被用于免疫印迹在小鼠样本上 (图 s2). Mol Cell Proteomics (2010) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化-自由浮动切片; 小鼠
  • 免疫印迹; 小鼠; 1:2,000
赛默飞世尔PSD-95抗体(Affinity BioReagents, MA1-046)被用于被用于免疫组化-自由浮动切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:2,000. J Comp Neurol (2007) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化-冰冻切片; 大鼠
  • 免疫组化; 大鼠
赛默飞世尔PSD-95抗体(ABR, MA1-045)被用于被用于免疫组化-冰冻切片在大鼠样本上 和 被用于免疫组化在大鼠样本上. J Comp Neurol (2006) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫组化-冰冻切片; 大鼠; 1:100
  • 免疫组化; 大鼠; 1:100
赛默飞世尔PSD-95抗体(ABR, MA1-045)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 和 被用于免疫组化在大鼠样本上浓度为1:100. J Comp Neurol (2006) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化-冰冻切片; 小鼠; 1:500
  • 免疫细胞化学; 小鼠; 1:500
赛默飞世尔PSD-95抗体(Affinity Bioreagents, MA1-046)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 和 被用于免疫细胞化学在小鼠样本上浓度为1:500. J Comp Neurol (2006) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 大鼠
赛默飞世尔PSD-95抗体(Affinity BioReagents, MA1-045)被用于被用于免疫细胞化学在大鼠样本上. J Comp Neurol (2005) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 小鼠; 1:500; 图 6g
  • 免疫印迹; 小鼠; 1:3000; 图 8b
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, 6G6-1C9)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 6g) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 8b). PLoS Genet (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4f
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4f). Acta Neuropathol Commun (2022) ncbi
domestic rabbit 单克隆(EPR23124-118)
  • 免疫印迹; 大鼠; 图 6d
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab238135)被用于被用于免疫印迹在大鼠样本上 (图 6d). Front Pharmacol (2022) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 1b
  • 免疫印迹; 小鼠; 图 4c
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab12093)被用于被用于免疫组化在小鼠样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上 (图 4c). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1d
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1d). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:100; 图 6a??
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 6a??). Invest Ophthalmol Vis Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 5a
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, AB18258)被用于被用于免疫组化在人类样本上浓度为1:200 (图 5a). Stem Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫印迹在小鼠样本上 (图 s1). Cell Death Discov (2020) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2e
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab13552)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2e). Front Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 5a, 5b
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5a, 5b). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5s1a
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, Ab18258)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5s1a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 8e
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 8e). J Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). CNS Neurosci Ther (2020) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6e
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab12093)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6e). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 5f
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5f). Acta Neuropathol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:500; 图 6g
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 6g). Nat Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2u
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2u). J Exp Med (2019) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 豚鼠; 1:1000; 图 2bi
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab12093)被用于被用于免疫细胞化学在豚鼠样本上浓度为1:1000 (图 2bi). J Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1b
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1b). Science (2018) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 大鼠; 1:5000; 图 1a
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab13552)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 1a). Mol Cell Neurosci (2018) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, Ab12093)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Aging Cell (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, Ab12093)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3a). Learn Mem (2017) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab13352)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 3b). Biochim Biophys Acta Proteins Proteom (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:500; 表 2
  • 免疫印迹; 大鼠; 1:500; 表 2
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫组化在大鼠样本上浓度为1:500 (表 2) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (表 2). J Neuroinflammation (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 5a
  • 免疫印迹; 大鼠; 图 5b
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 5a) 和 被用于免疫印迹在大鼠样本上 (图 5b). Sci Rep (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4a
艾博抗(上海)贸易有限公司PSD-95抗体(abcam, ab12093)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(EP2615Y)
  • 免疫印迹; 小鼠; 图 5e
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab76108)被用于被用于免疫印迹在小鼠样本上 (图 5e). Exp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 1e
  • 免疫组化; 小鼠; 1:500; 图 s1b
  • 免疫印迹; 小鼠; 1:1000; 图 s2a
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 1e), 被用于免疫组化在小鼠样本上浓度为1:500 (图 s1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2a). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; domestic rabbit; 1:1000; 表 1
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫组化在domestic rabbit样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4c
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫印迹在大鼠样本上 (图 4c). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3). Mol Neurodegener (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 1e
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 1e). Ann Neurol (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 图 1a
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab12093)被用于被用于免疫组化在大鼠样本上 (图 1a). Neuropsychopharmacology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司PSD-95抗体(abcam, ab18258)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 图 2e
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab12093)被用于被用于免疫细胞化学在人类样本上 (图 2e). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 图 1b
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (图 1b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 11
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 11). Mol Neurodegener (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 5
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 5). Mol Neurodegener (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; Pacific electric ray; 1:200; 图 3
  • 免疫细胞化学; 小鼠; 1:200
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab18258)被用于被用于免疫细胞化学在Pacific electric ray样本上浓度为1:200 (图 3) 和 被用于免疫细胞化学在小鼠样本上浓度为1:200. Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫细胞化学; 大鼠; 1:10,000; 图 4k
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab13552)被用于被用于免疫细胞化学在大鼠样本上浓度为1:10,000 (图 4k). Front Mol Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, 18258)被用于被用于免疫组化在小鼠样本上 (图 5). J Neurosci (2016) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 6
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab12093)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 6). Gene Ther (2016) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab13552)被用于被用于免疫印迹在小鼠样本上 (图 5a). Sci Rep (2015) ncbi
小鼠 单克隆(7E3-1B8)
  • 免疫组化-冰冻切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司PSD-95抗体(Abcam, ab13552)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. PLoS ONE (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(7E3)
  • 免疫印迹; 人类; 1:100; 图 3c
圣克鲁斯生物技术PSD-95抗体(Santa Cruz, sc-32290)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3c). Front Aging Neurosci (2022) ncbi
小鼠 单克隆(7E3)
  • 免疫组化-冰冻切片; 小鼠; 图 3c
圣克鲁斯生物技术PSD-95抗体(Santa Cruz, sc-32290)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3c). Neuron (2022) ncbi
小鼠 单克隆(6G6)
  • 免疫细胞化学; 人类; 1:50; 图 5a
圣克鲁斯生物技术PSD-95抗体(Santa Cruz Biotechnology, sc-32291)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(7E3)
  • 免疫印迹; 小鼠; 1:500; 图 4b
圣克鲁斯生物技术PSD-95抗体(Santa Cruz, sc-32290)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4b). Biol Res (2021) ncbi
小鼠 单克隆(7E3)
  • 免疫细胞化学; 小鼠; 图 7a
圣克鲁斯生物技术PSD-95抗体(Santa Cruz, SC-32290)被用于被用于免疫细胞化学在小鼠样本上 (图 7a). J Cell Sci (2017) ncbi
小鼠 单克隆(7E3)
  • 免疫印迹; 大鼠; 1:1000; 图 8a
圣克鲁斯生物技术PSD-95抗体(Santa Cruz, sc32290)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8a). Front Mol Neurosci (2017) ncbi
小鼠 单克隆(6G6)
  • 免疫组化; 小鼠; 图 s1f
圣克鲁斯生物技术PSD-95抗体(Santa Cruz, 6G6)被用于被用于免疫组化在小鼠样本上 (图 s1f). elife (2017) ncbi
小鼠 单克隆(7E3)
  • 免疫印迹; 人类; 1:1000; 图 7
圣克鲁斯生物技术PSD-95抗体(Santa Cruz, sc-32290)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(7E3)
  • 免疫细胞化学; 大鼠; 图 4c
  • 免疫组化; 小鼠; 图 4a
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术PSD-95抗体(Santa Cruz Biotechnology, SC-32290)被用于被用于免疫细胞化学在大鼠样本上 (图 4c), 被用于免疫组化在小鼠样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 2b). EBioMedicine (2016) ncbi
小鼠 单克隆(7E3)
  • 免疫印迹; 小鼠; 图 11
圣克鲁斯生物技术PSD-95抗体(Santa Cruz, sc-32290)被用于被用于免疫印迹在小鼠样本上 (图 11). PLoS ONE (2016) ncbi
小鼠 单克隆(6D677)
  • 免疫印迹; 大鼠; 1:1000; 图 2
圣克鲁斯生物技术PSD-95抗体(Santa Cruz Biotechnology, sc-71933)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(7E3)
  • 免疫印迹; 小鼠; 1:500; 图 3
圣克鲁斯生物技术PSD-95抗体(Santa Cruz, sc-32290)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(7E3)
  • 免疫印迹; 小鼠; 1:500
圣克鲁斯生物技术PSD-95抗体(Santa Cruz Biotechnology, sc-32290)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Cell Death Differ (2015) ncbi
小鼠 单克隆(7E3)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术PSD-95抗体(Santa Cruz, sc-32290)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Transl Psychiatry (2014) ncbi
BioLegend
小鼠 单克隆(K28/43)
  • 免疫组化-冰冻切片; 大鼠; 图 5e
  • 免疫组化-冰冻切片; African green monkey; 图 s6a
  • 免疫组化-冰冻切片; 人类; 图 s4a
  • 流式细胞仪; 人类; 图 s4b
BioLegendPSD-95抗体(BioLegend, 810401)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 5e), 被用于免疫组化-冰冻切片在African green monkey样本上 (图 s6a), 被用于免疫组化-冰冻切片在人类样本上 (图 s4a) 和 被用于流式细胞仪在人类样本上 (图 s4b). iScience (2022) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 大鼠
BioLegendPSD-95抗体(BioLegend, 810401)被用于被用于免疫细胞化学在大鼠样本上. Sci Adv (2021) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 图 5c
BioLegendPSD-95抗体(BioLegend, K28/43)被用于被用于免疫印迹在小鼠样本上 (图 5c). Bone Res (2020) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 图 1b
BioLegendPSD-95抗体(Biolegend, 810401)被用于被用于免疫印迹在小鼠样本上 (图 1b). Mol Autism (2018) ncbi
小鼠 单克隆(K28/74)
  • 免疫沉淀; 小鼠; 图 1f
BioLegendPSD-95抗体(Biolegend, 810301)被用于被用于免疫沉淀在小鼠样本上 (图 1f). Mol Autism (2018) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化; 小鼠; 图 st1
BioLegendPSD-95抗体(BioLegend, 810401)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
Novus Biologicals
小鼠 单克隆(7.00E+03)
  • 免疫组化; 小鼠; 1:500; 图 4o
Novus BiologicalsPSD-95抗体(Novus, nbp2-12872)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4o). Aging Dis (2021) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 大鼠; 1:100; 图 3a
Novus BiologicalsPSD-95抗体(Novus, NB300-556)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 3a). Brain Struct Funct (2019) ncbi
小鼠 单克隆(6G6-1C9)
  • 免疫细胞化学; 大鼠; 1:100; 图 4h
Novus BiologicalsPSD-95抗体(Novus, NB300-556)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4h). Front Mol Neurosci (2016) ncbi
Alomone Labs
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
Alomone LabsPSD-95抗体(Alomone, APZ-009)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
Synaptic Systems
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5b
Synaptic SystemsPSD-95抗体(Synaptic Systems, 124002)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5b). Sci Rep (2021) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司PSD-95抗体(CST, 3450S)被用于被用于免疫印迹在小鼠样本上 (图 s2a). Acta Neuropathol Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4p
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 2507)被用于被用于免疫印迹在小鼠样本上 (图 4p). EBioMedicine (2022) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫组化; 人类; 图 6b
  • 免疫印迹; 人类; 图 10d
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling Technology, 3450S)被用于被用于免疫组化在人类样本上 (图 6b) 和 被用于免疫印迹在人类样本上 (图 10d). Front Aging Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 s2d
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 2507)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s2d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫组化; 小鼠; 1:150
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signalling, 3450)被用于被用于免疫组化在小鼠样本上浓度为1:150. Acta Neuropathol (2021) ncbi
domestic rabbit 单克隆(D74D3)
  • 免疫组化-冰冻切片; 人类; 1:250; 图 3a
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, D74D3)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:250 (图 3a). Front Synaptic Neurosci (2021) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 小鼠; 1:1000; 图 s7c
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell signaling, 3450)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7c). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 单克隆(D74D3)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司PSD-95抗体(cell signal, 3409)被用于被用于免疫印迹在小鼠样本上. Aging Cell (2021) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling Technology, 3450)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Sci Adv (2021) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 小鼠; 表 1
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3450)被用于被用于免疫印迹在小鼠样本上 (表 1). Front Synaptic Neurosci (2021) ncbi
domestic rabbit 单克隆(D74D3)
  • 免疫印迹; 小鼠; 图 3k
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3409)被用于被用于免疫印迹在小鼠样本上 (图 3k). iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 2507)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Commun Biol (2021) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫组化; 小鼠; 1:500; 图 4c
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3450)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4c). elife (2020) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 小鼠; 图 3b, 8c
赛信通(上海)生物试剂有限公司PSD-95抗体(CST, 3450)被用于被用于免疫印迹在小鼠样本上 (图 3b, 8c). Theranostics (2020) ncbi
domestic rabbit 单克隆(D74D3)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3409)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Front Pharmacol (2020) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司PSD-95抗体(CST, 3450)被用于被用于免疫印迹在小鼠样本上 (图 6d). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(D74D3)
  • 免疫细胞化学; 小鼠; 1:100; 图 1i
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司PSD-95抗体(CST, 3409)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1i) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Aging Cell (2020) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫细胞化学; 小鼠; 1:200; 图 3d
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3450)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3d). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3450)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Mol Med Rep (2020) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 猕猴; 1:1000; 图 6a, 6b
赛信通(上海)生物试剂有限公司PSD-95抗体(CST, 3450)被用于被用于免疫印迹在猕猴样本上浓度为1:1000 (图 6a, 6b). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling Technology, 2507)被用于被用于免疫印迹在人类样本上 (图 2a). J Neurosci (2019) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 小鼠; 1:2000; 图 4g
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3450S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4g). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 2507)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 2507)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Exp Neurol (2018) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫细胞化学; 小鼠; 1:200; 图 7b
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3450)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 7b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 大鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3450)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Brain Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司PSD-95抗体(cell signalling, 2507S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Mol Neurobiol (2018) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫组化; 人类; 1:200; 图 s10d
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3450S)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s10d). Nature (2017) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 大鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell signaling, 3450)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3e). Front Mol Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell signaling, 2507)被用于被用于免疫印迹在小鼠样本上 (图 3a). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1g
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 2507)被用于被用于免疫细胞化学在小鼠样本上 (图 1g) 和 被用于免疫印迹在小鼠样本上 (图 1h). Exp Neurol (2017) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 小鼠; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3450s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). J Neurosci (2016) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 小鼠; 1:2000; 图 2b
赛信通(上海)生物试剂有限公司PSD-95抗体(Millipore, 3450)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2b). Mol Psychiatry (2018) ncbi
domestic rabbit 单克隆(D74D3)
  • 免疫组化; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司PSD-95抗体(CST, 3409)被用于被用于免疫组化在小鼠样本上 (图 3d). BMC Ophthalmol (2016) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell signaling, 3450s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). J Neurosci Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 6a
  • 免疫印迹; 大鼠; 图 s4a
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 2507)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 6a) 和 被用于免疫印迹在大鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫组化; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell signaling, D27E11)被用于被用于免疫组化在小鼠样本上 (图 3b). J Neurosci (2016) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫细胞化学; 小鼠; 1:200; 图 3
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell signaling, 3450)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell signaling, 2507)被用于被用于免疫印迹在人类样本上 (图 5). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 7
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling Technology, 2507)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7). EMBO Mol Med (2016) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 大鼠; 图 6
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3450S)被用于被用于免疫印迹在大鼠样本上 (图 6). J Neurosci (2016) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3450)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 小鼠; 1:10,000; 图 4
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3450)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4). Neuroscience (2015) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3450)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Int J Neuropsychopharmacol (2015) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3450 s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Mol Neurodegener (2015) ncbi
domestic rabbit 单克隆(D74D3)
  • 免疫组化-石蜡切片; 小鼠; 图 4,5
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell signalling, 3409)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4,5). J Neurosci (2015) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3n
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell signaling, 3450)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3n). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫细胞化学; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling Technology, 3450)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:2000. J Neurosci (2015) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫组化; 小鼠; 图 5f
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling Technology, 3450 XP)被用于被用于免疫组化在小鼠样本上 (图 5f) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 鸡; 1:2000; 图 1
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling Technology, D27E11)被用于被用于免疫印迹在鸡样本上浓度为1:2000 (图 1). Eur J Neurosci (2015) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling Technology, 3450)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Eur J Hum Genet (2016) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 人类; 图 9
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, D27E11)被用于被用于免疫印迹在人类样本上 (图 9). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 s8
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3450)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 s8). Nature (2015) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3450)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Neurobiol (2015) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫组化-石蜡切片; 大鼠; 1:200
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, D27E11)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling Technology, 3450S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling, 3450)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Front Integr Neurosci (2014) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫组化; 小鼠; 1:500
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling Technology, 3450S)被用于被用于免疫组化在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D27E11)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司PSD-95抗体(Cell Signaling Technology, D27E11)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. J Comp Neurol (2011) ncbi
Cayman Chemical
小鼠 单克隆(6G6)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
开曼群岛化学品PSD-95抗体(开曼群岛化学品, 10011435)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Neural Plast (2017) ncbi
Neuromab
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 1:1000; 图 5l
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5l). Nat Commun (2022) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 1:10,000; 图 7a
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 7a). Mol Neurodegener (2022) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s2a
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s2a). Front Neurosci (2021) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化; 小鼠; 1:500; 图 1a
NeuromabPSD-95抗体(UC Davis/NIH Neuromab, 75-028)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). Front Cell Neurosci (2021) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 1:2500; 图 s2a
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 s2a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 小鼠; 1:80; 图 3d
  • 免疫印迹; 小鼠; ; 图 3e
NeuromabPSD-95抗体(Neuro Mab, 75-028)被用于被用于免疫细胞化学在小鼠样本上浓度为1:80 (图 3d) 和 被用于免疫印迹在小鼠样本上浓度为 (图 3e). Biol Open (2021) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 1:1000; 图 1g
NeuromabPSD-95抗体(UC Davis/NIH NeuroMab Facility, 75-028)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). Int J Mol Sci (2021) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化; 小鼠; 1:2500; 图 s2-5b
NeuromabPSD-95抗体(NeuroMab, K28/43)被用于被用于免疫组化在小鼠样本上浓度为1:2500 (图 s2-5b). elife (2021) ncbi
小鼠 单克隆(K28/43)
  • proximity ligation assay; 小鼠; 1:400; 图 4h
  • 免疫细胞化学; 小鼠; 1:500; 图 4b
NeuromabPSD-95抗体(Neuromab, 75-028)被用于被用于proximity ligation assay在小鼠样本上浓度为1:400 (图 4h) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4b). Mol Psychiatry (2021) ncbi
小鼠 单克隆(K28/43)
  • 其他; 小鼠; 1:200; 图 1b
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于其他在小鼠样本上浓度为1:200 (图 1b). Aging Cell (2020) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化-冰冻切片; 小鼠; 图 2f
NeuromabPSD-95抗体(UC Davis/NIH NeuroMab, 75-028)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2f). elife (2020) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 1:500; 图 1j
NeuromabPSD-95抗体(NeuromAb, 75-028)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1j). elife (2020) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 小鼠; 1:100; 图 1i
NeuromabPSD-95抗体(NeuroMab, 73-028)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1i). Aging Cell (2020) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 大鼠; 1:1000; 图 3b
NeuromabPSD-95抗体(Neuromab, 75-028)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b). BMC Neurosci (2020) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 小鼠; 1:500; 图 4c
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4c). Nature (2020) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
NeuromabPSD-95抗体(Neuromab, 75-028)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). elife (2020) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 大鼠; 1:5; 图 1a
NeuromabPSD-95抗体(NeuroMab, K28/43)被用于被用于免疫细胞化学在大鼠样本上浓度为1:5 (图 1a). elife (2019) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化; 小鼠; 图 3b
NeuromabPSD-95抗体(NeuroMab, K28/43)被用于被用于免疫组化在小鼠样本上 (图 3b). Cell Rep (2019) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s1c
  • 免疫印迹; 小鼠; 1:1000; 图 2e
NeuromabPSD-95抗体(NeuroMab, K28/43)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s1c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Science (2019) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 小鼠; 1:1500; 图 6a
NeuromabPSD-95抗体(NeuroMab, 75028)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1500 (图 6a). elife (2019) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 小鼠; 1:1000; 图 5f
NeuromabPSD-95抗体(Neuromab, 75-028)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5f). Front Cell Neurosci (2019) ncbi
小鼠 单克隆(K28/74)
  • 免疫印迹; 小鼠; 1:2000; 图 2d
NeuromabPSD-95抗体(NeuroMab Facility, K28/74)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2d). elife (2019) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 大鼠; 1:500; 图 3c
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 3c). elife (2019) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 大鼠; 1:500; 图 1a
NeuromabPSD-95抗体(NeuroMab, 75?C028)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 1a). elife (2019) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 小鼠; 1:400; 图 ev2a
NeuromabPSD-95抗体(NIH NeuroMab Facility, 75-028)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 ev2a). EMBO J (2019) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 2a
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 2a). Neuron (2018) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
NeuromabPSD-95抗体(Neuromab, 75-028)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). J Neurosci (2018) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
NeuromabPSD-95抗体(NeuroMab, K28/43)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). J Neurochem (2018) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化; 小鼠; 1:1000; 图 6e
  • 免疫印迹; 小鼠; 1:1000; 图 4b
NeuromabPSD-95抗体(Neuromab, 75-028)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Nat Neurosci (2018) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫印迹在小鼠样本上. elife (2017) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化; 小鼠; 图 4c
NeuromabPSD-95抗体(NeuroMab, 73-028)被用于被用于免疫组化在小鼠样本上 (图 4c). Cell Rep (2017) ncbi
小鼠 单克隆(K28/74)
  • 免疫组化-冰冻切片; 小鼠; 图 5d
NeuromabPSD-95抗体(NeuroMab, 75-348)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5d). Cell (2017) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化; 小鼠; 1:200; 表 1
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫组化在小鼠样本上浓度为1:200 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 小鼠; 1:500; 图 3b
NeuromabPSD-95抗体(Antibodies Incorporated, 75-028)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3b). Sci Rep (2017) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 大鼠; 1:350; 图 2b
NeuromabPSD-95抗体(Neuromab, K28/43)被用于被用于免疫细胞化学在大鼠样本上浓度为1:350 (图 2b). Front Mol Neurosci (2017) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 1:5000; 图 s7e
NeuromabPSD-95抗体(NeuroMab, 73-028)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s7e). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化; 小鼠; 1:100; 图 s5
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s5). Cell (2017) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化; 大鼠; 图 81b
NeuromabPSD-95抗体(NeuroMab Facility, 75-028)被用于被用于免疫组化在大鼠样本上 (图 81b). J Comp Neurol (2017) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 1:2000; 图 4e
NeuromabPSD-95抗体(NeuroMab, 73-028)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4e). Mol Neurobiol (2017) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 1:5000; 图 4f
NeuromabPSD-95抗体(NeuroMab, K28/43)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4f). Acta Neuropathol (2016) ncbi
小鼠 单克隆(K28/43)
  • 免疫沉淀; African green monkey; 图 3c
  • 免疫印迹; African green monkey; 图 2c
  • 免疫印迹; 大鼠; 图 2b
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫沉淀在African green monkey样本上 (图 3c), 被用于免疫印迹在African green monkey样本上 (图 2c) 和 被用于免疫印迹在大鼠样本上 (图 2b). Sci Rep (2016) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 大鼠; 1:500; 图 5a
NeuromabPSD-95抗体(UC Davis/NIH NeuroMab Facility, 75-028)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 5a). J Cell Physiol (2017) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 1:250,000
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫印迹在小鼠样本上浓度为1:250,000. Hum Gene Ther (2016) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 大鼠; 图 2d
NeuromabPSD-95抗体(UC Davis/NIH NeuromAb, 75-028)被用于被用于免疫印迹在大鼠样本上 (图 2d). Cell (2016) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化; domestic rabbit; 1:500; 表 1
NeuromabPSD-95抗体(UC Davis/NIH NeuroMab Facility, 75-028)被用于被用于免疫组化在domestic rabbit样本上浓度为1:500 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 图 6a
  • 免疫印迹; 大鼠; 图 s4a
NeuromabPSD-95抗体(NeuroMab, K28/43)被用于被用于免疫印迹在小鼠样本上 (图 6a) 和 被用于免疫印迹在大鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化; 小鼠; 图 st1
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化-石蜡切片; 小鼠; 图 s4c
NeuromabPSD-95抗体(Neuromab, 73-028)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4c). Nat Biotechnol (2016) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 大鼠; 1:1000; 图 1b
  • 免疫印迹; 大鼠; 1:1000; 图 1d
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 1b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1d). Nat Methods (2016) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). Sci Rep (2016) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 1:3000; 图 1c
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1c). Science (2016) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 图 s6
NeuromabPSD-95抗体(UC Davis/NIH NeuroMab, K28/43)被用于被用于免疫印迹在小鼠样本上 (图 s6). Nat Commun (2016) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化-冰冻切片; 小鼠; 图 2b
  • 免疫沉淀; 小鼠; 图 s2c
  • 免疫印迹; 小鼠; 图 2a
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2b), 被用于免疫沉淀在小鼠样本上 (图 s2c) 和 被用于免疫印迹在小鼠样本上 (图 2a). Mol Psychiatry (2017) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 1:100; 图 4d
NeuromabPSD-95抗体(NeuroMab, 73-028)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 4d). Exp Neurol (2016) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2
NeuromabPSD-95抗体(NeuroMab, K28/43)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2). EMBO J (2016) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 大鼠; 1:500; 图 2
NeuromabPSD-95抗体(NeuroMab, K28/43)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 2). Neuron (2015) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 大鼠; 1:250; 图 1
  • 免疫印迹; 大鼠; 1:1000; 图 1
NeuromabPSD-95抗体(Neuromab, 75-028)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 图 5c
NeuromabPSD-95抗体(NeuroMab, K28/43)被用于被用于免疫印迹在小鼠样本上 (图 5c). Mol Neurodegener (2015) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 图 1
  • 免疫细胞化学; 大鼠; 图 1
NeuromabPSD-95抗体(Neuromab, K28/43)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫细胞化学在大鼠样本上 (图 1). Nat Neurosci (2015) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化-冰冻切片; 小鼠; 1:10,000
NeuromabPSD-95抗体(NeuroMab, CA/75-028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10,000. J Mol Neurosci (2016) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 小鼠; 图 7
NeuromabPSD-95抗体(UCDavis, 75-028)被用于被用于免疫细胞化学在小鼠样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 大鼠; 1:1000
NeuromabPSD-95抗体(NeuroMab, K28/43)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurochem (2015) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 1:1000
NeuromabPSD-95抗体(Neuromab, 75-028)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 1:2000; 图 1
NeuromabPSD-95抗体(NeuroMab, K28/43)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Nat Chem Biol (2015) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化; 小鼠; 0.1 ug/ml
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫组化在小鼠样本上浓度为0.1 ug/ml. J Comp Neurol (2015) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 图 1d
NeuromabPSD-95抗体(NeuroMab, K28/43)被用于被用于免疫印迹在小鼠样本上 (图 1d). J Neurosci (2015) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化; 小鼠
NeuromabPSD-95抗体(Neuromab, 75-028)被用于被用于免疫组化在小鼠样本上. Hear Res (2015) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 人类; 图 3
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫印迹在人类样本上 (图 3). Mol Psychiatry (2015) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 图 3
NeuromabPSD-95抗体(NeuroMab Facility, K28/43)被用于被用于免疫印迹在小鼠样本上 (图 3). Mol Neurodegener (2014) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 大鼠; 1:3000
NeuromabPSD-95抗体(Neuromab, 75-028)被用于被用于免疫印迹在大鼠样本上浓度为1:3000. Dev Neurobiol (2015) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 2
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 2). Nat Med (2014) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化; 小鼠; 1:200
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫组化在小鼠样本上浓度为1:200. Mol Vis (2014) ncbi
小鼠 单克隆(K28/74)
  • 免疫印迹; 小鼠; 1:1000; 图 e4
NeuromabPSD-95抗体(NeuroMab, 75-348)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 e4). Nature (2014) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化; 小鼠; 1:400
NeuromabPSD-95抗体(UC Davis / NIH NeuroMab Facility, 75-028)被用于被用于免疫组化在小鼠样本上浓度为1:400. Cell Death Dis (2014) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫印迹在小鼠样本上. J Comp Neurol (2014) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 大鼠; 1:400
  • 免疫印迹; 大鼠; 1:10,000
NeuromabPSD-95抗体(UC Davis/NIH NeuroMab Facility, 75-028)被用于被用于免疫细胞化学在大鼠样本上浓度为1:400 和 被用于免疫印迹在大鼠样本上浓度为1:10,000. PLoS ONE (2014) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 大鼠
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫细胞化学在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠
NeuromabPSD-95抗体(NeuroMab, K28/43)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 人类; 图 7b
  • 免疫细胞化学; 大鼠
NeuromabPSD-95抗体(NeuroMab, K28/43)被用于被用于免疫印迹在人类样本上 (图 7b) 和 被用于免疫细胞化学在大鼠样本上. Mol Cell Proteomics (2013) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 人类
  • 免疫印迹; African green monkey
  • 免疫组化; 大鼠
  • 免疫印迹; 大鼠
NeuromabPSD-95抗体(NeuroMab, K28/43)被用于被用于免疫印迹在人类样本上, 被用于免疫印迹在African green monkey样本上, 被用于免疫组化在大鼠样本上 和 被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 大鼠
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫印迹在大鼠样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 小鼠; 1:1000
NeuromabPSD-95抗体(Neuromab, K28/43)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 小鼠; 0.1 ug/ml
NeuromabPSD-95抗体(UC Davis / NIH NeuroMab Facility, K28/43)被用于被用于免疫印迹在小鼠样本上浓度为0.1 ug/ml. J Neurosci (2013) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 小鼠; 1:100
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. PLoS Comput Biol (2013) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 大鼠
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化-冰冻切片; 小鼠; 1:100
NeuromabPSD-95抗体(UC Davis / NIH NeuroMab Facility, K28/43)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Neurosci (2013) ncbi
小鼠 单克隆(K28/43)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 图 5
NeuromabPSD-95抗体(NeuroMab Facility, K28/43)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 5). J Neurosci (2012) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化; 小鼠; 1:10,000
NeuromabPSD-95抗体(NeuroMab, K28/43)被用于被用于免疫组化在小鼠样本上浓度为1:10,000. J Comp Neurol (2009) ncbi
小鼠 单克隆(K28/43)
  • 免疫印迹; 鸡; 1:2000
NeuromabPSD-95抗体(NeuroMab, 75-028)被用于被用于免疫印迹在鸡样本上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆(K28/43)
  • 免疫组化-冰冻切片; 鸡; 1:50
NeuromabPSD-95抗体(NeuroMab, K28/43)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:50. J Comp Neurol (2008) ncbi
文章列表
  1. Yamada S, Mizukoshi T, Tokunaga A, Sakakibara S. Inka2, a novel Pak4 inhibitor, regulates actin dynamics in neuronal development. PLoS Genet. 2022;18:e1010438 pubmed 出版商
  2. Kim J, Kang S, Chang K. Effect of cx-DHED on Abnormal Glucose Transporter Expression Induced by AD Pathologies in the 5xFAD Mouse Model. Int J Mol Sci. 2022;23: pubmed 出版商
  3. Singh N, Das B, Zhou J, Hu X, Yan R. Targeted BACE-1 inhibition in microglia enhances amyloid clearance and improved cognitive performance. Sci Adv. 2022;8:eabo3610 pubmed 出版商
  4. El Chehadeh S, Han K, Kim D, Jang G, Bakhtiari S, Lim D, et al. SLITRK2 variants associated with neurodevelopmental disorders impair excitatory synaptic function and cognition in mice. Nat Commun. 2022;13:4112 pubmed 出版商
  5. Carpanini S, Torvell M, Bevan R, Byrne R, Daskoulidou N, Saito T, et al. Terminal complement pathway activation drives synaptic loss in Alzheimer's disease models. Acta Neuropathol Commun. 2022;10:99 pubmed 出版商
  6. Gao J, Liu J, Yao M, Zhang W, Yang B, Wang G. Panax notoginseng Saponins Stimulates Neurogenesis and Neurological Restoration After Microsphere-Induced Cerebral Embolism in Rats Partially Via mTOR Signaling. Front Pharmacol. 2022;13:889404 pubmed 出版商
  7. Puntambekar S, Moutinho M, Lin P, Jadhav V, Tumbleson Brink D, Balaji A, et al. CX3CR1 deficiency aggravates amyloid driven neuronal pathology and cognitive decline in Alzheimer's disease. Mol Neurodegener. 2022;17:47 pubmed 出版商
  8. Shrestha J, Santerre M, Allen C, Arjona S, Merali C, Mukerjee R, et al. HIV-1 gp120 Impairs Spatial Memory Through Cyclic AMP Response Element-Binding Protein. Front Aging Neurosci. 2022;14:811481 pubmed 出版商
  9. Hauser D, Behr K, Konno K, Schreiner D, Schmidt A, Watanabe M, et al. Targeted proteoform mapping uncovers specific Neurexin-3 variants required for dendritic inhibition. Neuron. 2022;: pubmed 出版商
  10. Toledo A, Letellier M, Bimbi G, Tessier B, Daburon S, Favereaux A, et al. MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior. elife. 2022;11: pubmed 出版商
  11. Zhou Q, Li S, Li M, Ke D, Wang Q, Yang Y, et al. Human tau accumulation promotes glycogen synthase kinase-3β acetylation and thus upregulates the kinase: A vicious cycle in Alzheimer neurodegeneration. EBioMedicine. 2022;78:103970 pubmed 出版商
  12. Yamasaki S, Tu H, Matsuyama T, Horiuchi M, Hashiguchi T, Sho J, et al. A Genetic modification that reduces ON-bipolar cells in hESC-derived retinas enhances functional integration after transplantation. iScience. 2022;25:103657 pubmed 出版商
  13. Peng W, Liao M, Huang W, Liu P, Levi S, Tseng Y, et al. Conditional Deletion of Activating Rearranged During Transfection Receptor Tyrosine Kinase Leads to Impairment of Photoreceptor Ribbon Synapses and Disrupted Visual Function in Mice. Front Neurosci. 2021;15:728905 pubmed 出版商
  14. Tate K, Kirk B, Tseng A, Ulffers A, LITWA K. Effects of the Selective Serotonin Reuptake Inhibitor Fluoxetine on Developing Neural Circuits in a Model of the Human Fetal Cortex. Int J Mol Sci. 2021;22: pubmed 出版商
  15. Ban Y, Yu T, Feng B, Lorenz C, Wang X, Baker C, et al. Prickle promotes the formation and maintenance of glutamatergic synapses by stabilizing the intercellular planar cell polarity complex. Sci Adv. 2021;7:eabh2974 pubmed 出版商
  16. Wan L, Ai J, Yang C, Jiang J, Zhang Q, Luo Z, et al. Expression of the Excitatory Postsynaptic Scaffolding Protein, Shank3, in Human Brain: Effect of Age and Alzheimer's Disease. Front Aging Neurosci. 2021;13:717263 pubmed 出版商
  17. Hu D, Sun X, Magpusao A, Fedorov Y, Thompson M, Wang B, et al. Small-molecule suppression of calpastatin degradation reduces neuropathology in models of Huntington's disease. Nat Commun. 2021;12:5305 pubmed 出版商
  18. Vila A, Shihabeddin E, Zhang Z, Santhanam A, Ribelayga C, O BRIEN J. Synaptic Scaffolds, Ion Channels and Polyamines in Mouse Photoreceptor Synapses: Anatomy of a Signaling Complex. Front Cell Neurosci. 2021;15:667046 pubmed 出版商
  19. Annamneedi A, Del Angel M, Gundelfinger E, Stork O, Caliskan G. The Presynaptic Scaffold Protein Bassoon in Forebrain Excitatory Neurons Mediates Hippocampal Circuit Maturation: Potential Involvement of TrkB Signalling. Int J Mol Sci. 2021;22: pubmed 出版商
  20. Wani A, Zhu J, ULRICH J, Eteleeb A, Sauerbeck A, Reitz S, et al. Neuronal VCP loss of function recapitulates FTLD-TDP pathology. Cell Rep. 2021;36:109399 pubmed 出版商
  21. Swarnkar S, Avchalumov Y, Espadas I, Grinman E, Liu X, Raveendra B, et al. Molecular motor protein KIF5C mediates structural plasticity and long-term memory by constraining local translation. Cell Rep. 2021;36:109369 pubmed 出版商
  22. Ramaglia V, Dubey M, Malpede M, Petersen N, de Vries S, Ahmed S, et al. Complement-associated loss of CA2 inhibitory synapses in the demyelinated hippocampus impairs memory. Acta Neuropathol. 2021;142:643-667 pubmed 出版商
  23. Frei J, Brandenburg C, Nestor J, Hodzic D, Plachez C, McNeill H, et al. Postnatal expression profiles of atypical cadherin FAT1 suggest its role in autism. Biol Open. 2021;10: pubmed 出版商
  24. Ayuso Dolado S, Esteban Ortega G, Vidaurre O, Díaz Guerra M. A novel cell-penetrating peptide targeting calpain-cleavage of PSD-95 induced by excitotoxicity improves neurological outcome after stroke. Theranostics. 2021;11:6746-6765 pubmed 出版商
  25. Doré K, Carrico Z, Alfonso S, Marino M, Koymans K, Kessels H, et al. PSD-95 protects synapses from β-amyloid. Cell Rep. 2021;35:109194 pubmed 出版商
  26. Diaz González M, Buberman A, Morales M, Ferrer I, Knafo S. Aberrant Synaptic PTEN in Symptomatic Alzheimer's Patients May Link Synaptic Depression to Network Failure. Front Synaptic Neurosci. 2021;13:683290 pubmed 出版商
  27. Ivanova D, Dobson K, Gajbhiye A, Davenport E, Hacker D, Ultanir S, et al. Control of synaptic vesicle release probability via VAMP4 targeting to endolysosomes. Sci Adv. 2021;7: pubmed 出版商
  28. Gribaudo S, Saraulli D, Nato G, Bonzano S, Gambarotta G, Luzzati F, et al. Neurogranin Regulates Adult-Born Olfactory Granule Cell Spine Density and Odor-Reward Associative Memory in Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  29. Park J, Kam T, Lee S, Park H, Oh Y, Kwon S, et al. Blocking microglial activation of reactive astrocytes is neuroprotective in models of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:78 pubmed 出版商
  30. Aoto K, Kato M, Akita T, Nakashima M, Mutoh H, Akasaka N, et al. ATP6V0A1 encoding the a1-subunit of the V0 domain of vacuolar H+-ATPases is essential for brain development in humans and mice. Nat Commun. 2021;12:2107 pubmed 出版商
  31. Rosa J, Farré Alins V, Ortega M, Navarrete M, López Rodríguez A, Palomino Antolin A, et al. TLR4 pathway impairs synaptic number and cerebrovascular functions through astrocyte activation following traumatic brain injury. Br J Pharmacol. 2021;178:3395-3413 pubmed 出版商
  32. Xie J, Jusuf P, Bui B, Dudczig S, Sztal T, Goodbourn P. Altered Visual Function in a Larval Zebrafish Knockout of Neurodevelopmental Risk Gene pdzk1. Invest Ophthalmol Vis Sci. 2021;62:29 pubmed 出版商
  33. Niu M, Zhao F, Bondelid K, Siedlak S, Torres S, Fujioka H, et al. VPS35 D620N knockin mice recapitulate cardinal features of Parkinson's disease. Aging Cell. 2021;20:e13347 pubmed 出版商
  34. Wegmann S, DeVos S, Zeitler B, Marlen K, Bennett R, Pérez Rando M, et al. Persistent repression of tau in the brain using engineered zinc finger protein transcription factors. Sci Adv. 2021;7: pubmed 出版商
  35. Fang H, Bygrave A, Roth R, Johnson R, Huganir R. An optimized CRISPR/Cas9 approach for precise genome editing in neurons. elife. 2021;10: pubmed 出版商
  36. Safari M, Obexer D, Baier Bitterlich G, zur Nedden S. PKN1 Is a Novel Regulator of Hippocampal GluA1 Levels. Front Synaptic Neurosci. 2021;13:640495 pubmed 出版商
  37. Sahasrabudhe A, Begum F, Guevara C, Morrison C, Hsiao K, Kezunovic N, et al. Cyfip1 Regulates SynGAP1 at Hippocampal Synapses. Front Synaptic Neurosci. 2020;12:581714 pubmed 出版商
  38. Lira M, Zamorano P, Cerpa W. Exo70 intracellular redistribution after repeated mild traumatic brain injury. Biol Res. 2021;54:5 pubmed 出版商
  39. Amaral A, Perez Nievas B, Siao Tick Chong M, González Martínez A, Argente Escrig H, Rubio Guerra S, et al. Isoform-selective decrease of glycogen synthase kinase-3-beta (GSK-3β) reduces synaptic tau phosphorylation, transcellular spreading, and aggregation. iScience. 2021;24:102058 pubmed 出版商
  40. Ping S, Qiu X, Kyle M, Zhao L. Brain-derived CCR5 Contributes to Neuroprotection and Brain Repair after Experimental Stroke. Aging Dis. 2021;12:72-92 pubmed 出版商
  41. Zanetti L, Kilicarslan I, Netzer M, Babai N, Seitter H, Koschak A. Function of cone and cone-related pathways in CaV1.4 IT mice. Sci Rep. 2021;11:2732 pubmed 出版商
  42. Heaney C, Namjoshi S, Uneri A, Bach E, Weiner J, Raab Graham K. Role of FMRP in rapid antidepressant effects and synapse regulation. Mol Psychiatry. 2021;26:2350-2362 pubmed 出版商
  43. Stojakovic A, Trushin S, Sheu A, Khalili L, Chang S, Li X, et al. Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition in APP/PS1 female mice. Commun Biol. 2021;4:61 pubmed 出版商
  44. Cuevas E, Holder D, Alshehri A, Tr xe9 guier J, Lakowski J, Sowden J. NRL-/- gene edited human embryonic stem cells generate rod-deficient retinal organoids enriched in S-cone-like photoreceptors. Stem Cells. 2021;39:414-428 pubmed 出版商
  45. Fukata Y, Chen X, Chiken S, Hirano Y, Yamagata A, Inahashi H, et al. LGI1-ADAM22-MAGUK configures transsynaptic nanoalignment for synaptic transmission and epilepsy prevention. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  46. Iwata S, Morikawa M, Takei Y, Hirokawa N. An activity-dependent local transport regulation via degradation and synthesis of KIF17 underlying cognitive flexibility. Sci Adv. 2020;6: pubmed 出版商
  47. Zhang X, Gou Y, Zhang Y, Li J, Han K, Xu Y, et al. Hepcidin overexpression in astrocytes alters brain iron metabolism and protects against amyloid-β induced brain damage in mice. Cell Death Discov. 2020;6:113 pubmed 出版商
  48. Zhang X, Wang R, Hu D, Sun X, Fujioka H, Lundberg K, et al. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer's disease. Sci Adv. 2020;6: pubmed 出版商
  49. Gulyassy P, Puska G, Györffy B, Todorov Völgyi K, Juhasz G, Drahos L, et al. Proteomic comparison of different synaptosome preparation procedures. Amino Acids. 2020;52:1529-1543 pubmed 出版商
  50. Al Abed A, Sellami A, Potier M, Ducourneau E, Gerbeaud Lassau P, Brayda Bruno L, et al. Age-related impairment of declarative memory: linking memorization of temporal associations to GluN2B redistribution in dorsal CA1. Aging Cell. 2020;19:e13243 pubmed 出版商
  51. Chen C, Soto G, Dumrongprechachan V, BANNON N, Kang S, Kozorovitskiy Y, et al. Pathway-specific dysregulation of striatal excitatory synapses by LRRK2 mutations. elife. 2020;9: pubmed 出版商
  52. Maddox J, Randall K, Yadav R, Williams B, Hagen J, Derr P, et al. A dual role for Cav1.4 Ca2+ channels in the molecular and structural organization of the rod photoreceptor synapse. elife. 2020;9: pubmed 出版商
  53. Suzuki K, Elegheert J, Song I, Sasakura H, Senkov O, Matsuda K, et al. A synthetic synaptic organizer protein restores glutamatergic neuronal circuits. Science. 2020;369: pubmed 出版商
  54. Lackie R, Marques Lopes J, Ostapchenko V, Good S, Choy W, van Oosten Hawle P, et al. Increased levels of Stress-inducible phosphoprotein-1 accelerates amyloid-β deposition in a mouse model of Alzheimer's disease. Acta Neuropathol Commun. 2020;8:143 pubmed 出版商
  55. Granger A, Wang W, Robertson K, El Rifai M, Zanello A, Bistrong K, et al. Cortical ChAT+ neurons co-transmit acetylcholine and GABA in a target- and brain-region-specific manner. elife. 2020;9: pubmed 出版商
  56. Xu Z, Kim G, Tan J, Riso A, Sun Y, Xu E, et al. Elevated protein synthesis in microglia causes autism-like synaptic and behavioral aberrations. Nat Commun. 2020;11:1797 pubmed 出版商
  57. Zhang W, Zhou M, Lu W, Gong J, Gao F, Li Y, et al. CNTNAP4 deficiency in dopaminergic neurons initiates parkinsonian phenotypes. Theranostics. 2020;10:3000-3021 pubmed 出版商
  58. Liu D, Bai X, Ma W, Xin D, Chu X, Yuan H, et al. Purmorphamine Attenuates Neuro-Inflammation and Synaptic Impairments After Hypoxic-Ischemic Injury in Neonatal Mice via Shh Signaling. Front Pharmacol. 2020;11:204 pubmed 出版商
  59. Zhong X, Harris G, Smirnova L, Zufferey V, Sá R, Baldino Russo F, et al. Antidepressant Paroxetine Exerts Developmental Neurotoxicity in an iPSC-Derived 3D Human Brain Model. Front Cell Neurosci. 2020;14:25 pubmed 出版商
  60. Kim K, Shin W, Kang M, Lee S, Kim D, Kang R, et al. Presynaptic PTPσ regulates postsynaptic NMDA receptor function through direct adhesion-independent mechanisms. elife. 2020;9: pubmed 出版商
  61. Shi H, Wang Q, Zheng M, Hao S, Lum J, Chen X, et al. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J Neuroinflammation. 2020;17:77 pubmed 出版商
  62. Zhang M, Ruwe D, Saffari R, Kravchenko M, Zhang W. Effects of TRPV1 Activation by Capsaicin and Endogenous N-Arachidonoyl Taurine on Synaptic Transmission in the Prefrontal Cortex. Front Neurosci. 2020;14:91 pubmed 出版商
  63. Rodriguez Ortiz C, Prieto G, Martini A, Forner S, Trujillo Estrada L, LaFerla F, et al. miR-181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer's disease. Aging Cell. 2020;19:e13118 pubmed 出版商
  64. Kim H, Takegahara N, Walsh M, Middleton S, Yu J, Shirakawa J, et al. IgSF11 regulates osteoclast differentiation through association with the scaffold protein PSD-95. Bone Res. 2020;8:5 pubmed 出版商
  65. Lundgren J, Vandermeulen L, Sandebring Matton A, Ahmed S, Winblad B, Di Luca M, et al. Proximity ligation assay reveals both pre- and postsynaptic localization of the APP-processing enzymes ADAM10 and BACE1 in rat and human adult brain. BMC Neurosci. 2020;21:6 pubmed 出版商
  66. Coccia E, Planells Ferrer L, Badillos Rodríguez R, Pascual M, Segura M, Fernández Hernández R, et al. SIVA-1 regulates apoptosis and synaptic function by modulating XIAP interaction with the death receptor antagonist FAIM-L. Cell Death Dis. 2020;11:82 pubmed 出版商
  67. Yu K, Lin C, Hatcher A, Lozzi B, Kong K, Huang Hobbs E, et al. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature. 2020;578:166-171 pubmed 出版商
  68. Sclip A, Sudhof T. LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses. elife. 2020;9: pubmed 出版商
  69. Cha M, Lee K, Lee B. Astroglial changes in the zona incerta in response to motor cortex stimulation in a rat model of chronic neuropathy. Sci Rep. 2020;10:943 pubmed 出版商
  70. Li J, Chiu J, Ramanjulu M, Blass B, Pratico D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener. 2020;15:1 pubmed 出版商
  71. Cifelli J, Berg K, Yang J. Benzothiazole amphiphiles promote RasGRF1-associated dendritic spine formation in human stem cell-derived neurons. FEBS Open Bio. 2020;10:386-395 pubmed 出版商
  72. Zhu Q, Zhang N, Hu N, Jiang R, Lu H, Xuan A, et al. Neural stem cell transplantation improves learning and memory by protecting cholinergic neurons and restoring synaptic impairment in an amyloid precursor protein/presenilin 1 transgenic mouse model of Alzheimer's disease. Mol Med Rep. 2020;21:1172-1180 pubmed 出版商
  73. Lieberman O, Frier M, McGuirt A, Griffey C, Rafikian E, Yang M, et al. Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy. elife. 2020;9: pubmed 出版商
  74. Datta D, Leslie S, Morozov Y, Duque A, Rakic P, van Dyck C, et al. Classical complement cascade initiating C1q protein within neurons in the aged rhesus macaque dorsolateral prefrontal cortex. J Neuroinflammation. 2020;17:8 pubmed 出版商
  75. Griñan Ferré C, Marsal García L, Bellver Sanchis A, Kondengaden S, Turga R, Vazquez S, et al. Pharmacological inhibition of G9a/GLP restores cognition and reduces oxidative stress, neuroinflammation and β-Amyloid plaques in an early-onset Alzheimer's disease mouse model. Aging (Albany NY). 2019;11:11591-11608 pubmed 出版商
  76. Vierra N, Kirmiz M, van der List D, Santana L, Trimmer J. Kv2.1 mediates spatial and functional coupling of L-type calcium channels and ryanodine receptors in mammalian neurons. elife. 2019;8: pubmed 出版商
  77. Joshi D, Zhang C, Babujee L, Vevea J, August B, Sheng Z, et al. Inappropriate Intrusion of an Axonal Mitochondrial Anchor into Dendrites Causes Neurodegeneration. Cell Rep. 2019;29:685-696.e5 pubmed 出版商
  78. Han W, Li J, Pelkey K, Pandey S, Chen X, Wang Y, et al. Shisa7 is a GABAA receptor auxiliary subunit controlling benzodiazepine actions. Science. 2019;366:246-250 pubmed 出版商
  79. Patzke C, Brockmann M, Dai J, Gan K, Grauel M, Fenske P, et al. Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses. Cell. 2019;179:498-513.e22 pubmed 出版商
  80. di Meco A, Pratico D. Early-life exposure to high-fat diet influences brain health in aging mice. Aging Cell. 2019;18:e13040 pubmed 出版商
  81. Dierich M, Hartmann S, Dietrich N, Moeser P, Brede F, Johnson Chacko L, et al. β-Secretase BACE1 Is Required for Normal Cochlear Function. J Neurosci. 2019;39:9013-9027 pubmed 出版商
  82. Holt L, Hernandez R, Pacheco N, Torres Ceja B, Hossain M, Olsen M. Astrocyte morphogenesis is dependent on BDNF signaling via astrocytic TrkB.T1. elife. 2019;8: pubmed 出版商
  83. Zhang R, Liu Y, Chen Y, Li Q, Marshall C, Wu T, et al. Aquaporin 4 deletion exacerbates brain impairments in a mouse model of chronic sleep disruption. CNS Neurosci Ther. 2020;26:228-239 pubmed 出版商
  84. Wegmann S, Bennett R, Delorme L, Robbins A, Hu M, McKenzie D, et al. Experimental evidence for the age dependence of tau protein spread in the brain. Sci Adv. 2019;5:eaaw6404 pubmed 出版商
  85. Yao W, Tambini M, Liu X, D ADAMIO L. Tuning of glutamate, but not GABA, release by an intra-synaptic vesicles APP domain whose function can be modulated by β- or α-secretase cleavage. J Neurosci. 2019;: pubmed 出版商
  86. Duan J, Pandey S, Li T, Castellano D, Gu X, Li J, et al. Genetic Deletion of GABAA Receptors Reveals Distinct Requirements of Neurotransmitter Receptors for GABAergic and Glutamatergic Synapse Development. Front Cell Neurosci. 2019;13:217 pubmed 出版商
  87. Velasco S, Kedaigle A, Simmons S, Nash A, Rocha M, Quadrato G, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 2019;: pubmed 出版商
  88. Andoh M, Shibata K, Okamoto K, Onodera J, Morishita K, Miura Y, et al. Exercise Reverses Behavioral and Synaptic Abnormalities after Maternal Inflammation. Cell Rep. 2019;27:2817-2825.e5 pubmed 出版商
  89. Koster K, Francesconi W, Berton F, Alahmadi S, Srinivas R, Yoshii A. Developmental NMDA receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model. elife. 2019;8: pubmed 出版商
  90. Bieri G, Brahic M, Bousset L, Couthouis J, Kramer N, Ma R, et al. LRRK2 modifies α-syn pathology and spread in mouse models and human neurons. Acta Neuropathol. 2019;137:961-980 pubmed 出版商
  91. Zhong L, Xu Y, Zhuo R, Wang T, Wang K, Huang R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer's disease model. Nat Commun. 2019;10:1365 pubmed 出版商
  92. Giandomenico S, Mierau S, Gibbons G, Wenger L, Masullo L, Sit T, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22:669-679 pubmed 出版商
  93. Rademacher N, Kuropka B, Kunde S, Wahl M, Freund C, Shoichet S. Intramolecular domain dynamics regulate synaptic MAGUK protein interactions. elife. 2019;8: pubmed 出版商
  94. Zhu C, Li B, Frontzek K, Liu Y, Aguzzi A. SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. J Exp Med. 2019;216:743-756 pubmed 出版商
  95. Henderson N, Le Marchand S, Hruska M, Hippenmeyer S, Luo L, Dalva M. Ephrin-B3 controls excitatory synapse density through cell-cell competition for EphBs. elife. 2019;8: pubmed 出版商
  96. Awasthi A, Ramachandran B, Ahmed S, Benito E, Shinoda Y, Nitzan N, et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science. 2019;363: pubmed 出版商
  97. Olthof B, Gartside S, Rees A. Puncta of Neuronal Nitric Oxide Synthase (nNOS) Mediate NMDA Receptor Signaling in the Auditory Midbrain. J Neurosci. 2019;39:876-887 pubmed 出版商
  98. Salazar S, Cox T, Lee S, Brody A, Chyung A, Haas L, et al. Alzheimer's Disease Risk Factor Pyk2 Mediates Amyloid-β-Induced Synaptic Dysfunction and Loss. J Neurosci. 2019;39:758-772 pubmed 出版商
  99. Schaffer T, Smith J, Cook E, Phan T, Margolis S. PKCε Inhibits Neuronal Dendritic Spine Development through Dual Phosphorylation of Ephexin5. Cell Rep. 2018;25:2470-2483.e8 pubmed 出版商
  100. Zhao Y, Sun X, Qi X. Inhibition of Drp1 hyperactivation reduces neuropathology and behavioral deficits in zQ175 knock-in mouse model of Huntington's disease. Biochem Biophys Res Commun. 2018;507:319-323 pubmed 出版商
  101. Fossati G, Pozzi D, Canzi A, Mirabella F, Valentino S, Morini R, et al. Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling and β1-integrin. EMBO J. 2019;38: pubmed 出版商
  102. Hussain S, Ringsevjen H, Schupp M, Hvalby Ø, Sørensen J, Jensen V, et al. A possible postsynaptic role for SNAP-25 in hippocampal synapses. Brain Struct Funct. 2019;224:521-532 pubmed 出版商
  103. Real R, Peter M, Trabalza A, Khan S, Smith M, Dopp J, et al. In vivo modeling of human neuron dynamics and Down syndrome. Science. 2018;362: pubmed 出版商
  104. Brown E, Lautz J, Davis T, Gniffke E, VanSchoiack A, Neier S, et al. Clustering the autisms using glutamate synapse protein interaction networks from cortical and hippocampal tissue of seven mouse models. Mol Autism. 2018;9:48 pubmed 出版商
  105. Zhu F, Cizeron M, Qiu Z, Benavides Piccione R, Kopanitsa M, Skene N, et al. Architecture of the Mouse Brain Synaptome. Neuron. 2018;99:781-799.e10 pubmed 出版商
  106. Egbenya D, Hussain S, Lai Y, Xia J, Anderson A, Davanger S. Changes in synaptic AMPA receptor concentration and composition in chronic temporal lobe epilepsy. Mol Cell Neurosci. 2018;92:93-103 pubmed 出版商
  107. Norris G, Smirnov I, Filiano A, Shadowen H, Cody K, Thompson J, et al. Neuronal integrity and complement control synaptic material clearance by microglia after CNS injury. J Exp Med. 2018;215:1789-1801 pubmed 出版商
  108. Baglietto Vargas D, Prieto G, Limon A, Forner S, Rodriguez Ortiz C, Ikemura K, et al. Impaired AMPA signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer's disease. Aging Cell. 2018;17:e12791 pubmed 出版商
  109. Wang W, Rein B, Zhang F, Tan T, Zhong P, Qin L, et al. Chemogenetic Activation of Prefrontal Cortex Rescues Synaptic and Behavioral Deficits in a Mouse Model of 16p11.2 Deletion Syndrome. J Neurosci. 2018;38:5939-5948 pubmed 出版商
  110. Lautz J, Brown E, Williams VanSchoiack A, Smith S. Synaptic activity induces input-specific rearrangements in a targeted synaptic protein interaction network. J Neurochem. 2018;146:540-559 pubmed 出版商
  111. Ahmad F, Salahuddin M, Alsamman K, Herzallah H, Al Otaibi S. Neonatal maternal deprivation impairs localized de novo activity-induced protein translation at the synapse in the rat hippocampus. Biosci Rep. 2018;38: pubmed 出版商
  112. Qin L, Ma K, Wang Z, Hu Z, Matas E, Wei J, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21:564-575 pubmed 出版商
  113. Vainchtein I, Chin G, Cho F, Kelley K, Miller J, Chien E, et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science. 2018;359:1269-1273 pubmed 出版商
  114. Nakao A, Miyazaki N, Ohira K, Hagihara H, Takagi T, Usuda N, et al. Immature morphological properties in subcellular-scale structures in the dentate gyrus of Schnurri-2 knockout mice: a model for schizophrenia and intellectual disability. Mol Brain. 2017;10:60 pubmed 出版商
  115. Lu F, Shao G, Wang Y, Guan S, Burlingame A, Liu X, et al. Hypoxia-ischemia modifies postsynaptic GluN2B-containing NMDA receptor complexes in the neonatal mouse brain. Exp Neurol. 2018;299:65-74 pubmed 出版商
  116. Tanabe Y, Naito Y, Vasuta C, Lee A, Soumounou Y, Linhoff M, et al. IgSF21 promotes differentiation of inhibitory synapses via binding to neurexin2?. Nat Commun. 2017;8:408 pubmed 出版商
  117. Salazar S, Gallardo C, Kaufman A, Herber C, Haas L, Robinson S, et al. Conditional Deletion of Prnp Rescues Behavioral and Synaptic Deficits after Disease Onset in Transgenic Alzheimer's Disease. J Neurosci. 2017;37:9207-9221 pubmed 出版商
  118. Martenson J, Yamasaki T, Chaudhury N, Albrecht D, Tomita S. Assembly rules for GABAA receptor complexes in the brain. elife. 2017;6: pubmed 出版商
  119. Wang G, Li S, Gilbert J, Gritton H, Wang Z, Li Z, et al. Crucial Roles for SIRT2 and AMPA Receptor Acetylation in Synaptic Plasticity and Memory. Cell Rep. 2017;20:1335-1347 pubmed 出版商
  120. Zhao Y, Tian J, Sui S, Yuan X, Chen H, Qu C, et al. Loss of succinyl-CoA synthase ADP-forming β subunit disrupts mtDNA stability and mitochondrial dynamics in neurons. Sci Rep. 2017;7:7169 pubmed 出版商
  121. Huang H, Lin X, Liang Z, Zhao T, Du S, Loy M, et al. Cdk5-dependent phosphorylation of liprin?1 mediates neuronal activity-dependent synapse development. Proc Natl Acad Sci U S A. 2017;114:E6992-E7001 pubmed 出版商
  122. Nikhil K, Shah K. The Cdk5-Mcl-1 axis promotes mitochondrial dysfunction and neurodegeneration in a model of Alzheimer's disease. J Cell Sci. 2017;130:3023-3039 pubmed 出版商
  123. Wilkinson B, Li J, Coba M. Synaptic GAP and GEF Complexes Cluster Proteins Essential for GTP Signaling. Sci Rep. 2017;7:5272 pubmed 出版商
  124. Bellono N, Bayrer J, Leitch D, Castro J, Zhang C, O Donnell T, et al. Enterochromaffin Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways. Cell. 2017;170:185-198.e16 pubmed 出版商
  125. Sodero A, Rodríguez Silva M, Salio C, Sassoè Pognetto M, Chambers J. Sab is differentially expressed in the brain and affects neuronal activity. Brain Res. 2017;1670:76-85 pubmed 出版商
  126. Sai K, Wang S, Kaito A, Fujiwara T, Maruo T, Itoh Y, et al. Multiple roles of afadin in the ultrastructural morphogenesis of mouse hippocampal mossy fiber synapses. J Comp Neurol. 2017;525:2719-2734 pubmed 出版商
  127. Getz A, Xu F, Visser F, Persson R, Syed N. Tumor suppressor menin is required for subunit-specific nAChR α5 transcription and nAChR-dependent presynaptic facilitation in cultured mouse hippocampal neurons. Sci Rep. 2017;7:1768 pubmed 出版商
  128. Frank R, Zhu F, Komiyama N, Grant S. Hierarchical organization and genetically separable subfamilies of PSD95 postsynaptic supercomplexes. J Neurochem. 2017;142:504-511 pubmed 出版商
  129. Arcego D, Toniazzo A, Krolow R, Lampert C, Berlitz C, Dos Santos Garcia E, et al. Impact of High-Fat Diet and Early Stress on Depressive-Like Behavior and Hippocampal Plasticity in Adult Male Rats. Mol Neurobiol. 2018;55:2740-2753 pubmed 出版商
  130. Birey F, Andersen J, Makinson C, Islam S, Wei W, Huber N, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545:54-59 pubmed 出版商
  131. Dwyer C, Scudder S, Lin Y, Dozier L, Phan D, Allen N, et al. Neurodevelopmental Changes in Excitatory Synaptic Structure and Function in the Cerebral Cortex of Sanfilippo Syndrome IIIA Mice. Sci Rep. 2017;7:46576 pubmed 出版商
  132. Vogel Ciernia A, Kramár E, Matheos D, Havekes R, Hemstedt T, Magnan C, et al. Mutation of neuron-specific chromatin remodeling subunit BAF53b: rescue of plasticity and memory by manipulating actin remodeling. Learn Mem. 2017;24:199-209 pubmed 出版商
  133. Bobo Jiménez V, Delgado Esteban M, Angibaud J, Sánchez Morán I, de la Fuente A, Yajeya J, et al. APC/CCdh1-Rock2 pathway controls dendritic integrity and memory. Proc Natl Acad Sci U S A. 2017;114:4513-4518 pubmed 出版商
  134. Li J, Barrero C, Merali S, Pratico D. Five lipoxygenase hypomethylation mediates the homocysteine effect on Alzheimer's phenotype. Sci Rep. 2017;7:46002 pubmed 出版商
  135. Kwon M, Han J, Kim U, Cha M, Um S, Bai S, et al. Inhibition of Mammalian Target of Rapamycin (mTOR) Signaling in the Insular Cortex Alleviates Neuropathic Pain after Peripheral Nerve Injury. Front Mol Neurosci. 2017;10:79 pubmed 出版商
  136. Schrötter A, Oberhaus A, Kolbe K, Seger S, Mastalski T, El Magraoui F, et al. LMD proteomics provides evidence for hippocampus field-specific motor protein abundance changes with relevance to Alzheimer's disease. Biochim Biophys Acta Proteins Proteom. 2017;1865:703-714 pubmed 出版商
  137. Biggi S, Buccarello L, Sclip A, Lippiello P, Tonna N, Rumio C, et al. Evidence of Presynaptic Localization and Function of the c-Jun N-Terminal Kinase. Neural Plast. 2017;2017:6468356 pubmed 出版商
  138. Croft C, Wade M, Kurbatskaya K, Mastrandreas P, Hughes M, Phillips E, et al. Membrane association and release of wild-type and pathological tau from organotypic brain slice cultures. Cell Death Dis. 2017;8:e2671 pubmed 出版商
  139. Han Q, Lin Q, Huang P, Chen M, Hu X, Fu H, et al. Microglia-derived IL-1? contributes to axon development disorders and synaptic deficit through p38-MAPK signal pathway in septic neonatal rats. J Neuroinflammation. 2017;14:52 pubmed 出版商
  140. Behnke J, Cheedalla A, Bhatt V, Bhat M, Teng S, Palmieri A, et al. Neuropeptide VGF Promotes Maturation of Hippocampal Dendrites That Is Reduced by Single Nucleotide Polymorphisms. Int J Mol Sci. 2017;18: pubmed 出版商
  141. Fowke T, Karunasinghe R, Bai J, Jordan S, Gunn A, Dean J. Hyaluronan synthesis by developing cortical neurons in vitro. Sci Rep. 2017;7:44135 pubmed 出版商
  142. Joe I, Kim J, Kim H, Hong J, Kim M, Park M. Cyclin Y-mediated transcript profiling reveals several important functional pathways regulated by Cyclin Y in hippocampal neurons. PLoS ONE. 2017;12:e0172547 pubmed 出版商
  143. Ripamonti S, Ambrozkiewicz M, Guzzi F, Gravati M, Biella G, Bormuth I, et al. Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons. elife. 2017;6: pubmed 出版商
  144. Xu J, Marshall J, Fernandes H, Nomura T, Copits B, Procissi D, et al. Complete Disruption of the Kainate Receptor Gene Family Results in Corticostriatal Dysfunction in Mice. Cell Rep. 2017;18:1848-1857 pubmed 出版商
  145. Li J, Xie X, Li Y, Liu X, Liao X, Su Y, et al. Differential Behavioral and Neurobiological Effects of Chronic Corticosterone Treatment in Adolescent and Adult Rats. Front Mol Neurosci. 2017;10:25 pubmed 出版商
  146. Zhu Y, Zhang Q, Zhang W, Li N, Dai Y, Tu J, et al. Protective Effect of 17β-Estradiol Upon Hippocampal Spine Density and Cognitive Function in an Animal Model of Vascular Dementia. Sci Rep. 2017;7:42660 pubmed 出版商
  147. Zhu G, Briz V, Seinfeld J, Liu Y, Bi X, Baudry M. Calpain-1 deletion impairs mGluR-dependent LTD and fear memory extinction. Sci Rep. 2017;7:42788 pubmed 出版商
  148. Zhang Q, Esrafilzadeh D, Crook J, Kapsa R, Stewart E, Tomaskovic Crook E, et al. Electrical Stimulation Using Conductive Polymer Polypyrrole Counters Reduced Neurite Outgrowth of Primary Prefrontal Cortical Neurons from NRG1-KO and DISC1-LI Mice. Sci Rep. 2017;7:42525 pubmed 出版商
  149. Fowler D, Peters J, Williams C, Washbourne P. Redundant Postsynaptic Functions of SynCAMs 1-3 during Synapse Formation. Front Mol Neurosci. 2017;10:24 pubmed 出版商
  150. Genç B, Jara J, Lagrimas A, Pytel P, Roos R, Mesulam M, et al. Apical dendrite degeneration, a novel cellular pathology for Betz cells in ALS. Sci Rep. 2017;7:41765 pubmed 出版商
  151. Sterky F, Trotter J, Lee S, Recktenwald C, Du X, Zhou B, et al. Carbonic anhydrase-related protein CA10 is an evolutionarily conserved pan-neurexin ligand. Proc Natl Acad Sci U S A. 2017;114:E1253-E1262 pubmed 出版商
  152. Kim S, Im S, Oh S, Jeong S, Yoon E, Lee C, et al. Anisotropically organized three-dimensional culture platform for reconstruction of a hippocampal neural network. Nat Commun. 2017;8:14346 pubmed 出版商
  153. Niu Y, Dai Z, Liu W, Zhang C, Yang Y, Guo Z, et al. Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory. elife. 2017;6: pubmed 出版商
  154. Takahashi H, Klein Z, Bhagat S, Kaufman A, Kostylev M, Ikezu T, et al. Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathol. 2017;133:785-807 pubmed 出版商
  155. Ugun Klusek A, Tatham M, Elkharaz J, Constantin Teodosiu D, Lawler K, Mohamed H, et al. Continued 26S proteasome dysfunction in mouse brain cortical neurons impairs autophagy and the Keap1-Nrf2 oxidative defence pathway. Cell Death Dis. 2017;8:e2531 pubmed 出版商
  156. Abraira V, Kuehn E, Chirila A, Springel M, Toliver A, Zimmerman A, et al. The Cellular and Synaptic Architecture of the Mechanosensory Dorsal Horn. Cell. 2017;168:295-310.e19 pubmed 出版商
  157. Fasoli A, Dang J, Johnson J, Gouw A, Fogli Iseppe A, Ishida A. Somatic and neuritic spines on tyrosine hydroxylase-immunopositive cells of rat retina. J Comp Neurol. 2017;525:1707-1730 pubmed 出版商
  158. Song L, Yu A, Murray K, Cortopassi G. Bipolar cell reduction precedes retinal ganglion neuron loss in a complex 1 knockout mouse model. Brain Res. 2017;1657:232-244 pubmed 出版商
  159. Sabanov V, Braat S, D Andrea L, Willemsen R, Zeidler S, Rooms L, et al. Impaired GABAergic inhibition in the hippocampus of Fmr1 knockout mice. Neuropharmacology. 2017;116:71-81 pubmed 出版商
  160. Bodrikov V, Pauschert A, Kochlamazashvili G, Stuermer C. Reggie-1 and reggie-2 (flotillins) participate in Rab11a-dependent cargo trafficking, spine synapse formation and LTP-related AMPA receptor (GluA1) surface exposure in mouse hippocampal neurons. Exp Neurol. 2017;289:31-45 pubmed 出版商
  161. Nguyen T, Schreiner D, Xiao L, Traunmüller L, Bornmann C, Scheiffele P. An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus. elife. 2016;5: pubmed 出版商
  162. Marco E, Ballesta J, Irala C, Hernández M, Serrano M, Mela V, et al. Sex-dependent influence of chronic mild stress (CMS) on voluntary alcohol consumption; study of neurobiological consequences. Pharmacol Biochem Behav. 2017;152:68-80 pubmed 出版商
  163. Zhang H, Sun S, Wu L, Pchitskaya E, Zakharova O, Fon Tacer K, et al. Store-Operated Calcium Channel Complex in Postsynaptic Spines: A New Therapeutic Target for Alzheimer's Disease Treatment. J Neurosci. 2016;36:11837-11850 pubmed
  164. Mohammad H, Marchisella F, Ortega Martinez S, Hollos P, Eerola K, Komulainen E, et al. JNK1 controls adult hippocampal neurogenesis and imposes cell-autonomous control of anxiety behaviour from the neurogenic niche. Mol Psychiatry. 2018;23:362-374 pubmed 出版商
  165. Le H, Ahn B, Lee H, Shin A, Chae S, Lee S, et al. Disruption of Ninjurin1 Leads to Repetitive and Anxiety-Like Behaviors in Mice. Mol Neurobiol. 2017;54:7353-7368 pubmed 出版商
  166. Cai Y, Yang L, Hu G, Chen X, Niu F, Yuan L, et al. Regulation of morphine-induced synaptic alterations: Role of oxidative stress, ER stress, and autophagy. J Cell Biol. 2016;215:245-258 pubmed
  167. Cho S, Song J, Shin J, Kim S. Neonatal disease environment limits the efficacy of retinal transplantation in the LCA8 mouse model. BMC Ophthalmol. 2016;16:193 pubmed
  168. Laclair K, Donde A, Ling J, Jeong Y, Chhabra R, Martin L, et al. Depletion of TDP-43 decreases fibril and plaque β-amyloid and exacerbates neurodegeneration in an Alzheimer's mouse model. Acta Neuropathol. 2016;132:859-873 pubmed
  169. Rademacher N, Schmerl B, Lardong J, Wahl M, Shoichet S. MPP2 is a postsynaptic MAGUK scaffold protein that links SynCAM1 cell adhesion molecules to core components of the postsynaptic density. Sci Rep. 2016;6:35283 pubmed 出版商
  170. Shapiro L, Parsons R, Koleske A, Gourley S. Differential expression of cytoskeletal regulatory factors in the adolescent prefrontal cortex: Implications for cortical development. J Neurosci Res. 2017;95:1123-1143 pubmed 出版商
  171. Rue L, Bañez Coronel M, Creus Muncunill J, Giralt A, Alcalá Vida R, Mentxaka G, et al. Targeting CAG repeat RNAs reduces Huntington's disease phenotype independently of huntingtin levels. J Clin Invest. 2016;126:4319-4330 pubmed 出版商
  172. Ampuero E, Jury N, Hartel S, Marzolo M, van Zundert B. Interfering of the Reelin/ApoER2/PSD95 Signaling Axis Reactivates Dendritogenesis of Mature Hippocampal Neurons. J Cell Physiol. 2017;232:1187-1199 pubmed 出版商
  173. Walkup W, Mastro T, Schenker L, Vielmetter J, Hu R, Iancu A, et al. A model for regulation by SynGAP-?1 of binding of synaptic proteins to PDZ-domain 'Slots' in the postsynaptic density. elife. 2016;5: pubmed 出版商
  174. Arsenault J, Gholizadeh S, Niibori Y, Pacey L, Halder S, Koxhioni E, et al. FMRP Expression Levels in Mouse Central Nervous System Neurons Determine Behavioral Phenotype. Hum Gene Ther. 2016;27:982-996 pubmed 出版商
  175. Chen Y, Kuo H, Bornschein U, Takahashi H, Chen S, Lu K, et al. Foxp2 controls synaptic wiring of corticostriatal circuits and vocal communication by opposing Mef2c. Nat Neurosci. 2016;19:1513-1522 pubmed 出版商
  176. Begum A, Aguilar J, Elias L, Hong Y. Silver nanoparticles exhibit coating and dose-dependent neurotoxicity in glutamatergic neurons derived from human embryonic stem cells. Neurotoxicology. 2016;57:45-53 pubmed 出版商
  177. Breton Provencher V, Bakhshetyan K, Hardy D, Bammann R, Cavarretta F, Snapyan M, et al. Principal cell activity induces spine relocation of adult-born interneurons in the olfactory bulb. Nat Commun. 2016;7:12659 pubmed 出版商
  178. Loh K, Stawski P, Draycott A, Udeshi N, Lehrman E, Wilton D, et al. Proteomic Analysis of Unbounded Cellular Compartments: Synaptic Clefts. Cell. 2016;166:1295-1307.e21 pubmed 出版商
  179. Vila A, Whitaker C, O BRIEN J. Membrane-associated guanylate kinase scaffolds organize a horizontal cell synaptic complex restricted to invaginating contacts with photoreceptors. J Comp Neurol. 2017;525:850-867 pubmed 出版商
  180. Fukada M, Nakayama A, Mamiya T, Yao T, Kawaguchi Y. Dopaminergic abnormalities in Hdac6-deficient mice. Neuropharmacology. 2016;110:470-479 pubmed 出版商
  181. Heintz T, Eva R, Fawcett J. Regional Regulation of Purkinje Cell Dendritic Spines by Integrins and Eph/Ephrins. PLoS ONE. 2016;11:e0158558 pubmed 出版商
  182. Wang D, Mitchell E. Cognition and Synaptic-Plasticity Related Changes in Aged Rats Supplemented with 8- and 10-Carbon Medium Chain Triglycerides. PLoS ONE. 2016;11:e0160159 pubmed 出版商
  183. Wang W, Trieu B, Palmer L, Jia Y, Pham D, Jung K, et al. A Primary Cortical Input to Hippocampus Expresses a Pathway-Specific and Endocannabinoid-Dependent Form of Long-Term Potentiation. Eneuro. 2016;3: pubmed 出版商
  184. Kumar A, Paeger L, Kosmas K, Kloppenburg P, Noegel A, Peche V. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2. Front Cell Neurosci. 2016;10:180 pubmed 出版商
  185. Li Y, Chang L, Song Y, Gao X, Roselli F, Liu J, et al. Astrocytic GluN2A and GluN2B Oppose the Synaptotoxic Effects of Amyloid-?1-40 in Hippocampal Cells. J Alzheimers Dis. 2016;54:135-48 pubmed 出版商
  186. Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed 出版商
  187. Choi M, Ahn S, Yang E, Kim H, Chong Y, Kim H. Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus. Mol Brain. 2016;9:72 pubmed 出版商
  188. Won S, Incontro S, Nicoll R, Roche K. PSD-95 stabilizes NMDA receptors by inducing the degradation of STEP61. Proc Natl Acad Sci U S A. 2016;113:E4736-44 pubmed 出版商
  189. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  190. Bodaleo F, Montenegro Venegas C, Henríquez D, Court F, Gonzalez Billault C. Microtubule-associated protein 1B (MAP1B)-deficient neurons show structural presynaptic deficiencies in vitro and altered presynaptic physiology. Sci Rep. 2016;6:30069 pubmed 出版商
  191. Park K, Ribic A, Laage Gaupp F, Coman D, Huang Y, Dulla C, et al. Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1. J Neurosci. 2016;36:7464-75 pubmed 出版商
  192. Planaguma J, Haselmann H, Mannara F, Petit Pedrol M, Grünewald B, Aguilar E, et al. Ephrin-B2 prevents N-methyl-D-aspartate receptor antibody effects on memory and neuroplasticity. Ann Neurol. 2016;80:388-400 pubmed 出版商
  193. Tillberg P, Chen F, Piatkevich K, Zhao Y, Yu C, English B, et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol. 2016;34:987-92 pubmed 出版商
  194. Brai E, Alina Raio N, Alberi L. Notch1 hallmarks fibrillary depositions in sporadic Alzheimer's disease. Acta Neuropathol Commun. 2016;4:64 pubmed 出版商
  195. Emanuele M, Esposito A, Camerini S, Antonucci F, Ferrara S, Seghezza S, et al. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts. EBioMedicine. 2016;7:191-204 pubmed 出版商
  196. Yokoi N, Fukata Y, Sekiya A, Murakami T, Kobayashi K, Fukata M. Identification of PSD-95 Depalmitoylating Enzymes. J Neurosci. 2016;36:6431-44 pubmed 出版商
  197. Wang W, Kantorovich S, Babayan A, Hou B, Gall C, Lynch G. Estrogen's Effects on Excitatory Synaptic Transmission Entail Integrin and TrkB Transactivation and Depend Upon ?1-integrin function. Neuropsychopharmacology. 2016;41:2723-32 pubmed 出版商
  198. Gross G, Straub C, Perez Sanchez J, Dempsey W, Junge J, Roberts R, et al. An E3-ligase-based method for ablating inhibitory synapses. Nat Methods. 2016;13:673-8 pubmed 出版商
  199. Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, et al. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun. 2016;7: pubmed 出版商
  200. Lazarczyk M, Kemmler J, Eyford B, Short J, Varghese M, Sowa A, et al. Major Histocompatibility Complex class I proteins are critical for maintaining neuronal structural complexity in the aging brain. Sci Rep. 2016;6:26199 pubmed 出版商
  201. Reinhard J, Kriz A, Galic M, Angliker N, Rajalu M, Vogt K, et al. The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory. Nat Commun. 2016;7:11613 pubmed 出版商
  202. Gibon J, Unsain N, Gamache K, Thomas R, de León A, Johnstone A, et al. The X-linked inhibitor of apoptosis regulates long-term depression and learning rate. FASEB J. 2016;30:3083-90 pubmed 出版商
  203. Odawara A, Katoh H, Matsuda N, Suzuki I. Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture. Sci Rep. 2016;6:26181 pubmed 出版商
  204. Xia M, Zhu S, Shevelkin A, Ross C, Pletnikov M. DISC1, astrocytes and neuronal maturation: a possible mechanistic link with implications for mental disorders. J Neurochem. 2016;138:518-24 pubmed 出版商
  205. Matchynski Franks J, Susick L, Schneider B, Perrine S, Conti A. Impaired Ethanol-Induced Sensitization and Decreased Cannabinoid Receptor-1 in a Model of Posttraumatic Stress Disorder. PLoS ONE. 2016;11:e0155759 pubmed 出版商
  206. Zhang T, Huang L, Zhang L, Tan M, Pu M, Pickard G, et al. ON and OFF retinal ganglion cells differentially regulate serotonergic and GABAergic activity in the dorsal raphe nucleus. Sci Rep. 2016;6:26060 pubmed 出版商
  207. Traunmüller L, Gomez A, Nguyen T, Scheiffele P. Control of neuronal synapse specification by a highly dedicated alternative splicing program. Science. 2016;352:982-6 pubmed 出版商
  208. Janssen C, Jansen D, Mutsaers M, Dederen P, Geenen B, Mulder M, et al. The Effect of a High-Fat Diet on Brain Plasticity, Inflammation and Cognition in Female ApoE4-Knockin and ApoE-Knockout Mice. PLoS ONE. 2016;11:e0155307 pubmed 出版商
  209. Wang X, Bey A, Katz B, Badea A, Kim N, David L, et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun. 2016;7:11459 pubmed 出版商
  210. Beck S, Guo L, Phensy A, Tian J, Wang L, Tandon N, et al. Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer's disease. Nat Commun. 2016;7:11483 pubmed 出版商
  211. Park J, Yu Y, Zhou C, Li K, Wang D, Chang E, et al. Central Mechanisms Mediating Thrombospondin-4-induced Pain States. J Biol Chem. 2016;291:13335-48 pubmed 出版商
  212. Buren C, Tu G, Parsons M, Sepers M, Raymond L. Influence of cortical synaptic input on striatal neuronal dendritic arborization and sensitivity to excitotoxicity in corticostriatal coculture. J Neurophysiol. 2016;116:380-90 pubmed 出版商
  213. Frank R, Komiyama N, Ryan T, Zhu F, O Dell T, Grant S. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016;7:11264 pubmed 出版商
  214. Kim B, Silverman S, Liu Y, Wordinger R, Pang I, Clark A. In vitro and in vivo neuroprotective effects of cJun N-terminal kinase inhibitors on retinal ganglion cells. Mol Neurodegener. 2016;11:30 pubmed 出版商
  215. Lauterborn J, Kramar E, Rice J, Babayan A, Cox C, Karsten C, et al. Cofilin Activation Is Temporally Associated with the Cessation of Growth in the Developing Hippocampus. Cereb Cortex. 2017;27:2640-2651 pubmed 出版商
  216. Kim S, Hayashi H, Ishikawa T, Shibata K, Shigetomi E, Shinozaki Y, et al. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. J Clin Invest. 2016;126:1983-97 pubmed 出版商
  217. Williams P, Tribble J, Pepper K, Cross S, Morgan B, Morgan J, et al. Inhibition of the classical pathway of the complement cascade prevents early dendritic and synaptic degeneration in glaucoma. Mol Neurodegener. 2016;11:26 pubmed 出版商
  218. Kurbatskaya K, Phillips E, Croft C, Dentoni G, Hughes M, Wade M, et al. Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer's disease brain. Acta Neuropathol Commun. 2016;4:34 pubmed 出版商
  219. Schedin Weiss S, Caesar I, Winblad B, Blom H, Tjernberg L. Super-resolution microscopy reveals ?-secretase at both sides of the neuronal synapse. Acta Neuropathol Commun. 2016;4:29 pubmed 出版商
  220. Kos A, Wanke K, Gioio A, Martens G, Kaplan B, Aschrafi A. Monitoring mRNA Translation in Neuronal Processes Using Fluorescent Non-Canonical Amino Acid Tagging. J Histochem Cytochem. 2016;64:323-33 pubmed 出版商
  221. Fujiwara K, Fujita Y, Kasai A, Onaka Y, Hashimoto H, Okada H, et al. Deletion of JMJD2B in neurons leads to defective spine maturation, hyperactive behavior and memory deficits in mouse. Transl Psychiatry. 2016;6:e766 pubmed 出版商
  222. Vicidomini C, Ponzoni L, Lim D, Schmeisser M, Reim D, Morello N, et al. Pharmacological enhancement of mGlu5 receptors rescues behavioral deficits in SHANK3 knock-out mice. Mol Psychiatry. 2017;22:689-702 pubmed 出版商
  223. Yang P, Leu D, Ye K, Srinivasan C, Fike J, Huang T. Cognitive impairments following cranial irradiation can be mitigated by treatment with a tropomyosin receptor kinase B agonist. Exp Neurol. 2016;279:178-186 pubmed 出版商
  224. Makani V, Jang Y, Christopher K, Judy W, Eckstein J, Hensley K, et al. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR. PLoS ONE. 2016;11:e0149715 pubmed 出版商
  225. Maxeiner S, Luo F, Tan A, Schmitz F, Südhof T. How to make a synaptic ribbon: RIBEYE deletion abolishes ribbons in retinal synapses and disrupts neurotransmitter release. EMBO J. 2016;35:1098-114 pubmed 出版商
  226. Chen C, Meng S, Xue Y, Han Y, Sun C, Deng J, et al. Epigenetic modification of PKMζ rescues aging-related cognitive impairment. Sci Rep. 2016;6:22096 pubmed 出版商
  227. Ryu J, Hong B, Kim Y, Yang E, Choi M, Kim H, et al. Neuregulin-1 attenuates cognitive function impairments in a transgenic mouse model of Alzheimer's disease. Cell Death Dis. 2016;7:e2117 pubmed 出版商
  228. Hussain S, Ringsevjen H, Egbenya D, Skjervold T, Davanger S. SNARE Protein Syntaxin-1 Colocalizes Closely with NMDA Receptor Subunit NR2B in Postsynaptic Spines in the Hippocampus. Front Mol Neurosci. 2016;9:10 pubmed 出版商
  229. Zhang Q, Gao X, Li C, Feliciano C, Wang D, Zhou D, et al. Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice. J Neurosci. 2016;36:2247-60 pubmed 出版商
  230. Buniello A, Ingham N, Lewis M, Huma A, Martinez Vega R, Varela Nieto I, et al. Wbp2 is required for normal glutamatergic synapses in the cochlea and is crucial for hearing. EMBO Mol Med. 2016;8:191-207 pubmed 出版商
  231. Kim G, Luján R, Schwenk J, Kelley M, Aguado C, Watanabe M, et al. Membrane palmitoylated protein 2 is a synaptic scaffold protein required for synaptic SK2-containing channel function. elife. 2016;5: pubmed 出版商
  232. Furman J, Sompol P, Kraner S, Pleiss M, Putman E, Dunkerson J, et al. Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury. J Neurosci. 2016;36:1502-15 pubmed 出版商
  233. Venugopalan P, Wang Y, Nguyen T, Huang A, Muller K, Goldberg J. Transplanted neurons integrate into adult retinas and respond to light. Nat Commun. 2016;7:10472 pubmed 出版商
  234. Ogawa F, Murphy L, Malavasi E, O Sullivan S, Torrance H, Porteous D, et al. NDE1 and GSK3? Associate with TRAK1 and Regulate Axonal Mitochondrial Motility: Identification of Cyclic AMP as a Novel Modulator of Axonal Mitochondrial Trafficking. ACS Chem Neurosci. 2016;7:553-64 pubmed 出版商
  235. Sekar A, Bialas A, de Rivera H, Davis A, Hammond T, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177-83 pubmed 出版商
  236. Yuan P, Grutzendler J. Attenuation of β-Amyloid Deposition and Neurotoxicity by Chemogenetic Modulation of Neural Activity. J Neurosci. 2016;36:632-41 pubmed 出版商
  237. Jara J, Stanford M, Zhu Y, Tu M, Hauswirth W, Bohn M, et al. Healthy and diseased corticospinal motor neurons are selectively transduced upon direct AAV2-2 injection into the motor cortex. Gene Ther. 2016;23:272-82 pubmed 出版商
  238. Wee K, Tan F, Cheong Y, Khanna S, Low C. Ontogenic Profile and Synaptic Distribution of GluN3 Proteins in the Rat Brain and Hippocampal Neurons. Neurochem Res. 2016;41:290-7 pubmed 出版商
  239. Perez de Arce K, Schrod N, Metzbower S, Allgeyer E, Kong G, Tang A, et al. Topographic Mapping of the Synaptic Cleft into Adhesive Nanodomains. Neuron. 2015;88:1165-1172 pubmed 出版商
  240. Stanic J, Carta M, Eberini I, Pelucchi S, Marcello E, Genazzani A, et al. Rabphilin 3A retains NMDA receptors at synaptic sites through interaction with GluN2A/PSD-95 complex. Nat Commun. 2015;6:10181 pubmed 出版商
  241. Haas L, Salazar S, Kostylev M, Um J, Kaufman A, Strittmatter S. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain. 2016;139:526-46 pubmed 出版商
  242. Pak J, Lee E, CRAFT C. The retinal phenotype of Grk1-/- is compromised by a Crb1 rd8 mutation. Mol Vis. 2015;21:1281-94 pubmed
  243. Ageta Ishihara N, Yamazaki M, Konno K, Nakayama H, Abe M, Hashimoto K, et al. A CDC42EP4/septin-based perisynaptic glial scaffold facilitates glutamate clearance. Nat Commun. 2015;6:10090 pubmed 出版商
  244. Burguete A, Almeida S, Gao F, Kalb R, Akins M, Bonini N. GGGGCC microsatellite RNA is neuritically localized, induces branching defects, and perturbs transport granule function. elife. 2015;4:e08881 pubmed 出版商
  245. Brai E, Marathe S, Astori S, Fredj N, Perry E, Lamy C, et al. Notch1 Regulates Hippocampal Plasticity Through Interaction with the Reelin Pathway, Glutamatergic Transmission and CREB Signaling. Front Cell Neurosci. 2015;9:447 pubmed 出版商
  246. Tapia Rojas C, Lindsay C, Montecinos Oliva C, Arrázola M, Retamales R, Bunout D, et al. Is L-methionine a trigger factor for Alzheimer's-like neurodegeneration?: Changes in Aβ oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice. Mol Neurodegener. 2015;10:62 pubmed 出版商
  247. Mircsof D, Langouët M, Rio M, Moutton S, Siquier Pernet K, Bole Feysot C, et al. Mutations in NONO lead to syndromic intellectual disability and inhibitory synaptic defects. Nat Neurosci. 2015;18:1731-6 pubmed 出版商
  248. Kim E, Woo M, Qin L, Ma T, Beltran C, Bao Y, et al. Daidzein Augments Cholesterol Homeostasis via ApoE to Promote Functional Recovery in Chronic Stroke. J Neurosci. 2015;35:15113-26 pubmed 出版商
  249. Hjelm B, Rollins B, Mamdani F, Lauterborn J, Kirov G, Lynch G, et al. Evidence of Mitochondrial Dysfunction within the Complex Genetic Etiology of Schizophrenia. Mol Neuropsychiatry. 2015;1:201-19 pubmed 出版商
  250. Hatanaka Y, Watase K, Wada K, Nagai Y. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1. Sci Rep. 2015;5:16102 pubmed 出版商
  251. Zhang P, Fu W, Fu A, Ip N. S-nitrosylation-dependent proteasomal degradation restrains Cdk5 activity to regulate hippocampal synaptic strength. Nat Commun. 2015;6:8665 pubmed 出版商
  252. Mayanagi T, Yasuda H, Sobue K. PSD-Zip70 Deficiency Causes Prefrontal Hypofunction Associated with Glutamatergic Synapse Maturation Defects by Dysregulation of Rap2 Activity. J Neurosci. 2015;35:14327-40 pubmed 出版商
  253. Hruska M, Henderson N, Xia N, Le Marchand S, Dalva M. Anchoring and synaptic stability of PSD-95 is driven by ephrin-B3. Nat Neurosci. 2015;18:1594-605 pubmed 出版商
  254. Bolte P, Herrling R, Dorgau B, Schultz K, Feigenspan A, Weiler R, et al. Expression and Localization of Connexins in the Outer Retina of the Mouse. J Mol Neurosci. 2016;58:178-92 pubmed 出版商
  255. Briz V, Liu Y, Zhu G, Bi X, Baudry M. A novel form of synaptic plasticity in field CA3 of hippocampus requires GPER1 activation and BDNF release. J Cell Biol. 2015;210:1225-37 pubmed 出版商
  256. Forrest C, McNair K, Pisar M, Khalil O, Darlington L, Stone T. Altered hippocampal plasticity by prenatal kynurenine administration, kynurenine-3-monoxygenase (KMO) deletion or galantamine. Neuroscience. 2015;310:91-105 pubmed 出版商
  257. Zhou J, Liu Z, Yu J, Han X, Fan S, Shao W, et al. Quantitative Proteomic Analysis Reveals Molecular Adaptations in the Hippocampal Synaptic Active Zone of Chronic Mild Stress-Unsusceptible Rats. Int J Neuropsychopharmacol. 2015;19: pubmed 出版商
  258. Bender J, Engeholm M, Ederer M, Breu J, Møller T, Michalakis S, et al. Corticotropin-Releasing Hormone Receptor Type 1 (CRHR1) Clustering with MAGUKs Is Mediated via Its C-Terminal PDZ Binding Motif. PLoS ONE. 2015;10:e0136768 pubmed 出版商
  259. Lundgren J, Ahmed S, Schedin Weiss S, Gouras G, Winblad B, Tjernberg L, et al. ADAM10 and BACE1 are localized to synaptic vesicles. J Neurochem. 2015;135:606-15 pubmed 出版商
  260. Popugaeva E, Pchitskaya E, Speshilova A, Alexandrov S, Zhang H, Vlasova O, et al. STIM2 protects hippocampal mushroom spines from amyloid synaptotoxicity. Mol Neurodegener. 2015;10:37 pubmed 出版商
  261. Pasek J, Wang X, Colbran R. Differential CaMKII regulation by voltage-gated calcium channels in the striatum. Mol Cell Neurosci. 2015;68:234-43 pubmed 出版商
  262. Cho E, Kim D, Hur Y, Whitcomb D, Regan P, Hong J, et al. Cyclin Y inhibits plasticity-induced AMPA receptor exocytosis and LTP. Sci Rep. 2015;5:12624 pubmed 出版商
  263. Farley M, Swulius M, Waxham M. Electron tomographic structure and protein composition of isolated rat cerebellar, hippocampal and cortical postsynaptic densities. Neuroscience. 2015;304:286-301 pubmed 出版商
  264. Chung H, Jacobs C, Huo Y, Yang J, Krumm S, Plemper R, et al. Tunable and reversible drug control of protein production via a self-excising degron. Nat Chem Biol. 2015;11:713-20 pubmed 出版商
  265. Gingras S, Earls L, Howell S, Smeyne R, Zakharenko S, Pelletier S. SCYL2 Protects CA3 Pyramidal Neurons from Excitotoxicity during Functional Maturation of the Mouse Hippocampus. J Neurosci. 2015;35:10510-22 pubmed 出版商
  266. Johnson V, Xiang M, Chen Z, Junge H. Neurite Mistargeting and Inverse Order of Intraretinal Vascular Plexus Formation Precede Subretinal Vascularization in Vldlr Mutant Mice. PLoS ONE. 2015;10:e0132013 pubmed 出版商
  267. Gainey M, Tatavarty V, Nahmani M, Lin H, Turrigiano G. Activity-dependent synaptic GRIP1 accumulation drives synaptic scaling up in response to action potential blockade. Proc Natl Acad Sci U S A. 2015;112:E3590-9 pubmed 出版商
  268. Ferreira J, Schmidt J, Rio P, Águas R, Rooyakkers A, Li K, et al. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome. J Neurosci. 2015;35:8462-79 pubmed 出版商
  269. Bhatt D, Puig K, Gorr M, Wold L, Combs C. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain. PLoS ONE. 2015;10:e0127102 pubmed 出版商
  270. Calafate S, Buist A, Miskiewicz K, Vijayan V, Daneels G, De Strooper B, et al. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation. Cell Rep. 2015;11:1176-83 pubmed 出版商
  271. Bacaj T, Ahmad M, Jurado S, Malenka R, Südhof T. Synaptic Function of Rab11Fip5: Selective Requirement for Hippocampal Long-Term Depression. J Neurosci. 2015;35:7460-74 pubmed 出版商
  272. Nygaard H, Kaufman A, Sekine Konno T, Huh L, Going H, Feldman S, et al. Brivaracetam, but not ethosuximide, reverses memory impairments in an Alzheimer's disease mouse model. Alzheimers Res Ther. 2015;7:25 pubmed 出版商
  273. Risher M, Fleming R, Risher W, Miller K, Klein R, WILLS T, et al. Adolescent intermittent alcohol exposure: persistence of structural and functional hippocampal abnormalities into adulthood. Alcohol Clin Exp Res. 2015;39:989-97 pubmed 出版商
  274. Goyer D, Fensky L, Hilverling A, Kurth S, Kuenzel T. Expression of the postsynaptic scaffold PSD-95 and development of synaptic physiology during giant terminal formation in the auditory brainstem of the chicken. Eur J Neurosci. 2015;41:1416-29 pubmed 出版商
  275. Machado C, Griesi Oliveira K, Rosenberg C, Kok F, Martins S, Passos Bueno M, et al. Collybistin binds and inhibits mTORC1 signaling: a potential novel mechanism contributing to intellectual disability and autism. Eur J Hum Genet. 2016;24:59-65 pubmed 出版商
  276. Tran Q, Vermeer M, Burgard M, Hassan A, Giles J. Hetero-oligomeric Complex between the G Protein-coupled Estrogen Receptor 1 and the Plasma Membrane Ca2+-ATPase 4b. J Biol Chem. 2015;290:13293-307 pubmed 出版商
  277. Underhill S, Wheeler D, Amara S. Differential regulation of two isoforms of the glial glutamate transporter EAAT2 by DLG1 and CaMKII. J Neurosci. 2015;35:5260-70 pubmed 出版商
  278. Dorgau B, Herrling R, Schultz K, Greb H, Segelken J, Ströh S, et al. Connexin50 couples axon terminals of mouse horizontal cells by homotypic gap junctions. J Comp Neurol. 2015;523:2062-81 pubmed 出版商
  279. Marathe S, Liu S, Brai E, Kaczarowski M, Alberi L. Notch signaling in response to excitotoxicity induces neurodegeneration via erroneous cell cycle reentry. Cell Death Differ. 2015;22:1775-84 pubmed 出版商
  280. Thibault D, Giguère N, Loustalot F, Bourque M, Ducrot C, El Mestikawy S, et al. Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor. Brain Struct Funct. 2016;221:2093-107 pubmed 出版商
  281. Von Stetina S, Mango S. PAR-6, but not E-cadherin and β-integrin, is necessary for epithelial polarization in C. elegans. Dev Biol. 2015;403:5-14 pubmed 出版商
  282. Russwurm C, Koesling D, Russwurm M. Phosphodiesterase 10A Is Tethered to a Synaptic Signaling Complex in Striatum. J Biol Chem. 2015;290:11936-47 pubmed 出版商
  283. Jadhav S, Katina S, Kovac A, Kazmerova Z, Novak M, Zilka N. Truncated tau deregulates synaptic markers in rat model for human tauopathy. Front Cell Neurosci. 2015;9:24 pubmed 出版商
  284. Saunders A, Oldenburg I, Berezovskii V, Johnson C, Kingery N, Elliott H, et al. A direct GABAergic output from the basal ganglia to frontal cortex. Nature. 2015;521:85-9 pubmed 出版商
  285. Kaufman A, Salazar S, Haas L, Yang J, Kostylev M, Jeng A, et al. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol. 2015;77:953-71 pubmed 出版商
  286. Briz V, Zhu G, Wang Y, Liu Y, Avetisyan M, Bi X, et al. Activity-dependent rapid local RhoA synthesis is required for hippocampal synaptic plasticity. J Neurosci. 2015;35:2269-82 pubmed 出版商
  287. Zhang N, Zhong P, Shin S, Metallo J, Danielson E, Olsen C, et al. S-SCAM, a rare copy number variation gene, induces schizophrenia-related endophenotypes in transgenic mouse model. J Neurosci. 2015;35:1892-904 pubmed 出版商
  288. Braude J, Vijayakumar S, Baumgarner K, Laurine R, Jones T, Jones S, et al. Deletion of Shank1 has minimal effects on the molecular composition and function of glutamatergic afferent postsynapses in the mouse inner ear. Hear Res. 2015;321:52-64 pubmed 出版商
  289. Bavamian S, Mellios N, Lalonde J, Fass D, Wang J, Sheridan S, et al. Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder. Mol Psychiatry. 2015;20:573-84 pubmed 出版商
  290. Zhu G, Liu Y, Wang Y, Bi X, Baudry M. Different patterns of electrical activity lead to long-term potentiation by activating different intracellular pathways. J Neurosci. 2015;35:621-33 pubmed 出版商
  291. Zhu G, Li J, He L, Wang X, Hong X. MPTP-induced changes in hippocampal synaptic plasticity and memory are prevented by memantine through the BDNF-TrkB pathway. Br J Pharmacol. 2015;172:2354-68 pubmed 出版商
  292. Walkup W, Washburn L, Sweredoski M, Carlisle H, Graham R, Hess S, et al. Phosphorylation of synaptic GTPase-activating protein (synGAP) by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (CDK5) alters the ratio of its GAP activity toward Ras and Rap GTPases. J Biol Chem. 2015;290:4908-27 pubmed 出版商
  293. Lee J, Lee E, Lee H. Hypothalamic, feeding/arousal-related peptidergic projections to the paraventricular thalamic nucleus in the rat. Brain Res. 2015;1598:97-113 pubmed 出版商
  294. Serrano F, Tapia Rojas C, Carvajal F, Hancke J, Cerpa W, Inestrosa N. Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice. Mol Neurodegener. 2014;9:61 pubmed 出版商
  295. Fitzgerald P, Pinard C, Camp M, Feyder M, Sah A, Bergstrom H, et al. Durable fear memories require PSD-95. Mol Psychiatry. 2015;20:901-12 pubmed 出版商
  296. Yokoi N, Fukata Y, Kase D, Miyazaki T, Jaegle M, Ohkawa T, et al. Chemical corrector treatment ameliorates increased seizure susceptibility in a mouse model of familial epilepsy. Nat Med. 2015;21:19-26 pubmed 出版商
  297. Bian W, Miao W, He S, Wan Z, Luo Z, Yu X. A novel Wnt5a-Frizzled4 signaling pathway mediates activity-independent dendrite morphogenesis via the distal PDZ motif of Frizzled 4. Dev Neurobiol. 2015;75:805-22 pubmed 出版商
  298. Dachtler J, Glasper J, Cohen R, Ivorra J, Swiffen D, Jackson A, et al. Deletion of α-neurexin II results in autism-related behaviors in mice. Transl Psychiatry. 2014;4:e484 pubmed 出版商
  299. Gascon E, Lynch K, Ruan H, Almeida S, Verheyden J, Seeley W, et al. Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med. 2014;20:1444-51 pubmed 出版商
  300. Pérez Alvarez M, Mateos L, Alonso A, Wandosell F. Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus. Mol Neurobiol. 2015;52:1690-1703 pubmed 出版商
  301. Peng X, Hughes E, Moscato E, Parsons T, Dalmau J, Balice Gordon R. Cellular plasticity induced by anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis antibodies. Ann Neurol. 2015;77:381-98 pubmed 出版商
  302. de Andrade G, Kunzelman L, Merrill M, Fuerst P. Developmentally dynamic colocalization patterns of DSCAM with adhesion and synaptic proteins in the mouse retina. Mol Vis. 2014;20:1422-33 pubmed
  303. Beccano Kelly D, Kuhlmann N, Tatarnikov I, Volta M, Munsie L, Chou P, et al. Synaptic function is modulated by LRRK2 and glutamate release is increased in cortical neurons of G2019S LRRK2 knock-in mice. Front Cell Neurosci. 2014;8:301 pubmed 出版商
  304. Chazeau A, Mehidi A, Nair D, Gautier J, Leduc C, Chamma I, et al. Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion. EMBO J. 2014;33:2745-64 pubmed 出版商
  305. Leal G, Afonso P, Duarte C. Neuronal activity induces synaptic delivery of hnRNP A2/B1 by a BDNF-dependent mechanism in cultured hippocampal neurons. PLoS ONE. 2014;9:e108175 pubmed 出版商
  306. Qiu S, Zhang M, Liu Y, Guo Y, Zhao H, Song Q, et al. GluA1 phosphorylation contributes to postsynaptic amplification of neuropathic pain in the insular cortex. J Neurosci. 2014;34:13505-15 pubmed 出版商
  307. Kang Y, Ge Y, Cassidy R, Lam V, Luo L, Moon K, et al. A combined transgenic proteomic analysis and regulated trafficking of neuroligin-2. J Biol Chem. 2014;289:29350-64 pubmed 出版商
  308. Whitfield D, Vallortigara J, Alghamdi A, Howlett D, Hortobagyi T, Johnson M, et al. Assessment of ZnT3 and PSD95 protein levels in Lewy body dementias and Alzheimer's disease: association with cognitive impairment. Neurobiol Aging. 2014;35:2836-2844 pubmed 出版商
  309. Tyzack G, Sitnikov S, Barson D, Adams Carr K, Lau N, Kwok J, et al. Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat Commun. 2014;5:4294 pubmed 出版商
  310. Ho T, Vessey K, Fletcher E. Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina. Neuroscience. 2014;277:55-71 pubmed 出版商
  311. Ohkawa T, Satake S, Yokoi N, Miyazaki Y, Ohshita T, Sobue G, et al. Identification and characterization of GABA(A) receptor autoantibodies in autoimmune encephalitis. J Neurosci. 2014;34:8151-63 pubmed 出版商
  312. Lee S, Sharma M, S dhof T, Shen J. Synaptic function of nicastrin in hippocampal neurons. Proc Natl Acad Sci U S A. 2014;111:8973-8 pubmed 出版商
  313. Louros S, Hooks B, Litvina L, Carvalho A, Chen C. A role for stargazin in experience-dependent plasticity. Cell Rep. 2014;7:1614-1625 pubmed 出版商
  314. Karayannis T, Au E, Patel J, Kruglikov I, Markx S, Delorme R, et al. Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission. Nature. 2014;511:236-40 pubmed
  315. Gruol D, Vo K, Bray J, Roberts A. CCL2-ethanol interactions and hippocampal synaptic protein expression in a transgenic mouse model. Front Integr Neurosci. 2014;8:29 pubmed 出版商
  316. Park J, Jou I, Park S. Attenuation of noise-induced hearing loss using methylene blue. Cell Death Dis. 2014;5:e1200 pubmed 出版商
  317. Nikitczuk J, Patil S, Matikainen Ankney B, Scarpa J, Shapiro M, Benson D, et al. N-cadherin regulates molecular organization of excitatory and inhibitory synaptic circuits in adult hippocampus in vivo. Hippocampus. 2014;24:943-962 pubmed 出版商
  318. Cooper M, Koleske A. Ablation of ErbB4 from excitatory neurons leads to reduced dendritic spine density in mouse prefrontal cortex. J Comp Neurol. 2014;522:3351-62 pubmed 出版商
  319. Bustos F, Varela Nallar L, Campos M, Henriquez B, Phillips M, Opazo C, et al. PSD95 suppresses dendritic arbor development in mature hippocampal neurons by occluding the clustering of NR2B-NMDA receptors. PLoS ONE. 2014;9:e94037 pubmed 出版商
  320. Vargas L, Leal N, Estrada L, González A, Serrano F, Araya K, et al. EphA4 activation of c-Abl mediates synaptic loss and LTP blockade caused by amyloid-β oligomers. PLoS ONE. 2014;9:e92309 pubmed 出版商
  321. Gladding C, Fan J, Zhang L, Wang L, Xu J, Li E, et al. Alterations in STriatal-Enriched protein tyrosine Phosphatase expression, activation, and downstream signaling in early and late stages of the YAC128 Huntington's disease mouse model. J Neurochem. 2014;130:145-59 pubmed 出版商
  322. Toyoshima D, Mandai K, Maruo T, Supriyanto I, Togashi H, Inoue T, et al. Afadin regulates puncta adherentia junction formation and presynaptic differentiation in hippocampal neurons. PLoS ONE. 2014;9:e89763 pubmed 出版商
  323. Cox C, Rex C, Palmer L, Babayan A, Pham D, Corwin S, et al. A map of LTP-related synaptic changes in dorsal hippocampus following unsupervised learning. J Neurosci. 2014;34:3033-41 pubmed 出版商
  324. Jalewa J, Joshi A, McGinnity T, Prasad G, Wong Lin K, Holscher C. Neural circuit interactions between the dorsal raphe nucleus and the lateral hypothalamus: an experimental and computational study. PLoS ONE. 2014;9:e88003 pubmed 出版商
  325. Itakura M, Watanabe I, Sugaya T, Takahashi M. Direct association of the unique C-terminal tail of transmembrane AMPA receptor regulatory protein ?-8 with calcineurin. FEBS J. 2014;281:1366-78 pubmed 出版商
  326. Wang Y, Zhu G, Briz V, Hsu Y, Bi X, Baudry M. A molecular brake controls the magnitude of long-term potentiation. Nat Commun. 2014;5:3051 pubmed 出版商
  327. Wang Y, Briz V, Chishti A, Bi X, Baudry M. Distinct roles for ?-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. J Neurosci. 2013;33:18880-92 pubmed 出版商
  328. Han M, Jiao S, Jia J, Chen Y, Chen C, Gucek M, et al. The novel caspase-3 substrate Gap43 is involved in AMPA receptor endocytosis and long-term depression. Mol Cell Proteomics. 2013;12:3719-31 pubmed 出版商
  329. Seese R, Chen L, Cox C, Schulz D, Babayan A, Bunney W, et al. Synaptic abnormalities in the infralimbic cortex of a model of congenital depression. J Neurosci. 2013;33:13441-8 pubmed 出版商
  330. Kawahara A, Kurauchi S, Fukata Y, Martínez Hernández J, Yagihashi T, Itadani Y, et al. Neuronal major histocompatibility complex class I molecules are implicated in the generation of asymmetries in hippocampal circuitry. J Physiol. 2013;591:4777-91 pubmed 出版商
  331. Nelson C, Kim M, Hsin H, Chen Y, Sheng M. Phosphorylation of threonine-19 of PSD-95 by GSK-3? is required for PSD-95 mobilization and long-term depression. J Neurosci. 2013;33:12122-35 pubmed 出版商
  332. Belzil C, Neumayer G, Vassilev A, Yap K, Konishi H, Rivest S, et al. A Ca2+-dependent mechanism of neuronal survival mediated by the microtubule-associated protein p600. J Biol Chem. 2013;288:24452-64 pubmed 出版商
  333. Fukata Y, Dimitrov A, Boncompain G, Vielemeyer O, Perez F, Fukata M. Local palmitoylation cycles define activity-regulated postsynaptic subdomains. J Cell Biol. 2013;202:145-61 pubmed 出版商
  334. Yoshii A, Zhao J, Pandian S, van Zundert B, Constantine Paton M. A Myosin Va mutant mouse with disruptions in glutamate synaptic development and mature plasticity in visual cortex. J Neurosci. 2013;33:8472-82 pubmed 出版商
  335. Kerrisk M, Greer C, Koleske A. Integrin ?3 is required for late postnatal stability of dendrite arbors, dendritic spines and synapses, and mouse behavior. J Neurosci. 2013;33:6742-52 pubmed 出版商
  336. Busse B, Smith S. Automated analysis of a diverse synapse population. PLoS Comput Biol. 2013;9:e1002976 pubmed 出版商
  337. Vogel Ciernia A, Matheos D, Barrett R, Kramar E, Azzawi S, Chen Y, et al. The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nat Neurosci. 2013;16:552-61 pubmed 出版商
  338. Murata Y, Constantine Paton M. Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. J Neurosci. 2013;33:5040-52 pubmed 出版商
  339. Li H, Zhang Z, Blackburn M, Wang S, Ribelayga C, O BRIEN J. Adenosine and dopamine receptors coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina. J Neurosci. 2013;33:3135-50 pubmed 出版商
  340. Barone I, Novelli E, Piano I, Gargini C, Strettoi E. Environmental enrichment extends photoreceptor survival and visual function in a mouse model of retinitis pigmentosa. PLoS ONE. 2012;7:e50726 pubmed 出版商
  341. Beffert U, Dillon G, Sullivan J, Stuart C, Gilbert J, Kambouris J, et al. Microtubule plus-end tracking protein CLASP2 regulates neuronal polarity and synaptic function. J Neurosci. 2012;32:13906-16 pubmed 出版商
  342. Noam Y, Phan L, McClelland S, Manders E, Ehrengruber M, Wadman W, et al. Distinct regional and subcellular localization of the actin-binding protein filamin A in the mature rat brain. J Comp Neurol. 2012;520:3013-34 pubmed 出版商
  343. Takahashi H, Katayama K, Sohya K, Miyamoto H, Prasad T, Matsumoto Y, et al. Selective control of inhibitory synapse development by Slitrk3-PTP? trans-synaptic interaction. Nat Neurosci. 2012;15:389-98, S1-2 pubmed 出版商
  344. Chen A, Gössling E, Witkowski L, Bhindi A, Bauch C, Roussy G, et al. Regional and subcellular distribution of the receptor-targeting protein PIST in the rat central nervous system. J Comp Neurol. 2012;520:889-913 pubmed 出版商
  345. Soiza Reilly M, Commons K. Quantitative analysis of glutamatergic innervation of the mouse dorsal raphe nucleus using array tomography. J Comp Neurol. 2011;519:3802-14 pubmed 出版商
  346. Swulius M, Kubota Y, Forest A, Waxham M. Structure and composition of the postsynaptic density during development. J Comp Neurol. 2010;518:4243-60 pubmed 出版商
  347. Chen L, Rex C, Babayan A, Kramar E, Lynch G, Gall C, et al. Physiological activation of synaptic Rac>PAK (p-21 activated kinase) signaling is defective in a mouse model of fragile X syndrome. J Neurosci. 2010;30:10977-84 pubmed 出版商
  348. Lepousez G, Csaba Z, Bernard V, Loudes C, Videau C, Lacombe J, et al. Somatostatin interneurons delineate the inner part of the external plexiform layer in the mouse main olfactory bulb. J Comp Neurol. 2010;518:1976-94 pubmed 出版商
  349. Han M, Lin C, Meng S, Wang X. Proteomics analysis reveals overlapping functions of clustered protocadherins. Mol Cell Proteomics. 2010;9:71-83 pubmed 出版商
  350. Armstrong C, Chung S, Armstrong J, Hochgeschwender U, Jeong Y, Hawkes R. A novel somatostatin-immunoreactive mossy fiber pathway associated with HSP25-immunoreactive purkinje cell stripes in the mouse cerebellum. J Comp Neurol. 2009;517:524-38 pubmed 出版商
  351. Wahlin K, Moreira E, Huang H, Yu N, Adler R. Molecular dynamics of photoreceptor synapse formation in the developing chick retina. J Comp Neurol. 2008;506:822-37 pubmed
  352. Fischer A, Foster S, Scott M, Sherwood P. Transient expression of LIM-domain transcription factors is coincident with delayed maturation of photoreceptors in the chicken retina. J Comp Neurol. 2008;506:584-603 pubmed
  353. Kobayashi C, Aoki C, Kojima N, Yamazaki H, Shirao T. Drebrin a content correlates with spine head size in the adult mouse cerebral cortex. J Comp Neurol. 2007;503:618-26 pubmed
  354. Henny P, Jones B. Innervation of orexin/hypocretin neurons by GABAergic, glutamatergic or cholinergic basal forebrain terminals evidenced by immunostaining for presynaptic vesicular transporter and postsynaptic scaffolding proteins. J Comp Neurol. 2006;499:645-61 pubmed
  355. Henny P, Jones B. Vesicular glutamate (VGlut), GABA (VGAT), and acetylcholine (VACht) transporters in basal forebrain axon terminals innervating the lateral hypothalamus. J Comp Neurol. 2006;496:453-67 pubmed
  356. Lee E, Mann L, Rickman D, Lim E, Chun M, Grzywacz N. AII amacrine cells in the distal inner nuclear layer of the mouse retina. J Comp Neurol. 2006;494:651-62 pubmed
  357. Harms K, Craig A. Synapse composition and organization following chronic activity blockade in cultured hippocampal neurons. J Comp Neurol. 2005;490:72-84 pubmed