这是一篇来自已证抗体库的有关人类 美洲狮 (PUMA) 的综述,是根据43篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合美洲狮 抗体。
美洲狮 同义词: JFY-1; JFY1; PUMA

圣克鲁斯生物技术
小鼠 单克隆(G-3)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术美洲狮抗体(Santa Cruz Biotechnology, G-3)被用于被用于免疫印迹在人类样本上 (图 4b). Cell Death Dis (2019) ncbi
小鼠 单克隆(G-3)
  • 免疫印迹; 小鼠; 1:500; 图 5d
圣克鲁斯生物技术美洲狮抗体(Santa Cruz Biotechnology Inc, sc-374223)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5d). elife (2018) ncbi
小鼠 单克隆(G-3)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术美洲狮抗体(Santa Cruz, sc-374223)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术美洲狮抗体(anta Cruz Biotechnology, SC-377015)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(G-3)
  • 免疫细胞化学; 人类; 图 2C
  • 免疫印迹; 人类; 图 2A
圣克鲁斯生物技术美洲狮抗体(Santa Cruz, sc-374223)被用于被用于免疫细胞化学在人类样本上 (图 2C) 和 被用于免疫印迹在人类样本上 (图 2A). Sci Rep (2015) ncbi
小鼠 单克隆(G-3)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术美洲狮抗体(Santa Cruz, sc-374223)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(G-3)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术美洲狮抗体(Santa Cruz, sc-374223)被用于被用于免疫印迹在人类样本上 (图 2). Cell Death Differ (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术美洲狮抗体(Santa Cruz, sc-377015)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2015) ncbi
小鼠 单克隆(B-6)
  • 免疫印迹; 小鼠; 1:1000; 图 6
圣克鲁斯生物技术美洲狮抗体(Santa Cruz, sc-377015)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). J Neurochem (2014) ncbi
小鼠 单克隆(G-3)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术美洲狮抗体(Santa Cruz Biotechnology, sc-374223)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司美洲狮抗体(Abcam, ab9643)被用于被用于免疫印迹在人类样本上 (图 4a). elife (2019) ncbi
domestic rabbit 单克隆(EP512Y)
  • 免疫印迹; 人类; 图 8b
艾博抗(上海)贸易有限公司美洲狮抗体(Abcam, ab33906)被用于被用于免疫印迹在人类样本上 (图 8b). Int J Oncol (2017) ncbi
domestic rabbit 单克隆(EP512Y)
  • 免疫印迹; 人类; 图 s7
艾博抗(上海)贸易有限公司美洲狮抗体(Abcam, ab33906)被用于被用于免疫印迹在人类样本上 (图 s7). PLoS Med (2016) ncbi
domestic rabbit 单克隆(EP512Y)
  • 免疫组化; 人类; 1:100; 图 3e
艾博抗(上海)贸易有限公司美洲狮抗体(Abcam, ab33906)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3e). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EP512Y)
  • 免疫印迹; 人类; 1:2000; 图 1b
艾博抗(上海)贸易有限公司美洲狮抗体(Abcam, ab33906)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Oncotarget (2015) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇美洲狮抗体(Sigma, P4743)被用于被用于免疫印迹在人类样本上 (图 4). Cancer Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1c
西格玛奥德里奇美洲狮抗体(Sigma, p4743)被用于被用于免疫印迹在小鼠样本上 (图 1c). Oncotarget (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D30C10)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司美洲狮抗体(CST, 12450)被用于被用于免疫印迹在人类样本上 (图 6d). Sci Adv (2020) ncbi
domestic rabbit 单克隆(D30C10)
  • 免疫印迹; 人类; 1:250; 图 5b
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell Signaling Technology, 12450)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 5b). Anal Cell Pathol (Amst) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2c
赛信通(上海)生物试剂有限公司美洲狮抗体(CST, 4976)被用于被用于免疫印迹在人类样本上 (图 s2c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell Signaling Technology, 4976)被用于被用于免疫印迹在人类样本上 (图 3b). Oncoimmunology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell Signaling, 4976)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D30C10)
  • 免疫印迹; 人类; 1:1000; 图 s4a
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell Signaling, 12450)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a). Nat Med (2017) ncbi
domestic rabbit 单克隆(D30C10)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell signaling, 12450)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Biochem Pharmacol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司美洲狮抗体(cell signalling, 4976)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司美洲狮抗体(CST, 4976)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(D30C10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell Signaling, 12450)被用于被用于免疫印迹在人类样本上 (图 2). Neuroendocrinology (2018) ncbi
domestic rabbit 单克隆(D30C10)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell Signaling, 12450)被用于被用于免疫印迹在人类样本上 (图 1a). EMBO Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell Signaling, 4976)被用于被用于免疫印迹在人类样本上 (图 5f). Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b,5c,6b,6c,6d
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell Signaling, 4976)被用于被用于免疫印迹在人类样本上 (图 5b,5c,6b,6c,6d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b, 4d
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell Signaling, 4976)被用于被用于免疫印迹在人类样本上 (图 4b, 4d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell Signaling, 4976)被用于被用于免疫印迹在人类样本上 (图 1f). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 s6d
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell Signaling, 4976S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s6d). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell Signaling, 4976)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Cell Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s1a
  • 免疫印迹; 人类; 1:2000; 图 s1a
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell Signaling, 4976)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s1a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 s1a). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell Signaling Tech, 4976)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D30C10)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell Signaling Tech, 12450)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司美洲狮抗体(cell signalling, 4976)被用于被用于免疫印迹在人类样本上 (图 3e). EMBO Rep (2016) ncbi
domestic rabbit 单克隆(D30C10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell Signalling, 12450)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D30C10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell Signaling Tech, 12450)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D30C10)
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司美洲狮抗体(Cell Signaling, 12450)被用于被用于免疫印迹在人类样本上 (图 s3). PLoS ONE (2015) ncbi
ProSci
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
ProSci美洲狮抗体(ProSci, 3041)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
ProSci美洲狮抗体(Pro-Sci, 3041)被用于被用于免疫印迹在人类样本上 (图 3). Genes Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 大鼠; 图 2
ProSci美洲狮抗体(ProSci, 3041)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在大鼠样本上 (图 2). Cell Death Differ (2016) ncbi
文章列表
  1. Aldonza M, Ku J, Hong J, Kim D, Yu S, Lee M, et al. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Sci Adv. 2020;6:eaav7416 pubmed 出版商
  2. El Kott A, Shati A, Al Kahtani M, Alqahtani S. Acylated Ghrelin Renders Chemosensitive Ovarian Cancer Cells Resistant to Cisplatin Chemotherapy via Activation of the PI3K/Akt/mTOR Survival Pathway. Anal Cell Pathol (Amst). 2019;2019:9627810 pubmed 出版商
  3. Kabir S, Cidado J, Andersen C, Dick C, Lin P, Mitros T, et al. The CUL5 ubiquitin ligase complex mediates resistance to CDK9 and MCL1 inhibitors in lung cancer cells. elife. 2019;8: pubmed 出版商
  4. Donadoni M, Cicalese S, Sarkar D, Chang S, Sariyer I. Alcohol exposure alters pre-mRNA splicing of antiapoptotic Mcl-1L isoform and induces apoptosis in neural progenitors and immature neurons. Cell Death Dis. 2019;10:447 pubmed 出版商
  5. Haikala H, Anttila J, Marques E, Raatikainen T, Ilander M, Hakanen H, et al. Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy. Nat Commun. 2019;10:620 pubmed 出版商
  6. LeBlanc L, Lee B, Yu A, Kim M, Kambhampati A, Dupont S, et al. Yap1 safeguards mouse embryonic stem cells from excessive apoptosis during differentiation. elife. 2018;7: pubmed 出版商
  7. Yang M, Li C, Zhu S, Cao L, Kroemer G, Zeh H, et al. TFAM is a novel mediator of immunogenic cancer cell death. Oncoimmunology. 2018;7:e1431086 pubmed 出版商
  8. Bogenberger J, Whatcott C, Hansen N, Delman D, Shi C, Kim W, et al. Combined venetoclax and alvocidib in acute myeloid leukemia. Oncotarget. 2017;8:107206-107222 pubmed 出版商
  9. Mai W, Gosa L, Daniëls V, Ta L, Tsang J, Higgins B, et al. Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nat Med. 2017;23:1342-1351 pubmed 出版商
  10. Yue X, Zuo Y, Ke H, Luo J, Lou L, Qin W, et al. Identification of 4-arylidene curcumin analogues as novel proteasome inhibitors for potential anticancer agents targeting 19S regulatory particle associated deubiquitinase. Biochem Pharmacol. 2017;137:29-50 pubmed 出版商
  11. Lee T, Pelletier J. Dependence of p53-deficient cells on the DHX9 DExH-box helicase. Oncotarget. 2017;8:30908-30921 pubmed 出版商
  12. Yokoyama T, Kohn E, Brill E, Lee J. Apoptosis is augmented in high-grade serous ovarian cancer by the combined inhibition of Bcl-2/Bcl-xL and PARP. Int J Oncol. 2017;: pubmed 出版商
  13. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  14. Yuan H, Tan B, Gao S. Tenovin-6 impairs autophagy by inhibiting autophagic flux. Cell Death Dis. 2017;8:e2608 pubmed 出版商
  15. Li Y, Buijs Gladdines J, Canté Barrett K, Stubbs A, Vroegindeweij E, Smits W, et al. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study. PLoS Med. 2016;13:e1002200 pubmed 出版商
  16. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  17. Kayama K, Watanabe S, Takafuji T, Tsuji T, Hironaka K, Matsumoto M, et al. GRWD1 negatively regulates p53 via the RPL11-MDM2 pathway and promotes tumorigenesis. EMBO Rep. 2017;18:123-137 pubmed 出版商
  18. Horn T, Ferretti S, Ebel N, Tam A, Ho S, Harbinski F, et al. High-Order Drug Combinations Are Required to Effectively Kill Colorectal Cancer Cells. Cancer Res. 2016;76:6950-6963 pubmed
  19. Pomares H, Palmeri C, Iglesias Serret D, Moncunill Massaguer C, Saura Esteller J, Núñez Vázquez S, et al. Targeting prohibitins induces apoptosis in acute myeloid leukemia cells. Oncotarget. 2016;7:64987-65000 pubmed 出版商
  20. Li C, Li Q, Cai Y, He Y, Lan X, Wang W, et al. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis. Cancer Gene Ther. 2016;23:295-302 pubmed 出版商
  21. Liu H, Li W, Yu X, Gao F, Duan Z, Ma X, et al. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis. Oncotarget. 2016;7:56338-56354 pubmed 出版商
  22. Rada M, Vasileva E, Lezina L, Marouco D, Antonov A, Macip S, et al. Human EHMT2/G9a activates p53 through methylation-independent mechanism. Oncogene. 2017;36:922-932 pubmed 出版商
  23. Walerych D, Lisek K, Sommaggio R, Piazza S, Ciani Y, Dalla E, et al. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nat Cell Biol. 2016;18:897-909 pubmed 出版商
  24. Tagscherer K, Fassl A, Sinkovic T, Richter J, Schecher S, Macher Goeppinger S, et al. MicroRNA-210 induces apoptosis in colorectal cancer via induction of reactive oxygen. Cancer Cell Int. 2016;16:42 pubmed 出版商
  25. O Neill K, Huang K, Zhang J, Chen Y, Luo X. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 2016;30:973-88 pubmed 出版商
  26. Hornsveld M, Tenhagen M, van de Ven R, Smits A, van Triest M, van Amersfoort M, et al. Restraining FOXO3-dependent transcriptional BMF activation underpins tumour growth and metastasis of E-cadherin-negative breast cancer. Cell Death Differ. 2016;23:1483-92 pubmed 出版商
  27. Li T, Liu X, Jiang L, MANFREDI J, Zha S, Gu W. Loss of p53-mediated cell-cycle arrest, senescence and apoptosis promotes genomic instability and premature aging. Oncotarget. 2016;7:11838-49 pubmed 出版商
  28. Gilormini M, Malesys C, Armandy E, Manas P, Guy J, Magne N, et al. Preferential targeting of cancer stem cells in the radiosensitizing effect of ABT-737 on HNSCC. Oncotarget. 2016;7:16731-44 pubmed 出版商
  29. Yu L, Wu W, Gu C, Zhong D, Zhao X, Kong Y, et al. Obatoclax impairs lysosomal function to block autophagy in cisplatin-sensitive and -resistant esophageal cancer cells. Oncotarget. 2016;7:14693-707 pubmed 出版商
  30. Liu X, Tan Y, Zhang C, Zhang Y, Zhang L, Ren P, et al. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2. EMBO Rep. 2016;17:349-66 pubmed 出版商
  31. Le Pen J, Maillet L, Sarosiek K, Vuillier C, Gautier F, Montessuit S, et al. Constitutive p53 heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors of BCL-xL. Cell Death Dis. 2016;7:e2083 pubmed 出版商
  32. De Toni E, Ziesch A, Rizzani A, Török H, Hocke S, Lü S, et al. Inactivation of BRCA2 in human cancer cells identifies a subset of tumors with enhanced sensitivity towards death receptor-mediated apoptosis. Oncotarget. 2016;7:9477-90 pubmed 出版商
  33. Thornton T, Delgado P, Chen L, Salas B, Krementsov D, Fernández M, et al. Inactivation of nuclear GSK3β by Ser(389) phosphorylation promotes lymphocyte fitness during DNA double-strand break response. Nat Commun. 2016;7:10553 pubmed 出版商
  34. Wang W, Liu H, Dai X, Fang S, Wang X, Zhang Y, et al. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis. Sci Rep. 2015;5:16900 pubmed 出版商
  35. Amigo Jiménez I, Bailón E, Aguilera Montilla N, Terol M, García Marco J, García Pardo A. Bone marrow stroma-induced resistance of chronic lymphocytic leukemia cells to arsenic trioxide involves Mcl-1 upregulation and is overcome by inhibiting the PI3Kδ or PKCβ signaling pathways. Oncotarget. 2015;6:44832-48 pubmed 出版商
  36. Sabirzhanov B, Stoica B, Zhao Z, Loane D, Wu J, Dorsey S, et al. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ. 2016;23:654-68 pubmed 出版商
  37. Wu C, Huang K, Yang T, Li Y, Wen C, Hsu S, et al. The Topoisomerase 1 Inhibitor Austrobailignan-1 Isolated from Koelreuteria henryi Induces a G2/M-Phase Arrest and Cell Death Independently of p53 in Non-Small Cell Lung Cancer Cells. PLoS ONE. 2015;10:e0132052 pubmed 出版商
  38. Deben C, Wouters A, Op de Beeck K, Van den Bossche J, Jacobs J, Zwaenepoel K, et al. The MDM2-inhibitor Nutlin-3 synergizes with cisplatin to induce p53 dependent tumor cell apoptosis in non-small cell lung cancer. Oncotarget. 2015;6:22666-79 pubmed
  39. Knorr K, Schneider P, Meng X, Dai H, Smith B, Hess A, et al. MLN4924 induces Noxa upregulation in acute myelogenous leukemia and synergizes with Bcl-2 inhibitors. Cell Death Differ. 2015;22:2133-42 pubmed 出版商
  40. Yang N, Gilman P, Mirzayans R, Sun X, Touret N, Weinfeld M, et al. Characterization of the apoptotic response induced by the cyanine dye D112: a potentially selective anti-cancer compound. PLoS ONE. 2015;10:e0125381 pubmed 出版商
  41. El Khattouti A, Sheehan N, Monico J, Drummond H, Haikel Y, Brodell R, et al. CD133⁺ melanoma subpopulation acquired resistance to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: significance for melanoma treatment. Cancer Lett. 2015;357:83-104 pubmed 出版商
  42. Eroglu B, Kimbler D, Pang J, Choi J, Moskophidis D, Yanasak N, et al. Therapeutic inducers of the HSP70/HSP110 protect mice against traumatic brain injury. J Neurochem. 2014;130:626-41 pubmed 出版商
  43. Bai L, Chen J, McEachern D, Liu L, Zhou H, Aguilar A, et al. BM-1197: a novel and specific Bcl-2/Bcl-xL inhibitor inducing complete and long-lasting tumor regression in vivo. PLoS ONE. 2014;9:e99404 pubmed 出版商